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ABSTRACT OF THE THESIS

An Algorithm for High-Resolution 

Multipath Mitigation in a Channel 

with Known Constraints

by

Ali Radi Jishi

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Yuanxun Wang, Chair

Multipath is the dominant source of error in indoor positioning systems, because it can 

significantly distort the shape of the correlation function used for time-delay estimation. With a 

narrowband signal, the range resolution is often insufficient to decompose the overlapped 

received signals. However, if the signal has constraints, we can theoretically estimate the channel

response more accurately. We assume the constraint that there is a known amount of nonzero 

values in the channel response, each of which represents a delayed version of the training signal 

in the receiver. We focused our work on the principles of the least mean squares equalizer, which 

tries to estimate the channel response, because it is fast and can be implemented in parallel and in

real-time. Our modified algorithm uses the general principle of the least mean squares equalizer 
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and sets the constraints. The algorithm is designed to be implemented in parallel and in real-time.
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Introduction

Ranging is at the heart of many engineering systems and problems. One example is 

localization, which is a very ubiquitous problem with a wide range of applications, including the 

Global Positioning System (GPS). GPS estimates location using trilateration, which requires 

estimates of the range between a satellite and the user. Trilateration systems estimate the location

based on the time-of-arrival or the time-difference-of-arrival of known signals coming from 

different sources with a known position. 

GPS is reliable in many environments, but is unable to provide an accurate or meaningful 

location when used indoors, especially in large buildings. This is in part because of the large 

attenuation in large buildings, but also because of multipath propagation [2],[4]. Multipath 

propagation is the process by which a signal traveling from a transmitter to a receiver reflects off 

objects and arrives at the receiver in a path different from the direct path and with a delay, 

interfering with the shortest signal. Multipath is the main source of ranging error in indoor 

localization systems in general because indoor environments are characterized by closely spaced 

walls and ceilings that reflect the signal, leading to attenuation of the signal power if there is a 

wall between the transmitter and the receiver and resulting in potentially powerful reflections 

interfering with each other and with the shortest signal [1]. 

The effects on signal propagation through a multipath channel can be characterized by 

equation 1 below [1]. In this equation, n is a discrete time variable, s is the signal being sent, and 

r is the signal that is received. In the first term on the right hand side, we see that there are two 

coefficients that capture the act of propagation of the direct signal or the reflections: the term ai 

represents the attenuation of that particular signal between the transmitter and the receiver, and 

the term bi represents the relative delay associated with the propagational element i. The second 
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term with the exp(j*Φi ) refers to a reflection that results in a change in the carrier frequency. In a

real system, this would most likely result from a Doppler shift due to a moving reflector. In our 

design, we will assume that none of the reflections result in a frequency shift, thereby 

eliminating that term from consideration, and with that the coefficients of the amplitude and 

delay associated with that term. 

In general, neglecting changes in the speed of the carrier due to a dielectric, the signal 

with the least delay is the line-of-sight signal (LOS) because it represents the signal that 

propagated from the transmitter to the receiver without any reflection. The other amplitudes and 

delays are multipath, or non-line-of-sight (NLOS). 

The relevant amplitude and delay information can be combined into one vector, where the

indices linearly represent the relative delays and the value of the vector at each index represents 

the net magnitude of the received signals with that delay. An important advantage of this form is 

that the received signal can be written as the convolution of the sent signal with this vector. This 

vector is therefore the channel response. In this form, the first nonzero term is the LOS signal, 

and the nonzero terms after that are the NLOS signals. Since each LOS and NLOS signal 

represents a nonzero element in the channel response with an index corresponding to that delay, 

in our discussion, we will refer to LOS or NLOS signals as pulses or Kronecker deltas in the 

channel response.

The problem under consideration is that someone is in a large building and people outside

want to be able to track his or her location based on a signal he or she emits from a device. The 

system under consideration involves a set of base-stations that are located outside a building, and
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the base-stations can synchronize and communicate. In this context, localization can be achieved 

by a time-difference-of-arrival approach, simplifying the problem of interest into a ranging 

problem, where we try to find the delays of the LOS signals between the transmitter and the 

base-station relative to one-another [2]. Since the source is indoors, the resolution is limited by 

ranging errors due to multipath.

In addition to the ranging errors caused by multipath, if this is to be designed to be 

implemented in a real-world system, a major limitation is the bandwidth. For a signal with a 3 

dB bandwidth of B and with C as the speed of light, the range-resolution is C/B in distance or 

1/B in time. This means that the smaller the band-width, the harder it is to resolve the range. This

is a problem in real-world problems because we have to consider FCC regulations as well as the 

propagational properties of electromagnetic waves. Firstly, when we consider that multipath 

propagation from the inside of a building leads to a huge decline in total power that arrives at the

receiver, we realize that we have to use one of the frequencies allocated for industrial, scientific, 

and medical (ISM) applications. Secondly, if we expect the LOS signal to propagate through 

walls and arrive at the receiver with a reasonable power, then the carrier frequency must be 

relatively low. In table 1 below, we see a list of the international ISM frequencies relevant to the 

United States, the total band-widths [31], and the range resolution.
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Center Frequency Bandwidth Minimum Range for 

Resolution (m)

6.78 MHz 30 KHz 10000

13.56 MHz 14 KHz 21428

27.12 MHz 326 KHz 920.2

40.68 MHz 40 KHz 7500

915 MHz 26 MHz 11.54

2.45 GHz 100 MHz 3

5.8 GHz 150 MHz 2

24.125 GHz 250 MHz 1.2

61.25 GHz 500 MHz 0.6

122.5 GHz 1 GHz 0.3

245 GHz 2 GHz 0.15

Table 1: The United States ISM bands and their range resolutions

Therefore, we surmise that in order to get maximum band-width and propagation, we 

should use the 2.45 GHz band or the 915 MHz band. With these band-widths, the maximum 

theoretical resolutions are 3 m and 11.54 m, respectively. When we consider that for the 2.45 

GHz band, the LOS power received would be attenuated and when we consider that there would 

be a lot of interference from other systems, such as WiFi, a realistic localization system requires 

a much better resolution. Therefore, the problem is further defined as trying to map the channel 

response between the transmitter and the receiver when the components of the channel response 

have a separation smaller than the minimum resolution, and to do so in the best way possible.

