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Abstract

We explore the relationship between physical distance and genetic
correlation. We focus on the one-dimensional stepping-stone model of population
structure, which describes the evolution of a neutral allele in a population that has
been subdivided into a number of discrete islands. The generational processes of
migration and reproduction are simulated for this population, and we investigate how
these forces impact rk, the correlation between islands at a distance k. We consider
different geographic structures - linear and circular arrangements of islands - as well
as different migration patterns. We compare our results with asymptotic results
derived by Kimura and Weiss under the assumption of infinitely many islands. We
find substantial deviation from these asymptotic results especially with regard to
long-distance migration.
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Chapter 1

Introduction

1.1 Population Genetics

Population genetics concerns itself with the evolution of the genetic composition
of groups of individuals. Over the past century and a half, the field has experienced a rapid
evolution of its own. Since Darwin’s “On the Origin of Species” in 1859 and the
introduction of Mendelian inheritance in the 1860s, contributions from many different
groups and individuals have advanced our understanding to its current state.

Typically, when discussing the genetic composition of a population we are
concerned with the frequency of certain genetic information in that population. Sites
within the genome, known as loci, have distinct possibilities for the information encoded
at that site. Each possibility is represented by an allele, and a particular organism’s
combination of alleles make up its genotype (the inheritable information that determines
the expression of a certain trait). For simplicity, many mathematical models of population
genetics consider a limited number of loci with finitely many alleles. One of the most
common models considers a single genomic locus with two alleles. For example, one
might consider the locus encoding hair length in cats: the two alleles for this site
determine if the cat has long hair or short hair.

Hardy [5] and Weinberg [16] discovered independently that in well-mixed
populations with random mating, the frequencies of different genotypes will eventually
arrive at equilibrium. For a single locus with two alleles A1 (occurring with frequency p)
and A2 (with frequency 1 − p = q), the ratio of the genotypes A1A1, A1A2, and A2A2

becomes p2 : 2pq : q2 in this equilibrium state. However, it is uncommon for populations
to meet the conditions required for exact Hardy-Weinberg equilibrium: perfectly random
mating with no other active evolutionary processes. Populations may deviate from
equilibrium if they experience inbreeding, mutation, genetic drift, natural selection, or any
other influences [4, p. 81].

Two main schools of thought arose to explain the primary underlying cause of
deviation from Hardy-Weinberg equilibrium. The first of these stemmed from the work of
Darwin, and was based on the idea that natural selection would be the main driving force
in allele frequency evolution. Proponents of this theory argued that certain alleles can
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provide an evolutionary advantage, so a population should evolve based on “survival of
the fittest”. While this is reasonable, and definitely one of the factors in population
development, selection does not tell the entire story. Natural selection is more prevalent in
larger, well-mixed populations. But what can be said for populations that do not meet
these criteria?

In contrast to selection, the neutral theory was proposed by Kimura in the 1960s
[8], and its introduction caused waves of controversy within the population genetics
community. In this theory, the dominant force causing deviation from Hardy-Weinberg
equilibrium is due to unbiased genetic drift where an allele can be over-represented in a
population simply by random sampling. In the neutral theory, also known as genetic drift,
it is possible for every individual in a population to carry a given allele (we say the allele
has become fixed) without it providing any advantage in fitness. Alleles are seen as
neutral, hence the name of the theory, and their frequency drifts over time due to random
changes. Genetic drift has been found to dominate in smaller populations, or populations
that are subdivided.

1.2 Population Subdivision

Subdivision of a population into multiple groups or colonies is a significant factor
in genetic evolution because of the dramatic effects it can have on subpopulations. If two
subpopulations are far enough removed from one another (with little or no mating between
them) for a long enough period of time, they can evolve to become two separate species;
this process is known as allopatric speciation [2]. It has recently been shown that the rate
of formation of new species is closely linked to migration patterns within a subdivided
population [19]. Of course, not every case is so drastic as to result in speciation— the
concept of “isolation by distance” and its effects are observed on more subtle levels as
well.

Wright [18] developed a simple model of a subdivided population to establish the
effects of isolation by distance. In this model, the population is divided into an effectively
infinite number of equally-sized islands. Individuals may migrate from any given island
to another, and each island’s current residents breed among themselves. This basic model
opened up a new realm of ideas for modeling population structure and gene flow (see
Figure 1.1).

The “stepping-stone” models were first developed by Kimura in 1953 [7], and the
details were fleshed out more than a decade later by Kimura and Weiss [9] (see
Section 2.1). These models extend to multiple dimensions: the one-dimensional model
can be used to represent a population that has been subdivided linearly (such as along a
coastline or mountain ridge) while the two-dimensional model would represent a
population subdivided across a plane (as in a desert or plain). There is also a
three-dimensional model that is sometimes used for ocean-dwelling populations that have
been subdivided not only on a plane, but also at different depths. Because of their intuitive
nature and the fact that they can be applied to so many different populations, the stepping
stone models have remained extremely popular. They are often used as a prime example
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Figure 1.1: Island Models: (i) Continent-island model; (ii) Wright’s island model; (iii)
One-dimensional stepping stone model; (iv) Two-dimensional stepping stone model.
Each island has population size N and total migration rate m.

of isolation by distance, because a greater number of steps between two subpopulations
corresponds to a higher level of genetic difference between individuals in those
subpopulations.

While Kimura and Weiss laid a solid framework for the stepping-stone models,
there have been others who have sought to employ similar methods in more realistic
population migration settings. Maruyama [11] considered the more physically realistic
condition of finitely many islands. Over the course of several papers, Maruyama explored
the one-dimensional stepping stone model with a variety of new conditions, including
linear cases where the boundary islands can either “reflect” or “absorb” the immigrants
they receive [11], a circular population structure [11], and a case where migration is not
symmetric (migration is more likely to occur in one direction than the other) [10].

