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SHORT GENOME REPORT Open Access

High-quality permanent draft genome
sequence of Ensifer sp. PC2, isolated from a
nitrogen-fixing root nodule of the legume
tree (Khejri) native to the Thar Desert of
India
Hukam Singh Gehlot1, Julie Ardley2, Nisha Tak1, Rui Tian2, Neetu Poonar1, Raju R. Meghwal1, Sonam Rathi1, Ravi Tiwari2,
Wan Adnawani2, Rekha Seshadri3, T. B. K. Reddy3, Amrita Pati3, Tanja Woyke3, Manoj Pillay4, Victor Markowitz4,
Mohammed N. Baeshen5, Ahmed M. Al-Hejin5, Natalia Ivanova3, Nikos Kyrpides3,5 and Wayne Reeve2*

Abstract

Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing
nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and
semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western
Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several
annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp.
PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent
draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139
RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome
Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

Keywords: Root-nodule bacteria, Nitrogen fixation, Symbiosis, Ensifer, Prosopis

Introduction
The genus Prosopis (family Leguminosae, sub-family
Mimosoideae [1]) comprises about 44 species that are
widely distributed in the world’s semi-arid regions,
mostly in North and South America with a few species
found in Africa and south west Asia [2–4]. Several spe-
cies have been widely introduced throughout the world
over the last 200 years [5]. Prosopis may have evolved
from P. africana (Guill. & Perr.) Taub., in which various
character traits and small genome size (392–490 Mbp)
indicate that it is a primitive species [2]. According to
Burkart [2], Prosopis is an old genus that diverged early
into several principal lineages, with some of these

lineages producing more recent episodes of speciation.
This is supported by a recent molecular dating analysis
that places the divergence of the New World Prosopis
Sections during the Oligocene (33.9 to 23.03 Mya) [6],
which is remarkably ancient considering that the sub-
family Mimosoideae originated between 42–50 Mya [7].
Section Prosopis consists of three species, Prosopis
cineraria (L.) Druce, P. farcta (Banks et Sol.) Eig. and P.
koelziana Burkart, which are native to North Africa and
Asia [6].
P. cineraria is endemic to arid and semi-arid regions

of the Indian Thar Desert and is designated as the state
tree of Rajasthan [8]. It symbolizes the sacred mytho-
logical “Kalpa Vriksh” (wish tree) of the desert and is
historically important, as it has been worshiped since an-
cient times by many rural communities in these arid re-
gions. P. cineraria is a multipurpose tree used as food,
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fodder, shelter and medicine by the local inhabitants. It
is an important component of agro forestry, agrisilvicul-
tural and silvopastoral systems in the alkaline soil of the
Thar Desert. The tree is extremely drought and salt tol-
erant, having a deep root system (>100 metres) that
helps in acquiring nutrients and moisture from deeper
soil layers. It produces green pods that are rich in nutri-
ents and antioxidants and eaten as a vegetable in the hot
summer [9]. P. cineraria is a good candidate for rehabili-
tation of dry, marginal or degraded lands of low fertility
and/or high salinity. It plays a vital role as a soil binder
in the stabilization of sand dunes and enriches poor des-
ert soil by fixing atmospheric nitrogen in association
with its rhizobial microsymbionts [10–13].
Prosopis is a promiscuous genus, being nodulated by a

wide range of taxonomically diverse rhizobia. Mesquite
(Torr.) in the Sonoran Desert, California is nodulated by
diverse strains of fast- and slow-growing rhizobia [14].
Mesorhizobium chacoense CECT 5336T is a microsym-
biont of Prosopis alba Griseb. growing in the Chaco
Arido region in Argentina [15], whereas in Spain is
nodulated by strains of Ensifer medicae, E. meliloti and
Rhizobium giardinii [16]. In Africa, the introduced Pro-
sopis species P. chilensis (Molina) Stuntz, P. cineraria, P.
juliflora (Sw.) DC. and P. pallida (Willd.) Kunth are re-
ported to nodulate with strains of Ensifer arboris, E. kos-
tiense, E. saheli and E. terangae [17, 18] and P. juliflora
also forms effective symbioses with strains of Mesorhizo-
bium plurifarium [19] and Rhizobium etli [20]. Nodula-
tion of P. cineraria growing in its native range was first
described by Basak and Goyal [10]. Recently, P. cineraria
and other native legumes growing in the alkaline soils of
the Thar desert have been reported to nodulate with a
dominant novel group of Ensifer strains (PC2, TW10,
TP13, RA9, TV3 and TF7) that are closely related to
African and Australian Ensifer strains on the basis of

