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Purpose 

 Conformal dose and precise imaging are key to radiation therapy. Here we introduce 

a series of integrated optimization frameworks to improve computed tomography (CT) 

image quality, refine dual-energy CT (DECT) material decomposition, and advance treatment 

planning and delivery methods. 

Methods 

 We formulate our optimization framework as a least-square fidelity term and a 

regularization term. The regularization term was designed specifically for each application, 

including accounting for the piecewise smoothness of the CT image, sparsity in the DECT 

decomposition image, and mechanical constraints in radiotherapy.  The flexible optimization 
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framework allows novel treatments that unleash unnecessary constraints in the current 

Volumetric Modulated Arc Therapy (VMAT) or Intensity Modulated Radiation Therapy 

(IMRT), including allowing dual-layer Multi-Layer Collimator (DLMLC), non-isocentric 

treatment, dynamic collimator, non-coplanar beams, and FLASH radiotherapy. The added 

degrees of freedom significantly expand the searching space, and these large-scale 

optimization problems were solved with a Fast Iterative Shrinkage-Thresholding Algorithm 

(FISTA). 

Results 

On a Catphan study, our integrated CT reconstruction distinguishes a higher number of line 

pairs and preserves low contrast objects compared with conventional Filtered Back 

Projection (FBP) and total variation (TV) reconstruction. Our framework improved the 

decomposition accuracy from 63.9% to 99.8% when applying for material decomposition 

compared with the classic direct inversion method. Compared with single-layer MLC 

(SLMLC) VMAT, DLMLC VMAT reduced R50 by 10% for radiotherapy treatment. Compared 

with isocentric 100cm-source-to-isocenter distance (SID-100cm) 4πIMRT, the non-

isocentric SID-50cm 4πIMRT reduced R50 and integral dose by 5.3% and 9.6%. Compared 

with static collimator VMAT (SCVMAT), dynamic collimator VMAT (DCVMAT) reduced the 

max and mean organs-at-risk (OAR) dose by 4.49% and 2.53% of the prescription dose. 

Compared with coplanar VMAT, 4πVMAT reduced R50 by 19.7%. Compared with clinical 

VMAT, our FLASH delivery method reduced the max and mean OAR physical doses by 4.8Gy 

and 6.3Gy in addition to potential biological gains.  

Conclusions 
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 The integrated optimization framework improves CT image quality, DECT 

decomposition accuracy, and radiotherapy dose conformality. 
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1 INTRODUCTION 

1.1 Radiation therapy 

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 

million deaths each year1. 60% of cancer patients received radiotherapy treatment2. 

Radiotherapy, also known as radiation therapy, uses high-energy radiation beam or 

radioactive substances to induce DNA damage to cells and subsequently inhibit the growth, 

division, metastasis, and proliferation of malignant tumor cells. The ionizing radiation used 

in radiotherapy treatment is a “double-edged sword”, since it not only affects the biological 

processes of neoplasms but also injures normal tissue cells, leading to undesired treatment-

related side effects. 

To maximize the effectiveness of radiotherapy treatment, it is essential to accurately deliver 

a conformal dose distribution to the patient, where the tumor receives a prescription dose 

and organs-at-risk (OAR) dose is minimized. The high accuracy and high conformality can 

only be achieved with proper image guidance and optimized treatment planning, demanding 
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optimality in each of the four steps of radiotherapy treatment: imaging, tumor and OAR 

delineation, treatment planning, and image-guided treatment delivery. This thesis develops 

a suite of novel treatment techniques and optimization algorithms that address challenges 

arising from multiple stages of radiotherapy (Figure 1-1). The thesis is structured into three 

parts. Chapter 2 proposes an integrated Computed Tomography (CT) iterative 

reconstruction method that improves both diagnostic CT images and the image guidance 

during treatment delivery. The method was applied to lung CT images for lung cancer 

screening, Cone-beam breast CT (CBBCT) images for breast cancer screening, and 

Megavoltage CT (MVCT) for onboard imaging verification. Chapter 3 describes dual-energy 

CT (DECT) multi-material decomposition method to enhance tissue characterization and 

differentiation. The method was applied to differentiate the radiosensitive active bone 

marrow for dose sparing. Chapter 4 entails a flexible optimization framework for a variety 

of novel treatment planning and  delivery techniques. 

 

Figure 1-1 A typical workflow of radiotherapy and the corresponding contributions from 
this thesis. 
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1.2 Computed Tomography 

Compared with other medical imaging techniques such as magnetic resonance imaging 

(MRI)3–5 and Positron emission tomography (PET)6, CT7,8 using X-rays imaging systems is 

advantageous in its low cost, high stability, high speed, high resolution, and high sensitivity 

to dense or high-atomic number materials. CT is indispensable in many radiotherapy 

applications, including cancer diagnosis, structure delineation, treatment planning dose 

evaluation, image guidance during treatment9.  

Despite the wide adoption of CT, its ionizing radiation can cause potential detrimental 

effects, including cancer and genetic disease. This has raised growing concern on using 

diagnostic CT scan for large-scale population screening and on repeated CT scans in image-

guided radiation therapy, which motivated the development of low dose CT (ldCT). In 

practice, imaging dose reduction is achieved using sparse projection sampling and/or 

reduced x-ray tube current10,11.  

A 3D CT image can be reconstructed from 2D projection images from many different angles 

around the patient using the analytical Filtered Back Projection (FBP) algorithm or iterative 

reconstruction algorithm12,13. One dilemma in CT reconstruction is the incompatibility of the 

iterative reconstruction framework and state-of-the-art image denoisers. On the one hand, 

it can be extremely difficult, if not impossible, to formulate an arbitrary image denoiser as an 

optimization problem for iterative reconstruction. On the other hand, the ldCT FBP images 

contain severe image artifacts and noise that low-contrast objects and fine structures cannot 

be recovered. In Chapter 2, we propose a flexible framework that integrates state-of-the-art 

image denoisers into CT iterative reconstruction. 
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1.3 Dual-energy CT (DECT) 

Conventional x-ray CT projections are acquired with a single-energy spectrum. The 

reconstructed single-energy CT (SECT) provides the linear attenuation coefficients (LAC) of 

the imaging object, but the LACs depend on both the effective atomic number and the 

electron density, making it insufficient to determine material components. DECT is acquired 

with two distinct energy spectra that are attenuated differently by the tissues. Therefore, 

DECT provides enhanced information to better differentiate and quantify material 

compositions. DECT shows promise in many clinical applications, including virtual 

unenhancement (VUE) imaging14,15, liver lesion characterization16, kidney stone 

characterization17, oncologic imaging14,18, bone removal14, etc.  

Despite the potential of using DECT for multi-material decomposition (MMD), the problem 

is ill-defined for decomposing more than two materials without additional assumption19,20. 

The classic direct inversion (DI) method21 cannot accurately separate more than two basis 

materials and significantly amplifies image noise. Chapter 3 shows a novel integrated MMD 

method that addresses the piecewise smoothness and intrinsic sparsity property of the 

decomposition. We also apply it to separate the radiosensitive active bone marrow from fatty 

bone marrow.                                                                                                                                                                                                                                                                                                                        

1.4 Radiotherapy treatment planning and delivery 

After imaging and target delineation, the next goal is to deliver a conformal dose to the target 

with treatment planning and delivery.  Volumetric modulated arc therapy (VMAT)22,23 is a 

widely employed radiation therapy treatment technique due to its significantly higher 
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delivery efficiency than the static beam Intensity Modulated Radiation Therapy (IMRT)24. In 

its current implementation, VMAT delivers radiation dose while the gantry moves 

continuously on the coplanar arc and the Multi-leaf Collimator (MLC) leaves move 

simultaneously to shape the beam. At each beam, VMAT delivers a uniform intensity to the 

target, and all beams collectively form a conformal dose distribution.  

Treatment planning is solved via inverse optimization. Compared with the static beam 

IMRT24, the VMAT optimization problem is more challenging due to the large problem size 

and complex mechanical constraints. Typically, 180 or more beams are included in the VMAT 

delivery compared with fewer than ten beams used in a typical IMRT plan. More importantly, 

the gantry rotation and leaf motion are coupled: the MLC leaf movements between adjacent 

beams are restricted by the maximal leaf speed for efficient VMAT delivery. 

The VMAT optimization in most commercial planning systems is based on the progressive 

sampling optimization (PSO) method proposed by Otto22. PSO produces deliverable VMAT 

plans that meet the mechanical constraint of existing delivery methods and machine 

hardware, but the dosimetry is suboptimal, and the algorithm is incompatible with novel 

delivery techniques and emerging machine hardware. For example, although collimator 

rotation is an optimization variable that can be exploited for dosimetric advantages, existing 

VMAT optimization uses a fixed collimator angle in each arc and only rotates the collimator 

between arcs. Besides, existing VMAT is typically restricted to coplanar arcs and is 

dosimetrically inferior to IMRT with optimized non-coplanar beams. The PSO method was 

also designed for VMAT with a single-layer multi-leaf collimator (SLMLC), which has lower 

modulation resolution than the dual-layer multi-leaf collimator (DLMLC) system. 
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To overcome these unnecessary constraints, we propose a flexible VMAT optimization 

framework with global sampling that improves dosimetry and opens the door to new 

degrees of freedom in VMAT. We will show in Chapter4 that the framework allows DLMLC 

and dynamic collimator rotation in a single arc, both of which effectively increase the 

modulation resolution. The framework also includes non-coplanar trajectories that 

significantly expand the space of dose spillage and FLASH radiotherapy, which exploits the 

biological effectiveness of ultrafast radiation. 

1.5 Mathematical framework and computation 
algorithms 

In addition to the relevance to radiotherapy, the three parts also share synergies in their 

mathematical formulation as an integrated optimization framework using compressed 

sensing technique. Classic algorithms often use heuristic and detached approaches, such as 

denoising on FBP reconstructed CT images, direct matrix inversion with hard ceiling of three 

basis for DECT material decomposition, and progressive sampling in VMAT optimization. 

Such methods are effective in satisfying the hard constraints: removing noise, limiting the 

number of materials, and VMAT deliverability, but they inevitably compromise the data 

fidelity. We formulate these problems as an integrated optimization framework of a least 

square fidelity term and a regularization term, accounting for data consistency and prior 

knowledge/constraints simultaneously. The regularization term was designed specifically 

for each application as a soft control. For CT reconstruction, the Block-Matching 3D-

Transform (BM3D) term or the ‘plug-and-play’ term encourage image piecewise 

smoothness, patch-wise correlation, or data-driven image features. For DECT MMD, sparse 
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regularization terms limit the number of decomposition components simultaneously 

present in each pixel. For VMAT optimization, regularization terms encourage deliverability 

and delivery efficiency. A single segment term encourages the optimized fluence map to be 

SLMLC-deliverable or DLMLC-deliverable. A group sparsity term limits the number of 

isocenters and beams for efficient robotic arm delivery. A group sparsity term, in 

combination with the Dijkstra’s algorithm, promotes smoothness of the dynamic collimator 

trajectories and dynamic gantry couch trajectories for efficient VMAT delivery.  

Both CT iterative reconstruction and VMAT optimization are computationally expensive due 

to the vast problem size, non-smooth objective, and optimization constraints. For VMAT, the 

computation complexity is further compounded with added degrees of freedom. Classic 

convex optimization algorithms such as interior point methods25 typically have quadratic 

memory complexities and cubic arithmetic complexities. Solving these problems through 

interior points methods are computationally intractable. Recent convex optimization  

research has focused on a class of algorithms known as proximal algorithms26, which are 

generally applicable and well-suited for these non-smooth, constrained, large-scale and 

high-dimensional problems. In particular, we use the Fast Iterative Shrinkage-Thresholding 

Algorithm (FISTA)27, a member of proximal algorithms, to efficiently solve most of the 

optimization problems in this thesis. On the one hand, FISTA requires only the multiplication 

with the system matrix and its transpose at each iteration, which substantially reduces the 

computational costs as compared with other proximal algorithms such as the alternating 

direction method of multipliers (ADMM)28. On the other hand, it achieves a convergence rate 

of O(
1

k2
), a significant improvement over the O(

1

k
) convergence rate of most other proximal 

methods such as ADMM and Primal-dual hybrid gradient method (PDHG)29.  
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1.6 Overview 

Chapter 2 describes methods to integrate state-of-the-art denoisers in CT iterative 

reconstruction (IR). Section 2.1 demonstrates a method that formulates the Block-Matching 

3D-Transform (BM3D) denoiser as a new regularization term in the IR model. It is a version 

of the manuscript titled “Iterative Reconstruction using Block-Matching 3D-Transform 

(BM3D) Regularization” published in Medical Physics30. Section 2.2 introduces a flexible IR 

framework using the plug-and-play algorithm that incorporates the BM3D denoiser directly 

in the iterative reconstruction. It is a version of the proceeding paper titled “Iterative 

reconstruction using Plug-and-Play alternating direction method of multipliers (ADMM) 

framework” published in SPIE proceedings31. In Section 2.3, a Deep convolutional neural 

network (DCNN) was integrated into the flexible IR framework. It is a version of the 

proceeding paper titled “Iterative reconstruction using plug-and-play projected gradient 

descent” published in SPIE proceedings32.  

Chapter 3 introduces an MMD decomposition method for DECT images. It is a version of the 

manuscript titled “Image-domain multi-material decomposition for dual-energy CT with 

non-convex sparsity regularization” published in Journal of Medical Imaging33,34.  

Chapter 4 presents a series of studies on advanced treatment planning and novel delivery 

techniques which add new degrees of freedom to VMAT. Section 4.1 introduces the 

mathematical framework for VMAT, which improved the dosimetry and delivery efficiency 

compared with clinical VMAT algorithms. It is a version of the manuscript titled “A 

comprehensive formulation for Volumetric Modulated Arc Therapy,” published in Medical 

Physics35. In Section 4.2, we add the dual-layer MLC to VMAT, which improves the effective 
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modulation resolution. It is a version of the manuscript “Single-Arc VMAT optimization for 

Dual-Layer MLC” published on physics in medicine and biology36. Another way to increase 

the modulation resolution is to shorten the source-to-isocenter distance (SID) at the cost of 

limited field-of-view (FOV). In section 4.3 we developed a multi-isocenter optimization 

approach to compensate for the limited FOV of a single isocenter and used the group sparsity 

term for beam selection. It is a version of the manuscript “Many-isocenter Optimization for 

Robotic Radiotherapy,” published on physics in medicine and biology37. In the following two 

sections, we added more degrees of freedom to VMAT and incorporated the group sparsity 

term in the VMAT optimization framework for beam selection: Section 4.4 allows dynamic 

collimator, which increases the effective modulation resolution, and Section 4.5 allows non-

coplanar trajectory that significantly expanded the VMAT searching spaces. Section 4.4 is a 

version of the manuscript titled “VMAT optimization with dynamic collimator rotation” 

published in Medical Physics38. Section 4.5 is a version of the manuscript titled “A novel 

optimization framework for VMAT with dynamic gantry couch rotation,” published in 

physics in medicine and biology39. In Section 4.6, we propose a hardware design for FLASH 

radiotherapy and adapt the optimization framework for the novel hardware. It is a version 

of the manuscript titled “ROAD: ROtational direct Aperture optimization with a Decoupled 

ring-collimator for FLASH radiotherapy” published in physics in medicine and biology40. 
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2 USING NOVEL 

RECONSTRUCTION 

ALGORITHMS TO 

IMPROVE CT IMAGE 

QUALITY 

2.1 Iterative Reconstruction using Block-Matching 3D-
Transform (BM3D) Regularization 

2.1.1 Introduction 

 Megavoltage CT (MVCT) is used in image-guided TomoTherapy treatment, but its 

quality is plagued by high noise levels as a result of low detector quantum efficiency (DQE) 

of high energy X-rays41,42. Both post-processing and iterative reconstruction were used to 

suppress the noise. In iterative CT reconstruction,  regularization terms play an important 

role43. Inspired by the compressed sensing theory, L1-type regularization terms such as total 

variation (TV) have been widely used in CT iterative reconstructions to preserve image 

edges44–46. Recently, a tensor framelet regularization scheme, the generalization of TV, 

wavelet, and L1-norm, was proposed by Gao et al. to maintain the object boundary in MVCT 

reconstruction while suppressing noise47. These techniques are effective in removing the 
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image noise and streaking artifacts due to view aliasing in reconstructed images but still 

result in noticeable image resolution loss when noise variation is high, as shown in MVCT. 

The Block-Matching 3D-transform shrinkage (BM3D) algorithm was recently proposed and 

achieved superior image noise suppression relative to local denoising methods by clustering 

similar but non-local 2D image patches into one group and performing denoising within each 

group48,49. Because of the desired denoise performance, BM3D has been used in CT 

reconstruction. In a naïve fashion, BM3D was applied directly on the CT projection50 or 

reconstructed  CT images51–53 as a preprocessing or postprocessing component separate 

from the reconstruction. These studies showed superior image resolution preservation to 

local denoising methods, but the inherent balance between data fidelity and BM3D 

regularization was not fully exploited as a single optimization problem. The integrated 

optimization approach was initially implemented for deblurring and denoising natural 

images54–56, where BM3D was formulated as L1 regularization to encourage data sparsity in 

the BM3D transformation domain. This method exploited data consistency while 

suppressing image noise, better-preserved image features, and outperformed the naïve 

application. In 2013, Yang et al.57 used BM3D patches extracted from a priori fully sampled 

images to regularize sparse view reconstruction of a 2D digital phantom. However, iterative 

CT reconstruction using BM3D on real phantom and patient projections has not been 

demonstrated. In this study, BM3D regularization was applied to Catphan and patient MVCT 

reconstruction. 
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2.1.2 Methods 

2.1.2.1 Problem Formulation 

The CT iterative reconstruction with BM3D regularization is formulated as 

x̂ =
argmin
x ≥ 0

1

2
‖Ax − g‖2

2 + βHμ(Φx)  , 

Equation 2-1 

where g is the measured projection data, A is the forward projection matrix, Φ is the BM3D 

transformation matrix, β  is the hyperparameter controlling the tradeoff between data 

fidelity and regularization, and  Hμ  is the Huber penalty function with a smoothing 

parameter μ26 that approximates the L1 norm. 

In Equation 2-1, the quadratic data fidelity term minimizes the discrepancy between the 

measured and the estimated projections, and the regularization term promotes sparsity in 

the BM3D transformation domain, which subsequently encourages image smoothness and 

maintains image texture.  

As shown in Figure 2-1, the workflow involved two main steps. In the first step, a block 

matching process was performed on a coarsely reconstructed initial image to generate the 

matched groups, from which the BM3D analysis matrix Φ was constructed. In the second 

step, matrix Φ was utilized in Equation 2-1 for iterative reconstruction.  

 

Figure 2-1 Workflow of the MVCT iterative reconstruction using BM3D regularization. 
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2.1.2.2 Construction of BM3D transformation matrix 

The block matching was performed on the initial CT images from TV reconstruction, on 

which each reference patch Pr (r = 1,2,⋅⋅⋅, R), with size np by np and a separation distance nd 

in both the row and column directions, is denoted by the index of the voxel at the left upper 

corner. For each Pr, a nonlocal searching procedure is performed within the Pr-centered nw-

by-nw window on the initial CT image to obtain a group of similar patches Gr = {Sr,j=1, Sr,j=2,⋅

⋅⋅, Sr,j=J} to Pr with respect to Euclidean distance. Let  x be the vectorized MVCT image with 

dimension N. An indicator matrix Ir,j with dimension (np)2-by-N is defined for the jth patch 

in the rth group, such that Ir,j ⋅ x is a vector containing every pixel in the similar patch Sr,j. 

The indicator matrix Ir for group Gr is a concatenation of all Ir,j (j = 1,2,⋅⋅⋅, J), and the matrix-

vector product Ir ⋅ x provides the vectorized group Gr. 

Apart from the indicator matrix, two independent linear transformations matrices T1 and T2 

are utilized in the construction of BM3D analysis matrix. T1  is the 1D Hadamard 

transformation matrix that performs interpatch transformation across different patches 

within one group. T2 is the 2D Haar wavelet matrix for intrapatch transformation within each 

patch. T1 and T2 together implement a 3D transformation on the group Gr that transforms 

image patches in Gr to the BM3D spectra, with spectra coefficients given by 

ωr = (T1 ⨂ T2) ⋅ (Ir ⋅ x ) 

The joint BM3D spectra are a concatenation of the BM3D spectra for all groups. By defining 

the BM3D analysis matrix Φ as 
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Φ = [

(T1 ⨂ T2) ⋅ Ir=1
(T1 ⨂ T2) ⋅ Ir=2

⋮
(T1 ⨂ T2) ⋅ Ir=R

], 

the joint BM3D spectra are related to the vectorized image x by ω = Φx.  

The objective function in Equation 2-1 was solved using FISTA. Details on the algorithm can 

be found in the appendix. 

2.1.2.3 Evaluation 

A Siemens imaging quality phantom58, a head and neck (H&N) patient, and a prostate patient 

was scanned on an onboard TomoTherapy imaging system59 with a 3.5 MV helical fan beam. 

A total number of 800 projections were acquired. The proposed method is compared with 

Filtered Back Projection (FBP), TV and BM3D post processing methods, where the BM3D 

post process performs the BM3D denoising filter on an FBP-reconstructed CT image. 

Evaluation includes both full sampled reconstruction and down sampled reconstruction, 

where 25% of the uniformly sampled projections are utilized. The task-based modulation 

transfer function (MTF)60 is evaluated for comparison of image resolution across both linear 

and non-linear reconstruction methods. 

2.1.3 Results 

2.1.3.1 Phantom Study 

The reconstruction results using BM3D regularization, TV, BM3D post process and FBP on a 

line pair slice and a contrast rod slice of the Siemens imaging quality phantom are shown in 

Figure 2-2 and Figure 2-3 respectively, for both fully sampled reconstruction and down-
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sampled reconstruction. The image noise, computed as the standard deviation (STD) within 

the squares on Figure 2-2(d1) and Figure 2-3(d1), is kept at the same level across all 

reconstruction methods except for FBP. TV reconstruction loses the fine feature as shown by 

the 8th line pair on the 800-projection image and the 7th line pair on the 200 projection 

image, whereas these line pairs are distinguishable on images reconstructed from other 

methods. BM3D post process method achieves comparably high spatial resolution as the 

BM3D regularization methods, as evaluated by these high contrast line pairs, but the post-

processing method amplifies streaking artifacts, (Figure 2-2(c2)), which originates from the 

noisy FBP image in Figure 2-2(d2), due to the lack of iterative fidelity penalty in this 

approach. Compared to other methods, the BM3D regularization method can maintain image 

spatial resolution while removing both the noise and artifacts.  

The contrast rod slice compares performance on high and low contrast objects across 

different reconstruction methods. Both TV and BM3D post process are less effective at 

preserving low contrast objects while removing the image noise, whereas the BM3D 

regularization image can distinguish low contrast fine structures that were obscured by the 

noise in the FBP images. Table 2-1 presents the quantitative CNR values evaluated on the 

contrast rod object indicated by the Region-of-Interest (ROI) with label 1 on Figure 2-3(d1).  

Image resolution comparison across BM3D regularization, TV, and BM3D post process 

methods under the same noise level is presented by the line profile plots of the 6th line pair 

in Figure 2-4 and the MTF plots in Figure 2-5, evaluated basing on the highest contrast object 

(ROI2) on Figure 2-3(d1)). Figure 2-4 and Figure 2-5 show that, for high contrast objects, 

with equal image noise suppression, both the BM3D post process and the BM3D 

regularization method maintained resolution comparable to the FBP, whereas the TV 
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regularization degraded the resolution. At 50% of the MTF magnitude, the spatial resolution 

using BM3D regularization is 5.00 lp/cm and 4.33 lp/cm, whereas that of using TV is 1.79 

lp/cm and 1.70 lp/cm, for the fully sampled reconstruction and down-sampled 

reconstruction, respectively.  

Figure 2-6 shows the tradeoff between image noise and resolution for different 

reconstruction methods. The image noise is computed as the STD of the square on Figure 

2-3(d1), and the image resolution is calculated as the area under the MTF curve, where the 

task-based MTF is evaluated on the object in ROI2 on Figure 2-3(d1). Across a suitable range 

of image noise, both the BM3D regularization and the BM3D post process were able to 

maintain a comparably high image resolution compared with TV, for both the fully sampled 

reconstruction and down-sampled reconstruction. The images shown in Figure 2-3 

corresponds to the noise STD at 0.14 and 0.18 for 800 projections and 200 projections, 

respectively. 

CNR 
BM3D 

regularization 
TV 

BM3D Post 
Processing 

FBP 

800 projections 372.10 222.10 300.61 48.91 

200 projections 235.09 230.75 203.34 14.47 

Table 2-1 The CNR for the contrast slice with the ROI1 indicated in Figure 2-3(d1). 
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Figure 2-2 Resolution slice reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D 
post process, and (d) FBP using (1) 800 projections and (2) 200 projections, respectively. 
Zoom-in details for the 6th—8th line pairs are shown in the left lower corner. The images 
from BM3D regularization, TV, and BM3D Post Process are under the same noise level. 

 

Figure 2-3 Contrast rod slice reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D 
post process, and (d) FBP using (1) 800 projections and (2) 200 projections, respectively. 
The images from BM3D regularization, TV, and BM3D Post Process are under the same noise 
level. 
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Figure 2-4 Crossline plots of the 6th line pair on the resolution slice for all methods and the 
expected values, using (1) 800 projections and (2) 200 projections. The images from BM3D 
regularization, TV, and BM3D Post Process are under the same noise level. The unit of x axis 
is cm, and the unit of y axis is 𝐜𝐦−𝟏. 

 

Figure 2-5 MTF of the MVCT images reconstructed from BM3D regularization, TV, BM3D Post 
Process, and FBP using (1) 800 projections and (2) 200 projections. The images from BM3D 
regularization, TV, and BM3D Post Process are under the same noise level. 
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Figure 2-6 The resolution vs noise curve of BM3D regularization, TV, and BM3D Post Process 
using (1) 800 projections and (2) 200 projections. The resolution is computed as the area 
under the MTF curve, evaluated on the ROI2 on Figure 2-3 (d1), and the image noise is 
computed as the STD of the square on Figure 2-3 (d1). 

 

2.1.3.2 Patient Study 

The reconstruction results for a H&N patient slice and a prostate patient slice using BM3D 

regularization, TV, BM3D post-process, and FBP are shown in Figure 2-7 and Figure 2-8, 

respectively, for both fully sampled reconstruction and down-sampled reconstruction. The 

image noise, computed as the STDs of the squares on Figure 2-7 (d1) and Figure 2-8(d1), is 

kept at the same level across all reconstruction methods except for FBP. TV images lose fine 

bone structures, as shown in the zoom-in ROI displays of a H&N patient in Figure 2-7, and 

produce cartoon-like artifacts characteristic of TV regularization. BM3D post-process images 

can preserve image spatial resolutions in the high-contrast region comparable to BM3D 

regularization and FBP but are less effective in preserving the low-contrast structures, 

shown in the zoom-in ROIs. For the prostate patient, the TV images showed more blurred 



 

20 

bony boundaries. Compared with BM3D regularization, the BM3D post process results in 

worse soft tissue contrast, as shown in Figure 2-8(c2), and magnifies the FBP image artifacts. 

 

Figure 2-7 H&N images with zoom-in displays of ROI reconstructed from (a) BM3D 
regularization, (b) TV, (c) BM3D post process, and (d) FBP using (1) 800 projections and (2) 
200 projections, respectively. 

 

Figure 2-8 Prostate images reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D 
post process, and (d) FBP using (1) 800 projections and (2) 200 projections, respectively. 
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2.1.4 Discussion 

CT imaging dose is a concern for diagnostic imaging and image-guided radiation therapy, 

motivating the development of low dose CT. In practice, imaging dose reduction is achieved 

using sparse projection sampling and/or reduced x-ray tube current10,11. Due to the ill-

conditioned system matrix brought by the heavily undersampled data and/or high noise in 

low-dose CT imaging, iterative reconstruction has shown superiority in image artifact 

reduction and noise control in comparison to the analytical filtered-backprojection (FBP) 

algorithm since the former incorporates physical constraints and image features into the 

iterative framework as regularization terms43. Because of the low DQE, MVCT can be a 

viewed as a special case of low dose CT that can benefit from iterative CT reconstruction. 

In this work, we for the first time implemented non-local BM3D regularization as L1 

regularization for raw CT data reconstruction. Compared with TV regularization, both BM3D 

post process and regularization are more effective in maintaining the resolution while 

reducing the noise. BM3D regularization, however, is better at enhancing low contrast 

conspicuity and controlling artifacts than the BM3D post-process due to the iterative 

application of the fidelity term.  

One limitation of the BM3D regularization is its higher computational cost. Compared with 

the 2D natural image processing reported by Danielyan et al.54, the CT reconstruction 

problem is several orders of magnitude greater. The previous method of solving BM3D 

regularized iterative reconstruction using ADMM57, except for the difference of relying on a 

priori data for reconstruction, is impractically slow for real patient data. In this study, to 

improve the computational speed, the optimization problem was solved using FISTA27, a fast 
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proximal gradient method that significantly reduces the computation cost. In addition, to 

reduce matrix multiplication time and reduce memory usage, the BM3D analysis matrix was 

implemented as sequential multiplication of small transformation matrices in different 

dimensions48. With these acceleration methods, reconstruction for one image slice currently 

takes approximately 30 seconds with BM3D regularization, whereas FBP reconstruction and 

TV reconstruction takes less than 0.2s and 3 seconds, respectively, on an Intel Core i7-7700K 

CPU with 64 GB RAM and a GTX TITAN X. As a future development, the embarrassingly 

parallelizable matrix multiplication time can be further reduced with hardware acceleration 

techniques, e.g., graphics processing unit (GPU)61. 

2.1.5 Summary 

As the first step to incorporate novel image denoisers into CT iterative reconstruction 

(CTIR), in this study, we modified and reformulated the BM3D denoiser as the BM3D 

regularization term in the IR model. The integrated model is simple and concise in the form 

of a convex optimization problem. Yet, it includes the non-local patch-wise feature originated 

from BM3D denoisers, which contributed to its improved image SNR and image resolution 

compared with conventional IR models with TV regularization. On the other hand, the 

proposed reformulation is unique to BM3D denoiser, and the method is not compatible with 

or adaptable to many other state-of-the-art image denoisers. The following sections 

overcome this limitation by introducing a more flexible integration method that can be 

applied to almost any denoisers.  
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2.2 Iterative reconstruction using Plug-and-Play 
alternating direction method of multipliers (ADMM) 
framework 

2.2.1 Introduction 

Low dose CT (LdCT) has been investigated to reduce the associated radiation risks of 

diagnostic CT. In practice, low-dose data acquisition is typically achieved using sparse 

projection sampling and/or reducing x-ray tube current. Due to heavily under-sampled data 

acquisition and/or low detector photon counting, the system matrix is highly ill-posed, 

resulting in severe image artifacts and overwhelming noise using the conventional analytical 

FBP algorithm. Sparse regularized iterative reconstruction models have been investigated to 

mitigate image artifacts and noise. The iterative reconstruction significantly enhanced the 

image signal-to-noise ratio compared with analytical FBP but often compromised the image 

resolution and low-contrast object visibility 62.  

Recent emerging denoising techniques such as the BM3D49 technique has been shown to 

remove image noise while better retaining image details. Applying the BM3D denoiser on 

FBP reconstructed CT image, termed BM3D post-process method, has shown to improve soft 

tissue conspicuity51. However, incorporating these state-of-the-art denoisers into model-

based reconstruction remains challenging since these denoising methods do not have a 

known formulation as an optimization problem. 

The previous section introduces a BM3D regularized iterative reconstruction method for 

MVCT63, which utilizes a non-local patch-wise regularization term to promote sparsity in the 

BM3D transformation domain. This method effectively reduced image noise and showed 
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improved low-contrast conspicuity compared with the BM3D post-process method and 

conventional model-based method such as TV. However, there are three intrinsic limitations 

with the BM3D regularization method. Firstly, the BM3D regularization reconstructed image 

is highly correlated with an initial input image, either from FBP or TV, which was utilized in 

the block-matching procedure to build up the BM3D transformation matrix. Since the initial 

images may be noisy or over-smoothed, a single-step block-matching could impose a bias 

and amplify patterned artifacts on the reconstructed image. The problem is avoided in the 

original BM3D denoiser in 49 through two denoising steps. The first step performs a basic 

hard-thresholding approach to estimate a denoised image, based on which the block-

matching was recalculated for the second step. Secondly, the BM3D regularization applies a 

uniform soft-thresholding on every element, whereas the original BM3D denoiser utilizes an 

empirical Wiener filter that performs element-by-element filtering based on the denoised 

image from the first step. It has been observed in the experiments that the Wiener filtering 

restores more details and improves the denoising performance 48. Thirdly, the patch-wise 

BM3D regularization tends to induce patch-wise image artifacts, especially in highly under-

sampled data acquisition. To reduce patch-wise artifacts and border effects, the original 

BM3D denoiser utilized the Kaiser window in combination with an adaptive aggregation that 

gives priority to homogeneous patches. These features were not incorporated in the BM3D 

regularization method due to the difficulty of formulating them into mathematical terms. 

A flexible Plug-and-Play (PnP) framework was proposed in 64 that allows to plug in any off-

the-shelf denoisers to replace a module in the alternating direction method of multipliers 

(ADMM) algorithm 28 for model-based image denoising problem. The PnP ADMM algorithm 

does not require formulating the denoiser into an optimization problem. Instead, the 
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denoiser is applied directly as an iteration step. Studies 64–67 have shown promising 

empirical results on Gaussian and Poissonian image restoration problems using the PnP 

ADMM framework. In this study, the PnP ADMM framework was developed for model-based 

CT reconstruction to fully exploit the data consistency while using the state-of-art BM3D 

denoiser to suppress the image noise. 

2.2.2 Method 

2.2.2.1 ADMM for CT iterative reconstruction 

A typical CT iterative reconstruction framework is formulated as 

�̂� = argmin
𝑥≥0

1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝛽𝑅(𝑥), 

Equation 2-2 

where 𝑏 is the measured projection data, 𝐴 is the forward projection matrix. The first term 

is the quadratic data fidelity term that minimizes the discrepancy between the measured and 

the estimated projections. 𝑅(𝑥)  is the regularization term that incorporates prior 

information on the image, β is the hyperparameter controlling the tradeoff between data 

fidelity and regularization. 

ADMM is one of the first-order algorithms that is well suited to large-scale convex 

optimization problems. The algorithm solves the optimization problem of the form 28 

minimize
𝑥,𝑦

      𝑓(𝑥) + 𝑔(𝑦) 

subject to    𝐶𝑥 + 𝐷𝑦 = 𝑐, 
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Equation 2-3 

where 𝑓 and 𝑔 are convex functions, and A, B are linear operators. Note that the objective 

function is split into two parts, each part has one optimization variable. The augmented 

Lagrangian of the optimization problem is defined as  

𝐿𝜌(𝑥, 𝑦, 𝑣) = 𝑓(𝑥) + 𝑔(𝑦) + 𝑣
𝑇(𝐶𝑥 + 𝐷𝑦 − 𝑐) +

𝜌

2
‖𝐶𝑥 + 𝐷𝑦 − 𝑐‖2

2. 

Equation 2-4 

ADMM solves the optimization problem in Equation 2-3 by minimizing the augmented 

Lagrangian in Equation 2-4 with respect to the optimization variables 𝑥 and 𝑦 and updating 

the dual variable 𝑣 in each iteration through the following equations: 

𝑥𝑘+1 ≔ argmin
𝑥

  𝐿𝜌(𝑥, 𝑦
𝑘, 𝑣𝑘) 

𝑦𝑘+1 ≔ argmin
𝑦

  𝐿𝜌(𝑥
𝑘+1, 𝑦, 𝑣𝑘) 

𝑣𝑘+1 ≔ 𝑣𝑘 + 𝜌(𝐶𝑥𝑘+1 + 𝐷𝑦𝑘+1 − 𝑐). 

Equation 2-5 

The CT iterative reconstruction problem can be formulated into the canonical form of ADMM 

shown in Equation 2-3 by defining 

𝑓(𝑥) =
1

2
‖𝐴𝑥 − 𝑏‖2

2 

𝑔(𝑦) = 𝛽𝑅(𝑦) + 𝐼+(𝑦) 

𝐶 = 𝐼, 𝐷 = −𝐼, 𝑐 = 0, 

where 𝐼+(𝑦) is an indicator function imposing the non-negativity constraint 

𝐼+(𝑦) = {
0                   𝑖𝑓 𝑦 ≥ 0
  ∞                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Subsequently, the ADMM iterations in Equation 2-5 are adapted for the CT iterative 

reconstruction problem as: 

𝑥𝑘+1 ≔ argmin
𝑥

  
1

2
‖𝐴𝑥 − 𝑏‖2

2 +
𝜌

2
‖𝑥 − �̃�𝑘‖2 

𝑦𝑘+1 ≔ argmin
𝑦≥0

  𝛽𝑅(𝑦) +
𝜌

2
‖𝑦 − �̃�𝑘‖2 

𝑣𝑘+1 ≔ 𝑣𝑘 + 𝜌(𝑥𝑘+1 − 𝑦𝑘+1) 

Equation 2-6 

where �̃�𝑘 = 𝑦𝑘 − 𝑣𝑘/𝜌, and �̃�𝑘 = 𝑥𝑘+1 + 𝑣𝑘/𝜌. 

