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We present an implementation of an explainable and physics-aware machine learning model capable of 
inferring the underlying physics of high-energy particle collisions using the information encoded in the 
energy-momentum four-vectors of the final state particles. We demonstrate the proof-of-concept of our 
White Box AI approach using a Generative Adversarial Network (GAN) which learns from a DGLAP-based 
parton shower Monte Carlo event generator. The constrained generator network architecture mimics the 
structure of a parton shower exhibiting similarities with Recurrent Neural Networks (RNNs). We show, for 
the first time, that our approach leads to a network that is able to learn not only the final distribution of 
particles, but also the underlying parton branching mechanism, i.e. the Altarelli-Parisi splitting function, 
the ordering variable of the shower, and the scaling behavior. While the current work is focused on 
perturbative physics of the parton shower, we foresee a broad range of applications of our framework to 
areas that are currently difficult to address from first principles in QCD. Examples include nonperturbative 
and collective effects, factorization breaking and the modification of the parton shower in heavy-ion, and 
electron-nucleus collisions.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In recent years machine learning techniques have lead to range 
of new developments in nuclear and high-energy physics [1–29]. 
For example, in Refs. [1–5] jet tagging techniques were developed 
which often outperform traditional techniques. In Refs. [6–11] Gen-
erative Adversarial Networks (GANs) [30,31], a form of unsuper-
vised machine learning, were used to simulate event distributions 
in high-energy particle collisions. There have also been efforts to 
infer physics information from data. In Ref. [32,33] a probabilistic 
model was introduced based on jet clustering and in Ref. [34] a 
convolutional autoencoder within a shower was used which qual-
itatively reproduces jet observables. See also Refs. [35–37] for re-
cent work on physics-aware learning.

The underlying physics information of high-energy particle col-
lisions is encoded in hard-scattering processes, the subsequent 
parton shower and the hadronization mechanism. These steps 
are modeled by general purpose parton showers used in Monte 
Carlo event generators which play an important role in our un-
derstanding of high-energy collider experiments [38–40]. Starting 
with highly energetic quarks or gluons which are produced in 
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hard-scattering events, parton showers simulate parton branching 
processes (soft and collinear emissions) that occur during the evo-
lution from the hard scale to the infrared which is followed by the 
hadronization step. Parton showers solve renormalization group 
equations and resum large logarithmic corrections to all orders 
which arise due to the sensitivity to both hard and soft physics. 
Since parton showers produce a fully exclusive final state, they 
are essential tools to improve our understanding of high-energy 
particle collisions. While the general concept of parton showers is 
well established, important questions about the perturbative accu-
racy [41–47], nonperturbative effects [48–51] and the modification 
in the nuclear environment [52–66], remain a challenge.

In this work, we propose an explainable or White Box AI ap-
proach [67,68] to learn the underlying physics of high-energy par-
ticle collisions. As a proof of concept, we present results of a 
GAN trained on the final output of a gluon-only parton shower, 
which not only reproduces the final distribution of particles but 
also learns the underlying showering mechanism using the com-
plete event information. We therefore aim at achieving algorithmic 
transparency [69–71], where the generation of intermediate split-
ting momentum fraction and angular ordering can be fully un-
derstood by human physicists. The technical implementation is a 
neural network architecture using recurrent, interpretable repre-
sentation. Unlike traditional post-hoc explainability, a fully func-
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Fig. 1. Parton splitting process i → jk with longitudinal momentum fraction z, rela-
tive splitting angle of the two daughter partons θ and azimuthal angle φ.

tional proxy model can be created, and it is possible to run the 
generator network with proxy model replacing the neural network. 
This differs from post-hoc methods where the explaination does 
not offer the path towards a replacement model.

