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Abstract

An investigation of the capacity of distributed systems to
represent patterns of activation in parallel is presented.
Connectionist models of lexical ambiguity have captured
this capacity by activating the arithmetic mean of the
vectors representing the relevant meanings to form a lexical
blend. However, a more extreme test of this system occurs
in a distributed model of lexical access in speech
perception, which may require a lexical blend to represent
transiently the meanings of hundreds of words. | show that
there is a strict limit on the number of distributed patterns
that can be represented effectively by a lexical blend. This
limit is dependent to some extent on the structure and
content of the distributed space, which in the case of lexical
access corresponds to structure and content of the mental
lexicon. This limitation implies that distributed models
cannot be simple re-implementations of parallel localist
models and offers a valuable opportunity to distinguish
experimentally between localist and distributed models of
cognitive processes.

Introduction

One of the comerstones of the connectionist enterprise is
the representation of information in a distributed fashion:
Each pattern is represented over many processing units and
each processing unit forms part of many patterns. This
contrasts directly with localist systems, in which each
concept is represented by the activation of a single word.
Localist models have been valuable in modeling perceptual
processes in which the degree of match between sensory
input and a set of possible candidates for identification can
be represented in terms of a set of activation values; each
candidate having a separate activation (e.g., Morton,
1969). The essential point about this type of system is that
there is no limit to the number of candidates that can be
activated in parallel, since each is independently
represented.

Activation of multiple candidates in distributed networks
has been achieved by averaging or “blending” the relevant
vectors to form a pattern similar to all its constituents.
Multiple candidates can be said to be activated to the
exlent that they are near to the blend in vector space (e.g.,
Kawamoto, 1993). However, it is not clear whether this
approach represents a literal re-implementation of localist

activations or whether it is merely an approximation to the
localist systems, with inherent limitations.

In this article, I put the distributed blending approach
through its paces, examining a variety of lexical
representations. I tackle this problem from an abstract
perspective, rejecting actual network simulations in favor
of simple mathematical and statistical analyses of vector
spaces. This allows a wide range of relevant parameters to
be explored without restricting the scope of the analysis to
one particular network architecture or learning algorithm.

These analyses are discussed with reference to localist
and distributed models of human speech perception.
Speech perception provides an important test-bed for
questions of parallel activation, partly because the field has
been dominated by models in which word candidates are
represented in a localist fashion (e.g., Marslen-Wilson,
1987; McClelland & Elman, 1986). More importantly,
however, the temporal nature of speech allows us to
examine parallel activation during the time-course of
perception of words (e.g., Zwitserlood, 1989). This creates
the potential for experimentally distinguishing between
localist and distributed models of cognitive processing.

A Distributed Model of Speech Perception

Parallel models of speech perception such as Cohort
(Marslen-Wilson, 1987) and TRACE (McClelland &
Elman, 1986) assume that as a word is heard, many word
candidates are assessed simultaneously. The Cohort model
goes further, arguing that as these word candidates are
evaluated their meanings also become activated.
Experimental evidence for this behavior comes from
priming studies (e.g., Zwitserlood, 1989), in which an
ambiguous word onset (e.g., /kapt) facilitates the
recognition of targets related in meaning to more than one
possible continuation of the stimulus (e.g., ship related to
capiain, prison related to captive). However, the extent to
which parallel activation occurs (i.e., whether it extends to
large cohorts) remains unknown.

Cohort and TRACE are essentially localist models, in
which the goodness of fit between each word candidate and
the incoming speech is represented by a separate activation
value. Gaskell & Marslen-Wilson (1995) examined the
effects of implementing the lexical access process for
speech in a distributed learning system. They trained a
simple recurrent network to learn the mapping from a
stream of phonetic features (segmented into phoneme-like
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units) onto distnbuted representations encompassing the
meaning and phonological form of words. Lexical access is
interpreted in terms of movement through a multi-
dimensional space, with word representations being fixed
points in this space (see Figure 1). The output of the
network plots the course of this movement: As speech
information gradually enters the network, the activation of
matching words is reflected by constructing a blend of their
distributed representations. When the onset of a word is
presented at the input, the network outputs a blend of the
representations of all the words containing that onset. As
more speech comes in, this blend can be refined to
represent the reduced set of words that still match the
speech input. This refinement continues until the number
of words matching the input reduces to 1. At this point (the
uniqueness point) the network can isolate the full
distributed representation of the remaining word: It has
reached an endpoint in the lexical space.