2.2.2.2 Plug-and-Play with ADMM 

Conjugate Gradient algorithm: Solving 𝑾𝒙 = 𝒅 

Initialization: 𝒙 ≔ 𝟎, 𝒓 ≔ 𝒅, 𝝆𝟎 ≔ ‖𝒓‖𝟐
𝟐 

For 𝒌 = 𝟏, 𝟐,…   do 
       if 𝒌 = 𝟏 
              𝒑 ≔ 𝒓 
       else 
              𝒑 ≔ 𝒓 + (𝝆𝒌−𝟏/𝝆𝒌−𝟐)𝒑 
       end 
       𝒖 ≔ 𝑾𝒑 
       𝒂 ∶= 𝝆𝒌−𝟏/𝒑

𝑻𝒖 
       𝒙 ≔ 𝒙 + 𝒂𝒑 
       𝒓 ≔ 𝒓 − 𝒂𝒖 

       𝝆𝒌 ≔ ‖𝒓‖𝟐
𝟐 

end  

Table 2-2 Conjugate Gradient algorithm: Solving 𝑾𝒙 = 𝒅 

 The first subproblem with respect to variable 𝑥 in Equation 2-6 is a least square problem 

that is equivalent to a linear equation 

(𝐴𝑇𝐴 + 𝜌𝐼)𝑥𝑘+1 = 𝐴𝑇𝑏 + 𝜌�̃�𝑘 . 

Equation 2-7 

Due to the size of the system, it is infeasible to solve Equation 2-7 via matrix inversion. 

Instead, it was solved iteratively through the Conjugate Gradient method 68, which is one of 
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the most popular and efficient iterative methods for solving sparse symmetric positive 

definite (SPD) systems of linear equations. The pseudo code of the CG algorithm following 

C.T.Kelley 69 is presented in Table 2-2. 

Plug-and-Play ADMM 

Initialization: 𝝆𝟎 ≔ 𝟏𝟎𝟎, 𝜼 < 𝟏, 𝜸 > 𝟏  
For 𝒌 = 𝟏, 𝟐,…   do 

       𝒙𝒌+𝟏 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝒙

 
𝟏

𝟐
‖𝑨𝒙 − 𝒃‖𝟐

𝟐 +
𝝆𝒌

𝟐
‖𝒙 − (𝒚𝒌 − 𝒛𝒌)‖𝟐

𝟐 

       𝝈𝒌 ∶=  √
𝜷

𝝆𝒌
 

       𝒚𝒌+𝟏 ≔ 𝑫𝝈𝒌(𝒙𝒌+𝟏 + 𝒛𝒌) 

       𝒛𝒌+𝟏 ≔ 𝒛𝒌 + 𝒙𝒌+𝟏 − 𝒚𝒌+𝟏 

       𝚫𝒌+𝟏 ≔
𝟏

√𝒏
(‖𝒙𝒌+𝟏 − 𝒙𝒌‖𝟐 + ‖𝒚𝒌+𝟏 − 𝒚𝒌‖𝟐 + ‖𝒛𝒌+𝟏 − 𝒛𝒌‖𝟐) 

       if 𝚫𝒌+𝟏 ≥ 𝜼𝚫𝒌 
              𝝆𝒌+𝟏 ≔ 𝜸𝝆𝒌 
       else 
              𝝆𝒌+𝟏 ≔ 𝝆𝒌 
       end 
end  

Table 2-3 Plug-and-Play ADMM 

The second sub-problem with respect to variable 𝑦 includes a least square data fidelity term 

and a regularization term 𝑅(𝑦): 

𝑦𝑘+1 ≔ argmin
𝑦

  𝑅(𝑦) +
1

2𝜎2
‖𝑦 − �̃�𝑘‖2, 

Equation 2-8 

where 𝜎 = √𝛽/𝜌 .  Note that it is equivalent to a denoising problem with 𝑅(𝑦) as prior, �̃�𝑘 as 

the noisy input, and 𝜎 as the estimated noise level. The optimum 𝑦𝑘+1 could be viewed as a 

cleaned version of the input �̃�𝑘. In the PnP framework, instead of solving the optimization 

problem in Equation 2-8, it utilizes an off-the-shelf image denoiser, denoted by 𝐷𝜎 , to derive 

the cleaned version of the input as the optimum 𝑦𝑘+1. At each iteration, the image denoiser 

is plugged in and the cleaned image 𝑦𝑘+1 is subsequently utilized to update 𝑥 and 𝑧. In this 

study, BM3D is chosen as the off-the-shelf image denoiser, where the hyperparameter 𝜎 
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indicates the estimated noise level of the acquisition data and controls the amount of 

smoothing in the hard-thresholding step and the Wiener filtering step. The pseudo code of 

the PnP algorithm is summarized in Table 2-3. 

2.2.2.3 Evaluation 

The proposed PnP ADMM was evaluated on low dose scans of CT ACR 464 phantom and two 

lung screening scans and is compared with FBP, Total Variation (TV), BM3D post-process, 

and the BM3D regularization. The reconstruction utilized the FreeCT wFBP GPU code in 70 

for FBP and a GPU-based separable footprint forward and backward projector in 71 for 

iterative reconstruction. FBP reconstructed images using standard dose scan are provided 

as the ground truth. All reconstruction methods besides ‘FBP standard dose’ were evaluated 

on low dose data having 5.5%, 50%, and 25% of the standard dose in the ACR phantom, lung 

#1, and lung #2 cases, respectively. 

For the ACR phantom, we acquired raw projection data with standard-dose protocol and low 

dose protocol on Siemens Definition without flying focal spot. For the two lung screening 

cases, raw projection data with standard-dose protocol was acquired on Siemens Definition 

with the z-flying focal spot, and dose reduction was simulated using a previously validated 

tool 72,73 that takes into account Poisson statistics, the scanner bowtie, and measurements of 

the real scanner electronic noise. 

2.2.3 Results 

Figure 2-9 is the reconstructed image with zoomed-in ROI of the ACR phantom using PnP 

ADMM with BM3D, TV, BM3D regularization, BM3D post-process, and FBP, from low dose 
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CT scans, along with FBP from standard-dose CT scans. The ROI showing the 6th line pairs 

at 9 lp/cm resolution is indicated by the red square. With reduced image noise, the PnP 

ADMM (Figure 2-9A) clearly distinguished the 9 lp/cm line pairs and achieved a higher 

image resolution than the FBP (Figure 2-9 E), from low dose CT data. The 9 lp/cm line pairs 

are indistinguishable using other iterative reconstruction methods, including TV (Figure 

2-9B) and BM3D regularization (Figure 2-9C) under the same noise level. The BM3D post 

process method removed the image noise at the cost of blurred line pairs (Figure 2-9D). To 

the best of our knowledge, the BM3D filter is a leading image denoiser particularly strong at 

maintaining structured image patterns, such as the line pairs in the ACR phantom image. 

Recovering such resolution may not be possible using other denoising filters. More 

remarkably, the line pairs are better recovered in the PnP ADMM image (Figure 2-9A) with 

5.5% of the imaging dose than the FBP image from standard-dose scans (Figure 2-9F).  

Figure 2-10 shows the line profile of the yellow line shown on Figure 2-9A that crosses the 9 

lp/cm line pairs. The expected oscillatory pattern could be identified on the line profile for 

the FBP standard dose image and the PnP ADMM low dose image, with the latter achieving 

substantially higher contrast. The line pair patterns are completely blurred or lost to noise 

with other methods, consistent with the visual examination of the reconstructed images in 

Figure 2-9. 

Figure 2-11 shows the reconstructed image of lung patient #1 with a zoomed-in view of the 

fissure line in the left lung. The PnP ADMM (Figure 2-11A) reduced the image noise and kept 

most image details, and the fissure line is clearly visible. The total variation (Figure 2-11B) 

and BM3D post-process (Figure 2-11D) lost fine details and blurred the low contrast 

structures to achieve the same reduced noise level, consistent with our previous study 63. 
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The BM3D regularization method (Figure 2-11C) achieved fair image resolution, but it also 

induced patch-wise artifacts. The fissure line is visible on the FBP images (Figure 2-11E and 

Figure 2-11F), but was contaminated by noise, especially with the low dose scan. 

Figure 2-12 shows the reconstructed image of lung patient #2 with a zoomed-in view of the 

fissure line in the left lung. The PnP ADMM (Figure 2-12A) shows the fissure line most 

clearly, while other iterative reconstruction methods (Figure 2-12B, Figure 2-12C) or 

smooth filter (Figure 2-12D) present the fissure line with reduced contrast under the same 

image noise level. The BM3D regularization method (Figure 2-12C) also presents patch-wise 

noise, leading to conspicuity problems within the noisy patches. Both FBP low dose image 

(Figure 2-12E) and FBP standard dose image (Figure 2-12F) are noisier than other methods. 

Table 2-4 summarizes the mean and standard deviation (STD) of a conformal region, 

indicated by the blue square on the reconstructed images (Figure 2-9, Figure 2-11, and 

Figure 2-12) of the ACR phantom and two lung patients, respectively. The noise levels are 

comparable across iterative reconstruction methods and the BM3D post-process method for 

a fair comparison of image resolution. 
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Figure 2-9 Reconstructed image with zoomed in ROI (red square) of the ACR phantom using 
(A) Plug-and-Play ADMM, (B) TV, (C) BM3D regularization, (D) BM3D post process and (E) 
FBP from low dose CT data, and (F) FBP from standard dose CT data. The conformal region 
indicated by the blue rectangle is used for standard deviation evaluation in Table 2-4. The 
line profile of the yellow line on Figure 2-9(A) is shown in Figure 2-10. 

 

Figure 2-10 Line profile across all methods for the ROIs on Figure 2-9. 
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Figure 2-11 Reconstructed image of the lung patient #1 with zoomed-in view of the fissure 
line using (A) Plug-and-Play ADMM, (B) TV, (C) BM3D regularization, (D) BM3D post process 
and (E) FBP from low dose CT (50% dose), and (F) FBP from standard dose CT data. The 
conformal region indicated by the blue rectangle is used for standard deviation evaluation in 
Table 2-4. 

 

Figure 2-12 Reconstructed image of the lung patient #2 with zoomed-in view of the fissure 
line using (A) Plug-and-Play ADMM, (B) TV, (C) BM3D regularization, (D) BM3D post process 
and (E) FBP from low dose CT data (25% dose), and (F) FBP from standard dose CT data. The 
conformal region indicated by the blue rectangle is used for standard deviation evaluation in 
Table 2-4. 
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 PnP 
ADMM 

TV 
BM3D 

regularization 

BM3D 
post-

process 

FBP low 
dose 

FBP standard 
dose 

ACR 79±27 79±28 78±27 79±27 79±84 78±23 
Lung #1 -866±53 -856±42 -858±50 -854±51 -852±108 -852±87 
Lung #2 -897±24 -902±25 -904±27 -898±25 -899±35 -897±30 

Table 2-4 The mean and STD of all methods evaluated on the conformal region, indicated by 
the blue square on the reconstructed images (Figure 2-9, Figure 2-11, and Figure 2-12) of the 
ACR phantom and two lung patients, respectively. 

2.2.4 Discussions 

The previous study in Section 2.1 adapted BM3D denoiser into CT iterative reconstruction 

by constructing non-local patch-wise regularization based on the block-matching procedure 

on the initial input image. The non-local BM3D regularization improved image resolution 

compared with TV under the same noise level, but the image quality is susceptible to the 

initial input image-induced patch-wise artifacts due to the difficulty of rigorously 

formulating the empirical artifacts-removal procedures in BM3D into the optimization 

problem. The proposed PnP framework incorporates all features of the original BM3D filter 

into the model-based image reconstruction framework. Therefore it not only inherits the 

rigorous mathematical framework of model-based reconstruction from highly under-

sampled data acquisition but also fully takes advantage of the BM3D denoiser on resolving 

image details while removing noises. 

In this study, BM3D denoiser is used as the plug-in component, but the PnP framework is not 

limited to BM3D. For example, studies have shown improved image quality of incorporating 

other image denoisers into the PnP framework, including non-local means 65, Gaussian 

mixture models 65, and Deep convolutional neural network (DCNN) 74, compared with 

applying these denoisers directly on the image.  
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The current PnP framework is based on the ADMM algorithm, which requires solving a linear 

equation involving the system matrix at each iteration. While it is trivial to solve the linear 

equation for many image restoration problems where the multiplication with the system 

matrix and its transpose reduces to element-wise multiplication in the frequency domain 

under Fast Fourier Transform (FFT), it is difficult to evaluate the same equation for CT 

reconstruction problem. Iterative optimization algorithms such as the CG algorithm are 

required for solving the linear equation at each ADMM iteration. Even with the acceleration 

of the projection and back-projection process through graphic processing units (GPUs) 75, 

the PnP-ADMM still takes around 2 hours on a single desktop with 4 TITAN X GPUs, while a 

standard iterative reconstruction using TV takes around 15 minutes on the same computer 

and for the same case. Studies 76,77 have investigated applying the PnP framework to other 

first-ordered algorithms such as Primal-dual hybrid gradient method (PDHG)78 and FISTA 

27, which only requires multiplication with the system matrix at each iteration and therefore 

substantially reduces the computational cost for a large-scale system. The potential of using 

these algorithms to reduce the reconstruction time of PnP will be investigated in future work. 

2.2.5 Summary 

Here we introduce a novel flexible CTIR model using the plug-and-play algorithm, where an 

off-the-shelf denoiser, the BM3D denoiser, can be plugged into one step of the iterative 

computation. Compared with the previous BM3D regularization method, which modifies the 

BM3D denoiser to be compatible with IR, the PnP algorithm in this study uses the original 

BM3D denoiser and demonstrates improved low-contrast conspicuity, higher image 
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resolution, and reduced image artifacts compared. In addition, the PnP algorithm is not 

limited to the BM3D denoiser, as will be demonstrated in Section 2.3. 

2.3 Iterative reconstruction using plug-and-play 
projected gradient descent 

2.3.1 Introduction 

Cone-beam breast CT (CBBCT) has the potential to overcome the limitations of 

mammography, such as overlapping of breast tissue, breast compression, and low 

detectability in dense breast tissue. However, the additional radiation dose hinders the 

application of CBBCT to a large population, which motivated the development of low-dose 

CBBCT (LdCBBCT).  

Emerging denoising techniques such as the BM3D49 and DCNN have shown improved image 

resolution, and soft tissue conspicuity through post-processing on the FBP reconstructed 

images 51,79. However, these post-processing methods heavily rely on the initial FBP image 

and lack of robustness for the extremely noisy LdCBBCT reconstruction.  

To overcome the intrinsic limitations of FBP under the ultra-low-dose scenario, studies have 

investigated combining state-of-the-art denoisers with model-based reconstruction for low 

dose fan-beam CT (LdFBCT). In 80, the BM3D denoiser was simplified and formulated as a 

regularization term in the model-based reconstruction. In the plug-and-play (PnP) 

alternating direction method of multiplier (ADMM) framework 31, the BM3D denoiser 

replaced a module in the ADMM for model-based reconstruction 28. In 81, the CNN-based 
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projected gradient descent method combines the fbpconvnet 79 with the proximal gradient 

descent (PGD) algorithm for LdFBCT. 

Compared with LdFBCT, LdCBBCT reconstruction is more challenging due to high noise, high 

computation cost, and lack of training data. In this study, we adapted the PnP-PGD 

framework proposed in 81 for model-based CBBCT reconstruction with the following 

considerations: 1. The framework incorporates fbpconvnet into iterative reconstruction to 

fully exploit the data consistency while effectively suppressing the image noise. 2. 

fbpconvnet can be trained with low/high dose diagnostic CT images other than the CBBCT 

data, and the data consistency is maintained by minimizing the data fidelity term. 3. The 

proximal gradient descent only requires forward and backward projection once in each 

iteration, substantially reducing the computational cost compared with ADMM. 

2.3.2 Method 

2.3.2.1 PGD for CT iterative reconstruction 

PGD solves the optimization problem in Equation 2-2 via the following fixed-point iteration: 

𝑥𝑘+1 ≔ Prox𝑡𝑅(𝑥
𝑘 − 𝑡𝐴𝑇(𝐴𝑥𝑘 − 𝑔)), 

Equation 2-9 

where Prox𝑡𝑅  is the proximal operator26. Notice that the minimization problem with respect 

to the optimization variable 𝑦 is equivalent to a denoising problem with 𝑅(𝑦) as prior and 𝑥 

as the noisy input. Subsequently, the optimum �̂� can be viewed as a denoised version of the 

noisy input 𝑥. In the PnP framework, an off-the-shelf image denoiser, denoted by 𝐷𝜎 , is used 

to replace the sub-problem optimization. The method is termed plug-and-play proximal 

gradient descent method (PnP-PGD): 
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𝑥𝑘+1 ≔ 𝐷𝜎(𝑥
𝑘 − 𝑡𝐴𝑇(𝐴𝑥𝑘 − 𝑔)). 

Equation 2-10 

In this study, the fbpconvnet 79 is used as the off-the-shelf image denoiser, which is one of 

the most popular deep CNN denoisers for low dose CT.  

2.3.2.2 Data preparation, training, and evaluation 

Due to limited breast CT datasets, the fbpconvnet was trained using low and standard dose 

FBCT. The standard dose FBCT projection data were acquired on Siemens Definition with 

the z-flying focal spot. The low dose FBCT projection data was simulated using a previously 

validated tool 72,73, which takes into account Poisson statistics, the scanner bowtie, and 

measurements of the real scanner electronic noise. A total of 3600 FBP-reconstructed 70, low 

and high dose FBCT images from six lung screening patients were utilized for the training. 

The network structure was described in a previous publication 79.  

The proposed PnP-PGD with fbpconvnet (PnP-fbpconvnet) was compared with FBP, TV, 

BM3D post process, and fbpconvnet post-process method, using low dose, medium dose, and 

standard dose CBCT scans of a breast phantom. The low (or medium) dose scans were 

achieved by placing a 2mm (or 1mm) aluminum plates in front of the x-ray tube to attenuate 

the beam. Assuming the mean energy of the x-ray beam is at 40 keV, the low and medium 

dose scans correspond to around 70% and 85% dose compared with the standard dose 

scans. A GPU based forward and backward projector in 82 was used for CBCT iterative 

reconstruction. FBP reconstructed images using standard dose scans are provided as ground 

truth.  
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2.3.3 Results 

Figure 2-13 shows the reconstructed images from medium dose scans (1mm Al). All 

denoising techniques significantly reduced image noise compared with FBP-0mm and FBP-

1mm. The BM3D post-processing method results contain substantial streaking artifacts due 

to its inability to differentiate artifacts from image structures. Total variation image shows 

the ‘staircase’ phenomenon and streak noise. Although the fbpconvnet was trained with 

LdFBCT and applied on LdCBBCT, both the fbpconvnet and PnP-fbpconvnet method 

effectively reduced image noise and artifacts. 

Figure 2-14 shows the low dose scan results (2mm Al). Due to the extremely low image 

quality of the FBP-2mm, post processing-based methods (BM3D-2mm and fbpconvnet-

2mm) were ineffective in recovering the anatomy without adding artifacts. The TV-2mm 

blurred fine image structures. The PnP-fbpconvnet method achieved a better balance 

between retaining imaging details and minimizing image noise and artifacts. The superiority 

of the PnP-fbpconvnet over the fbpconvnet is attributed to the data consistency in model-

based reconstruction. 

Figure 2-15 shows the Noise power spectrum (NPS) of all reconstructed images. The BM3D 

method distorted the noise pattern compared with the original FBP image due to the non-

linear denoising and lack of data consistency, potentially leading to image artifacts. The TV 

image removed high-frequency noise and image details. The noise patterns of fbpconvnet 

and PnP-fbpconvnet are similar to that of FBP. 
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Figure 2-13 Reconstructed image of the breast phantom using FBP from standard dose scan, 
FBP, BM3D post-process, Total Variation, fbpconvnet, and PnP-fbpconvnet from medium 
dose scans. The conformal regions indicated by the red squares were used to evaluate the 
CNR. 

 

Figure 2-14 Reconstructed image of the breast phantom using FBP from standard dose scan, 
FBP, BM3D post-process, Total Variation, fbpconvnet, and PnP-fbpconvnet from low dose 
scans. The conformal regions indicated by the red squares were used to evaluate the CNR. 
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Figure 2-15 Noise power spectrum (NPS) of all reconstructed images. 

Table 2-5 summarizes the contrast-to-noise ratio (CNR) evaluated based on two conformal 

regions, indicated by the red square on the reconstructed images shown in Figure 2-13  and 

Figure 2-14. BM3D and TV achieved the highest CNR but introduced image artifacts or 

blurred image. Compared with fbpconvnet, the PnP-fbpconvnet further improved CNR, 

showing the effectiveness of model-based reconstruction. 

CNR FBP BM3D TV fbpconvnet PnP-fbpconvnet 
Low dose 1.01 5.62 4.48 3.54 3.81 

Medium dose 0.92 2.59 2.54 2.39 3.29 
Standard dose 1.12     

Table 2-5 The CNR of all methods evaluated on the conformal region indicated by the red 
square on Figure 2-13  and Figure 2-14. 
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2.3.4 Discussion 

The PnP framework was initially proposed in 64 for model-based image restoration 

problems, which allows to plug in any off-the-shelf denoisers to replace a module in the 

alternating direction method of multipliers (ADMM) algorithm 28, and therefore combines 

iterative reconstruction with almost any state-of-the-art image denoisers without 

formulating the denoiser as an optimization problem. The flexible PnP framework has shown 

promising empirical results on many image restoration tasks 64–67.  

In our previous study presented in section 2.2, we adapted the PnP-ADMM framework with 

BM3D for low dose CT iterative reconstruction. The PnP-ADMM-BM3D is shown to 

outperform the BM3D post-process method and conventional iterative reconstruction using 

TV regularization, showing the superiority of combining iterative reconstruction with state-

of-the-art image denoisers. However, there are two major limitations with the previous PnP-

ADMM-BM3D method. First, BM3D is ineffective at distinguishing image structures and 

artifacts and is subject to exaggerate the image artifacts on the input images. Second, the 

algorithm is computationally expensive since a linear equation involving the CT projection 

matrix is required to be solved at each iteration of ADMM. Despite the existence of an 

analytical solution to the linear equation, the solution can only be achieved with iterative 

algorithms (Conjugate Gradient algorithm) for unstructured system matrix such as the CT 

projection matrix. Unlike many image restoration problems where the multiplication with 

the system matrix and its transpose reduces to element-wise multiplication under Fourier 

Transform, the matrix multiplication is often the most time-consuming step in CT 

reconstruction and can be even more difficult for CBCT.  
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In this work, we adapted the PnP-PGD framework in81 for LdCBBCT reconstruction and used 

DCNN as an image denoiser. Compared with PnP-ADMM, the PnP-PGD framework 

substantially reduced the number of matrix multiplication and improved computation 

efficiency. Compared with the PnP framework using BM3D as the denoiser, DCNN is a data-

specific image denoiser and more effectively tackles the unique streaking artifacts and noises 

in LdCT. 

2.3.5 Summary 

In this study, a DCNN denoiser was plugged in the CTIR as an integrated reconstruction 

framework. By combining model-based optimization with deep learning, the PnP DCNN 

takes advantage of both the physical information in the CT forward model and the learned 

knowledge from the data-driven denoiser, showing improved SNR compared with both the 

DCNN based post-processing method and conventional IR methods. The flexible PnP 

algorithm is not limited to the denoiser used in this study, instead, it allows almost any image 

denoisers to be integrated in the CTIR framework.  
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3 USING DUAL-ENERGY CT TO 

GUIDE RADIATION THERAPY 

TREATMENT 

3.1 Introduction 

Despite the potential of using DECT for multi-material decomposition (MMD), the problem 

is ill-defined for decomposing more than two materials without additional assumption 19,20. 

Existing DECT MMD approaches can be classified into three categories: projection-based 

method, integrated method, an image-based method. The projection-based method 

decomposes the two independent sinograms into two basis components by interpolating the 

lookup table and then performs separate image reconstruction 83. The integrated method 

incorporates the DECT acquisition into the forward projection model and then reconstructs 

basis material images directly from the dual-energy CT projections 84. The projection-based 

method and integrated method are robust to beam hardening artifacts 83,84, but there are 

several limitations. First, the projection-based method is limited to decomposing two basis 

materials. It is neither straightforward nor desirable to introduce additional constraints in 

the projection domain. Second, the projection-based method requires strict spatial and 

temporal consistency between the high and low energy acquisition. The condition is not met 

by many DECT systems using dual-source or single-source with fast kilovoltage-switching. 

Third, the integrated method is computationally expensive due to the repeated projection 
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and back-projection during the reconstruction of basis image components. Fourth, the 

coupling between the reconstruction and image decomposition in the integrated method, 

especially with multiple basis materials, leads to decomposition results that are sensitive to 

parameter tuning.  

Alternatively, image-based decomposition methods were investigated, which perform basis 

material decomposition on the high and low energy CT images. This method is applicable to 

all DECT systems, straightforward, and computationally tractable. Mendonca et al. 21 

proposed an image-based MMD method that introduces two assumptions: mass and volume 

conservation, and that there are no more than three materials in each voxel. For each voxel, 

the method loops over a material triplet library, identifies the best-fit triplet, and 

decomposes the voxel into the three materials via direct matrix inversion. The method is 

termed Direct Inversion (DI), and it demonstrates the capability of decomposing CT into 

more than three basis materials. However, the decomposition accuracy is sensitive to the 

selection of material triplet library, which limits the flexibility of MMD, and the resultant 

images suffer from substantially amplified noise.  

In this study, we proposed a DECT MMD method that decomposes the CT volume into 

multiple basis materials accurately while suppressing the decomposition image noise. 

Instead of rigidly confining each voxel to contain at most three basis materials, a non-convex 

sparsity term is introduced to penalize the number of materials that are simultaneously 

present in the same voxel.  
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3.2 Method 

3.2.1 Formulation 

The image domain DECT MMD problem is formulated as 

minimize
𝑥

           
1

2
‖𝐴𝑥 − 𝑏‖2

2 + 𝜆 TV(𝑥) + 𝜂∑|𝑥𝑘𝑖|
𝛼

𝑘,𝑖

 

subject to                                   𝑥 ∈ 𝑆𝑃,                                 

Equation 3-1 

where the optimization variable 𝑥 is the volume fraction (VF) matrix of dimension 𝑁𝑘 by 𝑁𝑖. 

The voxels on the component image are indexed by 𝑖, and the decomposition materials are 

indexed by 𝑘 . 𝑥𝑘𝑖  is the VF of the 𝑘𝑡ℎ  material for the 𝑖𝑡ℎ  voxel. 𝐴  is the component-to-

attenuation transformation matrix defined as 

𝐴 = [
𝜇1𝑙 𝜇2𝑙 ⋅⋅⋅ 𝜇𝑁𝑘𝑙
𝜇1ℎ 𝜇2ℎ ⋅⋅⋅ 𝜇𝑁𝑘ℎ

], 

Equation 3-2 

where 𝜇𝑘𝑙  and 𝜇𝑘ℎ  are the LACs of the 𝑘𝑡ℎ  material at low and high energies respectively. 

Matrix 𝐴 transforms the VF into the LACs at high and low energies for each voxel. 𝑏 is the 

attenuation image at high and low energies from measurements, defined as 

𝑏 = [
𝑏1𝑙 𝑏2𝑙 ⋅⋅⋅ 𝑏𝑁𝑖𝑙
𝑏1ℎ 𝑏2ℎ ⋅⋅⋅ 𝑏𝑁𝑖ℎ

], 

where 𝑏𝑖𝑙 and 𝑏𝑖ℎ denotes the LAC of the 𝑖𝑡ℎ voxel on the CT image at low and high energies, 

respectively. 𝑇𝑉(𝑥)  is the isotropic total variation regularization. 𝑆𝑃  is the probability 

simplex set that enforces the mass and volume conservation rule on each voxel, such that 

each columns of the VF matrix 𝑥 satisfies the sum-to-one and non-negative constraints 



 

47 

𝑥 ∈ 𝑆𝑃   ↔   {

𝑥𝑘𝑖 ≥ 0,                            ∀𝑖, 𝑘

∑𝑥𝑘𝑖
𝑘

= 1,                        ∀𝑖.    

The first term is the quadratic data fidelity term that minimizes the difference between the 

measured DECT image and the estimated DECT image calculated from the VF matrix 𝑥. The 

second term is the isotropic TV regularization term, applied on each component image to 

encourage image smoothness while preserving image edges. The last term is the penalty 

function in the form of |⋅|𝛼 (0 ≤ 𝛼 ≤ 1), which promotes sparsity on the number of materials 

that simultaneously present in the same voxel. In this study, we specifically focus on four 

cases with 𝛼 = 0,
1

2
,
2

3
, 1. In the case of 𝛼 = 1, the sparsity term reduces to a constant under 

the mass and volume conservation constraint (𝑥 ∈ 𝑆𝑃). In other cases, the penalty functions 

are non-convex, with the non-convexity increases as 𝛼 goes to 0.  

3.2.2 Algorithm 

This study utilizes an accelerated primal-dual splitting approach with line search for both 

convex and non-convex problems 85,86, which solves the optimization problem of the form  

minimize  𝐹(𝐾𝑥) + 𝐺(𝑥), 

Equation 3-3 

where 𝐺 is convex, 𝐹 possibly nonconvex, and 𝐾 a linear operator.  

The optimization problem in Equation 3-1 is formulated into the canonical form shown in 

Equation 3-3 by defining 

                                                       𝐾 = [
𝐴
𝐷
𝐼
] ,                 𝐺(𝑥) = 𝐼𝑆𝑝(𝑥) = {

∞,          𝑥 ∉ 𝑆𝑝
0,           𝑥 ∈ 𝑆𝑝
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𝐹 ([

�̂�1
�̂�2
�̂�3

]) = 𝐹1(�̂�1) + 𝐹2(�̂�2) + 𝐹3(�̂�3) 

𝐹1(�̂�1) =
1

2
‖�̂�1 − 𝑏‖2

2 

𝐹2(�̂�2) = 𝜆‖�̂�2‖1 

(𝐹3(�̂�3))𝑖 = 𝜂
|�̂�3𝑖|

𝛼.  

Equation 3-4 

𝐹(𝐾𝑥) is equivalent to the objective function in equation (1). 𝐺(𝑥) is an indicator function 

that equals to 0 if 𝑥 ∈ 𝑆𝑝  and infinity if 𝑥 ∉ 𝑆𝑝 , which enforces the sum-to-one and non-

negative constraints.  

The accelerated primal-dual algorithm with line search86 is presented in Algorithm 1, where 

the key steps are the evaluations of the proximal operator of function 𝐺 and 𝐹.  

The proximal operator of 𝐺 reduces to the projection onto the probability simplex 𝑆𝑝, which 

can be efficiently solved by sorting and thresholding the input vector, as presented in 

Algorithm 287.   
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Algorithm 1: Accelerated primal-dual algorithm with line search 

Initialization: 𝑥0 ≔ 0 ∈ 𝑋, 𝑧0 ≔ 0 ∈ 𝑍, 𝑡0 > 0, 𝜃0 ≔ 1, 𝛽0 ≔ 1, 𝛾 > 0, 𝑟 ≔ 0.8 

For  𝒌 = 𝟏, 𝟐,…   do 
               𝑥𝑘 ≔ Prox𝑡𝑘−1,𝐺(𝑥𝑘−1 − 𝑡𝑘−1𝐾

𝑇𝑧𝑘−1) 

               𝜷𝒌 ≔ 𝜷𝒌−𝟏(𝟏 + 𝜸𝒕𝒌−𝟏) 

               𝒕 ≔ 𝒕𝒌−𝟏√
𝜷𝒌−𝟏

𝜷𝒌
(𝟏 + 𝜽𝒌−𝟏) 

               Repeat 

                         𝜃𝑘 ≔
𝑡

𝑡𝑘−1
 

                         �̅�𝑘 ≔ 𝑥𝑘 + 𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1) 
                         𝑠𝑘 ≔ 𝛽𝑘𝑡 
                         𝑧�̅� ≔ 𝑧𝑘−1 + 𝑠𝑘𝐾�̅�𝑘 

                         𝑧𝑘 ≔ 𝑧�̅� − 𝑠𝑘Prox𝑠𝑘
−1,𝐹 (

�̅�𝑘

𝑠𝑘
)  

                         tk ∶= t 

                         Break if   √𝜷𝒌𝒕‖𝑲
𝑻(𝒛𝒌 − 𝒛𝒌−𝟏)‖𝟐 ≤

‖𝒛𝒌 − 𝒛𝒌−𝟏‖𝟐 

                         𝒕 ≔ 𝒕𝒌 ∗ 𝒓 
               End 
End 

Table 3-1 Accelerated primal-dual algorithm with line search. 

 

Algorithm 2: Proximal operator evaluation of  𝑮 (𝐏𝐫𝐨𝐱𝒕𝑮(𝒙)) 

Input:  𝑥 ∈ 𝑅𝑁𝑘 × 𝑅𝑁𝑖 
For 𝒊 = 𝟏, 𝟐,… ,𝑵𝒊   do 

        Sort {𝑥1𝑖, 𝑥2𝑖, ⋯ , 𝑥𝑘𝑖 , ⋯ , 𝑥𝑁𝑘𝑖} into 𝑥′ such that 𝑥′1𝑖 ≥ 𝑥′2𝑖 ≥ ⋅⋅⋅ ≥ 𝑥′𝑁𝑘𝑖 

        Find 𝑱𝒊 ≔𝐦𝐚𝐱 {𝟏 ≤ 𝒌 ≤ 𝑲|𝒙′𝒌𝒊 +
𝟏

𝒌
(𝟏 − ∑ 𝒙′𝒋𝒊

𝒌
𝒋=𝟏 )} 

        Define 𝑥𝑖 ≔
1

𝐽
(1 − ∑ 𝑥′𝑗𝑖

𝐽
𝑗=1 ) 

        For 𝑘 = 1,2,… ,𝑁𝑘   do 
                (Prox𝑡𝐺(𝑥))𝑖𝑘 ≔ max {𝑥𝑖𝑘 + 𝑥𝑖, 0} 

Output: 𝐏𝐫𝐨𝐱𝒕𝑮(𝒙) 

Table 3-2 Proximal operator evaluation of  𝑮 (𝐏𝐫𝐨𝐱𝒕𝑮(𝒙)) 

With the separable sum rule, evaluation of the proximal operator of 𝐹 reduces to evaluating 

the proximal operator with respect to each variable 

Prox𝑤𝐹 ([

�̂�1
�̂�2
�̂�3

]) = ([

Prox𝑤𝐹1(�̂�1)

Prox𝑤𝐹2(�̂�2)

Prox𝑤𝐹3(�̂�3)

]). 

Following the definition of proximal operator in equation (4), the proximal operators of 𝐹1 

and 𝐹2 are 
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Prox𝑤𝐹1(�̂�1) =
�̂�1 + 𝑤𝑏

𝑤 + 1
, 

(Prox𝑤𝐹2(�̂�2))
𝑖𝑘
= {

(1 −
𝑤𝜆

‖(�̂�2)𝑖𝑘‖2
) (�̂�2)𝑖𝑘,        ‖(�̂�2)𝑖𝑘‖2 > 𝑤𝜆 

0,                                                   ‖(�̂�2)𝑖𝑘‖2 ≤ 𝑤𝜆.

 

Due to the separability, the proximal operator of 𝐹3 reduces to pointwise proximal operator 

evaluation of 𝜂|⋅|α 

(Prox𝑤𝐹3(�̂�3))
𝑖
=
argmin
𝑥

(𝜂|𝑥|α +
1

2𝑤
(𝑥 − �̂�3𝑖)

2) 

Equation 3-5 

Exact analytic solutions to Equation 3-5 exist for the scenarios considered in this study 

(α = 0,
1

2
,
2

3
, 1). Details can be found in the Appendix. For other values of α, the proximal 

operators could be evaluated numerically with an iterative approach such as the Newton’s 

method 88. 

3.2.3 Bone marrow decomposition using DECT MMD 

Due to the distinct radiosensitivity of proliferating hematopoietic stem cells in active bone 

marrow, identifying and sparing active marrow may significantly improve radiotherapy 

treatment. 18F-fluoro-l-deoxythymidine positron emission tomography (FLT-PET) 

differentiates active marrow from fatty marrow. However, FLT-PET is not FDA approved and 

cannot be used repeatedly for image-guided radiotherapy. Here we apply the MMD 

framework to perform bone marrow decomposition and compare it with PET and MRI 

images.  
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To separate calcium in the marrow, the DE ratio of calcium was included in the data fidelity 

in Equation 3-1:  

A = [
𝜇ℎ𝑦 𝜇ℎ𝑟 𝑅𝑐𝑎𝑙
𝜇𝑙𝑦 𝜇𝑙𝑟 1

] , 

where 𝑅𝑐𝑎𝑙  is the DE ratio of calcium, defined as the slope of the high-low energy plot of 

calcium. 𝜇ℎ𝑦 and 𝜇𝑙𝑦 are the high and low energy LAC of yellow marrow, and 𝜇ℎ𝑟 and 𝜇𝑙𝑟 are 

the high and low energy LAC of red marrow. 

3.2.4 Evaluation 

The proposed framework with different sparsity parameters in the penalty functions was 

evaluated on a digital phantom, a Catphan○c600 phantom, a Quantitative Imaging Phantom, 

and a pelvis patient and is compared with the direct inversion method 21. The Quantitative 

Imaging Phantom data was acquired on a Siemens SOMATOM Force DECT. The Catphan and 

pelvis patient data were acquired on a Siemens SOMATOM Definition Flash. For the pelvis 

patient data, the mAs and CT Dose Index (CTDI) for the [low-energy, high-energy] 

acquisitions were [170mAs, 131mAs] and [4.92mGy, 3.66mGy] respectively. The low-energy 

and high-energy CT images were reconstructed using the standard FBP. The high-energy LAC 

and low-energy LAC of the basis material were computed as the average values of the high-

energy LACs and low-energy LACs of the region of interest (ROIs), shown on the low-energy 

CT images for all cases.  

