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Abstract

Machine Learning Applications in Healthcare: Parsing Pathology Reports Across Multiple
Cancers at UCSF and County-level Death Projections of COVID-19

by

Nicholas L Altieri

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Co-chair

Associate Teaching Professor John DeNero, Co-chair

This thesis will focus on two major applications of machine learning in healthcare and will
be divided into two sections.

In the first, we discuss our work extracting information from pathology reports across cancers
at UCSF. Personalized healthcare is at the frontier of machine learning and medicine and
has the potential to revolutionize patient care. A major resource for personalized healthcare
is the large amounts of medical textual data and our ability to leverage such data depends
on how accurately we can extract information. As a result, there has been much interest
in automated text analytics and information extraction methods to tackle healthcare text
data which have been used in health informatics, precision medicine, and clinical research.
Implementing such extraction systems in practice is a challenge, since many automated
extraction systems rely on large amounts of annotated textual data to perform adequately
well. However, annotating healthcare text is a largely manual effort, a time-consuming and
expensive process that requires training and medical knowledge. It is thus difficult to obtain
sufficient amounts of annotated data across a variety of clinical domains. Consequently, while
deep learning has been shown to be extremely powerful in natural language processing,
it can occasionally underperform in biomedical applications due to the lower number of
labeled examples. Therefore, it is of considerable practical importance to develop methods
in biomedical natural language processing that perform well in the absence of large amounts
of labeled data. In this work, we build natural language processing systems for extracting
information from pathology reports across cancers at UCSF, investigating practical problems
in the deployment of such systems as well as developing methods that require fewer data
points, which leads to systems that perform as well as the state of the art while only requiring
40% of the labeled data. Beyond natural language processing in healthcare, we also develop
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machine learning methods for COVID-19 county level death predictions.

For the second section, we discuss models for forecasting short-term death predictions from
COVID-19. As the COVID-19 outbreak evolves, accurate forecasting continues to play
an extremely important role in informing policy decisions. In this paper, we present our
continuous curation of a large data repository containing COVID-19 information from a
range of sources. We use this data to develop predictions and corresponding prediction
intervals for the short-term trajectory of COVID-19 cumulative death counts at the county-
level in the United States up to two weeks ahead. Using data from January 22 to June 20,
2020, we develop and combine multiple forecasts using ensembling techniques, resulting in an
ensemble we refer to as Combined Linear and Exponential Predictors (CLEP). Our individual
predictors include county-specific exponential and linear predictors, a shared exponential
predictor that pools data together across counties, an expanded shared exponential predictor
that uses data from neighboring counties, and a demographics-based shared exponential
predictor. We use prediction errors from the past five days to assess the uncertainty of our
death predictions, resulting in generally-applicable prediction intervals, Maximum (absolute)
Error Prediction Intervals (MEPI). MEPI achieves a coverage rate of more than 94% when
averaged across counties for predicting cumulative recorded death counts two weeks in the
future. Our forecasts are currently being used by the non-profit organization, Response4Life,
to determine the medical supply need for individual hospitals and have directly contributed
to the distribution of medical supplies across the country. We hope that our forecasts and
data repository at https://covidseverity.com can help guide necessary county-specific
decision-making and help counties prepare for their continued fight against COVID-19.

https://covidseverity.com
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Chapter 1

Overview

1.1 Extracting Information Across Pathology Reports
Across UCSF

By enabling patients to receive tailored risk assessment and treatment decisions, precision
medicine has the potential to improve healthcare quality [1] [12] However, effective delivery
of precision medicine depends on accurate and detailed patient data. Unfortunately, much
of the relevant clinical data, such as cancer stage and histology, are stored as free text
in lengthy unstructured or semi-structured reports. [12] Leveraging the data contained in
these reports for precision medicine applications relies on manual efforts by annotators with
domain expertise for many downstream automated methods. Due to the time-consuming and
expensive nature of manual information extraction, researchers and clinicians have worked
to develop algorithms to automatically extract pertinent data from pathology reports with
mixed success, with machine learning-based methods underlying some of the more effective
solutions. [12] However, generating sufficient training data for different cancer types is
challenging, due to the large number of data elements and their specificity, as well as the need
for highly trained annotators. This is a substantial obstacle for automatically structuring
biomedical text across clinical conditions and healthcare facilities. Thus, it is critical to
develop methods that can provide high accuracy using small training sets. In particular,
biomedical information extraction has the potential to make a major impact on cancer
treatment and within cancer treatment, pathology reports contain vital clinical information.

An estimated 1.8 million Americans will be diagnosed with cancer in 2020. [85] In nearly
all cases, diagnosis is made via tissue analysis, described in detail in a pathology report, which
is stored in most electronic medical record systems as unstructured free text. Without man-
ual data abstraction, these important details are unavailable for scalable and algorithmic
approaches for case identification, risk stratification, prognostication, treatment selection,
clinical trial screening, and surveillance. [79, 99] Moreover, access to these data in struc-
tured formats can drive algorithmic personalized treatment strategies based on pathologic
information. For nearly 50 years investigators have worked to develop natural language pro-
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cessing (NLP) algorithms to extract these details from pathology reports. [55, 12] However,
only a limited number of categorical data elements are typically extracted, model outputs
often lack reliable uncertainty estimates and furthermore these methods typically require a
large labeled dataset, limiting the clinical applicability of these systems, only 10% of which
have been reported to be in real-world use. [12]

In this work, we address these major challenges while building a pathology information
extraction system which we deploy across multiple cancers and over 2 million notes at the
University of California San Francisco.

In the first section of this work, we investigate sample efficiency of state of the art pathol-
ogy information extraction methods and the accuracy of their uncertainty estimates. In the
second section, we create a novel annotation method by annotating where relevant informa-
tion is located and create a corresponding method to take advantage of these annotations,
which leads to a reduction in annotation time of 40% relative to state of the art methods.
Finally, we improve sample efficiency even further creating novel transfer learning methods
across cancers and using string similarity based methods to allow for accurate information
extraction when there are a very large number of labels relative to the number of labeled
data points.

Beyond natural language processing in healthcare, we also develop machine learning
methods for COVID-19 county level death predictions.

1.2 Curating a COVID-19 data repository and
forecasting county-level death counts in the United
States

In recent months, the COVID-19 pandemic has dramatically changed the shape of our global
society and economy to an extent modern civilization has never experienced. Unfortunately,
the vast majority of countries, the United States included, were thoroughly unprepared for
the situation we now find ourselves in. There are currently many new efforts aimed at
understanding and managing this evolving global pandemic. This chapter, together with
the data we have collated (and are collating continuously), represents one such effort. In
this chapter, we provide access to a large data repository combining data from a range of
different sources and to forecast short-term (up to two weeks) COVID-19 mortality at the
county level in the United States. We also provide uncertainty assessments of our forecasts
in the form of prediction intervals based on conformal inference. [93]
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Chapter 2

Pathology Parsing in Limited Data
Environments with Uncertainty
Estimation

Extraction information from pathology reports has traditionally been approached using rule-
based methods [64, 66, 36, 67]. However, designing rules is labor intensive and requires deep
involvement of clinical experts. The complexity and conflicts between rules grow rapidly as
the number of rules increases, and as the underlying documents shift, rules quickly become
ineffective. [29] NLP has been applied to pathology report information extraction with
promising results, using both classic NLP (boosting over a bag-of-ngrams representation
of the document) and deep learning approaches (convolutional, recurrent, and hierarchical
attention networks).[98, 34] While most work focuses on classification tasks involving fields
with a small number of labels (such as histology or margin status), Li and Martinez (2010)
investigate categorical fields as well as numeric fields such as the tumor size and the number
of lymph nodes examined. [58] Furthermore, many other information extraction tasks and
methods have been applied to pathology reports, such as Coden et al [21] which creates a
knowledge representation model to represent cancer disease characteristics; Si et al [84] which
uses a frame-based representation to extract information from clinical narratives focusing on
cancer diagnosis, cancer therapeutic procedure, and tumor description; Xu et al [97] which
considers attribute detection as a sequence labeling problem; and Oliwa et al [69] uses NLP
to classify gastrointestinal pathology reports into internal and external reports and uses
Named Entity Recognition to label accession number, location, date, and sub-labels.

Despite these developments, there has been comparatively little effort in understanding two
additional important criteria that are the basis for reproducibility and real-world use. The
first is evaluating performance as a function of training data size, which informs practition-
ers about how much data they may need to deploy similar systems. Creating an annotated
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corpus is costly and time consuming, and accurate assessment of necessary sample size can
aid deployment. [25, 77, 68, 86, 33] Second, accurate uncertainty estimates for the pre-
dicted results are critical for clinical deployment, as different uses have varying acceptability
thresholds. Having accurate uncertainty estimates means that for all cases where the model
score outputs a probability p, it is correct p percent of the time. An example of a model
with inaccurate uncertainty estimates would be one that gives a predicted probability of
correctness of 90% on all examples, but is actually only correct 10% of the time. Accurate
uncertainty estimates are important for deployment, as lower certainty may be acceptable
if the results are used for initial screening with manual verification to follow, but higher
certainty is required for a clinical decision support system. Resources can be directed to
verification for cases of high uncertainty, supplanting the need for full manual abstraction.
The source code for this project will be made available under an open source license to
facilitate adoption of NLP tools in cancer pathology.

OBJECTIVE
Our objective was to investigate two practical issues that arise when deploying machine
learning-based information extraction systems to pathology reports, using prostate cancer
as a test case. First, we evaluate the performance of models as a function of dataset size for
tasks that involve categorical values, such as histologic grade or presence of lymphovascular
invasion, as well as numeric values, such tumor size Second, we describe an approach to
model calibration and calculation of uncertainty estimates for each prediction and assessing
the quality of the model’s uncertainty estimates. We address these gaps in the literature to
guide practitioners as they implement these systems in real-world settings.

MATERIALS AND METHODS

Data Sources

We used a corpus of 3,232 free text pathology reports for patients that had undergone radical
prostatectomy for prostate cancer at the University of California, San Francisco (UCSF) from
2001 - 2018, which were extracted from UCSFâs electronic health record (Epic Systems,
Verona, WI). For each document, annotations for 17 pathologic features, such as Gleason
scores, margin status, extracapsular extension, and seminal vesicle invasion were extracted
(Table 2.1) in the Urologic Outcomes Database, which is a prospective database that contains
clinical and demographic information about patients treated for urologic cancer. Since 2001,
data have been manually abstracted by trained abstractors under an institutional review
board (IRB) approved protocol. This study was separately approved by the IRB.



CHAPTER 2. PATHOLOGY PARSING IN LIMITED DATA ENVIRONMENTS WITH
UNCERTAINTY ESTIMATION 5

The full corpus was divided into four parts, 64% training, 20% validation, 10% test, and 10%
true test. We looked at the true test only while compiling results. In order to handle our
diverse set of fields, we used two separate information extraction methods. For categorical
fields, we used a document-based classification method which has been previously applied
to information extraction from pathology reports. [98, 34] For fields with a large number
of possible values (such as numeric quantities), we used a sequence labeling task to extract
individual tokens from the document. [50] We applied our methods to the full training
dataset as well as randomly selected subsets of 16, 32, 64, 128, and 256 reports. All models
are implemented in using scikit-learn and pytorch. Detailed explanation of the pre-processing
pipeline and dataset statistics are presented in the supplementary material.

Document Classifier Methods

For categorical data fields, such as the presence of lymphovascular invasion, we treat it as a
document classification problem. These fields have between two to six possible classes (Table
2.1). We apply classical methods, such as logistic regression, random forests, support-vector
machines (SVM), and adaptive boosting (AdaBoost) on bag-of-n-gram features, as well as
deep learning methods, such as convolutional neural networks (CNNs), and long short-term
memory networks (LSTMs).

Token Extractor Methods

Many critical clinical data elements, such as tumor volume, are not suited for classification
because they are not categorical in nature. In order to broaden the variety of data fields
extracted from the reports, we employ an additional approach which we refer to as token
extractor methods. These methods are well-suited to extract numerical quantities from a
document (such as the estimated tumor volume or the patientâs medical record number,
Table 2.1). For these fields, we take each tokenâs surrounding context of k words represented
as a bag of n-grams as the primary features. We additionally append the token type encoded
as a vector to the bag of n-grams context vector. The token type vector specifies whether a
particular token is an ordinary word, a numeric value, or a hybrid of the two. These features
are used to predict whether or not the token is the token we aim to extract using logistic
regression, AdaBoost, or random forest methods. Unlike the document classifier methods,
we excluded SVMs and deep learning methods for the token classifier due to the impractical
computational requirements for our compute resources. Because our labeled data did not
contain the location information of the token of interest within the document, we labeled all
tokens that matched our label as a positive example at the time of training. At test time for
each token we compute the score under the model that this token should be extracted and
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then choose the token with the largest score as our final prediction. This token extraction
method is applied to the following fields: pathologic T, N, and M stage, prostate weight,
and tumor volume. For additional details regarding the pathologic stage field, we refer the
reader to the supplementary material. We would like to give a comparison with a related
but slightly different information extraction task of Named Entity Recognition (NER), which
classifies named entities in text into categories. Like token extraction, this too is a sequence
labeling task. In NER, this involves labeling each token into a predefined category and in
our case, for a given field, we label each token with a 0 or 1 as to whether or not it is
the desired token for this field and document. As a clarifying example for the distinction
between the tasks, an NER system with procedure as a predefined category would label all
mentions of procedures in a pathology report as the procedures class. However, this is not
what we want, as pathologists will often discuss multiple procedures in a report, but we are
interested in only the specific procedure that resected the tumor.

Dataset Size and Performance

We investigate the performance over varying data-regimes, since for informaticists who wish
to build a machine learning parser on their data, a critical question is the quantity of data
points needed for adequate performance and which methods are most likely to perform well.
We fixed the training set size to 16, 32, 64, 128, and 256 reports, which were randomly drawn
from the full training set and averaged the results over 5 random draws.

Evaluation Metrics

For each field we report the weighted F1 score of the classifier, which is the weighted sum
of the F1 scores for each class in the field, where the term for each class is weighted by the
portion of true instances of the class. In the Supplementary Tables 1-4, we report the micro
F1 and macro F1 to better compare to existing literature. For token extractor models, we
compute the accuracy of whether the token extracted from the report was correct.

Hyperparameter Tuning

To tune hyperparameters for the classification models on the full data, we used random
search with a validation set to tune each method. For each model, we randomly select 20
model-specific hyperparameter configurations, train the model on the training set, and obtain
weighted F1 scores on the validation set. The model with the hyperparameter configuration
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with the highest score is used to obtain results on the test set. To tune hyperparameters
for the classification models in the low data regimes (training on ≤ 256 reports), we used
random search across 20 configurations of hyperparameters but with 4-fold cross validation
to calculate weighted F1 scores. For extractor models, we used random search with 20
hyperparameter configurations and 4 -fold cross-validation for both the full data and low
data regimes.

We chose 4-fold cross validation as it provided a good balance between performance and
computational cost in preliminary experiments. For more details regarding hyperparameter
ranges for different models, we refer the reader to the supplementary materials.

Calibration of Systems

To support multiple use cases for the outputs of our model, it is desirable to estimate the
modelâs uncertainty reflecting the true probability of correctness for each predicted value.
For example, values that have a low probability of being correct can be flagged for manual
verification, or results can be limited to only those with a high probability of being correct.
More rigorously, for a model f and data distribution X ideally we would like a function P ∗
such that

Px (f (x) = y|P ∗ (x) = p) = p for all pε [0, 1]

One common definition of the discrepancy between the modelâs predicted probability of
correctness and its true probability of correctness is given by the expected calibration error
which is the expected difference between the models confidence and its true probability of
being correct. [100]

Ex

[
|P
(
f (x) = Y |P̂ (x) = p

)
− p| ]

where f (x) is the modelâs prediction for a datapoint point x, Y is the true value, and P̂ (x)
is the modelâs predicted probability of being correct for point x. However, this is typically
not able to be measured in practice, for example if P̂ (x) takes on a continuous set of values,
so instead P̂ (x) is discretized into bins and the Expected Calibration Error (ECE) [24] is
defined as follows:
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ECE =
M∑
m=1

|Bm|/n|acc (Bm)− conf (Bm) |

Where Bm is the mth bin, acc (Bm) is the average accuracy of the model in bin m, and
conf (Bm) is the average value of P̂ (x) of the model in bin m.

To improve the calibration of our system we apply isotonic regression. [100] In the binary case
it takes the confidence of the models output of the positive class and fits a monotonic function
where the x-axis represents the modelâs confidence score and the y-axis represents whether
or not the model was correct. In the multivariate case, the calibration method attempts
to calibrate the probability estimate of each class. It does this by first calibrating the
probability of each class in a one-vs-all setting, then after fitting, estimating the probabilities
by normalizing the one-vs-all probability for each class.

Error Analysis

To understand the potential failure modes of our models, for each field we manually analyzed
10 errors randomly chosen in our test set split of the best models in Table 2.2 by comparing
the model output and annotated label with the text of the report to check the source of the
error. If there were fewer than 10 errors for a field, we analyzed all the modelâs errors

If the error was a result of an incorrect label in our original data set, it was named as an
annotation error. Model errors occurred when the model extracted the incorrect value for a
certain field. Next, an error was classified as a report anomaly if there was something wrong
with the raw text of the report, such as if the sentences of a report were repeated many times
in the text or there was internal inconsistency in the report. Lastly, the evaluation error
means that the extracted value was correct but the evaluation method incorrectly penalized
the model such as if the correct extracted token was 2 for volume of tumor and the model
extracted 2cm.
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RESULTS

Document Classifier Performance

We calculated the weighted F1-score for each data field using the true test set (Table 2.2).
When working with the full training corpus (n= 2,066), convolutional networks perform the
best (mean weighted F1 0.972 across all 12 clinical data elements). However, we see that
the best non-deep-learning method is not far behind with AdaBoost having a weighted F1
score of 0.965.

Token Extractor Performance

For token extraction we measure the accuracy of extracting the correct token from each
document (Table 2.2). In greater detail, we choose the most probable token over all tokens
in the document and compare this to the ground truth. We observe that random forests
perform the best out of all the methods with a mean accuracy of 0.883 across 5 fields.

Performance as a Function of Dataset Size

For the classification fields, the classical machine learning methods (logistic regression, SVM,
AdaBoost, and random forests) clearly outperform the deep learning methods on average,
likely due to the small amount of training data available. The results also show that 128
reports are needed for the best methods to achieve a 0.90 weighted F1 on average across all
classification fields. For the token extractor fields, the results seem to plateau at 64 reports.
Our experiments show that a training set size in the thousands is not always needed to
adequately extract structured data from these pathology reports, an important observation
for practitioners weighing the cost of creating an annotated dataset.

Effect of Calibration

We apply calibration to two of our models. For the classification model, we apply isotonic
calibration to boosting and for the extractor model we apply isotonic regression to the
random forest model. [26] For the extractor case, we treat the probability of the token with
the highest probability as the confidence score of the model. We fit our isotonic regression
calibration methods on the development test set and evaluate the expected calibration error
on the test set, binning our uncertainty estimates P̂ (x) into bins of width .1. (Table 4.2).
Additional experiments investigating the expected calibration error (ECE) as a function of
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the bin size, which we include in supplementary Figures 1 and 2, show that while the average
expected calibration error increased, the difference in the average expected calibration error
between the smallest bin size (4) and the largest (64) was less than .02 for both classification
and extraction tasks. [24]

We find that for most classifications fields, the model had expected calibration scores less
than .1 and that isotonic regression generally improves upon this. Since for each class
the one-vs-all probabilities are calibrated, the calibrated modelâs predictions may differ
from the original model if it is not a binary classification problem, so in addition to the
expected calibration error of the model, we list the weighted F1 score of the calibrated
model. Conversely, extractor models are not well calibrated out of the box in general, but
surprisingly, by only using the probability of the token with greatest probability, performing
isotonic regression on this single value is enough to achieve sub .05 expected calibration
errors.

We also examined when the model was most overconfident, where we look for examples with
high estimated probabilities of being correct, but which were nevertheless wrong. We found
the most overconfident example in each field and observed that in 10 of the 15 examples the
algorithm was correct and the label was actually incorrect.

Error Analysis

The most common type of evaluation error for the token extractor occurred when the model
extracted the right token, but the evaluation method did not correctly score the model (Table
6). For example, if the label for the estimated volume of tumor was 2 (in centimeters) and
the model extracted 2cm, the model would be penalized. The most common type of report
anomaly occurred when the text in the report was repeated. For example, in one case, each
sentence in the report was repeated 3 times. This was an issue in the raw text of the report
and was not an aberration in preprocessing. Overall, error analysis shows that the scores
given for the models are likely underestimates and the models actually perform better than
the raw results show.

For a comprehensive breakdown of errors, we refer the reader to Table 5) in the supplemen-
tary material. Because the pathologic stage errors are highly correlated (due to the fact that
the different types of stages are encoded in the same token in the text), only the results for
the pathologic T-stage are shown.



CHAPTER 2. PATHOLOGY PARSING IN LIMITED DATA ENVIRONMENTS WITH
UNCERTAINTY ESTIMATION 11

DISCUSSION
We have investigated several practical issues in the clinical deployment of a machine learning
based pathology parsing system and developed a system that can accurately parse prostate
reports across a variety of fields and provide reliable per-label uncertainty estimates. Fur-
thermore, we evaluated the number of samples required for adequate performance to guide
outside practitioners who are considering using a learning based parsers for their datasets.

The dual classification/extraction approach to our pipeline was developed to accommodate
a larger variety of data fields. Yala et al (2017) applied boosting across twenty binary
fields on 17,000 labeled breast cancer reports and observed strong performance with F1
scores above .9 for many fields.[6] Gao et al (2018) applied hierarchical attention networks
to predict tumor site and grade from pathology reports within the NCI-SEER dataset and
noted improvement in micro-F1 (up to 0.2 greater) compared to baselines across two fields
(primary site and histologic grade) for a dataset of lung and breast cancer pathology reports.
[12] Much of the previous work does not attempt to extract all relevant data fields since they
rely primarily on document classification methods which cannot handle continuous values,
such as tumor size or prostate weight or perform the related but slightly different task of
NER. Although Li and Martinez (2010) attempt to extract data fields based on numeric
values using a hierarchical prediction method, the final prediction step relies on a rule based
method that has no clear way to be calibrated. [64] Furthermore, while our two methods
are not run on the same fields, our algorithm appears to have higher performance in general.
Our solution is developing a sequence tagging algorithm that extracts tokens corresponding
to the desired values directly, as well as employing classifier methods to extract categorical
data fields. Each method is also capable of outputting a score that can be directly calibrated
using isotonic regression. One limitation of our extraction methods is that we only consider
simple bag-of-n grams based representations and it would be interesting to see how sample
efficiency or calibration errors change under a deep learning approach.

Second, we investigated the necessary number of reports needed for accurate classification
for our pathology reports by varying the size of the training set of reports from 16 to 256
across both classification and extraction. While others have performed sample efficiency
analysis of NLP algorithms across many tasks [4, 44, 83] to our knowledge, this has not been
investigated for the important application of clinical information extraction from pathology
reports, with the exception of Yala et al. who plot dataset size vs performance over only
one method (boosting) and over fields that only take two values. [13] Overall, we found
that only 128 labeled reports were needed for the best methods for classification and only
64 for the token extractor, a small number compared to the dataset sizes used in prior work.
It is important for practitioners who have a smaller dataset to understand approximately
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how much performance to expect from a machine learning based approach as it can be
expensive and time-consuming to create a large corpus of annotated documents. We hope
this encourages more groups to explore these approaches, as large datasets may not always be
required. Our study is limited by focusing on a single cancer from one institution, and further
work can assess generalizability to other cancers and sites. Of note, there was heterogeneity
in report structure and style over 20 years.

Another important observation is that the classical statistical learning methods outperformed
deep learning methods by a large margin when fewer than 256 data points were available,
while deep learning only slightly outperformed logistic regression when using all 2,066 reports
in the training set. This suggests deep learning only adds marginal value and the complexity
of the problem, at least for the reports we worked with, is more suited to classical methods.

Finally, we investigated the reliability of uncertainty estimates of the model, which to the
authorsâ knowledge, has not been investigated in other pathology information extraction
work. Knowing which reports are likely to be incorrect can decrease the time needed to
manually verify extracted data and filter uncertain predictions for tasks like clinical research
with small populations, where each predicted value may have a large impact on conclu-
sionsThrough our calibration work, we observed that the classification model was typically
well calibrated without any modification, whereas our token extraction algorithm was not.
However, by just using the probability of the selected token, isotonic regression was a very
effective calibration solution. We furthermore investigated when the model is most likely to
be overconfident and found that two-thirds of these errors were due to incorrect annotation
labels, not incorrect algorithm outputs.