16S rRNA sequence similarity, but form a distinct, well-
separated cluster [21, 22].
The indigenous rhizobia of wild tree legumes grow-

ing in such arid and harsh environments have super-
ior tolerance to abiotic factors such as salt stress,
elevated temperatures and drought and can be used
as inoculants for wild as well as crop legumes culti-
vated in reclaimed desert lands [10]. Because of its
ability to nodulate the keystone species P. cineraria
as well as crop legumes such as Vigna radiata (L.)
R.Wilczek and V. unguiculata (L.) Walp. [21], strain
PC2 has therefore been selected as part of the DOE
Joint Genome Institute 2010 Genomic Encyclopedia
for Bacteria and Archaea-Root Nodule Bacteria
(GEBA-RNB) sequencing project [23]. Here we
present a summary classification and a set of general
features for Ensifer sp. strain PC2, together with a de-
scription of its genome sequence and annotation.

Organism information
Classification and features
Ensifer sp. PC2 is a motile, Gram-negative strain in the
order Rhizobiales of the class Alphaproteobacteria. The
rod shaped form (Fig. 1 Left and Center) has dimensions
of approximately 0.3-0.5 μm in width and 1.25-1.5 μm in
length. It is fast growing, forming colonies within 3–4
days when grown on half strength Lupin Agar [24],
tryptone-yeast extract agar (TY) [25] or a modified
yeast-mannitol agar (YMA) [26] at 28 °C. Colonies on
½LA are white, opaque, slightly domed and slightly mu-
coid with smooth margins (Fig. 1 Right).
Figure 2 shows the phylogenetic relationship of Ensifer

sp. PC2 in a 16S rRNA sequence based tree. This strain
is the most similar to Ensifer saheli LMG 7837T based
on the 16S rRNA gene alignment, with sequence iden-
tities of 99.41 % over 1,366 bp, as determined using the

Fig. 1 Images of Ensifer sp. PC2 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony morphology
on solid media (Right)
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EzTaxon-e database, which contains the sequences of
validly published type strains [27]. The PC2 16S rRNA
gene sequence has 100 % sequence identity with that of
another Indian Thar Desert rhizobial strain, Ensifer sp.
TW10, isolated from a nodule of the perennial legume
Tephrosia wallichii [22]. Minimum Information about
the Genome Sequence for PC2 is provided in Table 1
and Additional file 1: Table S1.

Symbiotaxonomy
Ensifer sp. strain PC2 is able to nodulate and fix nitrogen
with both mimosoid and papilionoid legume hosts. It is in-
teresting to note that sp. PC2 is able to nodulate and fix ni-
trogen with Acacia saligna (Labill.) Wendl., a promiscuous
legume tree that mainly nodulates with species of in its na-
tive southwestern Australia range [28]. PC2 also effectively
nodulates the Central American mimosoid tree Leucaena
leucocephala (Lam.) de Wit. PC2 appears to be a relatively
promiscuous strain that has potential to be used as an in-
oculant for crop legumes species such as Vigna radiata (L.)
Wilczek and V. unguiculata (L.) Walp.. The symbiotic char-
acteristics of sp. strain PC2 on a range of selected hosts are
summarised in Additional file 2: Table S2.

Genome sequencing information
Genome project history
This organism was selected for sequencing on the basis
of its environmental and agricultural relevance to issues
in global carbon cycling, alternative energy production,
and biogeochemical importance, and is part of the
Genomic Encyclopedia of Bacteria and Archaea, The
Root Nodulating Bacteria chapter project at the U.S. De-
partment of Energy, Joint Genome Institute. The gen-
ome project is deposited in the Genomes OnLine
Database [29] and a high-quality permanent draft gen-
ome sequence is deposited in IMG [30]. Sequencing, fin-
ishing and annotation were performed by the JGI [31]. A
summary of the project information is shown in Table 2.