For quantitative evaluation of the material decomposition accuracy, the mean and standard 

deviation (STD), electron density, as well as the VF were computed within each ROI on the 

decomposition component image.  
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The electron density 𝜌𝑖  at voxel 𝑖 is calculated by  

𝜌𝑖 =∑𝑥𝑘𝑖𝜌(𝑘)

𝑁𝑘

𝑘=1

, 

where 𝜌(𝑘) is the electron density of the  kth material. The VF accuracy in a uniform ROI is 

defined as 

VF = (1 −
‖�̅� − 𝑥𝑔‖2
‖𝑥𝑔‖2

) × 100%, 

where �̅� is the mean material component vector over all voxels within the uniform ROI, and 

𝑥𝑔 is the material component vector of the ground truth decomposition. 

To quantify the amount of overlap between different material decompositions across the 

whole image, the Normalized Cross Correlation (NCC) coefficients at zero lag are evaluated 

for every pair of materials. The NCC coefficient at zero lag of material 𝑘1 and 𝑘2 is defined as 

𝑅𝑘1𝑘2 =
∑ 𝑥𝑘1𝑖𝑥𝑘2𝑖
𝑁𝑖
𝑖=1

√∑ 𝑥𝑘1𝑖
2𝑁𝑖

𝑖=1
√∑ 𝑥𝑘2𝑖

2𝑁𝑖
𝑖=1

, 

which equals to 0 if the two materials are completely separated and equals to 1 if they have 

identical distribution on the whole image. The NCC matrix is defined as a matrix with entries 

of 𝑅𝑘1𝑘2 . The diagonal elements of the NCC matrix are equal to 1 by definition, and the other 

elements are between 0 and 1, indicating the extent of material separation. If all materials 

are completely separated for all voxels, then all the off-diagonal elements should be 0. The 

diagonality 𝐷 of the NCC matrix is computed using the Pearson correlation coefficient. 
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𝐷

=
(∑ 𝑅𝑘1𝑘2𝑘1,𝑘2 )(∑ 𝑘1𝑘2𝑅𝑘1𝑘2𝑘1,𝑘2 ) − (∑ 𝑘1𝑅𝑘1𝑘2𝑘1,𝑘2 )(∑ 𝑘2𝑅𝑘1𝑘2𝑘1,𝑘2 )

√(∑ 𝑅𝑘1𝑘2𝑘1,𝑘2 )(∑ 𝑘1
2𝑅𝑘1𝑘2𝑘1,𝑘2 ) − (∑ 𝑘1𝑅𝑘1𝑘2𝑘1,𝑘2 )

2
√(∑ 𝑅𝑘1𝑘2𝑘1,𝑘2 )(∑ 𝑘2

2𝑅𝑘1𝑘2𝑘1,𝑘2 ) − (∑ 𝑘2𝑅𝑘1𝑘2𝑘1,𝑘2 )
2
. 

Equation 3-6 

𝐷 equals to 1 for the diagonal matrix, -1 for the anti-diagonal matrix, and 0 for the uniform 

matrix. In the case of every voxel on the CT image being composed of only a single material, 

the diagonality of the NCC matrix is 1. On the other hand, in the case where every voxel 

contains an equal amount of all basis materials, the diagonality of the NCC matrix is 0. The 

diagonality 𝐷 of the NCC matrix summarizes the decomposition separability over the whole 

image and across all materials. 

For the bone marrow decomposition study, two subjects of the Wisconsin Miniature Swine 

(WMS)™ model were studied for their genetic proximity and similar anatomy to humans. For 

swine #1, CT, MRI, and PET images were obtained. For swine #2, 6 Gy of dose were given to 

the L4-L5 vertebrae of the swine. A total of 9 imaging sets in three imaging sessions were 

obtained, including before irradiation, one week after irradiation, and three weeks after 

irradiation. The CT images were acquired on a Siemens SOMATOM Definition Edge CT 

scanner. We evaluated the VF of active marrow within bone regions, including femur, ilium, 

sacrum ala, and vertebrae, using the proposed DECT decomposition method. The VF of active 

marrow evaluated from DECT was compared with that of the corresponding FLT-PET/MR 

and water-fat MRI scans. 
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3.3 Results 

3.3.1 Digital Phantom 

Figure 3-1 shows the low-energy and high-energy CT image of the digital phantom. This 

simple digital phantom is made up of four basis materials, including bone, iodine, water, and 

air, corresponding to the four ROIs indicated by the rectangular. Figure 3-2 shows the 

decomposition results on the digital phantom using the proposed framework with different 

α values and the classic direct inversion method. In the cases when α = 0,
1

2
,
2

3
, the proposed 

framework distinctly separated all basis materials and with low noise, achieving a clear 

border between different materials. On the contrary, neither DI nor the proposed framework 

with α = 1 achieved the desired sparsity or assigned the correct material to each ROI. The 

material separation capability of the proposed framework with α = 0,
1

2
,
2

3
 is further 

confirmed with the NCC map in Figure 3-2, showing little or no crosstalk between two 

materials. With DI, the iodine component is mixed up with the bone and water. In the case of 

α = 1, none of the components is separated. 

 

Figure 3-1 (a) The low energy: 75 kVp and (b) the high-energy: 140 kVp CT image of the 
digital phantom. The components of the ROIs are bone (ROI1), iodine (ROI2), water (ROI3), 
and air (ROI4). The displaying window is [0.01,0.065]𝐦𝐦−𝟏. 
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Figure 3-2 Decomposition component images of (1) bone (2) iodine (3) water and (4) air, 

decomposed using the proposed framework when (a) 𝛂 = 𝟎, (b) 𝛂 =
𝟏

𝟐
, (c) 𝛂 =

𝟐

𝟑
, (d) 𝛂 = 𝟏, 

and (e) the Direct Inversion method. The last column is the 4 by 4 NCC map of the 
decomposition in the same row, with each square showing the corresponding entries in the 
NCC matrix, where the basis materials are bone, iodine, water, and air, from top to bottom 
and from left to right.  

3.3.2 Catphan○c600 phantom 

Figure 3-3 shows the low- and high-energy CT images of the Catphan○c600 phantom with 

contrast rods, which are made of six basis materials including Teflon, Delrin, Iodine solution 

of 10 mg/ml, PMP, Inner soft tissue, and Air, corresponding to the six ROIs on the low energy 

CT image (Figure 3-3(a)). The materials in the labeled rods on the high energy CT (Figure 

3-3(b)) are Teflon, Delrin, Iodine solution of 10 mg/ml, Polystyrene, low-density 
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Polyethylene (LDPE), Polymethyl pentene (PMP), and Iodine solution of 5 mg/ml, 

respectively. The VF accuracy was evaluated on the six ROIs, and the electron density was 

evaluated on the seven contrast rods. Figure 3-4 shows the decomposition image and the 

NCC map. The proposed framework with α = 0,
1

2
,
2

3
 successfully separated the phantom into 

the six basis components with minimal crosstalk between different materials. With the 

classical DI method, the off-diagonal elements of the NCC matrix are up to 0.36, showing that 

the two corresponding basis materials, Delrin and PMP, are not well-separated. The 

proposed method with α = 1 is unable to achieve material separation at all. Table 3-3 shows 

the evaluated electron densities for the seven contrast rods. The mean square error of the 

electron density was reduced by 72.6% for the proposed framework with α = 0,1/2, 2/3 

compared with DI. 

 

Figure 3-3  (a) The low energy: 75 kVp and (b) the high-energy: 125 kVp CT image of the 
Catphan○c600 phantom. The material components of the ROIs on the low energy CT image 
are Teflon (ROI1), Delrin (ROI2), Iodine of 10 mg/ml (ROI3), PMP (ROI4), Inner soft tissue 
(ROI5) and Air (ROI6). The labeled contrast rods on the high energy CT image are composed 
of (1) Teflon, (2) Delrin, (3) Iodine solution of 10 mg/ml, (4) Polystyrene, (5) low-density 
Polyethylene (LDPE), (6) Polymethyl pentene (PMP), (7) Iodine solution of 5 mg/ml. The 
displaying window is [0.01,0.04]𝐦𝐦−𝟏.  
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Figure 3-4 Decomposition component images of (1) Teflon, (2) Delrin, (3) Iodine solution of 
10 mg/ml, (4) PMP, (5) Inner soft tissue (LDPE), (6) Air, decomposed using the proposed 

framework when  (a) 𝛂 = 𝟎, (b) 𝛂 =
𝟏

𝟐
, (c) 𝛂 =

𝟐

𝟑
, (d) 𝛂 = 𝟏, and (e) the Direct Inversion 

method. The last column is the 6 by 6 NCC map of the decomposition in the same row, with 
each square showing the corresponding entries in the NCC matrix, where the basis materials 
are Teflon, Delrin, Iodine solution of 10 mg/ml, PMP, LDPE, and air, from top to bottom and 
from left to right.  

Method  
Rod 1 
Teflon 

Rod 2 
Delrin 

Rod 3 
Iodine 

(10 
mg/ml) 

Rod 4 
Polystyrene 

Rod 5 
LDPE 

Rod 6 
PMP 

Rod 7 
Iodine 

(5 
mg/ml) 

Average 
NMSE 

Ground 
Truth 

ρe 6.240 4.525 3.368 3.400 3.155 2.851 3.356 \ 

𝛼 = 0 
ρe 6.240 4.525 3.368 3.104 3.008 2.851 3.354 

1.92% 
NMSE 0.00% 0.00% 0.00% 8.70% 4.67% 0.00% 0.06% 

𝛼 = 1/2 
ρe 6.218 4.514 3.357 3.119 2.997 2.854 3.352 

2.06% 
NMSE 0.35% 0.24% 0.33% 8.26% 5.01% 0.12% 0.13% 

𝛼 = 2/3 
ρe 6.211 4.507 3.346 3.113 2.984 2.856 3.346 

2.27% 
NMSE 0.46% 0.41% 0.66% 8.43% 5.43% 0.16% 0.30% 

𝛼 = 1 
ρe 6.169 4.203 4.011 2.961 2.770 2.509 3.578 

10.16% 
NMSE 1.14% 7.11% 19.11% 12.91% 12.22% 12.01% 6.63% 

Direct 
Inversion 

ρe 4.847 4.174 3.699 3.251 3.134 2.887 3.523 
7.32% 

NMSE 22.33% 7.76% 9.83% 4.38% 0.67% 1.28% 4.96% 

Table 3-3 The electron densities measured on the Catphan contrast rods labeled on Figure 
3-3(b). The RMSE is evaluated for each method as the mean square error of the seven rods.  
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3.3.3 Quantitative Imaging phantom 

Figure 3-5 show the DECT image for the Quantitative Imaging Phantom, which consists of 12 

basis materials including 2 mg/ml iodine solution (ROI1), 5 mg/ml iodine solution (ROI2), 

10 mg/ml iodine solution (ROI3), 15 mg/ml iodine solution (PMP) (ROI4), 50 mg/ml calcium 

solution (ROI5), 100 mg/ml calcium solution (ROI6), 300 mg/ml calcium solution (ROI7), HE 

blood 70 (ROI8), HE blood 100 (ROI9, adipose (ROI10), water (ROI11), and brain (ROI12). 

In this phantom study, to avoid being trapped in undesired local minima with the increased 

number of basic materials, the algorithm is initialized by setting VF=1 for the basis material 

that is closest to each pixel. Figure 3-6 shows the decomposition images with the 

corresponding NCC map. The proposed framework with α = 0,
1

2
,
2

3
 decomposed the DECT 

images into 12 different basis components plus air and improved the VF accuracy from 51% 

using DI method to 100%. The non-diagonal entries of the NCC map are close to 0 for the 

proposed framework with α = 0,
1

2
,
2

3
 , showing clean separation of the basic materials. The 

off-diagonal entries are close to 1 for the α = 1 scenario. The classical DI method is unable 

to separate similar materials. For example, the HE blood 100 (ROI9), adipose (ROI10), and 

water (ROI11) have similar LAC values, resulting in substantial non-zero NCC elements 𝑅𝑘1𝑘2 

using DI. 
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Figure 3-5  (a) The low energy: 100 kVp and (b) the high-energy: 150 kVp CT image of the 
Quantitative Imaging phantom. The material components of the ROIs are 2 mg/ml iodine 
solution (ROI1), 5 mg/ml iodine solution (ROI2), 10 mg/ml iodine solution (ROI3), 15 mg/ml 
iodine solution (PMP) (ROI4), 50 mg/ml calcium solution (ROI5), 100 mg/ml calcium 
solution (ROI6), 300 mg/ml calcium solution (ROI7), HE blood 70 (ROI8), HE blood 100 
(ROI9, adipose (ROI10), water (ROI11), brain (ROI12), air (ROI13).  

 

Figure 3-6 Decomposition component images of (1) 2 mg/ml iodine solution, (2) 5 mg/ml 
iodine solution (ROI2), (3) 10 mg/ml iodine solution (ROI3), (4) 15 mg/ml iodine solution 
(PMP) (ROI4), (5) 50 mg/ml calcium solution (ROI5), (6) 100 mg/ml calcium solution (ROI6), 
(7) 300 mg/ml calcium solution (ROI7), (8) HE blood 70 (ROI8), (9) HE blood 100 (ROI9), 
(10) adipose (ROI10), (11) water (ROI11), (12) brain (ROI12), (13) air (ROI13), decomposed 

using the proposed framework when (a) 𝛂 = 𝟎, (b) 𝛂 =
𝟏

𝟐
, (c) 𝛂 =

𝟐

𝟑
, (d) 𝛂 = 𝟏, and (e) the 

Direct Inversion method. The last column is the NCC map of the corresponding 
decomposition, with each square showing one NCC matrix element. 

3.3.4 Pelvis patient 

Figure 3-7 and Figure 3-8 show the DECT image and the decomposition images with the 

corresponding NCC map respectively for the pelvis patient. The proposed framework with 
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α = 0,
1

2
,
2

3
 decomposed the DECT images into bone (ROI1), iodine (ROI2), muscle (ROI3), fat 

(ROI4), and air, and achieved an NCC matrix with non-diagonal coefficients close to 0.  

Table 3-4 summarizes the VF accuracy and diagonality of the NCC matrix for all datasets. The 

proposed method with α = 0,
1

2
,
2

3
 achieves a significantly higher VF accuracy and diagonality 

than the comparison methods and approaching nearly perfect material decomposition. 

Across all datasets, the proposed method improved the average VF accuracy from 61.2% to 

99.9% and increased the diagonality of the NCC matrix from 0.73 to 0.96.  

Table 3-5 presents the runtime and the hyperparameters used for all cases. Despite that our 

algorithm used MATLAB built-in GPU computing tools for acceleration, the proposed 

framework takes 12 minutes on average, which is slower than the direct inversion method, 

requiring only 3 minutes on CPU. The hyperparameters were tuned case by case to achieve 

visually desired sparseness and smoothness. The sparseness and the smoothness can be 

promoted by increasing 𝜂  and 𝜆  respectively. 𝛾  and 𝑡  are related to the step sizes in the 

algorithms, which were tuned in a trial-and-error way for faster and more stable 

convergence. 
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Figure 3-7 (a) The low energy: 100 kVp and (b) the high-energy: 140 kVp CT image of the 
pelvis patient. The material components of the ROIs are bone (ROI1), iodine (ROI2), muscle 
(ROI3), fat (ROI4), and air (ROI5). The displaying window is [0.01,0.04]𝐦𝐦−𝟏. 

 

Figure 3-8 Decomposition component images of (1) bone (2) iodine (3) muscle (4) fat and 

(5) air, decomposed using the proposed framework when  (a) 𝛂 = 𝟎, (b) 𝛂 =
𝟏

𝟐
, (c) 𝛂 =

𝟐

𝟑
, (d) 

𝛂 = 𝟏, and (e) the Direct Inversion method. The last column is the 5 by 5 NCC map of the 
decomposition in the same row, with each square showing the corresponding entries in the 
NCC matrix, where the basis materials are bone, iodine, muscle, fat, and air, from top to 
bottom and from left to right.  
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  Digital 
Phantom 

Catphan 
Quantitative 

Imaging 
phantom 

pelvis patient 

VF 
accuracy 

𝛼 = 0 100.0% 99.9% 100% 

NA 

𝛼 = 1/2 100.0% 99.6% 100% 

𝛼 = 2/3 100.0% 99.3% 100% 

𝛼 = 1 62.1% 45.3% 15% 

Direct 
Inversion 

88.4% 44.1% 51% 

Diagonalit
y 

𝛼 = 0 1.00 0.95 1.00 0.95 

𝛼 = 1/2 0.99 0.94 0.99 0.89 

𝛼 = 2/3 0.99 0.93 0.99 0.87 

𝛼 = 1 0.33 0.14 0.03 0.53 

Direct 
Inversion 

0.87 0.72 0.54 0.8 

Table 3-4 The Volume Fraction accuracy and Diagonality of the NCC matrix for all datasets. 

 
Digital 

Phantom 
Catphan 

Quantitative 
Imaging 
phantom 

pelvis 
patient 

𝜂 

𝛼 = 0 0.03 0.006 0.0009 0.003 

𝛼 = 1/2 0.05 0.002 0.0009 0.001 

𝛼 = 2/3 0.1 0.003 0.0009 0.002 

𝛼 = 1 0.5 0 0.1 0 

𝜆 

𝛼 = 0 0.05 0.002 0.02 0.0007 

𝛼 = 1/2 0.25 0.003 0.005 0.0012 

𝛼 = 2/3 0.05 0.0025 0.003 0.0005 

𝛼 = 1 0.01 0.0005 0 0.0005 

𝛾 

𝛼 = 0 0.01 0.0001 1.00E-05 0.0001 

𝛼 = 1/2 0.01 0.0001 1.00E-05 0.0001 

𝛼 = 2/3 0.001 0.001 0.001 1.00E-05 

𝛼 = 1 0.1 0.001 1 0.001 

𝑡 

𝛼 = 0 100 1 1 1 

𝛼 = 1/2 100 1 1 1 

𝛼 = 2/3 100 100 0.5 100 

𝛼 = 1 100 100 0.01 100 

Runtime 
(s) 

𝛼 = 0 63.4 791.5 861.7 738.8 

𝛼 = 1/2 71.2 881.4 489.1 1640.1 

𝛼 = 2/3 81.5 1059.4 3542.8 962.1 

𝛼 = 1 81.3 95.1 323.9 294.7 

Direct 
Inversion 

36.2 133.6 490.1 30.9 

Table 3-5 The runtime and the hyperparameters used for all cases. 

Figure 3-9 shows the convergence plots for different α values on the Catphan and the pelvis 

patient case. The objective values for different cases were not comparable, since different 
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hyperparameter values were used in different cases. However, it is worth to note that the 

plots show different converging patterns. For the convex case α = 1, the objective goes down 

nicely with a convex-shaped convergence curve, showing stable and robust convergence. For 

the non-convex case α = 0, the curve goes down with sudden changes. For the α values in 

between, the α =
2

3
 curve patterns are more similar to that of the α = 1 curves, while the α =

1

2
 curves are more irregular and bumpier. 

 

Figure 3-9 Convergence plots for different 𝛂 values on the Catphan and the pelvis patient 
case. 

3.3.5 Bone marrow decomposition 

Figure 3-10 and Figure 3-11 show the volume fraction of active marrow evaluated for 

various bones using MRI, CT, and PET images. The bone marrow was decomposed into active 

marrow, fatty marrow, and calcium. The active marrow component computed from DECT 

accord with that of FLT-PET (ground truth). The volume fraction of active marrow evaluated 

from [MRI, DECT, PET] are [0.20, 0.04, 0.05], [0.16,0.14,0.17], [0.51, 0.78, 0.54], and [0.51, 

0.85, 0.36] for femur, ilium, sacrum ala, and vertebrae, respectively. Vertebrae and sacrum 

ala have the highest concentration of active marrow, shown on MRI, DECT and PET. Femur 
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has the lowest concentration of active marrow, shown on the DECT and PET. The correlation 

is 0.90 between PET and MR, and 0.92 between PET and DECT. 

 

Figure 3-10 Volume fraction of active marrow evaluated for various bones using MRI, CT, 
and PET images. 

 

Figure 3-11 Color-wash images of active marrow volume fraction computed from (A) water-
fat MR, (B) DECT decomposition, (C) PET. The color-wash images were fused to (A) water 
MRI, (B) high-energy CT, (C) MRI acquired from PET/MR. The PET was normalized by the 
maximal PET signal within the bone marrow. The colors of structure contours are shown in 
the legend. 
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Figure 3-12 shows the PET SUV and the active marrow volume fraction of MRI and DECT for 

three imaging sessions including before irradiation, one week after irradiation, and three 

weeks after irradiation. For the bone marrow regions received radiation including ilium, 

sacrum ala, and vertebrae, the volume fraction of active marrow and the PET SUV signals 

decreases after radiation. For the unirradiated bone marrow within the femur, the active 

marrow volume fraction remains unchanged. 

 

Figure 3-12 The PET SUV and the active marrow volume fraction of MRI and DECT. 

3.4 Discussion 

The standard DI method for DECT based MMD imposes sparsity constraint by enforcing a 

hard ceiling of three on the number of materials in each voxel and then solves the basis 

material components by direct matrix inversion. However, the three-material constraint is 

arbitrary and unrealistically rigid. Moreover, the direct matrix inversion inevitably amplifies 

the image noise as shown in previous publications 21 and the current study. Our proposed 

DECT MMD framework utilizes a TV regularization that regulates the decomposition image 

noise and uses a sparsity regularization to penalize the number of materials that are 
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simultaneously present at the same voxel. The soft sparsity regularization allows the number 

of basis materials to vary across different voxels.  

The sparsity term is in the form of |𝑥|𝛼 (0 ≤ 𝛼 ≤ 1), where 𝛼 = 0,
1

2
,
2

3
, 1 were specifically 

studied. The sparsity term reduces to the L1 norm of the 𝑥 with 𝛼 = 1, and further reduces 

to a constant under the mass and volume constraint. Therefore, the sparsity term with 𝛼 =

1 does not promote material sparsity despite its desirable mathematical properties of being 

convex. When 𝛼 = 0,
1

2
,
2

3
, the corresponding sparsity term has a closed-form proximal 

operator, which could be difficult to evaluate for other values of 𝛼. The differences between 

𝛼 = 0, 𝛼 =
1

2
, and 𝛼 =

2

3
 are subtle with respect to the decomposition results. The material 

penalty term with 𝛼 = 0  is also referred to as the counting norm and a mathematically 

rigorous description of the material sparsity. This is reflected in the best quantitative 

performance achieved with this norm. However, due to its extreme non-convexity, it is more 

challenging to tune the parameters for convergence to an acceptable local minimum. The 

sparsity terms with 𝛼 =
1

2
 and 𝛼 =

2

3
 are better behaving non-convex functions, showing 

more robust performance to optimization parameter selection. 

The non-convex optimization problem in this study was solved using an accelerated primal-

dual algorithm with line search proposed in 86, which reduces to the Primal-Dual Hybrid 

Gradient (PDHG) Method 29,89 when applied to convex optimization problems. As discussed 

in Section 1.5, FISTA is a faster algorithm that applies to most of the studies in this thesis. We 

will investigate FISTA for the non-convex optimization problem in the future. 
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3.5 Conclusions 

The proposed method accurately decomposed the dual energy CT phantom and patient 

images into up to 12 basis materials, markedly reduced crosstalk among materials, 

suppressed decomposition image noise, and retained image spatial resolution. The proposed 

method using non-convex material sparsity penalty outperforms convex penalty and the 

standard direct inversion method. When applied to bone marrow decomposition, DECT 

identifies active bone marrow that is consistent with the FLT-PET and water-fat MRI. 
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4 NEW DEGREES OF FREEDOM 

IN VMAT 

4.1 An integrated and flexible framework of Volumetric 
Modulated Arc Therapy 

4.1.1 Introduction 

Rotational intensity modulated radiotherapy was initially described by Mackie et al. (Mackie, 

1993) for the proprietary Helical TomoTherapy hardware platform. For the more commonly 

available C-arm gantry systems, Yu23 introduced the intensity-modulated arc therapy 

(IMAT) concept, which uses multiple arcs to substitute the conventional static beam 

intensity modulated radiotherapy (IMRT) with the promise of improving delivery efficiency 

and robustness using simpler Multi-leaf Collimator (MLC) segments. Several modifications 

and improvements were subsequently made on the original IMAT modulation to improve 

both the dosimetric quality and reduce the number of arcs 90–93.  

Compared with the static beam IMRT, Volumetric Modulated Arc Therapy (VMAT) 

optimization is more challenging due to its large problem size and more complex constraints. 

Typically, 180 or more beams are included in the VMAT delivery compared with fewer than 

ten beams used in a typical IMRT plan. More importantly, the gantry rotation and leaf motion 

is coupled: for efficient VMAT delivery, the MLC leaf movements between adjacent gantry 

angles cannot exceed the product of the maximal leaf speed and the gantry travel time, which 
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is short to maintain smooth and efficient gantry rotation. The progressive sampling 

optimization (PSO) method for VMAT proposed by Otto22 successfully addressed the 

mechanical constraint problem and kept the computational complexity manageable. The 

PSO method solves VMAT optimization using coarsely sampled control points in the initial 

stage, and then progressively inserts new beams until reaching the final sampling resolution, 

e.g., 2 degrees. The PSO method ensures a deliverable VMAT plan that meets MLC mechanical 

constraints and is adopted in many current commercial planning systems. However, the 

heuristic PSO method has several intrinsic limitations. First, the interpolation during the 

progressive sampling procedure routinely leads to MLC aperture forming contention issues. 

Large, unsynchronized MLC motion between coarsely sampled control points results in 

unnecessary dose deposition to healthy tissue94. Second, the optimization result is heavily 

influenced by the parameters at the initial coarse sampling stage. The algorithm is easily 

trapped in undesired local minima with suboptimal parameters at the initial stage. 

Subsequently, despite the original premise of single-arc VMAT, two or more arcs are typically 

required in practice for acceptable dosimetric quality. Third, the optimization results are not 

only dependent on the parameters themselves but also on the entire parameter tuning 

history. It is, therefore, difficult to reproduce a plan even if the final set of optimization 

parameters is provided. Last but not least, the heuristic algorithm is designed specifically for 

the current VMAT delivery method and machine hardware. 

In this study, we develop an integrated VMAT optimization framework with global sampling 

that not only improves dosimetry but also is flexible for a variety of advances in radiotherapy 

treatment and delivery. 
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4.1.2 Methods 

4.1.2.1 Optimization Formulation 

The proposed comprehensive VMAT (comVMAT) optimization formulation takes the 

following form: 

𝑎𝑟𝑔𝑚𝑖𝑛

{𝑓𝜃  , 𝑐𝜃, Φθ}𝜃=0
𝑛        

1

2
‖𝑊 (∑(𝐴𝜃𝑓𝜃)

𝜃

− 𝑑0)‖

2

2

+∑(𝜆1‖𝐷1𝜃𝑓𝜃‖1 + 𝜆2‖𝐷2𝜃𝑓𝜃‖1)⏟                  
𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑇𝑉 𝑡𝑒𝑟𝑚 𝑜𝑛 𝑓𝜃

+∑∑(
𝛾

2
[(𝑓𝜃𝑥𝑦 − 𝑐𝜃)

2
𝐻(Φθ(𝑥, 𝑦)) + 𝑓𝜃𝑥𝑦

2 (1 − 𝐻(Φθ(𝑥, 𝑦)))]⏟                                    
𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡𝑒𝑟𝑚

𝑥,𝑦𝜃

+
𝑘

2
[(𝐻(Φθ(𝑥, 𝑦)) − 𝐻(Φθ−1(𝑥, 𝑦)))

2

+ (𝐻(Φθ(𝑥, 𝑦)) − 𝐻(Φθ+1(𝑥, 𝑦)))
2

]
⏟                                                

𝑡𝑒𝑟𝑚 𝑠𝑒𝑡 3

) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑓 ≥ 0 

Equation 4-1 

where 𝑓𝜃, 𝑐𝜃, and Φθ are the optimization variables. 𝑓𝜃 is the vectorized fluence map, 𝑐𝜃 is a 

value that 𝑓  approaches within an aperture, and Φθ  is the level set function, defined as 

positive where the aperture exists and negative elsewhere. The level set 

{(𝑥, 𝑦)|Φθ(𝑥, 𝑦) = 0} describes the aperture boundary. Beam angles are indexed by 𝜃, which 

ranges from 1 to n, and 𝑥 and 𝑦 are indices for a beamlet at a given 𝜃. The fluence to dose 

transformation matrix is denoted by 𝐴, and the desired dose, 𝑑0, is set as the prescription 

dose at the PTV and zero elsewhere. The diagonal weighting matrix, 𝑊 ,  weights the 

structures of interest. The derivative matrices, 𝐷1 and 𝐷2, take the derivative of the fluence 

in both directions parallel and orthogonal to the MLC leaf movement. 𝐻  is the Heaviside 

function 
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𝐻(𝑣) = {
1               𝑖𝑓 𝑣 ≥ 0
0               𝑖𝑓 𝑣 < 0

 

Essentially, 𝐻(Φθ(𝑥, 𝑦)) equals one inside the aperture and zero elsewhere. 𝑓𝜃𝑥𝑦 is a scalar 

value representing a single beamlet at a given beam angle 𝜃 and an 𝑥 and 𝑦 location on the 

beam, while 𝑓𝜃 is a vector of all the fluences at a specific beam angle. 𝑐𝜃 is a scalar quantity 

and only has one value per beam at a given time. 

Intuitively, the first term is the dose fidelity term that attempts to push the final dose as close 

as possible to the desired dose. Term set 1, in equation 1, is the anisotropic total variation 

(TV) regularization, which has been shown to successfully encourage piecewise continuity 

on the fluence map. The TV regularization term considers the entire fluence map of the beam, 

so the term ultimately controls the segment size and shape, abating irregularities and holes 

in the aperture shape. Soft regulation of the minimal leaf gap and the max leaf interdigitation 

can be accomplished by independently adjusting the weightings 𝜆1  and 𝜆2 , respectively. 

Term set 2 is pushing 𝑓 towards 𝑐 where the aperture is defined and zero elsewhere. Term 

set 3 encourages adjacent beam angles to be similar to regulate leaf movement between 

beam angles. For the 1st and nth 𝜃 , the Φθ−1(𝑥, 𝑦)  and Φθ+1(𝑥, 𝑦)  are equal to their 

respective Φθ(𝑥, 𝑦). 

4.1.3 Results 

Figure 4-1 shows the DVH of an LNG patient, comparing the comVMAT plans against the 

clnVMAT plans. It can be observed that comVMAT is able to better spare the OARs while 

maintaining a competitive PTV dosimetry. Figure 4-2 shows the dose wash for all of the 

patients. The comVMAT gave a much heavier weighting to some selective beams, while the 
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clnVMAT overall spreads the distribution of fluence intensities more evenly among the 

beams, giving rise to a less angular modulated dose distribution pattern and greater dose to 

OARs. For example, for the GBM patient, the comVMAT plan was able to entirely avoid the 

brainstem, while the clnVMAT plan covers the brainstem with at least 2.5 Gy of dose.  

 

Figure 4-1 DVHs of an LNG patient comparing the comVMAT and clnVMAT plans. 
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Figure 4-2 Dose washes for all patients. The low dose cutoff for viewing is set at 10% of the 
prescription dose. 

4.1.4 Summary 

We proposed an integrated VMAT framework that improves dosimetry compared with 

clinical VMAT. This study paves the foundation for the following sections in this chapter.  

4.2 Single-Arc VMAT optimization for Dual-Layer MLC 

4.2.1 Introduction 

To overcome the PSO limitations, in the last section, we developed a full-angular-resolution 

direct aperture optimization (DAO) method for VMAT, which solves the VMAT problem for 

an entire arc without any interpolations. The previously proposed DAO VMAT using a single 

arc was shown to outperform the standard commercial algorithm (PSO method) using two 

arcs. With the same target coverage, the single-arc DAO VMAT plan enhanced OAR sparing, 

improved dose conformality, and reduced delivery time compared with the two-arc PSO 

VMAT plan. 

The published VMAT algorithms thus far are developed for single-layer multi-leaf collimator 

(SLMLC). As an alternative to SLMLC, the dual-layer multi-leaf collimator (DLMLC) 95–97 with 

“stacked and staggered” leaves has recently attracted renewed interest due to two distinct 

advantages. First, the leakage dose is substantially reduced. Second, the MLC leaves can be 

wider and simpler without needing the tongue-and-groove structure, making them easier to 

fabricate. Two new commercial medical Linacs, Halcyon (Varian Medical Systems) and 

MRIdian (ViewRay) have adopted DLMLC.  Although the general interest in these systems 

and the time dual-layer MLC has been made available, there has not been a VMAT method 
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specifically developed for it. The dosimetric potential of DLMLC is hampered by the coupling 

effect of two MLC layers, which is not effectively managed in the existing PSO interpolation 

approach. As a result, more arcs have been shown necessary to achieve comparable 

dosimetry to a VMAT plan by single layer higher resolution MLC 98. In this study, we 

proposed a non-PSO single-arc VMAT optimization framework that simultaneously solves 

for both MLC layers and the entire arc in full resolution, using an alternating optimization 

approach that have been investigated in our previous VMAT optimization studies 35,38,39. 

4.2.2 Methods 

Two available DLMLC platforms differ by physical dimensions, mechanical parameters, and 

whether they are double-focused. However, from the optimization perspective, without 

losing generality, we use the Halcyon properties, which currently support VMAT delivery. In 

contrast to the standard MLC using single layer 5 mm MLC (Figure 4-3B, SLMLC-5mm), the 

DLMLC utilizes two layers of MLC banks on both sides, with 10mm leaf width projected at 

the isocenter (Figure 4-3A, DLMLC-10mm).  The two MLC layers are stacked and staggered 

by half of the leaf width to provide more sophisticated modulation than SLMLC with the same 

leaf width (Figure 4-3C, SLMLC-10mm). The extension of each leaf is usually restricted to a 

step size matching the leaf width to simplify the computational burden during planning. As 

an additional and readily achievable configuration, the SLMLC with 10 mm leaf width could 

employ extensions with a smaller step size of 5 mm (Figure 4-3D, SLMLC-10mm-5mm) to 

form rectangular beamlets. Figure 4-3 shows the MLC aperture that best spares an ellipse-

shaped OAR while keeping high PTV coverage of a C-shaped target. The DLMLC-10mm 

design forms the same aperture as the SLMLC-5mm design, while the SLMLC-10mm and 
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SLMLC-10mm-5mm inevitably expose more OAR to maintain the PTV coverage 

demonstrating DLMLC’s capability to improve modulation resolution.  

 

Figure 4-3 Demonstration of (A) DLMLC with 10mm leaf width (DLMLC-10mm), (B) SLMLC 
with 5mm leaf width (SLMLC-5mm), (C) SLMLC with 10mm leaf width (SLMLC-10mm), (D) 
SLMLC with 10mm leaf width and 5mm leaf step size (SLMLC-10mm-5mm). The grids on (C) 
and (D) represent the achievable beamlets. 

4.2.2.1 Deliverability of Dual-Layer MLC 
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Figure 4-4 Comparison of the SLMLC with 5mm leaf width (SLMLC-5mm) and DLMLC with 
10mm leaf width (DLMLC-10mm). The 5th MLC leaf position is extended farther than both 
neighboring leaves, resulting in an aperture shape that is undeliverable using DLMLC-10mm. 
(B) and (C) are examples of DLMLC deliverable aperture shapes that are closest to the shape 
of aperture (A). 

To understand the coupling effect of the dual MLC layers, we first examine the deliverability 

of DLMLC. Deliverable apertures on SLMLC-10mm or SLMLC-10mm-5mm are deliverable on 

DLMLC-10mm since one of the dual MLC layers could be kept open while moving the other 

layer.  Although any DLMLC-10mm deliverable patterns are also deliverable using SLMLC-

5mm, the converse is not true. A necessary and sufficient condition for an SLMLC-5mm 

aperture to be also deliverable using DLMLC-10mm is that there is no SLMLC-5mm leaf 

farther than its adjacent MLC leaves towards the opposing bank. Figure 4-4 shows an 

example of SLMLC-5mm deliverable aperture (Figure 4-4A) that is not achievable using 

DLMLC-10mm, since the 5th MLC leaf on the left side protrudes farther than both of its 

neighboring leaves. Two of the most similar apertures achievable on DLMLC-10mm are 

shown in Figure 2B and Figure 2C, where either the 5th MLC leaf is moved back to match with 

the 4th leaf or the 6th leaf (Figure 4-4B), or the 6th leaf is moved forward to match with the 5th 

leaf (Figure 4-4C). However, either configuration would result in a different fluence map and 

subsequently different delivered dose. 