CONCLUSION
Creating annotated datasets and reliable systems are serious practical concerns when de-
veloping and deploying biomedical information extraction systems due to the high cost of
creating annotations and the impact of errors on patients outcomes. We show when apply-
ing machine learning to pathology parsing, accurate results can be obtained using relatively
small annotated datasets and calibration methods can improve the reliability of per-label
uncertainty estimates.
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TABLES AND FIGURES

Table 2.1. Data elements extracted from pathology reports

Document Classifier Algorithm Fields

Gleason Grade
Primary, secondary, tertiary

Histologic grading of tumor aggressiveness based
on the Gleason grading system. Each specimen is
assigned a primary, secondary, and occasionally a
tertiary score, each of which are whole numbers
from 1-5

Tumor histologic type Primary histologic type, such as acinar adenocar-
cinoma, ductal adenocarcinoma, small cell neuro-
endocrine carcinoma

Cribriform pattern Whether the cells exhibit a cribriform growth pat-
tern (Gleason 4 only)

Treatment effect Indicator whether there is evidence of a prior
treatment, such as hormone treatment or radia-
tion therapy

Margin status for tumor To evaluate surgical margins, the entire prostate
surface is inked after removal. The surgical mar-
gins are designated as “negative” if the tumor is
not present at the inked margin and “positive” if
tumor is present at the inked margin.

Margin status for benign glands The benign margins are designated as “positive”
if there are benign prostate glands present at the
inked margin and “negative” otherwise

Perineural Invasion Whether cancer cells were seen surrounding or
tracking along a nerve fiber within the prostate

Seminal vesicle invasion Invasion of tumor into the seminal vesicle

Extraprostatic extension Presence of tumor beyond the prostatic capsule

Lymph node status Whether tumor was identified in lymph nodes

Token Extractor Algorithm Fields

Pathologic Stage Classification
T (primary tumor)
N (regional lymph nodes)
M (distant metastasis)

Based on American Joint Committee on Cancer
TNM staging system for prostate cancer. Based
on the edition used in each report (5th - 8th edi-
tion)

continued on next page
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continued from previous page
Tumor volume Amount of tumor identified in prostate specimen

(cubic centimeters)

Prostate weight Overall weight of the prostate (grams)
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Table 2.2. Weighted F1 scores for classification fields and mean accuracy for token ex-
tractor fields on full training data sample (n = 2,066)

Data Element Logistic
regres-
sion

Adaboost
classifier

Random
Forest

SVM CNN LSTM Majority
Class
Accuracy

Gleason Grade - Primary 0.978 0.971 0.941 0.932 0.981 0.628 0.709

Gleason Grade - Sec-
ondary

0.958 0.943 0.913 0.912 0.968 0.576 0.467

Gleason Grade - Tertiary 0.923 0.930 0.844 0.886 0.930 0.741 0.901

Tumor histology 0.989 0.995 0.995 0.993 0.995 0.994 0.991

Cribriform pattern 0.963 0.981 0.963 0.968 0.987 0.966 0.997

Treatment effect 0.981 0.979 0.981 0.981 0.981 0.973 0.985

Tumor margin status 0.941 0.953 0.888 0.918 0.950 0.630 0.799

Benign margin status 0.977 0.975 0.972 0.981 0.978 0.967 0.997

Perineural invasion 0.944 0.978 0.938 0.929 0.972 0.613 0.771

Seminal vesicle invasion 0.943 0.974 0.940 0.965 0.976 0.784 0.904

Extraprostatic extension 0.954 0.953 0.882 0.939 0.961 0.778 0.712

Lymph node status 0.983 0.952 0.983 0.973 0.986 0.824 0.570

Mean weighted F1 0.961 0.965 0.937 0.948 0.972 0.790 0.817

T Stage 0.951 0.954 0.948 - - - -

N Stage 0.954 0.954 0.948 - - - -

M Stage 0.972 0.969 0.969 - - - -

Estimate Tumor Volume 0.605 0.765 0.873 - - - -

Prostate Weight 0.846 0.855 0.914 - - - -

Mean Accuracy for
token extractor mod-
els

0.866 0.899 0.930 - - - -

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine

Table 2.3. Mean weighted F1 score ± standard deviation for classification models for
classification models and mean accuracy ± standard deviation for token extractor models on
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increasing numbers of reports (n) after 5 trials

Model n = 16 n = 32 n = 64 n =
128

n =
256

Classification Models (mean weighted F1 score across all classification fields ± SD)
Logistic 0.781 ±

0.175
0.846 ±
0.117

0.875 ±
0.090

0.911 ±
0.059

0.934 ±
0.041

AdaBoost 0.829 ±
0.140

0.878 ±
0.100

0.907 ±
0.066

0.928 ±
0.049

0.945 ±
0.034

Random
Forest

0.795 ±
0.169

0.835 ±
0.128

0.867 ±
0.101

0.882 ±
0.088

0.901 ±
0.070

SVM 0.738 ±
0.214

0.763 ±
0.209

0.786 ±
0.194

0.842 ±
0.112

0.860 ±
0.140

CNN 0.720 ±
0.225

0.790 ±
0.163

0.851 ±
0.122

0.893 ±
0.086

0.935 ±
0.055

LSTM 0.688 ±
0.205

0.729 ±
0.187

0.743 ±
0.203

0.739 ±
0.214

0.739 ±
0.212

Token Extractor Models (mean accuracy across all token extractor fields ±
SD)
Logistic 0.844 ± 0.085 0.897 ± 0.079 0.892 ± 0.096 0.902 ± 0.087 0.896 ± 0.092
Adaptive Boost 0.877 ± 0.097 0.892 ± 0.080 0.890 ± 0.084 0.896 ± 0.082 0.890 ± 0.092
Random forest 0.897 ± 0.180 0.898 ± 0.064 0.915 ± 0.054 0.920 ± 0.041 0.924 ± 0.038

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Table 2.4: Upper: Classifier accuracy and expected calibration error for boosting before
and after isotonic calibration. Lower: Expected Calibration Error for Random Forest Model
before and after isotonic calibration.

Classification Calibra-
tion

Data Element Weighted-
F1

ECE Isotonic
Weighted-
F1

Isotonic

ECE

Gleason Grade - Primary 0.95 0.03 0.93 0.03

Gleason Grade - Secondary 0.94 0.08 0.92 0.14

Gleason Grade - Tertiary 0.91 0.05 0.91 0.03

Tumor histology 0.99 0.009 0.99 0.007

Cribriform pattern 0.995 0.007 0.995 0.017

Treatment effect 0.99 0.007 0.99 0.003

Tumor margin status 0.96 0.15 0.94 0.013

Benign margin status 0.994 0.007 0.995 0.019

Perineural invasion 0.95 0.26 0.96 0.02

Seminal vesicle invasion 0.987 0.16 0.97 0.02

Extraprostatic extension 0.96 0.12 0.96 0.01

Lymph node status 0.96 0.04 0.98 0.01

Extractor Calibration

Data Element ECE Isotonic
ECE

T Stage 0.155 0.016

N Stage 0.144 0.013

M Stage 0.007 0.005

Estimated Volume of Tu-
mor

0.221 0.021

Prostate Weight 0.278 0.033



18

Chapter 3

Enriched Annotations for Tumor
Attribute Classification from Pathology
Reports

In this previous chapter, we found that performing document classification with a small
number of labeled reports can be a major limitation for pathology information extraction
systems in practice. In this work, we develop a novel hierarchical annotation and correspond-
ing classification method to address the need for high accuracy methods in the presence of
a small amount of annotated data. We apply this method to classifying tumor attributes
from 250 colon cancer pathology reports and 250 kidney cancer reports at the University
of California, San Francisco. Compared to state of the art approaches, we find that our
methods typically require half the labeled data to achieve the same level of performance.

BACKGROUND
The abundance of textual data in the clinical domain has led to increased interest in de-
veloping biomedical information extraction systems. These systems aim to automatically
extract pre-specified data elements from medical documents, such as physician notes, radiol-
ogy reports, and pathology reports, and store them in databases. Converting the originally
free-text data into a structured form makes them easily available to clinical practitioners or
researchers.
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For categorical attributes, the information extraction task can be viewed as an instance of
document classification that classifies the tumor attribute based on document contents. For
a given attribute, the value is one of a fixed set of options selected based on information in the
document. As an illustration, the set of values for the attribute “presence of lymphovascular
invasion” could consist of the values “present”, “absent”, and “not reported”. Both classical
and deep learning classification methods have been applied to this task in the prior work
discussed below.

There has been success in applying classical machine learning techniques to classifying
attributes of tumors from pathology reports. Yala et al. classified over 20 binary attributes
from breast cancer pathology reports using boosting over n-gram features. [98] Jouhet et
al investigated applications of Support Vector Machines (SVMs) and Naive Bayes classifiers
to the task of predicting International Classification of Diseases for Oncology (ICD-O-3)
from cancer pathology reports. [49]. More recently, there has been success in applying deep
learning techniques to pathology report classification. Qiu et al. applied convolutional neural
networks (CNNs) to predicting ICD-O-3 from breast and lung cancer pathology reports.
[76] Gao et al. applied hierarchical attention networks to predict tumor site and grade from
pathology reports within the NCI-SEER dataset and noted improvement in micro-f1 of up
to 0.2 compared to baselines across primary site and histologic grade for lung cancer and
breast cancer reports. [34]

There has also been work addressing pathology report classification in the absence of
a large amount of labeled data. Odisho et al. analyzed performance of machine learning
methods for extracting clinical information from prostate pathology reports across various
data regimes and found that, while deep learning performed best when trained on the full
dataset of 2,066 labeled documents and achieved a mean weighted-F1 score of 0.97 across
classification attributes, simpler methods such as logistic regression and adaBoost performed
best in smaller data regimes (<256 reports). [67] Additionally, Zhang et al, investigated the
problem of unsupervised adaptation across attributes in breast cancer pathology reports. [7]
Given a set of attributes with labels and a new attribute without labels but with relevant
keywords, they used adversarial adaptation with semi-supervised attention to extract data.
We use all of the above methods as baselines for our system to compare against, with the
exception of Zhang et al. due to the difference in tasks.

MATERIALS AND METHODS

Data Sources

Our data consists of 250 colon cancer pathology reports and 250 kidney cancer reports from
2002-2019 at the University of California, San Francisco. The data was split into two sets,
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a set of 186, which we used for training and validation, and a test set of size 64. We list the
tumor attributes and their corresponding possible values in Table 3.1. Institutional Review
Board approval was obtained for this study.

Our data consists of 250 colon cancer pathology reports and 250 kidney cancer reports
from 2002-2019 at the University of California, San Francisco. The data was split into two
sets, a set of 186, which we used for training and validation, and a test set of size 64. We
list the tumor attributes and their corresponding possible values in Table 3.1. Institutional
Review Board approval was obtained for this study.

Data Annotation Methods

Pathology reports consist of free text describing a patient’s clinical history and attributes
describing the excised specimen, such as surgical procedure, cancer stage, tumor histology,
grade, cell differentiation, and presence of invasion to surrounding tissues. More recent
pathology reports also contain a synoptic comment section, which is a condensed semi-
structured summary of relevant cancer attributes. While many of the most clinically im-
portant attributes are reported in this synoptic comment, this is not always the case. The
presence and completeness of the synoptic comment also varies significantly over time. All
attributes in the College of American Pathology reporting guidelines are annotated for each
cancer, but for this paper we restrict our investigation to the most frequently occurring
attributes in our pathology reports. These include tumor site, histologic type, procedure,
laterality, tumor grade, and lymphovascular invasion for both cancers. Additionally, we have
the cancer specific attributes of laterality and perineural invasion for kidney and colon cancer
specifically.

Enriched Annotations

In previous work, annotations consisted of only the label for each attribute in a document.
[98, 67, 34] However, in this work, for each attribute of interest the annotator highlighted
all occurrences relevant to the label throughout the document, in addition to the label
itself. This provides us with the specific location within the text that directly indicates the
attribute’s label. Each highlight is classified into the corresponding College of American
Pathologists (CAP)-derived category. We investigate two types of annotation: the first we
refer to as the "reduced annotation set", a minimal set of annotations containing the line of
a given attribute value’s first occurrence in the synoptic comment, or, if not in the synoptic
comment, the line of where that information is referenced elsewhere in the document. The
incremental time required to annotate this location is marginal because the annotator does
not need to read any more of the document than that required to annotate the first occurrence
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of the attribute value. In fact, "We investigated the amount of additional time required to
create these enriched annotations and found that it took 20 percent longer on average,
primarily due to the time it took the annotator to navigate the attribute drop-down menu.
This could perhaps be improved through user interface (UI) considerations. In addition to
a reduced annotation set, we also investigate performance with all the occurrences relevant
to the final classification highlighted, a more laborious annotation scheme. For our results,
unless stated otherwise, we are using the reduced annotation set due to its comparable
annotation time to labeling the attribute values alone.

Data Preprocessing

For all methods, we replace all words that occur fewer than two times in the training data
with a special <UNK> token, and remove commas, backslashes, semi-colons, tildes, periods,
and the word “null” from each report in the corpus. For colons, forward slashes, parentheses,
plus, and equal signs, we added a space before and after the character. The spaces were
artificially added to preserve semantic value important to the task. For instance, colons
often appear in the synoptic comment, and so if an n-gram contains a colon, it can indicate
that the n-gram contains important information. If multiple labels for an attribute occurred
within a report, we concatenate them to form a single composed label. For example, if the
report contains both grade 1 and grade 2 as labels for histologic grade, we label the histologic
grade of the report as “grade 1 and grade 2” .

Baselines

For all classical baselines, we represent each document as a union of a set of n-grams where
n varies from 1 to N, where N is a hyperparameter. For all methods we use random search
[9] with 40 trials to tune our hyperparameters according to the 4-fold cross validation error
which we found in preliminary experiments to be a good compromise between performance
and computational efficiency.

Logistic regression

We use sklearn’s [71] logistic regression model with L1 regularization and the liblinear solver.
We use balanced class weights to up-weight the penalty on rare classes. We generate 500
points from -6 to 6 logspace for the regularization penalty, and sample 40 points at random.
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Support Vector Classifier

We use sklearn’s SVC model with balanced class weights. We define our parameter space as
500 points evenly generated from -6 to 6 in log space for the error penalty C of the model;
the kernel as linear or rbf; and the parameter of the kernel as either 0.001, 0.01, 0.1, or 1.
We then sample 40 points at random from this space.

Random Forest

We use sklearn’s random forest classification model with balanced class weights. The pa-
rameter space consists of the number of estimators from 25, 50, 100, 200, 400, 600, 800, and
1000; the minimum number of samples for a leaf from 1 to 128 in powers of 2; max depth of
a tree from 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100; and whether to bootstrap samples
to build trees or not. We sample 40 points randomly from this parameter set.

Boosting

We use sklearn’s adaboost classifier with decision trees of depth 3 and with the SAMME.R
boosting algorithm. Our parameter space is 500 points generated evenly from -4 to 1 in
logspace for the learning rate and either 25, 50, 100, 25, or 500 for the number of estimators.
We then sample 40 points at random from this space.

Hierarchical Attention Network

We implement the hierarchical attention method without unsupervised pre-training from
Gao et al. This model represents the document as a series of word-vectors. For each sentence
in the document it runs a gated recurrent unit (GRU) [20] over the word vectors. It then
uses an attention module to create a sentence representation as a sum of the attention-
weighted outputs of the GRU. To generate the document representation, a GRU is run
over the sentence representations, followed by another attention module applied to the GRU
outputs. The document representation is the attention-weighted sum of the GRU outputs.
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For our hyperparameters we use random search across the learning rate, which is either 1e-2,
1e-3, or 1e-4; the width of the hidden layer of the attention module, which is either 50, 100,
150, 200, 250, or 500; the hidden size of the GRU, which is either 50, 100, 150, 200, 250,
or 500; and the dropout rate applied to the document representation, which is either 0, 0.2,
0.4, 0.6, or 0.8. We use a batch size of 64 and ADAM [54] as our optimizer.

Our method: Supervised Line Attention
In order to take advantage of annotations enriched with location data, we propose a two-
stage prediction procedure in which we first predict which lines in the document contain
relevant information. We then concatenate the predicted relevant lines and use this string
to make the final class prediction using logistic regression.

Finding Relevant Lines

The first stage predicts which lines are relevant to the attribute. We do this by training an
xgboost binary classification model that takes a line represented as a bag of n-grams as its
input and outputs whether or not the line is relevant to the attribute. The relevance of each
line is predicted independently by this initial classifier.

We then take the top-k lines with the highest scores under the model (where k is a hyperpa-
rameter). Groups of adjacent lines are conjoined into one line so that sentences which span
multiple lines are presented to the model as a single line.

Finally, we represent each line as a set of n-grams vectors and compose a document repre-
sentation as the weighted sum of each vector representation, which is weighted by the score
of that line under the xgboost model. If a line is conjoined, its weight is the maximum of all
the xgboost scores for each line in the conjoined line. Mathematically, this is represented as

dr (l1, ..., ln) =
∑
liεSk

v (li)m (li)
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where dr represents the vector representation of a document d , Sk are the top-k lines with
the highest scores under the xgboost model, v is the mapping from a line li to its set of
n-grams representation, and m (li) is the xgboost score for line li .

With this final weighted representation, we train an L1 regularized logistic regression model
with balanced class weights to predict the final class.

We refer to this method as “supervised line attention” due to its relationship to supervised
attention in the deep learning literature which predicts relevant locations and creates a
weighted representation of the relevant regions’ features. Supervised attention in the deep
learning literature has been used to match a neural machine translations attention distri-
bution to match an unsupervised aligner [59] and to match a sequence-to-sequence neural
constituency parser’s attention mechanism with traditional parsing features [52], for example.
Our approach can be viewed as a form of supervised attention for document classification.
The principle difference from existing work is that in supervised attention in the deep learn-
ing literature the method is trained in an end-to-end fashion with neural networks, whereas
we train each module independently with classical methods and our feature representation
for sentences are sets of n-grams instead of dense real-valued vectors.

Rule-based line classifier

As a baseline, we also include a line classifier that selects relevant lines by searching for
expert-generated keywords and phrases. After the lines are selected, the final representation
is generated the same way, with the exception that all lines are given a weight of 1; thus,for
all li εSk , m (li) = 1.

Oracle Model

In addition to the line attention model, we also evaluate a model that uses the correct
relevant lines from the annotator directly as input to the final classifier, which we refer to as
the “oracle model” . Using the oracle lines, the final representation is generated the same
way as the rule-based line classifier, where all lines are given a weight of 1.
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Hyperparameter tuning

Similar to our baselines, we perform random search for 40 iterations and choose the hyper-
parameters that minimize 4-fold cross-validation error. The hyperparameters for our shallow
attention method are an n-gram size for finding relevant lines between 1 and 4; an n-gram
size for the second stage of making the final classification between 1 to 4.

For xgboost, the hyperparameters were 500 points from -2 to -0.5 in logspace for the learning
rate; a max depth between 3 to 7; a minimum split loss reduction to split a node that is 0,
0.01, 0.05, 0.1, 0.5, or 1; a subsample ratio that is 0.5, 0.75, or 1; and an L2 regularization
on the weights that is 0.1, 0.5, 1, 1.5, or 2.

For the final classifier, the L1 penalty is chosen from 500 evenly spaced points from -6 to 6
in logspace. Additionally, since the final representation is a weighted representation of the
features of the top-k lines under the line classifier model, we have a hyperparameter k which
determines how many lines to use, where k is between 1 and 5.

Ablation Experiments

For our ablation experiments, we investigate the relative contribution of each component in
our model.

No weighting

Here we investigate if weighting the features in each line by the classifier scores increases
performance compared to weighting the features in each line by one.

No joining

Here we investigate how joining affects the results when information spans multiple lines.
Instead of conjoining lines that occur adjacent to each other, we leave them as separate lines
for our final classifier.
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No weighting and no joining

Here we neither weight the features vectors representing each line nor do we join adjacent
predicted lines.

Error Analysis

To better understand model performance, we inspect all errors that the supervised line
attention model makes for each attribute and cancer domain. In our investigation we find 6
primary types of errors, which we define below:

Attribute Qualification Error occurs when the model correctly extracts the relevant lines,
but fails to classify the final label correctly because the label text is negated or qualified by
an additional phrase indicating information is not available, such as in the following example:
"If we were to classify the tumor, it would be grade 2 but due to the treatment effect it is
unclassified."

Rare Phrasing Error occurs when the model correctly predicts the relevant lines, but the
relevant lines contain rare or unusual phrasing and the model assigns an incorrect final
classification.

Irrelevant Lines Error occurs when the model includes irrelevant lines in its final predictions,
which can influence the final classification.

Multi-Label Error occurs when a report contains a conjoined label (such as “grade 1 and
grade 2” ), but the model only correctly predicts one of the labels.

Annotator Error occurs when the modelâs prediction is correct, but on re-review we noted
that the annotatorâs label was incorrect.
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Unknown error occurs when the underlying cause of the error is not known. This often
occurs when the model correctly extracts out the relevant line but assigns an incorrect final
label.

RESULTS
We trained our methods using various training set sizes of 32, 64, 128, and 186 with 4-fold
cross validation. We take the average of 10 runs where we reshuffle the data and generate
new splits each time and compute 95% confidence intervals for all methods using bootstrap
resampling, with the exception of the HAN method due to computational limitations. For
our results, unless stated otherwise, we are using the reduced annotation set due to its
comparable annotation time to labeling the attribute values alone. As shown in Figure 3.1
and Table 3.4, our shallow attention model frequently improves substantially over existing
methods in terms of micro and macro-f1, particularly in the lowest data regimes. For ex-
ample, for colon cancer we see an absolute improvement of 0.10 micro-f1 and 0.17 macro-f1
over previously existing methods with 32 labeled data points. Furthermore, SLA frequently
tends to perform as well or better than state of the art methods with only half the labeled
documents. Two exceptions are in kidney cancer micro-f1 scores, where boosting performs
.01 better in micro-f1. We see that the rule-based line classifier method tends to do better
than existing methods with 64 labeled data points or fewer, but its performance plateaus
and XGBoost outperforms it with 128 and 186 labeled data points. Furthermore, we see
that the rule-based line classifier consistently performs worse than supervised line attention.

Ablation Results

We plot the results of our ablation experiments in Figure 3.2, using the same setup as
our main result where we have training set sizes of 32, 64, 128, and 186 with 4-fold cross
validation. Again, we take the average of 10 runs where we reshuffle the data and generate
new splits each time and compute 95% confidence intervals for all methods using bootstrap
resampling. We see mixed results for joining adjacent predicted lines; it appears to be
inconsequential for colon cancer and detrimental for kidney cancer. However, weighting the
features by line predictor seems beneficial for the macro-f1 scores. This seems to suggest
that weighting helps primarily for rare classes since the macro-f1 score weights the f1 scores
of each class equally.
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Full Annotations

Here we compare how well reduced annotation compares to the more laborious full annotation
setting where we highlight all areas in the document relevant to final classification. We use
the same setup as for our main results as wells as our ablation experiments and present our
results in Figure 3.3. We can see that the full annotation set leads to a consistent increase
in performance. However, it is unclear whether the extra time required to create this full
annotation scheme is beneficial overall as it would lead to fewer documents annotated in the
same amount of time.

Error Analysis

We provide a compilation of the number of errors across attributes in Table 3.2 and Table
3.3 for colon and kidney cancer, respectively. We see that the most common error is the
multi-label error. This is primarily problematic for colon cancer histologic grade, where
pathologists will describe a range of grades such as “grade 1-2” and tumor site for colon
and kidney cancer as tumors can inhabit multiple sites. This suggests that treating this as
a multi-label classification problem instead of naively conjoining multiple labels may reduce
many of the errors.

DISCUSSION
We have investigated the efficacy of location-enriched annotations and a corresponding sim-
ple and interpretable method, which we call Supervised Line Attention, for extracting data
elements from pathology reports across colon and kidney cancers at UCSF. By leveraging lo-
cation annotations, our two-stage modeling approach can lead to increases of micro-f1 scores
up to 0.1 and macro-f1 scores up to 0.17 over state-of-the-art methods and typically reduces
the required annotation by 40% to achieve the performance of existing methods.

Our SLA approach with enriched annotations was primarily developed to tackle the prob-
lem of achieving accurate performance with minimal labeled data. Previous approaches that
attempt to leverage additional data use multi-task learning and transfer learning using infor-
mation from other cancer domains with complex modeling architectures. For example, [76]
investigated using transfer learning with convolutional neural networks to extract data from
942 breast and lung cancer reports, achieving 0.685 and 0.782 micro-f1 scores, respectively.
[2] implemented multitask learning with convolutional neural networks to classify tumor at-
tributes in 942 pathology reports for breast and lung cancers, and achieved 0.77, 0.79, and
0.96 micro-f1 scores for tumor site, histologic grade, and laterality, respectively.
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An important observation is that our approach is more interpretable than previous machine
learning methods, since addition to outputting the probability and predicted value for a
certain report, our system outputs the exact lines of the text used to make the classification
as well. This enables practitioners to easily check predictions by examining the lines output
by the extraction system, and verify the system is working as expected before making clin-
ical decisions. The hierarchical attention approach used by [35] also can output the most
pertinent sentences for a classification by using the attention mechanism to hierarchically
filter out pieces of text. However, our experiments show that HAN requires a large train-
ing size to achieve adequate performance due to the more complex architecture used, and
requires significantly more development and computational time to search the hyperparam-
eter space. Additionally, there have been recent concerns regarding the interpretability of
attention distributions from neural networks [48].