A signal of interest is the ATSC DTV signal. The ATSC standard uses an 8-VSB signal 

with a bandwidth of 6 MHz with a carrier in the UHF band in the 600 MHz range. ATSC signals 

contain training signals used for synchronization and for other purposes. One important training 

signal is the PN511 code, which consists of 511 symbols that repeat every 24.2 milliseconds. 
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Although digital television signals cannot be emitted at these frequencies, they prove useful in 

simulations [13].

Having defined the problem, further steps are taken to allow us to analyze and experiment

with different algorithms and techniques. Firstly, the band-limited signals are over-sampled. This

can come from physical oversampling of the signal (after extraneous frequencies have been 

filtered) or by sampling at the Nyquist rate and then performing a Fourier interpolation to a 

smaller step size. Both of these result in the frequency components of the signal being that of the 

original signal below their frequency limits and zero above the limit. These processes result in 

smaller time scales, which are needed to handle a higher resolution. In other words, a higher 

frequency scale becomes present in the problem, meaning that one can describe sharper/higher 

frequency pulses with these time scales, which is necessary in describing separations below the 

minimum resolution [3],[19].

Secondly, in order to efficiently experiment with techniques, we simulate propagation and

receiver effects by defining a channel response vector and a training signal, convolving an 

upsampled training signal with the channel response, and downsampling and then interpolating 

(to ensure that it follows the same process a real system would, and to ensure that all higher-

frequency components are zero). This gives us the received signal. To test a technique, we come 

up with a set of channel responses and their respective received signals and use whatever 

technique we are examining to find the channel response it predicts, and then compare that with 

the known ground truth. In this process, we define the ground truth channel response as a series 

of Kronecker delta functions, which defines the delay and amplitude of each LOS and NLOS 

signal arriving at the receiver. Note that this technique implicitly assumes that the delay is 

precisely as defined in the ground truth channel response vector, so the channel response vector 
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needs to have a small time scale to be precise and to have enough resolution to model closely 

spaced multipath environments. Furthermore, it is important to simulate cases in which many of 

the later delta functions are just as strong as or stronger than the first one if we wish for this to be

useful for indoor environments.

Finally, in order to realistically be able to solve the problem at hand, it is vital to assume 

certain constraints in the channel. The reason is that Nyquist's limit essentially sets the minimum 

sampling frequency required to capture all of the information in a signal known to be constrained

only by frequency, but does not strictly apply to signals known to have further constraints. This 

idea forms the basis of super-resolution algorithms, such as compressive sensing [7],[8], which 

will be discussed later on. In our work, we assume that we have knowledge of the training signal 

and the amount of Kronecker delta functions in the channel response; or in other words, the 

channel response is constrained to having only the predetermined amount of Kronecker deltas. 

With these three points in mind, we have the tools required to analyze and tackle this problem.
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Review of Literature

Correlation

The correlation is a common method for separating or extracting a component of a signal.

Correlation is the process of linearly finding the presence of one signal in another by taking the 

inner products of the two vectors. Furthermore, we assign a delay variable to one of the vectors 

and take the inner product at each delay to find the presence of a delayed version of one signal in

another as a function of the delay variable. Separating multipath components of a signal works 

by knowing the training signal and correlating that with the received signal, theoretically locating

the presence of delayed versions of that training signal. Some of its key advantages are that it can

be done in real-time/online and that it can be implemented with relative simplicity [14].

Ideally, for this to be precise, the correlation pattern would be a series of Kronecker delta 

functions because it indicates that if there is a delay, it appears in the correlation delay pattern at 

only an infinitely single time. However, since the inner product used in finding correlation is 

linear, it results in no change to the bandwidth. In effect, rather than a series of delta functions 

appearing in the output of the correlation operation, the limited bandwidth results in filtered delta

functions. This results in a series of sinc functions. If the delays are more closely spaced than the 

Fourier resolution, the peaks would be within the sinc full width at half maximum (FWHM), so 

they interfere and are not resolved. Since the usefulness of this method depends on being able to 

resolve sinc functions, this method works when the pulses in the channel response are spaced 

farther than the Nyquist resolution but does not work when they are spaced more closely, making

this method inadequate in a problem with an indoor environment.

Figure 1 shows a block diagram of the steps of the correlation method when applied to a 

real time signal. The delay of a signal component relative to a clock with the same frequency as 
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the signal repetition rate (this can simply be an ATSC signal, since the PN511 codes repeat at the 

same frequency) is estimated by the position of the peaks relative to that clock [14]. 

To demonstrate the bandwidth limitation of the correlation method, we present the results 

of this method when applied to an ATSC DTV signal with multipath components that cannot be 

resolved in figures 2 and 3 below. The signals are interpolated 10-to-1 above the Nyquist 

sampling frequency, and the remainder of the signal (containing simulated data) is included in 

the correlation. This is done for both the Gaussian signal and for the ATSC DTV signal in figure 

2 and figure 3, respectively. The figures show a close view of a peak, highlighting the correlation

method's inability to resolve the different signal components.

8

Figure 1: A block diagram of the process used to find the cross-correlation in real-time.
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Figure 2: An attempt of the correlation method to resolve closely-spaced multipath when
the signal is a Gaussian pulse.
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Figure 3: An attempt of the correlation method to resolve closely-spaced multipath when
the signal is an ATSC PN511 code.
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Least Mean Squares

A way one can approach a ranging problem is through adaptive filters, most notably, the 

least mean squares filter (LMS). The LMS is an algorithm that attempts to mimic an unknown 

system by updating and converging the weighting coefficients of a filter such that the mean 

squared error between the output and the received signal is minimized. It was developed by 

Professor Bernard Widrow and his student, Ted Hoff, at Stanford in 1960. The least mean 

squares filter is a stochastic gradient descent method; in other words, the coefficients update 

based on the values at a single time [9].