4.2.2.2 Direct Aperture Optimization Formulation 

Consider the constraints, the DLMLC-10mm VMAT optimization problem is formulated as 
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    minimize
{𝑓𝜃 ,𝑐𝜃,𝑢1,𝜃,𝑢2,𝜃}𝜃=0

𝑛
       

1

2
‖𝑊((∑𝐴𝜃𝑓𝜃

𝜃

) − 𝑑0)‖

2

2

⏟                  
fidelity term

+∑(𝜆𝑥‖𝐷𝑥𝑓𝜃‖1 + 𝜆𝑦‖𝐷𝑦𝑓𝜃‖1)⏟                
anisotropic TV term on 𝑓𝜃

+∑
𝛾

2
(‖diag(𝑢𝜃)

1 2⁄ (𝑓𝜃 − 𝑐𝜃)‖2
2
+ ‖diag(1 − 𝑢𝜃)

1 2⁄ 𝑓𝜃‖2
2
)

⏟                                  
single segment term

𝜃

 

subject to          𝑓𝜃 ≥ 0, 𝑐𝜃 ≥ 0, 𝑢𝑖,𝜃 ∈ {0,1}
𝑛𝑥𝑛𝑦 ,       𝑖 = 1,2     𝜃 = 1,2, … , 𝑛𝜃      

𝑢𝜃 = 𝑢1,𝜃 AND 𝑢2,𝜃  

(𝑢𝑖,𝜃, 𝑢𝑖,𝜃+1) ∈ 𝑆,        𝑖 = 1,2     𝜃 = 1,2, … , 𝑛𝜃 

Equation 4-2 

where the notations for the variables and data are summarized in Table 4-1. 

𝑢1,𝜃 and 𝑢2,𝜃 describe the aperture of upper and lower MLC layers with 10 mm leaf. 𝑢1𝜃 (or 

𝑢2𝜃) is 1 where the aperture exists, and 0 elsewhere. The effective aperture 𝑢𝜃  has 5mm 

resolution combining both MLC layers. The effective aperture is open if and only if the 

corresponding beamlet is open on both MLC layers and is closed if the corresponding 

beamlet is closed on at least one of the MLC layers, i.e., 𝑢𝜃 is 1 where both 𝑢1𝜃 and 𝑢2𝜃 equal 

to 1, and 0 elsewhere. Note that although the resultant effective aperture 𝑢𝜃  has 5mm 

resolution, it is readily deliverable on DLMLC-10mm, as it is defined by two coarse apertures 

𝑢1𝜃 and 𝑢2𝜃. The same effective aperture 𝑢𝜃 can be mapped to more than one configuration 

of 𝑢1𝜃 and 𝑢2𝜃, affording more options to meet the MLC leaf speed constraints. The set S is 

then defined to include all achievable apertures that satisfy the MLC speed constraint. If two 

adjacent beams 𝑢𝑖,𝜃  and 𝑢𝑖+1,𝜃  have substantially different apertures such that it is 

impossible for the MLC leaves to travel from 𝑢𝑖,𝜃  to 𝑢𝑖+1,𝜃  within the time limit of each 
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control point, the aperture configuration (𝑢𝑖,𝜃, 𝑢𝑖,𝜃+1) will be excluded in set S. Note that the 

speed constraint applies to the two layers separately.  

The fidelity term attempts to find the optimal fluence map 𝑓𝜃 by penalizing the difference 

between the planning dose and the ideal dose 𝑑0, in a least-square form, where the diagonal 

weighting matrix 𝑊 regulates the priorities of the structure of interest. The anisotropic total 

variation (TV) term encourages the piecewise continuity of the fluence map 𝑓𝜃. The amount 

of smoothness is controlled by 𝜆𝑥 and 𝜆𝑦, in the direction parallel and orthogonal to the MLC 

leaf motion direction, respectively.  

The single segment term simplifies the final fluence map 𝑓𝜃 to contain only one segment at 

each control point, which corresponds to the effective aperture 𝑢𝜃. It pushes the fluence map 

𝑓𝜃 towards the uniform intensity value 𝑐𝜃 where the effective aperture 𝑢𝜃 is 1, and towards 

0 elsewhere, encouraging the fluence map to reach a constant intensity level within the 

effective aperture and 0 outside the effective aperture. By gradually increasing the weighting 

parameter γ  in the optimization, the algorithm attains the single segment constraint for 

VMAT.  

Notation Type Description 

Indices 

𝜽 Index Index for gantry angle, 𝜃 = 1,2,… , 𝑛𝜃 

𝒊 Index Index for MLC layer, 𝑖 = 1,2 

𝒙 Index Index for beamlet in the direction parallel to the MLC leaf movement, 𝑥 = 1,2, … ,2𝑛𝑥  

𝒚 Index Index for beamlet in the direction orthogonal to the MLC leaf movement, 𝑦 = 1,2,… ,2𝑛𝑦 

Optimization Variables 

𝒇𝜽 Vector High-resolution vectorized fluence map 𝑓𝜃 ∈ ℝ
4𝑛𝑥𝑛𝑦  for the candidate beam 𝜃  

𝒄𝜽 Vector Intensity value 𝑐𝜃 ∈ ℝ
4𝑛𝑥𝑛𝑦  that 𝑓𝜃  approaches within the aperture of beam 𝜃 

𝒖𝒊,𝜽 Vector 
Aperture variable 𝑢𝑖,𝜃 ∈ {0,1}

𝑛𝑥𝑛𝑦 for MLC layer 𝑖 and beam 𝜃 

Defined as 1 where the aperture exists and 0 elsewhere 

𝒖𝜽 Vector 
Effective aperture variable 𝑢𝜃 ∈ {0,1}

4𝑛𝑥𝑛𝑦   for beam 𝜃 
Defined as 1 where the aperture exists on both MLC layers and 0 elsewhere (logical “AND” 
of 𝑢1,θ and 𝑢2,θ) 

Other data 

𝑨𝜽 Matrix Fluence to dose transformation matrix for beam at gantry angle 𝜃 
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Table 4-1 Notations and data structures used in this study. 

4.2.2.3 Algorithm 

Similar to our previous studies 35,38,39, the optimization problem in equation (1) is solved via 

alternating optimization by fixing two of the three optimization variables and optimizing 

with respect to the other variable. In each iteration, the optimization algorithm runs through 

3 modules and optimizes with respect to the fluence map 𝑓𝜃 , the aperture 𝑢𝑖𝜃 , and the 

intensity value 𝑐𝜃, respectively. The process is repeated until 𝑓𝜃 converges to 𝑐𝜃⊙𝑢𝜃, where 

⊙  is the Hadamard product, implying that constant intensity is achieved within each 

optimized aperture. 

4.2.2.3.1 Module 1: Optimize the fluence map 𝒇𝜽 

In module 1, the aperture 𝑢𝑖𝜃 and the intensity value 𝑐𝜃 are kept constant, and the equivalent 

optimization problem with respect to the fluence map 𝑓𝜃 is a convex optimization problem: 

 minimize
{𝑓𝜃}𝜃=0

𝑛
        

1

2
‖𝑊((∑𝐴𝜃𝑓𝜃

𝜃

) − 𝑑0)‖

2

2

+∑(𝜆𝑥‖𝐷𝑥𝜃𝑓𝜃‖1 + 𝜆𝑦‖𝐷𝑦𝜃𝑓𝜃‖1)

𝜃

+∑
𝛾

2
‖diag(𝑢𝜃)

1 2⁄ (𝑓𝜃 − 𝑐𝜃)‖2
2
+ ‖diag(1 − 𝑢𝜃)

1 2⁄ 𝑓𝜃‖2
2

𝜃

 

subject to      𝑓𝜃 ≥ 0,      𝜃 = 1,2, … , 𝑛𝜃                                                                     

Equation 4-3 

The optimization problem in Equation 4-3 can be efficiently solved by FISTA. 

𝑾 Matrix Diagonal weighting matrix, with weightings for structures of interest as diagonal elements 

𝒅𝟎 Vector Ideal dose with the prescription dose at the PTV and zero elsewhere 

𝑫𝒙 Matrix Derivative matrix in the direction parallel to the MLC leaf movement  

𝑫𝒚 Matrix Derivative matrix in the direction orthogonal to the MLC leaf movement  

𝐀𝐍𝐃 Operator Logic operator that outputs 1 if and only if both inputs equal to 1, otherwise 0 

𝑺 Set A set of all achievable apertures that satisfy MLC mechanical constraint 
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4.2.2.3.2 Module 2: Optimize the aperture 𝒖𝜽 

In module 2, the fluence map 𝑓𝜃 and the intensity value 𝑐𝜃 are kept constant. The intensity 

value is estimated as the average intensity value inside the aperture from the last iteration. 

The algorithm attempts to find the optimal effective aperture 𝑢𝜃, jointly defined by the two 

MLC layers that best fit the current fluence map 𝑓𝜃 and an estimated intensity value 𝑐𝜃, while 

ensuring the deliverability constraints. The equivalent optimization problem with respect to 

the aperture 𝑢𝜃 is: 

minimize
{𝑢𝜃,𝑢1,𝜃,𝑢2,𝜃}𝜃=0

𝑛
        ∑〈𝑞𝜃, 𝑢𝜃〉

𝜃

,                                                                                               

subject to          𝑢𝑖,𝜃 ∈ {0,1}
𝑛𝑥𝑛𝑦 ,   (𝑢𝑖,𝜃, 𝑢𝑖,𝜃+1) ∈ 𝑆,   𝑖 = 1,2   𝜃 = 1,2, … , 𝑛𝜃 

𝑢𝜃 = 𝑢1,𝜃 AND 𝑢2,𝜃.                                       

where 𝑞𝜃 is a vector with elements 𝑞𝜃𝑥𝑦 defined as:  

𝑞𝜃𝑥𝑦 = (𝑓𝜃𝑥𝑦 − 𝑐𝜃)
2
− 𝑓𝜃𝑥𝑦

2 = 𝑐𝜃(𝑐𝜃 − 2𝑓𝜃𝑥𝑦). 

Equation 4-4 

𝑞𝜃𝑥𝑦 can be interpreted as the cost associated with a beamlet. The beamlet has a positive cost 

if 𝑓𝜃𝑥𝑦 <
𝑐𝜃

2
 and a negative cost if 𝑓𝜃𝑥𝑦 >

𝑐𝜃

2
. Dosimetrically favorable beamlets, which have a 

higher intensity value in the optimization, present negative beamlet costs and therefore are 

more likely to be open.  

Note that the objective function is linear in 𝑢𝜃, where 𝑢𝜃 is either 0 or 1. The minimization 

of the objective function is equivalent to a simplified travelling salesman problem on a 

directed graph G = [𝑁, 𝐸] with a rectangular structure. The graph is designed to contain 𝑛𝑢 

by 𝑛𝜃 nodes, where 𝑛𝑢 is the number of all possible configurations of the aperture 𝑢𝜃, and 



 

81 

𝑛𝜃 is the number of control points. The graph is associated with a node cost NC(𝑢𝜃, 𝜃) for an 

aperture 𝑢𝜃  at gantry angle θ , and the edge cost EC((𝑢𝜃1, 𝜃1), (𝑢𝜃2, 𝜃2))  that connects 

(𝑢𝜃1, 𝜃1) and (𝑢𝜃2, 𝜃2). The node cost is defined as 

NC((𝑢𝜃 , 𝜃)) = {
〈𝑞𝜃, 𝑢𝜃〉,    ∃𝑢1𝜃, 𝑢2𝜃 ,   𝑠. 𝑡. 𝑢𝜃 = 𝑢1𝜃 AND 𝑢2𝜃
+∞,                             otherwise                          

, 

which is finite if and only if 𝑢𝜃 is DLMLC deliverable. The edge cost is defined as  

EC((𝑢𝜃1, 𝜃1), (𝑢𝜃2, 𝜃2)) = {
0,              (𝑢𝜃1, 𝑢𝜃2) ∈ 𝑆, 𝜃2 − 𝜃1 = 𝛥𝜃
+∞,                          otherwise                 

, 

Equation 4-5 

where Δ𝜃 is the gantry angle between two adjacent control points. The edge cost is finite if 

and only if the edge connects two adjacent beams, whose apertures satisfying MLC leaf 

travelling speed constraints, and is directed towards the next control point. 

The traveling salesman problem finds the shortest path on the graph, leading to a solution 

with minimum total node and edge costs. Therefore, apertures that are not DLMLC 

deliverable or violate the MLC leaf speed constraints will be automatically excluded. The 

exact solution to the graph optimization problem requires the calculation of all possible 

aperture configurations. To reduce the computation complexity, we adopted a heuristic 

approach. Firstly, the best aperture 𝑢𝜃,𝑏𝑒𝑠𝑡 without deliverability constraints is computed by 

switching on all beamlets that are associated with a negative 𝑞𝜃𝑥𝑦, and switching off all other 

beamlets. Undeliverable apertures are identified on 𝑢𝜃,𝑏𝑒𝑠𝑡 and modified by approximating 

it with an SLMLC-5mm deliverable aperture with the lowest total opened beamlet cost. The 

modification is achieved by either filling in the holes inside the aperture or switching on 

some closed beamlets. The modified aperture, denoted by 𝑢𝜃,𝑆𝐿, is deliverable using SLMLC-
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5mm. SLMLC-5mm deliverable apertures that are not deliverable using DLMLC-10mm are 

identified on 𝑢𝜃,𝑆𝐿 by looking for any leaf that is positioned farther than its adjacent leaves. 

The best fit 𝑢𝜃,𝐷𝐿 is computed by moving the violating leaves or its neighboring leaves to 

ensure DLMLC-10mm deliverability constraint while achieving the lowest total opened 

beamlet cost. Note that although a few approximations are made to the original aperture 

𝑢𝜃,𝑏𝑒𝑠𝑡 in doing so, the modified apertures still correspond to the lowest total beamlet costs 

under the set of deliverability constraints, i.e., the SLMLC-deliverability constraint for 𝑢𝜃,𝑆𝐿 

and the DLMLC-deliverability constraint for 𝑢𝜃,𝐷𝐿. To minimize leakage through one layer of 

MLC, the leaf positions of both MLC layers are extended as far as possible without blocking 

any opened beamlets defined by 𝑢𝜃,𝐷𝐿. The aperture defined by the coarse MLC layers are 

denoted by 𝑢𝑖𝜃,𝐷𝐿, for the ith MLC layer. 

Any aperture configuration ((𝑢𝑖𝜃,𝐷𝐿 , 𝜃), (𝑢𝑖(𝜃+Δ𝜃),𝐷𝐿, 𝜃 + Δ𝜃)) that violates the MLC speed 

limit constraint is identified based on 𝑢𝑖𝜃,𝐷𝐿. Exhaustive search is performed on the identified 

apertures to minimize the total opened beamlet cost while ensuring the MLC traveling 

constraints with the control point and its adjacent beams (𝜃 − Δ𝜃, 𝜃, 𝜃 + Δ𝜃). The process is 

repeated until all beams satisfy the MLC leaf speed constraints. Although the exhaustive 

search could be computationally expensive if performed on all leaves, in practice, violation 

of the leaf speed constraints infrequently happens on only a few leaves and control points. 

Therefore, it only takes seconds for the whole optimization process with respect to aperture 

variable 𝑢𝑖𝜃. The resultant apertures defined by the two MLC layers satisfy both the MLC leaf 

speed constraint and the DLMLC-10mm deliverability constraint. 



 

83 

4.2.2.3.3 Module 3: Optimize the intensity value 𝒄𝜽 

In module 3, the aperture 𝑢𝜃 and the fluence map 𝑓𝜃 are kept constant. With known aperture 

𝑢𝜃, it is straightforward to find the intensity value 𝑐𝜃 that achieves a final dose that is closest 

to the ideal dose. The optimization subproblem with respect to the intensity value 𝑐𝜃 is 

 minimize
{𝑐𝜃}𝜃=0

𝑛
        

1

2
‖𝑊((∑𝐴𝜃(𝑢𝜃⨀𝑐𝜃)

𝜃

) − 𝑑0)‖

2

2

 

subject to      𝑐𝜃 ≥ 0,      𝜃 = 1,2, … , 𝑛𝜃 ,    

Equation 4-6 

which could be solved by FISTA efficiently.  

4.2.2.4 Direct Aperture Optimization Formulation for Simultaneous Integrated Boost 

An interesting and relevant challenge that tests the MLC resolution is to perform 

simultaneous integrated boost on a small boost volume. For this purpose, the DLMLC-10mm 

VMAT optimization for Simultaneous Integrated Boost (SIB) is formulated as 
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 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
{𝒇𝜽 ,𝒄𝜽,𝒖𝟏,𝜽,𝒖𝟐,𝜽}𝜽=𝟎

𝒏
    
𝟏

𝟐
‖𝑾((∑𝑨𝜽𝒇𝜽

𝜽

) − 𝒅𝟎)‖

𝟐

𝟐

⏟                  
𝐟𝐢𝐝𝐞𝐥𝐢𝐭𝐲 𝐭𝐞𝐫𝐦

−𝒘𝟏𝑻∑𝑨𝜽,𝑺𝑰𝑩𝒇𝜽
𝜽⏟          

𝐛𝐨𝐨𝐬𝐭 𝐭𝐞𝐫𝐦

+ 𝝀𝐒𝐈𝐁 (𝐦𝐚𝐱(∑𝑨𝜽,𝐒𝐈𝐁𝒇𝜽
𝜽

) −𝐦𝐢𝐧(∑𝑨𝜽,𝑺𝑰𝑩𝒇𝜽
𝜽

))

⏟                              
𝐡𝐨𝐦𝐨𝐠𝐞𝐧𝐞𝐢𝐭𝐲 𝐭𝐞𝐫𝐦

+∑(𝝀𝒙‖𝑫𝒙𝜽𝒇𝜽‖𝟏 + 𝝀𝒚‖𝑫𝒚𝜽𝒇𝜽‖𝟏
)⏟                    

𝐚𝐧𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐢𝐜 𝐓𝐕 𝐭𝐞𝐫𝐦 𝐨𝐧 𝒇𝜽

+∑
𝜸

𝟐
‖𝐝𝐢𝐚𝐠(𝒖𝜽)

𝟏 𝟐⁄ (𝒇𝜽 − 𝒄𝜽)‖𝟐
𝟐
+ ‖𝐝𝐢𝐚𝐠(𝟏 − 𝒖𝜽)

𝟏 𝟐⁄ 𝒇𝜽‖𝟐
𝟐

⏟                                  
𝐬𝐢𝐧𝐠𝐥𝐞 𝐬𝐞𝐠𝐦𝐞𝐧𝐭 𝐭𝐞𝐫𝐦

𝜽

, 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨          𝒇𝜽 ≥ 𝟎, 𝒄𝜽 ≥ 𝟎, 𝒖𝒊,𝜽 ∈ {𝟎, 𝟏}
𝒏𝒙𝒏𝒚 ,       𝒊 = 𝟏, 𝟐     𝜽 = 𝟏, 𝟐,… , 𝒏𝜽      

𝒖𝜽 = 𝒖𝟏,𝜽 𝐀𝐍𝐃 𝒖𝟐,𝜽  

(𝒖𝒊,𝜽, 𝒖𝒊,𝜽+𝟏) ∈ 𝑺,        𝒊 = 𝟏, 𝟐,     𝜽 = 𝟏, 𝟐,… , 𝒏𝜽 

Equation 4-7 

where there are two additional terms: boost term and homogeneity term, compared with 

Equation 4-2. The boost term attempts to escalate the dose as great as possible within the 

boost volume by maximizing its mean dose. 𝐴𝜃,𝑆𝐼𝐵  is the fluence to dose transformation 

matrix within the boost area for the beam at gantry angle 𝜃. The parameter 𝑤 regulates the 

weighting of the boost structure. The homogeneity term controlled by 𝜆𝑆𝐼𝐵 encourages the 

dose uniformity within the boost area.  

4.2.2.5 Evaluation 

The proposed optimization algorithm was tested on four patients, including a glioblastoma 

multiforme case (GBM), a lung cancer case (LNG), a prostate cancer case (PRT), and a rectum 

cancer case with SIB volume (REC-SIB), where the boost volume is determined by diffusion 

MRI and validated by pathology 99. The prescription doses and PTV volumes for all patients 

and the volume of the boost area for the SIB case can be found in Table 4-2.  
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 Prescription Dose (Gy) PTV Volume (cc) Boost Volume (cc) 
GBM 25 6.36  
LNG 50 9.33  
PRT 40 127.02  

REC-SIB 40 1145.52 0.14 

Table 4-2 Prescription doses and PTV volumes for all patients, and the volume of the boost 
area for the SIB case. 

The dose matrix was obtained using a convolution/superposition dose calculation algorithm 

with 6 MV x-ray polyenergetic kernels as described in our previous publications 100, 

calculated for 180 beams with 2-degree gantry angle spacing. The tissue densities are 

provided by CT images for the first three patients and assumed 1 g/cm3 for the MR-based 

REC-SIB treatment. The couch angle is set at 0 degrees, and the collimator at 45 degrees, 

following the International Electrotechnical Commission (IEC) convention. The beamlet 

resolution for dose calculation was 5×5 mm2 for SLMLC-5mm and DLMLC-10mm, 10×10 

mm2 for SLMLC-10mm, and 5×10 mm2 for SLMLC-10mm-5mm. The dose array resolution 

was 2.5×2.5×2.5 mm3.  

Evaluation with respect to PTV includes PTV D95, D98, D99, D2 (defined as the dose received 

by at least 95%, 98%, 99%, and 2% of the target volume, respectively), PTV homogeneity 

(defined as 
D95

D5
), and dose conformity (defined as the ratio between the PTV volume 

receiving 100% or more of the prescription dose and the PTV volume). For OARs, the 

maximum dose (Dmax) and mean dose (Dmean) were evaluated, where Dmax is defined as 

D2, the dose at 2% of the structure volume, recommended by the ICRU-83 report 101. The 

integral dose, defined as the volume integral of the dose deposited in the patient, and the 

R50, defined as the 50% isodose volume divided by the target volume, were also obtained to 

quantify overall dose spillage and high dose spillage, respectively. 
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4.2.3 Results 

 

Figure 4-5 Fluence map of the DLMLC-10mm plan for the lung cancer patient. The beamlet 
resolution is 5mm, while the fluence map is still deliverable with DLMLC-10mm. MLC leaf 
direction is vertical.  

Figure 4-5 shows the fluence map of the DLMLC-10mm plan for the lung cancer patient, 

including 180 control points. The proposed DLMLC VMAT optimization algorithm optimizes 

all beams simultaneously and produces 5mm-resolution apertures that are deliverable using 

DLMLC-10 mm. In this study, the maximal MLC leaf travel is set at 10 mm between two 

adjacent beams. For the MLC leaves traveling at the maximal speed of 50 mm/s (Halcyon 

white paper), 0.2 seconds is needed between control points. The estimated delivery time is 

then 36 seconds for the GBM and LUNG cases and 90 seconds for the PRT case.  

Figure 4-6 shows the DVHs of the DLMLC-10mm plan and the SLMLC plans for all patients. 

PTV D95 is normalized to the prescription dose. The PTV statistics are matched in all plans 

for fair OAR dose comparison. The DLMLC-10mm and the SLMLC-5mm plans are nearly 

indistinguishable. With the same leaf width, the DLMLC-10mm plan OAR sparing is superior 

to both the SLMLC-10mm-5mm and the SLMLC-10mm plans for all patients. In the GBM case, 
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the dose to the brainstem, chiasm, and right optic nerve was substantially reduced. In the 

LNG case, hot spots are significantly reduced in dose-limiting organs such as the major 

vessel, proximal bronchus, and heart. In the PRT case, the dose to the rectum, penile bulb, 

and seminal vesicle was effectively controlled. For the boost case, with comparable or better 

OAR sparing, the DLMLC-10mm plan achieved greater boost dose than both the SLMLC-

10mm-5mm and SLMLC-10mm plans. The detailed dose statistics of the boost case is 

summarized in Table 4-3. 

SIB statistics D98 (Gy) D2 (Gy) 
DLMLC-10mm 62.21 74.55 
SLMLC-5mm 62 79.04 

SLMLC-10mm 52.22 59.44 
SLMLC-10mm-5mm 60 73.31 

Table 4-3 Dose statistics of the boost area for the SIB case. 

Figure 4-7 shows the dose distribution of the DLMLC-10mm and the SLMLC plans for all 

patients. Compared with SLMLC with the same leaf width, DLMLC-10mm reduced the overall 

OAR dose, especially those adjacent to PTV, while maintaining the same PTV coverage. Table 

4-4 shows the quantitative PTV statistics, R50, and Integral Dose. The D95 were normalized 

to the prescription dose for all plans. The PTV homogeneity, PTV D2, and PTV D98 are 

comparable across all plans. The DLMLC-10mm reduced R50 by 30.7% and 10.0% compared 

with the SLMLC-10mm plan and the SLMLC-10mm-5mm plan respectively, indicating a 

remarkable improvement in dose compactness.  

Table 4-6 shows the OAR statistics for all patients. With the same target coverage, compared 

with the SLMLC-5mm plan, the DLMLC-10mm plan slightly increased the OAR max and mean 

doses by 0.35% and 0.37% of the prescription dose. Even the largest difference of single OAR 

max and mean dose is within 2.1% and 0.9% of the prescription dose, showing comparable 
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OAR sparing across the DLMLC-10mm plan and the SLMLC-5mm plan. Compared with the 

SLMLC-10mm plan, the DLMLC-10mm plan reduced the OAR max and mean doses by 5.79% 

and 4.18% of the prescription dose on average, and the single largest sparing in OAR max 

and mean dose is up to 27.6% and 14.4% of the prescription dose. Compared with the 

SLMLC-10mm-5mm plan, the DLMLC-10mm plan reduced the OAR max and mean doses by 

3.7% and 2.1% of the prescription dose on average, and the single largest sparing in OAR 

max and mean dose is up to 20.9% and 10.2% of the prescription dose. 

Table 4-5 shows the optimization time for all plans. The DAO takes from 10 minutes to 2 

hours for typical VMAT plans, depending on the PTV size. The computation bottleneck is the 

multiplication with the system matrix. Down sampling approaches, which were not 

implemented in our experiments, are expected to substantially accelerate the optimization. 
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Patient Case 
DLMLC-
10mm 

SLMLC-
5mm 

SLMLC-
10mm 

SLMLC-10mm-
5mm 

P
T

V
 S

ta
ti

st
ic

s 
 

D2 (Gy) 
(SLMLC 
plans) – 
(DLMLC-

10mm plan) 

GBM  -0.01 -0.24 -0.15 
LNG  0.09 -0.47 0.02 
PRT  -0.07 -0.25 -0.2 

REC-SIB 
 

-0.29 0.21 -0.04 

D98 (Gy) 
(SLMLC 
plans) – 
(DLMLC-

10mm plan) 

GBM  -0.03 -0.04 0.01 
LNG  -0.05 0.27 -0.12 
PRT  -0.13 0.05 0.31 

REC-SIB 
 

0.54 -0.14 0.32 

Homogeneity 

GBM 0.94 0.94 0.94 0.94 
LNG 0.95 0.95 0.94 0.95 
PRT 0.94 0.94 0.94 0.93 

REC-SIB 0.91 0.9 0.91 0.91 

R50 

GBM 4.7 4.81 7.99 4.94 
LNG 2.78 2.85 5.51 3.57 
PRT 3.04 3.14 3.41 3.18 

REC-SIB 2.69 2.74 3.43 2.94 

Integral Dose 
(Gy⋅m^3) 

GBM 2.46 2.55 3.89 3.07 
LNG 12.58 12.54 18.59 14.62 
PRT 64.84 65.11 71.2 66.9 

REC-SIB 189.91 190.84 209.7 194.34 

Table 4-4 PTV statistics, R50, and Integral Dose for all patients. 

 

Optimization time 
(min) 

DLMLC-10mm SLMLC-5mm SLMLC-10mm 
SLMLC-10mm-

5mm 
GBM 8 8 4 6 

LNG 32 32 18 24 
PRT 114 96 64 91 

REC-SIB 238 231 95 153 

Table 4-5 Optimization time for all plans. 
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Patient Case GBM LNG PRT SEC-SIB 
O

A
R

 d
o

se
 s

p
ar

in
g:

 (
SL

M
L

C
 p

la
n

s)
 –

 (
D

L
M

L
C

-1
0

m
m

 p
la

n
) 

(G
y)

 

Dmax 
Largest 
Differen

ce 

SLMLC-5mm 
0.3 0.25 0.82 0.51 

Lens, Right Heart 
Femur, 
Right Bowel 

SLMLC-10mm 
4.86 13.81 8.26 2.32 

Optic Nerve, 
Right 

Major 
Vessels Penile Bulb 

Femur, 
Right 

SLMLC-10mm-
5mm 

5.24 7.05 2.63 1.12 
Optic Nerve, 

Right 
Major 

Vessels Femur, Left Femur, Left 

Dmax 
Average 
Differen

ce 

SLMLC-5mm -0.22 -0.53 0.2 0.03 

SLMLC-10mm 2.33 4.14 1.6 0.61 
SLMLC-10mm-

5mm 1.63 2.13 1.12 0.49 

Dmean 
Largest 
Differen

ce 

SLMLC-5mm 
0.17 0.14 0.34 -0.07 

Lens, Right Spinal Cord Femur, Left Femur, Left 

SLMLC-10mm 
3.6 3.35 4.14 1.34 

Optic Nerve, 
Right 

Major 
Vessels Rectum Bladder 

SLMLC-10mm-
5mm 

2.55 1.71 1.82 1.09 
Optic Nerve, 

Right 
Major 

Vessels Rectum Femur, Left 

Dmean 
Average 
Differen

ce 

SLMLC-5mm 0.03 -0.03 0.07 -0.7 

SLMLC-10mm 1.6 1.08 2.53 0.73 
SLMLC-10mm-

5mm 1.11 0.63 1.03 0.06 

Table 4-6 OAR mean and maximum dose sparing differences between SLMLC plans and the 
DLMLC-10mm plan for all patients. The rows labeled “Largest Values” represents the largest 
amount of dose sparing difference achieved among all OARs, and the corresponding OAR. 
“Average values” represents the average dose sparing difference among all OARs. 
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Figure 4-6 DVH for (A) the GBM case, (B) the LNG case, (C) the PRT case, and (D) the REC-SIB 
case. The solid lines are for the DLMLC plan, and the dotted lines are for SLMLC plans. D95 is 
normalized to the prescription dose. 
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Figure 4-7 Isodose colorwash comparison for all patients 
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4.2.4 Discussion 

Besides reducing the number of arcs, improvements of the linear accelerator in gantry speed, 

leaf speed, and dose rate have the potential to improve VMAT efficiency 22 further. This 

concept was recently implemented in a new ring gantry system (Varian Halcyon). The new 

system with enclosed gantry is designed for rapid treatment with increased gantry speed (4 

rpm) and MLC leaf speed (5 cm/s) 102. The higher mechanical performance has the potential 

to reduce treatment time and make treatment more robust to intrafractional motion. 

However, this potential is hindered by the current PSO optimization algorithm, which 

requires more arcs to achieve the same dosimetry as the systems with a single layer higher 

resolution MLC. 

Our previous VMAT optimization framework for SLMLC 35 simultaneously optimizes 180 

coplanar arc beams without progressive sampling. Apart from the optimization constraint, 

the previous SLMLC VMAT framework share similar objective function as the proposed 

DLMLC VMAT, including the least square dose fidelity objective, the anisotropic total 

variation term that regulates the fluence smoothness, and the single segment term for 

forming simple apertures. The previous SLMLC VMAT framework has been shown to 

outperform the PSO method that has been widely adopted in clinic 35, achieving improved 

dose conformality, reduced number of arcs, and shortened delivery time. In this study, we 

adapted the VMAT optimization framework for DLMLC by introducing novel optimization 

constraints. The adapted framework simultaneously solves for both MLC layers and 180 

beams. With the same target coverage, the DLMLC-10mm plan substantially improved OAR 

sparing and dose compactness compared with SLMLC-10mm, achieving comparable plan 
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quality with the SLMLC-5mm plan. This new optimization algorithm thus better takes 

advantage of the faster gantry rotation and leaf speed for more efficient plan delivery.  

In each iteration, the DLMLC VMAT algorithm runs through 3 modules, optimizing with 

respect to the fluence map, the aperture shape, and the intensity value, respectively. This 

alternating optimization approach has been investigated on VMAT optimization in our 

previous studies 35,38,39. Different from our previous studies, which used regularization terms 

to encourage deliverability, the current study formulates the deliverability constraint and 

leaf speed constraint as non-convex optimization constraints with respect to the aperture 

variable and then transforms it into a graph optimization problem, which is heuristically 

solved. This modification brought forth several benefits. First, the formulation maintains 

convexity with respect to the fluence map and the intensity value. Second, the number of 

hyperparameters are reduced compared with the original formulation, making parameter 

tuning easier. Third, the mechanical constraints with physical parameters are strictly 

enforced instead of being encouraged in the previous regularization approach. Last, the 

modification makes it straightforward to incorporate the DLMLC deliverability constraint, 

which is not obvious, if not impossible, to be formulated as a regularization term.  

Compared with the previously reported Halcyon VMAT plans 98,102, which need more arcs to 

achieve comparable dosimetry to a VMAT plan on traditional TrueBeam C-arm linac, the 

proposed method clearly elevated the performance of single-arc DLMLC VMAT to be equal 

to SLMLC with higher resolution leaves. By overcoming the deficiency caused by 

optimization algorithms, DLMLC-10mm may replace the conventional 5mm SLMLC. This 

may apply to higher resolution MLCs, which have suffered from low fabricability and high 

inter-leaf leakage. As mentioned, although the Halcyon parameters are used in the current 
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study, the proposed algorithm is in principle applicable to other DLMLC machines such as 

ViewRay with corresponding physical parameters. 

Similar to the previous study in section 2.1, FISTA is adopted in this study for rapid 

optimization. The accelerated algorithm allows solving the full resolution DLMLC problem 

in 5 minutes for the GBM and LNG case, and 20 minutes for the PRT case.  The SIB case took 

substantially longer time of 1 hour due to the large PTV size. For future clinical 

implementations, matrix multiplication, which is the most computationally expensive step 

in FISTA, can easily be parallelized using graphical processing units (GPUs) to improve 

computational efficiency 75. 

In this study, the MLC transmission through a single layer of the DLMLC is ignored for 

simplicity. The single layer transmission can be included in the single segment term, such 

that it pushes the fluence map to be at the beam intensity for opened beamlets, at the 

transmitted intensity for the beamlets that are blocked by a single MLC layer, and 0 for the 

beamlets that are blocked by both MLC layers. Observable deterioration in dose happens 

when the transmission through a single layer of MLC is greater than 5%. In practice, due to 

the low transmission factor achieved by Halcyon (within 0.45% for single MLC layer 103), this 

term did not make a perceivable difference in optimization results.  

4.2.5 Summary 

The novel VMAT optimization framework for DLMLC utilizes two MLC layers to afford more 

sophisticated modulation and improves the effective modulation resolution. Consequently, 

single-arc DLMLC VMAT achieves not only superior dosimetry to SLMLC VMAT with the 

same leaf width but also equivalent dosimetry to SLMLC VMAT of half the leaf width.  
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4.3 Many-isocenter Optimization for Robotic 
Radiotherapy.  

4.3.1 Introduction 

Since its initial introduction in 1982 24, intensity-modulated radiotherapy (IMRT) has been 

compared favorably to the 3-dimensional (3D) conformal radiation therapy due to enhanced 

target coverage and improved organs at risk (OAR) sparing. Subsequently, the technologies 

involving inverse treatment optimization and multileaf collimators (MLC) for intensity 

modulation have been rapidly developed and adopted in the clinic. More recent technological 

advances such as helical TomoTherapy and volumetric modulated arc therapy (VMAT) 

further streamlined IMRT delivery while maintaining comparable plan quality 104–106. Since 

further plan quality improvement is hampered by the limited beam geometry in the coplanar 

IMRT and VMAT mode, planning methods using optimized non-coplanar beam angles, 

termed 4π radiation therapy 107,108,117,118,109–116 have been developed. Compared with state-

of-the-art coplanar IMRT methods, 4π significantly reduced high dose spillage to the normal 

tissue. The improved dose compactness is desirable for stereotactic radiotherapy where the 

normal tissue toxicities are manifested in the high dose region 119. 

Despite the demonstrated dosimetric benefits, 4π radiotherapy clinical adoption is not 

straightforward. Studies have shown the feasibility of delivering 4π IMRT 120 and 4π VMAT 

121,122 plans on the C-arm gantry platform, where the non-coplanar beam orientations 

require the combination of couch and gantry rotation to achieve. However, the combined 

motion increases treatment delivery time, risk of collision and unwanted patient secondary 

motion. Couch rotations also create challenges to maintain constant monitoring of the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/intensity-modulated-radiation-therapy
https://www.sciencedirect.com/topics/medicine-and-dentistry/tomotherapy
https://www.sciencedirect.com/topics/medicine-and-dentistry/volumetric-modulated-arc-therapy
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patient position. The more complex dry run and QA before treatment delivery is yet another 

obstacle.  

Alternatively, a robotic linac platform is more conducive for the non-coplanar and non-isocentric 

treatment. For instance, the CyberKnife Robotic Radiosurgery System (Accuray, Sunnyvale, CA, 

USA) mounts a 6-MV linac to an articulated robotic arm that allows both non-coplanar and non-

isocentric treatments without moving the patient. Currently, CyberKnife does not have access to 

all non-coplanar angles 123 but this engineering challenge may be overcome with a more compact 

linac design, modification to the robotic arm or the treatment room. Celestial Oncology (Santa 

Monica, CA, USA) is currently developing a more compact linac with the complete access to the 

4π Steradian angles around the patient. However, to make the linac head smaller for the robotic 

platform, a more stringent requirement is placed on the MLC form factor. Both the number and 

the travel of the leaves are limited for the compact linac head size, creating a significant challenge 

in attaining both large field-of-view (FOV) and high modulation resolution. A method to achieve 

both goals would significantly increase the versatility of robotic linacs. 

Thus far, 4π radiotherapy is mainly performed with the assumption of isocentric geometry 

and 100 cm source-to-isocenter distance (SID) 120,124, which is the native geometry of the 

ubiquitous C-arm gantry linacs with one degree of rotational freedom during treatment. 