Our study has a few limitations. Although we observe high performance of our methodology
in both colon and kidney cancer reports at UCSF, our investigation was done at a single
institution; this may limit the generalizability of our findings to other institutions that
use different pathology reporting or data collection systems. Second, within the field of
natural language processing, there has been strong empirical evidence showing the benefit of
pre-trained contextualized representations for a variety of tasks, both in and out of clinical
applications [73, 27, 57, 46]. In preliminary experiments, we investigated the efficacy of using
biomedical word vectors [74] as feature representation input to our SLA model, but did not
see an improvement in results. However, it would be interesting to investigate the effect that
more sophisticated contextualized representations may have on downstream performance,
and this may increase performance of SLA even further.

CONCLUSION
We have shown that including location information in annotation and applying our super-
vised line attention mechanism can vastly reduce the number of labeled documents needed
for accurate tumor attribute classification compared to state of the art approaches. Fur-
thermore, our supervised line attention method allows for greater interpretability due to
its hierarchical nature, which can allow for easy verification of its outputs for clinicians.
We hope these methods will advance the application of information extraction in medicine,
where labeled data is scarce and expensive to acquire.
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Tables

Table 3.1. Extracted attributes and their possible values

Tumor Site
Colon Cannot be determined, cecum, colon not otherwise specified,

hepatic flexure, ileocecal valve, left descending colon, other,
rectosigmoid junction, rectum, right ascending colon, sigmoid
colon, splenic flexure, transverse colon, or not reported

Kidney Upper pole, middle pole, lower pole, other, not specified, or not
reported

Histologic Type
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma, type

cannot be determined, large cell neuroendocrine carcinoma,
medullary carcinoma, micropapillary carcinoma, mucinous ade-
nocarcinoma, neuroendocrine carcinoma poorly differentiated,
other histologic type not listed, serrated adenocarcinoma, signet-
ring cell carcinoma, small cell neuroendocrine carcinoma, squa-
mous cell carcinoma, undifferentiated carcinoma, or not re-
ported

Kidney Acquired cystic disease associated renal cell carcinoma, chromo-
phobe renal cell carcinoma, clear cell papillary renal cell carci-
noma, clear cell renal cell carcinoma, collecting duct carcinoma,
hereditary leiomyomatosis and renal cell carcinoma-associated
renal cell carcinoma, mit family translocation renal cell carci-
noma, mucinous tubular and spindle renal cell carcinoma, mul-
tilocular cystic clear cell renal cell neoplasm of low malignant
potential, oncocytoma, other histologic type, papillary renal cell
carcinoma, papillary renal cell carcinoma type 1, papillary renal
cell carcinoma type 2, renal cell carcinoma unclassified, renal
medullary carcinoma, succinate dehydrogenase sdh deficient re-
nal cell carcinoma, t611 renal cell carcinoma, tubulocystic renal
cell carcinoma, xp11 translocation renal cell carcinoma, or not
reported

Procedure
Colon Abdominoperineal resection, left hemicolectomy, low anterior re-

section, not specified, other, polypectomy, right hemicolectomy,
sigmoidectomy, total abdominal colectomy, transanal disk exci-
sion, transverse colectomy, or not reported

continued on next page
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continued from previous page
Kidney Total nephrectomy, partial nephrectomy, radical nephrectomy,

other, or not reported
Laterality
Colon Not applicable to colon cancer
Kidney Left, right, or not reported
Grade
Kidney, Colon Grade 1, 2, 3, 4, not applicable, or not reported
Lymphovascular
Invasion
Kidney, Colon Present, absent, or not reported
Perineural Inva-
sion
Colon Present, absent, or not reported
Kidney Not applicable for kidney cancer

Table 3.2: Error analysis: Colon cancer

Attribute Histologic
Grade

Histologic
Type

Perineural
invasion

Lymphovascular
invasion

ProcedureTumor
Site

Total

Attribute
Qualification
Error

1 0 0 0 0 0 1

Rare
phrasing

0 0 0 1 3 0 4

Irrelevant Lines
Error

1 0 0 0 5 0 6

Annotator Er-
ror Error

3 1 1 0 5 0 10

Multi-label Er-
ror

6 0 0 0 0 6 12

Unknown error 1 0 0 0 6 0 7
Total by at-
tribute

12 1 1 1 19 6 40
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Table 3.3: Error analysis: Kidney cancer

Attribute Histologic
Grade

Histologic
Type

Specimen
Lateral-
ity

Lymphovascular
invasion

ProcedureTumor
Site

Total

Attribute Quali-
fication Error

0 0 0 0 0 0 0

Rare
phrasing

0 0 0 1 5 0 6

Irrelevant Lines
Error

1 0 0 1 1 1 4

Annotator Error 1 2 0 1 1 0 5
Multi-label Er-
ror

0 4 0 0 2 6 12

Unknown error 1 4 0 1 1 5 12
Total by at-
tribute

3 10 0 4 10 12 39

Figure 3.1: Average micro-f1 and macro-f1 performance across attributes of different methods
as a function of 32, 64, 128, 186 labeled examples on colon cancer and kidney cancer pathology
reports. SLA: supervised line attention; oracle: oracle model that gets access to the true lines
as input; rules: line prediction done with a rule-based method and logistic regression to predict
the final class; boost: XGBoost; SVM: Support Vector Machine; logistic; logistic regression;
RF: Random forest; HAN: Hierarchical attention network. We present the mean result across
10 random shufflings of the data as well as 95% bootstrap confidence intervals. We see that
our method SLA outperforms existing methods in almost all cases. Furthermore, we see that
predicting relevant lines outperforms our rule-based method to extract relevant lines.
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Table 3.4: Average micro-f1 and macro-f1 performance across attributes of different
methods as a function of 32, 64, 128, 186 labeled examples on colon and kidney cancer.
Highest performing non-oracle method is bolded.
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Colon
HAN RF SVM Boost LogisticRules SLA Oracle

Micro-
F1
32 .45 .57 .51 .69 .63 .75 .80 .80
64 .50 .62 .57 .79 .70 .79 .84 .84
128 .60 .69 .62 .84 .79 .83 .87 .88
186 .61 .73 .68 .86 .83 .84 .89 .89
Macro-
F1
32 .18 .22 .21 .32 .28 .43 .50 .50
64 .19 .29 .24 .46 .37 .52 .60 .59
128 .25 .34 .30 .57 .53 .56 .66 .67
186 .37 .40 .35 .62 .59 .59 .69 .70
Kidney
Micro-
F1
32 .54 .57 .56 .73 .66 .79 .80 .85
64 .54 .67 .60 .80 .75 .81 .83 .86
128 .63 .75 .68 .85 .81 .83 .84 .87
186 .71 .77 .71 .86 .83 .84 .85 .88
Macro-
F1
32 .25 .28 .29 .37 .35 .46 .48 .51
64 .27 .35 .30 .46 .42 .49 .52 .54
128 .36 .42 .38 .52 .49 .51 .54 .55
186 .47 .46 .42 .54 .51 .54 .56 .56

Figure 3.2: Ablation studies for SLA measuring the average micro-f1 and macro-f1 perfor-
mance across attributes of different methods as a function of 32,64,128,186 labeled examples
on colon cancer and kidney cancer pathology reports. We investigate the impact of joining
adjacent selected lines prior to featurization as well as the impact of weighting the features
by the line classifier scores. We present the mean result across 10 random shufflings of the
data with 95% bootstrap confidence intervals. While it appears that joining adjacent predicted
lines leads to mixed or potentially even negative performance over not joining adjacent pre-
dicted lines, weighted methods seem to outperform their unweighted alternatives, especially
for macro-f1 scores, suggesting that weighting helps in particular for rare classes
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Figure 3.3: Comparing the more laborious scheme of annotating the location information
for all relevant lines for a given attribute as compared to the more lightweight annotation
method of only annotating the first line in the synoptic comment, if the synoptic comment
contains the information, or the first relevant line in the document otherwise. We see that
having the additional information yields a consistent, though sometimes small, benefit.
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Chapter 4

Transfer Learning and String Similarity
for Information Extraction from
Pathology Reports

Our contributions in this chapter are creating methods for extracting information from clin-
ical documents under the presence of much fewer examples, by leveraging transfer learning
techniques and string similarity to facilitate zero-shot learning, for predicting tumor at-
tributes from pathology reports at UCSF across multiple cancers. In particular, we develop
a novel transfer learning procedure that allows us to leverage pathology reports from outside
cancers to increase performance on a cancer of interest. Furthermore, to address the case of
a large number of classes and a limited amount of labeled data points, we develop zero-shot
classification techniques by leveraging string similarity techniques. By doing this, we can
perform as well as the most data efficient methods in the existing literature while requiring
typically only half of the data.

In this work, we develop novel natural language process methods that extract information
from unstructured pathology reports from very few labeled examples. In particular, we build
upon the work in in the previous chapter which introduces a novel two-stage approach to
extracting data from electronic health records using location-based annotations and dra-
matically improves data efficiency and often only using required half of the labeled data.
Specifically, we improve the two-stage method with transfer learning and string similarity
and evaluate their performance on extracting categorical data fields from lung, kidney, and
colon pathology reports We compare these improvements with the original two-stage method
and other state-of-the-art approaches.
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BACKGROUND

There has been considerable interest in developing algorithmic approaches to automatically
extract data elements from clinical text and convert them into structured form such as a
table [95, 12, 64, 61]. Many of the learning-based approaches rely on training document-level
classifiers which take in the full text of a report and predict a value for a given data field,
such as the histologic type of a cancer. Training these types of methods requires adequate
amounts of annotations which are expensive and time consuming to obtain. Due to these
limitations, it is important to investigate how to build reliable extraction methods which
can be built using small amounts of annotated reports.

We develop a data extraction system in the data sparse setting where we have access
to small amounts of annotated pathology reports across lung, kidney, and colon cancers.
We focus specifically on categorical data fields where the extraction task is formulated as
a document classification learning problem. An example of a categorical data field is the
lymphovascular invasion where the fixed categories are “present", “absent", or “not reported".

Previous works have explored reliably extracting in limited data settings. Yala et al. car-
ried out a performance analysis of boosting tree extraction models and found that around 400
training examples were required to obtain an accuracy of 0.9 for 20 breast cancer classifica-
tion fields [98]. Odisho et al. showed that non-deep learning methods largely outperformed
deep learning methods using annotated data sizes below 256 for prostate cancer reports
[67]. The previous chapter developed a novel two-stage approach using more fine-grained,
location-based annotations and showed that the fully supervised location-based approach
outperformed the state-of-the-art using training data sizes below 186 for colon, kidney, and
lung cancer reports. However, none of these works contain a performance analysis using
transfer learning from other cancer types or consider the case where many labels donât show
up in the training data.

Transfer learning has been shown as a promising approach to improve medical data
extraction performance. Qiu et al. found that intra-class transfer learning on convolutional
neural networks provided improvements of up to 0.04 in micro-F1 and macro-F1 scores for
lung and breast tumor sites [76]. Alawad et al. show that multi-task convolutional neural
networks trained across cancer types achieve up to 0.17 improvement in the macro-F1 score
over single cancer registry models [3].

In this work, we explore extending the existing two-stage approach using transfer learning
and string similarity methods. For data fields with categories that are shared across colon,
kidney, and lung cancers, we study whether applying transfer learning to the two-stage
method improves performance. For data fields with categories that are unique to a specific
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cancer type, we study whether interpolating string similarity methods with the two-stage
method can lead to improvements in performance.

4.1 MATERIALS AND METHODS

Data Sources

The pathology reports we use span across colon, lung, and kidney cancers from the University
of California, San Francisco from 2002 to 2019. For each cancer type, we have access to 250
annotated reports which we use to create 10 random train-validation-test splits. Each of
the 10 splits consists of the same 250 annotated reports overall, but the individual training,
validation, and test sets are different due to randomness. The train, validation and test sets
consist of 40, 20, and 190 annotated reports, respectively. Each experiment is run 10 times
separately on each of the 10 random splits. We obtain confidence intervals for the evaluation
metrics using the test set of each split.

Data fields

Pathology reports contain information about a patient’s clinical history and data fields, such
as the cancer stage, tumor histology and grade, and presence of invasion to surrounding
tissues. The chosen data fields are categorical attributes that appear in the College of
American Pathology reporting guidelines, but we filter out data fields where the tumor
attribute appears in less than 90% of our reports.

We then specifically look at fields that are shared between cancers; examples of such fields
are the histologic type and grade of the cancer. These fields are relevant across many cancer
types unlike the presence of rhabdoid features, which is relevant to only kidney cancer from
the 3 cancers we study. Out of these shared fields, we specifically study the histologic grade
and presence of lymphovascular invasion in the context of transfer learning (Table 4.1).
For example, a relevant question is if a trained model performs better for extracting the
histologic grade for kidney cancer if it has been previously trained to extract the histologic
grade from colon cancer. The histologic grade and presence of lymphovascular invasion fields
are specifically chosen for this task since they appear across all three cancer domains and have
labels that are independent of the cancer domain. For example, the labels for the presence
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of lymphovascular invasion field arenot identified, present, or not available regardless of the
cancer domain.

We additionally focus on the following data fields: the procedure carried out on a patient,
the site of a tumor, and the histologic type of a tumor (Table 4.2). These fields appear
across all three cancer domains but have labels specific to a cancer domain. For example,
the categories for kidney tumor site include the upper pole, middle pole, and lower pole.
For these fields, our goal is to study whether a string similarity type approach enhances a
learned information extraction model trained on small amounts of data.

Enriched Annotations

Our pathology reports contain annotations for ground-truth labels as well as highlighted
text throughout the report relevant to the label as in the previous chapter. These fine-
grained annotations provide the lines in the report that determine the value of a tumor
attribute. Similar to the previous chapter we use the “creduced annotation set", which
consists of the minimal set of annotations containing the line of a given data field’s value in
the synoptic comment or the first line that contains the relevant information if the report
does not contain a synoptic comment. These synoptic comments are typically common
in more recent pathology reports and are a brief standardized portion of the text where
relevant cancer attributes are reported. As mentioned in the previous chapter, reduced
location-specific annotations take 20 percent longer on average than typical annotations.

Data Preprocessing

Before any kind of vectorization of the text, we replace words that occur once in the training
data and words that never appear in the training data with a special <UNK> token. We
then remove commas, backslashes, semi-colons, tildes, periods, and the word “null” from
each report and add spaces around colons, forward slashes, parentheses, plus and equal
signs. Additionally, we also concatenate labels if multiple labels are assigned to a report for
a specific field. For example, if the report contains both “upper” and “lower” labels for the
field tumor site, then we aggregate the labels so the final label is “upper and lower.”
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SUPERVISED LINE ATTENTION

Our models are based on the two-stage framework introduced in the previous chapter. At
a high level, the goal is to predict the lines in the report which contain information on a
specific data field and then use the predicted lines to make the final class prediction for a
given report. There are two separate classifiers for the line prediction task and the class
prediction task which are both trained directly using our location-based annotations. As in
previous work, the xgboost model is used for the line prediction task, and logistic regression
is used for the class prediction task.

To help us tackle this task, we break up our tumor attributes of interest into two distinct
categories. On the one hand we have tumor attributes with shared labels across cancers.
One such example is the histologic grade; every cancer is graded on the same scale. On the
other hand we have tumor attributes whose labels are not shared across cancers. One such
example is the procedure; for each cancer type there are a different set of procedures used
for resecting tumors. We break these up into two distinct categories since, the first case is a
natural candidate for a transfer learning approach, whereas for the second, since the labels
are not shared across cancer types, transfer learning is less applicable. We propose two
methods to perform extraction depending on whether the labels are shared across cancers
or not.

1) Shared labels case
In the case where the labels are the same across cancer domains, knowledge can be trans-

ferred from one cancer type to another. For example, for the presence of lymphovascular
invasion, identifying the relevant lines in a report is domain-independent because lymphovas-
cular invasion is a relevant attribute for many cancers. Furthermore, identifying the correct
label of the lymphovascular invasion field is again domain-independent because the cate-
gories (present, not identified, and not reported) are the same across cancer types. In the
low-data setting, this shared knowledge is especially important because reports from other
domains can be used to improve extraction performance through data augmentation.

To take advantage of this property, we create a transfer learning technique to learn data
extraction using the shared information across cancer types for the relevant data fields.
We build off the supervised line attention method by training both the line classifier and
the final classifier on reports from all domains, which we refer to as hierarchical cancer to
cancer learning (HCTC). We include in our results ablations to HCTC where we only share
information for the line classifier (HCTC-line) or the final classifier (HCTC-final).

We note that, to the authors’ best knowledge, this is the first work to investigate transfer
learning techniques across multiple cancers.

2) Unique labels case
Unlike the shared labels case, we opt against a transfer learning approach and only focus
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on an individual cancer at a time, as it is unclear the level of applicability of transfer learning
since the label space is different for each cancer. Furthermore, many of our fields have a
large number of labels, such as kidney histologic type which has 32 different labels (Table
2). Therefore, it is possible that we will see labels at test time that we have never seen at
training time.

A challenge is that typical machine learning models need a sufficient number of examples
for each possible label to learn classification tasks. As seen by the set of possible labels
for our fields (Table 2), this is not possible for small training data sizes. Consequently, a
technique that can handle a large set of labels is essential here and in particular, a method
capable of zero-shot learning is necessary.

We develop a novel string similarity method that allows us to have a more sample efficient
method that is capable of zero-shot learning. We refer to this method as zero-shot string
similarity (ZSS). At a high level, ZSS first predicts the relevant lines for the label as in the
previous chapter, then from the set of labels, finds the label with the highest string similarity
from the relevant lines. The labels we use are defined in the College of American Pathology
reporting guidelines. For example, the set of labels for the site of the tumor for kidney cancer
include the labels upper pole, mid-pole, and lower pole.

ZSS involves calculating pairwise character-based similarity scores between a predicted
line of a report and each possible label. We use the line in the report with the highest
probability computed using the line classifier as the predicted line. The similarity between
words in a predicted line and a candidate label is computed with the Ratcliff-Obershelp
algorithm which is based on the longest contiguous matching subsequence. We tried several
character-level string similarity algorithms, such as the Jaro-Winkler similarity, Levenshtein
similarity, and Hamming distance but found that the Ratcliff-Obershelp approach performed
best on the training set of the first split. The label with the highest Ratcliff-Obershelp score
is used as the final prediction for a report. The full algorithm is described below.

Zero-shot similarity (ZSS)
Input: Predicted line in a report, the probability output from the line classifier, a set of

labels for a given field (the possible values that a data field can take), and a learned cutoff
parameter used to predict ‘NA’ or not reported Output: Predicted label

Output: Predicted label

1. For eachcandidate label, calculate its fuzzy jaccard score with the predicted line

2. Take the label with the highest fuzzy jaccard score. If there is a tie between multiple
labels, take the label with the most characters as the prediction

3. If the fuzzy jaccard score is less than 0.5, then predict “other”

4. If the line probability is less than the cutoff, then predict “NA”

Fuzzy jaccard algorithm
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Input: Predicted line in a report and a candidate label
Output: Similarity score

1. For each unique word in the candidate label, calculate its string similarity score with
each unique word in the predicted line using the Ratcliff-Obershelp contiguous matching
subsequence algorithm and find the max similarity score.

2. Sum up the max similarity scores across unique words for the candidate label

3. Scale the resulting sum by the number of unique words in the label

Ensembling String Similarity with the General Two-Stage Approach: While we found ZSS
to be effective on its own, we found that it suffered from a few weaknesses. In particular,
we found that the “other” class particularly challenging, as it consists of all possible values
the field can take outside of the defined label set in the CAP protocols. For example, if the
field is “procedure”, then the “other” class corresponds to all other possible procedures not
listed in the CAP protocols, which will all have low string similarity to the label “other”.
Furthermore, there are cases where the label in general is very dissimilar to how it occurs
in the text. With these examples, no matter how many data points our algorithm is trained
on, it will never get these right. Therefore, we aim to get the best of both ZSS and the two
stage approach by developing a hybrid approach to the problem. If the final string similarity
score is above a learned threshold, then we output the ZSS prediction. Otherwise, we output
the two-stage prediction. We call this method ZSS-thresholding. We also include an oracle
method for the sake of comparison that chooses the two-stage prediction if it is equal to
the ground truth and the ZSS prediction otherwise. This oracle method serves as an upper
bound on the performance of our string similarity enhancement of the two-stage method.
Our final method is ZSS-doc which is using ZSS on the entire text of the report instead of
the lines output from the line classifier. This allows us to gauge how necessary the location
targeting approach is for the ZSS methods.

BASELINE METHODS

1) Shared labels
Our first set of baselines is document-level classification methods, such as logistic regres-

sion, XGBoost, random forest, and support vector machines. These methods take as input
all the tokens in a given report and predict the class value of a particular data field. The
bag of words approach is used to vectorize the text in each document and train the outlined
machine learning methods. This approach only uses the final document-level labels and is
trained on the cancer of interest as well as the out-domain cancer reports.
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Our next baseline is the hierarchical attention network (HAN) for document classification
[35]. In particular, we study the hierarchical attention network (HAN) in terms of transfer
learning. We pretrain the model on out-domain reports for a shared field and then fine-tune
the model on in-domain reports.

We also use the two-stage approach outlined in the previous chapter as an additional
baseline. XGBoost is used as the line prediction model, while the logistic regression is used
as the final label classifier. Location-based annotations are used to train the line prediction
model, while the document-level label annotations are used to train the final classifier.

2) Unique labels
The baselines in the unique labels scenario include the ordinary document-level classifiers

and the two-stage approach similar to the previous case. All the methods in the unique labels
case are trained on a single cancer domain.

HYPERPARAMETER TUNING

For all our experiments, we train each method with 40 randomly chosen hyperparameter
values and choose the set that maximizes the average 4-fold cross-validation score.

Model-based parameters
For the xgboost method we sample from 1000 points from -2 to -0.5 in logspace for the

learning rate; values 3 to 7 for max depth; a minimum split loss reduction to split a node
from 0, 0.01, 0.05, 0.1, 0.5 and 1; a subsample ratio values from 0.5, 0.75, or 1; and L2
regularization values from 0.1, 0.5, 1, 1.5, or 2. For logistic regression, we sample 1000
evenly spaced points from -6 to 6 in logspace for the L1 regularization parameter.

Two stage parameters
The two-stage method has additional model-independent hyperparameters which are the

n-gram size for the line classifier which is between 1 and 4, the n-gram size for the final
classifier which is again between 1 and 4, the number of selected lines to use as input to the
final classifier which is between 1 and 5.

String similarity parameters
The string similarity approach has an additional model-independent cutoff parameter

sampled from 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 which is used to handle NA values for a given
data field. We specifically use the maximum line classifier probability from the positively
predicted lines. If this probability is less than the cutoff value, then the predicted value from
the string similarity method is replaced by “NA.”

Two stage + string similarity parameters
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The two-stage data augmented variation contains a threshold parameter that is sampled
from 0.8, 0.85, 0.9, 0.95, and 1.0. This parameter is used to select instances outside the train
set to augment the training data. All instances which have a similarity score with a label
greater than the threshold value is used along with the string similarity prediction for data
augmentation.

Similarly, the two-stage thresholding variation contains a threshold parameter sampled
from 0.8, 0.85, 0.9, 0.95, and 1.0. If a given instance has a string similarity score with a label
greater than the threshold value, then the two-stage prediction is replaced with the string
similarity prediction.

RESULTS

We run two sets of experiments across lung, colon, and kidney cancers: one for the shared
field and shared labels case and another for the shared field and unique labels case. Each
method is trained on training data sizes of 10, 20, and 40 in-domain reports along with 372
out-domain reports with validation set sizes of 5, 10, and 20 in domain reports, respectively.
The test set consists of 186 held out reports from the domain in question.

Each experiment is run 10 times where the training, validation, and test splits are ran-
domly formed. We compare across methods using the mean micro-F1 and mean macro-F1
scores and obtain confidence bounds around the means. Due to computational reasons we
only run HAN one time for all experiments.

Shared field and shared labels
HCTC consistently improves performance across the data sizes compared to the two-stage

method (Figure 4.1). Comparing between the methods on the same data sizes, performance
increases by 0.09 average micro-F1 score and 0.05 average macro-F1 score when using HCTC
over the two stage method on 10 training points. or training data size 40, the increase in
performance narrows to about 0.02 for the average micro-F1 score and 0.03 for the average
macro-F1 score. HCTC also requires only 10 training points to achieve 97% of the micro-F1
performance and 92% of macro-F1 performance of the two stage method using 20 annotated
training reports. Compared to the two stage method using 40 annotated training reports,
HCTC only requires 20 reports to achieve 99% of the micro-F1 performance and 96% of the
macro-F1 performance.

Shared field and unique labels
ZSS-based methods outperform the two-stage method across dataset sizes for the shared

field and unique labels case (Figure 1). ZSS-thresholding consistently outperforms the other
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methods for both micro-F1 and macro-F1. For training data size 10, ZSS-thresholding
achieves an improvement of 0.11 micro-F1 and 0.23 macro-F1 over the two-stage method.
For training data size 40 the improvement is 0.00015 for micro-F1 and 0.14 macro-F1 over
the vanilla two-stage method. Comparing across data sizes, ZSS-thresholding with 10 data
points achieves an increase of 0.02 in micro-F1 and 0.17 in macro-F1 over the two-stage
method with 20 data points. Using 20 data points, ZSS-thresholding achieves 98% of the
performance in micro-F1 and an increase of 0.13 in macro-F1 compared to the two stage
method trained on 40 data points.