Through his analysis, Maruyama obtained several key results. First and foremost,
by extending his matrix system to infinite dimensions, he was able to verify Kimura and
Weiss’s formula for the correlation coefficient (see Eq. 2.2). He was able to identify the
necessity of having a positive (nonzero) long-range migration term: it “serves
mathematically as a stabilizer, and without this term there is no meaningful stationary
correlation of the gene frequencies among colonies” [11]. Maruyama also performed the
first computer simulation experiments of the stepping-stone model, using a Monte Carlo
method [11]. While these simulations verified his analytical results, they were limited in
scale: the full population simulated only consisted of 5 or 10 subpopulations.

In the current work, we chose to focus on attributes that better reflect real
populations. We developed more extensive computer models to verify and extend the
work of Kimura, Weiss, and Maruyama, and we sought to bridge the gaps between
simulation and theory. We used systems on the order of 103 subpopulations, which are
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larger than those of Maruyama while still remaining finite. Through simulation of the
original generational processes outlined by Kimura and Weiss, we investigated a linear
population structure and compared it to a theoretical asymptotic result. Next, we explored
a circular population structure, and compared the results to the linear model. Finally, we
imposed a previously unstudied pattern of distributed long-range migration— a pattern
with greater biological significance.



Chapter 2

Linear Model

2.1 Introduction

The classic results for the linear model of population structure were established by
Kimura and Weiss [9]. We will be considering only the one-dimensional stepping stone
model, which consists of an infinite line of discrete colonies (Figure 2.1) evolving over
time in discrete non-overlapping generations. Each generation consists of a migration step
and a reproduction step. During migration, individuals may migrate one colony to the
right or left, each with probability m1/2, so that the total rate of one-step migration is
m1. Alternatively, they may engage in “long-range” migration with likelihood m∞, where
m∞ � m1. This represents the colony exchanging individuals with a random sample
taken from the entire population. Once all migration has been completed, individuals may
reproduce within their respective islands. Reproduction is modeled by randomly selecting
a certain number of individuals to pass on their genetic information (allele value) to the
next generation.

Figure 2.1: The one-dimensional stepping stone model, as described in [9].

There are many ways to quantify the degree of genetic distance in a population,
but we chose to focus on the measure used in the original work of Kimura and Weiss:
the correlation coefficient rk [9]. This quantity considers allele frequencies on all pairs of
islands that are k steps apart, and calculates a ratio of their covariance and variance:

rk =
Eφ(p̃ip̃i+k)

Vp
=
Eφ(p̃ip̃i+k)

Eφ(p̃2i )
=
Eφ[(pi − p̄)(pi+k − p̄)]

Eφ[(pi − p̄)2]
. (2.1)

Note that pi is the allele frequency on island i at the designated time, p̄ is the average allele

5



6

frequency among all islands, andEφ is the expectation of gene frequencies among colonies.
This statistic rk bears similarity to r, the Pearson product-moment correlation

coefficient, which is defined for two variables X and Y and sample size n by

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.

Here the variables in question are the allele frequencies in the ith and i+kth islands, so the
mean value for each one is the same as that of the entire population (Xi = pi and Yi = pi+k,
so X̄ = Ȳ = p̄). Substituting this in, we see that we obtain the same form as Kimura and
Weiss’s rk:

rk =

∑n
i=1(pi − p̄)(pi+k − p̄)√∑n

i=1(pi − p̄)2
√∑n

i=1(pi+k − p̄)2
=

∑n
i=1(pi − p̄)(pi+k − p̄)∑n

i=1(pi − p̄)2
.

Kimura and Weiss found that when the population has reached a steady state, the
correlation coefficient rk exhibits exponential decay as the physical distance k between
islands increases (Figure 2.2). The rate of decay is determined by the migration rates, and
rk is calculated in the one-dimensional case by

rk = e
−
√

2m∞
m1

k
. (2.2)

0 20 40 60 80 100
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Figure 2.2: Kimura and Weiss’s theoretical exponential decay of the correlation
coefficient (rk) with increasing physical distance (k) in the one-dimensional stepping-
stone model. The rates of migration are m1 = 0.1, m∞ = 4× 10−5.
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This theoretical exponential decay has become an expected result in the field. However,
there are a few factors that should be taken into consideration. First, Kimura and Weiss
assume that the variance in allele frequency does not change from generation to generation.
In natural populations, this variance may change. Second, they do not provide an estimate
of how long it takes for a population to converge to this steady state— this will be explored
further in Section 2.3. Third, and perhaps most noticeable, is the fact that Kimura and
Weiss use an infinite system of islands, which is not a physically possible scenario.

This prompted us to investigate whether or not Kimura and Weiss’s results still hold
true in finite cases. We used a capped linear stepping-stone structure, which is exactly what
its name brings to mind: a line of colonies without migration or communication between
the ends. This model was explored in the 1970s by Maruyama, who used a matrix system
to investigate its behavior.

2.2 Matrix Analysis

Maruyama [11] analyzed the finite linear system of islands with a variety of
different boundary conditions (describing migration to and from the end islands). Rather
than using the correlation coefficient rk from Kimura and Weiss, Maruyama chose to use
the covariance between pairs of islands. If pi is the allele frequency on the ith island and
δi = pi − p̄ is the deviation of the ith frequency from its expectation p̄, then the covariance
between island i and island j is cij = cov(δi, δj).

Naturally we would like to see how these quantities change over the course of
generations. Maruyama developed recurrence relations for the allele frequencies, δi’s, and
covariances to establish the system’s evolution in matrix form. The case we considered
was a system of n islands with N individuals apiece, where the end islands are what
Maruyama defined as “absorbing boundaries” (Figure 2.3). The hypothetical colony
shown represents the mixture of the full population, and is the source of long-range
migration in the model. The allele frequency on this island is assumed to always remain at
p̄, the expectation of all frequencies in the total population. Note that the rate of one-step
migration is m (this is balanced, with 1

2
m to each of the right and left islands) and the rate

of long-range migration is m∞.
Maruyama was able to express the evolution of the covariances cij by storing them

in a matrix Q and determining that in the next generation,

Q′ = (αI + βS)Q(αI + βS) + P/2N (2.3)

where I is the identity matrix, P is a diagonal matrix with entries pii = p̄(1− p̄)− cii, and
the matrix S is uniquely determined by the type of migration in the population: when
individuals can migrate one step to the right or left, this matrix has entries on the
subdiagonal and superdiagonal. Maruyama expresses this type of migration using the
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Figure 2.3: A finite system of islands with absorbing boundaries

n× n matrices

U =


0 1 0 · · ·
0 0 1

0 0 0
. . .