Multiple isocenter treatments on a conventional C-arm linac is cumbersome and potentially 

hazardous due to the increased chance of geometric error and collision. It has been 

performed for large targets when the isocentric geometry cannot provide a sufficiently large 

FOV to cover the entire target, such as breast 125,126, supraclavicular fossa 126, craniospinal 

radiotherapy 127, and etc. 128,129.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/cyberknife
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From robotic linacs, varying the SID and adding the number and locations of isocenters as a 

new degree of freedom appears to be a logical extension of the 4π research due to the 

following considerations. 1. Using a smaller SID would allow a higher MLC modulation 

resolution that is dosimetrically beneficial in highly complex cases. 2. Using a smaller SID 

results in more rapid dose fall-off in the beam direction due to the more prominent inverse 

square effect. 3. The small single FOV can be compensated by using more than one isocenters 

to cover the entire tumor. 4. The treatment efficiency of using more isocenters is 

compensated by the increase in the dose rate at the shorter distance.  On the other hand, 

most beam angles with substantially shorter distances, i.e., 50cm SID, are geometrically 

prohibited on the C-arm gantry.  

In this study, we strategically divide a large target into many smaller targets each with its 

own isocenter, to achieve small FOV beam high-resolution delivery at a shorter distance. A 

many- isocenter planning problem was solved to simultaneously optimize the beams and 

fluence maps. In this study, to determine the dosimetric benefit of many-isocenter planning, 

we adopt the geometry of the new robotic linac that is currently under development at 

Celestial Oncology. However, methods used in this study are generalizable to any radiation 

delivery platforms that have access to large non-coplanar angles, non-isocentric beams, and 

substantially different source-to-tumor distances. 

4.3.2 Methods 

4.3.2.1 Robotic platform model 

Figure 4-8(A) shows the robotic radiotherapy platform under development by Celestial 

Oncology, which reduced the linac head size by using a compact x-band 6MV source and 
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reducing the distance between the X-ray source and the MLC. To study the dosimetry and 

delivery efficiency, the two SIDs are considered: 100 cm and 50 cm. At SID-100, the projected 

MLC leaf width is 1 cm, and the FOV is 20cm by 20cm with a total of 20 leaves per bank. The 

physical size and the number of the leaves were determined based on the fabrication 

practicality and size of the robotic linac head. At SID-50, the projected MLC leaf width is 

0.5cm, and the FOV is 10cm by 10cm. For Head and Neck (H&N) cancer with the planning 

target volume (PTV) up to 20 cm, the target can be fully covered by a SID-100 beam (Figure 

4-8(B)). For SID-50, beams of many isocenters are required to efficiently cover the entire 

target (Figure 4-8(C)). 

 

Figure 4-8 (A) Demonstration of the robotic arm platform, (B) an isocentric SID-100 beam 
that covers the entire target, (C) beams of different isocenters are required to efficiently 
cover the entire target. 

4.3.2.2 Determine isocenter locations 

We use the following method to determine the position of isocenters when the FOV is not 

large enough to cover the entire target. Figure 4-9 shows an illustration of the PTV, bounding 
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box, and isocenters. The bounding box of a target is defined as the smallest cuboid that fully 

covers the entire PTV in the scanner coordinate system. The dimension of the bounding box 

is denoted by [𝐵𝑥, 𝐵𝑦, 𝐵𝑧], and the beam FOV is denoted by [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧]. We first divide the 

bounding box to 𝑁𝑥, 𝑁𝑦, 𝑁𝑧  number of identically sized boxes in the 𝑥, 𝑦, 𝑧  directions 

respectively, where 𝑁𝑤 = ⌈𝐵𝑤/𝐹𝑤⌉, 𝑤 = {𝑥, 𝑦, 𝑧}. (⌈⋅⌉ represents the ceiling operation). For 

each divided box, the isocenter position is set at the center of mass (CoM) of the partial PTV 

within the box. The rationale behind the method is that each isocenter will be ‘in charge’ of 

a partial PTV for which the x, y, and z dimensions are smaller than the nominal beam FOV. 

Note that this method locates a set of isocenters that are adequate to cover the entire PTV, 

but it does not necessarily demand all identified isocenters to be used in the final plan. The 

BOO algorithm, which is discussed in the section 4.3.2.3, determines whether the candidate 

beams and the isocenters are utilized in the final plan. 

 

Figure 4-9 Illustration of the PTV, bounding box, and four isocenters. 

4.3.2.3 Integrated Fluence Map Optimization, Beam Orientation Optimization, and 

isocenter selection. 

The integrated framework for fluence map optimization (FMO), beam orientation 

optimization (BOO), and isocenter selection is formulated as 
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𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
𝒙

  
𝟏

𝟐
 ‖𝑾(𝑨𝒙 − 𝒅)‖𝟐

𝟐 + 𝝀‖𝑫𝒙‖𝟏 + 𝜸∑𝒘𝒃,𝒊
𝒃,𝒊

‖𝒙𝒃,𝒊‖𝟐

𝟏
𝟐      

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨                                       𝒙 ≥ 𝟎,                                           

Equation 4-8 

where 𝑥 is the vectorized fluence map, 𝐴 is the fluence to dose transformation matrix, 𝑑 is 

the vectorized ideal dose distribution, with prescription dose at the PTV and 0 elsewhere. W 

is the diagonal structure weighting matrix. The matrix 𝐷 is the derivative matrix, and 𝜆 is the 

corresponding weighting coefficient. 𝑥𝑏,𝑖  is the vectorized fluence map of beam 𝑏  and 

isocenter 𝑖, and 𝑤𝑏,𝑖 is the beam weighting coefficient. 

In this formulation, the data fidelity term attempts to find the optimal fluence map �̂� such 

that the calculated dose is as close as possible to the ideal dose. The priorities for the 

structures of interest are controlled by the diagonal weighting matrix 𝑊. The second term is 

the total variation (TV) regularization which encourages piecewise continuity of the fluence 

map 130. The amount of smoothness is controlled by 𝜆.  

The third term is the group sparsity term in the form of 𝑙2,1/2  norm penalty, which 

encourages most candidate beams to be inactive. The individual beam weights 𝑤𝑏 serve as a 

normalization to correct for the intrinsic norm differences among candidate beams, which 

has been widely used in compressed sensing 131. The individual beam weights are calculated 

by 𝑤𝑏,𝑖 = (
mean(𝐴𝑃𝑇𝑉

𝑏,𝑖 1⃗⃗ )

√𝑛𝑏,𝑖
)

1/2 

, where 𝑛𝑏,𝑖 is the number of beamlets in beam 𝑏 for isocenter 𝑖, 

and 𝐴𝑃𝑇𝑉
𝑏,𝑖  is the fluence to dose transformation matrix within the PTV, for beam 𝑏 directed at 

isocenter 𝑖. The parameter 𝛾 controls the global sparsity level, which is tuned automatically 

to achieve the desired number of beams. At every 1000 iterations, the current number of 
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selected beams is checked and compared with the desired number of beams. The value of 𝛾 

is increased by a factor of 1.5 if there are more beams selected than required or decreased 

by a factor of 1.5 if there are not enough beams selected. The optimization problem was 

solved with FISTA 132.  

4.3.2.4 Evaluation 

The efficacy of the optimization algorithm was tested on 10 consecutive H&N patients who 

have been diagnosed with oropharyngeal cancer. The patients were CT-simed with 

immobilization mask. The contours and prescription follow 2018 American Society of 

Therapeutic Radiation Oncology (ASTRO) head and neck treatment guideline. 

Patient 
PTV 

volume 

Bounding Box (cm) Isocenter # Sampled beam # 
Candidate 

beam # 

x y z SID-100 SID-50 SID-100 SID-50 
SID-
100 

SID-
50 

H&N #1 610.5 9.3 14.3 15.8 1 4 1162 4648 776 2785 

H&N #2 724.6 10.8 16 18.3 1 8 1162 2320 826 1440 

H&N #3 947 10 17 22.3 2 12 2324 3480 1579 2117 

H&N #4 785 10.3 15.5 19 1 8 1162 2320 891 1452 

H&N #5 686.4 10.5 14.5 18.3 1 8 1162 2320 824 1422 

H&N #6 787 10.5 16.5 17.5 1 8 1162 2320 842 1443 

H&N #7 352.7 8.5 8.5 18.5 1 2 1162 2324 758 1315 

H&N #8 555.7 9.8 13.3 14.8 1 4 1162 4648 906 2904 

H&N #9 271.3 8.8 6.8 17 1 2 1162 2324 781 1385 

H&N #10 620.5 10.3 15 14 1 8 1162 2320 685 1278 

Table 4-7 PTV volumes, PTV bounding box dimensions, number of isocenters, number of 
sampled beams, and number of candidate beams (non-colliding beams) for all patients. 

Table 4-7 summarizes the PTV volumes, PTV bounding box dimensions, number of 

isocenters, number of sampled beams, and number of candidate beams (non-colliding 

beams) for all patients. For cases with fewer than or equal to four isocenters, for each 

isocenter, 1162 beams were uniformly sampled in the 4π space with 6∘ of separation. For 

cases with more than 4 isocenters, to reduce the computation cost of both dose calculation 

and optimization, for each isocenter 290 beams were uniformly sampled with 12∘  of 



 

103 

separation, and the angular sampling of adjacent isocenters differ by 6∘ to compensate the 

coarse sampling. For example, if the angular sampling of one isocenter is {0∘, 12∘, 24∘, … }, 

then the angular sampling of the adjacent isocenter is {6∘, 18∘, 30∘, … }. A computer-aided-

design (CAD) model of a robotic arm platform and a 3D optically reconstructed surface of a 

human subject were utilized to determine the patient-specific collision-free space 133. After 

excluding the colliding beams, the number of candidate beams for each case can be found in 

Table 4-7.  

The beamlet dose calculation used a convolution/superposition code with a 6 MV x-ray 

polyenergetic kernel, as described in our previous publication 134. The beamlet resolution at 

the isocenter was 0.5×0.5 cm2 for SID at 50 cm and 1×1 cm2 for SID at 100 cm, adjusting for 

the beam divergence effect. The dose array resolution was 0.25×0.25×0.25 cm3.  

As a sensitivity analysis, we compared the SID-50 plan quality against the SID-100 with the 

number of selected beams ranging from 15 to 50, based on the corresponding data fidelity 

values. The plans with 20 beams were used for further evaluation on plan efficiency and plan 

quality.  

The delivery time was estimated for both a hypofractionation scenario (assuming 5 

fractions), and a conventional fractionation scenario (assuming 30 fractions), for all 20-beam 

plans. The estimation includes the times for MLC leaf travel, x-ray delivery, and Linac head 

travel. To estimate the MLC leaf travel time, the fluence map was first stratified into a finite 

number of discrete levels, and then sequenced using a reducing level method 135. Each 

sequenced segment was further divided into a few deliverable segments, and all segments 

within one beam were reordered to reduce MLC leaf motion by solving a traveling salesman 
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problem (TSP) 136. The same algorithm was used to reorder the beams and minimize the 

amount of Linac head travel. Note that the stratification was performed only for evaluating 

delivery efficiency, and all dosimetric evaluations were based on the theoretical dose from 

optimization.  

In the efficiency estimation, the following assumptions on the mechanical specifications 

were used:  

1. The MLC travel speed is at 2.5cm/s at 100cm from the source, and 1.25cm/s at 

50cm. 

2. The Linac head rotation speed is 1 rpm with respect to the isocenter according to 

the International Electrotechnical Commission (IEC) safety standard. 

3. The effective dose rate is 500MU/min at 100cm from the source accounting for 

small field output factor and flattening-filter-free dose heterogeneity, and 

2000MU/min at 50cm from the source. (The maximum dose rate of the robotic linac 

is 1000MU/min at 100cm from the source in the flattening filter free mode.) 

PTV statistics including PTV D95, D98, D99, maximum dose (Dmax), and PTV homogeneity 

(defined as 
D95

D5
) were evaluated. The maximum dose is defined as D2 (the dose at 2% of the 

structure volume), following the ICRU-83 report 101. The dose conformity, R50, and integral 

dose were also assessed to quantify the dose conformity, compactness, and total spillage, 

respectively. The dose conformity is defined as the ratio between the patient volume 

receiving 100% or more of the prescription dose and the PTV volume. The R50 is defined as 

the 50% isodose volume divided by the target volume. For OAR, the Dmax and mean dose 

(Dmean) were obtained. Wilcoxon signed-rank test was conducted to determine whether a 
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significant difference exists between the SID-50 and the SID-100 for all PTV and OAR 

statistics. 

4.3.3 Results 

Figure 4-10 shows the final dose fidelity values of SID-100 and SID-50 plans, varying the 

number of selected beams between 15 and 50. The average optimization runtime is 25 

minutes for 15-beam plans, and 22 minutes for 50-beam plans, on an intel Xeon E5-2670 

CPU with 8 physical cores and a base clock speed of 2.6 GHz. For each patient, the dose 

fidelity values were normalized by the average dose fidelity values of all plans associated 

with that patient. The plot with error bars shows a summary of all patients. Overall, SID-50 

plans achieved lower dose fidelity value compared with the SID-100 plans using the same 

number of beams, showing superior plan quality to the SID-100 plans. The gap between SID-

50 and SID-100 widens with an increasing number of beams.  

Each patient plot is titled with the patient number, the number of isocenters for the SID-50 

plan, and the number of isocenters for the SID-100 plan. For example, the first patient plot is 

entitled: ‘#1: 4(50), 1(100)’, showing that patient #1 has four isocenters for the SID-50 plan 

and one isocenter for the SID-100 plan. For small tumors with only two isocenters (#7, #9) 

or four isocenters (#1, #8) in the SID-50 plans, SID-50 achieves an unquestionable advantage 

among all plans. For medium-sized tumors that require 8 isocenters in the SID-50 plans (#2, 

#4, #5, #6, #10), SID-50 shows clear advantage with 20 or more beams. For the large tumor 

that requires 12 isocenters (#3) in SID-50 and two isocenters in SID-100, the SID-50 is 

comparable to SID-100 with fewer than 20 beams, but the SID-50 plan is increasingly better 

with more than 20 beams. 
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Figure 4-10 Final data fidelity value vs the number of beams. The plot with shaded error bar 
shows a summary of all patients. Each patient plot is titled with the patient number, the 
number of isocenters for the SID-50 plan, and the number of isocenters for the SID-100 plan. 
For example, the first patient plot is entitled: ‘#1: 4(50), 1(100)’, showing that the patient #1 
has four isocenters for the SID-50 plan, and one isocenter for the SID-100 plan. 

Figure 4-11 shows the estimated delivery time for all 20-beam plans assuming (A) 5 fractions 

and (B) 30 fractions for all patients. The delivery time includes three modules: MLC travel 

time, MU delivery time, and linac head travel time, among which the latter takes the least 

amount of time, with only around 4s per beam. On average, for a conventional fractionated 

treatment plan (30 fractions), it takes 14 minutes to deliver a SID-50 plan, and 9 minutes to 

deliver a SID-100 plan. The longer delivery time of SID-50 is attributed to a longer MLC travel 

time, which is the most time-consuming module in a 30-fraction treatment. Due to the higher 

modulation capability of SID-50, the corresponding fluence map is more complicated, 

requiring more MLC segments in each beam and a longer MLC leaf travel time. For 
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hypofractionation (or Stereotactic Body Radiation Therapy (SBRT)), SID-50 delivery takes 

19 minutes, and SID-100 delivery takes 18 minutes. In SBRT, each fraction delivers a greater 

dose, and the beam-on time is more dominant. The dose rate of SID-50 is four times that of 

SID-100 due to the inverse square effect. Therefore the ‘beam-on’ time of SID-50 is 

substantially shorter. The total delivery time of SID-50 and SID-100 are comparable for 

SBRT.  

 

Figure 4-11 Delivery time estimation assuming (A) 5 fractions and (B) 30 fractions for all 20-
beam plans.  

Figure 4-12 shows the selected beams in the 20-beam plans of all patients. Note that not all 

isocenters were utilized in the final plan. For example, for patient #5, the isocenter on the 

upper, right, and posterior side of the tumor is not utilized. This is partly due to that there 

are enough beams coming from the left side of the patient, and that the partial PTV of the 

isocenter has a relatively lower prescription dose. The omission of certain isocenters for 

efficient delivery is one of the advantages of the integrated optimization framework. Such a 
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decision would be unattainable by a human planner or a greedy algorithm based on only the 

patient anatomy. 

 

Figure 4-12 Selected beams in the 20-beam plans of all patients. 

Figure 4-13 shows the isodose colorwash of SID-100 and SID-50 for two patients (#1 and #2, 

having 4 and 8 isocenters in the SID-50 plan, respectively). Overall, SID-50 achieved a more 



 

109 

compact dose distribution. For patient #1, as indicated by the red arrows on the transverse 

view and coronal view, the SID-50 plan formed a more pronounced dose valley between the 

two separate PTVs, demonstrating the advantage of higher modulation resolution. In 

addition, the dose to the spinal cord and mandible was substantially reduced compared with 

SID-100. For patient #2, the isodose shows reduced low dose spillage in the brain and 

reduced high dose spillage to the nearby critical organs such as the spinal cord and trachea. 

 

Figure 4-13  Isodose colorwash of 20-beam SID-100 and SID-50 plans for two patients (#1 
and #2, having 4 and 8 isocenters in the SID-50 plan respectively).   
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Figure 4-14 DVH comparison of the 20-beam SID-100 plans (solid) and SID-50 plans (dotted) 
for patient #1 - #5. 
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Figure 4-15 DVH comparison of the 20-beam SID-100 plans (solid) and SID-50 plans (dotted) 
for patient #6 - #10. 
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Figure 4-14 and Figure 4-15 show the DVH comparison of the 20-beam SID-100 plans (solid) 

and SID-50 plans (dotted). SID-50 improved PTV coverage, reduced hot spots within PTV, 

and reduced mean and max dose for most OARs. For patient #1, the dose to the left parotid, 

mandible, and spinal cord was substantially reduced in the SID-50 plan. For patient #2, SID-

50 markedly improved sparing of the dose-limiting organs, such as the left submandibular 

gland, right parotid gland, left parotid gland, and trachea.  

Figure 4-16 shows the PTV statistics, including homogeneity, D99, D98, D95, and D2, for all 

PTVs (29 PTVs in total). The same PTV in the SID-50 plan (orange) and the SID-100 plan 

(blue) are connected with lines. Overall, SID-50 achieved comparable PTV D95, D98, D99, 

improved PTV homogeneity, and reduced hot spot within the target, indicated by the lower 

D2 (maximum dose) values.  

Figure 4-17 shows the dose conformity, R50, and integral dose of all plans using 20 beams. 

The dose conformity was comparable between SID-50 and SID-100, but SID-50 reduced R50 

by 5.3% and integral dose by 9.6%, indicating a remarkable improvement in dose 

compactness and overall low dose spillage. 

Figure 4-18 shows the mean and maximum dose for OAR overall and selected critical OARs 

including parotid gland, larynx, and mandible, for all plans using 20 beams. On average, the 

SID-50 plan reduced the [Dmean, Dmax] by [2.09 Gy, 1.19 Gy] for OAR overall, [3.05 Gy, 0.04 

Gy] for parotid gland, [3.62 Gy, 5.19 Gy] for larynx, [3.27 Gy, 1.10 Gy] for mandible. 

Table 4-8 reports the Wilcoxon signed rank test of SID-100 and SID-50 for all PTV and OAR 

statistics. SID-100 and SID-50 are significantly different (p<0.05) in PTV homogeneity, PTV 

maximum dose (D2), R50, Integral dose, OAR max and mean dose. For example, the Wilcoxon 
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signed rank test indicated that the R50 of SID-50 (M=2.254; SD=0.256) was statistically 

significantly lower than the R50 of SID-100 (M=2.381; SD=0.236), p < 0.05. 

 

Figure 4-16 PTV statistics comparison of the 20-beam SID-100 (blue) and SID-50 (orange), 
for all PTVs (29 PTVs in total). The same PTV of the two plans are connected with lines. D2, 
D95, D98, and D99 are normalized by the prescription dose.  

 

Figure 4-17 Dose conformity, R50, and integral dose for all patients (#1-#10). All plans have 
20 beams in total. The SID-100 plan (blue) and the SID-50 plan (orange) of the same patient 
are connected with lines. 
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Figure 4-18 Mean and maximum dose for OAR overall and selected critical OARs including 
parotid gland, larynx, and mandible, for all patients (#1-#10). All plans have 20 beams in 
total. The SID-100 plan (blue) and the SID-50 plan (orange) of the same patient are 
connected with lines. 

Table 4-8 Wilcoxon signed rank test of SID-100 and SID-50 for the PTV and OAR statistics in 
the 20-beam plans. 

To demonstrate the benefits of using non-coplanar beams, we also compared the 4𝜋 plans 

with the coplanar plans for patient #1 and #2. Figure 4-19 show the DVH comparison of the 

20-beam 4𝜋 IMRT plans (solid) and 20-beam SID-100 coplanar IMRT plans (dotted) for patient 

#1 and #2. With similar PTV statistics, 4𝜋 plans substantially reduced the dose to OARs. Figure 

4-20 show the DVH comparison of the 20-beam 4𝜋  IMRT plans before (solid) and after 

Statistics 
p-

value 
Signed 
rank 

Number 
of 

samples 

SID-100 SID-50 
( SID-50) - ( 

SID-100) 
Mean STD Mean STD Mean STD 

PTV 
Homogeneity 

0.003 85 29 0.901 0.045 0.906 0.045 0.005 0.009 

PTV D99 0.062 131 29 0.958 0.022 0.96 0.021 0.002 0.006 
PTV D98 0.749 202 29 0.974 0.019 0.975 0.016 0.001 0.007 
PTV D2 <.001 380 29 1.127 0.062 1.118 0.061 -0.009 0.01 

Dose 
Conformity 

0.625 33 10 1.194 0.062 1.19 0.069 -0.003 0.017 

R50 0.006 53 10 2.381 0.236 2.254 0.256 -0.127 0.083 
Integral Dose 0.002 55 10 139.377 38.481 126.02 36.139 -13.357 3.911 
OAR Dmean 0.002 55 10 17.822 3.727 15.729 3.273 -2.094 0.894 
OAR Dmax 0.002 55 10 34.515 6.317 33.325 6.173 -1.19 0.874 
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(dotted) the stratification and sequencing, for both SID-50 and SID-100 plans of patient #1. 

The stratification and sequencing had minimal effect on the dosimetry with the integrated 

optimization approach. 

 

Figure 4-19 DVH comparison of the 20-beam SID-100 4𝝅 IMRT plans (solid) and 20-beam 
SID-100 coplanar IMRT plans (dotted) for patient #1 and #2. 
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Figure 4-20 DVH comparison of the 20-beam 4𝝅 IMRT plans before (solid) and after (dotted) 
the stratification and sequencing, for both SID-50 and SID-100 plans of patient #1. 

4.3.4 Discussion 

Recent progress in non-coplanar radiotherapy reveals significant dosimetric improvement 

from the coplanar IMRT and VMAT 39,108,110–114,137–139. But the clinical translation is hindered 

by the difficulty of delivering non-coplanar beams on the conventional C-arm platform. 

CyberKnife, which mounts the linac head on an articulated robotic arm, was expected to 

improve the dosimetry substantially with extensive usage of the non-coplanar space. 

However, besides the unclear dosimetric benefit and low treatment delivery efficiency due 

to the lack of posterior beams and the limitation from its heuristic optimization algorithm 
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140, CyberKnife is limited in its versatility to treat large tumors. Therefore, the new robotic 

linac platform currently under development must overcome the following three inter-

correlated challenges: 1. A more effective inverse optimization algorithm to create a superior 

quality treatment plan that can be efficiently delivered. 2. More compact linac head and 

modified robotic arm to access all 4π steradian angles. 3. The ability to treat large tumors 

without sacrificing efficiency and modulation resolution. Our previously developed 

optimization algorithm for 4π IMRT on the C-arm platform paved the foundation to solve the 

first challenge141. The second challenge can be overcome by the development of a more 

compact 6MV linac and using flexible distances between the source and the MLC. Here, we 

describe a solution to the third problem, which is to solve an integrated many-isocenter 

planning problem. The term “many-isocenter” is used based on two considerations. First, it 

provides the necessary differentiation from conventional “multiple-isocenter” treatment 

planning without integrated isocenter selection, beam orientation, and fluence map 

optimization. Second, the platform affords a significant increase in the isocenter number. 

Twelve isocenters were used in one case but more is possible, adding a new degree of 

freedom to static beam IMRT and non-coplanar modulated arc therapy 39 optimization. In 

the current implementation, the new degree of freedom affords both the large tumor 

coverage and high-intensity modulation resolution. With the same number of beams, the 

many-isocenter plans significantly improved the dose compactness as indicated by R50 and 

reduced both OAR and integral doses, thereby achieving overall superior plan quality to the 

single isocenter plans delivered at twice the distance.  

The plan efficiency comparison depends on the type of treatment. For regular fractionated 

radiotherapy, 20-beam SID-50 plans are on average 36% more time-consuming than the SID-
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100 plans with the same number of beams. For SBRT patients, assuming both plans have the 

same number of beams, the delivery time of SID-50 and SID-100 plan is comparable, and SID-

50 has evident dosimetric advantages. As shown by Figure 4-10, there is space for further 

dosimetric improvement by allowing more beams if the dosimetry is prioritized over the 

delivery efficiency. Therefore, our method offers a solution to a basic conflict between the 

field-of-view and the intensity modulation resolution in robotic radiotherapy, and to an 

extent, C-arm gantry radiotherapy. By resolving this conflict, both high MLC resolution and 

large FOV can be achieved without sacrificing delivery efficiency.  

In the past, numerous studies have reported stochastic and heuristic algorithms for BOO in 

IMRT, such as genetic algorithms 142,143, simulated annealing 144, and column generation 145. 

Among them, the column generation algorithm has been extensively used for recent 4π 

radiotherapy research 114,124,146–148. Column generation is a greedy method that iteratively 

adds new beams to the beam pool based on previously selected beams. A practical limitation 

is that the runtimes do not scale well with the number of beams to be selected, because it 

requires solving a larger optimization subproblem as more beams are added to the selected 

beam pool 141. Although coplanar IMRT only requires 7 to 9 beams, it has been shown that 

the use of more beams is desirable for non-coplanar delivery (Dong et al., 2013), and 

possibly, even more, should be used for non-coplanar treatment with many isocenters. In 

this study, we used a group-sparsity regularized beam selection algorithm, which starts with 

all candidate beams and gradually reduces the number of active beams until the desired 

number is reached. This non-greedy approach is insensitive to the desired number of beams.  

Due to the computation challenge of dose calculation/optimization of the vast combination 

of all possible beams, this study is restricted to SID of 50cm and 100cm, and the number of 
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isocenter candidates is heuristically determined. In a more general many-isocenter 

optimization scenario, both SID and location of the isocenters could be optimized for greater 

dosimetric and delivery efficiency versatility. New mathematical paradigms may be needed 

to solve the optimization problem that is orders of magnitude larger. 

4.3.5 Summary 

This study investigates the feasibility of 4π radiotherapy using many isocenters on a robotic 

platform to treat large targets with reduced SID, which effectively increased the modulation 

resolution. Without sacrificing delivery efficiency, the many-isocenter plans delivered at 

shorter SID significantly improved dose compactness and OAR sparing compared with large 

FOV plans delivered at a longer SID. The group sparsity-based beam selection algorithm is 

applicable to the following two studies in section 4.4 and 4.5 to optimize collimator angles 

and gantry/couch angles, respectively. 

4.4 VMAT optimization with dynamic collimator 
rotation  

4.4.1 Introduction 

In the current VMAT implementation, the collimator angle is kept static in each arc22,149, 

which we term static collimator VMAT (SC-VMAT) for clarity. The large-scale VMAT 

optimization problem is solved by progressively increasing the beam angle sampling 

resolution until the full resolution, typically 2-degree separation between beams, is achieved. 

This progressive sampling approach is computationally straightforward to reach a good 

balance between optimization speed and plan deliverability, generating deliverable plans 
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that meet the mechanical constraints of the multi-leaf collimator (MLC). On the other hand, 

there are several intrinsic limitations with this method. First, the greedy progressive 

sampling method is heavily influenced by the initial coarse resolution optimization results 

and can be trapped in an undesirable local minimum solution. Second, the interpolation 

between adjacent beams can lead to undesired struggles when there is a large change in the 

target projection shape with gantry rotation94. Third, optimization parameter tuning can be 

tricky as the weightings in different resolution stages of the optimization have a very 

different impact on the plan quality. Since the plan weightings in various stages of 

optimization are not easily traceable, exact reproduction of a plan can be difficult, even given 

the final plan optimization parameters. Last, despite its original promise of single arc 

optimization, two or more arcs are often used to improve the optimization results. To 

overcome these limitations, we developed a level-set based direct aperture optimization 

(DAO) for SC-VMAT35. In this approach, the fluence maps of individual beam directions are 

segmented using its level set function, and the entire VMAT optimization problem is 

efficiently solved in full angular resolution without downsampling. The efficient solution is 

enabled by a novel hybrid proximal primal-dual algorithm. The new single arc VMAT 

algorithm was shown to outperform the original progressive sampling VMAT method using 

two arcs. An important motivation of the original two-arc VMAT method is the dosimetric 

benefit of collimator rotation between arcs. By rotating the collimator a typically 90°, the 

MLC moving directions are orthogonal to each other between the two arcs. Although VMAT 

optimization is performed based on symmetric square beamlets, the two sides of the square 

are defined differently by the MLC leaf width and traveling motion, respectively, and are 

effectively asymmetric. The orthogonal arrangement of the two-arc VMAT MLC is able to 
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mitigate the asymmetry and improve the dose distribution150. However, in this conventional 

approach, the collimator rotation is used as a user-selected constant instead of an 

optimization parameter that allows greater freedom to choose more than two collimator 

rotation angles. Studies151 have shown an improved dose profile by using an adjusted 

collimator angle at each section of the arc in a full-arc VMAT with 4 sections, as compared 

with a full-arc SC-VMAT plan. In a heuristic approach to utilize the freedom of collimator 

rotation within the arc, Zhang et al.152 developed a collimator trajectory selection paradigm 

for VMAT in paraspinal SBRT that aligns the collimator angle with the primary cord 

orientation. This study shows that by simply aligning the collimator with the target shape, a 

better dose distribution can be achieved. More recently, a beam’s-eye-view approach was 

also proposed to guide the aperture selection for rotational delivery153. However, for sites 

with complex target and OAR sparing requirements, the geometrical approach is inadequate. 

Instead, a dose domain optimization approach is necessary to select the optimal collimator 

angle for each gantry angle while still maintaining the mechanical feasibility. In this study, 

we introduce a novel way of incorporating the dynamic collimator rotation into the single 

arc non-progressive sampling VMAT framework for dynamic collimator rotation enabled 

VMAT (DC-VMAT). 

4.4.2 Methods 

A flowchart of the proposed DC-VMAT optimization algorithm is shown in Figure 4-21. The 

optimization alternates between DAO and collimator angle selection (CAS). The DAO 

includes 3 modules, which solves the DAO optimization problem with respect to the fluence 

map 𝑓𝑏𝛼 , the fluence intensity 𝑐𝑏𝛼  within an aperture, and the aperture variable 𝑢𝑏𝛼 
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respectively. Each iteration of the DAO runs through the 3 modules and optimizes one 

optimization variable, while holding the other two variables constant. This process is 

repeated until convergence. The CAS is performed on a simplified Dijkstra’s map154, 

generated from the result of DAO. The selected collimator angle 𝑃𝑏𝛼 is translated into the 

DAO in the next iteration, penalizing unselected candidate beams and encouraging 

development of the fluence map for selected beams. Formulations of DAO and CAS are 

presented in sections 4.4.2.1 and 4.4.2.2, and the corresponding algorithms are discussed in 

section 4.4.2.3. 

 

Figure 4-21 Flowchart of DC-VMAT optimization 

4.4.2.1 Direct Aperture Optimization 

The proposed DC_VMAT DAO formulation takes the following form: 
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𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆
{𝒇𝒃𝜶, 𝒄𝒃𝜶, 𝒖𝒃𝜶}𝒃,𝜶=𝟏

𝒏𝒃,𝒏𝜶   
𝟏

𝟐
 ‖𝑾((∑∑𝑨𝒃𝜶𝒇𝒃𝜶

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

)− 𝒅)‖

𝟐

𝟐

⏟                        
𝒇𝒊𝒅𝒆𝒍𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

+∑∑(𝝀𝟏‖𝑫𝟏𝒃𝜶𝒇𝒃𝜶‖𝟏
+ 𝝀𝟐‖𝑫𝟐𝒃𝜶𝒇𝒃𝜶‖𝟏

)⏟                      
𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 𝑻𝑽 𝒕𝒆𝒓𝒎 𝒐𝒏 𝒇

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+
𝟏

𝟐
∑∑(𝜸𝟏 ‖√𝒅𝒊𝒂𝒈(𝒖𝒃𝜶)(𝒇𝒃𝜶 − 𝒄𝒃𝜶)‖

𝟐

𝟐
+ 𝜸𝟐 ‖√𝒅𝒊𝒂𝒈(𝟏 − 𝒖𝒃𝜶)𝒇𝒃𝜶‖

𝟐

𝟐
)

⏟                                          
𝒔𝒊𝒏𝒈𝒍𝒆 𝒔𝒆𝒈𝒎𝒆𝒏𝒕 𝒕𝒆𝒓𝒎

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+∑∑(𝒈𝟏‖𝑫𝟏𝒃𝜶𝒖𝒃𝜶‖𝟏
+ 𝒈𝟐‖𝑫𝟐𝒃𝜶𝒖𝒃𝜶‖𝟏

)⏟                      
𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 𝑻𝑽 𝒕𝒆𝒓𝒎 𝒐𝒏 𝒖

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+ 𝜸𝟑∑∑𝑺𝒃𝜶(𝟏 − 𝑷𝒃𝜶)‖𝒇𝒃𝜶‖𝟐⏟              
𝒈𝒓𝒐𝒖𝒑 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+ 𝒈𝟑 ‖𝑫𝑷𝒖‖𝟏⏟                     
𝒂𝒑𝒆𝒓𝒕𝒖𝒓𝒆 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑓𝑏𝛼 ≥ 0, 𝑐𝑏𝛼 ≥ 0, 0 ≤ 𝑢𝑏𝛼 ≤ 1, 𝑏 = 1,2, . . , 𝑛𝑏 , 𝛼 = 1,2, . . , 𝑛𝛼           

              𝑢 = [𝑢𝑏=1 𝛼=1
𝑇 𝑢𝑏=1 𝛼=2

𝑇 ⋯ 𝑢𝑏=1 𝛼=𝑛𝛼
𝑇 𝑢𝑏=2 𝛼=1

𝑇 𝑢𝑏=2 𝛼=2
𝑇 ⋯ 𝑢𝑏=𝑛𝑏 𝛼=𝑛𝛼

𝑇 ]
𝑇

 

Equation 4-9 

where 𝑓𝑏𝛼, 𝑐𝑏𝛼 and 𝑢𝑏𝛼 are the optimization variables. Gantry angles are indexed by 𝑏, which 

ranges from 1 to nb, collimator angles are indexed by 𝛼, which ranges from 1 to nα. 𝑓𝑏𝛼 is the 

vectorized fluence map of the candidate beam at gantry angle 𝑏 and collimator angle 𝛼. 𝑐𝑏𝛼 

is a scalar quantity and only has one value per gantry angle and collimator angle, which is 

the fluence intensity that 𝑓𝑏𝛼  approaches within an aperture. 𝑢𝑏𝛼  is the aperture variable, 

defined as 1 where the aperture exists and 0 elsewhere.  

The fluence to dose transformation matrix is denoted by 𝐴𝑏𝛼, and the desired dose 𝑑0, is set 

as the prescription dose at the PTV and zero elsewhere. The weighting matrix 𝑊 is a diagonal 

matrix, with weightings for structures of interest as diagonal elements. The derivative 

matrices, 𝐷1𝑏𝛼  and 𝐷2𝑏𝛼 , take the derivative of the fluence map 𝑓𝑏𝛼 and aperture 𝑢𝑏𝛼 in both 

directions parallel and orthogonal to the MLC leaf movement. Pbα is a scalar that equals to 1 
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for selected on-beams (selected gantry and collimator angle) from collimator angle selection 

(CAS), and 0 elsewhere. Sbα weighs the group sparsity term for each candidate beam to avoid 

over-penalizing beams with long radiological pathlengths to the target by normalizing based 

on the 𝐴𝑏𝛼 matrix.  The definition of 𝑆𝑏𝛼 is 

𝑆𝑏𝛼 =
𝑠𝑢𝑚(𝐼𝑃𝑇𝑉𝐴𝑏𝛼1⃗ )

√𝑛𝑏𝛼
 

where IPTV is a diagonal indicator matrix for PTV, with its diagonal elements equal to 1 for 

voxels in PTV and 0 elsewhere, and nbα is the number of beamlets with a trajectory that 

intersects PTV in beam at gantry angle b and collimator angle α. u is a concatenation of the 

aperture variables ubα at all gantry angles and collimator angles. The derivative matrix DP 

takes derivative on the apertures of adjacent selected on-beams. 

In Equation 4-9, the data fidelity term minimizes the differences between the calculated dose 

and the desired dose 𝑑. The anisotropic total variation (TV) regularization on fluence map 

𝑓𝑏𝛼 encourages piecewise continuity of the fluence maps within each beam130. 𝜆1 and 𝜆2 are 

hyperparameters controlling the weightings of the TV regularization. A balance between 

dose fidelity and fluence map continuity improves final dose profile. The single segment term 

pushes 𝑓𝑏𝛼  towards 𝑐𝑏𝛼  where the aperture 𝑢𝑏𝛼  is 1, and towards 0 where ubα  is 0. It 

encourages fluence map to be a constant within the aperture of each beam, and 0 elsewhere. 