GANs consist of two competing neural networks, the generator 
and discriminator. In our setup, the generator network is struc-
tured in analogy to a Recurrent Neural Network (RNN). Partons 
are generated through 1 → 2 splittings which are taken as in-
put for the next iteration. This “constrained GAN” approach thus 
mimics the structure of the parton shower and can give access 
to the underlying physics in the parton branching mechanism. 
More specifically, we demonstrate that the network can learn the 
Altarelli-Parisi splitting function Pi→ jk(z), the splitting angles of 
individual branching processes and the dependence of the shower 
on the energy scale Q , see Fig. 1. This is achieved by separating 
the GAN into two components such that it can learn both self-
similar/fractal aspects of the shower such as the Altarelli-Parisi 
splitting function as well as Monte Carlo evolution time depen-
dent variables such as the splitting angle. We employ a network 
architecture that is sufficiently general, and as a result, capable of 
incorporating nonperturbative physics in the future. In order to use 
the complete information of each event, we use a data represen-
tation which is directly given by the four-vectors of the final state 
particles. To avoid sensitivity to the unphysical ordering of the list 
of four-vectors during the training process, we use sets to repre-
sent the data. In particular, in our work, the necessary permutation 
invariance is achieved by using so-called deep sets which were de-
veloped in Refs. [72–74].

With the framework introduced in this work, we can access the 
underlying physics mechanisms effectively departing from the typ-
ical black-box paradigm for neural networks. Moreover, we expect 
that eventually the GAN can be trained directly on experimental 
data (i.e. measured four-vectors of detected particles). Generally,
GANs are ideally suited for such applications due to their general-
izability and robustness when exposed to imperfect data sets. We 
expect that our approach will be particularly relevant for studies 
of heavy-ion collisions at RHIC and the LHC as well as electron-
nucleus collisions at the future Electron-Ion Collider [75]. In heavy-
ion collisions, the presence of quark-gluon plasma (QGP) [76–84]
leads to modifications of highly energetic jets as compared to the 
proton-proton baseline. These phenomena are typically referred to 
as jet quenching. Significant theoretical [52–60,62–64,66] and ex-
perimental [85–89] efforts have been made to better understand 
the physics of this process. Using the novel techniques proposed in 
this work, we will eventually be able to analyze the properties of 
the medium modified parton shower using, for the first time, the 
complete event information.

2. The parton shower

The parton shower we use for training the GAN is designed to 
solve the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion equations, see Refs. [51,90]. In addition, we set up the full 
event kinematics in spherical coordinates such that we can use 
the final distribution of partons generated by the shower as input 
to the adversarial training process. We start with a highly ener-
getic parton which originates from a hard-scattering event at the 
2

scale Q . The parton shower cascade is obtained through recur-
sive 1 → 2 branching processes according to the DGLAP evolution 
equations. There are three variables that describe a DGLAP split-
ting process i → jk as illustrated in Fig. 1. First, the large light 
cone momentum fraction z of the daughter partons relative to the 
parent is determined by sampling from the Altarelli-Parisi splitting 
functions. Second, the orientation of the two daughter partons, the 
azimuthal angle φ, is obtained by sampling from a flat distribu-
tion in the range [−π, π ]. Third, the splitting angle θ which is 
the relative opening angle of the two daughter partons, is deter-
mined as follows: First, sample a Monte Carlo time step �t from 
the no-emission Sudakov factor

exp

[
− �t

∑
i=q,q̄,g

1−ε∫
ε

dz Pi(z)

]
, (1)

where the Pi denote the final state summed Altarelli-Parisi split-
ting functions for (anti-)quarks and gluons. Then advance the 
shower time t → t + �t and solve for the splitting angle θ in

t(Q , θ) =
Q tan(θ/2)∫

Q tan(π/2)

dt′

t′
αs(t′)

π
. (2)

We evolve the shower from the hard scale Q down to the 
hadronization scale which we choose as 1 GeV. We note that the
DGLAP shower described here has two cutoff parameters. First, the 
angular cutoff on the splitting angle θ which is introduced by the 
hadronization scale and which determines the end of the shower. 
Second, we introduce the cutoff ε on the momentum fraction z, 
see Eq. (1). For our numerical results we choose ε = 0.02 which 
avoids the singular endpoints. The generated spectrum is accurate 
in the range ε < z < 1 − ε , and emitted partons that violate these 
bounds are not evolved further in the shower.