...

 and UT =


0 0 0 · · ·
1 0 0
0 1 0
... . . .

 ⇒ S = U+UT =


0 1 0 · · ·
1 0 1

0 1 0
. . .

... . . .

 .
(2.4)

At equilibrium, Equation 2.3 becomes

Q = (αI + βS)Q(αI + βS) + P/2N, (2.5)

which can be rewritten as a linear transformation from the set of all n × n matrices onto
itself, where L[Q] = P/2N . For any matrix A, the linear operator would be L[A] =
A− (αI + βS)A(αI + βS).

It turns out that Q can be written as a linear combination of the eigenfunctions of
L[ ], which in turn depend on the eigenvectors of the matrix S. To determine the
eigensystem of S (method from [6]), begin by setting up the eigenvector equation for S
with eigenvectors v and eigenvalues λ:

Sv = λv⇒ (S− λI)v = 0.

For reasons that will become apparent, we choose to write λ = 2c. Then we have

⇒


−2c 1 0 · · · 0

1 −2c 1
0 1 −2c 1
... . . .
0 1 −2c




v1
v2
v3
...
vn

 =


0
0
0
...
0
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which, if we include two invented boundary variables v0 = vn+1 = 0, produces

v0 − 2cv1 + v2
v1 − 2cv2 + v3

...
vk−1 − 2cvk + vk+1

...
vn−2 − 2cvn−1 + vn
vn−1 − 2cvn + vn+1


=


0
0
0
...
0

 .

These equations are all of the form

vk−1 − 2cvk + vk+1 = 0, (2.6)

which is a second order linear difference equation with constant coefficients. This can be
solved by using the ansatz vk = rk: the characteristic polynomial is 1− 2cr+ r2 = 0, with
roots r± = c±

√
c2 − 1. Recall that we do not yet know the value of c (we are looking for

it so that we may find the eigenvalues λ = 2c). There are two cases we must address for
the value of c.

Case 1: c = ±1. This means that r+ = r− = c. Since the roots are not distinct,
the general solution to the difference equation (2.6) is of the form vk = Ark + Bkrk =
(A+Bk)rk, or

vk = (A+Bk)ck

where A and B are constants. Using the boundary condition v0 = 0, we find that A = 0.
The other boundary condition vn+1 = 0 produces 0 = B(n+1)cn+1, which is only satisfied
when B = 0. Therefore, in this case, we obtain only the trivial solution vk = 0.

Case 2: c 6= ±1. Here, we have distinct values for r+ and r−, so the general solution
to (2.6) is of the form vk = Ark+ +Brk−. However, r− = c−

√
c2 − 1 = 1/(c+

√
c2 − 1) =

1/r+, so by letting r+ = r we may rewrite the solution as

vk = Ark +Br−k.

Plugging in the boundary condition v0 = 0, we obtain A + B = 0, so then the solution
is vk = A(rk − r−k). The other boundary condition, vn+1 = 0, implies that A(rn+1 −
r−(n+1)) = 0. A = 0 is the trivial solution, so we must have rn+1 − r−(n+1) = 0 ⇒
r2(n+1) = 1. In order for this to hold, |r| = 1.

Using the fact that |r| = 1, we can write r = eiθ, so r2(n+1) = 1 ⇒ e2i(n+1)θ = 1.
From this, 2(n + 1)θ = 2kπ ⇒ θ = kπ

n+1
for some 1 ≤ k ≤ n. Since r = c +

√
c2 − 1,

we can think of c as cos θ. This provides what we need to find the eigenvalues, since we let
λ = 2c:

λk = 2 cos θ = 2 cos
kπ

n+ 1
for k = 1, 2, ..., n. (2.7)

This differs from Maruyama’s original calculation by a factor of 2, but that constant does
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not appear to cause a difference in the results. The behavior of the system depends on
the migration, and therefore on these eigenvalues. To investigate the convergence of the
system, we can look at the ratio of the largest and second-largest eigenvalues [14].

Since k = 1, 2, . . . , n, the eigenvalue with the largest magnitude is |λ1| = |λn| =
2| cos π

n+1
|. The next largest is |λ2| = |λn−1| = 2| cos 2π

n+1
|, and the ratio of the largest to

second-largest eigenvalues is ∣∣∣∣λ2λ1
∣∣∣∣ =

∣∣∣∣∣cos 2π
n+1

cos π
n+1

∣∣∣∣∣ . (2.8)

From this, we obtain an interesting result. This ratio will produce a larger number for
larger values of n— for example, when n = 5, |λ2/λ1| = 1/

√
3 ≈ 0.577350 and when

n = 1000, λ2/λ1 ≈ 0.999985. Since the ratio of the first two largest eigenvalues reflects
the convergence rate, this means that population systems with fewer islands will converge
to their steady state faster than population systems with a greater number of islands.

In addition to the eigenvalues of the migration matrix S, the eigenvalues of the linear
operator L[ ] (which describes the full dynamics of the population system) also contribute
to a useful result. The eigenvalues of L[ ] are given by

ξkl = 1− (1−m∞)2
[
1−m

(
1− cos

πk

n+ 1

)][
1−m

(
1− cos

πl

n+ 1

)]
. (2.9)

Maruyama [11] states that the long-range migration term m∞ is necessary to
stabilize the system, and that “without this term there is no meaningful stationary
correlation of the gene frequencies between colonies,” but he provides no justification for
this claim. It is here that we are finally able to verify the statement. Generally speaking, if
all eigenvalues of a system are positive, then the system is unstable at equilibrium. We
consider the case now where m∞ = 0. Then the eigenvalues of the linear operator L[ ] are

ξkl = 1−
[
1−m

(
1− cos

πk

n+ 1

)][
1−m

(
1− cos

πl

n+ 1

)]
= 1−

[
1−m

(
1− cos

πl

n+ 1

)
−m

(
1− cos

πk

n+ 1

)
+m2

(
1− cos

πk

n+ 1

)(
1− cos

πl

n+ 1

)]
= m

(
1− cos

πl

n+ 1

)
+m

(
1− cos

πk

n+ 1

)
−m2

(
1− cos

πk

n+ 1

)(
1− cos

πl

n+ 1

)
= m

(
2− cos

πl

n+ 1
− cos

πk

n+ 1

)
−m2

(
1− cos

πk

n+ 1

)(
1− cos

πl

n+ 1

)
.