By weighing this term heavily, the optimizer forces only one aperture segment per beam. 

The anisotropic TV term on aperture variable 𝑢𝑏𝛼  encourages intact aperture shape and 

penalizes holes in the aperture. The group sparsity term is a 𝑙2,1  norm penalty, which 

promotes group sparsity in the fluence map 𝑓𝑏𝛼 and inactivates most of candidate beams. 

Note that this term is controlled by 𝑃𝑏𝛼, which only enforces penalty on candidate beams that 
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were not included as on-beams from CAS. The aperture continuity term regulates leaf 

movement by penalizing differences of apertures between adjacent selected on-beams. 

4.4.2.2 Collimator angle selection 

Collimator angle is selected by choosing the shortest path on the simplified Dijkstra’s graph. 

The graph contains 𝑛𝛼 ∗ 𝑛𝑏 nodes, where each node cost is associated with a candidate beam. 

The node cost 𝑁𝐶(𝑏, 𝛼) for the candidate beam with gantry angle 𝑏 and collimator angle 𝛼 

depends on 𝑓𝑏𝛼 , the fluence map from DAO at the current iteration. The formulation of 

𝑁𝐶(𝑏, 𝛼) is given by 

𝑁𝐶(𝑏, 𝛼) =  
1

2
 ‖𝑊(𝐴𝑏𝛼𝑓𝑏𝛼 − 𝑑)‖2.

2  

Equation 4-10 

Candidate beams that correspond to dose contribution closer to the desired dose 

distribution will be assigned with lower node costs. By finding the shortest path on the 

Dijkstra’s graph, optimal candidate beams are selected. 

The edge costs between every two nodes enforce constraints on trajectory selection. The 

edge cost between (b1, α1) and (b2, α2) is defined as 

𝐸𝐶((𝑏1, 𝛼1), (𝑏2, 𝛼2))

=  {
 0       𝑖𝑓  𝑏2 − 𝑏1 = 1  𝑎𝑛𝑑  𝑚𝑖𝑛(‖𝛼1 − 𝛼2‖, 180° − ‖𝛼1 − 𝛼2‖) < 𝛼0
∞                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

 

Equation 4-11 

Equation 4-11 ensures that the collimator angles of adjacent selected on-beams are within 

collimator rotation speed limits (controlled by 𝛼0), and that only one collimator angle is 

selected per gantry angle. The selected on-beams are denoted by 𝛼𝑠ℎ𝑜𝑟𝑡 , a vector with 𝑛𝑏 
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elements, and each element 𝛼𝑠ℎ𝑜𝑟𝑡(𝑏) represents the selected collimator angle for gantry 

angle 𝑏, ranging from the first gantry angle (𝑏 = 1) to the last gantry angle (𝑏 = 𝑛𝑏). 

Even after regularization using the group sparsity term, there can be multiple collimator 

angles co-existing in some gantry angles. To allow multiple collimator angles, a few ‘slow 

beams’ are selected apart from the shortest path 𝛼𝑠ℎ𝑜𝑟𝑡 on the Dijkstra’s Map. These slow 

beams {𝑏1, 𝑏2,⋅⋅⋅, 𝑏𝑁} are chosen as the gantry angles that correspond to the 𝑁 lowest sum-

node-costs, which is defined as 

𝑆𝑁𝐶(𝑏) = ∑𝑁𝐶(𝑏, 𝛼)

𝑛𝛼

𝛼=1

− 𝑁𝐶(𝑏, 𝛼𝑠ℎ𝑜𝑟𝑡(𝑏))  

When delivering these ‘slow beams’, the gantry slows down to allow a full cycle of collimator 

rotation. 

4.4.2.3 Algorithm 

4.4.2.3.1 Direct Aperture Optimization using FISTA 

The algorithm that we use to solve the DAO in Equation 4-9 cycles among 3 modules, each of 

which minimizes with respect to one block of variables (either 𝑓, 𝑐, or 𝑢) while holding the 

other variables constant. Within each module, the optimization problem is solved using 

FISTA 27,155. The Huber penalty156 was used as a smooth approximation of the l1 norm to 

facilitate the application of FISTA. 

4.4.2.3.2 Collimator Angle Selection: Dijkstra’s Algorithm 

Collimator angles are selected by choosing the shortest path on a simplified Dijkstra’s graph 

with 𝑛𝛼  rows and 𝑛𝑏  columns, including 𝑛𝛼 ∗ 𝑛𝑏  nodes with node costs and edge costs 

defined in equation (2) and equation (3). Equation (3) ensures that the shortest path is 
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chosen so that it starts from the first column (𝑏 = 1) and ends at the last column (𝑏 = 𝑛𝑏), 

and that only one node is selected per column. Algorithm 2 presents the graph optimization 

algorithm to find the shortest path αshort on the simplified Dijkstra’s graph with such layered 

structure of rows and columns. 𝛼𝑠ℎ𝑜𝑟𝑡  will be a vector with 𝑛𝑏  elements denoting the 

selected collimator angle for each gantry angle.  

Once 𝛼𝑠ℎ𝑜𝑟𝑡  is chosen, the sum-node-costs are evaluated based on equation (4), and slow 

beams are selected. 𝑃𝑏𝛼  is assigned to be 1 for any selected candidate beams and 0 

elsewhere. This variable will be utilized in DAO to discourage the development of any 

unselected beams. 

Simplified Dijkstra’s algorithm  

Initialize the graph with each node 𝑮(𝒃,𝜶) ≔ ∞  
 𝑮(𝟏,𝜶) ≔ 𝑵𝑪(𝟏, 𝜶) 
for  𝒃 = 𝟏, 𝟐,… , 𝒏𝒃 − 𝟏  

      for 𝜶 = 𝟏, 𝟐,⋅⋅⋅, 𝒏𝜶 

            𝑮(𝒃 + 𝟏, 𝜶) ≔
𝒎𝒊𝒏
𝜶′

 𝑮(𝒃,𝜶′) + 𝑵𝑪(𝒃 + 𝟏, 𝜶) + 𝑬𝑪((𝒃,𝜶′), (𝒃 + 𝟏, 𝜶)) 

            𝜶𝒕(𝒃 + 𝟏, 𝜶) ≔
𝒂𝒓𝒈𝒎𝒊𝒏

𝜶′
 𝑮(𝒃,𝜶′) + 𝑵𝑪(𝒃 + 𝟏, 𝜶) + 𝑬𝑪((𝒃,𝜶′), (𝒃 + 𝟏, 𝜶)) 

     end for 
end for 

 𝜶𝒔𝒉𝒐𝒓𝒕(𝒏𝒃) ≔
𝒂𝒓𝒈𝒎𝒊𝒏

𝜶′
 𝑮(𝒏𝒃, 𝜶′) 

 for 𝒃 = 𝒏𝒃 − 𝟏, 𝒏𝒃 − 𝟐,… , 𝟏 

         𝜶𝒔𝒉𝒐𝒓𝒕(𝒃) ≔ 𝜶𝒕(𝒃 + 𝟏, 𝜶𝒔𝒉𝒐𝒓𝒕(𝒃 + 𝟏)) 

end for 

Table 4-9 Pseudocode for Simplified Dijkstra’s algorithm 

4.4.2.4 Evaluation  

The algorithm was first tested on a spherical phantom with a diameter of 10 cm, as shown in 

Figure 4-22. Two spherical PTVs, with a diameter of 1.3 cm and 1.7 cm, respectively, are 

distributed symmetrically on the axial plane with a distance of 2.25 cm. The phantom body 

is the only OAR in this case. The simple geometric configuration provides a controlled test 
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environment for the proposed optimization framework, which focuses on the effects of 

collimator rotation and rules out other factors that may contribute to the dose outcome, such 

as the tradeoff among multiple OARs. This phantom is also clinically relevant to multiple 

brain metastases. The algorithm was also assessed on a glioblastoma multiforme patient 

(GBM), a lung cancer patient (LNG), and a prostate cancer patient (PRT). Table 4-10 shows 

the respective prescription doses and PTV volumes in all cases. 

 

Figure 4-22 3D plot of the phantom. 

 Prescription Dose (Gy) PTV Volume (cc) 
phantom 50 3.77 

GBM 25 6.23 
LNG 50 138.50 
PRT 40 111.16 

Table 4-10 Prescription doses and PTV volumes 

The dose calculation uses a convolution/superposition code with a 6 MV x-ray polyenergetic 

kernel, described in our previous publications100,107, calculated for 60 gantry angles with 6 

degrees of separation and 10 collimator angles with 18 degrees of separation. The ratio of 

gantry and collimator angular resolution was determined based on the relative rotational 

speed of the collimator and gantry (
ω𝑐𝑜𝑙𝑙𝑖𝑚𝑎𝑡𝑜𝑟

ω𝑔𝑎𝑛𝑡𝑟𝑦
= 2.5). This ratio can be adjusted based on the 
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actual machine specification. The dose array resolution was 0.25×0.25×0.25 cm3. For the 

phantom study, the SC-VMAT plans were generated for both 0.5×0.5 cm2 and 0.25×0.25 cm2 

beamlet resolution and were compared with the DC-VMAT plan with 0.5×0.5 cm2 beamlet 

resolution. In patient cases, the beamlet resolution was 1×1 cm2 due to the limited size of the 

computation. 

In the phantom study, both the DC-VMAT and the SC-VMAT plans include one coplanar arc. 

In patient studies, the DC-VMAT plan results in one coplanar arc with 13 slow beams where 

the gantry slows down to allow a full collimator rotation, and is compared against the SC-

VMAT plan with three coplanar arcs with collimator angles at 60º, 120º, 180º, respectively. 

The SC-VMAT plan utilizes the same optimization model except that collimator angles are 

fixed within each arc. The traveling time between each beam is 1.2s, allowing 18º of 

collimator rotation. 

Evaluation includes PTV D95, D98, D99, Dmax, PTV homogeneity, defined as 
D95

D5
, and the 

dose conformity, defined as the overlap of the 100% isodose volume and the PTV. For the 

phantom study, R10-R90 was evaluated to quantify the dose compactness. For the patient 

studies, the organs-at-risk (OAR) Dmax and Dmean were assessed. Max dose is defined as 

the dose at 2% of the structure volume, D2, recommended by the ICRU-83 report.  

4.4.2.5 Implementation Details 

To achieve a good balance between dosimetry quality and plan deliverability, there are 8 

additional parameters in equation (1) that need to be tuned based on the following 

considerations. 𝜆1  and 𝜆2  were tuned to smooth the fluence map while keeping its major 
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structures. The same principle applied to 𝑔1, 𝑔2, and 𝑔3, controlling the smoothness of the 

aperture variable 𝑢𝑏𝛼. 𝛾1 and 𝛾2 are controlled by the equations 

γ1 = γ10 (1 + 1000 ∗ (
𝑛

𝑁
)
8

) 

γ2 = γ20 (1 + 1000 ∗ (
𝑛

𝑁
)
8

), 

where 𝑛  is the current iteration number, and 𝑁  is the total number of iterations. The 

monotonically increasing fashion of 𝛾1 and 𝛾2 allows the optimization to focus on the convex 

dose fidelity term at the early stages of the optimization and then enforces deliverability 

during the late iterations. The parameter 𝛾3  is automatically adjusted in optimization to 

achieve the desired number of on-beam.  

The parameters used in this study are summarized in Table 4-11. The table gives the initial 

values of 𝛾1 and 𝛾2 which monotonically increase, and 𝛾3 which is automatically adjusted to 

achieve the desired number of on-beams. Although the parameter tuning appears to be 

tedious and empirical, based on our experience, the optimization results are relatively 

insensitive to these parameters within two orders of magnitude. This is particularly true for 

patients of the same disease sites where the same set of optimization parameters appear to 

be adequate without the need for individual tuning. 

 
𝜆1 𝜆2 𝛾10 𝛾20 𝛾3 𝑔1 𝑔2 𝑔3 

phantom 30000 10000 5000 5000 2000 0.008 0.005 0.008 

GBM 10000 5000 1000 1000 2000 0.05 0.01 0.01 

LNG 500000 100000 50 50 5000 0.5 0.1 0.1 

PRT 100 20 5000 5000 1000 0.05 0.01 0.01 

Table 4-11 Parameters setup for all cases 
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To accelerate the algorithm, the system matrix 𝐴 is downsampled in both the fluence map 

domain and the patient voxel domain. The downsampling in the fluence map domain is 

performed by removing candidate beams that are inactive throughout the DAO module. In 

the patient voxel domain, both PTV and OARs are downsampled until collimator angles 

converge. To avoid geometry deformation of these critical structures through 

downsampling, we keep a high sampling rate on the outer layer of each structure and a low 

sampling rate on the interior of each structure. After the collimator angles converge, the DAO 

is performed with fixed collimator angles and a full sampling of PTV and OARs. 

4.4.3 Results 

4.4.3.1 Phantom study 

With the same target coverage, the DC-VMAT is able to remarkably enhance the dose 

compactness. Table 3 shows the comparable PTV statistics of the DC-VMAT plan using 5mm 

MLC leaf thickness and the SC-VMAT plan using 5mm/2.5mm MLC leaf thickness. Figure 4-23 

shows the percentage reduction in the R10-R90 of the DC-VMAT (5mm) plan and the SC-

VMAT (2.5mm) plan compared with the SC-VMAT (5mm) plan. The reduction in dose 

spillage is remarkably similar between the DC-VMAT (5mm) plan and the SC-VMAT (2.5mm) 

plan, suggesting that the DC-VMAT plan achieves an effectively higher modulation resolution 

than its physical leaf thickness. Specifically, DC-VMAT (5mm) plan reduced SC-VMAT (5mm) 

plan R50 by 20.3% with the same MLC leaf thickness. The improvement in dose compactness 

using DC-VMAT (5mm) and SC-VMAT (2.5mm) in comparison to SC-VMAT (5mm) can also 

be visualized in the isodose line plots (Figure 4-24) where the 24Gy, 32Gy, and 40Gy isodose 

lines more tightly hug the targets.  
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Figure 4-23 Percentage reduction in R10-R90 of the DC-VMAT (5mm) plan and the SC-VMAT 
(2.5mm) plan, compared with the SC-VMAT (5mm) plan on the phantom study. 

 

Figure 4-24 Isodose plots for the phantom.  
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DC-VMAT (5mm) SC-VMAT (5mm) SC-VMAT (2.5mm) 

Dmax 52.62 52.58 52.66 

D95 50.00 49.99 50.01 

Dmin 49.30 49.36 49.37 

D99 48.75 48.90 49.05 

Dmean 51.64 51.46 51.49 

Homogeneity 0.95 0.95 0.95 

dose conformity 0.95 0.95 0.95 

Table 4-12 PTV statistics for the phantom 

4.4.3.2 Patient studies 

Figure 4-25 is a scheme of the fluence map for DC-VMAT plan. Each row corresponds to a 

collimator angle, at a separation of 18º, and each column represents a gantry angle, at 6º of 

separation. The DC-VMAT method optimizes all candidate beams simultaneously and selects 

the optimal collimator angles for each gantry angle. 13 beams are chosen as slow beams, 

indicated by the columns with all beams on. The maximum allowance of the collimator 

rotation is 18º between two adjacent beams. With the collimator rotation speed limit at 15º 

per second, the plan takes around 3.5 minutes in total to deliver. 

 

Figure 4-25 Scheme of the fluence map for all candidate beams for LNG case. MLC leaf 
direction is vertical for this diagram. The columns with all beams on represent the ‘slow 
beams’. 

Figure 4-26 shows the dose distribution of DC-VMAT and SC-VMAT for all patients. By 

utilizing the new optimization freedom, DC-VMAT was able to achieve better dose sparing 

on OARs while keeping the same or better PTV coverage. In comparison to SC-VMAT, for the 

GBM patient, the DC-VMAT was able to reduce dose spillage to the brainstem, chiasm, and 
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right eye, whereas the SC-VMAT covered these OARs with up to 3 Gy of dose. In the LNG case, 

the DC-VMAT substantially reduced the dose to the ribs near PTV, spinal cord, esophagus, 

and trachea. In the prostate case, DC-VMAT reduced dose to the rectum, R/L Femur, and 

penile bulb. 

 

Figure 4-26 Dose washes for all patients. The low dose cutoff is at around 10% of the 
prescription dose. 
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Figure 4-27 DVH comparison of the DC-VMAT with 10 mm MLC leaf thickness (solid line), SC-
VMAT with 10 mm MLC leaf thickness (dotted line), and clinical VMAT plan with 5 mm MLC 
leaf thickness (dashed line) for all patients. D95 is normalized to the prescription dose. 
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Figure 4-27 shows the DVHs of DC-VMAT, SC-VMAT, and clinical VMAT for all patients. The 

clinical VMAT plan using 5 mm MLC leaf thickness was included as a comparison with the 

DC-VMAT and SC-VMAT plans using 10 mm MLC leaf thickness. In the GBM case, where the 

PTV size is comparable to the collimator resolution, the clinical VMAT shows improved dose 

profile as compared with SC-VMAT, due to the benefits of using fine resolution MLC. The DC-

VMAT, on the contrary, was able to overcome the limitation of using coarse resolution MLC 

and remarkably improve the dose profile as compared with SC-VMAT, achieving an even 

more conformal dose than the clinical VMAT plan with fine resolution MLC. In the LNG and 

PRT case, where the effects of collimator resolution are limited, both the DC-VMAT and SC-

VMAT substantially improved the dose profile compared with the clinical VMAT plan, in 

agreement with our previous study7. The PTV statistics of the DC-VMAT plan and SC-VMAT 

plan were comparable, while the DC-VMAT was able to globally reduce the OARs dose.  

The quantitative statistics for PTV and OARs of the DC-VMAT and SC-VMAT plans are shown 

in Table 4 and Table 5, respectively. On average, the DC-VMAT plan reduced the OARs max 

and mean dose by 4.49% and 2.53% of the prescription dose, with the same target coverage.  

The single largest sparing in OARs max and mean dose is up to 15% and 13.5% of the 

prescription dose.  

Patient Case 

PTV Statistics 
Homogeneity Dose conformity D95 D98 D99 Dmax 
DC-

VMAT 
SC-

VMAT 
DC-

VMAT 
SC-

VMAT 
DC-VMAT – SC-VMAT (Gy) 

GBM 0.956 0.958 0.949 0.947 -0.009 +0.018 +0.078 +0.085 
LNG 0.936 0.925 0.95 0.95 -0.004 +0.183 +0.536 -0.789 
PRT 0.953 0.949 0.95 0.95 -0.009 +0.017 -0.032 -0.170 

Table 4-13 PTV statistics for all patients 
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DC-VMAT – 
SC-VMAT (Gy) 

Dmax Dmean 

Largest Value Average Value Largest Value Average Value 

GBM 
–3.76 

R Opt Nrv 
–1.12 

–3.38 
R Opt Nrv 

–0.90 

LNG 
–5.28 

Esophagus 
–3.08 

–0.83 
Trachea 

–0.45 

PRT 
-5.44 

L Femur 
-1.13 

-1.91 
R Femur 

-1.23 

Table 4-14 OARs statistics for all patients 

4.4.4 Discussion 

The non-progressive-sampling comVMAT model35 in our previous study optimizes all beams 

simultaneously instead of progressively inserting new beams, and solves the VMAT 

optimization problem without relying on greedy heuristics, achieving both theoretical and 

practical advantages. The DC-VMAT model extends the comVMAT model, and incorporates 

dynamic collimator rotation during the arc. A novel group sparsity term to optimize the 

collimator/gantry angles and Dijkstra’s term to select the optimal collimator angle for each 

individual gantry angle were used to incorporate this new freedom. An alternating strategy 

between the DAO module and the collimator angle selection module was adopted to achieve 

the final selection of optimal beams.  

As a result, DC-VMAT is able to achieve a higher effective collimator resolution and 

subsequently improves dosimetry compared with SC-VMAT, which was shown superior to 

the existing progressive sampling VMAT method35. The superior fluence modulation 

resolution is particularly demonstrated by the phantom study. Under the controlled 

condition without tradeoffs among multiple OARs, the improvement in dose compactness 

using a dynamic collimator with standard resolution MLC matched that of the static 

collimator with high-resolution MLC. The improved effective MLC resolution may offer a 
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compelling solution to the difficult decision a radiation oncology department often has to 

make between MLC leaf resolution and field-of-view.   

This current study is different from previous collimator rotation studies152,153 in both theory, 

implementation and results. The previous methods align the collimator angle with organs of 

distinct geometrical orientations, such as the spinal cord. Because this operation is not 

included in the optimization, the optimality of such an approach cannot be proved. 

Furthermore, in most clinical cases, such as the ones presented in this paper, there is no such 

clear-cut geometry for the planner to set up collimator angles in the beams-eye-view. 

Therefore, we believe our method incorporating the collimator rotation term in optimization 

is more broadly applicable. 

An advantage of collimator rotation is that compared to other additional optimization 

freedoms such as the non-coplanar angles that have been recently researched, collimator 

rotation is straightforward to implement as it does not increase the risk of collision. For the 

same reason, there is a potential to safely accelerate collimator rotation for more rapid DC-

VMAT delivery. The current collimator rotation speed is limited at 15º/s, and subsequently, 

the estimated delivery time is 72s for the DC-VMAT one-arc plan and 60s for the SC-VMAT 

one-arc plan in the phantom study, and around 200s for the DC-VMAT one-arc plan with slow 

beams and 180s for the three-arc SC-VMAT plan in the patient studies. The delivery time for 

DC-VMAT could be further reduced with accelerated collimator rotation. 

In the patient studies, both the gantry angle and MLC resolution is lower than typical clinical 

parameters due to two implementation considerations. First, the group sparsity terms on 

the collimator rotation will penalize similar collimator angles for adjacent beams because 
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they contribute similarly to the dosimetry. This resulted in large collimator rotation between 

beams. If the gantry angles are more densely sampled, the entire treatment has to slow down 

to wait for the collimator rotation. The relatively coarse gantry angle gives enough time for 

the collimator to rotate without having to slow down at most gantry angles. This constraint 

would be relaxed with the aforementioned faster collimator rotation. The second reason is 

that DC-VMAT is computationally intensive due largely to the size of the optimization 

problem involving multiple collimator rotations for a gantry angle. The vast problem size is 

compounded by the alternating optimization steps between DAO and CAS. To mitigate the 

computational challenge, the DAO component is now solved using FISTA, which is 

computationally inexpensive and effectively solves the VMAT optimization as demonstrated 

in Section 4.2.  However, even with the accelerated algorithm, the DC-VMAT optimization 

run time varied from 30 minutes for the GBM case to 3 hours for the LNG case and PRT case, 

whereas the SC-VMAT optimization run time ranged from 5 minutes for the GBM case to 30 

minutes for the LNG and PRT case.  To further improve the computational performance and 

use higher MLC resolution, other than moving the calculation from MATLAB to a higher 

performing language, the optimization may be performed on a parallel computing 

architecture, where the most computationally expensive matrix multiplication step in FISTA 

can be parallelized.  

Another limitation of this study is that DVH constraints are not used in optimization to 

maintain convexity in the fidelity term. While DVH constraints can be convenient in clinical 

practice, introducing them will make the optimization problem more non-convex, less stable, 

and slower to solve. The current optimization framework was compared with DVH based 

planning method in Figure 4-27 and in our previous study7 and showed consistently better 
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dosimetric results, proving that the voxel-based optimization method is not a major 

hindrance to achieve high quality plans. The main point of this study is separate from the 

DVH constraint consideration. We would, of course, investigate the feasibility and 

implications of adding such terms in future studies. 

4.4.5 Summary 

The dynamic collimator rotation effectively increases the modulation resolution and 

improved dose compactness and OAR sparing compared with static collimator VMAT (SC-

VMAT).  

4.5 A novel optimization framework for VMAT with 
dynamic gantry couch rotation 

4.5.1 Introduction 

Current VMAT methods utilize one or more arcs, each co-planar by itself, with or without 

manually selected couch rotations between arcs. For clarity, we term it 2πVMAT in this paper. 

The 2πVMAT optimization problem has been solved by progressively inserting new control 

points into coarsely sampled gantry angles, until typically a 2-degree spacing between the 

gantry angles is achieved. This progressive sampling approach is not only computationally 

tractable, but also provides deliverable VMAT plans that meet the mechanical constraints of 

MLC, including the leaf travelling speed limits. However, this heuristic progressive sampling 

approach has several limitations. First, the greedy optimization algorithm is susceptible to 

undesired local minima due to its sensitivity to suboptimal parameter tuning in the early 

coarse-resolution stage of optimization. Second, the optimization result strongly depends on 
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the parameter tuning history, causing difficulties to exactly reproduce a plan. Third, due to 

the interpolation that take place in the progressive sampling process, the method tends to 

spread the photon fluence uniformly throughout the entire arc even if only a fraction of the 

beam angles is optimal for treating the patient. To overcome these limitations, we developed 

a level-set based DAO for 2πVMAT, which solves the entire arc optimization problem in full 

resolution. This non-progressive sampling approach was shown to generate a single arc 

coplanar VMAT that outperformed progressive sampling VMAT using two arcs with the same 

number of control points in each arc.  

The improved VMAT method is still limited to coplanar arcs while non-coplanar beams hold 

unquestionable dosimetric advantages as shown by recent 4π IMRT research, which 

maximally utilizes the non-coplanar beams for significant dosimetric gains compared to the 

VMAT plans. The advantage of non-coplanar IMRT beams is further demonstrated by Sharfo 

et al. 157 who combined VMAT with a few non-coplanar IMRT beams and showed improved 

organs-at-risk (OAR) sparing and dose spillage. However, delivering many isolated non-

coplanar beams can be time-consuming and laborious to the clinic and an undue burden to 

the patient. Alternatively, non-coplanar VMAT arcs were investigated.  

A straightforward non-coplanar VMAT approach was based on user-defined trajectories 

118,148,158,159 that are limited to narrow applications or specific patient anatomies. Several 

automated VMAT trajectory optimization techniques were proposed to generalize the 

solution. Smyth et al. 113 introduced a trajectory optimization for VMAT by choosing a 

minimal cost trajectory on a cost map, which was computed based on ray-OAR voxel 

intersections. Yang et al. 160 proposed a hierarchical clustering algorithm to find multiple 

continuous and extended sub-arcs through a minimum search of a score function containing 
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geometrical information. MacDonald et al. 161 also introduced a trajectory optimization 

algorithm that minimizes the geometric overlap between planning target volumes (PTV) and 

OARs based on the two-dimensional projection from source to the isocenter plane as a 

function of gantry and couch angle. VMAT optimization was then performed as a separate 

step. Due to the separation, these methods were ineffective in solving complex planning 

problems where clean trajectories not entering one or more OARs do not exist. To overcome 

the limitation, a gantry/couch trajectory optimization needs to be incorporated in dose 

optimization.  

Due to the difficulty of solving the complete non-coplanar VMAT problem, a mathematically 

tractable way is to first identify the non-coplanar control points using beam orientation 

optimization (BOO) and fluence map optimization (FMO), which essentially is the goal of 4π 

IMRT. Following the idea, Wild et al.162 utilized a genetic algorithm to solve the combinatorial 

problem of BOO, and Papp et al.163 used the gradient norm strategy to heuristically select a 

few promising beams. Once the static beam positions are determined as nodes, non-coplanar 

arcs are created to connect them. An intrinsic limitation of these methods is that although 

the static beam positions are dosimetrically desirable, the arcs connecting them are not. By 

generating the non-coplanar arc plans, the major workload of dose delivery is shifted to 

these dosimetrically suboptimal arc trajectories.  

Evidently, to fundamentally solve the non-coplanar VMAT problem, not only the nodes, but 

also entire arc trajectories need to be part of the BOO equation. In this study, we propose a 

novel optimization framework that simultaneously solves the complete non-coplanar VMAT 

trajectory optimization and DAO problems for VMAT, while ensuring deliverability by 

avoiding couch-gantry-patient collision and enforcing mechanical constraints of MLC leaf 
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motion and gantry rotation. We term this method 4πVMAT in contrast to the 2πVMAT 

methods using only individual coplanar arcs. 

4.5.2 Methods 

4.5.2.1 Direct Aperture Optimization and Beam Orientation Optimization 

The proposed 4πVMAT DAO and BOO formulation is written as 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆
{𝒇𝒃𝜶, 𝒄𝒃𝜶, 𝒖𝒃𝜶}𝒃,𝜶=𝟏

𝒏𝒃,𝒏𝜶   
𝟏

𝟐
 ‖𝑾((∑∑𝑨𝒃𝜶𝒇𝒃𝜶

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

) − 𝒅𝟎)‖

𝟐

𝟐

⏟                        
𝒇𝒊𝒅𝒆𝒍𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

+∑∑(𝝀𝟏‖𝑫𝟏𝒃𝜶𝒇𝒃𝜶‖𝟏
+ 𝝀𝟐‖𝑫𝟐𝒃𝜶𝒇𝒃𝜶‖𝟏

)⏟                      
𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 𝑻𝑽 𝒕𝒆𝒓𝒎 𝒐𝒏 𝒇

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+
𝟏

𝟐
∑∑(𝜸𝟏 ‖√𝒅𝒊𝒂𝒈(𝒖𝒃𝜶)(𝒇𝒃𝜶 − 𝒄𝒃𝜶)‖

𝟐

𝟐

+ 𝜸𝟐 ‖√𝒅𝒊𝒂𝒈(𝟏 − 𝒖𝒃𝜶)𝒇𝒃𝜶‖
𝟐

𝟐
)

⏟                                          
𝒔𝒊𝒏𝒈𝒍𝒆 𝒔𝒆𝒈𝒎𝒆𝒏𝒕 𝒕𝒆𝒓𝒎

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+∑∑(𝒈𝟏‖𝑫𝟏𝒃𝜶𝒖𝒃𝜶‖𝟏
+ 𝒈𝟐‖𝑫𝟐𝒃𝜶𝒖𝒃𝜶‖𝟏

)⏟                      
𝒂𝒏𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 𝑻𝑽 𝒕𝒆𝒓𝒎 𝒐𝒏 𝒖

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+∑∑𝜸𝟑𝑮𝒃𝜶‖𝒇𝒃𝜶‖𝟐 + 𝜸𝟒𝑮𝒃𝜶(𝟏 − 𝑷𝒃𝜶)‖𝒇𝒃𝜶‖𝟐⏟                          
𝒈𝒓𝒐𝒖𝒑 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

𝒏𝜶

𝜶=𝟏

𝒏𝒃

𝒃=𝟏

+ 𝒈𝟑 ‖𝑫𝑷𝒖‖𝟏⏟                     
𝒂𝒑𝒆𝒓𝒕𝒖𝒓𝒆 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒊𝒕𝒚 𝒕𝒆𝒓𝒎

 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐       𝒇𝒃𝜶 ≥ 𝟎, 𝒄𝒃𝜶 ≥ 𝟎, 𝟎 ≤ 𝒖𝒃𝜶 ≤ 𝟏, 𝒃 = 𝟏, 𝟐, . . , 𝒏𝒃, 𝜶 = 𝟏, 𝟐, . . , 𝒏𝜶          
𝒇𝒃𝜶 = 𝟎, 𝒄𝒃𝜶 = 𝟎, 𝒖𝒃𝜶 = 𝟎,        ∀(𝒃, 𝜶) ∉ 𝑺 

              𝒖 = [𝒖𝒃=𝟏 𝜶=𝟏
𝑻 𝒖𝒃=𝟏 𝜶=𝟐

𝑻 ⋯ 𝒖𝒃=𝟏 𝜶=𝒏𝜶
𝑻 𝒖𝒃=𝟐 𝜶=𝟏

𝑻 𝒖𝒃=𝟐 𝜶=𝟐
𝑻 ⋯ 𝒖𝒃=𝒏𝒃 𝜶=𝒏𝜶

𝑻 ]
𝑻
, 

Equation 4-12 

where the notations for the variables and data are summarized in Table 4-15. 

In this formulation, the data fidelity term attempts to find the optimal fluence map 𝑓𝑏𝛼 such 

that the total calculated dose from all candidate beams is as close as possible to the optimal 

dose 𝑑0. The priorities for structures of interest are controlled by the diagonal weighting 

matrix 𝑊. The anisotropic total variation (TV) regularization on fluence map 𝑓𝑏𝛼 encourages 
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piecewise continuity of the fluence map within each candidate beam 130. 𝜆1 and 𝜆2 control 

the degree of piecewise continuity of 𝑓𝑏𝛼 in the direction parallel and orthogonal to the MLC 

leaf direction, respectively. A balanced tradeoff between dose fidelity and fluence map 

continuity achieves a high quality and deliverable dose distribution.  

The single segment term enforces the final fluence map 𝑓𝑏𝛼 to contain only one segment per 

candidate beam. It pushes 𝑓𝑏𝛼  towards 𝑐𝑏𝛼  where 𝑢𝑏𝛼  is 1, and towards 0 where 𝑢𝑏𝛼  is 0, 

encouraging the fluence map to be a constant within the aperture, and 0 outside the aperture. 

By gradually increasing the weighting on this term during the optimization process, the 

optimizer forces single segment per candidate beam. The anisotropic TV term on aperture 

variable 𝑢𝑏𝛼  encourages large segments and penalizes holes in the aperture, with 

hyperparameters 𝜆1  and 𝜆2  controlling the degree of segment continuity in the direction 

parallel and orthogonal to the MLC leaf direction respectively. The single segment term and 

the anisotropic TV term address the hardware constraints by enforcing a single deliverable 

segment within each candidate beam. 

The group sparsity term is a 𝑙2,1 norm penalty. This convex penalty provides a non-greedy 

approach for BOO in 4πVMAT by promoting group sparsity in the fluence map 𝑓𝑏𝛼  and 

encouraging most of candidate beams to be inactive. This term is divided into two 

components through a parameter 𝑃𝑏𝛼, which is defined as 1 for candidate beams that are on 

the selected trajectory in the beam trajectory selection (BTS) process, and 0 elsewhere. 𝛾3 

controls the sparsity level for all candidate beams and 𝛾4  adds additional weighting on 

candidate beams that are not on the optimal trajectory. The aperture continuity term 

regulates leaf movement by penalizing apertures differences between adjacent candidate 

beams on the selected trajectory from BTS. The group sparsity term and the aperture 
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continuity term address the hardware constraints by switching off the off-trajectory beams 

by the end of the optimization and encouraging aperture continuity along the trajectory 

respectively. 

The flowchart of the proposed 4πVMAT optimization framework is shown in Figure 4-28. 

First of all, a patient-specific collision map is generated and candidate beams are divided into 

a feasible set S and an infeasible set based on an individualized collision model for non-

coplanar radiotherapy delivery 133. Then 𝑃𝑏𝛼 is assigned as 1 for all feasible beams, which 

serves as prior information for the DAO&BOO. The DAO&BOO solves the optimization 

problem in Equation 4-12 and optimizes fluence map 𝑓𝑏𝛼 , fluence intensity 𝑐𝑏𝛼 , and 

vectorized aperture variable 𝑢𝑏𝛼  alternatingly, generating a 4πVMAT plan with a small 

fraction of beams active. Note that these on-beams are not necessarily on a connected 

trajectory; instead, they are separated in the entire feasible space. The optimal fluence map 

𝑓𝑏𝛼  is then utilized to generate the simplified Dijkstra’s map 154,164, on which the BTS is 

performed and one or two trajectories are selected based on the tumor region. 𝑃𝑏𝛼  is 

assigned as 1 for all candidate beams on the selected trajectories and 0 elsewhere, which is 

then translated into the DAO&BOO in the next iteration, penalizing heavily on the fluence 

map development for off-trajectory candidate beams as compared with on-trajectory beams. 

The optimization alternates between DAO&BOO and BTS until convergence, allowing BTS to 

fully explore the dose domain before converging to a final trajectory.  
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Notation Type Description 
Indices 

𝑏 Index Index for couch angle, b = 1,2, . . , nb 
𝛼 Index Index for gantry angle, 𝛼 = 1,2, . . , 𝑛𝛼 

Optimization Variables 

𝑓𝑏𝛼 Vector 
Vectorized fluence map of the (𝑏𝑡ℎ, 𝛼𝑡ℎ) candidate beam at couch angle b and gantry 

angle α 

𝑐𝑏𝛼 Vector 
Fluence intensity that 𝑓𝑏𝛼 approaches within the aperture of the (𝑏𝑡ℎ, 𝛼𝑡ℎ) candidate 

beam 

𝑢𝑏𝛼 Vector 
Aperture variable for the (𝑏𝑡ℎ, 𝛼𝑡ℎ) candidate beam 

Defined as 1 where the aperture exists and 0 elsewhere 

𝑢 Vector 
Aperture variable that indicates MLC leaf positions for all candidate beams 

𝑢 = [𝑢𝑏=1 𝛼=1
𝑇 𝑢𝑏=1 𝛼=2

𝑇 ⋯ 𝑢𝑏=1 𝛼=𝑛𝛼
𝑇 𝑢𝑏=2 𝛼=1

𝑇 𝑢𝑏=2 𝛼=2
𝑇 ⋯ 𝑢𝑏=𝑛𝑏 𝛼=𝑛𝛼

𝑇 ]
𝑇
  

Other data 
𝑆 Set A set of all feasible candidate beams 
𝐴𝑏𝛼 Matrix Fluence to dose transformation matrix for the (bth, αth) candidate beam 

𝑊 Matrix 
Diagonal weighting matrix, with weightings for structures of interest as diagonal 

elements 
𝑑0 Vector Ideal dose with the prescription dose at the PTV and zero elsewhere 

𝐷1𝑏𝛼 Matrix 
Derivative matrix in the direction parallel to the MLC leaf movement for the (bth, αth) 

candidate beam 

𝐷2𝑏𝛼 Matrix 
Derivative matrix in the direction orthogonal to the MLC leaf movement for the 

(bth, αth) candidate beam 
𝑃𝑏𝛼  Scalar Pbα is 1 for candidate beams on the selected trajectory from BTS and 0 elsewhere 

𝐼𝑃𝑇𝑉 Matrix 
Indicator diagonal matrix for PTV, with its diagonal elements equal to 1 for voxels in 

PTV and 0 elsewhere 

𝑛𝑏𝛼 Scalar 
Number of beamlets with a trajectory that intersects PTV in the (bth, αth) candidate 

beam 

𝐺𝑏𝛼 Scalar 

Weightings of the group sparsity term for each feasible candidate beam to 
compensate for unfair penalization on candidate beams 

𝐺𝑏𝛼 =
𝑠𝑢𝑚(𝐼𝑃𝑇𝑉𝐴𝑏𝛼1⃗⃗ )

√𝑛𝑏𝛼
  

𝐷𝑃 Matrix 
Derivative matrix in the direction of the selected trajectory, which calculates the 

difference in MLC leaf positions between adjacent beams on the selected trajectory. 