Our ZSS methods greatly outperform the baseline methods for the shared field and
unique labels case (Figure 4.4). Compared to the best baseline method, xgboost, trained on
40 reports, ZSS-thresholding trained on 10 reports achieves an increase of 0.04 in micro-F1
and 0.045 in macro-F1. Similarly, ZSS trained on 10 reports achieves an increase of 0.035 in
macro-F1 and 0.031 in micro-F1 over xgboost trained on 40 reports.

DISCUSSION

We have developed two ways to improve the performance of learning-based extraction sys-
tems when the amount of annotated reports are limited. For fields where the data field and
labels are shared across domains, it is natural to aggregate annotations across domains to
augment the data used to train the models. Our experiments with enhancing the two-stage
method show that much of the gain in performance occurs within the lower end of the data
sizes; there is a 0.09 increase in micro-F1 for data size 10 and 0.02 increase in micro-F1 for
data size 40 for our reports.

In the case of fields where the labels are not shared across domains, we opt for a string
similarity enhancement instead of a transfer approach. Because the categories for these fields
are unique for each domain, there is less room for improvement via transfer learning due to
cancer-unique labels. String similarity is a more viable approach because typically in this
case the text will contain strings close to the label names. Our experiments in this work
show that interpolating learning-based solutions with string similarity prediction can lead
to a significant increase in performance - up to 0.1 micro-F1 and 0.23 macro-F1 for data size
10 and similar performance for micro-F1 and 0.14 macro-F1 for data size 40.

Our findings motivate future directions for information extraction with small data regimes.
One promising direction is taking advantage of models pre-trained using large corpuses of
text on language modeling tasks. Recent work in NLP has shown fine-tuning such models on
specific tasks with small amounts of data lead to improvements in performance for a given
task. Combining such models, such as BERT, [22] with the two-stage framework could be a
promising direction for future research. Furthermore, we did not study how much transfer
learning benefits learning across different fields for a particular cancer. Even though the
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majority of categories are different between data fields even for one particular cancer, there
can be similarities within the text. For example, one such case is when a pathologist denotes
that a particular attribute is not reported in the text which is applicable to many data fields.
Hence a fully unified extraction model may perform better than a model trained on a specific
data field. In practice, it is also easier to maintain one integrated model over maintaining
many individual models.

Another promising direction is improving the ensembling method between machine learn-
ing methods and rules-based or string similarity methods for the unique labels case. Our
results on the oracle ensembling model shows that there is still much room for improvement
when combining string similarity predictions with machine learning predictions. For exam-
ple, the oracle model has up to 0.075 improvement in both macro and micro-F1 over our
method of thresholding based on the learned similarity score cutoff. Potential approaches
include basing the decision-making process on the uncertainties of each algorithm or com-
bining model probabilities and string similarity scores for each possible label and outputting
the label with the highest score

CONCLUSION

Data is the fuel for machine learning development in personalized healthcare, and much of
this data is found in text data. However, in an unstructured form, utilizing this data is quite
challenging; furthermore, due to privacy concerns and the technical nature of annotation,
acquiring a large labeled dataset is typically infeasible, making it difficult to apply state of
the art general domain natural language processing methods. Therefore, it is important for
personalized healthcare to develop efficient natural language processing methods. In this
work we have created two methods to tackle this problem, one investigating novel cancer
to cancer transfer learning techniques and the other utilizing string similarity techniques to
handle the problem of zero-shot learning or when the number of classes is relatively large
compared to the number of labels. We find that our transfer learning method achieves an
increase of up to 0.09 in micro-F1 and 0.05 in macro-F1. Furthermore, we find that our string
similarity method achieves an increase of up to 0.11 in micro-F1 and 0.23 in macro-F1.
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TABLES

Table 4.1. Extracted attributes and their possible values for the
shared fields and shared labels case

Field Possibles values
Histologic grade Grade 1, grade 2, grade 3, grade 4, or not reported
Lymphovascular
invasion

Present, absent, or not reported

Table 4.2. Extracted attributes and their possible values for the
shared fields and unique labels case

Tumor Site Possible values
Colon Cannot be determined, cecum, colon not otherwise speci-

fied, hepatic flexure, ileocecal valve, left descending colon,
other, rectosigmoid junction, rectum, right ascending
colon, sigmoid colon, splenic flexure, transverse colon, or
not reported

Kidney Upper pole, middle pole, lower pole, other, not specified,
or not reported

Lung Upper lobe, middle lobe, lower lobe, bronchus, or not reported
Histologic Type Possible values
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma,

type cannot be determined, large cell neuroendocrine
carcinoma, medullary carcinoma, micropapillary carci-
noma, mucinous adenocarcinoma, neuroendocrine carci-
noma poorly differentiated, other histologic type not listed,
serrated adenocarcinoma, signet-ring cell carcinoma, small
cell neuroendocrine carcinoma, squamous cell carcinoma,
undifferentiated carcinoma, or not reported

continued on next page
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continued from previous page
Kidney Acquired cystic disease associated renal cell carcinoma,

chromophobe renal cell carcinoma, clear cell papillary re-
nal cell carcinoma, clear cell renal cell carcinoma, collect-
ing duct carcinoma, hereditary leiomyomatosis and renal
cell carcinoma-associated renal cell carcinoma, mit fam-
ily translocation renal cell carcinoma, mucinous tubular
and spindle renal cell carcinoma, multilocular cystic clear
cell renal cell neoplasm of low malignant potential, oncocy-
toma, other histologic type, papillary renal cell carcinoma,
papillary renal cell carcinoma type 1, papillary renal cell
carcinoma type 2, renal cell carcinoma unclassified, renal
medullary carcinoma, succinate dehydrogenase sdh defi-
cient renal cell carcinoma, t611 renal cell carcinoma, tubu-
locystic renal cell carcinoma, xp11 translocation renal cell
carcinoma, or not reported

Lung Adenocarcinoma in situ mucinous, adenocarcinoma in situ
nonmucinous, adenocarcinoma acinar predominant, inva-
sive adenocarcinoma acinar predominant, pulmonary ade-
nocarcinoma acinar predominant, adenosquamous carci-
noma, atypical carcinoid tumor, carcinoma, combined
small cell carcinoma, fetal adenocarcinoma, invasive ade-
nocarcinoma micropapillary predominant, invasive ade-
nocarcinoma papillary predominant, invasive adenocarci-
noma lepidic predominant, invasive mucinous adenocar-
cinoma, invasive squamous cell carcinoma keratinizing,
invasive squamous cell carcinoma non-keratinizing, inva-
sive squamous cell carcinoma basaloid, large cell carci-
noma, large cell neuroendocrine carcinoma, lymphoepithe-
lioma, minimally invasive adenocarcinoma, minimally in-
vasive adenocarcinoma mucinous, mucinous adenocarci-
noma, mucoepidermoid carcinoma, non-small cell carci-
noma, small cell carcinoma, squamous cell carcinoma in
situ, solid adenocarcinoma with mucin, typical carcinoid
tumor, squamous cell carcinoma, other, or not reported

Procedure Possible values
Colon Abdominoperineal resection, left hemicolectomy, low an-

terior resection, not specified, other, polypectomy, right
hemicolectomy, sigmoidectomy, total abdominal colec-
tomy, transanal disk excision, transverse colectomy, or not
reported

continued on next page
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continued from previous page
Kidney Total nephrectomy, partial nephrectomy, radical nephrec-

tomy, other, or not reported
Lung Bilobectomy, completion lobectomy, wedge resection,

lobectomy, segmentectomy, pneumonectomy, other, or not
reported

FIGURES

Figure 4.1: Average micro-f1 and macro-f1 performance across transfer learning variations
of the two-stage method as a function of 10, 20, and 40 labeled examples on colon, kid-
ney, and lung cancer pathology reports. The results presented include the mean performance
across 10 random splits of the data and 95% confidence intervals for the shared labels case.
The two-stage method with transfer learning for both the line and final classifiers consis-
tently outperforms the other variations of two-stage including no transfer learning across the
different training set sizes.

Figure 4.2: Average micro-f1 and macro-f1 performance across baseline methods as a
function of 10, 20, and 40 labeled examples on colon, kidney, and lung cancer pathology
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reports. The results presented include the mean performance across 10 random splits of the
data and 95% confidence intervals for the shared labels case.

Figure 4.3: Average micro-f1 and macro-f1 performance across string similarity varia-
tions of the two-stage method as a function of 10, 20, and 40 labeled examples on colon,
kidney, and lung cancer pathology reports. The results presented include the mean perfor-
mance across 10 random splits of the data and 95% confidence intervals for the shared field
and unique labels case. The thresholding variation consistently outperforms the other meth-
ods across the different training set sizes for both micro-F1 and macro-F1 metrics.
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Figure 4.4: Figure 4: Average micro-f1 and macro-f1 performance across baselines as
a function of 10, 20, and 40 labeled examples on colon, kidney, and lung cancer pathology
reports. The results presented include the mean performance across 10 random splits of the
data and 95% confidence intervals for the unique labels case.
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Chapter 5

Curating a COVID-19 data repository
and forecasting county-level death
counts in the United States

5.1 Introduction
In recent months, the COVID-19 pandemic has dramatically changed the shape of our global
society and economy to an extent modern civilization has never experienced. Unfortunately,
the vast majority of countries, the United States included, were thoroughly unprepared for
the situation we now find ourselves in. There are currently many new efforts aimed at
understanding and managing this evolving global pandemic. This paper, together with the
data we have collated (and are collating continuously), represents one such effort.

Our goals are to provide access to a large data repository combining data from a range
of different sources and to forecast short-term (up to two weeks) COVID-19 mortality at the
county level in the United States. We also provide uncertainty assessments of our forecasts
in the form of prediction intervals based on conformal inference [93].

Predicting the short-term impact, e.g., over the next week, of the virus in terms of the
number of deaths is critical for many reasons. Not only can it help elucidate the overall
impacts of the virus, but it can also help guide difficult policy decisions, such as whether or
not to impose or ease lock-downs or whether to re-open. While many other studies focus on
predicting the long-term (several months or over the year) trajectory of COVID-19, these
approaches are currently difficult to verify due to a lack of long-term COVID-19 data.1 On
the other hand, predictions for immediate short-term trajectories are much easier to verify
and are likely to be much more accurate than long-term forecasts due to comparatively fewer
uncertainties involved, e.g., due to policy change or behavioral changes in society. Short-
term predictions are also necessary for PPE distribution planning and policy decisions such

1Given the longer trajectory of the COVID-19 since the first version of our paper, the longer-term
predictions can probably be given a better scrutiny now.



CHAPTER 5. CURATING A COVID-19 DATA REPOSITORY AND FORECASTING
COUNTY-LEVEL DEATH COUNTS IN THE UNITED STATES 54

as safe re-opening of the counties and states. So far, a vast majority of predictive efforts have
focused on modeling COVID-19 case-counts or death-counts at the national or state-level
[32], rather than the more fine-grained county-level that we consider in this paper. To the
best of our knowledge, ours was the first work on county-level forecasts.2

The predictions we produce in this paper focus on recorded cumulative death counts,
rather than recorded cases since recorded cases fail to accurately capture the true prevalence
of the virus due to previously limited testing availability. Moreover, comparing different
counties based on the number of recorded cases is difficult since some counties have performed
many more tests than others: the number of positive tests does not equal the number of
actual cases. While the proportion of positive tests is more comparable across different
counties, our modeling approach focuses on recorded death counts rather than proportions.
The original motivation to predict death counts was to provide a proxy for the severe case
counts, where individuals would need intense care in a hospital; see Section 5.7 for further
discussion. We note that the recorded death count is also likely to be an under-count of
the number of true COVID-19 deaths because it seems as though in many cases only deaths
occurring in hospitals are being counted.3 Nonetheless, the recorded death count is generally
believed to be more reliable than the recorded case count.4 We also note that, more recently,
several efforts are being made to obtain better recorded (not using any algorithms or models)
COVID-19 death counts, e.g., by including probable deaths and deaths occurring at home.5

In Section 5.2, we introduce our data repository and summarize the data sources con-
tained within. This data repository is being updated continuously (as of September 2020)
and includes a wide variety of COVID-19 related information in addition to the county-level
case-counts and death-counts; see Tables 5.1–5.4 for an overview. Given the rapidly evolving
and dynamic nature of COVID-19, several biases arise in the COVID-19 infection data. We
provide a detailed discussion on these biases in the context of our forecasts in Section 5.2.

In Section 5.3, we introduce our predictive approach, wherein we fit a range of different
exponential and linear predictor models using our curated data. Each predictor captures a
different aspect of the behaviors exhibited by COVID-19, both spatially and temporally, i.e.,
across regions and time. The predictions generated by the different methods are combined
using an ensembling technique by [80], which we refer to as Combined Linear and Exponential
Predictors (CLEP). Additional predictive approaches, including those using social distancing
information, are presented in Appendix .1, even though they do not outperform the CLEP
predictors in the main text based on the COVID-19 case and death counts in the past and
neighboring counties.

2By the time of our first submission to arXiv on May 16, 2020, we were not aware of any concurrent
work on county-level forecasts. See Section 5.6 for discussion on related work where we also discuss the
county-level forecasts by [19] (time stamp of June 8) which we became aware of in mid-June while revising
the manuscript.

3This comment is applicable for the period up to June 21, 2020 considered in this paper, e.g., see
https://www.nytimes.com/interactive/2020/04/28/us/coronavirus-death-toll-total.html

4https://coronavirus.jhu.edu/data/cumulative-cases
5https://covidtracking.com/blog/confirmed-and-probable-covid-19-deaths-counted-two-ways

https://www.nytimes.com/interactive/2020/04/28/us/coronavirus-death-toll-total.html
https://coronavirus.jhu.edu/data/cumulative-cases
https://covidtracking.com/blog/confirmed-and-probable-covid-19-deaths-counted-two-ways
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In Section 5.4, we develop uncertainty estimates for our predictors in the form of predic-
tion intervals, which we call Maximum (absolute) Error Prediction Intervals (MEPI). The
ideas behind these intervals come from conformal inference [93] where the prediction interval
coverage is well defined as the empirical proportion of times when the observed cumulative
death counts fall into the prediction intervals over a period of time. Since their guarantees
rely on an exchangeability property of the prediction errors in the past several days, we also
examine this property in the context our prediction tasks.

Section 5.5 details the evaluation of the predictors and the prediction intervals for the 3,
5, 7, and 14-days-ahead forecasts. We use the data from January 22, 2020, the day of the
first COVID-19 death in the US6, and report the prediction performance over the period
March 22, 2020 to June 20, 2020. Overall, we find that CLEP predictions are adaptive to
the exponential and sub-exponential nature of COVID-19 outbreak, with about 15% error
for 7-day-ahead and 30% error for 14-day-ahead predictions; e.g., see Table 5.9. We also
provide detailed results for our prediction intervals MEPI from April 11, 2020 to June 20,
2020. And we observe that MEPIs are reasonably narrow and cover the recorded number of
deaths for more than 90% of days for most of the counties in the US, e.g., see Figures 5.13
and 5.14.

Finally, we describe related work by other authors in Section 5.6, discuss the impact of
our work in distributing medical supplies across the country in Section 5.7, and conclude in
Section 5.8.

Making both the data and the predictive algorithms used in this paper accessible to others
is key to ensuring their usefulness. Thus the data, code, and predictors we discuss in this pa-
per are open-source on GitHub (https://github.com/Yu-Group/covid19-severity-prediction)
and are also updated daily with several visualizations at https://covidseverity.com. The
results in this paper contain case and death information at county level in the U.S. from
January 22, 2020 to June 20, 2020 but the data, forecasts, and visualizations in the GitHub
repository and on our website are updated daily. See Figure 5.1 for a high-level summary of
the contributions made in this work.

5.2 COVID-19 data repository
One of our primary contributions is the curation of a COVID-19 data repository that we have
made publicly available on GitHub. It is updated daily with new information. Specifically,
we have compiled and cleaned a large corpus of hospital-level and county-level data from
20+ public sources to aid data science efforts to combat COVID-19.

Overview of the datasets on June 20, 2020

At the hospital-level, our dataset covers over 7000 US hospitals and over 30 features including
the hospital’s CMS certification number (a unique ID of each hospital used by Centers for

6https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm

https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com
https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm
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Figure 5.1: An overview of the paper. We curate an extensive data repository combining
data from multiple data sources. We then build several predictors for county-level predictions
of cumulative COVID-19 death counts, and develop an ensembling procedure (CLEP) and
a prediction interval scheme (MEPI) for these predictions. Both CLEP and MEPI are
generic machine learning methods and can be of independent interest (see Sections 5.3 and
5.4 respectively). All the data, and predictions are publicly available at GitHub repo (link
in footnote). Visualizations are available at https://covidseverity.com/ and https:
//geodacenter.github.io/covid/map.html, in collaboration with the Center for Spatial
Data Science at the University of Chicago.

Medicare and Medicaid Services), the hospital’s location, the number of ICU beds, the
hospital type (e.g., short-term acute care and critical access), and numerous other hospital
statistics.

There are more than 3,100 counties in the US. At the county-level, our repository includes
data on

(i) daily recorded COVID-19-related case count and (recorded) death count by [88] and
[92];

(ii) demographic features such as population distribution by age and population density;

(iii) socioeconomic factors including poverty levels, unemployment, education, and social
vulnerability measures;

(iv) health resource availability such as the number of hospitals, ICU beds, and medical
staff;

(v) health risk indicators including heart disease, chronic respiratory disease, smoking,
obesity, and diabetes prevalence;

https://covidseverity.com/
https://geodacenter.github.io/covid/map.html
https://geodacenter.github.io/covid/map.html
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(vi) mobility measures such as the percent change in mobility from a pre-COVID-19 base-
line; and

(vii) other relevant information such as county-level presidential election results from 2000 to
2016, county-level commute data that includes the number of workers in the commuting
flow, and airline ticket survey data that includes origin, destination, and other itinerary
details.

In total, there are over 8000 features in the county-level dataset. We provide a feature-level
snapshot of the different types of data available in our repository, highlighting features in the
county-level datasets in Table 5.1 and the hospital-level datasets in Table 5.2. Alternatively,
in Tables 5.3 and 5.4, we provide an overview of the county-level and hospital-level data
sources in our repository, respectively, organized by the dataset.

The full corpus of data, along with further details and extensive documentation, are
available on GitHub. In particular, we have created a comprehensive data dictionary with
the available data features, their descriptions, and source dataset for ease of navigation on
our github. We have also provided a quick-start guide for accessing the unabridged county-
level and hospital-level datasets with a single Python code line.

Datasets used by our predictors: In this paper, we focus on predicting the number of
recorded COVID-19-related cumulative death counts in each county. For our analysis, we
primarily use the county-level case and death reports provided by USAFacts from January
22, 2020 to June 20, 2020 (pulled on June 21, 2020) along with some county-level demo-
graphics and health data. We have marked these datasets with an asterisk (*) in Table 5.3.
We discuss our prediction algorithms in detail in Sections 5.3, 5.4 and 5.5.

Other potential use-cases for our repository: The original intent of our data reposi-
tory was indeed to facilitate our work with Response4Life and aid medical supply allocation
efforts. However, with time the data repository has grown to encompass more resources
and now supports investigations into a wider range of COVID-19 related problems. For
instance, using the breadth of travel information in our repository, including (aggregated)
air travel and work commute data, researchers can investigate the impact of both local and
between-city travel patterns on the spread of COVID-19. Our repository also includes data
on the prevalence of various COVID-19 health risk factors, including diabetes, heart disease,
and chronic respiratory disease, which can be used to stratify counties. Furthermore, one
can also potentially leverage socioeconomic and demographic information, as well as health
resource data (e.g., number of ICU beds, medical staff) to gain a better understanding of
the severity of the pandemic in a county. Stratification using these covariates is particularly
crucial for assessing the COVID-19 status of rural communities, which are not directly com-
parable, both in terms of people and resources, to the larger cities and counties that have

https://github.com/Yu-Group/covid19-severity-prediction/blob/master/data/list_of_columns.md
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received more attention.

Comparison with the repository collated by [53] at Johns Hopkins University:
Note that similar but complementary county-level data was recently aggregated and released
in another study [53]. Both our county-level repository and the repository in [53] include
data on COVID-19 cases and deaths, demographics, socioeconomic information, education,
and mobility, albeit some are from different sources. For example, the repository by [53]
uses COVID-19 cases and deaths data from the John Hopkins University CSSE COVID-
19 dashboard by [28] whereas our data is pulled from [92] and [88]. The main difference,
however, between the two repositories is that our data repository also includes data on
COVID-19 health risk factors. Furthermore, while the repository in [53] provides additional
datasets at the state-level, we provide additional datasets at the hospital-level (given our
initial goal of helping the allocation of medical supplies to hospitals, in partnership with
the non-profit Response4Life). While their data repository contains both overlapping and
complementary information to our repository, a thorough dataset-by-dataset comparison is
beyond the scope of this work for two reasons: (i) We learned about this repository towards
the completion of our work, and (ii) we were unable to find detailed documentation of how
the datasets in their repository were cleaned.

Data quality and bias

Before introducing our prediction algorithms, it is vital to discuss the quality and limitations
of the available COVID-19 data. Many downstream analyses, including ours, rely on accurate
COVID-19 infection data, including accurate case and death counts. In this subsection, we
focus our discussion and evaluation on the data quality of the county-level COVID-19 case
and death count data. We also conduct some preliminary exploratory data analysis (EDA)
to shed light on the scale of bias and the possible directions of the biases in the data.

Though discussions on data quality issues and their possible consequences are relatively
sparse in the existing literature, [5] discuss a variety of possible data biases in the context of
estimating the case fatality ratio. They proposed a method that can theoretically account
for two biases: time lag and imperfect reporting of deaths and recoveries. Unfortunately, it is
hard to evaluate their method’s performance since the actual death counts due to COVID-19
remain unknown. Moreover, some data biases (e.g., under-ascertainment of mild cases) for
estimating the case fatality ratio do not affect estimation of future death counts. Nonethe-
less, many of the ideas we present with our EDA here in uncovering possible biases in the
data are inspired by [5].

Imperfect reporting and attribution of deaths due to COVID-19: Numerous news
articles have suggested that the official US COVID-19 death count is an underestimate [96].
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Description of County-level Features Data Source(s)
COVID-19 Cases/Deaths

Daily # of COVID-19-related recorded cases by US
county

[92]; [88]

Daily # of COVID-19-related deaths by US county [92]; [88]

Demographics
Population estimate by county (2018) [41] (Area Health Resources Files)
Census population by county (2010) [41] (Area Health Resources Files)
Age 65+ population estimate by county (2017) [41] (Area Health Resources Files)
Median age by county (2010) [41] (Area Health Resources Files)
Population density per square mile by county
(2010)

[41] (Area Health Resources Files)

Socioeconomic Factors
% uninsured by county (2017) [22]
High school graduation rate by county (2016-17) [22]
Unemployment rate by county (2018) [22]
% with severe housing problems in each county
(2012-16)

[22]

Poverty rate by county (2018) [90]
Median household income by county (2018) [90]
Social vulnerability index for each county [14] (Social Vulnerability Index)

Health Resources Availability
# of hospitals in each county [51]
# of ICU beds in each county [51]
# of full-time hospital employees in each county
(2017)

[41] (Area Health Resources Files)

# of MDs in each county (2017) [41] (Area Health Resources Files)

Health Risk Factors
Heart disease mortality rate by county (2014-16) [13] (Interactive Atlas of Heart Disease and

Stroke)
Stroke mortality rate by county (2014-16) [13] (Interactive Atlas of Heart Disease and

Stroke)
Diabetes prevalence by county (2016) [15] (Diagnosed Diabetes Atlas)
Chronic respiratory disease mortality rate by
county (2014)

[47]

% of smokers by county (2017) [22]
% of adults with obesity by county (2016) [22]
Crude mortality rate by county (2012-16) [91]

Mobility
Start date of stay at home order by county [53]
% change in mobility at parks, workplaces, tran-
sits, groceries/pharmacies, residential, and re-
tail/recreational areas

[38]

Table 5.1: A list of select relevant features from across all county-level datasets contained in
our COVID-19 repository grouped by feature topic. See Table 5.3 for an overview of each of
the individual county-level datasets.
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Description of Hospital-level Fea-
tures

Data Source(s)

CMS certification number [18] (Case Mix Index File)
Case Mix Index [18] (Case Mix Index File); [17] (Teaching Hos-

pitals)
Hospital location (latitude and longitude) [43]; [23]
# of ICU/staffed/licensed beds and beds utiliza-
tion rate

[23]

Hospital type [43]; [23]
Trauma Center Level [43]
Hospital website and telephone number [43]

Table 5.2: A list of select relevant features from across all hospital-level datasets contained
in our COVID-19 repository. See Table 5.4 for an overview of each hospital-level dataset.

According to The New York Times7, on April 5, the Council of State and Territorial Epi-
demiologists advised states to include both the confirmed cases based on laboratory testing,
and probable cases—using specific criteria for symptoms and exposure. The Centers for Dis-
ease Control adopted these definitions, and national CDC data began including confirmed
and probable cases on April 14. The infection data included in our data repository (US-
AFacts and NY Times) contains both the probable death and the confirmed deaths beginning
April 14. Although the probable death counts address imperfect reporting and attribution,
there is still the possibility of under-reporting in some counties (for the period up to June
21, 2020). However, the magnitude of the possible under-reporting and the counties where
under-reporting occurred is unclear. Going forward, we use the term recorded death counts
and recorded case counts to reflect that the recorded counts are based on both confirmed
and probable deaths and cases.