Growth conditions and genomic DNA preparation
Ensifer sp. PC2 was streaked onto TY solid medium [25, 32]
and grown at 28 °C for three days to obtain well grown,
well separated colonies, then a single colony was se-
lected and used to inoculate 5 ml TY broth medium.
The culture was grown for 48 h on a gyratory shaker
(200 rpm) at 28 °C. Subsequently 1 ml was used to in-
oculate 60 ml TY broth medium and grown on a

Fig. 2 Phylogenetic tree showing the relationship of Ensifer sp. PC2 (shown in bold blue print) to Ensifer spp. and other root nodule bacteria
species in the order Rhizobiales, based on aligned sequences of the 16S rRNA gene (1,283 bp internal region). (The species name “Sinorhizobium
chiapanecum” has not been validly published.) Azorhizobium caulinodans ORS 571T was used as an outgroup. All sites were informative and there
were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 6 [44]. The tree was built using the Maximum-
Likelihood method with the General Time Reversible model [45]. Bootstrap analysis [46] with 500 replicates was performed to assess the support
of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD [29] are in bold font
and the GOLD ID is provided after the GenBank accession number, where this is available. Finished genomes are indicated with an asterisk.
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gyratory shaker (200 rpm) at 28 °C until OD600nm 0.6 was
reached. DNA was isolated from 60 ml of cells using a
CTAB bacterial genomic DNA isolation method [http://
jgi.doe.gov/collaborate-with-jgi/pmo-overview/protocols-
sample-preparation-information/]. Final concentration of
the DNA was 0.5 mg ml−1.

Genome sequencing and assembly
The draft genome of sp. PC2 was generated at the JGI
using the Pacific Biosciences (PacBio) technology. A Pac-
Bio SMRTbell™ library was constructed and sequenced
on the PacBio RS platform, which generated 403,200 fil-
tered subreads totaling 1.1 Gbp. All general aspects of li-
brary construction and sequencing performed at the JGI
can be found on the JGI website [http://jgi.doe.gov/].

The raw reads were assembled using HGAP (version:
2.0.12.0.1) [33]. The final draft assembly contained 171
contigs in 171 scaffolds, totalling 8.5 Mbp in size. The
input read coverage was 181.5x.

Genome annotation
Genes were identified using Prodigal [34] as part of the
DOE-JGI genome annotation pipeline [35, 36]. The pre-
dicted CDSs were translated and used to search the Na-
tional Center for Biotechnology Information nonredundant
database, UniProt, TIGRFam, Pfam, KEGG, COG, and
InterPro databases. The tRNAScanSE tool [37] was used to
find tRNA genes, whereas ribosomal RNA genes were
found by searches against models of the ribosomal RNA
genes built from SILVA [38]. Other non–coding RNAs such
as the RNA components of the protein secretion complex

Table 1 Classification and general features of Ensifer sp. PC2 in accordance with the MIGS recommendations [47] published by the
Genome Standards Consortium [48]

MIGS ID Property Term Evidence codea

Current classification Domain Bacteria TAS [49]

Phylum Proteobacteria TAS [50, 51]

Class Alphaproteobacteria TAS [52, 53]

Order Rhizobiales TAS [54]

Family Rhizobiaceae TAS [55]

Genus Ensifer TAS [56–58]

Species Ensifer sp. IDA

Strain: PC2 TAS [21]

Gram stain Negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating NAS

Temperature range 10-40 °C IDA

Optimum temperature 28 °C IDA

pH range; Optimum 5-9.5; 6.5-8 IDA

Carbon source Mannitol, tryptone, yeast extract TAS [21]

MIGS-6 Habitat Soil; root nodule on host (Prosopis (L.) Druce) TAS [21]

MIGS-6.3 Salinity 0.89-2.0 % (w/v) NAS

MIGS-22 Oxygen requirement Aerobic TAS [21]

MIGS-15 Biotic relationship Free living, symbiotic TAS [21]

MIGS-14 Pathogenicity Biosafety level 1 TAS [59]

MIGS-4 Geographic location Jodhpur, Indian Thar Desert TAS [21]

MIGS-5 Sample collection October, 2009 TAS [21]

MIGS-4.1 Latitude 26.27061 TAS [21]

MIGS-4.2 Longitude 73.021177 TAS [21]

MIGS-4.3 Depth 0-10 cm NAS

MIGS-4.4 Altitude 234 m TAS [21]
aEvidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author State-
ment (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence
codes are from the Gene Ontology project [60], [http://geneontology.org/page/guide-go-evidence-codes]
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and the RNase P were identified by searching the genome
for the corresponding Rfam profiles using INFERNAL [39].
Additional gene prediction analysis and manual functional
annotation was performed within the Integrated Microbial
Genomes platform [40] developed by the Joint Genome In-
stitute, Walnut Creek, CA, USA [41].