Captain feptn
/kzptr/
® captive
/kep/
kel
/x/
Cap@

Figure 1. Lexical access as a trajectory through lexical
space. The dots mark word representations and the line
marks the path of the network output vector as speech is
processed.

Lexical Distance and Activation

Localist models of auditory lexical access use the
activation metaphor to indicate the status of recognition
process—the degree of match between each word and the
incoming speech is reflected in the word's activation value.
In the distributed model, this activation is encoded
implicitly by the position of the output vector in lexical
space—the degree to which any word's lexical
representation has been retrieved depends on the proximity
of the representation to the output of the network. This
proximity value is highly dependent on the number of
words that must be activated. If the uniqueness point of a
word has been reached, the network merely has to
reproduce the lexical representation of that word and so the
distance between the output of the network and the
representation of that word is likely to be small. This
corresponds to a high degree of activation for the word in a
localist model, If (as in the caprain/captive case) the input
is temporarily consistent with two words, the network can
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at best output a value half way between the corresponding
points in lexical space. When more words are part of a
lexical blend, the distance between the blend and the
component words is greater (and thus in localist terms,
their activations are smaller).

Figure 2 (bold line) illustrates this pattern using a
randomly defined lexical space with 200 binary
dimensions. Each word is represented by a vector, with
each element of the vector having a 50% chance of being
on or off. Sets of target patterns were randomly selected
and a blend vector was calculated by taking the mean over
all target values for each element. The root-mean squared
(RMS) distance from this blend vector was then calculated
for all the target vectors. Each point in Figure 2 is based on
the mean of 64 values. As the number of target patterns
increases, their distance from the blend also increases.
Thus, word activation as modeled by proximity is highly
dependent on the number of candidates remaining active,
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Figure 2. Mean, maximum and minimum distances from
blends of targets to target and competitor populations,

It is important to relate the distance of these lexical
blends from target representations to the overall population
of distances. To be an effective representation of its
components a blend should not only be close to the
components, it should also be relatively distant from other
words. It follows that representational effectiveness can be
evaluated in signal detection terms: a blend is an effective
representation of its components (the targets) if the target
and competitor populations can be separated on the basis of
lexical distance alone. Figure 2 also plots the distances
from the lexical blends to a set of vectors representing
unrelated words in the network's mental lexicon: 3000
randomly chosen vectors with the same properties as the
target vectors.

When the number of target patterns is small, lexical
blends are much closer to those target vectors than to any
of the competitor words. For example, when the lexical
blend is based on two target patterns, the RMS distance
between those patterns and the blend is 0.36. This is
comfortably closer than the nearest competitor, which is
0.53 from the blend. However, as the number of target
patterns increases, the signal begins to merge with the



noise and the blends become less informative. It soon
becomes impossible to work out which of the words the
blend is intended to represent on the basis of proximity. It
seems that modeling parallel activation in this way imposes
a limit on the number of words that can be usefully
activated. If too many distributed patterns are blended
together, the interference between them becomes large and
there is a good chance of some spurious pattern falling
closer to the blend than many of the target patterns. Hinton
and Shallice (1991) show that a blend of two vectors in this
type of system will always be as close to those vectors as
any other vector (if not closer). However, for blends of a
larger number of words this is not the case: it becomes
possible (and even probable) that other vectors will fall
closer to the blend than one or more of the target vectors.

It follows that a distributed system cannot implement
localist activation models literally. Such models may
permit many thousands of candidates to be active early in
the processing of a stimulus. Because representations are
localist, these candidates can be simultaneously activated
without any danger of confusing the active candidates from
the inactive ones, The distributed equivalent can reach the
same endpoint as a localist model (the cormrect
identification of a perceptual stimulus), but in the early
stages of processing its state does not completely
distinguish between matching and mismatching candidates.
The number of candidates a distributed network can
activate effectively in parallel is limited.

This conclusion seems reasonable, but since the assumed
lexical system involves a number of arbitrary parameters it
should be treated with some caution. In the following
sections, I explore the extent to which using different
lexical systems alter the properties of a distributed lexical
access process.