The variable m represents the one-step migration rate, so we know that 0 < m < 1 and
thus m2 < m. We also prove the following result, beginning with the fact that −1 ≤
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cos πk
n+1

, cos πl
n+1
≤ 1:

1 ≥
(

cos
πl

n+ 1

)(
cos

πk

n+ 1

)
2− cos

πl

n+ 1
− cos

πk

n+ 1
≥ 1− cos

πl

n+ 1
− cos

πk

n+ 1
+

(
cos

πl

n+ 1

)(
cos

πk

n+ 1

)
2− cos

πl

n+ 1
− cos

πk

n+ 1
≥
(

1− cos
πk

n+ 1

)(
1− cos

πl

n+ 1

)
.

Sincem > m2 and 2−cos πl
n+1
−cos πk

n+1
≥
(
1− cos πk

n+1

) (
1− cos πl

n+1

)
, we conclude that

m
(
2− cos πl

n+1
− cos πk

n+1

)
> m2

(
1− cos πk

n+1

) (
1− cos πl

n+1

)
. Therefore, when m∞ = 0,

the eigenvalues ξkl > 0 for all k, l and the system is unstable. For this reason, we included
a nonzero m∞ term in all simulations.

2.3 Results

We wanted to see if the assumption of specific exponential decay at equilibrium (as
predicted by Kimura and Weiss, Eq. 2.2) is realistic. Using the code described in Appendix
A, we have simulated the evolution of a subdivided population over many generations,
periodically investigating the shape of the correlation coefficient curve. We have chosen to
adhere to Kimura and Weiss’s original values for the migration rate parameters: m1 = 0.1
and m∞ = 4× 10−5.

2.3.1 Time to Convergence

One of the main things we wanted to determine was how long it takes for a
population to reach equilibrium. Figure 2.4 shows the evolution of the correlation
coefficient r5 (the correlation between islands that are 5 steps apart) as a reflection of the
system’s behavior. After approximately 15,000 generations, the correlation appears to
have reached a steady state. We can also observe that there is a transient period of
exponential increase during the first 4,000-6,000 generations: this is why Maruyama
chose to disregard the data from the first 2,000 generations of his simulations [11].

Now that we have verified that the system is approaching some equilibrium state,
we want to see if it is approaching the same state that was predicted by Kimura and Weiss.
Figure 2.5 compares the simulated correlation coefficient curves to Kimura and Weiss’s
theoretical result (Eq. 2.2). The simulated curves show the average value of rk (from 500
trials) corresponding to values of k from 0 to 100, and they reflect the state of the
population at 1,000-generation time intervals. The initial correlation curve lies along the
k-axis with a correlation of approximately zero, which is to be expected (there is not a
relationship between pi on different islands at first). Observe that the simulated result
exhibits exponential decay, as predicted, and as time progresses the simulated values are
approaching the theoretical values. The difference between consecutive curves decreases,
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Figure 2.4: The correlation between pairs of islands that are 5 steps apart (r5) appears
to approach a steady state after approximately 15,000 generations

indicating that we are asymptotically approaching the equilibrium state. Our next
objective is to track this approach by quantifying the difference between simulation and
theory.

In Figure 2.6, we compare the simulated and theoretical results by tracking changes
in the residual sum of squares (RSS) every 1,000 generations. The RSS is calculated by the
following:

RSS =
100∑
k=0

(rk,simulated − rk,Kimura-Weiss)
2 (2.10)

After an initial period of rapid decrease, the RSS stabilizes at a value near 0.5. From the
shape of the RSS curve, we can tell that the simulation is asymptotically approaching a
steady-state solution. However, since the RSS stabilizes near a nonzero value, the steady-
state solution may not be exactly the result predicted by Kimura and Weiss.
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Figure 2.5: Average correlation coefficient values for islands k steps apart (linear
population structure, n = 1000), sampled 50 times over 50,000 generations,
asymptotically approach Kimura and Weiss’s theoretical result (shown in black).
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Figure 2.6: Over the course of generations, the residual sum of squares measures the
difference between the simulated data (linear model) and the theoretical result by
Kimura and Weiss. The RSS value stabilizes around 0.52.
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One assumption made by Kimura and Weiss is that the variance of allele frequencies
within the population is unchanging. As we show in Figure 2.7, this is not necessarily
the case at all points in time. The variance undergoes a period of exponential increase
at first, which may have been disregarded in previous results (particularly by Maruyama)
since it is transient behavior. By the time we appear to have reached a steady state in
correlation coefficient values (approximately 15,000-20,000 generations), the variance is
still experiencing gradual changes but has generally converged to a value near 0.10.

10000 20000 30000 40000 50000
Gen

0.02

0.04

0.06

0.08

0.10

Var

Figure 2.7: The evolution of the variance in the linear model, evolving over 50,000
generations.

2.3.2 Number of Islands

Now that we see that the variance is not the likely cause of the difference between
the simulated and theoretical steady-state solutions, we turn to another of Kimura and
Weiss’s assumptions: the fact that their result is for an infinite number of islands. This
leads us to expect that using a smaller number of islands in the simulation will increase
the difference between the simulated and theoretical results.

In Figure 2.8, we see that using n = 500 islands rather than n = 1000 does indeed
produce a simulated result that is farther from Kimura and Weiss’s at the 20,000-generation
mark. Soon after this point in time, though, we encounter an interesting issue that cannot
be observed graphically.