Genome properties
The genome is 8,458,965 nucleotides with 61.32 % GC
content (Table 3) and comprised of 171 scaffolds of 171
contigs. From a total of 8,483 genes, 8,344 were protein
encoding and 139 RNA only encoding genes. The majority
of protein-coding genes (76.34 %) were assigned a putative
function whilst the remaining genes were annotated as

Table 2 Genome sequencing project information for Ensifer sp.
PC2

MIGS
ID

Property Term

MIGS-
31

Finishing quality High-quality draft

MIGS-
28

Libraries used Pacbio SMRTbellTM library

MIGS-
29

Sequencing
platforms

Pacific Biosciences RS

MIGS-
31.2

Fold coverage 181.5x

MIGS-
30

Assemblers HGAP (version: 2.0.12.0.1)

MIGS-
32

Gene calling
methods

Prodigal 1.4

Locus Tag B077 [http://www.ncbi.nlm.nih.gov/
bioproject/?term=B077]

GenBank ID LATE00000000

GenBank Date of
Release

Apr 20 2015

GOLD ID Gp0009756 [https://gold.jgi-psf.org/
project?id=9756]

BIOPROJECT ID PRNJA169749

MIGS-
13

Source Material
Identifier

PC2, WSM4384

Project relevance Symbiotic N2 fixation, agriculture

Table 3 Genome statistics for Ensifer sp. PC2

Attribute Value % of Total

Genome size (bp) 8,458,965 100.00

DNA coding (bp) 7,124,539 84.22

DNA G + C (bp) 5,187,131 61.32

DNA scaffolds 171 100.00

Total genes 8483 100.00

Protein coding genes 8344 98.36

RNA genes 139 1.64

Pseudo genes 0 -

Genes in internal clusters 513 6.05

Genes with function prediction 6290 74.15

Genes assigned to COGs 5205 61.36

Genes assigned Pfam domains 6533 77.01

Genes with signal peptides 645 7.60

Genes with transmembrane helices 1733 20.43

CRISPR repeats 1 -

Table 4 Number of genes of sp. PC2 associated with general
COG functional categories

Code Value %age of total
(5,205)

Description

J 236 4.01 Translation, ribosomal structure and
biogenesis

A 0 0.00 RNA processing and modification

K 514 8.74 Transcription

L 172 2.92 Replication, recombination and repair

B 2 0.03 Chromatin structure and dynamics

D 47 0.80 Cell cycle control, cell division,
chromosome partitioning

Y 0 0.00 Nuclear structure

V 115 1.95 Defense mechanisms

T 271 4.61 Signal transduction mechanisms

M 331 5.63 Cell wall/membrane/envelope biogenesis

N 101 1.72 Cell motility

Z 0 0.00 Cytoskeleton

W 44 0.75 Extracellular structures

U 132 2.24 Intracellular trafficking, secretion, and
vesicular transport

O 213 3.62 Posttranslational modification, protein
turnover, chaperones

C 351 5.97 Energy production and conversion

G 548 9.31 Carbohydrate transport and metabolism

E 598 10.16 Amino acid transport and metabolism

F 116 1.97 Nucleotide transport and metabolism

H 277 4.71 Coenzyme transport and metabolism

I 227 3.86 Lipid transport and metabolism

P 309 5.25 Inorganic ion transport and metabolism

Q 171 2.91 Secondary metabolite biosynthesis,
transport and catabolism

R 593 10.08 General function prediction only

S 395 6.71 Function unknown

X 120 2.04 Mobilome: prophages, transposons

- 3,278 38.64 Not in COGS
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hypothetical. The distribution of genes into COGs func-
tional categories is presented in Table 4.