The least mean squares filter is an adaptive filter, in the sense that it is a linear FIR filter 

with adaptive weights, and its weights are adapted in order to minimize the mean square error 

between the output of the FIR filter for a given input and a desired output. In this regard, this 

problem is similar to a Wiener filter problem, although they are solved differently. The LMS 

filter is defined particularly by its update mechanism [9]. 

Wiener filters are solved by setting up a linear matrix equation relating the two signals 

such that performing a matrix pseudo-inversion yields the vector of weights that minimizes the 

expected value of the mean square error. This is done by taking the gradient of the expected 

value of the mean square error and setting it to zero, giving the system of equations [9].

To set up the Wiener filter, we begin by viewing the expected value of the mean square 

error, as seen in equation 2 below, and expanding it into three smaller expectation values. We 

want to take the gradient of this and set it equal to 0. We show this by finding the derivative with 

respect to each index/element of the filter tap weight vector, as represented by the arbitrary 

element i in equation 3 below. By defining the correlations in equation 4 and equation 5, we can 

write the derivative as in equation 6, and set it equal to zero to yield the minima. Setting it to 
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zero gives the relation shown in equation 7, which can be written in matrix form. Solving this 

system of equations using a pseudo-inversion method yields the optimal set of weights. In the 

derivation, N is the size of the filter, d is the received signal, and x is the sent/training signal [9].

As a result of the matrix pseudo-inversion, solving the Wiener filter has a relatively high 

complexity [15]. 

The LMS filter attempts to solve a similar starting problem iteratively. Rather than setting

the gradient equal to zero to find the weights that yield the minimum mean square error, we find 

the optimum weights by updating them in the direction of the gradient, i.e., the direction of 

steepest descent. When performed iteratively, this converges to the solution of the Wiener filter 

[9]. However, in the online LMS version, which is of most interest to us, we make the 

approximation that at each moment in time n, the expected value of a term is the value of the 
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term at the time n. This essentially makes this a stochastic gradient update.

Since it will be important to this discussion to understand how the LMS filter update 

equations are derived, we go through the process [9]. We first define NumTaps as the amount of 

taps in the LMS filter, h as the weights vector, d as the received signal vector, y as the received 

signal predicted on the basis of the channel response and training signals, e as the error, and x as 

the vector of the most recent NumTaps values of the training signal. LenSig is the length of the 

signal that will be processed. We begin the derivation with the equations representing error and 

the cost function. The error is the difference between the received signal and the predicted signal,

and the cost function is the expected value of the mean square error, as shown in equations 11 

and 12. We take the gradient of this cost function. Equation 13 shows the general formula for 

gradient descent that we are to apply. Equation 14 and Equation 15 show the gradient with 

respect to the elements of the weights vector, h, of the cost function. Equation 16 shows the very 

important and defining approximation of the LMS: approximate the expectation value at n of the 

signal over the full range of samples, from 1 to NumTaps, with only the contribution of the terms 

at time n. This gives the update for the weight vector shown in equation 17. We will refer to this 

approximation as the LMS approximation or the Stochastic Gradient approximation. This 

approximation essentially allows the algorithm to be run in real-time because the update for each

weight depends only on its signal value that is being stored in the delay line and does not require 

holding and using the entire cut of the signal.

12



A block diagram showing the process is shown in Figures 4 [16] and 5 below. Two 

signals, a training and a received signal, are inputted. The training signal is put through a delay 

line that stores and carries over the signal at each unit of discrete time, n. At every moment in 

time, each value stored in the delay line is multiplied by a weighting coefficient associated with 

its position in the delay line. All of these are added, resulting in the output of the filter at that 

moment in time. This is compared to the received signal at that moment in time to get the error 

through integer subtraction, which is then used to update the weights.

13

Figure 4: A block diagram of the least mean squares equalizer.



A key advantage of the LMS filter is its simplicity. The LMS converges to the Wiener 

filter solution by applying a stochastic gradient approximation. The LMS requires (2* NumTaps 

+ 1) additions and (2* NumTaps + 1) multiplications per cycle [12],[15]. This leads to a 

computational complexity of operational amount in the order of LenSig* NumTaps and to a space

complexity in the order of 2* NumTaps. More importantly, this reduced operational complexity is

a very big advantage because it allows the algorithm to be implemented in parallel as an ASIC or

in an FPGA, greatly lowering the computation time. A parallel implementation of the LMS filter 

gives it an effective time complexity of LenSig and space complexity of 2* NumTaps. The 

effective time complexity relates to the amount of time it takes to compute considering all of the 

operations that are occurring in parallel, and the space complexity comes from the delay-line and

the multiplication hardware.

To range using the LMS, we can run the LMS so that it finds the weights when the input 

is the training signal and the output is the received signal. Since the position in the delay line is 

essentially the training signal at a time of {- index} + n, then one can understand the value at 

14

Figure 5: An implementation of the weight setting block in Simulink.



index t as being what a signal delayed by t time-units relative to a reference signal would look 

like arriving and interfering with signals arriving at other delays. Therefore, ideally, the weights 

would converge such that the weights at the indexes corresponding to the delays of these signals 

or multipath components are equal to the amplitudes of these components, and all other weights 

are zero. Another way to understand it is that the adaptive filter is trying to converge to the 

weights that when convolved with the training signal give the received signal; this is the channel 

response vector that contains the information of where the LOS and NLOS signals are.