From the parent direction and the variables (z, θ, φ) of a given 
1 → 2 splitting, we set up the full event kinematics and determine 
the absolute position of the two daughter partons in spherical co-
ordinates (�̃, 	̃). The relevant kinematic relations are summarized 
in the supplementary material. After the shower terminates, we 
record the final momentum fractions Z of the partons relative 
to the initial momentum scale Q as well as their corresponding 
spherical coordinates (�, 	).1 Together with the on-shell condition 
they fully specify the exclusive final state distribution of all parti-
cles which are produced by the shower. We note that the variables 
z, φ are independent of the shower time t (self-similar or fractal 
variables), whereas the splitting angle θ is determined from the 
ordering variable of the shower and it also depends on the scale 
Q . Therefore, we treat θ differently from the other two variables in 
the generator network, as discussed below. The shower described 
here provides an ideal testing ground to explore the use of ex-
plainable machine learning that aims to extract the structure of 
the parton shower, and thus the underlying physics, from the final 
distribution of particles in the event. We leave the investigation 
of other shower algorithms and nonperturbative effects for future 
work.

3. Data representation and setup of the GAN

To avoid any loss of information, we choose to train the GAN 
directly on sets which contain the event-by-event particle four-
vectors produced by the shower introduced above. The required 

1 Note that we use the variables (z, θ, φ) to describe an individual 1 → 2 splitting 
processes as shown in Fig. 1, (�̃, 	̃) are the spherical coordinates of partons at 
intermediate stages of the shower and (Z , �, 	) denote the final distributions of 
the momentum fraction and angles of the partons after the shower terminates.
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Fig. 2. Schematic illustrations of the data structure of the generator network: Paral-
lelized execution of the random splitting trees on the GPU.

permutation invariance is built into the discriminator network by 
using so-called deep sets which were developed in Refs. [72–74]. 
Several equivariant layers are followed by a permutation invariant 
layer which ensures that the discriminator network is insensitive 
to the ordering of the input. Since the number of particles that 
are produced per event fluctuates, the sets of four-vectors have 
variable length. Deep sets are ideally suited to handle input with 
different lengths. To accommodate the variable length of the train-
ing data we allow the deep sets to contain up to 200 four-vectors 
which is sufficient for the energy Q that we consider here.

The discriminator network consists of a sequence of two deep 
sets. The first deep sets network takes the list of parton momenta 
p1, . . . , pM from the shower as input. A permutation invariant 
deep set f is obtained as

f (p1, . . . , pM) = ρ

(
M∑

i=1

	(pi)

)
. (3)

Here 	, ρ denote fully connected neural networks with 3, 2 layers, 
respectively, with 50 neurons per layer. We use the Leaky ReLU 
activation function with α = 0.2 [91]. The summation operation in 
Eq. (3) makes the final result permutation invariant. The output 
layer of these per-event deep sets has dimension 10. The second 
deep sets network uses the output of the first network from mul-
tiple events as input and produces the statistical activation for the 
entire batch of events. The second layer of deep sets allows us to 
avoid the mode collapse of the GAN [92].

We note that it is also possible to train the network on a 
set of observables where Infrared-Collinear safety is built in di-
rectly [22,93]. We plan to explore the impact of different data 
representations in future work which will be particularly relevant 
once we include nonperturbative effects in the shower.