Inconsistency across different data sources: There exist multiple sources of COVID-
19 death counts in the US. In our data repository, we include data from [92] and data
from [88]. According to USAFacts and the NY Times websites, they both collect data from
state and local agencies or health departments and manually curate the data. However,
these websites do not scrape data from those sources at the same time. While USAFacts
states that “they mostly collect data in the evening (Pacific Time)”, NY Times mentions
they update data throughout the day. Furthermore, while there are some discussions on
how they collect and process the data on their websites, the specific data curation rules are
not shared publicly. Possibly due to different scrapping times and curation rules, there are
a few discrepancies in their case and death counts. In Figure 5.2(a), we plot the absolute

7https://www.nytimes.com/interactive/2020/06/19/us/us-coronavirus-covid-death-toll.
html

https://www.nytimes.com/interactive/2020/06/19/us/us-coronavirus-covid-death-toll.html
https://www.nytimes.com/interactive/2020/06/19/us/us-coronavirus-covid-death-toll.html
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County-level Dataset Description

COVID-19 Cases/Deaths Data
[92]*† Daily cumulative number of reported COVID-19-

related death and case counts by US county, dating
back to Jan. 22, 2020

[88]† Similar to the USAFacts dataset, but includes aggre-
gated death counts in New York City without county
breakdowns

Demographics and Socioeconomic Factors
[41] (Area Health Resources Files)* Includes data on health facilities, professions, resource

scarcity, economic activity, and socioeconomic fac-
tors (2018-2019)

[22]* Estimates of various health behaviors and socioeco-
nomic factors (e.g., unemployment, education)

[14] (Social Vulnerability Index) Reports the CDC’s measure of social vulnerability from
2018

[90] Poverty estimates and median household income for
each county

Health Resources Availability
[41] (Area Health Resources Files)* Includes data on health facilities, professions, resource

scarcity, economic activity, and socioeconomic fac-
tors (2018-2019)

[42] (Health Professional Shortage Ar-
eas)

Provides data on areas having shortages of primary
care, as designated by the Health Resources & Ser-
vices Administration

[51]* # of hospitals, hospital employees, and ICU beds in
each county

Health Risk Factors
[22]* Estimates of various socioeconomic factors and health

behaviors (e.g., % of adult smokers, % of adults with
obesity)

[13] (Interactive Atlas of Heart Disease
and Stroke)*

Estimated heart disease and stroke death rate per
100,000 (all ages, all races/ethnicities, both genders,
2014-2016)

[15] (Diagnosed Diabetes Atlas)* Estimated percentage of people who have been diag-
nosed with diabetes per county (2016)

[47]* Estimated mortality rates of chronic respiratory dis-
eases (1980-2014)

[16] (Chronic Conditions) Prevalence of 21 chronic conditions based upon CMS
administrative enrollment and claims data for Medi-
care beneficiaries

[91] Overall mortality rates (2012-2016) for each county
from the National Center for Health Statistics

Mobility
[53] (JHU Date of Interventions) Dates that counties (or states governing them) took

measures to mitigate the spread by restricting gath-
erings

[38] (Google Community Mobility
Reports)†

Reports relative movement trends over time by geog-
raphy and across different categories of places (e.g.,
retail/recreation, groceries/pharmacies)

[6] (Apple Mobility Trends)† Uses Apple maps data to report relative (to Jan.
13, 2020) volume of directions requests per coun-
try/region, sub-region or city

Miscellaneous
[89] (County Adjacency File)* Lists each US county and its neighboring counties; from

the US Census
[11] (Airline Origin and Destination
Survey)

Survey data with origin, destination, and itinerary de-
tails from a 10% sample of airline tickets in 2019

[62] (County Presidential Data) County-level returns for presidential elections from 2000
to 2016 according to official state election data
records

Table 5.3: A list of county-level datasets contained within in our COVID-19 repository
grouped by data category. Datasets marked with † are updated daily while all other sources
are static. Datasets marked with an asterisk (*) were used in the predictors discussed in
this work. Several datasets are relevant to multiple categories and are thus listed multiple
times. See Table 5.1 for an overview of select features from these county-level datasets.
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Hospital-level Dataset Description

[43] Includes number of ICU beds, and location for US hos-
pitals

[23] Provides data on number of licensed beds, staffed beds,
ICU beds, and the bed utilization rate for hospitals
in the US

[18] (Case Mix Index File) Reports the Case Mix Index (CMI) for each hospital
[17] (Teaching Hospitals) Lists teaching hospitals along with address (2020)

Table 5.4: A list of hospital-level datasets contained within in our COVID-19 repository.
Currently, all hospital-level sources are static. See Table 5.2 for an overview of select features
from these hospital-level datasets.

difference in death counts from the two datasets for each county. In Figure 5.2(b), we plot
the number of counties whose recorded COVID-19 deaths on a given day differ by more than
5. The proportion of counties with observably different death-counts (difference > 5) is in
general small (< 1%), although sometimes the differences are quite significant (>100). This
fact is further highlighted in Figure 5.2(c), where we plot the histogram of these differences
across all counties and all days. We observe that a majority of these differences (4737/7281)
are equal to 1. Since two datasets are curated under different rules (which are unknown
to us), it is not obvious how to combine them or assess their validity. For our analysis,
we choose to use the USAFacts COVID-19 deaths data as they provide county-level death
counts for New York City while the NY Times data aggregates the death counts over the
five boroughs in that region.

Weekday patterns: The recorded case counts and death counts have a significant weekly
pattern in both the USAFacts and NY Times data; such a pattern can possibly be attributed
to the reporting delays as discussed in [5]. We show the total number of deaths recorded on
each day of the week in the USAFacts data in Figure 5.3(a). The total number of deaths on
Monday and Sunday is significantly lower than that for any other day. We try to account
for these weekly patterns in our prediction methods later in Appendix .1.

Historical data revision: We observed that some of the historical infection data was
revised after initially being recorded. According to USAFacts, these revisions are typically
due to earlier mistakes from local agencies which revised their previously recorded death
counts. Note that these data revisions are not related to the probable deaths as we discussed
earlier and therefore we regard this phenomenon as a distinct source of bias. This kind of
revision is not common: until June 21, we observe that only 2.1% of counties across the U.S.
had one or more historical revisions. Figure 5.3(b) shows a histogram of the amount of time
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Figure 5.2: Plots illustrating the differences in county-wise recorded daily death counts
between the USAFacts and NY Times datasets. In panel (a), we plot the magnitude of
difference in death counts for each county as a function of time, where one dot represents
a particular county on a particular day. We notice that while there are counties where the
discrepancy can be larger than 100 deaths recorded in a day, the majority of the discrepancies
are not large. The large discrepancies are possibly due to different data curation protocols
used by USAFacts and NY Times. In panel (b), we plot the number of counties that have a
discrepancy of more than 5 on any given day between the two datasets. We notice that on
any given day, no more than 30 counties, i.e., < 1% of the more than 3,100 counties, have
a difference larger than 5 between the two datasets. In panel (c), we plot the histogram
of number of counties (counted separately for each day) that have a certain difference in
the daily death counts between the two datasets. We notice that for an majority fraction
(4736/7281), the death counts between the two datasets differ by 1.
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Figure 5.3: Exploratory data analysis (EDA) plots for identifying potential biases in US-
AFacts data. (a) Variation of recorded death counts over different days of the week. We
observe that the total death counts (for March-June) shows a trend across different week-
days, and the total count is significantly smaller for Sunday and Monday. In panel (b),
we plot the cumulative distribution for the fraction of revisions made versus the number of
days for the revisions. In panel (c), we present the signed magnitude of the change, i.e., the
“revised count minus the original count” against the original count for each revision.
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from the initial record to the revision. It can be seen that almost half of the changes happen
within 2 days from the day data was initially recorded. Figure 5.3(c) shows the signed
magnitude of the change in death count that results from the revisions versus the initial
recorded death counts. Note that there are a few stripes (consecutive upward revisions) in
the plot. Each stripe corresponds to the revision of a particular county on different dates.
Since the reported data is cumulative death counts, when the deaths from a few days ago get
revised, all the data after that day until the day when the revision is made also get revised
accordingly, thereby explaining the short stripy trends.

However, only 582 out of 2100 revisions (around 27%) have absolute magnitude > 2
deaths, and 354 of these 582 revisions (around 67%) are in the positive direction (i.e., more
deaths than initially recorded). Furthermore, amongst the 61 revisions with an absolute
magnitude larger than 200, almost all of them (57/61) lead to an increase in the number of
recorded deaths. The four most significant downward revisions, i.e., the points with large
negative “revised-original count" in Figure 5.3(c), correspond to counties in the Washington
State. This finding can be corroborated by the media news that Washington State admitted
errors in reporting the death counts, and subsequently lowered these counts in the revisions.
It is natural for our predictions to vary if the training data (for a fixed period) varies with
time, i.e., when the COVID-19 counts are adjusted for a backdate. Most of these revisions are
minor, in which case the general performance of our predictors does not change significantly.
However, when the revisions are a significant uptick, the predictions can become unstable
for a few days (depending on the uptick, and the prediction-horizon). See Section 5.5 and
5.5 for further discussion on these biases. In this paper, we use the initial infection data
available on June 21, 2020 to evaluate our algorithm performance, i.e., we do not use data
that was revised after June 21. Nonetheless, we caution the reader to keep the following
fact in mind while interpreting results from our work as well as other related COVID-19
studies: The recorded death counts themselves are an under-estimate and the consequent
bias is hard to adjust for due to the lack of ground truth.

5.3 Predictors for forecasting short-term death counts
Figure 5.4 provides a visualization of the COVID-19 outbreak across the United States.
We plot (a) the cumulative recorded death counts due to COVID-19 up to June 20, and
(b) the new death counts from June 1 to June 20, 2020. Each bubble denotes a county-
level count, a darker and larger bubble denotes a higher death count, and the absence of a
bubble denotes that the count is zero. Panel (a) captures the extent of the outbreak in a
region, while (b) captures the recent trends in the outbreak. The color scale differs between
the two plots to better illustrate the respective counts in each plot, but the size scales are
held constant between the two plots to help provide a comparison between the extent and
recent trends of COVID-19. Overall, Figure 5.4 clearly shows that the COVID-19 outbreak
in the United States is incredibly dynamic both in time and across different regions. The
worst-affected regions include the states of New York, New Jersey, Massachusetts, Michigan,
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Illinois, Florida, Louisiana, Georgia, Washington, and California. Moreover, most of these
areas continue to face a substantial COVID-19 burden in the first two-thirds of June.

We develop several different statistical and machine learning prediction algorithms to
capture the dynamic behavior of COVID-19 death counts. Since each prediction algorithm
captures slightly different trends in the data, we also develop various weighted combinations
of these prediction algorithms. The five prediction algorithms or predictors for cumulative
recorded death counts that we devise in this paper are as follows:

1. A separate-county exponential predictor (the “separate” predictors): a series
of predictors built for predicting cumulative death counts for each county using only
past death counts from that county.

2. A separate-county linear predictor (the “linear” predictor): a predictor similar
to the separate county exponential predictors, but uses a simple linear format, rather
than the exponential format.

3. A shared-county exponential predictor (the “shared” predictor): a single
predictor built using death counts from all counties, used to predict death counts for
individual counties.

4. An expanded shared-county exponential predictor (the “expanded shared”
predictor): a predictor similar to the shared-county exponential predictor, which
also includes COVID-19 case numbers and neighboring county cases and deaths as
predictive features.

5. A demographics shared-county exponential predictor (the “demographics
shared” predictor): a predictor also similar to the shared-county exponential predic-
tor, but which also includes various county demographic and health-related predictive
features.

An overview of these predictors is presented in Table 5.5. We use the python package
statsmodels [81] to train all the five predictors: ordinary least squares for predictor (2),
and Poisson regression for predictors (1), (3), (4) and (5) (where the set of features for
each predictor is different).8 To combine the different trends captured by each of these

8We use the default parameters in the Python statsmodels package (version 0.11.1) while training our
predictors. For predictors (1) and (2), glm.fit was used which always converged. For predictors (3)-(5), we
first tried glm.fit_regularized since we experimented with the use of explicit `1 and `2 regularization in the
beginning. While we ended up using reguralization for only predictor (5) and not for (3) and (4), it turns
out that default settings (algorithm and stopping criterion) in the functions glm.fit and glm.fit_regularized
are different leading to different implicit regularizations even in predictors (3) and (4), and consequently
different performance. We still chose to use glm.fit_regularized for fitting predictors (3) and (4) since it
led to better performance for predictor (4) (which forms the basis of our best performing predictor CLEP).
We also note that the function glm.fit_regularized, in fact, calls another function fit_elasticnet which uses
block coordinate descent (BCD) by default to solve a generalized linear model. The default value for the
maximum number of iterations of BCD (max_iter) is set to be 50, which, in some cases, resulted in early
stopping (a form of implicit regularization) before the iterative algorithm converges.
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Figure 5.4: Visualization of the COVID-19 outbreak in the US. We depict the cumulative
recorded death counts up to June 20 in panel (a) and newly recorded death counts for the
period June 1-20 in panel (b). Each bubble denotes the death count for a county (the
absence of a bubble denotes a zero count). The bubble size (area) is proportional to the
death counts in the region. The two panels’ bubble sizes are on the same scale, but the color
scale is different as shown respectively on each plot.
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predictors, we also fit various combinations of them, which we refer to as Combined Linear
and Exponential Predictors (CLEP). CLEP produces a weighted average of the predictions
from the individual predictors, where we borrow the weighting scheme from prior work [80].
In this weighting scheme, a higher weight is given to those predictors with more accurate
predictions, especially on recent time points. We find that the CLEP that combines only
the linear predictor and the expanded shared predictor consistently has the best predictive
performance when compared to the individual predictors and the CLEP that combines all
five predictors. (We did not try all possible combinations to avoid over-fitting; also see
Table 5.9).

For the rest of this section, we expand upon the individual predictor models and the
weighting procedure for the CLEP ensembles. In addition, Appendix .1 contains results
on variants of the two best single predictors (linear and expanded shared), which include
features for social-distancing and features that account for the under-reporting of deaths on
Sunday and Monday (as observed in Figure 5.3(a)). These additional features did not lead
to better performance.

We note that although in this paper, we discuss our algorithms for predicting cumulative
recorded death counts, the methods can be more generally applied to predict other quantities
of interest, e.g., case counts or new death counts for each day. Moreover, the combination
scheme used for combining different predictors can be of independent interest in developing
ensembling schemes with generic machine learning methods.

Predictor name Type Fit separately
to each county?

Fit jointly to
all counties?

Use neighbor-
ing counties?

Use demo-
graphics?

Separate Exponential X

Linear Linear X

Shared Exponential X

Expanded
shared Exponential X X

Demographics
shared Exponential X X

Table 5.5: Overview of the 5 predictors used here. The best model is a combination of the
linear predictor and the expanded shared predictor (see Section 5.3).

The separate-county exponential predictors (the “separate”
predictors)

The separate-county exponential predictor aims to capture the observed exponential growth
of COVID-19 deaths [65]. We approximate an exponential curve for death count separately
for each county using the most recent 5 days of data from that county. These predictors
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have the following form:

Ê[deathsct+1|t] = exp
(
βc0 + βc1(t+ 1)

)
, (5.1)

where Ê[deathsct+1|t] denotes the (fitted) cumulative death count by the end of day t+ 1 for
county c, and it is trained on the data until day t, and computed on the morning of day
t + 1. Note that we use t + 1 on the RHS of equation (5.1) just for notational exposition,
and in practice we just use βc0 + βc1t in the exponent in our code.

Here we fit a separate predictor for each county, and the coefficients βc0 and βc1 for each
county c are fit using maximum likelihood estimation under a Poisson generalized linear
model (GLM) with t as the independent variable and deathst as the observed variable. In
simple words, on the morning of day t+1, the coefficients are estimated using the cumulative
recorded death counts for day {t, t − 1, t − 2, t − 3, t − 4}. And to predict k-days-ahead
cumulative death count on the morning of day t+ 1—denoted by Ê[deathsct+k|t]—we simply
replace t + 1 with t + k on the RHS of equation (5.1). Note that although the prediction
Ê(deathsct+1|t) is being made on day t+ 1, we call it 1-day-ahead prediction since it is made
in the morning of day t + 1 using the data for up to day t. Moreover, the recorded count
deathsct+1 is reported only late in the night of day t+1 or early morning of the next day t+2.

If the first death in a county occurred less than 5 days prior to fitting the predictor,
only the days from the first death were used for the fit. If there is less than three days’
worth of data or the cumulative deaths remain constant in the past days, we simply use
the most recent deaths as the predicted future value. We also fit exponential predictors to
the full time-series (as opposed to just the most recent 5 days) of available data for each
county. However, due to the rapidly shifting trends, these performed worse than our 5-day
predictors. We also found that predictors fit using 6 days of data yielded similar results to
predictors fit using 5 days of data, and using 4 days of data performed slightly worse.

To handle possible overdispersion of data (when the variance is larger than the mean), we
also explored estimating {βc0, βc1} by fitting a negative binomial regression model (in place
of Poisson GLM) with inverse-scale parameter taking values in {0.05, 0.15, 1}.9 However,
we found that this approach yields a larger mean absolute error than the Poisson GLM for
counties with more than 10 deaths.

The separate-county linear predictor (the “separate linear”
predictor)

The separate linear predictor aims to capture linear growth, based on the most recent 4 days
of data in each county. In the early stages of tuning, we tried using 5 and 7 days of data,
and obtained worse performance (also see the discussion in Appendix .1). The motivation
for the linear model is that some counties are exhibiting sub-exponential growth. For these

9These values were tried keeping in mind the typical permissible range of [0.02, 2] as per the
documentation at https://www.statsmodels.org/stable/generated/statsmodels.genmod.families.
family.NegativeBinomial.html

https://www.statsmodels.org/stable/generated/statsmodels.genmod.families.family.NegativeBinomial.html
https://www.statsmodels.org/stable/generated/statsmodels.genmod.families.family.NegativeBinomial.html
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counties, the exponential predictors introduced in the previous section may not be a good
fit to the data. The separate linear predictors are given by

Ê[deathsct+1|t] = βc0 + βc1(t+ 1), (5.2)

where we fit the coefficients βc0 and βc1 via ordinary least squares using the cumulative death
count for county c for most recent 4 days. Like equation (5.1), we use t+1 on the RHS simply
for notational exposition. Put simply, on the morning of day t+ 1, the coefficients {βc0, βc1}
are estimated using the death counts for day t, t − 1, t − 2, t − 3. To predict k-days-ahead,
i.e., predict cumulative death counts by the end of day t+ k on the morning of day t+ 1 (in
our notation, Ê[deathsct+k|t]), we simply replace t+ 1 by t+ k on the RHS of equation (5.2).

The shared-county exponential predictor (the “shared” predictor)

To incorporate additional data into our predictions, we fit a predictor that combines data
across different counties. Rather than producing a separate predictor model for each county
(as in the separate predictor approach above), we instead produce a single shared predictor
that pools information from counties across the nation. The shared predictor is then used
to predict future deaths in the individual counties. These changes allows us to leverage the
early-stage trends from counties that are now much further along in the pandemic trajectory
to inform the predictions for other current earlier-stage counties.

The data underlying the shared predictor is slightly different from the separate county
predictors. For each county, instead of only including the most recent 5 days, we include
all days after the third death in the county. (In the earlier stages of tuning, we also tried
including the counties after first and fifth death, and then selected the choice of third death
due to better performance.) Thus the data from many of the counties extend substantially
further back than 5 days, and for each county, t = 0 is the day on which the third death
occurred. Instead of basing the exponential predictor prediction on time t+1 (as was the case
for the separate predictors above), we base the prediction on the logarithm of the previous
day’s death count. This choice makes the counties comparable since the outbreaks began at
different time points in each county. The shared predictor is given as follows:

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1)

)
, (5.3)

where Ê[deathsct+1|t] denotes the (fitted) cumulative death count by the end of day t + 1
for a county c, and deathsct denotes the recorded cumulative death count for that county
by the end of day t. The coefficients β0 and β1 are shared across all counties and fitted
by maximizing the log-likelihood corresponding to Poisson GLM (like that in the separate
county predictor given by equation (5.1)). We normalize the feature matrix to have zero
mean and unit variance before fitting the coefficients. To predict k-days-ahead cumulative
death count Ê[deathsct+k|t], we first obtain the estimate Ê[deathsct+1|t] using equation (5.3).
Next, we plug-in log(Ê[deathsct+j|t] + 1) (after normalizing across all counties) on the RHS
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of equation (5.3) to compute Ê[deathsct+j+1|t] in a sequential manner for j = 1, . . . , k − 1,
and finally obtain Ê[deathsct+k|t] (k-day-ahead prediction computed on the morning of day
t+ 1).

The expanded shared exponential predictor (the “expanded shared”
predictor)

Next, we expand the shared county exponential predictor to include other COVID-19 dy-
namic (time-series) features. In particular, we include the number of recorded cases in the
county, as this may give an additional indication to the severity of an outbreak. We also
include the total sum of cumulative death (and case) counts in the neighboring counties.
Let casesct , neigh_deathsct , neigh_casesct respectively denote the (recorded) cumulative case
count in the county c at the end of day t, the total sum of cumulative death counts across all
its neighboring counties at the end of day t, and the total sum of cumulative recorded case
counts across all its neighboring counties at the end of day t. Then our (expanded) predictor
to predict the number of recorded cumulative deaths k days into the future is given by

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1) + β2 log(casesct−k+1 + 1)

+ β3 log(neigh_deathsct−k+1 + 1) + β4 log(neigh_casesct−k+1 + 1)

)
,

(5.4)

where the coefficients {βi}4i=0 are shared across all counties and are fitted using the Poisson
GLM after normalization of each feature (in the exponent) to have zero mean and unit
variance. When fitting the predictor on the morning of day t+1, we use the death counts for
the county up to the end of day t. However, we only use the new features (cases in the current
county, cases in neighboring counties, and deaths in neighboring counties) up to the end of
day t− k + 1, since when predicting Ê[deathsct+k|t] these covariates would only be available
up to day t, i.e., k days before. Moreover, we normalize the feature matrix to have zero mean
and unit variance before fitting the predictor. While predicting the death count for a given
county k days into the future (i.e, the cumulative death count by the end of day t+ k), we
iteratively use the daily sequential predictions for the death counts for that county, and use
the information for the other features only up to time t (the time up to which we have data
available). More precisely, first we estimate Ê[deathsct+1|t] by plugging in the normalized
features log(deathsct), log(casesct−k+1), log(neigh_deathsct−k+1), and log(neigh_casesct−k+1)
in equation (5.4), where the normalization is done across counties so that each feature
has zero mean and unit variance. Then, for j = 1, 2, . . . , k − 1, we recursively plug-in
log(Ê[deathsct+j|t]), log(casesct−k+j+1), log(neigh_deathsct−k+j+1), log(neigh_casesct−k+j+1)) in
equation (5.4) (again after normalizing each of these features) to compute Ê[deathsct+j+1|t],
and finally compute Ê[deathsct+k|t] for k-day-ahead prediction made with data until day t. It
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may be possible to jointly predict the new features along with the number of deaths, but we
leave building such a predictor for future work. As before, the predictor is fitted by including
all days after the third death in each county.

The demographics shared exponential predictor (the “demographics
shared” predictor)

The demographics shared county exponential predictor is again very similar to the shared ex-
ponential predictor. However, it includes several static county demographic and healthcare-
related features to address the fact that some counties will be affected more severely than
others, for instance, due to (a) their population makeup, e.g., older populations are likely
to experience a higher death rate than younger populations, (b) their hospital preparedness,
e.g., if a county has very few ICU beds relative to their population, they might experience a
higher death rate since the number of ICU beds is correlated strongly (0.96) with the num-
ber of ventilators [78], and (c) their population health, e.g., age, smoking history, diabetes,
and cardiovascular disease are all considered to be likely risk factors for acute COVID-19
infection [40, 75, 39, 37, 101].

For a county c, given a set of demographic and healthcare-related features dc1, . . . , dcm
(such as median age, population density, or number of ICU beds), the demographics shared
predictor is given by

Ê[deathsct+1|t] = exp

(
β0 + β1 log(deathsct + 1) + βd1d

c
1 + · · ·+ βdmd

c
m

)
. (5.5)

Here the coefficients {β0, β1, βd1 , . . . , βdm} are shared across all counties, and are fitted by
maximizing the log-likelihood of the corresponding Poisson generalized linear model, where
we include all the observations since the third death in each county. Moreover, we also nor-
malize the feature matrix to have zero mean and unit variance before fitting the coefficients.
The features we choose fall into three categories:

1. County density and size: population density per square mile (2010), population esti-
mate (2018)

2. County healthcare resources: number of hospitals (2018-2019), number of ICU beds
(2018-2019)

3. County health demographics: median age (2010), percentage of the population who
are smokers (2017), percentage of the population with diabetes (2016), deaths due to
heart diseases per 100,000 (2014-2016).