Again, to be ideal, this method has similar precision requirements as the correlation 

method; namely, that if a signal arrives with a certain delay, then it only appears in the filter 

weight vector as one weight. This once again is inaccurate because of the linearity of this system 

and the bandwidth limitations. Since the signals are band-limited and all of the operations are 

linear, then during updates, the weight coefficients vector only adds band-limited updates and 

does not develop any non-zero higher-frequency components, hindering its ability to reproduce 

Kronecker delta functions in the channel response and confining it to a series of sinc functions 

representing the filtered delta functions. In the frequency domain perspective, when the weights 

are convolved with a band-limited training signal, thereby multiplying in the frequency domain, 

only the low-frequency components of the weight vector are not multiplied by zero, and so as 

long as these are correct, the process converges. The result is a large number of local minima 

corresponding to the combinations of higher-frequency components of the weight vector with the

proper lower-frequency components. Since the weights are generally initialized to zero, the 

higher-frequency components remain at zero. This, in turn, leads to the same bandwidth 

limitation experienced by the correlation method. 

A demonstration of the LMS filter's abilities, and shortcomings, in ranging is now 
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presented. In figure 6 below, we see demonstrations of the channel response output of the LMS 

filter when the ground truth channel response Kronecker delta functions are well separated, when

the separation is about the Nyquist resolution, and when the separations are below the minimum 

resolution. The bottom left corner shows the signals associated with the unresolvable test-run. 

We see that the band-limited signals themselves do indeed converge, but that this does not mean 

anything for the higher-frequency information of the channel response. 
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Figure 6: The channel responses predicted by LMS when the pulses in the ground truth vary in separation in the top
half and in the bottom corner. The bottom right portion compares the reconstructed signal with the received signal 
in the setup of the bottom left.



Super-resolution Algorithms

Given the limitations of the linear methods presented, we examine super-resolution 

algorithms in order to understand the mechanisms through which they can obtain super-

resolutions, in hopes of using their principles to obtain a super-resolution while maintaining 

some of the advantages of the LMS filter. The methods discussed include MUSIC/ESPRIT, 

compressive sensing, and Maximum Likelihood.

We begin by discussing MUSIC and ESPRIT. MUSIC and ESPRIT are used for 

frequency, time-of-arrival (ToA) estimations, and direction-of-arrival (DoA) estimations [17],

[18],[20],[21],[28], and they provide significant insight into the principles behind super-

resolution algorithms. MUSIC, which stands for Multiple Signal Classification, was developed in

the 1970s. MUSIC is a solution to a family of problems in which one tries to estimate a set of 

parameters that the received signal depends on. MUSIC accomplishes this by exploiting 

knowledge of the structure of the data and the sensor arrays, and is commonly applied to 

frequency estimation in the presence of White Gaussian noise. MUSIC works by taking an 

eigenvalue decomposition of the autocorrelation matrix, and by knowing that the number of 

complex-exponential signals is p, then the p largest eigenvalues span the signal subspace and the 

remaining eigenvalues span the noise subspace. This provides us with a set of frequencies for the

signals that are not bound to the frequency bins, allowing for a more accurate estimation [17],

[18],[20]. This algorithm has a complexity of O(N3), where N is the total amount of samples in 

the window [30]. 

We now discuss compressive sensing and its assumption of constraints on the system. 

Compressive sensing is based on setting up a system of underdetermined linear equations, which 

typically have infinitely many solutions, and finding the correct solution to reconstruct a signal. 
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In order to be able to find a solution of this system of equations, the signal needs to be sparse in 

some domain and needs to be incoherent, allowing us to specifically recover the sparse solution. 

We recover the sparse signal by performing L1 minimization techniques. This makes 

compressive sensing distinct from L2 minimization, or in other words, least squares 

minimization. The Ln norm is the square-root of the sum of all of the absolute values of a vector,

each to the power of n. The L1 norm is therefore the sum of all of the absolute values, and 

although the L0 norm is not rigorously defined this way, it is the sum of all nonzero elements in 

the vector. The L1 norm's gradient in all domains linearly leads to the global minimum, 

alleviating concerns over a local minimum. Furthermore, in most problems, the L1 norm is 

equivalent to the L0 norm, so the L1 norm minimum also represents the sparsest solution [8].

There are several methods used to solve for the solution of an L1 minimization problem. 

These include matching pursuit [23],[24], basis pursuit [25],[26], LASSO [22], and others. There

are also iterative solutions for the sparse solution. Compressive sensing has a complexity of 

O(N3) [30], where N is the number of samples in the window of interest.

Another super-resolution algorithm worth discussing is maximum-likelihood [28],[29],

[14]. This method is based on a grid-search. With this, the number of pulses is known, and it 

essentially runs through all possible values and keeps track of which is statistically the likeliest. 

It has a complexity of O(M2*N), where M is the number of NLOS signals and N is the number of

samples [30]. 
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Method

Having established the principles by which super-resolution algorithms operate, we now 

attempt to form a set of constraints and apply them to the LMS equalization structure in hopes of 

being able to maintain many of the advantages of the LMS structure while also enforcing the 

constraints that would allow for a super-resolution. 

To choose how we enforce the constraints, we take into account that we want to base our 

approach on the LMS filter. Since the LMS filter is itself based on an approximation, we want to 

select a criterion that we can deal with more easily. Optimization for sparsity in the super-

resolution algorithms uses mathematics that is too sophisticated for clear use with the LMS 

algorithm, so we look at the assumption that we know the number of pulses in the channel 

response. We pick this because it is much more physically simple to deal with this constraint and 

handle a channel response vector that has a set amount of relevant nonzero values in an 

algorithm than it is to exploit the mathematical properties of sparsity (or sparse matrices).

By setting this constraint and solving this problem, we are no longer solving indoor 

localization; rather we are solving a problem that may map certain indoor localization problems, 

but is a more canonical problem that may be useful in indoor localization systems. How exactly 

to use this for practical localization, where the channel vector is made up of an unknown amount 

of pulses, or comprises of smoother shapes, is viewed as a different problem that would make 

use of this, just as any realistic problem makes use of canonical problems. In practice, this may 

be by running this algorithm multiple times and varying the number of pulses in the constraint, 

or by replacing the delta functions with a narrow Gaussian or Lorentzian pulse, or by 

experimenting with different environments and making case-by-case modifications to the 

canonical problem.
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Having defined the problem, we will first define the relevant variables before explaining 

our approach. The number of pulses in the channel response is defined as p. The number of taps 

in the filters that we will refer to is NumTaps. The length of each signal is LenSig, and the 

amount of times the algorithm is repeated on a signal (indicating the amount of times the receiver

needs to receive a signal) is R.