Insights from the genome sequence
With a genome totaling 8.5 Mbp in size, Ensifer sp.
PC2 is approximately 25 % larger than the average
Ensifer genome in GenBank. Although PC2 shares
100 % 16S rRNA sequence identity and 99.17 Average
Nucleotide Identity with Ensifer sp. TW10, also iso-
lated from a Thar Desert woody legume, the genome
of TW10 has a smaller size of 6.8 Mbp. PC2 contains
over 1,000 genes that are not found in TW10, includ-
ing two plasmid replication initiator proteins and a
suite of genes (vir/trb) involved in conjugative trans-
fer. From this it is assumed that the PC2 genome is
multipartite and contains at least one conjugative
plasmid. In PC2, 38.64 % of genes have not been
assigned to a COG functional category, whereas in
TW10, only 31.55 % have not been assigned to a COG
functional category. Compared with TW10, PC2 has a
much higher number of genes assigned to the mobilome
category (54 and 120 genes, respectively) and to extracel-
lular structures (29 and 44 genes, respectively).

Conclusion
Based on the 16S rRNA gene alignment, Ensifer sp.
PC2 is most closely related to Ensifer sp. TW10 and
Ensifer sp. WSM1721, two strains isolated from per-
ennial legumes growing in arid climates and alkaline
soils in India and Australia, respectively [21, 42].
Ensifer fredii strains isolated from Chinese soybean
were also superdominant in sampling sites with
alkaline-saline soils [43], which suggests that the bio-
geographic distribution of several Ensifer spp. is
linked to their adaptation to alkaline soils. Further,
this suggests that the symbiotic associations formed
by promiscuous legumes, such as Prosopis, are likely
to vary depending on which rhizobial genera are best
adapted to the edaphic conditions in which the host
is growing.
The ability of PC2 to fix nitrogen with both P. cin-

eraria (L.) Druce and the crop legumes Vigna radiata
(L.) R.Wilczek and V. unguiculata (L.) Walp. makes it
a valuable inoculant strain for use in arid, alkaline re-
gions such as the Thar desert. Analysis of the PC2 se-
quenced genome and comparison with the genomes
of sequenced Ensifer spp. and other rhizobia will pro-
vide insights into the molecular basis of the patterns
seen in rhizobial biogeographic distributions and asso-
ciations with plant hosts and into the molecular de-
terminants of rhizobial tolerance to arid and alkaline
environments.

Additional files

Additional file 1: Table S1. Associated MIGS record for PC2
(DOCX 19 kb)

Additional file 2: Table S2. Nodulation and N2 fixation properties of
Ensifer sp. PC2 on selected legume hosts. (DOCX 17 kb)

Abbreviations
ANI: Average nucleotide identity; GEBA-RNB: Genomic encyclopedia for
bacteria and archaea-root nodule bacteria; IMG: Integrated microbial
genomes.

Acknowledgements
This work was performed under the auspices of the US Department of
Energy’s Office of Science, Biological and Environmental Research Program,
and by the University of California, Lawrence Berkeley National Laboratory
under contract No. DE-AC02-05CH11231. We thank Gordon Thomson
(Murdoch University) for the preparation of SEM and TEM photos. We
would also like to thank the Center of Nanotechnology at King Abdulaziz
University for their support and acknowledge King Abdulaziz University
Vice President for Educational Affairs Prof. Abdulrahman O. Alyoubi for his
support. We sincerely acknowledge funding received from University Grant
Commission, New Delhi, India for UGC-SAPII-CAS-I, UGC-BSR Research Start-
Up- Grant (F.30-16/2014-BSR); Department of Biotechnology, Govt. of India
(BT/PR11461/ AGR/21/270/2008). We also thank the Crawford Fund Award-
ATSE, Australia for funding HG and NT to conduct research at the CRS.

Authors’ contribution
HG supplied the strain, DNA and background information for this project, TR
supplied DNA to JGI and performed all imaging, JA and NT drafted the
paper, MNB and AMA-H provided financial support and all other authors
were involved in sequencing the genome and/or editing the final paper. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University,
Jodhpur 342001, India. 2Centre for Studies, Murdoch University, Murdoch,
Western Australia, Australia. 3DOE Joint Genome Institute, Walnut Creek,
California, USA. 4Biological Data Management and Technology Center,
Lawrence Berkeley National Laboratory, Berkeley, California, USA.
5Department of Biological Sciences, Faculty of Science, King Abdulaziz
University, Jeddah, Saudi Arabia.