The generator network mimics the structure of a parton shower. 
It sequentially produces partons and learns to map n to n + 1 par-
tons. To simplify the training process, the generator is separated 
into a Monte Carlo time-dependent and time-independent part. 
The time-independent part is designed to learn the Altarelli-Parisi 
splitting function Pi→ jk and the azimuthal angle φ which are the 
same for every branching process and independent of Q . Whereas 
the other part of the network depends on the Monte Carlo time t
and on the energy Q , i.e. it changes at every step of the shower 
and produces emissions which are ordered in the splitting angle θ , 
see Eq. (2). Both parts of the generator consist of neural networks 
with 5 hidden layers and 50 neurons, which is illustrated schemat-
ically in Figs. 2, 3. We use the exponential linear unit (ELU) [94]
as the activation function, to avoid step functions in the resulting 
z and θ distributions. The separation into two networks simpli-
fies the training process since, for example, the network does not 
need to consider a Monte Carlo time dependent splitting function. 
3

However, we expect that with sufficient computing resources this 
separation could be removed. We note that the two shower cut-
offs discussed above are also explicitly included in the generator 
network. However, in general, we expect that the cutoffs can be 
chosen as trainable parameters as well.

Using the shower setup described above, we generate training 
data for different energies in the range of Q = 200–800 GeV. As a 
proof of concept, we study a pure gluon shower where the gluon 
that splits is chosen at random. The training process of the GAN is 
a modified version of the original GAN approach. More details are 
given in the supplementary material.

4. Numerical results

We first verify that the GAN can reproduce the final distri-
bution of particles and we then consider the underlying physics 
by sampling from the different units of the RNN. To quantify the 
agreement between the shower and the GAN, we consider three 
kinematic variables (Z , �, 	) which characterize the final distri-
bution of particles. The result of the GAN and the parton shower is 
shown in the three panels of Fig. 4, where 3.5 × 108 events from 
the GAN after 500 training epochs is compared to 3.5 × 107 parton 
shower events. We show two types of errors in Fig. 4 (and simi-
larly Fig. 5). The statistical uncertainty of the GAN is negligible and 
not shown. The markers in the upper and lower panels represent 
the generated parton shower (PS) distributions and their statisti-
cal uncertainty. In addition, we provide a band in the lower panel 
which represents the statistical uncertainty of 1 standard deviation 
within the training sample. We observe good agreement which is 
consistent with the statistical uncertainty of the training sample. 
The agreement over several orders of magnitude is highly nontriv-
ial even without considering the underlying physics. As expected 
for a DGLAP shower, the distribution of the parton momentum 
fractions rises steeply toward small-Z (left panel). The distribution 
of the polar angle � peaks in the direction of the initial parton 
and 	 is flat which is consistent with the flat sampling of φ for 
each individual splitting.

Having confirmed that the GAN can reproduce the final output 
of the parton shower, we are now going to analyze the individ-
ual splitting processes to verify that the network has also correctly 
learned the underlying physics. The ability of the GAN to extract 
information about parton branching mechanism is the main nov-
elty of our work. By sampling from the different units of the 
RNN architecture, we study the distribution of the variables (z, θ)

that characterize the individual splitting processes. As representa-
tive examples, we show the results for the first four splittings in 
the left and middle panel of Fig. 5. The distribution of the mo-
mentum fraction z is shown in the left panel for the g → gg
splitting process. We observe good agreement with the Altarelli-
Parisi splitting function P g→gg for all four splittings. In particular, 
we note that the splitting function diverges for z → 1. Instead, 
the final Z -distribution (left panel in Fig. 4) falls off steeply to-
ward Z → 1 as expected for a QCD fragmentation spectrum. The 
strikingly different behavior of the two distributions near the end 
point clearly demonstrates that the GAN has in fact learned the 
underlying physics mechanism. Next we consider the Monte Carlo 
time-dependent θ distribution which is shown in the middle panel 
of Fig. 5. We observe that it is correctly reproduced by the GAN 
besides small fluctuations in the tail. The distributions peak at 
small values of θ . As expected for the ordering variable of the 
shower, the distributions become more narrow for splittings that 
occur at later Monte Carlo time. Here, θ is the only variable that 
depends on the scale Q . We investigate its Q dependence by con-
sidering the first splitting of the shower which is shown in the 
right panel of Fig. 5. Even though the GAN is optimized to repro-
duce only the Q -integrated distribution, the Q -dependence of the 
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Fig. 3. Flow diagram of the ith splitting process (n → n + 1 partons) of a randomly chosen parton with momentum pk . The Monte Carlo time dependent and independent 
networks are shown which take as input random numbers (RND) as well as Q , θi−1 in the time dependent case. The output of the two neural networks is passed through 
a softmax function to the module M which determines the four-vectors of the two daughter partons from the variables of the 1 → 2 splitting process and the parent 
momentum pk .

