Title
Source Provenance of Obsidian Artifacts from LA 44496, Chavez County, New Mexico

Permalink
https://escholarship.org/uc/item/6p8364z8

Author
Shackley, M. Steven

Publication Date
2015-11-04

Supplemental Material
https://escholarship.org/uc/item/6p8364z8#supplemental

License
CC BY-NC 4.0
SOURCE PROVENANCE OF OBSIDIAN ARTIFACTS FROM LA 44496,
CHAVEZ COUNTY, NEW MEXICO

by

M. Steven Shackley, Ph.D., Director
Geoarchaeological XRF Laboratory
University of California, Berkeley

Report Prepared for

Dr. David Kirkpatrick
Human Systems Research
Las Cruces, New Mexico

4 November 2015
INTRODUCTION

The provenance analysis here of fourteen obsidian artifacts from LA 44496, Chavez County, New Mexico indicates that all the samples were procured from one of the three major sources in the Jemez Mountains, Cerro Toledo Rhyolite, El Rechuelos, or Valles Rhyolite (Cerro del Medio; see Shackley 2005). While Cerro Toledo and El Rechuelos are available as secondary deposits in Rio Grande Quaternary alluvium, Valles Rhyolite is only available in the Valles Caldera proper, except for a few very small nodules seen as far south as Albuquerque, but not as far south as Las Cruces (Church 2000; Shackley 2012). Additionally, many of the artifacts exhibit remnant angular cortex and are of a size too large for nodules available below Albuquerque (Shackley 2005, 2012). Much of the obsidian raw material could have been procured directly or through exchange through the corridor east of the Sandia Mountain chain, through large sites like Paako.

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION

The archaeological sample was analyzed whole. The results presented here are quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-ray continuum regions through a least squares fitting formula rather than plotting the proportions of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or more essentially, these data through the analysis of international rock standards, allow for inter-instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011).

Trace Element Analyses

Trace element analyses were conducted to aid in the determination of rock type. All analyses for this study were conducted on a ThermoScientific Quant’X EDXRF spectrometer, located in the Geoarchaeological XRF Laboratory, Albuquerque, New Mexico. It is equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 50 W,
ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 µm (3 mil) beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA at 0.02 increments. The spectrometer is equipped with a 200 l min$^{-1}$ Edwards vacuum pump, allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium (Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital converter. Elemental composition is identified with digital filter background removal, least squares empirical peak deconvolution, gross peak intensities and net peak intensities above background.

The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime to generate x-ray intensity Kα-line data for elements titanium (Ti), manganese (Mn), iron (as Fe$_2$O$_3^T$), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th). Not all these elements are reported since their values in many volcanic rocks are very low. Trace element intensities were converted to concentration estimates by employing a least-squares calibration line ratioed to the Compton scatter established for each element from the analysis of international rock standards certified by the National Institute of Standards and Technology (NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France (Govindaraju 1994). Line fitting is linear (XML) for all elements. When barium (Ba) is analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to the bremsstrahlung region (see Davis 2011; Shackley 2011). Further details concerning the petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb,
Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 (manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan (Govindaraju 1994).

The data from the WinTrace™ software were translated directly into Excel for Windows and SPSS software for statistical manipulation. In order to evaluate these quantitative determinations, machine data were compared to measurements of known standards during each run. RGM-1 a USGS rhyolite standard is analyzed during each sample run for obsidian artifacts to check machine calibration (Table 1). Source assignments were made by reference to Shackley (1995, 2005) and data at the laboratory (http://swxrflab.net/swobsrscs.htm; see Table 1 and Figure 1 here).

REFERENCES CITED

Davis, K.D., T.L. Jackson, M.S. Shackley, T. Teague, and J.H. Hampel

Govindaraju, K.

Hampel, Joachim H.

Hildreth, W.

Hughes, Richard E., and Robert L. Smith

Mahood, Gail A., and James A. Stimac

McCarthy, J.J., and F.H. Schamber

Schamber, F.H.

Shackley, M. Steven

Table 1. Elemental concentrations and source assignments for the archaeological specimens, and USGS RGM-1 rhyolite standard. All measurements in parts per million (ppm).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>746</td>
<td>425</td>
<td>10627</td>
<td>162</td>
<td>16</td>
<td>25</td>
<td>74</td>
<td>47</td>
<td>El Rechuelos</td>
</tr>
<tr>
<td>22</td>
<td>663</td>
<td>430</td>
<td>10259</td>
<td>155</td>
<td>17</td>
<td>25</td>
<td>77</td>
<td>46</td>
<td>El Rechuelos</td>
</tr>
<tr>
<td>80</td>
<td>651</td>
<td>375</td>
<td>11566</td>
<td>154</td>
<td>14</td>
<td>44</td>
<td>167</td>
<td>55</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>165</td>
<td>763</td>
<td>457</td>
<td>12472</td>
<td>149</td>
<td>13</td>
<td>46</td>
<td>167</td>
<td>52</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>270-F</td>
<td>690</td>
<td>406</td>
<td>11898</td>
<td>166</td>
<td>16</td>
<td>47</td>
<td>168</td>
<td>53</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>380-A</td>
<td>773</td>
<td>433</td>
<td>12112</td>
<td>162</td>
<td>12</td>
<td>41</td>
<td>169</td>
<td>53</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>628</td>
<td>617</td>
<td>381</td>
<td>11753</td>
<td>159</td>
<td>14</td>
<td>42</td>
<td>165</td>
<td>51</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>636</td>
<td>696</td>
<td>500</td>
<td>12227</td>
<td>216</td>
<td>9</td>
<td>63</td>
<td>184</td>
<td>93</td>
<td>Cerro Toledo Rhy</td>
</tr>
<tr>
<td>914</td>
<td>653</td>
<td>496</td>
<td>12023</td>
<td>207</td>
<td>11</td>
<td>66</td>
<td>171</td>
<td>92</td>
<td>Cerro Toledo Rhy</td>
</tr>
<tr>
<td>915</td>
<td>728</td>
<td>416</td>
<td>12053</td>
<td>164</td>
<td>14</td>
<td>43</td>
<td>173</td>
<td>52</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>990</td>
<td>592</td>
<td>447</td>
<td>11664</td>
<td>206</td>
<td>12</td>
<td>61</td>
<td>169</td>
<td>93</td>
<td>Cerro Toledo Rhy</td>
</tr>
<tr>
<td>FEATURE 7</td>
<td>781</td>
<td>418</td>
<td>12264</td>
<td>169</td>
<td>17</td>
<td>45</td>
<td>169</td>
<td>54</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>IO</td>
<td>861</td>
<td>505</td>
<td>11959</td>
<td>199</td>
<td>10</td>
<td>62</td>
<td>160</td>
<td>90</td>
<td>Cerro Toledo Rhy</td>
</tr>
<tr>
<td>STR. 412</td>
<td>575</td>
<td>369</td>
<td>11748</td>
<td>162</td>
<td>14</td>
<td>40</td>
<td>167</td>
<td>51</td>
<td>Valles Rhy (Cerro del Medio)</td>
</tr>
<tr>
<td>RGM1-S4</td>
<td>1487</td>
<td>295</td>
<td>13689</td>
<td>150</td>
<td>109</td>
<td>24</td>
<td>222</td>
<td>13</td>
<td>standard</td>
</tr>
</tbody>
</table>
Figure 1. Nb versus Y bivariate plot of the elemental concentrations for all the archaeological specimens.