Received: 4 September 2015 Accepted: 18 May 2016

References
1. Lewis G, Schrire B, Mackinder B, Lock M. Legumes of the World. Richmond,

Surrey: Royal Botanic Gardens, Kew; 2005.
2. Burkart A. A monograph of the genus Prosopis (Leguminosae Subfam,

Mimosoideae). J Arnold Arbor. 1976;57:219–49. 450–525.
3. Felker P. Unusual physiological properties of the arid adapted tree legume

Prosopis and their applications in developing countries. In: De la Barrera E,
Smith WK, editors. Perspectives in Biophysical Plant Ecophysiology: A Tribute
to Park S Nobel. Mexico City: Universidad Nacional Autónoma de México;
2009. p. 221–55.

4. Sprent JI. Nodulation in Legumes. Richmond, Surrey: Royal Botanic
Gardens, Kew; 2001.

5. Pasiecznik NM, Harris PJC, Smith SJ: Identifying tropical Prosopis species: a
field guide. Coventry: Henry Doubleday Research Association; 2003

6. Catalano SA, Vilardi JC, Tosto D, Saidman BO. Molecular phylogeny and
diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linnean
Soc. 2008;93:621–40.

7. Lavin M, Herendeen PS, Wojciechowski MF. Evolutionary rates analysis of
Leguminosae implicates a rapid diversification of lineages during the
Tertiary. Syst Biol. 2005;54:575–94.

8. Bhandari MM. Flora of the Indian Desert. Jodhpur: MPS Repros; 1990.

Gehlot et al. Standards in Genomic Sciences  (2016) 11:43 Page 6 of 8

http://doi.org/10.1601/nm.1328
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DWSM1721
http://doi.org/10.1601/nm.1331
http://doi.org/10.1601/nm.1328
http://plants.usda.gov/core/profile?symbol=PROSO
http://www.theplantlist.org/tpl1.1/record/ild-29556
http://doi.org/10.1601/nm.1328
dx.doi.org/10.1186/s40793-016-0157-7
dx.doi.org/10.1186/s40793-016-0157-7


9. Rani B, Singh U, Sharma R, Gupta A, Dhawan NG, Sharama AK, Sharma S,
Maheshwari RK. Prosopis cineraria (L.) Druce: A desert tree to brace
livelihood in Rajasthan. Asian J Pharmaceut Res Health Care. 2013;5:58–64.

10. Basak MK, Goyal SK. Studies on tree legumes: nodulation pattern and
characterization of the symbiont. Ann Arid Zone. 1975;14:367–70.

11. Felker P: Mesquite: an all-purpose leguminous arid land tree. In New
Agricultural Crops. Edited by Ritchie GA. Golden, Colorado: American
Association for the Advancement of Science, Westview Press; 1979: 89–132

12. Hocking D. Trees for Drylands. Madison, Wisconsin: International Science
Publisher; 1993.

13. Tewari JC, Pasiecznik NM, Harsh LN, Harris PJC: Prosopis species in the arid and
semi-arid zones of India. In Proceedings of the Prosopis Conference; Central Arid
Zone Research Institute, Jodhpur, Rajasthan, India. The Prosopis Society of India
and the Henry Doubleday Research Association; 1993: 128 pp.

14. Thomas PM, Golly KF, Zyskind JW, Virginia RA. Variation of clonal, mesquite-
associated rhizobial and bradyrhizobial populations from surface and deep
soils by symbiotic gene region restriction fragment length polymorphism
and plasmid profile analysis. Appl Environ Microb. 1994;60:1146–53.

15. Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A,
Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E. Mesorhizobium
chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco
Arido region (Argentina). Int J Syst Evol Microbiol. 2001;51:1011–21.

16. Iglesias O, Rivas R, García-Fraile P, Abril A, Mateos PF, Martinez-Molina E,
Velázquez E. Genetic characterization of fast-growing rhizobia able to
nodulate Prosopis alba in North Spain. FEMS Microbiol Lett. 2007;277:210–6.

17. Räsänen L, Sprent J, Lindström K. Symbiotic properties of sinorhizobia isolated from
Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil. 2001;235:193–210.

18. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M,
Lindström K. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov.,
isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol. 1999;49:
1359–68.

19. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U,
Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M. Characterization of
tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov.
Int J Syst Bacteriol. 1998;48:369–82.

20. Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW.
Genetic and symbiotic characterization of rhizobia isolated from tree and
herbaceous legumes grown in soils from ecologically diverse sites in Kenya.
Soil Biol Biochem. 2002;34:801–11.