Dimensionality of Lexical Space

The extent to which multiple lexical representations can be
activated simultaneously in a distributed lexicon depends
in part on the number of dimensions in that lexical space.
In order to discriminate between the components of a
lexical blend (the “active” words) and their competitors
(all other words in the mental lexicon), the components
must match the blend on more features than the
competitors. Again, assuming competitors are randomly
distributed through the lexical space, this means that each
competitor will have a certain chance of matching the
blend on each feature. If there is a small number of
features and a large number of competitors, then the lexical
space becomes crowded and there is a good chance of at
least one competitor being sufficiently similar to a lexical
blend to cause interference. As the number of dimensions
or features rises, this likelihood diminishes and the
capability of the lexical system to accommodate multiple
representations increases.

This was demonstrated using randomly chosen
competitor sets, again with binary dimensions and a 50%
chance of each element being set to 1. We defined the
separability of target and competitor populations to be the
difference between the mean target distance and the
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minimum competitor distance. This gives a simple measure
of the representational effectiveness of the blend. A high
separability value implies that the two populations are
separable on the basis of distance from the blend vector
and indicates that the system is adequately representing the
target patterns in parallel.

For each lexical space, consisting of between 50 and 800
dimensions, the separability of the target and competitor
sets decreases as the number of patterns in the target
increases (see Figure 3). However, as the dimensionality of
the space rises, the target representations become easier to
separate from the noise. This effect is most obvious in the
x-axis zero-crossing points for each space, which can be
thought of as a measure of the capacity of the system for
simultaneous representation of distributed forms. This
capacity rises from about 4 to 32 as the dimensionality of
the space rise from 50 to 800. Thus, increasing the number
of dimensions in the lexical space improves the capacity
for activating multiple representations in parallel. It is
difficult to determine where the human system lies along
this continuum of dimensionality, but it may be best to
think of dimensionality as a measure of richness or degrees
of freedom in lexical representations. Each way of
distinguishing between two words adds an extra dimension
or feature to the representation and more obliquely adds to
the capacity of the system to represent multiple lexical
entries in parallel.

0.7

RMS Difference Score

Patterns

Figure 3. Effect of dimensionality on separability of target
and competitor populations. The y-axis plots the minimum
competitor distance minus the mean target distance.

Sparseness of Lexical Representations

Many models of cognitive functioning (e.g., Hinton &
Shallice, 1991; Plaut & Shallice, 1993) have assumed that
distributed lexical representations are sparse, meaning that
each word's representation will involve the activation of
only a small number of elements. The need for sparse
representations is most obvious with binary micro-featural



representations of word meaning, where each feature is
only relevant to a small minority of words. In less literal
representations, sparseness may translate to a high degree
of correlation between the distributed vectors representing
words. This factor seems bound to affect the capacity for
simultaneous activation—after all the localist position,
which is ideally suited to parallel activation, occupies one
end of the continuum of sparseness. The representations
examined so far, in which 50% of all elements were
randomly set to 1, lie at the opposite end of this continuum.

Figure 4 shows the effects of manipulating sparseness,
using the separability measure defined earlier. Targets and
competitor sets in a 200 dimensional space were assigned
distributed representations randomly, but the probability of
any element being set to 1 (p,,) varied from 0.05 to 0.5.
Competitor set size was fixed at 3000 words. Also plotted
is the same measure for a set of localist representations
(local) and for a "near-localist” system of 2 elements on
per word (2feat). For the localist representation, the
number of competitors is limited by the number of
elements in the vector, but since each competitor is
equidistant from the blends, this has no effect on the
results,
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Figure 4. Effect of sparseness of representation on
separability. The key gives the mean percentage of
elements set to 1 per pattern. The local and 2feat curves are
explained in the text.

The pattemn that emerges from this manipulation is
complex. This is partly because as sparseness decreases the
range of possible distances in the lexical space is reduced,
which has the effect of flattening the curves for the sparser
representations. The most salient feature of each curve is
the x-axis zero-crossing point. This marks the point at
which the nearest competitor is as close to the blends as the
average target and gives an indication of the point at which
the signal disappears into the noise. As p,, reduces from 0.5
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to 0.05, this zero-crossing drops from roughly & to 2
patterns. This implies, perhaps surprisingly, that the
capacity for multiple representation drops as sparseness
increases. The curve for the 2-feature representation fits in
with this pattern, crossing the x-axis at roughly 2 patterns.
However, the curve for the localist representation is very
different: it is still (minimally) above the x-axis for a blend
of 64 patterns and in fact should never cross the x-axis.