Table 4-15 Notations and data structures used in this study. 
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Figure 4-28 Flowchart of 4πVMAT optimization 

4.5.2.2 Beam trajectory selection  

The BTS is formulated as a travelling salesman problem, where the gantry/couch graph G =

[𝑁, 𝐸] is defined as a number of nodes 𝑁 and edges 𝐸 that connects every two nodes. In this 

4πVMAT optimization framework, the gantry/couch graph contains 𝑛𝛼  by 𝑛𝑏  nodes, 

representing 𝑛𝛼  gantry angles and 𝑛𝑏 couch angles, and associated with a node cost 𝑁𝐶(𝑏, 𝛼) 

for each candidate beam (𝑏, 𝛼)  and the edge cost 𝐸𝐶((𝑏1, 𝛼1), (𝑏2, 𝛼2))  for the edge that 

connects (𝑏1, 𝛼1)  and (𝑏2, 𝛼2) . A graph search algorithm is performed on the graph to 

determine the shortest path from one node to any other nodes. For the patient safety and 

comfort, this 4πVMAT framework enforces a constant couch rotation direction within each 
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arc and allows the gantry to rotate dynamically. The 4πVMAT arc is represented by a 

continuous, one-way path on the gantry/couch graph, starting from the first couch angle and 

ending at the last couch angle, containing only one candidate beam per couch angle.  

The node cost 𝑁𝐶(𝑏, 𝛼) for a feasible candidate beam with couch angle 𝑏 and gantry angel 𝛼 

depends on 𝑓𝑏𝛼 , the fluence map from DAO&BOO at the current iteration, which is 

deliverable for each candidate beams, though they may not be connected by a trajectory. The 

node cost 𝑁𝐶(𝑏, 𝛼) for an infeasible candidate beam is infinity, which enforces trajectory 

selection from feasible beams only. The formulation of 𝑁𝐶(𝑏, 𝛼) is given by 

𝐶𝑜𝑠𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥 { 
1
2  ‖𝑊(𝐴𝑏𝛼𝑓𝑏𝛼 − 𝑑0)‖2

2 |∀(𝑏, 𝛼) ∈ 𝑆} 

𝑁𝐶(𝑏, 𝛼) = {
−𝑙𝑜𝑔 (𝐶𝑜𝑠𝑡𝑚𝑎𝑥 − 

1

2
 ‖𝑊(𝐴𝑏𝛼𝑓𝑏𝛼 − 𝑑0)‖2

2) ,            𝑖𝑓 (𝑏, 𝛼) ∈ 𝑆 

∞,                                                                                            𝑖𝑓 (𝑏, 𝛼) ∉ 𝑆 
. 

Equation 4-13 

Candidate beams that correspond to dose contribution closer to the ideal dose distribution 

are assigned with lower node costs. By finding the shortest path on the Dijkstra’s graph, the 

optimal trajectory prefers candidate beams that are more dosimetrically promising. 

The edge costs between every two nodes enforce constraints on trajectory selection. The 

edge cost between candidate beams (𝑏1, 𝛼1) and (𝑏2, 𝛼2) is defined as 

𝐸𝐶((𝑏1, 𝛼1), (𝑏2, 𝛼2)) =  {
0                   𝑖𝑓  𝑏2 − 𝑏1 = 1  𝑎𝑛𝑑  ‖𝛼1 − 𝛼2‖ < 𝛼0
∞                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

, 

Equation 4-14 

where 𝛼0 is calculated as 𝛼0 = 𝜔𝑔 ⋅ 𝜏, with 𝜔𝑔 representing the maximum angular rotation 

speed of the gantry and 𝜏 the time frame between each control point. Equation (3) ensures 

that the selected trajectory is a continuous one-way path that contains only one gantry angle 
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per couch angle, and that the gantry angles of adjacent beams on the selected trajectory are 

within gantry rotation speed limits (controlled by 𝛼0). For simpler cases such as the brain 

tumor, a single 4πVMAT arc can be adequate to achieve satisfactory dose profile. For more 

complex patients and body sites where non-coplanar angles are restricted by collision, two 

arcs may be necessary to substantially improve the dose distribution. In this case, the node 

cost 𝑁𝐶(𝑏, 𝛼)  is assigned to be infinity for any candidate beams on the first selected 

trajectory, and then the second trajectory is chosen by finding the shortest path on the 

updated graph.  

4.5.2.3 Algorithm 

Here we provide a solution to the optimization framework. The DAO&BOO module was 

solved using FISTA, and the BTS module was solved using Dijkstra’s algorithm. Together the 

optimizer solves the entire problem iteratively and alternatingly between the two modules. 

Akin to the previous VMAT optimization algorithms in sections 4.1, 4.2, and 4.4, the 

DAO&BOO module consists of three submodules, each of which solves the optimization 

problem in Equation 4-12 with respect to one optimization variable while holding the other 

two variables constant, and the whole optimization problem is solved in an alternating block 

fashion. 

The edge costs in the BTS problem are in a special form, where all connections between two 

candidate beams are assigned as infinity except for the path that goes directly to the next 

couch angle with a moderate gantry angle variation. It ensures that the selected trajectory 

starts from the first couch angle and ends at the last couch angle, with only one candidate 

beam selected for each couch angle. This setup not only guarantees a practicable trajectory 



 

150 

for 4πVMAT delivery that addresses patient safety and comfort, but also makes the travelling 

salesman problem more straightforward and computationally inexpensive to solve. This 

special graph optimization problem is solved using a simplified Dijkstra’s algorithm154,164 in 

Table 4-16 𝛼𝑠ℎ𝑜𝑟𝑡 is a vector with 𝑛𝑏 elements denoting the candidate beams on the selected 

trajectory, with couch angle 𝑏 and gantry angle 𝛼𝑠ℎ𝑜𝑟𝑡(𝑏). For lung and prostate patient, a 

secondary trajectory 𝛼𝑠ℎ𝑜𝑟𝑡2 is obtained on top of 𝛼𝑠ℎ𝑜𝑟𝑡. Once the trajectories are chosen, 

𝑃𝑏𝛼 is assigned to be 1 for any selected candidate beams, and 0 elsewhere, and is utilized in 

DAO&BOO to assign different group sparsity penalties for selected and unselected candidate 

beams. 
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Simplified Dijkstra’s algorithm  

Initialize the graph with each node 𝑮(𝑏, 𝛼) ≔ ∞  
 𝑮(𝟏, 𝜶) ≔ 𝑵𝑪(𝟏,𝜶) 
for  𝒃 = 1,2,… , 𝑛𝑏 − 1  

      for 𝜶 = 𝟏, 𝟐,⋅⋅⋅, 𝒏𝜶 

            𝑮(𝑏 + 1, 𝛼) ≔
𝑚𝑖𝑛
𝛼′
 𝑮(𝑏, 𝛼′) + 𝑁𝐶(𝑏 + 1, 𝛼) + 𝐸𝐶((𝑏, 𝛼′), (𝑏 + 1, 𝛼)) 

            𝜶𝒕(𝒃 + 𝟏, 𝜶) ≔
𝒂𝒓𝒈𝒎𝒊𝒏

𝜶′
 𝑮(𝒃,𝜶′) + 𝑵𝑪(𝒃 + 𝟏, 𝜶) + 𝑬𝑪((𝒃,𝜶′), (𝒃 + 𝟏, 𝜶)) 

     end for 
end for 

 𝛼𝑠ℎ𝑜𝑟𝑡(𝑛𝑏) ≔
𝑎𝑟𝑔𝑚𝑖𝑛

𝛼′
 𝐺(𝑛𝑏 , 𝛼′) 

 for 𝒃 = 𝒏𝒃 − 𝟏, 𝒏𝒃 − 𝟐,… , 𝟏 

         𝛼𝑠ℎ𝑜𝑟𝑡(𝑏) ≔ 𝛼𝑠ℎ𝑜𝑟𝑡(𝑏 + 1, 𝛼1(𝑏 + 1)) 

end for 
if planning for lung and prostate cancer patient  

        𝑵𝑪(𝒃,𝜶𝒔𝒉𝒐𝒓𝒕(𝒃)) ≔ ∞ 

         𝐺2(1, 𝛼) ≔ 𝑁𝐶(1, 𝛼)  
         for 𝒃 = 𝟏, 𝟐,⋅⋅⋅, 𝒏𝒃 

              for 𝛼 = 1,2,⋅⋅⋅, 𝑛𝛼 

                     𝑮𝟐(𝒃 + 𝟏, 𝜶) ≔
𝒎𝒊𝒏
𝜶′

 𝑮𝟐(𝒃,𝜶′) + 𝑵𝑪(𝒃 + 𝟏,𝜶) + 𝑬𝑪((𝒃, 𝜶′), (𝒃 + 𝟏, 𝜶)) 

                     𝛼𝑡2(𝑏 + 1, 𝛼) ≔
𝑎𝑟𝑔𝑚𝑖𝑛

𝛼′
 𝐺2(𝑏, 𝛼′) + 𝑁𝐶(𝑏 + 1, 𝛼) + 𝐸𝐶((𝑏, 𝛼′), (𝑏 + 1, 𝛼)) 

              end for 
         end for 

          𝜶𝒔𝒉𝒐𝒓𝒕𝟐(𝒏𝒃) ≔
𝒂𝒓𝒈𝒎𝒊𝒏

𝜶′
𝑮𝟐(𝒏𝒃, 𝜶′)  

          for 𝑏 = 𝑛𝑏 − 1, 𝑛𝑏 − 2,⋅⋅⋅ ,1 

               𝜶𝒔𝒉𝒐𝒓𝒕𝟐(𝒃) ≔ 𝜶𝒕𝟐(𝒃 + 𝟏, 𝜶𝒔𝒉𝒐𝒓𝒕𝟐(𝒃 + 𝟏))  
          end for 

End 

Table 4-16 Pseudocode for Simplified Dijkstra’s algorithm 

4.5.2.4 Implementation Details 

The feasible beam set is based on the collision model from our previous study133, which 

provides an individualized collision prediction model for the purpose of non-coplanar beam 

delivery in IMRT. In the 4πVMAT study, all candidate beams that are predicted to be 

undeliverable isocentrically are excluded, and a 10-degree margin is added to both the upper 

and lower bounds of the infeasible gantry angle range for each couch angle to avoid couch-

gantry-patient collision during the gantry/couch rotation between feasible beams. 
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Parameter tuning can be tricky in this 4πVMAT framework since there are a number of 

hyper-parameters in addition to the regular structure weightings that help ensure the 

deliverability of the 4πVMAT plan. Nevertheless, the optimization results are insensitive to 

most of the hyper-parameters that control the deliverability. Once a suitable set of these 

parameters are found, our experiments show robust performance even if the structure 

weightings are changed or applied to different patient cases with comparable sizes of PTV 

and OARs.   

To achieve a satisfactory local minimum in the data fidelity term, we set up some heuristics 

for parameters 𝛾1 − 𝛾4. All of them increase as the optimization progresses, which allows the 

optimization to focus on the convex dose fidelity term and ensure a good local minimum with 

high dosimetric quality at the initial stages of the optimization. During the optimization, the 

single segment term and group sparsity term are gradually emphasized to ensure plan 

deliverability of the DAO result. 𝛾1  and 𝛾2  were updated when each round of three 

submodules in DAO is completed 

                           𝛾1 = 𝛾10 ⋅ (1 + (1000)
𝑖

𝑁)                     𝛾2 = 𝛾20 ⋅ (1 + (1000)
𝑖

𝑁), 

where 𝑖 is the number of rounds from submodule 1 to submodule 3 within the DAO module, 

𝑁 is the total number of rounds within the DAO module, which we chose to be 6 in this study 

empirically. 𝛾10 and 𝛾20 are the initial values of 𝛾1 and 𝛾2 respectively. 𝛾3 and 𝛾4 enforces the 

number of active candidate beams to be within certain ranges, which is designed to decrease 

with the iteration of BTS process.  In submodule 1, where the group sparsity term controls 

the sparsity level of 𝑓𝑏𝛼, the number of active beams is evaluated every 20 iterations. 𝛾3 and 
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𝛾4 are automatically increased or decreased by 20% if there are too many or insufficient 

active beams.  

All the hyperparameters were tuned based on the optimization performance. For example, 

the 𝜆1 and 𝜆2 would be increased if the fluence map was too rough or decreased if it was 

overly smooth. We also increase the values of 𝛾10 and 𝛾20 if there are multiple segments in 

one candidate beam. The range of these hyperparameters in our study are listed in Table 2. 

𝜆1 𝜆2 𝛾10 𝛾20 𝛾3 𝑔1 𝑔2 𝑔3 

10-1000 0.2-20 0.05-50 0.05-50 50-2000 10−5 − 10−3 10−5 − 10−3 10−5 − 10−3 

Table 4-17 The range of the hyperparameters used in this study 

4.5.2.5 Evaluation 

 
Number of feasible 

beams 
Prescription Dose 

(Gy/fx) 
PTV Volume 

(cc) 
GBM1 

1824 25/5 
6.23 

GBM2 2.34 
GBM3 0.77 
LNG1 

1174 50/4 
139 

LNG2 10.2 
LNG3 116 
PRT1 

1200 40/5 
111 

PRT2 127 
PRT3 85 

Table 4-18 Number of feasible beams, prescription doses for each fraction, and PTV volumes 
for all patients 

The feasibility of the optimization algorithm was tested on three glioblastoma multiforme 

retreatment patients (GBM), three lung cancer patients (LNG), and three prostate cancer 

patients (PRT). The GBM retreatment planning followed an internal protocol to minimize 

dose to previously irradiated critical organs 120. The centrally located lung and the prostate 

stereotactic body radiotherapy (SBRT) plans follow 165 and 166, respectively. Table 3 

summarizes the number of feasible beams, the prescription doses, and PTV volumes for all 

patients.  
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Using a convolution/superposition code with a 6 MV x-ray polyenergetic kernel as described 

in our previous publications100, the beamlet dose was calculated for all feasible beams among 

2400 candidate beams in 4πVMAT. Since the gantry rotation angles are more likely to be 

collision-free when the couch stays close to central position, the couch angles are more 

densely sampled for couch angles ranging from 15º to 0º and from 360º to 345º, following 

the International Electrotechnical Commission (IEC 61217) convention. The 2400 candidate 

beams correspond to 30 gantry angles with 12-degree spacing from 0 to 359 degrees, and 

80 couch angles, separated by 1 degree for the central 30-degree range and 3 degrees 

elsewhere, from 270 to 90 degrees. For 2πVMAT, the beamlet dose was calculated for 80 

gantry angles with 4.5 degrees of separation for each arc, from 0 to 359 degrees. The beamlet 

resolution was 0.5×0.5 cm2, and the dose array resolution was 0.25×0.25×0.25 cm3.  

All arcs contain 80 control points in this study. The 4πVMAT plan contains one arc for the 

GBM patient, 80 control points in total, which is compared against a 2πVMAT plan with two 

coplanar arcs with collimator angles at 45º and 135º, 160 control points in total. For the lung 

cancer patient and prostate cancer patient, the 4πVMAT plan contains two arcs with 160 

control points in total, while the 2πVMAT contains three arcs with collimator angles at 30º, 

90º, and 150º, 240 control points in total. The 2πVMAT and 4πVMAT utilize the same DAO 

model except that the 2πVMAT has a predefined coplanar trajectory. The traveling time 

between each beam is 2s, allowing 12º of gantry rotation. 

PTV statistics including PTV D95, D98, D99, D2, (defined as the dose which is received by at 

least 95%, 98%, 99%, and 2% of the volume, respectively), and PTV homogeneity (defined 

as 
D95

D5
) were evaluated. For OAR, the Dmax and Dmean were assessed. The maximum dose is 
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defined as D2, recommended by the ICRU-83 report 101. The dose conformity, defined as the 

ratio between the PTV volume receiving 100% or more of the prescription dose and the PTV 

volume, and the Integral Dose defined as the volume integral of the dose deposited in the 

patient, were also obtained. The R50, defined as the 50% isodose volume divided by the 

target volume, was evaluated to quantify the amount of high-dose spillage in the patient 

body.  

4.5.3 Results 

Figure 4-29 shows the fluence map of the GBM #1 patient as an example of the optimization 

result on the Gantry/Couch graph. The red regions on the Gantry/Couch graph indicate the 

candidate beams that cause collision. Notice that only those candidate beams that are on the 

selected trajectory have nonzero fluence weights. To avoid couch back and forth motion in 

4πVMAT delivery, the couch rotates mono-directionally from 90º to 270º, and the gantry can 

rotate in both directions. 

 

Figure 4-29 Normalized fluence map on the Gantry/Couch graph (GBM #1). Only those 
candidate beams that are on the selected trajectory have nonzero fluence weights. The couch 
rotates from 90º to 270º and the gantry rotates accordingly. MLC leaf direction is vertical for 
this diagram. The red regions denote the gantry/couch angles that cause collision. The 
relative intensities of apertures are indicated by the colorbar. 
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Figure 4-30 shows the selected beam angles on the Gantry/Couch graph with the 

corresponding 3D view for all patients. The 4πVMAT algorithm optimizes for all candidate 

beams simultaneously and finds one or two optimal trajectories that go through the safe 

region, from the first couch angle to the last couch angle, indicated by the green blocks, 

affording efficient delivery of non-coplanar arc. The maximum allowance of the gantry 

rotation is 12º between two adjacent beams. With the gantry rotation speed limit at 6º per 

second, 2 seconds is sufficient for delivery at one control point. For the GBM patient, the 

4πVMAT plan takes around 3 minutes in estimation to deliver the single arc 4πVMAT plan, 

and for the lung cancer patient and prostate cancer patient, the calculated time is 

approximately 5 minutes to deliver the two arcs 4πVMAT plan.  

Figure 4-31 shows the dose distribution of 4πVMAT and 2πVMAT for all patients. By using 

non-coplanar beams, 4πVMAT has the flexibility to distribute the dose in any non-colliding 

direction within the 4π spherical space, depending on the benefits of OAR sparing and target 

coverage. Greater separation of these non-coplanar beams also reduces the high dose 

spillage in 4πVMAT. In the GBM cases where the anatomy is relatively simple, single-arc 

4πVMAT plans were able to significantly avoid dose spillage to the brainstem as well as other 

critical structures, such as the chiasm and right optic nerve in the GBM #1 case, and the left 

cochlea in the GBM #2. In all the LNG cases, by utilizing beams with greater separation, the 

two-arc 4πVMAT plans substantially reduced the high dose spillage compared with the 

three-arc 2πVMAT plan, including those to the critical organs, such as the chest wall, 

proximal bronchus, and spinal cord in the LNG #1, the heart in LNG #2, and the aorta and 

pulmonary vessel in LNG #3. For all three prostate cases, the two-arc 4πVMAT plans resulted 

in a more desirable asymmetric dose in the anterior/posterior direction to substantially 
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better spare the rectum as compared with the three-arc 2πVMAT plan, while achieving 

similar bladder high dose volumes. In all cases, by utilizing these OAR-sparing angles, 

4πVMAT achieved consistently better OARs sparing at the same time maintaining or 

improving PTV coverage. 

Figure 4-32 shows the zoomed-in view of the DVHs of 4πVMAT and 2πVMAT for all OARs, 

Figure 4-33, Figure 4-34, and Figure 4-35 show the complete DVHs. The 4πVMAT was able 

to markedly reduce dose to OARs while achieving comparable or better PTV statistics across 

all patients, especially for the dose limiting organs, such as the brainstem in the GBM #2 and 

GBM #3, the proximal bronchus in all three LNG patients, the major vessels in LNG #2, and 

LNG #3, and the seminal vesicle and the rectum in all PRT patients. In the GBM #3 case, the 

one-arc 4πVMAT plan reduced the maximum doses to the brainstem by 8.1 Gy (64.8%) 

compared with the two-arc 2πVMAT plan. In the LNG #1 case and the LNG #2 case, the two-

arc 4πVMAT plan reduced the dose to the proximal bronchus and the major vessels by 16.3 

Gy (41.5%) and 19.83 Gy (55.5%) compared with the three-arc 2πVMAT plan. Across all LNG 

case, the 4πVMAT plan substantially reduced the hot spots in the critical structures that were 

covered by high dose up to 30Gy. 

The quantitative statistics for the PTV and OARs are shown in Table 4-19 and Table 4-20. 

The PTV statistics, Dose Conformity, and Integral Dose are comparable across 4πVMAT and 

2πVMAT, but the 4πVMAT is able to substantially reduce R50, indicating a remarkable 

improvement in dose compactness that is consistent with previously reported 4π IMRT-

VMAT comparison. On average, the 4πVMAT plan reduced the OARs max and mean doses by 

9.63% and 3.08% of the prescription dose.  The single largest sparing in OARs max and mean 

dose is up to 39.7% and 14.9% of the prescription dose. 
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Figure 4-30 The selected beam angles on the Gantry/Couch graph with corresponding 3D 
view for all patients. The red regions on the Gantry/Couch graph indicate the candidate 
beams that cause collision. The green blocks show the selected trajectories. 



 

159 

 

Figure 4-31 Isodose colorwash comparison for all patients. 
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Figure 4-32 DVH comparison of the 4πVMAT (solid) and the 2πVMAT (dotted) for all OARs of 
the patients.  
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Figure 4-33 DVH for GBM patients. The solid lines are for 4πVMAT and the dotted lines are for 
2πVMAT. D95 is normalized to the prescription dose. 
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Figure 4-34 DVH for LNG patients. The solid lines are for 4πVMAT and the dotted lines are for 
2πVMAT. D95 is normalized to the prescription dose. 
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Figure 4-35 DVH for PRT patients. The solid lines are for 4πVMAT and the dotted lines are for 
2πVMAT. D95 is normalized to the prescription dose. 
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Patien
t Case 

PTV Statistics 
Dose Conformity R50 

Integral Dose 
(103 𝐺𝑦 ⋅ 𝑐𝑚3) Homogeneity D95 D98 D99 

Dma
x 

4π 
VMAT 

2π 
VMAT 

4πVMAT – 2πVMAT (Gy) 
4π 

VMAT 
2π 

VMAT 
4π 

VMAT 
2π 

VMAT 
4π 

VMAT 
2π 

VMAT 

GBM1 0.97 0.96 -0.01 0.16 0.31 -0.11 0.95 0.95 3.84 5.02 2.34 2.06 

GBM2 0.97 0.95 0.02 0.03 0.09 -0.56 0.95 0.94 3.52 5.20 2.13 1.49 

GBM3 0.94 0.94 0.00 0.05 0.04 -1.06 0.94 0.95 4.74 6.84 0.85 0.87 

LNG1 0.96 0.95 0.00 -0.05 -0.20 -0.33 0.95 0.95 5.36 6.98 74.60 83.13 

LNG2 0.97 0.94 -0.01 0.33 0.82 -1.50 0.95 0.95 3.77 6.77 15.17 15.99 

LNG3 0.94 0.94 -0.01 -0.08 -0.27 -0.04 0.95 0.95 2.37 2.87 36.01 43.86 

PRT1 0.95 0.95 0.00 -0.16 -0.26 -0.06 0.95 0.95 3.25 3.72 47.12 47.26 

PRT2 0.94 0.93 0.00 -0.20 -0.28 -0.21 0.95 0.95 2.19 2.51 57.24 53.48 

PRT3 0.94 0.95 -0.01 -0.27 -0.66 0.11 0.95 0.95 1.45 1.62 34.42 31.28 

Table 4-19 PTV statistics for all patients 

OAR dose sparing: 2πVMAT - 4πVMAT (Gy) 

 
Dmax Dmean 

Largest Value 
Average 

Value 
Largest Value Average Value 

GBM1 
3.21 

Brainstem 
1.88 

2.33 
R Opt Nrv 

1.17 

GBM2 
6.68 

Brainstem 
2.51 

1.25 
L Cochlea 

0.77 

GBM3 
8.10 

Brainstem 
3.63 

2.85 
R Opt Nrv 

1.49 

LNG1 
16.3 

Proximal Bronchus 
6.39 

5.29 
Chest wall 

1.81 

LNG2 
19.83 

Major Vessels 
10.11 

2.13 
Spinal Cord 

0.88 

LNG3 
15.48 

Proximal Bronchus 
7.19 

7.46 
Aorta 

2.77 

PRT1 
4.20 

Penile Bulb 
1.09 

1.72 
R Femur 

0.14 

PRT2 
3.80 

R Femur 
1.09 

2.30 
Rectum 

0.56 

PRT3 
8.22 

L Femur 
0.70 

2.70 
L Femur 

0.53 

Table 4-20 OAR mean and maximum dose sparing differences between 4πVMAT and 
2πVMAT for all patients. The columns labelled “Largest Values” represents the largest 
amount of dose sparing difference achieved among all OARs, and the corresponding OAR. 
“Average values” represents the average sparing difference among all OARs 
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4.5.4 Discussion 

Our previous 2πVMAT method solves the VMAT optimization problem by considering all 

beams simultaneously instead of progressive sampling, making it possible to incorporate 

BOO into non-coplanar VMAT. The integrated 4πVMAT optimization framework further 

develops the 2πVMAT method by simultaneously solving both the DAO and BTS problems. 

By expanding the solution to the non-coplanar space, 4πVMAT was able to greatly improve 

the dose compactness as indicated by R50, reduce dose spillage to OARs and subsequently 

achieve better dosimetry than the 2πVMAT with more arcs. Considering that the non-

progressive sampling 2πVMAT was already superior to the existing progressive sampling 

VMAT algorithm that is widely employed in clinics, 4πVMAT holds the strong promise of 

substantially improving state-of-the-art radiotherapy without sacrificing delivery efficiency.  

4πVMAT takes an alternating approach between DAO&BOO and BTS. From the dosimetric 

point of view, the DAO&BOO achieves high plan quality by activating a set of dosimetrically 

promising beams, and the BTS finds the optimal trajectory that tends to include most of these 

active beams by minimizing the selected node costs. On the other hand, to address the 

mechanical constraints, the regularization in the DAO&BOO enforces the plan deliverability, 

and the BTS meets the delivery/treatment time constraint and selects only the trajectories 

that does not require a substantial gantry rotation between adjacent beams by minimizing 

the edge cost. The selected trajectory is then translated into DAO&BOO to further explore 

the dose domain through a weighted group sparsity term, where off-trajectory candidate 

beams are penalized more heavily. In the DAO&BOO process, promising off-trajectory beams 

could still be turned on to provide better dose distribution, and on-trajectory beams might 

be rejected if they are dosimetrically undesirable. By alternatingly optimizing between the 
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DAO&BOO and BTS, the algorithm makes an integrated final decision based on both the 

dosimetry and mechanical constraints. With the gantry rotation speed limit at 6º per second, 

2 seconds is sufficient for delivery at one control point of the current 4πVMAT plan, where 

the largest gantry rotation angle is 12 degrees between adjacent beams. A more rapid 

delivery may be achieved with faster gantry rotation. 

Compared with the previous non-coplanar VMAT study with user-defined heuristic 

trajectories 118,158,159 and trajectory optimization techniques using geometric information 

113,160,161, this 4πVMAT optimization framework is able to thoroughly and automatically 

search the entire non-coplanar trajectory space for various patient anatomies and 

dosimetric requirements. Compared with other non-coplanar VMAT optimization 

algorithms using optimized static IMRT beams as anchoring nodes for non-coplanar arcs that 

may not be dosimetrically optimal 162,163, our 4πVMAT integrates BTS into VMAT 

optimization and encourages the fluence map to be developed natively into 4πVMAT arcs.   

Compare with the current commercial solution HyperArc167, which is restricted to using a 

few predefined trajectory templates and is currently only applied to the brain treatment, the 

proposed 4πVMAT framework fully explores the 4π space with a site-specific collision 

model, and hence holds the promise of substantially improving the dose profile and being 

more broadly applicable to other body sites.  

4πVMAT in its current form is computationally intensive due to the optimization problem 

size and alternating optimization between DAO and BTS despite our effort to accelerate the 

computation. Even with the accelerated algorithm FISTA, the optimization run time on a 

single desktop using MATLAB implementation still took from 1 hour for the GBM case to 9 

hours for the LNG case and PRT case. To further speed up optimization for clinical 
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implementation, aside from switching to a higher performance language such as C, the most 

computationally expensive matrix multiplication step in FISTA is parallelizable and can 

therefore be moved to graphic processing units (GPUs) for higher computation efficiency. 

The current 4πVMAT framework was evaluated with 12 degrees of gantry angle spacing to 

reduce the computation cost. With future acceleration techniques, we may be able to 

perform the optimization with a denser sampling of the 4π space.  

Another limitation of the 4πVMAT optimization framework is its complexity in tuning the 

hyperparameters, compounded with its heavy computation costs, can be time consuming 

and laborious. One way to get around with this problem is to simplify the dataset when 

tuning the hyperparameters, either by downsampling the structure of interest or truncating 

the dose calculation matrix. From our experience, the algorithm is insensitive to this 

procedure, hence the same set of hyperparameters apply to the full sampled data.  

4.5.5 Summary 

The non-coplanar 4πVMAT significantly expands the searching space and improved dose 

compactness and OAR sparing compared with the coplanar VMAT (2πVMAT) with more arcs.  

4.6 ROAD: ROtational direct Aperture optimization with 
a Decoupled ring-collimator for FLASH radiotherapy 

4.6.1 Introduction 

The improvement in physical radiation dose conformity via technological evolutions, including 

IMRT24,168, VMAT22,169, and 4π non-coplanar radiation therapy 39,107,120, will plateau. Particularly 

for normal tissues abutting the tumor, one must look beyond the physical dose for the next leap in 
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the therapeutic ratio. Emerging evidence suggests that ultra-fast radiation delivery (dose rate > 40 

Gy/s), termed FLASH radiotherapy, may lead to such a leap170. Compared to conventional 

radiotherapy with dose rate ~ 0.1 Gy/s, FLASH radiotherapy markedly reduced the normal tissue 

toxicity without compromising tumor response 171–174. The FLASH effects have been consistently 

observed across different animal species, including mice171, cat172, zebrafish 175, and pig 172, in 

various tumor models including lung 171, breast 171, and brain 171,176,177, using different modalities 

including electron 172,178, X-ray 179, and proton 175. Moreover, the FLASH effect was recently 

demonstrated in a human study 180.  

Nevertheless, there are significant technical challenges to achieving the ~500x greater dose 

rate for FLASH in human patients. The electron dose rates using existing linacs may be high 

enough, but the achievable energies are inadequate for most non-superficial tumors. Certain 

proton systems can be modified to achieve the high dose rate but only in the dosimetrically 

inferior transmissive mode, due to the non-negligible time required to switch between 

energy layers in the proton scanning spot mode.  

Therefore, we are motivated to investigate an X-ray system for FLASH therapy with two 

essential components: a high output X-ray linac and the dose conformity comparable to 

state-of-the-art IMRT. It is believed that the high dose rate can be achieved with existing 

accelerator technology. Conventional medical linacs produce average electron beam powers 

of around 1 kW, while higher-power industrial and research accelerators routinely achieve 

powers on the order of 100 kW181. Assuming a dose conversion factor of 7.5 Gy/s/mA at 10 

MeV182, the beam power needed to achieve 1 Gy/s is 80 kW. Furthermore, we note that the 

~100 kW industrial accelerators that are in operation around the world are designed to 

work continuously in a factory setting with very little downtime. In the case of FLASH, the 
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beam will only be on for a brief time, on the order of 1 s, which significantly relaxes the 

requirements on, e.g., power supplies and cooling systems. While we do not claim that such 

an accelerator will be easy to produce, it is feasible with current technology. 

Multiple beam angles and effective intensity modulation are necessary for good X-ray dose 

conformity. Existing delivery platforms are evidently incompatible with the FLASH 

requirement. To avoid the slow mechanical movements of the C-arm gantry and the multi-

leaf collimator (MLC), Maxim et al. 183 proposed PHASER using high-intensity, 

pluridirectional MV X-ray beams and scanning electron pencil beams for IMRT. However, the 

success of PHASER depends on multiple groundbreaking technologies to be developed, 

adding significant uncertainties, a long development cycle, and high cost to the product. 

Alternatively, to achieve ultrafast dose delivery and intensity modulation with X-rays, we 

propose to modify the existing method for delivering VMAT to enable FLASH delivery. We 

term the novel delivery method ROtational direct Aperture optimization with a Decoupled 

ring-collimator (ROAD), which employs a fast-rotating slip ring gantry, and a decoupled 

MLC-ring with many pre-shaped apertures for fast access to multiple beam entry angles and 

complex dose modulation. 

4.6.2 Methods 

4.6.2.1 Hardware design of ROAD 

The standard VMAT treatment delivers radiation continuously from a rotating gantry head 

that encloses a radiation source, jaws, and an MLC module (Figure 4-36A). The MLC leaves 

move while the gantry rotates to form different aperture shapes at different beam angles. 

Due to the limited MLC leaf speed (typically <5cm/s at the isocenter distance), a constraint 
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is imposed on the difference between adjacent apertures for practical VMAT delivery time. 

Reducing the delivery time to sub-second for FLASH would require faster source rotation 

and a different way to provide intensity modulation.  

Figure 4-36B shows the proposed ROAD design. The fast-rotating source is achieved by 

mounting the linac on a slip-ring gantry with a speed of 1 rotation per second (rps). The linac, 

which is currently under development, has the following preliminary technical 

specifications: pulse length 83 µs, repetition rate 300 Hz, dose per pulse 2 Gy at the isocenter, 

energy 10 MV. To circumvent the mechanical limitations of a single MLC module, ROAD uses 

75 MLC modules mounted on a separate ring that is either static or counter-rotating at 1 rps. 

Different from conventional VMAT, where the MLC leaves are always aligned with the X-ray 

target, in the decoupled configuration, the individual MLC modules are focused at 75 equally 

spaced points on the target ring. With an accurate measurement of the linac/MLC angles, the 

pulsed linac is triggered only when the target is aligned with one of the MLCs to eliminate 

the undesirable geometrical penumbra. Intensity modulation is then achieved by optimizing 

a single MLC aperture for each beam. Because apertures can be shaped before treatment, the 

MLC mechanical speed limitation is circumvented.  

Figure 4-36C and Figure 4-36D illustrate the ROAD design assuming the following physical 

and mechanical parameters. The source to isocenter distance (SID) is 100 cm, the distance 

between the MLC and the isocenter is 70 cm, the MLC thickness is 10cm, and the beamlet 

resolution is 5mm at the isocenter plane (the MLC physical width is 1.5mm). A total of 75 

identical MLC modules are installed on the ring-collimator, with 60 MLC leaves in each MLC 

module (30 leaves on each side). The beam FOV is 15cm in-plane and 20cm cross-plane. The 

gantry rotation speed is 1rps, and the MLC leaf traveling speed at the isocenter plane is 
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5cm/s. With static ring-collimator in one full ring-source rotation, 75 equiangular beams can 

be utilized (ROAD-75) (Figure 4-36C). By counter-rotating ring-collimator at 1 rps, 150 

equiangular beams can be achieved (ROAD-150) (Figure 4-36D). We assume a total delivery 

time of 1s for both ROAD-75 and ROAD-150. In ROAD-150, the same MLC modules are used 

twice separated by 0.5 seconds, allowing up to 2.5cm leaf motion at the isocenter plane in 

the transition to form new apertures.  

 

Figure 4-36 Demonstration of VMAT and ROAD. 

4.6.2.2 Direct Aperture Optimization Formulation  

The direct aperture optimization for FLASH therapy is formulated as 
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   minimize
𝑓,𝑐,𝑢

       
1

2
‖𝑊((𝐴𝑓) − 𝑑0)‖2

2

⏟            
fidelity term

+ (𝜆𝑥‖𝐷𝑥𝑓‖1 + 𝜆𝑦‖𝐷𝑦𝑓‖1)⏟                
anisotropic TV term on 𝑓

+
𝛾

2
(‖diag(𝑢)1 2⁄ (𝑓 − 𝑐)‖

2

2
+ ‖diag(1 − 𝑢)1 2⁄ 𝑓‖

2

2
)

⏟                                
single segment term

 

subject to        0 ≤ 𝑓 ≤ 𝐼max, 0 ≤ 𝑐 ≤ 𝐼max, 𝑢 ∈ {0,1}
𝑛, 𝑢 ∈ 𝑆𝑑 ,     

Equation 4-15 

where 𝑓  is the vectorized fluence map, 𝑐  is the fluence intensity, and 𝑢  is the vectorized 

aperture shape. 𝑢 equals to 1 where the aperture exists, i.e., the beamlet is opened, and 0 

elsewhere. The set 𝑆𝑑 is defined to include all deliverable apertures. In the case of ROAD-

150, the apertures in the set 𝑆𝑑 are also required to satisfy the MLC speed constraint. 𝐼max is 

the maximum intensity of the fluence map at each control point, which is limited by the 

maximum dose rate.  