21. Gehlot HS, Panwar D, Tak N, Tak A, Sankhla IS, Poonar N, Parihar R,
Shekhawat NS, Kumar M, Tiwari R, Ardley J, James EK, Sprent JI. Nodulation
of legumes from the Thar desert of India and molecular characterization of
their rhizobia. Plant Soil. 2012;357:227–43.

22. Tak N, Gehlot HS, Kaushik M, Choudhary S, Tiwari R, Tian R, Hill YJ, Bräu L,
Goodwin L, Han J, Liolios K, Huntemann M, Palaniappan K, Pati A, Mavromatis
K, Ivanova NN, Markowitz VM, Woyke T, Kyrpides NC, Reeve WG. Genome
sequence of Ensifer sp. TW10; a Tephrosia wallichii (Biyani) microsymbiont
native to the Indian Thar Desert. Stand Genomic Sci. 2013;9:304–14.

23. Reeve WG, Ardley JK, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R,
Ivanova NN, Kyrpides NC. A genomic encyclopedia of the root nodule bacteria:
Assessing genetic diversity through a systematic biogeographic survey. Stand
Genomic Sci. 2014;10:14.

24. Howieson JG, Ewing MA, D'antuono MF. Selection for acid tolerance in
Rhizobium meliloti. Plant Soil. 1988;105:179–88.

25. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol.
1974;84:188–98.

26. Vincent JM. A manual for the practical study of the root-nodule bacteria.
International Biological Programme. Oxford, UK: Blackwell Scientific
Publications; 1970.

27. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H,
Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene
sequence database with phylotypes that represent uncultured species. Int J
Syst Evol Microbiol. 2012;62:716–21.

28. Marsudi NDS, Glenn AR, Dilworth MJ. Identification and
characterization of fast- and slow-growing root nodule bacteria from
South-Western Australian soils able to nodulate Acacia saligna. Soil
Biol Biochem. 1999;31:1229–38.

29. Reddy TBK, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J,
Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. The Genomes OnLine Database
(GOLD) v.5: a metadata management system based on a four level
(meta)genome project classification. Nucleic Acids Res. 2014;43:D1099–106.

30. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A,
Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N,
Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. IMG 4 version of the
integrated microbial genomes comparative analysis system. Nucleic Acids
Res. 2014;42:D560–7.

31. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, Goodwin
L, Woyke T, Lapidus A, Klenk HP, Cottingham RW, Kyrpides NC. The fast
changing landscape of sequencing technologies and their impact on
microbial genome assemblies and annotation. PLOS One. 2012;7:e48837.

32. Reeve WG, Tiwari RP, Worsley PS, Dilworth MJ, Glenn AR, Howieson JG.
Constructs for insertional mutagenesis, transcriptional signal localization and
gene regulation studies in root nodule and other bacteria. Microbiology.
1999;145:1307–16.

33. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing
data. Nat Meth. 2013;10:563–9.

34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010;11:119.

35. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC.
The DOE-JGI Standard operating procedure for the annotations of microbial
genomes. Stand Genomic Sci. 2009;1:63–7.

36. Chen IMA, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC,
Ivanova NN. Improving microbial genome annotations in an integrated
database context. PLoS One. 2013;8:e54859.

37. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer
RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.

38. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner
FO. SILVA: a comprehensive online resource for quality checked and
aligned ribosomal RNA sequence data compatible with ARB. Nucleic
Acids Res. 2007;35:7188–96.

39. INFERNAL. Inference of RNA alignments [http://eddylab.org/infernal/].
Accessed 24 May 2016.

40. The Integrated Microbial Genomes (IMG) platform [http://img.jgi.doe.gov].
Accessed 24 May 2016.

41. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC.
IMG ER: a system for microbial genome annotation expert review and
curation. Bioinformatics. 2009;25:2271–8.

42. Yates RJ, Howieson JG, Nandasena KG, O'Hara GW. Root-nodule
bacteria from indigenous legumes in the north-west of Western
Australia and their interaction with exotic legumes. Soil Biol Biochem.
2004;36:1319–29.

43. Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen
WX. Biodiversity and biogeography of rhizobia associated with soybean plants
grown in the North China Plain. Appl Environ Microb. 2011;77:6331–42.