In order to enforce the constraint on the LMS filter, an obvious modification to the LMS 

is to have a separate channel weight update function that takes the channel vector as its input and

outputs a modified version that is closer to the constrained result. However, it is difficult to find 

the correct function to apply on the weights. The function has to be simple and relatively linear. 

For most cases, it is difficult having an independent function that updates the weights accurately 

without taking the information from the LMS update pattern into account. Although there may be

a way to effectively update the channel response this way, it is clear that we should look 

elsewhere.

The LMS algorithm we used is based more on writing the multipath pattern as a vector 

containing delays and a vector containing weights for each multipath component (with the 

exception that all components at a given delay are combined into one element). Thus, a channel 

response vector with five pulses is written as two five-element vectors. The idea, then, is that 

rather than enforcing the constraints by trying to make the equalizer organically converge to a 

channel response vector with the decided amount of pulses, we force the constraint by defining 

the channel response domain only in terms of five pulses, which we then converge to the correct 

solution using convergence techniques based on the LMS. The problem can be approached much

more simply when written in this form, because it is very difficult to come up with a function 

that finds pulses in channel response domain and shifts them.
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We perform this by essentially having two LMS-based update systems: one updating the 

weight vector, and one updating the delay vector. The updates are intertwined as part of the same

iterative loop and the same system of variables at each unit of time. The amplitude and delay 

vectors both update in the same iteration of the loop using the same error value, which is derived 

from both the amplitude and the delay vectors at the time of interest. Furthermore, the update-

function may call upon both vectors in order to update the delay and the amplitude. 

The idea behind this is that we set up separate least mean squares updates for the delay 

and for the amplitudes so that the system converges to the corresponding amplitude and delay 

vectors that minimize the mean square error. In the derivation, x(n) is the sent signal, d(n) is the 

received signal, y(n) is the predicted signal, ai is the amplitude vector of the equalizer, bi is the 

delay vector of the equalizer, p is the size of the amplitude and delay vectors (which represents 

the amount of pulses in the channel response vector), and e(n) is the error. We assume that the 

expected value of the noise is zero, so we ignore its contribution. To set up the system, we write 

the error as a function of both the amplitude and the delay vector, as shown in equation 18. We 

take the derivative of the cost function with respect to an arbitrary element i of the amplitude 

vector and the delay vector, as seen in equations 19 and 20. This gives us the updates equations 

shown in equations 21 and 22. 
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This derivation depends on the derivative of the training signal. Since we want this 

algorithm to be linear and discrete, we estimate the derivative of the training signal at each point 

as the difference between adjacent points in the training signal. This provides an estimate of a 

scaled version of the derivative. Note that since the LMS structure does not have infinitely small 

time bins, the oversampling needs to be high in order for this to be able to approximate a 

continuous time variable accurately. With that in mind, the update equations can be written as 

shown in equations 23 and 24.

The algorithm can be summarized as shown below:

Our Algorithm

Inputs: Received signal d(n); training signal x(n); step sizes for the amplitude and delay μa and 

μd; number of pulses in the channel response P; total length of signal (including repetitions) R

Initialization: attenuation ai to arbitrary values; delays bi to values within the estimated range of 

the delays.

Output: attenuation ai; delays bi; error e(n)

Iteration: n=1:R

Find the amplitude and delay updates and update based on equations 23 and 24
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Unlike the LMS, in this algorithm, the delays change as we update. With obvious 

physical constraints regarding time and clock operation in mind, it is clear that replacing the 

NumTaps size unit-tap delay line with a p tap delay line with tap delays corresponding to the 

delay vector is not an option due to information lost as delays change and due to difficulty in 

implementation. However, the solution is much simpler and closer to the original LMS. By 

connecting the signals we select from to a delay line, we essentially capture the information at 

every clock cycle within that time period. Then, each delay of the delay line can be connected to 

a selector (or multiplexer), allowing us to feed the selector the values of the delay vector to 

obtain the signal at that delay. Note that this caps the delays in the delay vector to the length (or 

maximum delay) of the delay line. In our implementation, we use 2 delay lines: one with an 

input of the training signal at a certain time n, and the other having an input of the training signal

at time n-1 subtracted by the training signal time n. This allows us to easily select from a training

signal delay line and from a derivative delay line. 

By making the proper approximations regarding the derivative, we have kept the 

algorithm linear and in a close parallel to that of the original LMS filter. An important advantage 

to this algorithm is that in hardware implementation, we require much less storage for the values 

of all of the weights and far fewer multiplication operations because we no longer have to 

multiply all of the outputs of the delay line with their respective weights. This may prove very 

valuable even outside the Fourier resolution if the person requires many taps in the filter/delay 

line to capture a wide range of distance/time but does not want to dedicate too much hardware 

resources to memory (RAM) or multiplication.

The initialization of the delay and amplitude vectors is very important in this algorithm. 

The values they are initialized to matter a lot in where and if the algorithm converges. We 
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initialize the delays such that they are in the vicinity of the received pulse. We do so by finding 

the peak of the received Gaussian or correlation of the ATSC signal, and then going back several 

samples and initializing the LOS delay to be that sample. The other delays are initialized by 

linearly adding a small amount to each adjacent delay value such that all of the delays are 

essentially within the pulse. The amplitudes are all initialized to a value close to the average 

value of the ground truth amplitudes. In a realistic system, this can be estimated based on signal 

power.

Our algorithm has a complexity in the order of p*LenSig. This is due to the selection of 

the values in our implementation before multiplication and addition. When implemented in 

parallel, it runs for a period of time in the order of LenSig. It has a spatial complexity in the order

of NumTaps + p.