In summary, increasing sparseness in a distributed
representation deepens the problem of representing words
simultaneously, despite the fact that the sparser
representations seem more similar to a localist
representation, which is only limited by the number of
elements in the vector. The sparse representations are
problematic because they place a restriction on the
positions in lexical space that words can occupy. This is
similar to reducing the dimensionality of the space, which
also reduces the capacity of the system. The localist system
is crucially different: it also restricts the lexical space but it
guarantees that each word is orthogonal to and equidistant
from every other word. This compartmentalizes the space,
meaning that a blend of any number of words will always
be closer to those words than to all others.

Non-random Distribution in Lexical Space

The lexical systems examined so far have assumed that
word representations are randomly distributed through
lexical space. This assumption seems implausible if lexical
space encodes any kind of similarity between words.
Gaskell & Marslen-Wilson (1995) describe lexical access
as a mapping onto word representations in a combined
phonological and semantic space. Each of these types of
knowledge provides structure, which shapes the lexical
space and may alter the nature of the blending of
representations as speech is perceived.

To address this issue, we need a distributed
representation that encodes the similarity structure both of
the meanings and the phonological forms of words. Lund,
Burgess & Atchley (1995) have argued that similarity in
meaning can be captured using co-occurrence statistics
drawn from large corpora of language. This method relies
on the assumption that words with similar meanings will
occur in similar contexts. Although this approach is
unlikely to capture the full richness of word meanings, it is
a simple and convenient way to capture some aspects of
semantic similarity in a distributed system.

Figure 5 compares a random lexical space to two sets of
more structured representations taken from Lund et al.
(1995). The structured representations are of a set of 2779
word representations (mosty of monosyllabic words). Each
one is a 200 element vector with values ranging from 0 to
645. The 200 dimensions were selected from a larger
matrix of co-occurrence statistics in order to capture the
maximum variance between the vectors for the chosen
words. The 64 target words were selected randomly from
this set, with all other words acting as competitors. A
second analysis used a binary form of these vectors, in
which each element was set to either 1 or () depending on
whether it was above or below the mean value across all



words. The random space also had 200 binary dimensions,
with each element having a 50% chance of being set to 1.

—a— Random Control
—a— Structured Binary
—a— Structured Conlinuous
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Figure 5. Effect of semantic clustering on separability. The
RMS scores for the continuous space are normalized.

The separability curves show that both forms of
structured vectors suffer more from the problem of
blending than the random vectors. The zero crossing for
the random vectors is at roughly 16 patterns, whereas for
the binary structured vectors it is between 2 and 4, and for
the continuous structured system it is below 2. This implies
that for the latter system there is a fair chance of a blend of
even 2 vectors falling closer to some other word than to the
constituents of the blend.

The more realistic space has more problems
distinguishing signal from noise because groups of words
form tight clusters in the space. For example,
representations of food words may be highly similar to
each other but very different to all other representations.
This means that when one of these representations is
blended with the representation of an unrelated word there
is a good chance of one of the other words in the cluster
being as close or closer to the blend than the target. The
non-binary form of this representation fares even worse
because there are no restrictions on the positions word
representations can occupy in the space. In particular,
words may well occupy positions close to the middle of the
space, which is where the blends, being arithmetic means,
tend to sit.

In general, therefore, adding more realistic clustering
worsens the problem of activating distributed
representations simultaneously. However, there is one case
in which more realistic clustering lessens this problem. For
models of speech perception this is the case where lexical
dimensions reflect similarities in the phonological form of
words. This is because the phonological representations of
words that must be activated in parallel (i.e., cohort
members) will be more similar to each other than to
unrelated words. Along the dimensions that encode the
similarities, the blend will match the target representations
exactly, but will mismatch competitors. This gives the
targets a head start in terms of their overall distance to the
blend in lexical space, and decreases the chances of non-
cohort members falling close to the blend vector.