44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular
Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

45. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford
University Press; 2000.

46. Felsenstein J. Confidence limits on phylogenies: an approach using the
bootstrap. Evolution. 1985;39:783–91.

47. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T,
Thomson N, Allen M, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard
S, Boore JL, Cochrane G, Cole J, Dawyndt P, de Vos P, de Pamphilis C,
Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glöckner FO, Goldstein
P, Guralnick R, Haft D, Hancock D, et al. Towards a richer description of our
complete collection of genomes and metagenomes "Minimum Information
about a Genome Sequence " (MIGS) specification. Nature Biotechnol. 2008;
26:541–7.

48. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM,
Gilbert J, Glöckner FO, Hirschman L, Karsch-Mizrachi I, Klenk H-P, Knight R,
Kottmann R, Kyrpides N, Meyer F, San Gil I, Sansone S-A, Schriml LM, Sterk P,
Tatusova T, Ussery DW, White O, Wooley J. The Genomic Standards
Consortium. PLoS Biology. 2011;9:e1001088.

49. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci
U S A. 1990;87:4576–9.

50. Validation of publication of new names and new combinations previously
effectively published outside the IJSEM. Int J Syst Evol Microbiol 2005, 55:
2235–2238

Gehlot et al. Standards in Genomic Sciences  (2016) 11:43 Page 7 of 8

http://eddylab.org/infernal/
http://img.jgi.doe.gov


51. Garrity GM, Bell JA, Phylum LT, XIV. Proteobacteria phyl. nov. In: Garrity GM,
Brenner DJ, Krieg NR, Staley JT, editors. Bergey's Manual of Systematic
Bacteriology, vol. 2. 2nd ed. Springer, New York: Part B; 2005. p. 1.

52. List of new names and new combinations previously effectively, but not
validly, published. International Journal of Systematic and Evolutionary
Microbiology 2006, 56:1–6.

53. Garrity GM, Bell JA, Lilburn T: Class I. Alphaproteobacteria class. nov. In
Bergey's Manual of Systematic Bacteriology. Second edition. Edited by Garrity
GM, Brenner DJ, Kreig NR, Staley JT: New York: Springer; 2005

54. Kuykendall LD: Order VI. Rhizobiales ord. nov. In Bergey's Manual of
Systematic Bacteriology. Second edition. Edited by Garrity GM, Brenner DJ,
Kreig NR, Staley JT: New York: Springer; 2005: 324

55. Kuykendall LD. Family I. Rhizobizceae. In: Garrity GM, Brenner DJ, Krieg NR,
Staley JT, editors. Bergey's Manual of Systematic Bacteriology. New York:
Springer; 2005.

56. Kuykendall LD, Hashem FM, Wang ET: Genus VII. Ensifer. In Bergey's Manual
of Systematic Bacteriology. Volume 2. Edited by Garrity GM, Brenner DJ, Krieg
NR, Staley JT. New York: Springer; 2005: 358–361

57. Judicial Commission of the International Committee on Systematics of
Prokaryotes. The genus name Sinorhizobium Chen et al. 1988 is a later
synonym of Ensifer Casida 1982 and is not conserved over the latter genus
name, and the species name ‘Sinorhizobium adhaerens’ is not validly
published. Opinion 84. Int J Syst Evol Microbiol. 2008;58:1973.

58. Casida LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of
bacteria in soil. Int J Syst Bacteriol. 1982;32:339–45.

59. Biological Agents: Technical rules for biological agents. [http://www.baua.
de/en/Topics-from-A-to-Z/BiologicalAgents/TRBA/TRBA.html]. Accessed 24
May 2016.

60. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium Nat Genet. 2000;25:25–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Gehlot et al. Standards in Genomic Sciences  (2016) 11:43 Page 8 of 8

http://www.baua.de/en/Topics-from-A-to-Z/BiologicalAgents/TRBA/TRBA.html
http://www.baua.de/en/Topics-from-A-to-Z/BiologicalAgents/TRBA/TRBA.html

	Abstract
	Introduction
	Organism information
	Classification and features
	Symbiotaxonomy


	Genome sequencing information
	Genome project history
	Growth conditions and genomic DNA preparation
	Genome sequencing and assembly
	Genome annotation

	Genome properties
	Insights from the genome sequence
	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Authors’ contribution
	Competing interests
	Author details
	References