The k-day-ahead predictions for this predictor are obtained in a very similar manner to
the shared predictor (5.3): We first obtain the estimate Ê[deathsct+1|t] using equation (5.5)
and then, sequentially plug-in log(Ê[deathsct+j|t] + 1) on the RHS of the equation (5.5)
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(after normalization to obtain zero mean and unit variance) to compute Ê[deathsct+j+1|t] in
a sequential manner for j = 1, . . . , k − 1. We found that regularization was quite helpful in
addressing overfitting in this predictor and found that `1-penalized Poisson regression with
a penalty of 0.5 performed the best.

The combined predictors: CLEP

Finally, we consider various combinations of the five predictors we have introduced above
using an ensemble approach similar to that described in [80]. Specifically, we use the recent
predictive performance (e.g., over the last week) of different predictors to guide an adaptive
tuning of the corresponding weights in the ensemble. To simplify notation, let us denote
the predictions for cumulative death count by the end of day t + k—where the prediction
is made on the morning of day t + 1—by {ŷmt+k} with m = 1, . . . ,M denoting the index of
various linear and exponential predictors.10 Then, their Combined Linear and Exponential
Predictor (CLEP) is given by

ŷCLEP
t+k =

M∑
m=1

wmt+1ŷ
m
t+k. (5.6)

Here the weight, wmt+1—used for combining the predictions made on the morning of day
t+ 1—for predictor m, is computed according to the recent performance as follows:

wmt+1 ∝ exp

(
−0.5

t∑
i=t−6

(0.5)t−i
∣∣∣√ŷmi −

√
yi

∣∣∣) , (5.7)

where ŷmi is the 3-day-ahead prediction from the predictor m trained on data up to time
i− 3 (and computed on the morning of day i− 2). In addition, the weights are normalized
so that

∑M
m=1w

m
t+1 = 1 for each t + 1. The weights {wmt+1,m = 1, . . . ,M} are computed

separately for each county. We now turn to our discussion on the general combination scheme
that leads to the equation (5.7) with a certain choice of hyperparameters (and how those
hyperparameters were chosen).

The weights in equation (5.7) are based on the general ensemble weighting format intro-
duced in [80]. This general format is given by

wmt+1 ∝ exp

(
−c(1− µ)

t∑
i=t0

µt−i`(ŷmi , yi)

)
, (5.8)

10Our predictions are released around 11:30 AM Pacific Time each day, both on GitHub and our website
(https://covidseverity.com). The released predictions on day t + 1 include the county-wise predictions
for cumulative death counts by the end of day t + 1 itself. To summarize, 1-day-ahead prediction for day
t+1 is denoted by Ê[deathsct+1|t] earlier is now written simply as ŷt+1. Similarly, the k-day-ahead prediction
Ê[deathsct+k|t] is denoted by ŷt+k in the simplified (and slightly abused) notation.

https://covidseverity.com
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where µ ∈ (0, 1) and c > 0 are tuning parameters, t0 represents some past time point, and
the weights are computed on the morning of day t+ 1. Since µ < 1, the µt−i term represents
the greater influence given to more recent predictive performance. For a given day i and
predictor m, we measure the predictive performance of the predictor via the term `(ŷmi , yi),
which denotes the loss incurred due to the discrepancy between its predicted number of
deaths ŷmi and the recorded death counts yi. The hyperparameter c controls the relative
importance of predictors depending on their recent predictive performance. Given the same
recent predictive performance and µ, a larger c gives a higher weight to the better predictors.
The hyperparameter t0 denotes the number of recent days used for evaluating the predictor
performance to influence the weight (5.8).

Choice of hyper-parameters: equation (5.7) corresponds to equation (5.8) with appro-
priate hyper-parameters, c, µ, t0, and a specific loss format, `. In [80], the authors used the
loss function `(ŷmi , yi) = |ŷmi −yi|, since their errors roughly had a Laplacian distribution. In
our case, we found that this loss function led to vanishing weights due to our error distribu-
tion’s heavy-tailed nature. To help address this, we apply a square root to the predictions
and the true values, and define `(ŷmi , yi) = |

√
ŷmi −

√
yi|. We found that this transformation

improved performance in practice. We also considered a logarithmic transform instead of
a square root (i.e., `(ŷmi , yi) = | log(1 + ŷmi ) − log(1 + yi)|), but we found that using the
logarithm yielded worse performance than using the square root transformation.11

To generate our predictions, we use the default value of c in [80] which is 1. However,
we change the value of µ from the default of 0.9 to 0.5 for two reasons: (i) we found µ = 0.5
yielded better empirical performance, and (ii) it ensured that performance more than a
week ago had little influence over the predictor. We chose t0 = t− 6 (i.e., we aggregate the
predictions of the past week into the weight term), since we found that performance did not
improve by extending further back than 7 days. Moreover, the information from more than
a week effectively has a vanishing effect due to our choice of µ.

Finally, we found that for computing the weights in (5.7), using 3-day-ahead predictions
in the loss terms `(ŷmi , yi) led to best predictive performance; i.e., these weights are computed
based on the 3-day-ahead predictions generated over the course of a week starting with the
predictor built 11 days ago (for predicting counts 8 days ago) up to the predictor built 4 days
ago (for predicting yesterday’s counts). In principle, the five hyper-parameters—c, µ, t0, `,
and the choice of the prediction horizon to use for evaluating the loss `—can be tuned jointly
via a grid or randomized search. Nevertheless, to keep the computations tractable and our
choices interpretable, we selected them sequentially. Moreover, a dynamic tuning of these
hyper-parameters (over time) is left for future work (see last paragraph of Section 5.6).

11In our first submission on May 16, 2020 to arXiv, we had presented results for March 22 to May 10,
2020. During the preparation of manuscript, we had updated the transform to be the square-root transform
in our code, but we did not update the CLEP equation in the paper, and erroneously reported that our
CLEP weights used a logarithmic transform.
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Ensuring monotonicity of predictions

In this work, we predict county-wise cumulative death count, which is a non-decreasing
sequence. However, the predictors discussed in the previous sections need not provide
monotonic estimates for different prediction horizon, i.e., Ê[deathsct+k|t] may decrease as
k increases for a fixed t. Moreover, the predictors may estimate a future count that is
smaller than the last observed cumulative death count, i.e., Ê[deathsct+k|t] < deathsct . In our
setting, expanded shared predictor exhibited both these issues. To avoid these pitfalls, we
use post-hoc maxima adjustments for all the predictors as follows. First, we replace the esti-
mate Ê[deathsct+1|t] by max{Ê[deathsct+1|t], deathsct} to make sure that the predicted counts
in the future are at least as large as the latest observed cumulative death counts. Next, we
iteratively replace the estimate Ê[deathsct+j|t] by max{Ê[deathsct+j|t], Ê[deathsct+j−1|t]} for
j = 2, 3, . . . 21. Imposing these constraints for the individual predictors also ensures the
monotonicity of predictions by the CLEP. Note that we use these monotonic predictions
(after the maxima calculations) to determine the weights in equation (5.7).12

Note that even after imposing the previous monotonicity corrections, it is still possible
that Ê[deathsct+k|t] > Ê[deathsct+k+1|t+1] since the predictors are re-fitted over time. Hence,
when plotted over time, k-day-ahead predictions, need not be monotonic with respect to
t. For example, see the plots of 7-day-ahead predictions in Figure 5.11 and 14-day-ahead
predictions in Figure 5.12.

5.4 Prediction intervals via conformal inference
Accurate assessment of the uncertainty of forecasts is necessary to help determine how much
emphasis to put on them, for instance, when making policy decisions. As such, the next goal
of the paper is to quantify the uncertainty of our predictions by creating prediction intervals.
A common method to do so involves constructing (probabilistic) model-based confidence
intervals, which rely heavily on the probabilistic assumptions made about the data. However,
due to the highly dynamic nature of COVID-19, assumptions on the distribution of death and
case rate are challenging to check. Moreover, such prediction intervals based on probability
models are likely to be invalid when the underlying probability model does not hold to the
desired extent. For instance, a recent study [60] reported that the 95% credible intervals for
state-level daily mortality predicted by the initial IHME model [87], had a coverage of a mere
27% to 51% of recorded death counts over March 29 to April 2. The authors of the IHME
model noted this behavior and have since updated their uncertainty intervals so that they
now provide more than 95% coverage (where coverage is defined below in equation (5.12a)).
However, while the previous releases of the intervals were based on asymptotic confidence
intervals, the IHME authors have not precisely described the methodology for their more

12We report partial results up to 21-day-ahead predictions, and detailed results up to 14-day-ahead pre-
dictions in Section 5.5. In the first arXiv submission of this work on May 16, 2020, we had not implemented
monotonicity of predictions. The monotonicity implementation improved the overall results both for predic-
tions and prediction intervals.
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recent intervals. In this section, we construct prediction intervals that attempt to avoid these
pitfalls by taking into account the recent observed performance of our predictors; and later
in Section 5.5, we show that these intervals obtain high empirical coverage while maintaining
reasonable width.

Maximum-absolute-Error Prediction Interval (MEPI)

We now introduce a generic method to construct prediction intervals for sequential or time-
series data. In particular, we build on the ideas from conformal inference [93] and make use
of the past errors made by a predictor to estimate the uncertainty for its future predictions.

To construct prediction intervals for county-level cumulative death counts caused by
COVID-19, we calculate the largest (normalized absolute) error for the death count pre-
dictions generated over the past 5 days for the county of interest and use this value (the
“maximum absolute error”) to create an interval surrounding the future (e.g., tomorrow’s)
prediction. We call this interval the Maximum absolute Error Prediction Interval (MEPI).

Let yt be the actual recorded cumulative deaths by the end of day t, and ŷt denote
the estimate for yt made k days earlier (in our case on the morning of day t − k + 1) by a
prediction algorithm. We call ŷt the k-day-ahead prediction for day t. (Note that we suppress
the dependence on county and prediction horizon k for brevity and ease of exposition; and
the notation here is a slightly abused version of that used in Section 5.3. In particular, we
have ŷt = Ê[deathsct |t−k] for some fixed county c.) We define the normalized absolute error,
∆t, of the prediction, ŷt, to be

∆t :=
∣∣∣ yt
max{ŷt, 1}

− 1
∣∣∣. (5.9)

We use the normalization so that yt (when non-zero) is equal to either ŷt(1−∆t) or ŷt(1+∆t).
This normalization addresses the fact that the counts are increasing over time, and thus the
un-normalized errors, |yt − ŷt|, also tend to be increasing over time. The normalization
ensures that the errors across time are comparable in magnitude, which is essential for the
exchangeability of the errors (see Section 5.4).

To compute the k-day-ahead prediction interval for day t+k on the morning of day t+1,
we first compute the k-day-ahead prediction ŷt+k (= Ê[deathsct+k|t]) using a CLEP. Next, we
compute the normalized errors for the k-day-ahead predictions for the most recent 5 days
∆t,∆t−1, ...,∆t−4 (a window of 5 days was chosen to balance the trade-off between coverage
and length, see Appendix .2 for more details). The largest of these normalized errors is then
used to define the maximum absolute error prediction intervals (MEPI) for the k-day-ahead
prediction as follows:

P̂It+k :=
[
max

{
ŷt+k(1−∆max), yt

}
, ŷt+k(1 + ∆max)

]
, (5.10a)

where ∆max := max
0≤j≤4

∆t−j; (5.10b)
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where the lower bound for the interval involves a maximum operator to account for the fact
that yt is a cumulative count, and thereby non-decreasing. This maxima calculation ensures
that the lower bound for the interval is not smaller than the last observed value.

For a general setting beyond increasing time-series, this maxima calculation can be
dropped, and the MEPIs can be defined simply as

[ŷt+k(1−∆max), ŷt+k(1 + ∆max)]. (5.11)

In our case, we construct the MEPIs (5.10a) separately for each county for the cumulative
death counts. We remind the reader that when constructing k-day-ahead MEPIs, the ∆t

defined in equation (5.9) is computed using k-day-ahead predictions (our notation does not
highlight this fact), so that the maximum error ∆max would be typically different, say, for
7-day-ahead and 14-day-ahead predictions.

Evaluation metrics

For any time-series setting, stationary or otherwise, the quality of a prediction interval
can be assessed in terms of the percentage of time—over a sufficiently long period—that
the prediction interval covers the observed value of the target of interest (e.g., recorded
cumulative death counts as in this paper). A good prediction interval should both contain
the true value most of the time, i.e., have a good coverage, and have a reasonable width or
length.13 Indeed, one can trivially create very wide prediction intervals that would always
contain the target of interest. We thus consider two metrics to measure the performance of
prediction intervals: coverage and normalized length.

Let yt denote a positive real-valued time-series of interest, which in this case is the target
variable: COVID-19 deaths (t denotes the time index). Let {P̂It = [at, bt]} denote the
sequence of prediction intervals produced by an algorithm. The coverage of this prediction
interval, Coverage(T ), over a specified period, T , corresponds to the fraction of days in
this period for which the prediction interval contained the observed values of yt (cumulative
COVID-19 death counts in our case). This notion of coverage for streaming data has been
used extensively in prior works on conformal inference [93] and can be calculated for a given
evaluation period T (which we set to be from April 11 to June 20) as follows:

Coverage(T ) =
1

|T |
∑
t∈T

I(yt ∈ P̂It), (5.12a)

where I(yt ∈ P̂It) takes value 1 if yt belongs to the interval P̂It and 0 otherwise. The average
normalized length of the prediction intervals, NL(T ), is calculated as follows:

NL(T ) =
1

|T |
∑
t∈T

bt − at
yt

. (5.12b)

13We use the terms width and length for an interval interchangeably in this paper.
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For our case, we replace the denominator on the RHS of equation (5.12b) with max{1, yt}
to avoid possible division by 0. We use normalized length to address the fact that the death
counts across different counties can differ by orders of magnitude.

Importantly, the definitions of coverage (equation (5.12a)) and the average length (equa-
tion (5.12b)) are entirely data-driven and do not rely on any probabilistic or generative
modeling assumptions.

Exchangeability of the normalized prediction errors

While the ideas from MEPI are a special case of conformal prediction intervals [93, 82],
there are some key differences. While conformal inference uses the raw errors in predictions,
MEPI uses the normalized errors, and while conformal inference uses a percentile (e.g., the
95th percentile) of the errors, MEPI uses the maximum. Furthermore, we only make use of
the previous five days instead of the full sequence of errors. The reason behind these alter-
nate choices is because the validity of prediction intervals constructed in this manner relies
crucially on the assumption that the sequence of errors is exchangeable. Our choices are de-
signed to make this assumption more reasonable. Due to the dynamic nature of COVID-19,
considering a longer period (e.g., substantially longer than five days) would mean that it is
less likely that the errors across the different days are exchangeable. Meanwhile, the normal-
ization of the errors eliminates a potential source of non-exchangeability by removing the
sequential growth of the errors resulting from the increasing nature of the counts themselves.
Since we only use five time points, to construct the interval, we opt for the more conservative
choice of simply taking the maximum—or the 100th percentile—of the five errors. Moreover,
note that 95th percentile is not well defined for five data points.

Before turning to certain theoretical guarantees, we first discuss some evidence for ex-
changeability of the errors in our setting. In Figures 5.5 and .6, we show that the assumption
of exchangeability of the past 5 normalized errors for CLEP is indeed reasonable for both
7-day-ahead and 14-day-ahead predictions. For k-day-ahead prediction, we rank the errors
{∆t+k,∆t,∆t−1, . . . ,∆t−4} in increasing order so that the largest error has a rank of 6. (In-
terested readers may first refer to Section 5.4 for how exchangeability of these 6 errors is
useful for establishing theoretical guarantees for MEPI.) For a given j ∈ {0, ..., 4}, ∆t−j
denotes the error in k-day-ahead prediction for day t− j, where the prediction was made on
the morning of day t− j− k+ 1, but the error can be computed only by the end of day t− j
(or the morning of day t− j+ 1). If the errors were exchangeable, then for each of them, the
rank has a uniform distribution on {1, 2, 3, 4, 5, 6}, and in particular has a mean of 3.5. To
approximate the rank distributions and average ranks numerically for 7-day-ahead predic-
tions, we measure the rank of the errors ∆t+7, and ∆t−j, j = 0, . . . , 4, for each day t between
March 26 to June 13, and take an average. Figure 5.5 plots the empirical rank distributions
and average ranks for each of the 6 worst hit counties as well as 6 randomly-selected counties
for these errors (see Section 5.5 for further discussion on these counties.). Corresponding
results for 14-day-ahead predictions, where we rank the errors ∆t+14 and ∆t−j, j = 0, . . . , 4
is presented in Figure .6 in the Appendix. In both figures, we see that across most counties,
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the average rank for almost all the errors is around 3.5 as would be expected if the errors
were exchangeable. Thus, the observations from Figures 5.5 and .6 provide a heuristic jus-
tification for the construction of MEPI, albeit not a formal proof since average rank being
close to 3.5 is not sufficient to claim exchangeability of the six errors. Moreover, we refer
the interested reader to Appendix .2 for further discussion on MEPIs, where we provide
more evidence on why we chose only past 5 errors and normalization to define MEPI (see
Figure .5).

Theoretical guarantees for MEPI coverage

In order to obtain a rough baseline coverage for the MEPIs, we now reproduce some of
the theoretical computations from the conformal literature. For a given county and a fixed
time t, and a parameter k, if the six errors in the set {∆t+k,∆t,∆t−1,∆t−2, ∆t−3,∆t−4} are
exchangeable, then we have

P
(
yt+k ∈ P̂It+k

)
= P (∆t+k < ∆max) = 1− P (∆t+k = ∆max) =

5

6
≈ 0.83. (5.13)

Recall the definition (equation (5.12a)) for Coverage(T ) for a given period of days T . Given
equation (5.13), we may believe that the Coverage(T ) ≈ 83% holds for large |T |, where the
coverage was defined in equation (5.12a). However, we now elaborate that a few challenges
remain to take claim (5.13) as a proof for the stronger claim that MEPI achieves 83%
coverage as defined by equation (5.12a).

On the one hand, the probability in equation (5.13) is taken over the randomness in the
errors, and the time-index t+k remains fixed. This observation, in conjunction with the law
of large numbers, implies the following: Over multiple independent runs of the time-series,
for a given county and a given time t + k, the fraction of runs for which the MEPI P̂It+k
contains the observed value yt+k converges to 5/6 as the number of runs goes to infinity.
However, analyzing such a fraction over several different independent runs of the COVID-19
outbreak is not relevant for our work.

On the other hand, the evaluation metric we consider is the average coverage of the MEPI
over a single run of the time-series, c.f., the definition (equation (5.12a)) for Coverage(T ).
Thus, we require an online version of the law of large numbers in order to guarantee that
Coverage(T ) → 83% as |T | → ∞. Such a law of large numbers, established in prior
works [82], has been crucial for establishing theoretical guarantees in conformal inference.
In our case, this law—stated as Proposition 1 in Section 3.4 in their paper [82]—guarantees
that, when the entire sequence of errors {∆t, t ∈ T } for a given county is exchangeable,
the corresponding Coverage(T ) ≈ 83%, when the period T is large. Unfortunately, such
an assumption (exchangeability over the entire period) is both hard to check and unlikely
to hold for the prediction errors obtained from CLEP for the COVID-19 cumulative death
counts.
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Despite the challenges listed above, later, we show in Section 5.5 that MEPIs with CLEP
achieved good coverage with narrow widths for COVID-19 cumulative death count predic-
tions.

5.5 Prediction results for March 22 to June 20
In this paper, we focus on predictive accuracy for up to 14 days. In this section, we first
present and compare the results of our various predictors, and then give further examinations
of the best performing predictor: the CLEP ensemble predictor that combines the expanded
shared exponential predictor and the linear predictor (the best two among the individual pre-
dictors). Finally, we report the performance of the coverage and length of the MEPIs for this
CLEP. (We note that CLEP that combined all five predictors performed worse since even bad
performing predictors get non-zero weight (5.7) in the ensemble and can adversely affect the
prediction performance.) A Python script to reproduce all the results in this section is made
available on Github at https://github.com/Yu-Group/covid19-severity-prediction/
tree/master/modeling.

Empirical performance of the single predictors and CLEP

Table 5.9 summarizes the Mean Absolute Errors (MAEs) of our predictions for cumulative
recorded deaths on raw, square-root and logarithm scale. We now explain how these errors
are computed.

First, on the morning of day t+1, we compute Ct—the collection of counties in the US that
have at least 10 cumulative recorded deaths by the end of day t. Let ŷct and yct respectively
denote the predicted and recorded cumulative death count of county c ∈ Ct by the end of
day t. We note that while the set of counties Ct varies with time, it is computable on the
day the error is computed (i.e., Ct does not depend on future information). We define the
set of counties in this manner, to ensure that only the counties with non-trivial cumulative
death counts are included in our evaluation on a given day. Moreover this definition satisfies
the condition Ct ⊆ Ct+1, that is, only new counties can be added in the set Ct as t progresses
(and a county once included is never removed).

Given the set Ct, the mean absolute percentage error (MAPE), the raw-scale MAE, and
the square-root-scale MAE for day t are given by

MAPEt(% error) = 100× 1

|Ct|
∑
c∈Ct

|ŷct − yct |
yct

, and (5.14a)

Raw-scale MAEt =
1

|Ct|
∑
c∈Ct

|ŷct − yct | , (5.14b)

Sqrt-scale MAEt =
1

|Ct|
∑
c∈Ct

∣∣∣√ŷct −
√
yct

∣∣∣ . (5.14c)

https://github.com/Yu-Group/covid19-severity-prediction/tree/master/modeling
https://github.com/Yu-Group/covid19-severity-prediction/tree/master/modeling
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The percentage error (MAPE) captures the relative errors of the predictors without paying
attention to the scale of the counts while the raw-scale MAE would be heavily affected by
the counties with large death counts. Both of these MAEs are commonly used to report
the prediction performance for regression tasks with machine learning methods. We report
the MAE at square-root-scale to be consistent with the square-root transform used in the
CLEP weighting scheme (5.7). Each row in Table 5.9 corresponds to a single predictor,
and we report different statistics of errors made for k-day-ahead predictions over the period
t ∈ {March 22, . . . , June 20} for k ∈ {3, 5, 7, 14}.14 For any given predictor, we compute
these errors for each day and report the 10th percentile (p10), 50th percentile (median), and
90th percentile (p90) values over the evaluation periods mentioned above. From Table 5.9, we
find that the CLEP ensemble that combines the expanded shared exponential predictor and
the separate county linear predictors has the best overall performance, with median MAPE of
8.18%, 12.21%, 15.14% and 26.45% for 3-, 5-, 7-, and 14-day-ahead predictions.15 We note
that the (p90) MAEs for the separate (exponential) and demographics shared predictors
are too large, especially for larger horizons. For separate (exponential) predictors, we can
attribute these large errors directly to the fact that exponential fit (5.1) for large horizons is
very likely to over-predict. On the other hand, the demographics shared predictor has large
errors potentially due to over-fitting as well as the recursive plug-in procedure to obtain
longer horizon estimates in the exponential fit (5.5). In the early stages of this project
(and the COVID-19 outbreak in the US), these predictors had provided a reasonable fit for
short-term (3- and 5-day-ahead) predictions in late-March to mid-April.

In Figure 5.6, we plot all three errors from the display 5.14 as a function of time over
the past 3 months for the expanded shared exponential predictor, the separate county linear
predictor, and the CLEP that combines the two. We found that the MAE of the CLEP is of-
ten similar to, and usually slightly smaller than the smaller MAE of the two single predictors.

Visualization of CLEP weights: Figure 5.7 plots the weight of the linear predictor in
the CLEP (for 7-day-ahead predictions) over time for certain counties. We found that for
counties with large number of cumulative deaths, the prediction of the CLEP has become
much more similar to the prediction of the linear predictor in late May and June. For
example, for the six worst affected counties on June 20 (panel (a)), the average weight of
the linear predictor in the CLEP is larger than 0.91 from May 17 to June 20. In contrast,

14As the expanded shared predictor is trained on counties with at least 3 deaths, there was not
enough data to train 14-day-ahead CLEP that predicts recorded deaths before March 29. Hence for
t ∈ {March 22, . . . ,March 28}, we use the 14-day-ahead predictions of the linear predictor to impute the
14-day-ahead predictions of the CLEP.