Recall that the speed of convergence of the system depends upon the number of
islands, where systems with smaller n have faster convergence (see Equation 2.8). This
holds true, and the system with 500 islands does converge faster. However, the steady-state
result is not Kimura and Weiss’s decay curve— instead, we obtain is what is known as
allele fixation. In fixation, the allele of interest either permeates the entire population (so
every island has an allele frequency of pi = 1) or it is eliminated completely (so every
island has pi = 0).
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Figure 2.8: At 20,000 generations: the average correlation coefficient values for the
linear model with n = 500 islands (blue) or n = 1000 islands (red), compared to
Kimura and Weiss’s result (black).

Fixation does not occur every time the simulation is run, due to the randomness
involved in the simulation process, but it does occur significantly more often in systems
with fewer islands. When n = 500, 17 out of 500 runs ended in fixation, compared to 0 out
of 500 runs when n = 1000.

Let us now look at a system that contains n = 3000 islands. We see in Figure
2.9 that the system is definitely approaching the theoretical result predicted by Kimura and
Weiss (Eq. 2.2), but convergence is taking a long time. None of the simulations encountered
fixation, even after 100,000 generations. Figure 2.10 provides a snapshot similar to Figure
2.8 by comparing models with n = 500, 1000, and 3000 at the 20,000-generation mark.
We can see that even at that relatively early point in time, the simulation with the greatest
number of islands comes closest to matching Kimura and Weiss’s result.

2.4 Summary

To generalize the results seen in this section, we have found that systems with a
greater number of islands produce a simulated result that is closer to the theoretical result
postulated by Kimura and Weiss (Eq. 2.2). However, increasing the number of islands
also increases the time to convergence. Systems with a smaller number of islands may
experience allele fixation, a steady state that is not as commonly seen in larger systems.
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Figure 2.9: Average correlation coefficient values for islands k steps apart (linear
population structure, n = 3000), sampled 100 times over 100,000 generations,
asymptotically approach Kimura and Weiss’s theoretical result (shown in black).
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Figure 2.10: At 20,000 generations: the average correlation coefficient values for the
linear model with n = 500 (blue),n = 1000 (red), or n = 3000 islands (green),
compared to Kimura and Weiss’s result (black).
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Chapter 3

Circular Model

3.1 Introduction

Next, we considered a population with a different geographic structure. We applied
the one-dimensional stepping stone model to a ring of islands (Figure 3.1) by allowing
migration between what would have previously been the boundary islands of the linear
structure. As in the linear model, one-step migration (rate m1 = 0.1) and long-range
migration (rate m∞ = 4× 10−5, from the mixture of the entire population) are considered.

Figure 3.1: One-dimensional stepping stone model on a ring of islands.

Our goal, as before, was to simulate the population and determine the relationship
between physical distance and genetic correlation, particularly once the system reaches
equilibrium.

3.2 Matrix Analysis

Although Maruyama did explore the circular stepping-stone population structure,
he did not use the same treatment as in the linear structure. He considered a case of
unbalanced migration (where individuals were more likely to migrate in one direction than

17
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the other) [10], and also investigated the general decrease of heterozygozity in the
population as a whole [12]. For consistency, our analysis was based on Maruyama’s
treatment of the linear model seen in Section 2.2: we found the eigenvalues of the
migration matrix to determine the system’s rate of convergence.

Consider a circular system of n islands where individuals may migrate 1 step to the
right or left. The migration in this case can be described by the following n× n matrix:

SC =



0 1 0 · · · 0 1
1 0 1 · · · 0 0
0 1 0 1 · · · 0
... . . . ...
0 0 · · · 1 0 1
1 0 · · · 0 1 0


This matrix is circulant, which means that each of its rows is a cyclic permutation of the
first row. The first row is denoted by the vector ~c = [c0 c1 c2 · · · cn−2 cn−1] =
[0 1 0 · · · 0 1], so cj = 1 if j = 1 or j = n− 1, and cj = 0 otherwise.

Circulant matrices have been well-studied and there are known forms for their
eigenvalues and eigenvectors [3]. Specifically, the eigenvectors of a circulant matrix are
given by

λj = c0 + c1ρj + c2ρ
2
j + · · ·+ cn−1ρ

n−1
j

where j = 0, 1, · · · , n − 1 and ρj = exp(−2πij/n) are the nth roots of unity. In the case
of MC , we know that cj = 0 except for c1 = cn−1 = 1. Therefore the eigenvalues can be
expressed as

λj = ρj + ρn−1j

= e
−2πij
n + e

−2πij(n−1)
n

= e
−2πij
n + e−2πije

2πij
n

= e
−2πij
n + e

2πij
n

= cos

(
−2πj

n

)
+ i sin

(
−2πj

n

)
+ cos

(
2πj

n

)
+ i sin

(
2πj

n

)
= 2 cos

(
2πj

n

)
.

Since j = 0, 1, · · · , n − 1, the eigenvalue with the largest magnitude is |λ0| = 2. The
next largest is |λ1| = |λn−1| = |2 cos 2π

n
|, and the ratio of the largest to second-largest

eigenvalues is ∣∣∣∣λ1λ0
∣∣∣∣ =

∣∣∣∣2 cos 2π
n

2

∣∣∣∣ =

∣∣∣∣cos
2π

n

∣∣∣∣ . (3.1)

We see that the same result as in Section 2.3 holds: this ratio is larger when n is larger.
When n = 5 islands, λ1/λ0 ≈ 0.309017 and when n = 1000 islands, λ1/λ0 ≈ 0.999980.
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Since the value of the ratio approaches 1 as n increases, systems with a greater number
of islands will once again take longer to converge. Note that while smaller systems will
converge faster, they may still converge to a state of allele fixation (where an allele either
permeates the entire population or is eliminated) more readily than a larger system.

Recall that in the linear system, the ratio of the two largest eigenvalues was
0.577350 when n = 5 and 0.999985 when n = 1000, as compared to 0.309017 and
0.999980 respectively in the circular system. So in both cases, the circular model is
predicted to converge more rapidly than the linear model. To see if this pattern holds in
general, let us compare the results of Eq. 3.1 to those of Eq. 2.8, the equivalent for the
linear model.