Simulink

In order to demonstrate how this algorithm can be implemented in parallel, we use 

Simulink to build this algorithm and to test it and measure its capabilities. We will choose one of 

a variety of different implementations of this algorithm, and we will present this implementation 

in this discussion. There are a variety of implementations because certain operations can be 

written in more than one way, and the way one chooses to implement the algorithm ultimately 

depends on resource availability trade-offs, which matter significantly for someone wishing to 

implement this algorithm in an ASIC or an FPGA. 

An important implementation decision is that of the derivative of the training signal. We 

defined the linear approximation of the derivative of the training signal as the difference of the 

values of the training signal at adjacent samples; when we look at this as literally defined in the 
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MATLAB code, this can be implemented by placing a subtraction operation between every two 

adjacent taps of the delay line. However, we realize that this is a redundant process, since the 

derivative shifts as the training signal shifts in the delay line, leading to the subtraction of the 

same pairs of numbers occurring NumTaps number of times. In our parallel implementation, a 

single subtraction between two adjacent samples of the training signal occurs before the samples 

of the training signal and the difference are inputted into the delay lines, with a possible tap-

delay before the input for synchronization. This forms a trade-off with regards to physical space 

in the chip between having many adders and having the extra flip-flops for the other delay line. 

Overall, an important advantage of our parallel implementation is that a delay line is based on 

flip-flops, which contain much simpler circuitry compared to adders. This is shown in figure 7 

below.

The storage of the delay and amplitude vectors is done using some form of RAM or 

simple memory circuits. Since there are typically not too many elements in these vectors, this is 

not a problem for the hardware designer. The memory blocks output the value stored, and are 

inputted values that they add to their own (not replace with) as an update. This is shown in figure

8 below.
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Figure 7: A portion of the delay-line in Simulink. Each square represents a 1-tap delay in the propagation of the 
signal.



The design relies on having multiplexers/selectors that connect to all NumTaps outputs of 

the delay lines that outputs the values of the signals in the delays corresponding to the rounded 

delays in from the delay vector. In our simulation, the selection for all p of the delays occurs in 

one multiplexer operating at a higher frequency in order to save hardware space at the expense of

clock-rate. However, one can have NumMux multiplexers share the task as well. A multiplexer is 

shown in figure 9 below.
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Figure 8: A representative portion of what the memory blocks look like in 
Simulink.



We have separate amplitude-update and delay-update blocks. Each of these performs its 

update operations and returns the update to the corresponding memory blocks. These can be seen

in figures 10 and figure 11 below.
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Figure 9: A selector in Simulink. This takes in 128 inputs and selects the 3 defined in the left. It is based on a 
series of switches.

Figure 10: The weight-setting block in Simulink. It is similar to that of LMS, but 3 delays are
selected first.



The error is found in the module shown in figure 12 below.

Putting everything together, we get the system shown in figure 13 below. We can see by 

the extensive utilization of the delay line that this is a parallel implementation, as planned. 
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Figure 11: The delay setting block in Simulink.

Figure 12: The block that finds the error.
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Figure 13: The whole system based on the submodules in Simulink.



It is useful to analyze this implementation by quantifying how quickly weights update 

with respect to the quickest clock rate in terms of some of the design parameters, such as 

NumMux. Firstly, the amount of clock cycles required to select a full set of signal values from the

delay-line is the ceiling of (p/NumMux). Then, if the algorithm is run for R* LenSig cycles of the 

algorithm, and each cycle is in the order of the number of cycles it takes to select a full set of 

signals, then this algorithm could be run with timing in the order of R*LenSig*p/NumMux.
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Results

Having come up with the algorithm, we must verify it, first through some simulations. 

The signal we used in our simulations are a Gaussian pulse. It is important that there be a 

sufficient time-interval between two transmitted pulses and PN signals in order to avoid inter-

symbol interference. 

In many of our simulations, we assume that there is no noise. Since we are trying to judge

the algorithm as a super-resolution algorithm, it is sufficient for us to examine the performance 

when there is no noise. In some of our simulations, we address noise. The noise may be additive 

White noise, mainly stemming from the thermal noise added at various processes in the receiver. 

White noise is completely random and incoherent; it theoretically exists randomly with a 

Gaussian distribution of power in all frequencies, but realistically, due to filtering in the receiver, 

it is random and incoherent but within the bandwidth. Another consideration is colored noise. 

This can stem from various sources, but one consideration in our simulations is noise in the 

channel response vector. In our noiseless simulations, the channel response vector used to 

generate the received signal contains an amount p of perfect Kronecker delta functions, with all 

other values being zero. However, it may be the case that there are p main pulses but the other 

values are not all zero. This results in colored noise at the receiver, because the noise is in the 

pattern of the received signal. In the simulations that take this noise into account, we assume that

each otherwise empty bin has a small random value defined by a Gaussian distribution centered 

at zero added to it. 

In our tests of the algorithm, we did not include any noise. Although noise is an important

part of every system, our goal was to test the convergence of the algorithm more fundamentally. 

We ignored noise because we wanted our results to reflect only the core functionality of the 
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algorithm and the update mechanism.

To test the algorithm, we run the simulations varying the amount of pulses kept. In our 

simulations, there are 128 taps in the filter. When we defined the Gaussian training signal, we 

used σ = 12. This relates to the width of the pulse, and thus the bandwidth. The relationship with 

the pulse-width is that the FWHM of a Gaussian pulse is given by approximately 2.35482*σ, so 

FWHM in this case is approximately 28.24 samples. The relationship with the bandwidth is that 

in the frequency domain, a Gaussian pulse transforms to another Gaussian pulse but with a σ' = 

1/σ (assuming a symmetric range), so the FWHM in the frequency domain of the training signal 

in our case is approximately .196. Since the pulses are Gaussian, when we try to resolve them, 

the results can be compared to σ and the FWHM of the training signal. The inability to resolve 

them through regular LMS is shown by example in figure 14 below, in which there are 5 pulses 

and R = 6000 repetitions.
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We run the algorithm with p = 1, 2, 3, 5, 7, and 10 pulses. For each of these, we run 100 

cases. For each p, we present 4 plots of the channel response vector, showing the ones used to 

generate the received signals, the amplitudes and delays the algorithm converges to 

superimposed with a different color, and the starting channel vector in another vector. For each 

of the 100 test-runs, we look at the delays, compare with the ground truth, find the root-mean-

square errors (in unit samples) of the delays of each test-run, and plot a distribution showing how

much error there was in estimating the errors. To understand the improvement in accuracy, this 

root-mean-square error would be compared to the FWHM, which is defined in terms of the σ of 
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Figure 14: The channel responses LMS converges to when the signals used are Gaussian pulses.



the Gaussian pulses as 2.35482*σ.