15In the first version of this paper submitted on May 16, 2020 on arXiv, we reported results for the period
March 22 to May 10, 2020 for 3-, 5-, 7-day ahead predictions. We made an error while computing aggregate
statistics for 5-day and 7-day ahead predictions (reported in Table 3 of that version) and reported errors
that were smaller than the actual errors made by CLEP. Correcting our aggregation code revealed that the
actual performance of median of raw-scale MAE of CLEP for 5-day and 7-day predictions was worse by 16%
and 29% respectively when compared to the reported errors.
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[t]
3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 3.80 13.16 59.63 6.26 22.56 114.07 9.95 39.56 300.53 30.37 226.26 >1000
shared 7.05 12.55 25.99 11.68 19.77 37.73 16.59 28.65 55.01 36.55 62.45 224.75

demographics 14.80 24.08 106.97 23.08 37.60 >1000 31.52 51.52 >1000 89.71 190.97 >1000
expanded shared 6.86 9.59 35.55 11.17 14.54 44.28 15.09 18.52 52.13 23.13 31.18 >1000

linear 3.39 9.37 29.67 5.27 14.25 40.26 7.18 18.60 56.10 15.58 33.16 87.21
CLEP 4.34 8.18 22.60 6.59 12.21 31.99 8.79 15.14 42.47 14.61 26.45 93.03

Table 5.6: Summary statistics of mean absolute percentage error (MAPE)

[t]
3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 2.35 8.10 25.13 3.67 13.94 57.03 5.33 24.30 124.61 14.58 105.64 >1000
shared 7.54 12.04 19.43 13.12 19.93 36.74 18.81 28.09 72.74 33.69 69.35 325.50

demographics 21.81 39.61 77.78 44.57 79.36 596.04 93.83 147.66 >1000 656.55 >1000 >1000
expanded shared 8.07 10.69 14.32 13.10 16.68 23.02 18.24 22.95 42.84 29.90 36.56 329.21

linear 2.15 5.93 13.81 3.67 9.49 20.02 4.91 12.05 26.89 10.24 25.47 56.73
CLEP 2.76 5.98 11.93 4.09 8.64 18.67 5.42 10.64 27.29 9.18 22.50 81.77

Table 5.7: Summary statistics of raw-scale MAE

[t]
3-day-ahead 5-day-ahead 7-day-ahead 14-day-ahead

p10 median p90 p10 median p90 p10 median p90 p10 median p90

separate 0.11 0.39 1.66 0.19 0.63 2.91 0.25 1.03 3.83 0.67 3.40 18.26
shared 0.22 0.40 0.76 0.36 0.63 1.22 0.50 0.90 1.82 1.09 2.06 5.70

demographics 0.73 1.03 2.78 1.24 1.79 6.63 1.84 2.65 35.56 5.49 8.33 >1000
expanded shared 0.22 0.34 0.75 0.35 0.52 1.15 0.47 0.67 1.59 0.73 1.12 10.62

linear 0.11 0.29 0.99 0.17 0.46 1.45 0.23 0.58 2.15 0.50 1.10 4.62
CLEP 0.13 0.26 0.66 0.19 0.37 0.93 0.26 0.47 1.51 0.43 0.92 4.13

Table 5.8: Summary statistics of sqrt-scale MAE

Table 5.9: Summary statistics of Mean Absolute Errors (equation (5.14)) based on (A) the
mean absolute percentage error (MAPE), (B) the raw-scale MAE, and (C) the square-root-
scale MAE. The results are presented for the 3, 5, 7, and 14-days-ahead forecasts for each of
the predictors considered in this paper, and the CLEP that combines the expanded shared
and separate linear predictors. The evaluation period is March 22, 2020 to June 20, 2020 (91
days). “p10”, “median”, and “p90” denote the 10th-percentile, median, and 90th-percentile
of the 91 mean absolute errors computed daily in the evaluation period. The smallest error
in each column is displayed in bold.
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the average weight of linear predictor of these six counties is less than 0.5 from March 23 to
March 31.
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Figure 5.7: Weight of the linear predictor in the CLEP (for 7-day-ahead predictions) over
time, for six worst affected counties in panel (a), and six random counties in panel (b).

Furthermore, in Figure 5.8, we also provide a US-wide visualization for the weight of
the linear predictor for all counties, displaying the values on April 1 in panel (a), and those
on June 10 in panel (b). As expected, the weight of the linear predictor is high when the
COVID-19 outbreak (in terms of death counts) is in a linear growth regime, which can be
seen generally for counties with low number of death counts, or counties with large number
of deaths where the COVID-19 outbreak is in a post-exponential growth stage.
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Figure 5.8: Weight of the linear predictor in the CLEP (for 7-day-ahead predictions) for
every county in the US at two timepoints: April 1 in panel (a), and June 10, 2020 in
panel (b). Generally speaking, for both the panels, the weight for the linear predictor
in CLEP gets close to 1 for counties with linear growth of COVID-19 (in terms of death
counts) which can be observed relatively easily for two scenarios: (i) when the counties have
low number of COVID-19 death counts (for such counties, the expanded shared predictor
generally overestimates the future death counts), and (ii) when the counties that are in the
later stage of COVID-19 and have had a large number of deaths.
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CLEP performance for longer horizons: Next, in Figure 5.9, we plot the perfor-
mance of this CLEP for longer horizons. In particular, we plot the three MAEs, raw-scale,
percentage-scale, and square-root-scale, for k-day-ahead predictions for k = 7, 10, and 14.
Notice that the 7-day-ahead CLEP predictor has the lowest MAE and that the MAE in-
creases as the prediction horizon increases. (Recall that precise statistics for 7-day-ahead
and 14-day-ahead MAEs are listed in Table 5.9.) The increases in MAE in mid-late April
was due to the state of New York adding thousands of deaths (3,778) that were previously
reported as “probable” to their counts on a single day, April 14. This change led the CLEP
to greatly over-predict deaths in New York in mid-late April—(i) 7 days later on April 21
for the 7-day-ahead CLEP, (ii) 10 days later on April 24 for the 10-day-ahead CLEP, and
(iii) 14 days later on April 28 for the 14-day-ahead CLEP. As further evidence that this is
indeed the case, when we manually removed this uptick in the death counts in New York,
the raw-scale MAE for the 14-day-ahead CLEP on April 28 was 29.5, which is much smaller
than the original raw-scale MAE on April 28, which was 91.9 in Figure 5.9(b).

We further evaluate the performance of CLEP for longer prediction horizons in Fig-
ure 5.10, where all predictions were made over the period April 11-June 20. In panels (a-c)
of Figure 5.10, we show the box plots of the different MAEs for up to 14-day prediction
horizon. From these plots, and the panels (d-f), we observe that the MAEs increase roughly
linearly with the horizon for up to 21 days.

Putting together the results from Table 5.9, Figures 5.6, 5.9 and 5.10, we find that the
adaptive combination used for building our ensemble predictor CLEP is able to leverage the
advantages of linear and exponential predictors, and, by improving upon the MAE of single
predictors, is able to provide very good predictive performance for up to 14 days in future.

Performance of CLEP and MEPI at the county-level

Having examined the overall performance of our predictors, we now take a closer look at
how our predictors are performing at the county level. In this section, we focus on the
performance of our CLEP predictor (based on the best-performing CLEP of the expanded
shared and separate linear predictor models) for the period April 11 to June 20 for 7-day
and 14-day-ahead predictions (Figures 5.11 and 5.12 respectively). Since there are over 3,000
counties in the United States, we present results for two sets of counties:

• The six worst-affected counties on June 20: Kings County, NY; Queens County, NY;
Bronx County, NY; Cook County, IL; Los Angeles County, CA; and New York County,
NY.

• Six randomly selected counties: Suffolk County, NY; Bergen County, NY; Oakland
County, MI; Monmouth County, NJ; Broward County, FL; Dougherty County, GA.

7-day-ahead predictions: In Figure 5.11, we present the 7-day-ahead prediction results
for the worst-affected counties in the top panel (a), and for the randomly-selected counties
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in the bottom panel (b). The solid black line denotes the recorded death counts, dashed
blue line denotes the CLEP 7-day-ahead predictions, and shaded blue region denotes the
corresponding MEPI (prediction interval). The predictions and prediction intervals for a
given day t (t = April 11, . . . , June 20) are based on data up to day t − 7. Corresponding
results for 14-day-ahead predictions are plotted in Figure 5.12. Although the recorded cu-
mulative death counts are monotonically increasing, our predictions for it (blue dashed lines
in Figures 5.11 and 5.12) need not be since the predictions are updated daily. (Recall from
Section 5.3 that we did impose monotonicity constraints for predictions with respect to k
for k-day-ahead predictions made on a given day t.)

From Figure 5.11(a), we observe that, among the worst-affected counties, the CLEP
appears to fit the data very well for Cook County, IL, and Los Angeles County, CA. After
initially over-predicting the number of deaths in the four NY counties in mid-late April, our
predictor also performs very well on these NY counties. Moreover, the MEPIs—plotted as
blue shaded region—have reasonable width and appear to cover the recorded values for the
majority of the days (detailed results on MEPIs are presented in Section 5.5).

The rapid increase in our predictions and MEPI interval widths observed in mid-late
April in Figure 5.11(a) is caused by a major upward revision of cumulative death counts
by the New York state for Kings, Queens, Bronx, and New York counties on a single day,
April 14. The effect of this sudden change in recorded counts on CLEP performance was
also discussed in the previous section in the context of Figure 5.9. Our predictors quickly
corrected themselves after the recorded counts stabilized. From Figure 5.11(b), we find
that our predictors and MEPI perform well for each of our six randomly-selected counties
(Broward County, FL, Dougherty County, GA, Monmouth County, NJ, Bergen County, NJ,
and Oakland County, MI). However, for Suffolk County, NY, there is a sudden uptick in
cumulative deaths on May 5, leading to a fluctuation in the predictions shortly thereafter,
in a similar fashion to the other NY counties in mid-April. In both panels, our predictions
have higher uncertainty at the beginning of the examination period when recorded death
numbers are low, which is reflected in the slightly wider MEPIs in the bottom left of each
plot.
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(a) Worst-affected counties on June 20
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Figure 5.11: A grid of line charts displaying the performance of 7-day-ahead CLEP and
MEPI for the cumulative death counts due to COVID-19 between April 11, 2020 and June
20, 2020. The observed data is shown in black, CLEP predictions are shown in the dashed
blue, and the corresponding 7-day-ahead MEPIs are shown as shaded blue regions. In panel
(a), the MEPI coverage for the 6 counties are Kings (92%), Queens (80%), Bronx (90%),
Cook (90%), Los Angeles (89%) and New York (86%). In panel (b), Suffolk (85%), Bergen
(96%), Oakland (87%), Monmouth (86%), Broward (89%) and Dougherty county (86%). (It
is worth noting that the theoretical coverage guarantees under certain assumptions is 83%;
see equation (5.13).)

14-day-ahead predictions: Next, in Figure 5.12, we plot the visualizations for 14-day-
ahead CLEP and MEPI predictions for the two sets of counties discussed above. On the one
hand, overall, the CLEP predictions appear to track the cumulative death counts and MEPIs
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cover the observed death counts most of the times. On the other hand, we find that the
MEPIs are generally wide for all the counties in the beginning of the prediction period. This
phenomenon is due to the fact that till mid-April, predictions made 14 days ago were trained
on data with very few death counts, which led the expanded shared predictor to significantly
underestimate the death counts in the beginning period (leading to larger normalized errors
and thereby wider MEPIs). Furthermore, we also observe that for the counties in the NY
State, CLEP greatly overestimates (sharp peak around April 22) the cumulative recorded
death counts towards the end of April. Like in Figure 5.11, this overestimation is caused
by the major upward revision of the death counts in the NY State on April 14. It is worth
noting that these sharp peaks for 14-day-ahead CLEP predictions in Figure 5.12 occurs after
7 days of the sharp peaks observed for 7-day-ahead CLEP predictions in Figure 5.11.16

Empirical performance of MEPI

We now present the performance of our MEPI at the county level for cumulative death counts,
with respect to both coverage (equation (5.12a)) and average normalized length (equa-
tion (5.12b)) (see Section 5.4). Since the average performance may change with time, we re-
port the results for two time periods: {April 11, . . . , May 10}, and {May 11, . . . , June 20}.
We choose these time periods for a simple reason: The first draft of this paper presented
results until May 10, and thus the period May 11 to June 20 serves as an additional vali-
dation. (Our methods were proposed and tuned prior to May 10, except for the change of
transform from logarithm to square-root in equation (5.7).)

We evaluate the 7-day-ahead and 14-day-ahead MEPIs, i.e., k = 7 and 14 in equa-
tion (5.10a), designed with the CLEP that combines the expanded shared and separate
linear predictors, and summarize the results in Figure 5.13 and Figure 5.14 respectively. We
now discuss these results, first for 7-day-ahead and then for 14-day-ahead MEPIs.

Coverage: We compute the observed coverage(5.12a) of 7-day-ahead MEPIs across all
counties in the US for April 11–May 10, and May 11–June 20, and plot the histogram of
these values in Figure 5.13(a) and 5.13(c), respectively. Panel (e) of Figure 5.13 shows the
observed coverage of 7-day-ahead MEPIs for the 700 counties that had at least 10 deaths on
June 11 (each such county has had significant counts for at least 10 days by the end of our
evaluation period June 20). For each county, we include only the days between April 11,
2020 and June 20, 2020 for which the county had at least 10 cumulative deaths. On June
20, the median number of days since 10 deaths is 58. From these plots, we observe that we
achieve excellent coverage for the majority of the counties. Finally, Figure 5.14 shows the
corresponding results for 14-day-ahead MEPIs, i.e., coverage for April 11–May 10 in panel

16These observations also suggest that one may possibly use large errors from our predictors as a warning
flag for anomaly or reporting error/sudden revision in the data. We leave a detailed investigation on this
aspect as an interesting future direction.
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(a), May 11–June 20 in panel (c), and over the county-specific period for 700 counties that
had at least 10 deaths on June 11 in panel (e).

The coverage observed for the two periods in panels (a) and (c) of Figure 5.13 are very
similar. For the earlier period—April 11 to May 10—in panel (a), the 7-day-ahead MEPIs
have a median coverage of 100% and mean coverage of 95.6%. On the other hand, for
the later period—May 11 to June 20—in panel (c), the 7-day-ahead MEPIs have a median
coverage of 100% and mean coverage of 96.2%. However, the coverage is slightly decreased
when restricting to counties with at least 10 deaths in panel (e), for which we observe a
median coverage of 88.7%, and mean coverage of 87.9%. This observation is consistent with
the fact that at the beginning of the pandemic, several counties had zero or very few deaths
resulting in very good coverage with the prediction interval. On the other hand, note that
smaller death counts would also imply a relatively larger normalized length for the MEPI
intervals.

Figure 5.14(a), (c) and (e) show that, in general, our 14-day-ahead MEPIs achieve similar
coverage as our 7-day-ahead MEPIs. For example, over the April 11–May 10 and May 11-
June 20 periods, our prediction intervals have mean coverage of 95.0% and 97.0% (median
is 100% for both periods). For panel (e)—counties with at least 10 deaths on June 11—the
coverage has a median of 89.7% and a mean of 87.9%.

Overall, the statistics discussed above show that both 7-day-ahead and 14-day-ahead
MEPIs achieve excellent coverage in practice. In fact, for the counties with poor coverage,
we show in Appendix .2 that there is usually a sharp uptick in the number of recorded
deaths at some point in the evaluation period, possibly due to recording errors, or backlogs
of counts. Modeling these upticks and obtaining coverage for such events is beyond the scope
of this paper.

Normalized length: Next, we discuss the other evaluation metric of the MEPIs, their
normalized length (5.12b). In panels (b) and (d) of Figure 5.13, we plot the histogram of
the observed average normalized length of 7-day-ahead MEPIs for the periods April 11–May
10, and May 11–June 20 respectively. Panel (f) covers the same counties as did panel (e):
those with at least 10 deaths for at least 10 days in the period April 11 to June 20, 2020.

Recall that the normalized length is defined as the length of the MEPI over the recorded
number of deaths (equation (5.12b)). And, more than 70% of counties in the US recorded
2 or less COVID-19 deaths by May 1. For these counties, having a normalized length of 2
means the actual length of the prediction interval is 4 (or less). And thus, it is not surprising
to see that the average normalized length of MEPI for a non-trivial fraction of counties is
larger than 2 in panels (b) and (d). When considering counties with at least 10 deaths in
panel (f), the average normalized length over these (county-specific) periods is much smaller;
and the median is 0.470.

Turning to 14-day-ahead MEPIs in Figure 5.14, panels (b) and (d) show that that the
normalized length for 14-day-ahead MEPIs can be quite wide for counties with a small
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number of deaths. Nevertheless, panel (f) shows that the 14-day-ahead MEPIs are reasonably
narrow for counties with more than 10 deaths, with a median average normalized length of
1.027—which is roughly two times the median size of 0.470 for the 7-day-ahead MEPIs in
Figure 5.13(f).

Overall, Figures 5.13 and 5.14 show that our MEPIs provide a reasonable balance between
coverage and length for up to 14 days in future, especially when the cumulative counts are
not too small.

5.6 Related work
Several recent works have tried to predict the number of cases and deaths related to COVID-
19. Even more recently, the Center for Disease Control and Prevention (CDC) has started
aggregating results from several models.17 But to the best of our knowledge, ours was the
first work focusing on predictions at the county-level. During the time period of our work,
a direct comparison with other models’ to our own were difficult for several other reasons:
(1) the models relied on strong assumptions and did not usually provide predictive checks
on their models, (2) we did not have access to a direct implementation of their models
(or results), and (3) their models focus on substantially longer time horizons. During the
revisions, we became aware of a recent work by [19] which we return to after a brief summary
of the other related works on predictive modeling for COVID-19 release.

Two recent works [63, 32] have modeled the death counts at the state level in the US.
The earlier versions of the model by Murray et al. (also referred to as the IHME model)
was based on Farr’s Law with feedback from Wuhan data. On the other hand, the Imperial
College model [32] uses an individual-based simulation models with parameters chosen based
on prior knowledge. On the topic of Farr’s Law, we note that [10] used Farr’s Law to predict
that the total cases from the AIDS pandemic would diminish by the mid-1990s and the
total number of cases would be around 200,000 in the entire lifetime of the AIDS pandemic.
It is now estimated that 32 million people have died from the disease so far. While the
AIDS pandemic is very different from the COVID-19 pandemic, it is still useful to keep this
historical performance in mind.

Another approach uses exponential smoothing from time-series predictors to estimate
day-level COVID-19 cases [30]. In addition, several works use compartmental epidemiological
predictors such as SIR, SEIR, and SIRD [31, 72, 8] to provide simulations at the national
level. Other works [70, 45] simulate the effect of social distancing policies either in the
future for the US or in a retrospective manner for China. Finally, several papers estimate
epidemiological parameters retrospectively based on data from China [94, 56].

During the revision of our paper, another work was published by [19] that appeared in
medRxiv on June 8, 202018 after the submission of our paper to arXiv in mid-May. Chiang

17Forecasts available at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/
forecasting-us.html

18Accessed at https://www.medrxiv.org/content/10.1101/2020.06.06.20124149v1.full.pdf

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.medrxiv.org/content/10.1101/2020.06.06.20124149v1.full.pdf
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et al. use models based on Hawkes’ process to provide county-level predictions for new daily
cases as well as new death counts. Of note is that the authors also explore a CLEP with
adaptive tuning of c and µ (whereas we used fixed values for these parameters). Such a
tuning approach might present a promising improvement of CLEP performance in general
and we plan to investigate adaptive tuning of various hyper-parameters in the CLEP in our
own future work. Unfortunately, we were unable to properly reproduce the CLEP results
provided in Chiang et al.’s work using their provided documentation. During a private email
exchange the authors kindly provided further information regarding some of our questions
about their methodology19, but several of their choices make it difficult to compare their
work to ours. For instance, their work focuses on daily counts, rather than cumulative
counts as ours does. More importantly, their prediction numbers are not available on their
GitHub repository (both for the period till May 20 analyzed in their paper and the days
since then). The authors do not report the performance of their confidence intervals in the
paper, and report the MAE performance metric only for the counties that fall in the top
quantiles of cumulative counts at the end of the evaluation period. Such a quantile-based
group of counties is not interpretable (since it is time-varying and not spatially meaningful)
and does not allow for real-time use, since one must wait until the end of the evaluation
period to calculate the performance. In addition, the authors compute their predictions in
blocks of days, e.g., once a week for the 7-day-ahead predictions (rather than daily as in
this paper). Thus, from our point of view, these decisions unfortunately make their work
ill-suited to real-time usage for making fast-paced policy decisions related to COVID-19.

5.7 Impact: a hospital-level severity index for
distributing medical supplies

We are using our models to support the non-profit Response4Life20 in determining which
hospitals are most urgently in need of medical supplies and have subsequently been directly
involved in the distribution of medical supplies across the country. To do this, we translate
our forecasts into the COVID pandemic severity index, which is a simple measure of the
COVID-19 outbreak severity for each hospital.

To generate this hospital-level severity index, we divided the total county-level deaths
among all of the hospitals in the county proportional to their number of employees. Next,
for each hospital, we computed its percentile among all US hospitals with respect to total
deaths so far and also with respect to predicted new deaths in the next seven days. These
two percentiles are then averaged to obtain a single score for each hospital. Finally, this
score is quantized evenly into three categories: low, medium, and high severity. Evaluation

19In particular, via this email exchange we learned that: (i) they had implemented the adaptive tuning
of CLEP; and (ii) they had computed the % error (in Table S1 of their paper) for total new counts over the
entire k-day-block (for k-day-ahead predictions) summed over all the counties in a given quantile thereby
explaining the (surprising at first) decrease in % error as the prediction horizon k increases.

20https://response4life.org/

https://response4life.org/
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and refinement of this index are ongoing, as more hospital-level data becomes available. The
interested reader can find a daily-updated map of the COVID pandemic severity index and
additional hospital-level data at our website https://covidseverity.com.

5.8 Conclusion
In this paper, we made three key contributions. We (1) introduced a data repository con-
taining COVID-19-related information from a variety of public sources, (2) used this data
to develop CLEP predictors for short-term forecasting at the county level (up to 14 days),
and (3) introduced a novel yet simple method MEPI for producing prediction intervals for
these predictors. By focusing on county-level predictions, our forecasts are at a finer ge-
ographic resolution than those from a majority of other relevant studies. By comparing
our predictions to real observed data, we found that our predictions are accurate and that
our prediction intervals are reasonably narrow and yet provide good coverage. We hope
that these results will be useful for individuals, businesses, and policymakers in planning
and coping with the COVID-19 pandemic. Indeed, our results are already being used to
determine the hospital-level need for medical supplies and have been directly influential in
determining the distribution of these supplies.

Furthermore, our data repository as well as forecasting and interval methodology will be
useful for academic purposes. Our data repository has already been used for data science
education, and by other teams interested in analyzing the data underlying the COVID-
19 pandemic. Our CLEP ensembling techniques and MEPI methodology can be applied to
other models for COVID-19 forecasting, as well as to online methods and time-series analysis
more broadly. Our data, codes and models can be found at https://covidseverity.com.

Lastly, inspired by the recent work of [19], we are beginning our investigation into adap-
tive tuning (over time) of µ, c and other hyperparameters for CLEP, in the hope of improving
its performance.

https://covidseverity.com
https://covidseverity.com
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(a) Six worst-affected counties
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(b) Six randomly selected counties

Figure 5.5: EDA plot for investigating exchangeability of normalized errors of 7-day-ahead
CLEP predictions with its last 5 errors made at time t, over the period T = {March 26, . . . ,
Jun 13} (80 days). These heatmaps are obtained as follows. First, for each day t, we rank
the errors {∆t+7,∆t,∆t−1, . . . ,∆t−4} of our CLEP (with the expanded shared and linear
predictors) in increasing order so that the largest error has a rank of 6. Then, for each of
the six errors {∆t+7,∆t,∆t−1, . . . ,∆t−4}, we count the number of days when it is ranked 1,
2, 3, 4, 5 and 6. Finally, we plot these numbers of days in the above heatmaps for (a) the
six worst affected counties, and (b) six random counties. In addition, we plot the average
rank of each error in dashed black lines. If {∆t+7,∆t,∆t−1, . . . ,∆t−4} are exchangeable for
any day t, then the expected average rank for each of the six errors would be 3.5.