Equation 2.8 states that the rate of convergence for the linear system is∣∣(cos 2π
n+1

)/(cos π
n+1

)
∣∣. Since −1 ≤ cos π

n+1
≤ 1⇒

∣∣cos π
n+1

∣∣ ≤ 1, it follows that∣∣∣∣cos
2π

n+ 1

∣∣∣∣ ≤
∣∣∣∣∣cos 2π

n+1

cos π
n+1

∣∣∣∣∣
for all n. It can be seen that

∣∣cos 2π
n

∣∣ ≤ ∣∣cos 2π
n+1

∣∣ as long as 2π
n
≤ π

2
⇒ n ≥ 4, so for all

systems with 4 or more islands we will have∣∣∣∣cos
2π

n

∣∣∣∣ ≤ ∣∣∣∣cos
2π

n+ 1

∣∣∣∣ ≤
∣∣∣∣∣cos 2π

n+1

cos π
n+1

∣∣∣∣∣
⇒
∣∣∣∣cos

2π

n

∣∣∣∣ ≤
∣∣∣∣∣cos 2π

n+1

cos π
n+1

∣∣∣∣∣ . (3.2)

Therefore, between models with the name number of islands n (n ≥ 4), the rate of
convergence of the circular model will always be faster than that of the linear model. We
will observe this result in the following section.

3.3 Results

3.3.1 Convergence

Figure 3.2 shows the progression of the simulated coefficient curve over time, and
compares that to Kimura and Weiss’s theoretical result (Eq. 2.2). We performed 500 runs
of the simulation, each with a system of n = 1000 islands, and collected the correlation
data every 1,000 generations for a total time of 50,000 generations. This result is highly
similar to the one shown in Figure 2.5 for the linear model. Both exhibit exponential decay
with increasing physical distance, and both are gradually approaching the result predicted
by Kimura and Weiss.

Looking at the evolution of the value for the residual sum of squares (calculated by
Eq. 2.10) over the course of 50,000 generations, we can see in Figure 3.3 that the RSS for
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Figure 3.2: Average correlation coefficient values for islands k steps apart (circular
population structure, n = 1000), sampled 50 times over 50,000 generations,
asymptotically approach Kimura and Weiss’s theoretical result (shown in black).

the circular system approaches a value near 0.37. Recall that the RSS for the linear system
stabilized around 0.52. Therefore by this measure, the circular model was able to come
closer to Kimura and Weiss’s theoretical result by the 50,000th generation. This indicates
that the circular model is converging more rapidly, which is consistent with the result found
by comparing the convergence rates (ratio of the largest eigenvalues) for the two models,
as seen in the previous section.

3.3.2 Comparison to Linear Model

Maruyama stated that “asymptotically the circular habitat can be considered as
one-dimensional linear habitat” [11, p. 216], and indeed the two models do turn out to be
very similar. In Figure 3.4, we see a snapshot of the correlation curves for the linear and
circular models at the 50,000th generation, in comparison to Kimura and Weiss’s
correlation. Although both curves differ significantly from the theoretical result, they
differ from one another by no more than 0.020, as seen in Figure 3.5.
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Figure 3.3: Residual sum of squares showing the difference between the simulated
data (circular model, n = 1000) and the theoretical result by Kimura and Weiss. The
RSS value stabilizes around 0.37.

3.4 Summary

Here we have seen that systems with a circular population structure also produce
a simulated result that approaches Kimura and Wess’s theoretical result, thereby verifying
Maruyama’s statement that the circular and linear models are asymptotically equivalent.
Matrix analysis showed that again, systems with a greater number of islands will take
longer to converge. When we compare the convergence rates of the circular and linear
models with the same number of islands, the circular model converges more rapidly to the
theoretical result.

One potential explanation for why the circular model provides a simulated result
that more closely matches the theory is because the circular model overlaps on itself,
thereby making it seem like the system has more islands than it actually does. Since the
theoretical result is for an infinite number of islands, it makes sense that using a model
that (even artificially) has “more” islands would provide better agreement.
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Figure 3.4: The linear model (blue, dashed curve) and the circular model (orange) at
the 50,000 generation mark, as compared to Kimura and Weiss’s result (black). Both
simulated models have n = 1000 islands and identical migration rates.
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Figure 3.5: There is very little difference between the circular and linear models’
average correlation coefficient for up to k = 100 steps at the 50,000th generation.



Chapter 4

Long-Range Migration Model

4.1 Introduction

In this chapter, we consider cases in which individuals can migrate further than one
island away per generation. This is a more realistic scenario for many species. For example,
it is common for marine species to spend part of their lives in a larval stage, during which
individuals may be carried a variable distance away from their home colony [15]. The
length of time spent in this stage is known as the pelagic duration, and it is thought to be a
factor in predicting the genetic structure of a population due to its effect on the population’s
ability to disperse [1].

Kimura and Weiss developed a hypothesis for models with more general forms of
migration [9], where they postulated that rk had a form that was very similar to the case with
one-step migration (Eq. 2.2). By “substituting for m1 the variance of migration distance
per generation”, they obtained

rk = e−
√
2m∞
σm

k, (4.1)

where σm is the variance of the migration distance, determined by

σ2
m =

∞∑
j=1

j2mj. (4.2)

Plots of the theoretical result for selected migration-rate distributions are given in
Figure 4.2. However, generally speaking, Kimura and Weiss’s choice of m∞ = 4× 10−5 is
a very small number, while σm is certainly larger than 1. Therefore by this estimation, rk
in the case of long-range migration will exhibit very slow exponential decay.