The results of this measurement procedure are shown for Gaussian signals. Note that 

when we plot the channel response vector that the algorithm converges to, we round the delay 

values to the nearest integer delay in order for it be discretized. Note that this rounding 

approximation is also done in the algorithm for a decimal delay to represent a position in the 

delay-line, which is defined by an integer.

Although this algorithm attempts to recover the entirety of the channel response vector, 

we give some special privilege to the LOS because if an algorithm can estimate the first pulse in 

the channel response with more accuracy at the cost of the accuracy of some of the other 

components of the channel response, then it would be very beneficial to our end goals. 

Therefore, we also plot a distribution showing how much error there was in the delay of the LOS

in unit samples by showing the distribution of the absolute values of the error of the LOS 

component. This also plays into why we care more about the delays that the algorithm converges 

to than the amplitudes. 

Note that when we find the root-mean-square errors, the value presented may be an 

overestimation of the error in the information. This is because we find the root-mean-square error

by performing an element-wise subtraction of the errors, squaring them, adding, and taking the 

square-root; however, if there is an error related to the numbering of pulses relative to one 

another, then an element-wise comparison would be less meaningful because having a set of 

delays that the algorithm predicts perfectly would contribute an error if the algorithm used one 

pulse to capture two closely spaced ground truth pulses that occur earlier in the channel response.

This would be a bigger issue with more pulses. However, viewing the information in a plot 

allows one to see the accuracy more clearly.
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When we perform simulations based on the Gaussian signals, we repeated the algorithm, 

as indicated by the variable R. We used R = 4000 for p = 1, R = 4000 for p = 2, R = 4000 for p = 

3, R = 10000 for p = 5, R = 10000 for p = 7, R = 14000 for p = 10.

In figure 15 below, we see some sample plots of the channel response where p = 1.

In figure 16 below, we see some sample plots of the channel response where p = 2.
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Figure 15: 6 examples of the algorithm's channel response output with p=1.
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In figure 17 below, we see some sample plots of the channel response where p = 3.
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Figure 17: 6 examples of the algorithm's channel response output with p=3.
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Figure 16: 6 examples of the algorithm's channel response output with p=2.
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In figure 18 below, we see some sample plots of the channel response where p = 5.

In figure 19 below, we see some sample plots of the channel response where p = 7.
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Figure 19: 6 examples of the algorithm's channel response output with p=7.
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Figure 18: 6 examples of the algorithm's channel response output with p=5.
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In figure 20 below, we see some sample plots of the channel response where p = 10.

The plots of the histogram depicting the root mean square error of the time-delays at each

value of p are shown together below in figure 21 for ease of comparison. 

The plots of the histogram depicting the absolute value of the error of the LOS delay at 

each value of p are shown in figure 22 below.
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Figure 20: 6 examples of the algorithm's channel response output with p=10.
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Figure 21: The RMS error distributions for different values of p.
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Figure 22: The LOS error distributions for different values of p.



Simulink Results

Since we want to show that the algorithm can be implemented in parallel, we present 

Simulink results comparing the outputs of the Simulink implementation using 1 repetition of the 

uncorrelated ATSC PN 511 signal, with zero padding. If the results match, then we can conclude 

that this is a proper implementation of the algorithm as presented in MATLAB. The results 

plotted in figure 23 below show the channel responses after the algorithms have been completed 

using different symbols (that can be overlapped) and with the values of the amplitudes and time-

delays labeled. 
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Figure 23: A comparison of the channel response output of the MATLAB and Simulink 
implementations with a given signal input.
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Discussion

Having generated our results, we now analyze them.

Since the pulses are Gaussian, when we try to resolve them, the results are best compared 

to the values of σ and of the FWHM of the training signal. We see clearly from the plots of the 

mean square error that compared to the FWHM of the signal, we are relatively accurate.

Note that although the histograms show the root-mean-square grow as p grows, this does 

not tell the whole story. The RMS error peaks approximately at .5 for p=1, at .5 for p=2, at 1.4 

for p=3, at 3.2 for p=5, at 9 for p=7, and at 11.5 for p=10. This seems to indicate that the 

algorithm becomes less relevant as p increases. However, as mentioned before, the RMS error 

between the ground truth delay vector and the estimated delay vector essentially matches and 

compares the two vectors based on their indices instead of the values of the delays. Therefore, an

error that involves placing an extra pulse or not including a pulse in an early index of an 

estimation creates a mismatch between the information in the two vectors and makes the RMS 

error less meaningful. Furthermore, it becomes less meaningful when we consider that the RMS 

uses amplitudes that may converge close to zero. Convergence to zero essentially removes them 

from consideration in the delay update.

In order to get a better assessment of how well the algorithm works with higher p, we 

look at the plots of the channel vectors. Although this does not provide us with a numerical 

representation of the accuracy, it gives us a qualitative view of what is happening. By looking at 

the channel response vectors we plotted, we see that the accuracy is high when p is low. When p 

is higher, we observe that the accuracy is still somewhat high, but we see that if the ground truth 

pulses are closely spaced, the algorithm my basically combine their information into one pulse. 