Fig. 4. Comparison of the parton shower and GAN in terms of the final distribution of particles. The three panels show the momentum fraction Z , the polar angle � and the 
azimuthal angle 	 (from left to right) for Q = 300, 500, 700 GeV.

Fig. 5. Comparison of the momentum fraction z, i.e. the Altarelli-Parisi splitting function P g→gg(z) (left) and the relative splitting angle θ (middle) of the first four splittings 
from the parton shower and the GAN for Q = 200−800 GeV. In addition, we show the θ distribution for three different values of Q for the first splitting (right).
shower is nevertheless well described by the network. We attribute 
the remaining numerical differences to the finite number of neu-
rons in combination with the activation function and their ability 
to approximate a steep multi-differential distribution. This can be 
mitigated by extending the size of the neural network and increas-
ing the size of the training sample. We note that the underlying 
multidimensional probability distributions are non-linear, contain 
(integrable) endpoint divergences and span over several orders of 
magnitude which is nontrivial to capture accurately by the GAN. 
For the kinematics we consider here, the shower produces on av-
erage 60-70 splittings with a maximum of 200. In Fig. 6 we show 
the z and θ distributions for the splittings 10, 20, 30 and 40. We 
find good agreement between the parton shower and GAN, even 
though the θ distributions are steeply falling. The accurate mod-
eling of these splittings which occur at late Mote Carlo times is 
necessary to reliably pin down the underlying physics mechanisms 
4

which is demonstrated here for the first time. Lastly, we find that 
the distribution of the azimuthal angle φ (not shown) also agrees 
with the parton shower result and we thus conclude that the GAN 
has in fact accurately learned the underlying physics of the parton 
shower.

5. Conclusions and outlook

In this letter we proposed an explainable machine learning -
a White Box AI - framework which successfully learns the un-
derlying physics of a parton shower - a hallmark of modeling 
high-energy particle collisions. As a proof of concept, we demon-
strated that constrained Generative Adversarial Networks (GANs) 
using the full event information are capable of learning the par-
ton cascade as described by a parton shower implementing DGLAP

evolution equations. As input to the adversarial training process 
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Fig. 6. The momentum fraction z and the relative splitting angle θ of the 10th to 40th splittings for the same kinematics as in Fig. 5.
we used deep sets which yield a permutation invariant represen-
tation of the training data of variable length. We found that not 
only the final distribution of partons in the event can be described 
by the network but also the physics of individual splittings pro-
cesses are correctly learned by the GAN. This is achieved by using 
a constrained GAN, where the generator network is structured like 
a recursive neural network (RNN). The parton branching mecha-
nism can be learned from the different units of the network. We 
consider our work as a starting point of a long-term effort with 
the goal to eventually train networks directly on experimental data 
designed for extracting the underlying physics using full event in-
formation registered in the detectors. We note that the precision 
of our approach in falsifying theoretical modeling is limited by the 
systematic experimental biases which we plan to explore in subse-
quent publications. An important future direction is the inclusion 
of nonperturbative effects in our framework. The nonperturbative 
transition from parton to hadron level can be included as an ad-
ditional unit in the generator network which converts N partons 
to M hadrons after the perturbative shower terminates. This ad-
ditional unit can either be treated as a black box or additional 
constraints from QCD can be included and the missing physics 
can be learned directly from data. Furthermore, we expect that 
our results to be particularly relevant for future studies of col-
lective effects, and the modification of the vacuum parton shower 
in heavy-ion collisions or electron-nucleus collisions at the future 
Electron-Ion Collider.
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