4.2 Numerical Simulation

First, we investigated a toy model in which individuals may only migrate 20 islands
to the right or left each generation. This perfectly symmetric system is not biologically
realistic, since organisms are not thought to count out the exact number of islands they may
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(a) mj ∼ B[40, 0.5]
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(b) mj ∼ B[40, 0.1]

Figure 4.1: Distributions used to simulate long-range migration. The number of steps
an individual travels in a round of migration is selected from the desired distribution.

travel, but it does provide quantitatively interesting results.
Next, we chose a more plausible migration pattern: one in which the number of

steps an individual migrates (to the right or left) is chosen from a binomial distribution
with a specified mean. Two binomial distributions (Figure 4.1) were selected for mj , the
rate of migration to islands j steps away: one was mj ∼ B[40, 0.5], with mean np = 20
islands, and the other was mj ∼ B[40, 0.1], with mean np = 4 islands. The plots showing
the theoretical results for these distributions are shown in Figure 4.2. Note that Figures 4.2a
and 4.2b have k = 0, 1, ...100, and only have a very small range in the rk values. This shows
how gradual the exponential decay is: out to k = 100, the curve decreases so little that it
appears almost linear. In Figures 4.2c and 4.2d, we look at k = 0, 1, ...1000 so that we are
finally able to see the exponential decay— in the case where mj ∼ B[40, 0.1], at least. The
decay rate in the case where mj ∼ B[40, 0.5] is incredibly small: the theoretical equation
describing this case with the given parameters is e−0.000442k.

To incorporate the new style of migration, an option called USE_BINOMIAL was
added to the standard C++ program included in Appendix A.2. If this option was specified
to be true, the number of steps for an individual to move was selected from a choice of
distribution in Figure 4.1. Otherwise, the migration was assumed to be “strict”, where an
individual can only move exactly a set number of islands— no more, no less.

4.3 Results

4.3.1 Strict 20-Step Migration

In this simplified model, individuals are only allowed to migrate to islands exactly
20 steps to the right or left of their current island. As seen in Figure 4.3, simulation
provided a reasonable result for the genetic correlation: we can see that if the distance
between islands is a multiple of 20 steps, those islands are much more highly correlated. It
is logical that those islands have a high level of genetic similarity, because there is direct
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(a) mj ∼ B[40, 0.5], out to k = 100 steps
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(b) mj ∼ B[40, 0.1], out to k = 100 steps
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(c) mj ∼ B[40, 0.5], out to k = 1000 steps
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(d) mj ∼ B[40, 0.1], out to k = 1000 steps

Figure 4.2: Kimura and Weiss’s theoretical results for the decay of rk in populations
with longer-range migration (Eq. 4.1)
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migration between them. While the snapshot in Figure 4.3 is taken at the 20,000th
generation, there was not much variation in the correlation pattern before or after this
point in time (the population began exhibiting the observed spikes in correlation as early
as the 2,000th generation).
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Figure 4.3: Average correlation coefficient values (at Generation 20,000) with strict
20-step migration.

4.3.2 Binomial Migration

In Figure 4.4, we see the result for the case with binomially-distributed migration
with a mean of 20 steps. Observe that there is an increase in correlation when islands are
approximately 20 steps apart, and faint ripples further out at 40 and 60 steps. This is in
agreement with the pattern of migration, so the result seems intuitively logical.

However, when we compare the simulation to Kimura and Weiss’s theoretical
result (Eq. 4.1), the difference between the two is considerable. The simulated curves
decidedly do not appear to approach the theoretical one, in stark contrast to the models
seen in previous chapters. If we visually simplify the simulated curve to a line by
excluding or flattening the areas with increases in correlation, we can observe that this
resulting line would have approximately the same slope as the theoretical result. This may
encourage us to suspect that perhaps the two methods have similar rates of decay, but that
is where the likeness ends.
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One of the most prominent differences between the theoretical and simulated results
is the large discrepancy in their numerical values, even for small k. The simulated system
has a steep initial drop in correlation, which indicates that the allele frequencies on even
adjacent islands have little effect on each other. Again, considering the fact that migration
in this system is not highly likely to send an individual to an adjacent island, this seems
reasonable. Yet the theoretical result strongly disagrees. This leads us to suspect that
perhaps this particular result of Kimura and Weiss’s is not designed to reflect the type of
migration used in the simulation.

Indeed, it turns out that Kimura and Weiss designed Equation 4.1 to be used when
the long-range migration is “sufficiently weak,” a distinction that they mention in a later
paper [17]. The migration in this model must not meet those criteria, therefore a different
theoretical result should be used.
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Figure 4.4: Average correlation coefficient values for a system with migration that
is binomially distributed (mj ∼ B[40, 0.5]) with a mean of 20 islands. Kimura and
Weiss’s theoretical result is shown in black.

Although the mean number of steps traveled is closer to 1, the simulation with
migration rates distributed by mj ∼ B[40, 0.1] (Figure 4.5) still does not approach the
curve given by Equation 4.1— this migration must not be sufficiently weak either.
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Figure 4.5: Average correlation coefficient values for a system with migration that
is binomially distributed (mj ∼ B[40, 0.1]) with a mean of 4 islands. Kimura and
Weiss’s theoretical result is shown in black.

4.4 Summary

Simulations where migration rates are distributed according to mj ∼ B[40, 0.5]
and mj ∼ B[40, 0.1] provide results that are intuitively logical, but do not converge to the
theoretical result in Equation 4.1. It turns out that neither model has the sufficiently weak
levels of long-range migration that allow for use of this equation. Further study is required
to find the theoretical result to which these models should be compared.



Chapter 5

Conclusion and Future Work

We have successfully created a program to simulate the generational processes of
migration and reproduction in the one-dimensional stepping-stone model of population
structure. The program calculates rk, a measure of genetic correlation between islands that
are k steps apart. Through the simulation results, we were able to validate the general
exponential decay of genetic correlation with increasing physical distance. In the cases
with one-step migration, we were able to show that the simulation result asymptotically
approaches a theoretical result hypothesized by Kimura and Weiss in the 1960s (Eq. 2.2).
Both circular and linear population structures will converge to this result over a long period
of time, provided that the number of islands is large enough (on the order of 103). In some
systems, particularly ones with a smaller number of islands, simulation occasionally ended
in fixation of an allele (where either pi = 0 or pi = 1 for all islands i) and the theoretical
result was not attained.

Simulated results were consistent with matrix analysis of the system: population
systems with a larger number of islands take a longer time to converge, but they more
closely match the theoretical result (which was established for a system with an infinite
number of islands). When given the same number of islands, the circular model converges
slightly faster. This is observed not only in the simulation results, but also in the value of
the residual sum of squares and in the convergence rates given by the ratio of the largest
eigenvalues of the respective migration matrices.