𝐴 is the fluence-to-dose transformation matrix, which converts the vectorized fluence map 

to the corresponding volumetric dose. 𝑊  is the diagonal weighting matrix, where the 

diagonal elements are the weightings of the structures of interest. 𝑑0 is the ideal dose with 

the prescription dose in the PTV and zero elsewhere. The least-squares fidelity term 

attempts to find the optimal fluence map 𝑓  by penalizing the difference between the 

planning dose 𝐴𝑓 and the ideal dose 𝑑0. In the second total variation (TV) term, 𝐷𝑥 and 𝐷𝑦 

are the finite-difference matrices in the directions parallel and orthogonal to the MLC leaf 

motion, respectively. The anisotropic TV term encourages the piecewise continuity of 

fluence map 𝑓, and the amount of smoothness is controlled by 𝜆𝑥 and 𝜆𝑦. The single segment 

term simplifies the final fluence map 𝑓 to contain only a single segment at each control point. 

It pushes the fluence map 𝑓 towards a uniform intensity value 𝑐 within the aperture (𝑢 = 1, 
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the beamlet is opened), and towards 0 outside the aperture (𝑢 = 0, the beamlet is closed). 

The single segment constraint is attained by gradually increasing the weighting parameter γ 

in the optimization.  

4.6.2.3 Algorithm 

The optimization problem in Equation 4-15 was solved using an alternating optimization 

approach that has been investigated in our previous studies35,38,39,184. In each optimization 

iteration, the algorithm runs through 3 modules and optimizes with respect to each of the 

three optimization variables 𝑓, 𝑐 , and 𝑢 , independently, holding the other two fixed. The 

process is repeated until 𝑓  converges to 𝑐 ⊙ 𝑢  (the elementwise/Hadamard product), 

indicating that single segment constraint is achieved. For ROAD-150, the optimization is 

initialized with the ROAD-75 plan generated using the same hyperparameters. 

In the module optimizing with respect to the aperture 𝑢, the problem reduced to a graph 

optimization problem with a linear objective: 

minimize
{𝑢𝜃}𝜃=0

𝑛
        ∑〈𝑞𝜃, 𝑢𝜃〉

𝜃

,                                                                                            

subject to          𝑢𝜃 ∈ {0,1}
𝑛, 𝑢 ∈ 𝑆𝑑,   𝜃 = 1,2, … , 𝑛𝜃                                              

(𝑞𝜃)𝑗 = ((𝑓𝜃)𝑗 − 𝑐𝜃)
2
− (𝑓𝜃)𝑗

2                              

Equation 4-16 

where 𝜃 is the index for beam angle, and 𝑗 is the index for elements in the corresponding 

vector. The minimization is equivalent to a simplified travelling salesman problem on a 

directed graph with a rectangular structure. To reduce the computation complexity, we first 
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solved Equation 4-16 without the constraint 𝑢 ∈ 𝑆𝑑 , and then project the resultant 𝑢∗ to the 

feasible set 𝑆𝑑. 

In the modules optimizing with respect to the fluence map 𝑓  and the intensity  𝑐 , the 

optimization problem was solved with (FISTA)27.  

4.6.2.4 FLASH dose 

When delivering a treatment plan, the physical dose changes both spatially and temporally. 

The spatial-dependency and time-dependency of delivered dose can be computed based on 

an existing treatment plan 𝑓(𝑡𝑗): 

𝑑𝑖(𝑡𝑗) = 𝐴𝑖 ⋅ 𝑓(𝑡𝑗), 

where 𝑡𝑗  is the time when the beam 𝑗 was delivered, 𝑓(𝑡𝑗) is the fluence map of beam 𝑗, 𝐴𝑖  is 

the dose matrix of voxel 𝑖, and 𝑑𝑖(𝑡𝑗) is the dose to voxel 𝑖 at time 𝑡𝑗 .  

Similar to the physical dose, spatial and temporal variations also apply to the physical dose 

rate. The same physical dose could result in different FLASH effects, depending on the dose 

rate at each voxel. For example, if the majority of the dose delivered to a voxel was under a 

high dose rate, the FLASH effect within the voxel would be substantial. On the contrary, if the 

majority of the dose delivered to a voxel was under a low dose rate, the FLASH effect could 

be minimal. To evaluate the FLASH effect of the ROAD plan, the physical dose rate at each 

voxel needs to be evaluated at each time point. 

We use the FLASH dose (FD) to denote a portion of the physical dose delivered under high 

dose rate, which could potentially achieve a greater FLASH effect. The FLASH dose is defined 

as the cumulative physical dose delivered with an average dose rate higher than a threshold 
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𝑅 for a minimum time interval of Δ𝑡 (𝑅 = 40 Gy/s and Δ𝑡 = 100𝑚𝑠 in this study). For voxel 

𝑖, 𝑇𝑖 is a set of time points with FLASH dose delivery: 

𝑇𝑖 = {𝑡𝑠| 
∑ 𝑑𝑖(𝑡𝑣)
𝑣=𝑗
𝑣=𝑖

∑ 𝑡𝑣
𝑣=𝑗
𝑣=𝑖

≥ 𝑅, 𝑡𝑗 − 𝑡𝑖 ≥ Δ𝑡, 𝑖 ≤ 𝑠 ≤ 𝑗}. 

The FLASH dose at voxel 𝑖 is defined as 

FDi = ∑ 𝑑𝑖(𝑡𝑠)

𝑠∈𝑇𝑖

. 

Under the same physical dose, a higher FD indicates less biological damage to the normal 

tissue. 

4.6.2.5 FLASH Biological Equivalent Dose  

A quantitative biological model, the Radiolytic Oxygen Depletion (ROD) model (Pratx and 

Kapp, 2019), is adapted to evaluate the biological effect of the ROAD model. We assumed the 

same parameters as Pratx et al.185 in this study. 

The radioprotective effect of FLASH irradiation has been connected with decreased 

radiosensitivity of normal tissue cells due to transient ROD 171,173,185–190. The effect of oxygen 

on radiosensitivity can be quantified according to the Oxygen Enhancement Ratio (OER), 

defined as the ratio of the dose in anoxia to the dose under a certain oxygen tension 𝑝 to 

achieve the same biological effect. OER can be parameterized as: 

OER(𝑝) = 1 + α(1 − 𝑒−ψ⋅𝑝) 

Equation 4-17 

where α = 1.63, ψ = 0.26 mmHg−1, and 𝑝 is the transient oxygen tension.  
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To compute the transient oxygen tension in ROAD plan delivery, we divided the delivery 

process into two parts: within-pulse and between-pulse, and discuss them separately. 

Within the high-intensity short-pulse (> 103Gy/s), the effect of oxygen metabolism and 

tissue diffusion is negligible, and the transient oxygen tension has a linear relationship on 

the dose input 187,191: 

𝒑𝒊
+ = 𝒑𝒊

− − 𝐋 ⋅ 𝒅𝒊 

Equation 4-18 

where 𝑖 is the pulse index, 𝑑𝑖 is the dose of pulse 𝑖, L is the ROD rate (0.42 mmHg Gy−1) 191, 

𝑝𝑖
− is the transient oxygen tension right before pulse 𝑖, and 𝑝𝑖

+ is the transient oxygen tension 

immediately after pulse 𝑖. 

The oxygen tension (𝑝𝑖
+ → 𝑝𝑖+1

− ) between the two dose-pulses (pulse 𝑖 →  pulse 𝑖 + 1 )  

changes with oxygen diffusion and tissue metabolisms. Following the computational model 

proposed by Pratx et al. 190, we assumed an infinitely long capillary (radius 𝑟0 = 3𝜇𝑚) and a 

constant oxygen tension within the capillary (𝑝𝑐𝑎𝑝 = 40𝑚𝑚𝐻𝑔). The effects of different 

capillary oxygen levels have been discussed in Figure 6 in Pratx et al. 190. With polar 

symmetry, the oxygen diffusion and tissue metabolism is modeled in polar coordinates 

𝝏𝒑

𝝏𝒕
= 𝐚

𝟏

𝒓

𝝏

𝝏𝒓
(𝒓
𝝏𝒑

𝝏𝒓
) −𝐦, 

Equation 4-19 

where the diffusion constant a = 2 ⋅ 10−5cm2s−1  192, oxygen metabolism rate m =

3mmHg s−1, and 𝑟 is the distance of the cell from the capillary. The boundary condition is set 

by enforcing 𝑝(𝑟 ≤ 𝑟0) = 40mmHg .  Given the transient oxygen tension 𝑝𝑖
+(𝑟) right after 

pulse 𝑖 , the transient oxygen tension 𝑝𝑖+1
− (𝑟)  right before pulse 𝑖 + 1  can be computed 
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iteratively using a finite difference method. The initial state 𝑝0(𝑟) is set as the steady state of 

Equation 4-19, which can be solved by setting 
𝜕𝑝

𝜕𝑡
= 0.  

The transient oxygen tension 𝑝(𝑡, 𝑟) in ROAD plan delivery can be computed voxelwise by 

iteratively applying Equation 4-18 (𝑝𝑖
− → 𝑝𝑖

+) and solving Equation 4-19 (𝑝𝑖
+ → 𝑝𝑖+1

− ) using 

the sequential dose pulses received by each voxel.  

In conventional VMAT plan delivery, the oxygen tension stays at the initial condition 𝑝0(𝑟). 

We define the transient radiosensitivity S as the ratio of the transient dose in ROAD to the 

dose under conventional dose rate to achieve the same biological effect: 

𝑆(𝑡) =
OER(𝑝(𝑡))

OER(𝑝0)
. 

Equation 4-20 

For simplicity, we assumed 75μm  from the capillary ( 𝑟 = 75μm ) for radiosensitivity 

evaluation. Figure 4-37 shows examples of the time series plots of the dose pulses and the 

transient radiosensitivity S, assuming different pulse sequences (pulse sequence 1 to 4) and 

the same total dose 25Gy. Note that varying delivery time is assumed in this figure (from 

submillisecond to 15s) to illustrate the different biological effects resulted from different 

delivery schemes. With an incident dose, transient oxygen tension drops, OER decreases, and 

subsequently, the transient radiosensitivity S falls off. Conversely, without irradiation, the 

radiosensitivity S gradually rebounds until it reaches 1. Under different dose patterns (pulse 

sequences 1 to 4), the transient oxygen tension 𝑝(𝑡) could be different, leading to different 

transient radiosensitivity S, and different overall biological effects, even if the total dose is 

the same. 
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Figure 4-37 (A) Time series plot of transient radiosensitivity S under different dose inputs 
(pulse sequences 1 to 4), assuming a total dose of 25Gy. (B) Overall decrease in 
radiosensitivity as a function of the distance from capillary, plotted for all four pulse 
sequences. 𝒓 = 𝟕𝟓𝝁𝒎 (indicated by the dashed line) were assumed for computing the 
transient radiosensitivity S in (A). 

The fractional cell kills from an infinitesimal dose 𝑑𝐷 with a transient radiosensitivity S is 

𝑑𝑁

𝑁
= 𝛽𝑆 𝑑𝐷, 

Equation 4-21 

where 𝑁  is the number of surviving cells, and 𝛽  is a constant. The FLASH biological 

equivalent dose (FBED) is defined as the dose to achieve the same biological effect in 

conventional dose rate irradiation, which is equivalent to the integral of the radiosensitivity 

over dose: 

FBED = ∫𝑆𝑑𝐷 =
∫OER(𝑝(𝐷))𝑑𝐷

OER(𝑝0)
. 

Equation 4-22 

In general, the FLASH effect becomes more evident with increasing dose, due to an increased 

amount of oxygen depletion. In addition, the effect is also dependent on the dose sequence 

as illustrated in Figure 4-37. This computational model evaluates the FBED individually for 
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each voxel, based on the incident dose at each voxel level, as a comprehensive evaluation 

including both the total delivered dose and the dose sequences. 

Note that the FBED calculation only applies to normal cells. We assumed the FBED of the PTV 

is equivalent to its physical dose for simplicity. 

4.6.2.6 Evaluation 

The single-arc ROAD plans were compared with clinical two-arc VMAT plans on four 

representative patients, including a glioblastoma multiforme case (GBM), a lung cancer case 

(LNG), a prostate cancer case (PRT), and a Head and Neck cancer case (H&N). The VMAT 

plans were planned on the Eclipse treatment planning system using two coplanar arcs with 

90 degrees collimator rotation. The dose matrix for ROAD was obtained using a 

convolution/superposition dose calculation algorithm with 10 MV X-ray polyenergetic 

kernels 100,134. The gantry angles were sampled with 4.8 degree and 2.4 degree spacing for 

ROAD-75 and ROAD-150, respectively. For VMAT, the gantry angle was sampled with 2 

degree spacing (180 control points in total). The beamlet size for dose calculation was 

0.5×0.5 cm2 for all plans. The beam field of view (FOV) was 15×20 cm2 for ROAD, and 20×20 

cm2 for VMAT. The dose voxel size was 0.25×0.25×0.25 cm3.  

The dose rate was calculated by converting the machine output in Monitor Units (MU) to 

dose and dividing by the beam time: 

dose rate =
Output (MU)

time (s)
∗
1 (Gy)

100 (MU)
. 

Conversion from fluence intensity to MU was calibrated by calculating unit-fluence dose in 

water using the same dose calculation algorithm and measuring the dose at dmax. 
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For ROAD plans, the physical dose, the FLASH dose, and the FBED were evaluated. The 

FLASH dose and FBED computation assumed 25 Gy prescription dose to the PTV in a single 

fraction. The physical dose of ROAD plans was compared with that of the corresponding 

clinical VMAT plans. The FLASH dose was computed for all normal-tissue voxels. The 

distribution of FLASH dose vs. physical dose was evaluated to show the potential FLASH 

effect of the ROAD plans. The FBED were computed following the biological model, assuming 

nominal parameter values and 25%  uncertainty ( 𝑝𝑐𝑎𝑝 = 40 ± 10 𝑚𝑚𝐻𝑔 , 𝐿 = 0.42 ±

0.105 mmHg Gy−1, and a = 2 ⋅ 10−5 ± 5 ⋅ 10−6cm2s−1). 

PTV statistics including PTV D98, D2, and PTV homogeneity (defined as 
D95

D5
) were evaluated. 

R50, defined as the 50% isodose volume divided by the target volume, was also assessed to 

quantify the dose compactness. The integral dose was evaluated as total dose spillage. For 

OARs, the maximum dose (Dmax) and the mean dose (Dmean) were obtained. The maximum 

dose is defined as D2 (the dose at 2% of the structure volume), following the ICRU-83 report 

101. 



 

181 

4.6.3 Results 

4.6.3.1 Plan information 

Case Method 
Prescription 

dose (Gy) 

PTV 
volume 

(cc) 

Single-
fraction 

dose (Gy) 

Estimated 
delivery 
time (s) 

Per-beam dose rate 
(Gy/s) 

Mean Max 

GBM 

VMAT 

25 6.359 

2 132   

ROAD-75 25 1 94.66 150 

ROAD-150 25 1 141.25 300 

LNG 

VMAT 

50 137.7 

2 132   

ROAD-75 25 1 61.34 150 

ROAD-150 25 1 89.27 300 

PRT 

VMAT 

40 84.17 

2 132   

ROAD-75 25 1 71.64 150 

ROAD-150 25 1 111.84 300 

H&N 

VMAT 
70 

(56) 
132.9 
(90.7) 

2 132   

ROAD-75 25 1 77.28 150 

ROAD-150 25 1 105.13 300 

Table 4-21 Prescription doses, PTV volumes, single-fraction dose, estimated delivery time 
per fraction, and mean and maximal per-beam dose rate for all plans.  

Error! Reference source not found. reports the prescription doses, PTV volumes, single-f

raction dose, estimated delivery time, and mean and maximal per-beam dose rate for all 

ROAD plans. The single fraction dose is assumed 2 Gy for VMAT and 25 Gy for the ROAD 

plans. For the H&N patient, the single fraction dose of the ROAD plan is 25Gy for the partial 

PTV with the highest prescription dose (PTV70Gy) and scaled accordingly for the other PTV 

(PTV56Gy). On average, the mean dose rate of ROAD-75 and ROAD-150 are 76.2 Gy/s and 

112 Gy/s, respectively, and the maximal dose rate are 150Gy/s and 300 Gy/s. The maximal 

dose rate is limited by the optimization constraint that enforces a maximum of 2Gy dose per 

control point. Note that the provided dose rate is amortized over the beam time, while the 

instantaneous dose rate (within-pulse dose rate) should be several orders higher, depending 

on the pulse duration. In addition, the instantaneous/maximal/mean dose rates are different 
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from the dose rate distribution within the patient body, while the latter was used for 

voxelwise quantification of the FLASH dose and the FBED. 

4.6.3.2 Physical dose 

Figure 4-38 presents the isodose comparison of the physical dose of VMAT, ROAD-75, and 

ROAD-150 for the H&N and the PRT patient. ROAD-75 and ROAD-150 achieved similar OAR 

dose, while both significantly reduced OAR dose compared with VMAT. ROAD substantially 

reduced physical dose to the spinal cord and mandible for the H&N patient, and to the 

rectum, seminal vesicle, and penile bulb for the PRT patient.  

Figure 4-39 compares the physical dose DVHs of VMAT (solid), ROAD-75 (dotted), and 

ROAD-150 (dashed) for all patients. PTV D95 is normalized to prescription dose in all plans. 

ROAD-150 improved PTV homogeneity compared with the clinical VMAT plans and reduced 

physical dose to OARs. 

 

Figure 4-38 Isodose comparison of VMAT physical dose, and physical dose of ROAD-75 and 
ROAD-150 for the H&N and the PRT patient. 
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Figure 4-39 DVH comparison of VMAT physical dose (solid), ROAD-75 physical dose (dotted), 
and ROAD-150 physical dose (dashed) for all plans with selected OARs. PTV D95 is 
normalized to prescription dose in all plans. 
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Figure 4-40 Comparison of VMAT (green diamonds), ROAD-75 (orange circles), and ROAD-
150 (blue crosses) on PTV statistics (Homogeneity, PTV D98 and D2 normalized by the 
prescription dose), R50, Integral Dose normalized by the prescription dose, and OAR 
maximum and mean doses.  

Figure 4-40 reports the PTV and OAR statistics of the physical dose, comparing VMAT (green 

diamonds), ROAD-75 (orange circles), and ROAD-150 (blue crosses). Compared with clinic 

VMAT plans, ROAD-150 substantially improved PTV homogeneity, increased PTV minimum 

dose (D98), and reduced PTV maximum dose (D2). The PTV homogeneity improved by 3%, 

PTV D98 increased by 3%, and PTV D2 decreased by 3%. The R50, integral dose, and OAR 

mean and maximal dose were markedly reduced in the ROAD plans. Compared with clinical 

VMAT, ROAD-150 reduced the [max, mean] OAR physical dose by [4.8Gy, 6.3Gy]. The average 

R50 and integral dose of [VMAT, ROAD-75, ROAD-150] are [4.8, 3.2, 3.2] and [89, 57, 56] 

Gy×Liter, respectively.  

4.6.3.3 FLASH dose 

Figure 4-41 shows the heat map of physical dose and FLASH dose distribution of normal 

tissue voxels receiving physical dose greater than 10Gy, based on the ROAD-150 plans for all 

patients, assuming 25 Gy prescription dose in a single fraction. The heat map was normalized 

columnwise. Overall, the ratio of FLASH dose to the physical dose is around 50% to 70%, 

indicating that the majority of the delivered physical dose could trigger the FLASH effect. 
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Figure 4-41 Heat map of dose and FLASH dose distribution of normal tissue voxels receiving 
physical dose greater than 10Gy, based on the ROAD-150 plans for all patients, assuming 25 
Gy prescription dose in a single fraction. The heat map was normalized columnwise. 

Figure 4-42 compares the physical Dose Volume Histogram (solid) and the FLASH Dose 

Volume Histogram (dotted) of the ROAD-150 plan for the H&N patient. The FLASH dose takes 

up a large portion of the physical dose, especially in the high-dose region. For example, 30% 

of the trachea received no less than around 18 Gy of physical dose within a single fraction. In 

the meantime, 30% of the trachea received no less than around 13 Gy FLASH dose, indicating 

the biological damage to the trachea could be substantially lower with the ROAD delivery. 
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Figure 4-42 Dose Volume Histogram (solid) and FLASH Dose Volume Histogram (dotted) of 
the ROAD-150 plan for the H&N patient.  

4.6.3.4 FLASH Biological Equivalent Dose 

Figure 4-43 reports the statistical comparison of the physical dose (orange circles) and the 

FBED (purple squares) of ROAD-75 plans for all patients, assuming nominal parameter 

values and 25%  uncertainty. The FBED under nominal parameter values substantially 

reduced R50, integral dose, and maximum and mean OAR doses compared with the physical 

dose, indicating potentially significant biological gains with ROAD plans. However, the large 

error bars also suggest large uncertainties due to the uncertainties in the biological model. 

Note that the FLASH effects are most evident in the high-dose regions, where the normal 

tissues receive a substantial dose that depletes transient oxygen and triggers the FLASH 

effect. For example, the H&N case has a significantly higher OAR mean and maximal dose 

than other cases, and subsequently, it shows the most significant FLASH effect in OAR mean 

and maximal dose. However, all four cases showed substantial FLASH effects, as indicated by 

the sharp reduction of R50.  

Figure 4-44 compares the physical Dose Volume Histogram (solid) and the FLASH Biological 

Equivalent Dose Volume Histogram (dotted) of the ROAD-150 plan for the H&N patient. The 

FBED were computed assuming nominal parameters and a single-fraction dose of 25Gy. The 
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OAR FBED was markedly reduced compared with the corresponding physical dose, 

indicating the FLASH effect could result in less OAR damage in the ROAD plans. 

 

Figure 4-43 Comparison of physical dose (orange circles) and the FLASH Biological 
Equivalent Dose (purple squares) with error bar of ROAD-75 plans for all patients on R50, 
Integral Dose normalized by the prescription dose, and OAR maximum and mean doses. 

 

Figure 4-44 Dose Volume Histogram (solid) and FLASH Biological Equivalent Dose Volume 
Histogram (dotted) of the ROAD-150 plan for the H&N patient, assuming nominal 
parameters in the FBED model and a single-fraction dose of 25Gy. 
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Figure 4-45 Time dependence of the ROAD-150-FBED, evaluated for all patients over four 
metrics, including R50, Integral Dose normalized by the prescription dose, and OAR 
maximum and mean doses, assuming nominal parameters in the FBED model and a single-
fraction dose of 25Gy. The delivery time ranges from 0.1s to 100s. The OAR maximum and 
mean doses were the averaged values across all OARs for each individual patient. 

Figure 4-45 shows the time dependence of the ROAD-150-FBED. As delivery time increases 

from 0.1s to 100s, the R50, integral dose, and OAR Dmean and Dmax increase, reaching that 

of the physical dose with 100s delivery time. The dose compactness and OAR sparing 

substantially improved with shortened delivery time, and plateaued with a delivery time less 

than 1s. Note that the results are dependent on the parameters in the FBED model. For 

example, if a greater diffusion constant were assumed, the oxygen would be replenished at a 

faster rate, leading to a shorter time threshold of observing the FLASH effect. 

4.6.4 Discussion 

Existing treatment machines with a single MLC module are mechanically too slow for FLASH 

radiotherapy. This study proposes the novel ROAD design, which mounts 75 MLC modules 

on a separate ring and pre-shapes the apertures to achieve ultrafast dose modulation. We 

can find an analogy in computer science, where a space-time tradeoff manifests through 

solving a problem in less time by using more storage space or in limited space by spending 

extra time. ROAD and VMAT both enforce a single fluence map segment per beam, but they 

differ in delivery speed, the number of control points, and aperture continuity constraints: 

VMAT requires similar aperture shapes for adjacent beams, and ROAD-150 has the leaf speed 

constraint on the beams that share the same MLC modules. Without aperture continuity 

constraint on adjacent beams, ROAD plans can be delivered within 1s, providing a viable 

solution for clinical FLASH radiotherapy. 
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Compared with clinical VMAT plans, ROAD-150 improved PTV homogeneity and 

substantially reduced OAR dose. The improvement in physical dose is attributed to the 

integrated optimization framework, which has been applied to VMAT optimization and was 

shown to outperform the progressive sampling optimization method used in clinical VMAT 

35. The potential FLASH effect further increases the therapeutic window in addition to the 

physical dose improvement. Apart from the improved physical dose, ROAD maintained the 

per-beam dose under 2Gy for practical linac design and achieved a markedly higher mean 

dose rate. Previously reported studies indicated that the FLASH effect was observed when 

the mean dose rate is greater than 40 Gy/s. In this study, assuming a single-fraction dose of 

25Gy and treatment time of 1s, the average per-beam dose rate is 76.2 Gy/s and 112 Gy/s 

for ROAD-75 and ROAD-150, respectively. 50% to 70% of the physical dose was delivered 

with equal to or greater than the FLASH threshold dose rate for ROAD to take advantage of 

the additional FLASH biological effects in addition to the improved physical dose. We note 

that the estimated percentage could vary with our continuously improving knowledge of the 

FLASH dose rate.  

The ROAD system is a conceptual software and hardware platform for ultrafast radiotherapy 

delivery, where the optimization is based on the physical dose. Besides the main point, to 

demonstrate the feasibility of incorporating a quantitative FLASH biological model into 

planning, we selected the ROD model (Pratx and Kapp, 2019) as an example to evaluate the 

biological effectiveness under various operational conditions. To employ ROD, we made 

several extensions to the original model. First, the original ROD paper (Pratx and Kapp, 

2019) only discusses the FLASH effects on a small subvolume, while we apply the model to 

the whole patient body. Solving the large-scale differential equation for a CT image 
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containing tens of millions of voxels using parallel computing is not trivial. Second, the ROD 

paper focuses on the decreased radiosensitivity with varying parameters, whereas the 

current study calculates FBED based on the dose-averaged radiosensitivity. Third, we 

tailored the biological model to fit the ROAD model.  

The FD and FBED models attempt to address one common challenge in FLASH radiotherapy, 

which is to evaluate the FLASH effect for radiation with complex spatial and temporal 

structures. In the ROAD plan delivery, the pulse dose rate is different from the instantaneous 

dose rate distributed within the patient body. For proton FLASH in the shoot-through mode, 

although a single proton field can be delivered with a high dose rate, the time to deliver 

multiple fields for conformal dose distribution will result in a low average dose rate, which 

would be significantly lower than the proposed FLASH system. The quantitative FD and 

FBED model is one way to reconcile the apparent conflict between the instantaneous dose 

rate seen by a subvolume and the average dose rate.  

Nevertheless, we note that the radiolytic biological model in FBED computation only 

partially explains the FLASH effect 193, and its correctness is pending further experimental 

validation. For example, a limitation of the ROD model is that the model assumes the cells 

sufficiently far from capillaries (thus experiencing hypoxia) to experience significant FLASH 

effects. The limitation indicates an incomplete understanding of the FLASH mechanism. 

There are also large uncertainties in the parameters, such as the diffusion constant and the 

ROD rate, and a lack of threshold on the instantaneous dose rate to trigger the FLASH effect. 

These uncertainties could lead to large uncertainties in estimating the FBED. Emerging 

evidence may result in revised or new quantitative FLASH biological models. We will update 

the evaluation of ROAD accordingly. 
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Different from PHASER 183, ROAD is designed based on scaling up existing technologies. For 

example, existing MLCs are used with a larger quantity. The high-speed slip ring gantry has 

been demonstrated by Reflexion (Hayward, CA) 194. Nonetheless, there are challenges 

beyond the scope of the concept paper. The significantly larger high output linac will be more 

challenging to integrate with the high-speed gantry.  It would not be trivial to design an X-

ray target system that can withstand the high beam power. Moreover, to maximize the 

output, the linac will be flattening-filter-free (FFF). As a VMAT system, the dose rate 

inhomogeneity will be managed in ROAD as linear constant multipliers in the inverse 

optimization. Because FFF-VMAT has been extensively studied with the minimal dosimetric 

difference compared with flattened-field VMAT, the physical dose impact is expected to be 

minimal. On the other hand, since the linac output is defined by the peak output at the center 

of the field, the effective dose rate will be lower, particularly for larger targets. We would 

evaluate the change in FBED with a FLASH biological model or increase the linac output to 

compensate for the reduced dose rate.  Finally, the RF power system is to be optimized for 

the burst-mode operation. We will develop individual engineering solutions for overcoming 

these challenges in future work. 

4.6.5 Summary 

The novel ROAD design achieves ultrafast dose delivery and improves physical dosimetry 

compared with clinical VMAT, providing a potentially viable engineering solution for X-ray 

FLASH radiotherapy. 

https://goo.gl/maps/HfaAzFZcbMT73rrh9
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5 APPENDIX 

5.1 The FISTA Algorithm 

The FISTA algorithm solves problems in the following canonical form 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) + 𝐺(𝑥), 

Equation 5-1 

where  𝐹 is a differentiable convex function with a Lipschitz continuous gradient, and 𝐺 is a 

convex function which has a proximal operator that can be evaluated efficiently. The 

proximal operator 26 of a function 𝐺 with step size 𝑡 is defined by  

𝑝𝑟𝑜𝑥𝑡𝐺(𝑥) =
𝑎𝑟𝑔𝑚𝑖𝑛
𝑧

(𝐺(𝑧) +
1

2𝑡
‖𝑧 − 𝑥‖2

2). 

Equation 5-2 

The pseudocode for the FISTA with line search algorithm is summarized in Table 5-1, where 

evaluation of the gradient of 𝐹 and the proximal operator of 𝐺 are required at each iteration, 

and the function value of 𝐹 is also assessed to obtain the optimal step size through a line 

search method. 
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Pseudocode for FISTA with line search  

Initialize  𝑥0:=  0, 𝑣0: = 𝑥0 , 𝑡0 > 0, 𝑟1 > 1,  𝑟2 > 1 

for  𝒌 = 𝟏, 𝟐,…   do 
            𝑡 ≔ 𝑟1𝑡𝑘−1  

            Repeat 

                  𝜃 ≔ {
 1                                                                                 𝑖𝑓   𝑘 = 1 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡𝑘−1𝜃
2 = 𝑡𝜃𝑘−1

2 (1 − 𝜃)      𝑖𝑓  𝑘 > 1
 

                  𝒚 ≔ (𝟏 − 𝜽)𝒙𝒌−𝟏 + 𝜽𝒗𝒌−𝟏 

                  𝑥 ≔ 𝑝𝑟𝑜𝑥𝑡𝐺(𝑦 − 𝑡𝛻𝐹(𝑦)) 

              break if   𝑭(𝒙) ≤ 𝑭(𝒚)+< 𝜵𝑭(𝒚), 𝒙 − 𝒚 > +
𝟏

𝟐𝒕
‖𝒙 − 𝒚‖𝟐

𝟐 

              𝑡 ≔ 𝑡/𝑟2 
        𝒕𝒌 ≔ 𝒕 
        𝜃𝑘 ≔ 𝜃  

        𝒗𝒌 ≔ 𝒙𝒌 +
𝟏

𝜽𝒌
(𝒙 − 𝒙𝒌) 

        break if  
‖𝑥−𝑥𝑘‖

‖𝑥𝑘‖
 ≤ 𝜖 

        𝒙𝒌 ≔ 𝒙 

end for 
return 𝒙 

Table 5-1 FISTA with line search 

5.2 Prox-operator calculations 

5.2.1 Group sparsity term 

Evaluation of the proximal operator of  Θ(𝑥) = 𝜌‖𝑥‖2 + 𝐼+(𝑥) at �̂� is equivalent to finding 

the minimizer for the optimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

    ‖𝑥‖2 +
1

2𝜌𝑡
 ‖𝑥 − �̂�‖2

2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜                𝑥 ≥ 0.               

Equation 5-3 

For 𝑥�̂� ≤ 0, the corresponding minimizer always takes its ith element as 𝑥𝑖 = 0. Thus this 

problem is equivalent to the following unconstrained optimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥

 ‖𝑥‖2 +
1

2𝜌𝑡
 ‖𝑥 − 𝑚𝑎𝑥(�̂�, 0)‖2.

2  
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Equation 5-4 

This is no different from evaluation of the prox-operator of the 𝑙2 norm. Thus 

𝑝𝑟𝑜𝑥𝑡Θ(�̂�) = 𝑝𝑟𝑜𝑥𝜌𝑡‖⋅‖2(𝑚𝑎𝑥(�̂�, 0)) = �̂� − 𝑃𝜌𝑡(𝑚𝑎𝑥(�̂�, 0)), 

Equation 5-5 

where 𝑃𝜌𝑡(𝑥) projects 𝑥 onto a Euclidean ball with radius 𝜌𝑡. 

5.2.2 |𝑥|α 

The proximal operator of |𝑥|α is 

 (𝑷𝒓𝒐𝒙𝒘|𝒙|𝜶(𝒛))
𝒊
=
𝒂𝒓𝒈𝒎𝒊𝒏

𝒙
(𝜼|𝒙|𝜶 +

𝟏

𝟐𝒘
(𝒙 − 𝒛𝒊)

𝟐)  

Equation 5-6 

Exact analytic solutions to exist for α = 0,
1

2
,
2

3
, 1 . For other values of α , the proximal 

operators could be evaluated numerically with an iterative approach such as the Newton’s 

method 88. 

For α = 0, the proximal operator reduces to a hard thresholding operation. 

(𝑃𝑟𝑜𝑥𝑤|𝑥|𝛼(𝑧))
𝑖
= {
𝑧𝑖 ,               𝑖𝑓 |𝑧𝑖| ≥ √2𝜂𝑤  

0,                𝑖𝑓 |𝑧𝑖| < √2𝜂𝑤
. 

For α =
1

2
, the closed form solution was proposed by McKelvey [16] 

(𝑃𝑟𝑜𝑥𝑤|𝑥|𝛼(𝑧))
𝑖
=

{
 
 

 
 4

3
𝑠𝑖𝑛2 (

1

3
𝑎𝑟𝑐𝑐𝑜𝑠(

3√3

4
𝑢) +

𝜋

2
) ,               𝑖𝑓  𝑢 ≤

2√6

9

0,                                                                         𝑖𝑓  𝑢 >
2√6

9
,

  

where 𝑢 = 𝜂𝑤|zi|
−
3

2. 

For α =
2

3
, the solution of the proximal operator is a root of the quartic polynomial  

 𝒙𝟒 − 𝟑𝒛𝒊𝒙
𝟑 + 𝟑𝒛𝒊

𝟐𝒙𝟐 − 𝒛𝒊
𝟑𝒙 +

𝟖𝜼𝟑𝒘𝟑

𝟐𝟕
= 𝟎,  

for which the analytic solution exists. The details on the proximal operator evaluation for α =
2

3
 are 

shown in Table 5-2. 
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For α = 1, the proximal operator results in a soft thresholding 

(Prox𝑤|𝑥|α(𝐳))
𝑖
= {

zi − 𝜂,                   𝑖𝑓 zi ≥ 𝜂,    

0,                             𝑖𝑓 |zi| < 𝜂,
zi + 𝜂,                  𝑖𝑓 zi ≤ −𝜂.

 

 

Proximal operator evaluation of |𝒙|𝛂 (𝜶 = 𝟐/𝟑) 

Compute intermediary terms 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒: 

𝒂𝟏 ≔
𝟖𝒘𝟑𝜼𝟑

𝟐𝟕�̂�𝟑𝒊
𝟒 , 𝒂𝟐 ≔ √𝒂𝟏

𝟏𝟔
+√−

𝒂𝟏
𝟑

𝟐𝟕
+

𝒂𝟏
𝟐

𝟐𝟓𝟔
 

𝟑

, 𝒂𝟑 ≔
𝟓

𝟖
+ 𝟐𝒂𝟐 +

𝟐𝒂𝟏

𝟑𝒂𝟐
, 𝒂𝟒 ≔ √𝒂𝟑 −

𝟑

𝟖
  

Compute 4 roots 𝒓𝟏, 𝒓𝟐, 𝒓𝟑, 𝒓𝟒: 

𝒓𝟏 ≔
𝟑

𝟒
+ (𝒂𝟒 +√

𝟗

𝟖
− 𝒂𝟑 −

𝟏

𝟒𝒂𝟒
) /𝟐,       𝒓𝟐 ≔

𝟑

𝟒
+ (𝒂𝟒 −√

𝟗

𝟖
− 𝒂𝟑 −

𝟏

𝟒𝒂𝟒
) /𝟐  

𝒓𝟑 ≔
𝟑

𝟒
+ (−𝒂𝟒 +√

𝟗

𝟖
− 𝒂𝟑 +

𝟏

𝟒𝒂𝟒
) /𝟐,    𝒓𝟒 ≔

𝟑

𝟒
+ (−𝒂𝟒 −√

𝟗

𝟖
− 𝒂𝟑 +

𝟏

𝟒𝒂𝟒
) /𝟐  

Pick the root 𝒓 as the maximum of {𝟎, 𝒓𝟏, 𝒓𝟐, 𝒓𝟑, 𝒓𝟒} that satisfies 
𝒓 is a real number 

𝟎. 𝟓 < 𝒓 < 𝟏 

Output: (𝐏𝐫𝐨𝐱𝒘|𝒙|𝛂(𝐳))
𝒊
= 𝒓𝒛𝒊 

Table 5-2 Proximal operator evaluation of |𝒙|𝛂 (𝜶 = 𝟐/𝟑) 
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