To illustrate this effect, target and competitor word sets
were selected using cohort groupings for a word chosen
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randomly from the 2628 monosyllables in the Lund,
Burgess and Atchley (1995) set (the word bound). The 223
words with /b/ as initial segment formed the target set for
the first blend, with all other words treated as competitor
set; the second blend used only the 25 words with onset
/ba/ as targets and so on. The lexical space consisted of 52
phonological dimensions, which encoded a modified form
of the Plaut, McClelland, Seidenberg & Patterson (1996)
monosyllabic representation, and 52 semantic dimensions,
which were random, binary and matched the phonological
representations on sparseness (p,, = 0.08). This space was
compared to a control space in which all 104 dimensions
were random (see Figure 6). For both lexical spaces, the
ability to separate cohort (target) from competitor sets
increases further into the word, as the cohort set size
decreases. However, the space incorporating phonological
structure is more able to separate cohort from competitor
sets at all points, reflecting the similarity between cohort
members along the phonological dimensions of the lexical
space.
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Figure 6. Effect of phonological clustering on separability.
The target sets represent the word-initial cohort groups at
each point in the word.

Discussion

The previous sections have attempted to quantify the
effectiveness of the blending approach to multiple
representations in a distributed space. It seems that there is
quite a strict limit on the number of distributed patterns
that can be usefully combined into a single blend. In
general, combining more than a handful of representations
results in an unsatisfactory blend, for which simple
distance in lexical space does not properly distinguish the
components of the blend from their competitors. This
means that distributed networks do not simply re-
implement localist, activation based systems such as the
Cohort (Marslen-Wilson, 1987) or logogen (Morton, 1969)
models. This conclusion, although introduced with
reference to models of speech perception, may have
implications for many domains of cognitive processing,
such as short-term memory capacity (e.g., Miller, 1956) or
conceptual combination.

Various structural factors affect the capacity for multiple
representation. [t correlates positively with the number of



dimensions or degrees of freedom in the lexical space.
Similarly, the sparseness of lexical representations has
some effect, with more sparse representations decreasing
the capacity to accommodate multiple distributed
representations, despite their surface similarity to localist
representations. The addition of structure to the distribution
of words in lexical space generally increases the problem
of multiple distributed representation, because words that
are closely packed together in space are difficult to
discriminate on the basis of lexical distance alone. This
problem becomes more acute when the dimensions of
lexical space are continuous rather than binary. The one
case in which the addition of structure does help is when
the target patterns are all similar along certain dimensions.
In the case of speech perception, this occurs when
phonology is added to lexical space.

A potential criticism of these findings is that they have
all been based on a distance measure, Although this has
been the dominant tool for exploring distributed
representations, it is possible that some other measure
would be more discriminating. In particular, it may be
more useful to examine sparse representations by looking
at the angle between the relevant vectors. A reanalysis of
the sparseness investigation did remove the comparative
disadvantage found for the more sparse representations, but
if anything it emphasized the gulf between localist and
distributed representations in terms of their capacity to
represent activation pattemns in parallel.

An alternative is that lexical space should not be treated
uniformly, so for example, parallel activation of cohort
members may reflect only the phonological dimensions,
which are more able to distinguish cohort from non-cohort
members and are more interpretable when partially
activated. Similarly, given the freedom to construct their
own distributed space (e.g., in the hidden units),
connectionist networks can ensure that words that are
frequently coactivated (such as cohort competitors in
speech perception) have similar representations. However,
the distributed space must also be able to accommodate
unlikely or infrequent combinations of items (perhaps, for
example, to entertain the notion of a concrete cow). Also,
the distributed space may be subject to separate constraints
that do not allow such reorganization of representations.
Some of the strongest evidence for early multiple
activation in speech perception comes from experiments
involving semantic priming (Zwitserlood & Schriefers,
1995). If distributed models are to accommodate these
data, then the domain of multiple activation must be a
distributed semantic space, which by definition does not
permit clustering on the basis of phonological form.

At the moment, the experimental data on the extent of
parallel activation in speech perception are equivocal. We
do not know how many lexical representations can be
activated in parallel, nor whether the number of
representations activated affects their degree of activation.
Maybe the most profitable reaction to this finding is to
accept it as a limitation of distributed connectionism and
conduct further experiments to see whether it corresponds
to a similar property of the human system. Connectionist
models are often accused of being too powerful, but here
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we have a clear case of something distributed
representations find difficult. If this limitation turned out to
be one that human systems share, it would be a powerful
argument for the validity of modeling cognitive processes
using the distributed metaphor.
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