In the case of long-range migration, the simulated results were found to be
intuitively logical but showed no signs of converging to the anticipated theoretical result.
Upon further inspection, the long-range migration patterns chosen may not be
“sufficiently weak” to allow comparison to that particular equation.

These results are of interest in relation to fieldwork studies, since the theory by
Kimura and Weiss is not based upon a physically possible population. Real populations
only contain a finite number of islands, follow a diverse variety of migration patterns, and
results are not considered in the asymptotic sense. Therefore the long convergence times
seen in the simulation may not be biologically realistic— biologists in the field may want to
consider how long the “generation” time is for a given organism, what migration pattern(s)
are involved, and how long a particular population has been evolving when examining their
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data.
This problem is a good candidate for further study because there are many

remaining opportunities for analysis and application. In the theoretical realm, one could
develop a time-dependent result for the finite models. It would be desirable to see if the
simulation accurately converged to such a model at various points in time, rather than
solely considering the asymptotic approach required by Kimura and Weiss. It would also
be useful to resolve the differences between the theoretical and simulated results for the
long-range migration case.

The simulation is open to a variety of modifications. First, the migration rates
may be described by any other choice of distribution, which allows for customization to
fit a given population. Also, a reproductive pattern may be implemented, which could be
used to reflect certain reproductive events such as “blooms”: periods of unusually rapid
reproduction often seen in marine species [13]. Finally, other evolutionary processes such
as mutation or selection may be incorporated.

There is also the potential to apply the outcomes of this project to field data on
jellyfish populations collected by Professor Michael Dawson’s lab at UC Merced. The
simulation could be run with the parameters for jellyfish migration and reproduction to
determine what genetic correlation patterns could be expected for a given population.
Overall, we have designed the simulation to be able to accommodate a wide range of
population characteristics, so that it may be used in a variety of future applications.
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Appendix A

General Procedure for Numerical
Simulation

A.1 Gene Flow Process

The gene flow process observed in Kimura and Weiss’s one-dimensional stepping
stone model is readily simulated by tracking the movement and reproduction of individuals.
The population of interest is subdivided onto a ring consisting of a large constant number
of discrete islands, which are connected by one-step linear migration routes (Figure 3.1).
These islands are initially populated with individuals represented by the digits 1 and 0 (to
designate whether that individual has or does not have the allele in question, respectively).

After setting up the population structure and defining the migration rates, we begin
to simulate the evolution of the population over the course of many generations. In the
migration step, a loop over all individuals allows the opportunity for them to migrate one
island to the left or right, to stay put on the current island, or to engage in long-range
dispersal to any island chosen at random. The probability of each action is preset by the
user. After migration, the number of individuals on a certain island may exceed or fall
short of that island’s designated population size/carrying capacity ni. The reproduction
step remedies this: a new generation is formed by choosing (with replacement) ni “parent”
individuals to pass on their allele value to their offspring. These migration and reproduction
processes then repeat for as many generations as desired.

All code was written in C++.

A.2 Notable Algorithms

Migration Process

//Migration Loop:

//Inner loop moves the individuals on given island; outer loop cycles

//through all islands.

//For each individual,determine whether they stay put,move left or
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//right,or move "long-distance" (to any island at random).

//Assign (push_back) each individual to their new island in the

//postMigration vector.

if(g % printWarning == 0){cout <<"Migrating... ";}

for(currIsle = 0; currIsle <numIslands; currIsle++)

{

for(indiv = 0; indiv <initialPerIsland; indiv++)

{

//A random "Choice Value" determines where each individual moves (or

stays):

double choice = randVal();

if(choice <= m_infinity){

//Long range migration

//Move to ANY island at random:

newIsle = rand() % numIslands;

}

else if(choice >m_infinity && choice <= m_infinity + (m/2.0)){

//Migrate left

if(USE_BINOMIAL == 0){

numStepsToMove = 1;

}

else{

//Function: int binomial(double p,int n)

numStepsToMove = binomial(binPVal,MAX_N -1 ) +1;

}

if(USE_CIRCULAR == 1){

//Circular model

newIsle = (currIsle <= (numStepsToMove -1))? (numIslands

-numStepsToMove + currIsle) :(currIsle-numStepsToMove);

}

else{

//Linear model with capped ends

newIsle = (currIsle <= (numStepsToMove -1))? currIsle :

(currIsle-numStepsToMove);

}



35

}

else if(choice >m_infinity + (m/2.0) && choice <= m_infinity + m){

//Migrate right

if(USE_BINOMIAL == 0){

numStepsToMove = 1;

}

else{

//Function: int binomial(double p,int n)

numStepsToMove = binomial(binPVal,MAX_N -1 ) +1;

}

if(USE_CIRCULAR == 1){

//Circular model

newIsle = (currIsle >= (numIslands-numStepsToMove))? (currIsle

-numIslands + numStepsToMove) : (currIsle+numStepsToMove);

}

else{

//Linear model with capped ends

newIsle = (currIsle >= (numIslands-numStepsToMove))? currIsle :

(currIsle+numStepsToMove);

}

}

else{

//Stay put on current island

newIsle = currIsle;

}//end if/else

migrationPopulation[newIsle].push_back(islandPopulation[currIsle][indiv]);

}//end for loop (individuals)

}//end for loop (islands)

Reproduction Process

//Reproduction Loop:
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//For each island,randomly choose (with replacement) a "parent"

//individual from that island’s post-migration state.

//Copy the parent’s allele status (0 or 1) into the new postRepro

island. //This entry is the "child".

//Repeat until you have reached the desired number of individuals

//(population size) for the given island.

if(g % printWarning == 0){cout <<"Reproducing... ";}

for(currIsle = 0; currIsle <numIslands; currIsle++)

{

tally = 0;

for(i = 0; i <initialPerIsland; i++)

{

parent = rand() % migrationPopulation[currIsle].size();

islandPopulation[currIsle][i] = migrationPopulation[currIsle][parent];

tally += migrationPopulation[currIsle][parent];

}//end for loop (single island)

freqs[currIsle] = ((double) tally) / ((double) initialPerIsland);

migrationPopulation[currIsle].resize(0);

}//end for loop (all islands)