CHAPTER 5. CURATING A COVID-19 DATA REPOSITORY AND FORECASTING
COUNTY-LEVEL DEATH COUNTS IN THE UNITED STATES 93

3/22 4/5 4/19 5/3 5/17 5/31 6/14
Date

50

100

150

M
AP

E

linear
expanded shared
CLEP

3/22 4/5 4/19 5/3 5/17 5/31 6/14
Date

20

40

60

Ra
w 

sc
al

e 
M

AE
3/22 4/5 4/19 5/3 5/17 5/31 6/14

Date

1

2

3

Sq
ua

re
 ro

ot
 sc

al
e 

M
AE

(a) MAPE (b) Raw-scale MAE (c) Square-root-scale MAE

Figure 5.6: Plots of mean absolute error (MAE) of different predictors for 7-day-ahead
predictions from March 22 to June 20. We plot the (a) mean absolute percentage error
(MAPE), (b) raw-scale MAE, and (c) square-root-scale MAE versus time. Results are
shown for expanded shared exponential predictor (orange dashed line), the separate county
linear predictor (red dotted line), and the CLEP that combines the two predictors (solid
blue line).
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Figure 5.9: Plots of mean absolute error (MAE) of CLEP with different prediction horizons
from April 11, 2020 to June 20, 2020. We plot the (a) mean absolute percentage error
(MAPE), (b) raw-scale MAE, and (c) square-root-scale MAE versus time, for k-day-ahead
predictions with k ∈ {7, 10, 14}.
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Figure 5.10: Plots of MAE distribution of CLEP for different prediction horizon over the
period April 11, 2020 to June 20, 2020. In panels (a), (b) and (c), we show the box-plots
(over time) of the mean absolute percentage error (MAPE), raw-scale MAE, and square-
root-scale MAE for k-day ahead predictions k = {3, 5, 7, 10, 14}. In panels (d), (e) and (f),
we plot the median value of the different MAEs for even longer horizons, up to 21 days.
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Figure 5.12: A grid of line charts displaying the performance of 14-day-ahead CLEP and
MEPI for the cumulative death counts due to COVID-19 between April 11, 2020 and June 20,
2020. The observed data is shown in black, CLEP predictions are shown in the dashed blue,
and the corresponding 14-day-ahead MEPIs are shown as shaded blue regions. In panel (a),
the MEPI coverage for the 6 counties are Kings (99%), Queens (99%), Bronx (99%), Cook
(93%), Los Angeles (96%) and New York (89%). In panel (b), Suffolk (92%), Bergen (99%),
Oakland (89%), Monmouth (94%), Broward (97%) and Dougherty county (94%). Note that
for these counties, the coverage of 14-day-ahead MEPIs is higher than that of 7-day-ahead
MEPIs (shown in Figure 5.11) due to the wider intervals in the beginning of the period. (It
is worth noting that the theoretical coverage guarantees under certain assumptions is 83%;
see equation (5.13).)
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Figure 5.13: Histograms showing the performance of 7-day-ahead MEPI intervals for county-
level cumulative death counts. For each county, we compute the observed coverage and
average normalized length for the period April 11–May 10, 2020, and plot the histogram of
these values across counties respectively in the top panels (a) and (b). Respective results
for the period May 11–June 20, 2020 are plotted in the middle panels (c) and (d). For the
bottom two panels (e) and (f), we plot the histogram across only those counties that had
at least 10 cumulative deaths by June 11. In these two panels, for each county the observed
coverage and average normalized length are computed only over those days in April 11 to
June 20 for which that county’s cumulative death count is at least 10. See Figure 5.14 for
similar plots for 14-day-ahead MEPIs.
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Figure 5.14: Histograms showing the performance of the 14-day-ahead MEPI intervals for
county-level cumulative death counts. For each county, we compute the observed coverage
and average normalized length for the period April 11–May 10, 2020, and plot the histogram
of these values across counties respectively in the top panels (a) and (b). Respective results
for the period May 11–June 20, 2020 are plotted in the middle panels (c) and (d). For the
bottom two panels (e) and (f), we plot the histogram across only those counties that had
at least 10 cumulative deaths by June 11. In these two panels, for each county the observed
coverage and average normalized length are computed only over those days in April 11 to
June 20 for which that county’s cumulative death count is at least 10. See Figure 5.13 for
similar plots for 7-day-ahead MEPIs.
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Appendix A

Appendix

SUPPLEMENTAL NOTES

Corpus Statistics

The prostate cancer reports have a mean length of 912 words and 22382 unique words in
the vocabulary. After replacing rare words with the special <UNK> token, there are 6803
unique words in the vocabulary. We include the percentage of reports containg each data
element in supplemental table 6.

Text Preprocessing Methods

We removed commas, backslashes, semi-colons, tildes, periods, and the word “null” from
each report in the corpus. For colons, forward slashes, parentheses, plus, and equal signs
we added a space before and after the character, because these frequently had semantic
value important for the classification task, for example colons typically occur in the synoptic
comment where most of the relevant is contained, so if an n-gram has a colon in it, then this
is indicative that it may contain important information. Each report was preprocessed so
that every token in the report had one space preceding and one space following it. We then
created a vocabulary of words using only reports in the traing corpus. If a token occurred
fewer than 10 times in the traing corpus vocabulary, it was replaced with a “<UNK>” token
for every report.
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Pathologic Stage Information

We applied the token extractor methods rather than the classifiers to the pathologic stages,
even though the number of classes for each stage type is small. The reason is the way the
pathologic stages are encoded in the reports. For example, each pathologic stage is encoded
in a single token, such as pt2an0m0. The letters t, n, and m denote the pathologic stage
type, while 2a and 0s that follow immediately denote the class for each stage type. Classifier
methods are not well suited for this task, because the number of possible token encodings
is large (equal to the number of classes for the t-stage multiplied by the number of classes
for the n and m-stages). It may even be the case that a certain encoding may show up in
the test set and does not show up in the train set if a certain combination of the stages is
new. For this reason, we first extract the stage token (eg pt2an0m0 ) and then determine
the values for the t, n, and m stages using a regular expression rule-based method.

Model hyperparameters

We sampled regularization values from -6 to 6 in logspace for logistic regression models. For
the random forest, we varied parameters such as bootstrapping or not, the max depth of
each decision tree from 10 to 50 in increments of 10, the number of trees from 200 to 1000
in increments of 200, and the minimum number of samples per leaf from 2 to 64 by factors
of two. For the support vector machines method, we sampled the regularization parameter
from -6 to 6 in logspace, the kernel from either linear or radial basis kernel, and the gamma
parameter from -3 to 1 in logspace. For the boosting classifier we sampled the learning rate
from -4 to 1 in logspace using the SAMME.R algorithm in scikit-learn.

For the convolutional neural network, we sampled the learning rate from -6 to -1 in logspace,
the number of convolutional filters from 50 to 400 in increments of 50, drop out parameter
from 0, 0.125, 0.25, and 0.5, batch sizes from 16 to 32, and filter sizes from 3 to 6. For the
LSTM, we sampled the learning rate from -6 to -1 in logspace, the drop out from 0, 0.125,
0.25, and 0.5, the hidden dimension size from 50 to 300 in increments of 50.
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Supplemental Tables

Supplemental Table 1. Macro F1 scores for classification fields
across on full traing data sample (n = 2,066)

Data Element LSTM Logistic
regres-
sion

Adaboost
classifier

SVM Random
Forest

Gleason Grade - Primary 0.329 0.864 0.865 0.751 0.624
Gleason Grade - Secondary 0.300 0.680 0.561 0.649 0.536
Gleason Grade - Tertiary 0.268 0.692 0.771 0.492 0.385
Tumor histology 0.498 0.496 0.499 0.498 0.499
Cribriform pattern 0.583 0.493 0.807 0.593 0.493
Treatment effect 0.492 0.620 0.496 0.496 0.496
Tumor margin status 0.553 0.932 0.953 0.902 0.864
Benign margin status 0.489 0.593 0.701 0.496 0.972
Perineural invasion 0.600 0.942 0.978 0.927 0.936
Seminal vesicle invasion 0.550 0.888 0.946 0.884 0.876
Extraprostatic extension 0.555 0.898 0.953 0.856 0.687
Lymph node status 0.550 0.657 0.636 0.650 0.657
Mean Macro F1 across
classification data ele-
ments

0.481 0.730 0.764 0.683 0.669

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Supplemental Table 2. Micro F1 scores for classification fields
across on full traing data sample (n = 2,066)

Data Element LSTMCNN Logistic re-
gression

Adaboost
classifier

SVM Random
Forest

Gleason Grade - Primary 0.604 0.981 0.978 0.972 0.935 0.947
Gleason Grade - Secondary 0.577 0.969 0.959 0.947 0.913 0.919
Gleason Grade - Tertiary 0.750 0.935 0.925 0.935 0.907 0.876
Tumor histology 0.993 0.997 0.984 0.997 0.993 0.996
Cribriform pattern 0.972 0.975 0.975 0.981 0.975 0.975
Treatment effect 0.972 0.981 0.981 0.984 0.987 0.987
Tumor margin status 0.645 0.951 0.941 0.953 0.919 0.891
Benign margin status 0.959 0.981 0.975 0.966 0.987 0.969
Perineural invasion 0.614 0.972 0.944 0.978 0.929 0.938
Seminal vesicle invasion 0.787 0.975 0.941 0.975 0.941 0.941
Extraprostatic extension 0.753 0.960 0.953 0.953 0.941 0.901
Lymph node status 0.824 0.988 0.984 0.953 0.975 0.984
Mean Micro F1 across clas-
sification data elements

0.788 0.972 0.962 0.966 0.950 0.944

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Supplemental Table 3. Mean macro F1 scores and standard
deviations across columns for classification models on varying
number of reports (N) across 5 runs

Model N = 16 N = 32 N = 64 N = 128 N =
256

Logistic 0.434 ± 0.121 0.495 ± 0.116 0.532 ± 0.129 0.586 ± 0.154 0.630 ±
0.170

AdaBoost 0.475 ± 0.133 0.545 ± 0.155 0.590 ± 0.169 0.620 ± 0.182 0.658 ±
0.183

Random for-
est

0.445 ± 0.148 0.476 ± 0.135 0.508 ± 0.143 0.529 ± 0.134 0.562 ±
0.140

SVM 0.420 ± 0.141 0.444 ± 0.147 0.460 ± 0.148 0.503 ± 0.131 0.531 ±
0.161

CNN 0.386 ± 0.159 0.416 ± 0.162 0.460 ± 0.173 0.504 ± 0.171 0.577 ±
0.174

LSTM 0.387 ± 0.135 0.408 ± 0.128 0.405 ± 0.131 0.417 ± 0.126 0.430 ±
0.127

Supplemental Table 4. Mean micro F1 scores and standard
deviations across columns for classification models on varying
number of reports (N) across 5 runs

Model N = 16 N = 32 N = 64 N = 128 N = 256
Logistic 0.808 ± 0.164 0.851 ± 0.123 0.880 ± 0.089 0.913 ± 0.060 0.937 ± 0.041
AdaBoost 0.845 ± 0.131 0.883 ± 0.098 0.907 ± 0.067 0.931 ± 0.050 0.949 ± 0.034
Random for-
est

0.828 ± 0.148 0.860 ± 0.117 0.888 ± 0.088 0.901 ± 0.077 0.913 ± 0.065

SVM 0.764 ± 0.202 0.774 ± 0.205 0.798 ± 0.179 0.853 ± 0.106 0.868 ± 0.138
CNN 0.722 ± 0.216 0.763 ± 0.180 0.786 ± 0.183 0.852 ± 0.122 0.901 ± 0.077
LSTM 0.691 ± 0.208 0.740 ± 0.186 0.740 ± 0.207 0.768 ± 0.182 0.778 ± 0.166
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Supplemental Table 5. Counts for each outcome of error analysis
for each field from 10 randomly sampled errors (or all errors if
fewer than 10 errors were made)

Field Annotation
Error

Model
error

Report
anomaly

Evaluation
Error

Not
reported
in text

Total Best
model

Gleason Grade - Pri-
mary

3 6 1 0 0 10 Cnn

Gleason Grade - Sec-
ondary

4 5 1 0 0 10 Cnn

Gleason Grade - Ter-
tiary

4 6 0 0 0 10 Cnn

Tumor histology 0 3 0 0 0 3 Cnn

Cribriform pattern 3 1 0 0 0 4 Cnn

Treatment effect 3 3 1 0 0 7 Cnn

Tumor margin status 1 1 0 0 0 2 Boost

Benign margin status 0 1 0 0 0 1 Svm

Perineural invasion 3 6 1 0 0 10 Boost

Seminal vesicle inva-
sion

1 8 1 0 0 10 Cnn

Extraprostatic exten-
sion

4 5 1 0 0 10 Cnn

Lymph node status 2 8 0 0 0 10 Cnn

Prostate weight 3 3 0 2 2 10 Boost

Estimated volume of
tumor

2 1 0 3 4 10 Random
forest

Pathologic T-stage 3 0 1 0 6 10 Logistic

Supplemental Table 6. Number of annotated data elements by
number of reports used in the traing set

Field Percent of reports containg field

continued on next page
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continued from previous page
Gleason Grade - Primary 0.99

Gleason Grade - Sec-
ondary

0.99

Gleason Grade - Tertiary 0.15

Tumor histology 1.00

Cribriform pattern 1.00

Treatment effect 1.00

Tumor margin status 1.00

Benign margin status 1.00

Perineural invasion 1.00

Seminal vesicle invasion 1.00

Extraprostatic extension 1.00

Lymph node status 0.99

Prostate weight 0.98

Estimated volume of tu-
mor

0.98

Pathologic T-stage 0.95

Pathologic M-stage 0.94

Pathologic N-stage 0.38
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SUPPLEMENTAL FIGURES

Supplemental Figure 1. Expected Calibration Error as a function of
the bin size for boosting classification model averaged across fields
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Supplemental Figure 2. Expected Calibration Error as a function of
bin size for random forest extractor models averaged across fields



APPENDIX A. APPENDIX 117

Figure 1A: Average pre-calibration and post-calibration ECE
estimates across transfer learning variations of the two-stage
method as a function of 10, 20, and 40 labeled examples on colon,
kidney, and lung cancer pathology reports. The results presented
include the mean performance across 10 random splits of the data
and 95% confidence intervals. The two-stage method with transfer
learning for both the line and final classifiers consistently
outperforms other variations of the two-stage method including no
transfer. Calibrating the models via isotonic regression is shown to
reduce ECE scores across all methods.
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Figure 2A: Average pre-calibration and post-calibration ECE
estimates across baseline methods as a function of 10, 20, and 40
labeled examples on colon, kidney, and lung cancer pathology
reports. The results presented include the mean performance
across 10 random splits of the data and 95% confidence intervals
for the shared field and shared labels case. Compared to the
transfer learning variations of the two-stage method, the baselines
are less calibrated.
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Figure 3A: Average pre-calibration and post-calibration ECE
estimates across string similarity variations of the two-stage
method as a function of 10, 20, and 40 labeled examples on colon,
kidney, and lung cancer pathology reports. The results presented
include the mean performance across 10 random splits of the data
and 95% confidence intervals for the shared field and unique labels
case. The string similarity variations consistently outperform the
two-stage method using the ECE metric. Surprisingly the string
similarity method in isolation has lower ECE after calibration than
the other string similarity variations of the two-stage approach.

.1 Predictors with additional features
We now describe a few additional features that were considered to potentially improve our
predictors (but did not lead to any significant improvements). We included these features
after our first submission (on May 16, 2020), and hence tried the new features only in the
context of the CLEP that combines the expanded shared and linear predictors.1

1We note that the expanded shared predictor in this appendix is implemented without the monotonicity
adjustment (discussed in Section 5.3). The linear predictor does not need such adjustments in our setting.
Since our attempts with new features considered in this appendix did not lead to any improvement, we did
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Social-distancing feature

Here we consider adding a social distancing feature to the expanded shared model (discussed
in Section 5.3). We included an indicator feature in equation (5.4) for every county that
takes value 1 on a day if at least two weeks have passed since social distancing was first
instituted in a county, and 0 otherwise. We chose two weeks as the time lag to account
for the two week progression time for the illness to the recovery of the COVID-19. We
found it necessary to regularize this predictor since, without regularization, our 7-day-ahead
predictions became infinite in some cases. We regularized this model with the elastic net
and an equal penalty of .01 for both `1 and `2 regularization.

We now compare CLEP with the social-distancing feature included in the expanded
shared predictor, with the original CLEP from the main paper, for 7-day-ahead prediction
of the recorded cumulative death counts. We found that the new variant (with the social
distancing feature) performed slightly worse than our original CLEP. Over the period March
22 to June 20, the original CLEP has a mean (over time) raw-scale MAE (equation (5.14))
of 13.95, while the social-distancing variant has an MAE of 14.2. In Figure .1, we plot the
behavior of raw-scale MAEs with time for the evaluation period from March 22 to June 20.
We observe that the performance of the new CLEP variant is similar to that of the original
CLEP, with the exception of a couple of the peaks, where the new CLEP variant performs
slightly worse.

Figure .1: Plots of raw-scale MAE for 7-day-ahead predictions of two variants of CLEP
combing expanded shared and linear predictors: CLEP with a social distancing indicator
feature for whether social distancing was in place in a county for more than two weeks or
not, and the original CLEP considered in the main paper. The social distancing feature is
included in the expanded shared model.

not re-do the investigation with the monotonicity adjustment. We leave any further investigation with these
new features (or their variants) for future work.
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Weekday feature

As illustrated in Section 5.2 and Figure 5.3(a), the COVID-19 death counts are under-
reported on Sunday and Monday, which could potentially lead to increased errors for our
prediction algorithm. As a result, we considered an additional feature for the two best
predictors that we used in our CLEP earlier: the expanded shared and separate linear
predictors. We now discuss the details of our investigations with these two predictors one
by one.

Weekday feature for expanded shared predictor

To address this, we first investigated our expanded shared predictor’s (5.4) performance for
3-day-ahead prediction on a per weekday basis and plotted the results in Figure .2(a). We
observe that the average raw-scale MAE is slightly higher for the days when the 3-day-ahead
period included both Sunday and Monday. For example, 3-day-ahead predictions made on
Saturday would require making predictions for Saturday, Sunday, and Monday, and that
made on Sunday would require making predictions for Sunday, Monday, and Tuesday.

To help account for this bias, we introduced an additional indicator feature in equa-
tion (5.4) that takes a value of 1 when the day—for which the prediction is made—is either
Sunday or Monday, and 0 otherwise. For instance, when we make 3-day-ahead predictions
on Saturday, this feature would take value 0 while computing the prediction for Saturday,
and 1 when we compute the prediction for Sunday and Monday. We plot the error distri-
bution over days of this new variant in Figure .2(b). For the new variant, we find that the
raw-scale MAEs for the days, when the 3-day-ahead period does not include both Sunday
and Monday, typically have higher MAE. Overall when averaging across all days for March
22 to June 20, we find that the new variant of expanded shared predictor performed slightly
worse than the original version. The raw-scale MAE (5.14b) for the new variant is 11.7,
while the original variant had a raw-scale MAE of 11.5.

We also experimented with a feature that accounted for the predicted day being either a
Tuesday or Wednesday, days which are typically overcounted to compensate for undercount-
ing on Sunday and Monday, but initial experiments were not promising.

Weekday feature for separate linear predictors

Next, we experiment with adding a weekday feature to the separate linear predictors (dis-
cussed in Section 5.3) for 3-day-ahead predictions, by adding a binary feature that takes
value 1 if the day—for which the prediction is made—is either Sunday or Monday, and 0
otherwise. Thus, the new variant of the separate linear predictors is given by

Ê[deathsct+1|t] = βc0 + βc1(t+ 1) + βc2vt+1, (1)
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(b) Expanded shared with weekday feature

Figure .2: Mean raw-scale MAEs by weekdays for the expanded shared predictor for 3-day-
ahead predictions with and without the weekday feature. The MAE for a given day is the
MAE for the 3-day-ahead prediction computed on that day. So the MAE for Wednesday is
the MAE for predicting the cumulative deaths on Friday.

where vt+1 indicates whether day t+1 is Sunday/Monday or not. For 3-day-ahead predictions
(Ê[deathsct+3|t]), we simply replace t+1 by t+3, and vt+1 by vt+3 on the RHS of equation (1).

Recall that the original separate linear predictors in Section 5.3 were fit only with the
four most recent days data. For some choices of days, the new feature vt takes only a single
value 0 in the traing data. For instance, when day t + 1 is Saturday, we have vt = vt−1 =
vt−1 = vt−2 = vt−3 = 0, i.e., the new feature is identically zero in the traing data. For such
cases, the parameter βc2 is not identifiable. To address this issue of non-identifiability, for
these experiments, we use the 7 most recent days to fit the linear predictors. For comparison,
using the 7 most recent days instead of the 4 most recent days for the original linear predictor
increases the raw-scale MAE (5.14b) from 7.0 to 7.2. Adding the new indicator feature vt
increases this error further to 7.4. As with the expanded shared model, we plot the mean
raw-scale MAE per day of the week for 3-day-ahead predictions in Figure .3. With the
weekday feature (panel (b)), we see that errors for most days are lower than that without
the weekday feature (panel (a)), but this gain is offset by a high error for predictions made on
Tuesday. In addition to this Sunday/Monday feature, we incorporated a feature to account
for the overcounting of deaths on Tuesday and Wednesday. However, we did not see any
improvement in results from initial experiments, and thereby omit further details here.
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(b) Linear Predictor with weekday feature

Figure .3: Mean raw-scale MAEs by weekdays for the separate linear predictors for 3-day-
ahead predictions with and without the weekday feature. The MAE for a given day is the
MAE for the 3-day-ahead prediction computed on that day. So the MAE for Wednesday is
the MAE for predicting the cumulative deaths on Friday.

.2 Further discussion on MEPI
We now first shed light on why MEPI had slightly worse coverage for some of the counties.
And then, we provide a further discussion on various choices made for designing MEPI.

Counties with poor coverage

While Figure 5.13(a) shows that MEPI intervals achieve higher than 83% coverage for the
vast majority of counties over the April 11–May 10 period, there are also counties with
coverage below the targeted level. We provide a brief investigation of counties where the
coverage of MEPIs for cumulative death counts is below 0.8. Among 198 such counties,
Figure .4 shows the cumulative deaths from April 11 to May 10 of the worst-affected 24
counties. Many of these counties exhibit a sharp uptick in the number of recorded deaths
similar to that which we encountered in New York, possibly due to reporting lag. For
instance, Philadelphia (top row, first column from left) only recorded 2 new deaths between
April 28 and May 3, but recorded 201 new deaths on May 4, which brought the cumulative
deaths on May 4 to 625.

MEPI vs conformal interence

Recall that the MEPI (equation 5.10a) can be viewed as a special case of conformal prediction
interval vovk2005algorithmic,shafer2008tutorial. Here, we provide further discussion on this
connection and discuss the assumptions under which the MEPI should achieve good coverage.
A general recipe in conformal inference with streaming data is to compute the past several
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Figure .4: The cumulative death count data from the 24 worst affected counties where the
coverage of the 7-day-ahead MEPIs is below 0.8 (in Figure 5.13(a)).

errors of the prediction model and use an s-percentile value for some suitable s (e.g., s = 95)
to construct the prediction interval for the future observations. At a high-level, theoretical
guarantees for conformal prediction intervals rely on the assumption that the sequence of
errors is exchangeable. Roughly, the proof proceeds as follows: the exchangeability of the
residuals ensures that the rankings of future residuals are uniformly distributed. Hence, the
probability of the future residuals being in the top s-percentile is no larger than s, thereby
obtaing the promised s%-coverage. For more details, we refer the reader to the excellent
tutorial shafer2008tutorial and the book vovk2005algorithmic.

Given the dynamic nature of COVID-19, it is unrealistic to assume that the prediction
errors are exchangeable over a long period. As the cumulative death count grows, so too will
the magnitude of the errors. Thus our MEPI scheme deviates from the general conformal
recipe in two ways. We compute a maximum error over the past 5 days, and we normalize
the errors. Each of these choices—of normalized errors and looking at only past 5 errors— is
designed to make the errors more exchangeable. Moreover, given that we take 5 data points
to bound the future error, computing a maximum over them is a more conservative choice
(e.g., when compared to taking median or a percentile-based cut-off). Furthermore, in order
to compute a 95-percentile value, we need to consider errors for at least the past 20 days.
Exchangeability is not likely to hold for such a long horizon.
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Normalized vs. unnormalized errors: We now provide some numerical evidence to
support our choice of normalized errors to define the MEPI. Figure .5(a) shows the rank
distribution of normalized errors of our 7-day-ahead CLEP predictions for the six worst-
affected counties over over an earlier period (March 26–April 25), and Figure .5(b) shows
the (unnormalized) `1 errors |ŷt − yt| over the same period. We found that in Figure .5(b),
the `1 errors on days t− 4, t− 3, t− 2, t− 1, t and t + 7 do not appear to be exchangeable.
Recall that under exchangeability conditions, the expected average rank of each of these six
`1 errors would be 3.5. However, for all six counties, the average rank of the absolute error
on day t+ 7 is larger than 4. This indicates that the future absolute error tends to be higher
than past errors, and using the `1 error |ŷt− yt| in place of the normalized error ∆t can lead
to substantial underestimation of future prediction uncertainty.

Longer time window: In Figure .5(c), we show the rank distribution of normalized errors
over a longer window of 10 days. We found that due to the highly dynamic nature of COVID-
19, these errors appear to be even less exchangeable. Under exchangeability conditions, the
expected average rank of each of these 11 errors would be 6. However, we found that the
average rank substantially deviates from this expected value for many days in this longer
window for all displayed counties.

Overall, we believe that putting together the observations from Figures 5.5 and .5 yield
reasonable justification for the two choices we made to define MEPI (equation (5.10a)),
namely, the 5-day window (versus the entire past) and the choice of normalized errors (versus
the unnormalized absolute errors).
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(a) Rank distribution of normalized errors over 5 days
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(b) Rank distribution of absolute unnormalized errors over 5 days
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(c) Rank distribution of normalized errors over a longer window of 10 days

Figure .5: Exploratory data analysis (EDA) plots with unnormalized and normalized errors
for 7-day-ahead predictions made by CLEP, computed over t = March 26, . . . , April 25.
(a) The rank distribution of normalized errors of our CLEP (with the expanded shared
and linear predictors) for the six worst affected counties; (b) the rank distribution of the
absolute unnormalized errors of our CLEP for the six worst affected counties and (c) the
rank distribution of the normalized errors over a longer window.
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(a) Six worst-affected counties
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(b) Six randomly-selected counties

Figure .6: Exploratory data analysis (EDA) plots for investigating exchangeability of nor-
malized errors of 14-day-ahead CLEP predictions with its last 5 errors made at time t, over
the period t = April 2, . . . , Jun 6. These plots are obtained using a similar procedure as
Figure 5.5.
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