This results in some extra pulses off away from the last ground truth pulse. This is partially a 
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result of the initialization. Another thing of note is the amplitudes of the pulses. We see that with 

the way that our delays are initialized, it leads to a relatively good LOS delay, but many of the 

amplitudes are incorrect. Some amplitudes are significantly greater than their respective ground 

truth amplitudes, while some are close to zero. Since the delay updates depend on the 

amplitudes, when the amplitudes are close to zero, the delays don't update significantly, 

essentially removing them from consideration when it comes to delay update and allowing some 

of them to be stuck past the last ground truth pulse. This is especially the case as p increases and 

many of the initial delays become significantly larger than the highest ground truth delay. These 

then approach 0 instead of moving into the range of the ground truth delays, leading them to 

factor into the calculations of the RMS delay without contributing much. By ignoring these 

pulses, the algorithm essentially acts as though it as fewer pulses.

Another way we can assess the algorithm that is especially useful at higher p is to look at 

the absolute values of the errors of the LOS. Firstly, it is much easier to map the LOS in ground 

truth to the LOS in converged solution by looking at the first element. This comparison is also 

meaningful because the LOS physically corresponds to some information related to the channel, 

meaning that we are comparing relevant physical information instead of just matching positions 

in the vectors. By looking at the values of the of the LOS error histograms, we see that the 

magnitude of the LOS error peaks approximately at .5 for p=1, at .5 for p=2, at .5 for p=3, at .5 

for p=5, at 1.5 for p=7, and at .5 for p=10. These are significantly less than the RMS errors at 

these same p values. This can largely be attributed to the problems with using RMS, but it can 

also be attributed to the initialization supporting an accurate LOS component. By observing a set 

of channel vectors, we notice that the LOS tends to be more accurate than many of the later 

pulses. Although the algorithm is best if it is able to estimate the entirety of the channel vector 
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with high accuracy, we can assign extra importance to the improvement in accuracy of the LOS 

even though some of the more delayed pulses may be off because the LOS is special in our 

application.

It is worth noting that since the selector requires an integer number for the delay to be 

selected, the delays in our vectors are rounded before being used to select a part of the signal. 

This means that an error in the delay of .49 is rounded to an error of 0 when selecting, which 

explains why we see many LOS delays converge to an error of .49 or 1.49 or 2.49.

This algorithm has some advantages and some disadvantages over conventional super-

resolution algorithms.

A disadvantage is the dependence on the initialization delays. This can lead to a decrease 

in robustness that can make it unreliable as the sole ranging method in certain high-risk 

situations. A trivial way to understand this is that if the algorithm is initialized to the ground truth

or to values close to the ground truth, it converges perfectly, but not necessarily when the 

initialization is based on an estimation. Another disadvantage is that the problem the algorithm 

solves is still largely canonical. Although this has already been established, it is still worth 

mentioning that in a real-world situation, we don't always know exactly how many channel 

response vector pulses there truly are, so some extra work and care needs to be in place to make 

that estimation.

Despite this algorithm's disadvantages, it has many advantages that can make it very 

useful. An important advantage is that is can be continuously run in real-time as a stochastic 

gradient descent algorithm. This is important in the context of ranging and localization because it

allows for more efficient tracking of a moving source because we would not have to keep on 

obtaining large samples and redoing the convergence.
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The ability to be run in real-time is very well complemented by its ability to be 

implemented in parallel. Running it in parallel makes this algorithm able to handle a fast data 

input. We see the ability to run in parallel in the Simulink implementation. The result of the 

Simulink simulations comparing the outputs of the same signals run on the MATLAB and the 

Simulink implementations shows the same outputs, indicating that the two implementations are 

of the same algorithm. Furthermore, many of the features of the LMS parallel implementation 

appear in this parallel implementation. This reaffirms the algorithm's potential to be implemented

in parallel as an FPGA or an ASIC, mirroring some of the main advantages of the LMS.

In this regards, this algorithm has some trade-offs with the LMS when it comes to 

hardware. This algorithm uses less memory and has much fewer multiplication operations than 

the conventional LMS, but has multiplexers.

Ultimately, this algorithm serves as an LMS-based approximation for a super-resolution 

algorithm, as opposed to a more mathematically rigorous algorithm like compressive sensing. 

Since it is an approximation, even when the correct number of pulses is chosen, there is no 

guarantee that absolute convergence to an error of 0 occurs. A more complex mathematical 

solution is more likely to be able to find an exact solution to this problem, but with reduced 

complexity comes the ability to more easily understand the inner workings of the algorithm at 

any particular time and to readjust initializations or parameters as is fit.

The process presented is essentially the backbone of the algorithm one may use. In order 

to exploit the advantages of this algorithm to the fullest, one would add some extra functions in 

order to improve robustness or to obtain some more utility. For example, one can make changes 

such as adding extra processes that detect if an obvious error has been made and then reinitialize 

it. Simple ways to do this are to see if the delay separations of adjacent delays are going too far 
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beyond the FWHM or the range resolution in a received signal that cannot be resolved, because 

this contradicts the inability to be resolved through more conventional methods. Another 

functionality to add for a practical system may be the ability to run this algorithm while keeping 

a varying amount of pulses. Implementation would require the systems and the digital designers 

to be more clever, but it is nevertheless very realistic.

A system that uses this algorithm as its primary means of ranging may also optimize itself

to fully exploit this algorithm's advantages. For example, when the delays are close to the ground

truth, the algorithm converges more easily. An engineer designing an energy efficient ranging 

system can then operate the transmitter at a lower duty cycle once the delays converged a first 

time, allowing for lower energy emissions.
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Conclusion

We attempt to design an algorithm with the advantages of the LMS filter but that is able 

to constrain for a known amount of pulses in the channel response. By applying a similar 

approximation to that used in the LMS in a way that modifies both delays and amplitudes, we are

able to design such an algorithm. We use it to resolve closely spaced Gaussian pulses. The 

algorithm is able to map the channel response of the system with a super-resolution higher than 

those that can be obtained using linear methods. Furthermore, the algorithm is very accurate for 

estimating the delay or position in the channel response vector of the LOS component, which can

be very useful in ranging applications.
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