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Dario Cazzato*, Fabio Dominio, Roberto Manduchi, and Silvia M. Castro

Real-time Gaze Estimation Via Pupil Center
Tracking
Abstract: Automatic gaze estimation not based on
commercial and expensive eye tracking hardware so-
lutions canenable several applications in the fields of
human-computer interaction (HCI) and human behav-
ior analysis. It is therefore not surprising that sev-
eral related techniques and methods have been investi-
gated in recent years. However, very few camera-based
systems proposed in the literature are both real-time
and robust. In this work, we propose a real-time user-
calibration-free gaze estimation system that does not
need person-dependent calibration, can deal with illumi-
nation changes and head pose variations, and can work
with a wide range of distances from the camera. Our
solution is based on a 3-D appearance-based method
that processes the images from a built-in laptop camera.
Real-time performance is obtained by combining head
pose information with geometrical eye features to train
a machine learning algorithm. Our method has been
validated on a data set of images of users in a natural
environment, showing promising results. The possibility
of a real time implementation, combined with the good
quality of gaze tracking, make this system suitable for
various HCI applications.
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1 Introduction
It has long been recognized that human interaction en-
compasses multiple channels [1]. Eye gaze plays a special
role, as it can express emotions, desires, feelings and in-
tentions [2]. Gaze tracking is the process of determining

the point-of-gaze in the physical space. Accurate eye
gaze tracking normally requires expensive specialized
hardware (such as the eye-tracking solutions produced
by Tobii [3] or SR Research [4]) that relies on active
sensing (most commonly, infrared illuminators)[5]. This
reduces the appeal of these systems for consumer market
applications [6]. Moreover, these solutions often require
a manual calibration procedure for each new user.

More recently, inexpensive solutions that do not re-
quire active illumination have been proposed [7]. These
systems rely on modern computer vision algorithms.
Some can use the camera embedded in any computer
screen, laptop, and even tablet computer, requiring no
additional hardware.

In this work, we propose a new algorithm that can
estimate eye gaze in real time without constraining the
motion of the user’s head. Our system does not need
person-dependent calibration, can deal with illumina-
tion changes, and works with a wide range of distances
from the camera. It is based on an appearance-based
method that tracks the user’s 3-D head pose from im-
ages taken by a standard built-in camera. From the same
images, the irises are detected, and their center locations
are fed (together with other geometrical measurements)
to a machine learning algorithm that estimates the gaze
point on the screen. Iris detection and gaze point esti-
mation are computed in real time.

Our system has been validated on a data set of im-
ages of users in a natural environment, showing promis-
ing results. In addition, we present qualitative results
with an online user interaction test using our system.
This experiment shows that the system can provide use-
ful real-time information about the user’s focus of at-
tention. Other potential applications for this technology
include data analytics on visual exploration from multi-
ple users watching a video, and the control of assistive
devices.

This paper is organized as follows. Sec. 2 illustrates
the eye gaze estimation problem and related work. Sec. 3
describes the proposed method to achieve gaze. The ex-
perimental setup is explained in Sec. 4.1, while the data
set used to train the sytstem is presented in Sec. 4.2.
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Results are shown and discussed in Sec. 4.3. Sec. 5 has
the conclusions.

2 Related Work
Following the seminal work of Just and Carpenter [8],
who studied the relation between eye fixation and cog-
nitive tasks, the measurement of eye gaze direction has
been used in a broad range of application areas over
the time, including human-computer interaction (HCI)
[9, 10], visual behavior analysis [11, 12], visual search
[13], soft-biometrics [14, 15], market analysis [16], cogni-
tive process analysis [17], and interaction with children
affected by autism spectrum disorder [18, 19]. Moreover,
eye gaze tracking is fundamental for human-robot inter-
action (HRI)[20, 21], as it provides useful information
about user engagement, turn taking schemes, or inten-
tion monitoring. Gaze has been considered even in en-
vironment with both robot and gaze-interactive display
[22], or for the design of Attentive Robots [23]. For a
review of gaze estimation applications in HRI/HCI, so-
cially assistive robotics (SAR), and assistive technolo-
gies, the reader is referred to [24].

The availability of modern low-cost depth sensors,
combined with advances in computer vision, has lead
to new solutions for gaze estimation that are less inva-
sive and cheaper than prior methods, which were based
on active illuminators. Passive gaze estimation solutions
can be divided into two main categories: model-based
and appearance-based. Model-based methods rely on a 3-
D model of the head and of the eyeball and use geomet-
ric reasoning [25–29]. Their main advantage is that they
can naturally handle head pose movements, provided
that these can be measured reliably. Unfortunately, pre-
cisely locating the eyeball in space is very challenging;
indeed, the most successful algorithms used a 3-D cam-
era for this purpose [30, 31]. In addition, in the process
of building the mathematical model of the eye, these
methods need to know the relative pose of cameras and
screen, as well as the relationship between multiple cam-
eras and the parameters of each camera. Consequently,
a small amount of noise can strongly influence the final
estimation [32]. When compared with appearance-based
methods, their accuracy is generally lower. In addition,
it is unclear whether shape-based approaches can ro-
bustly handle low image quality [33].

In contrast, appearance-based methods detect and
track one’s eye gaze directly from images, without the
need for a full 3-D model of head and eyeball. Instead,

these methods learn a mapping function from eye im-
ages to gaze directions. They can manage lighting con-
ditions changes and, since they normally use the entire
eye image as a high-dimensional input feature and map
this feature to low-dimensional gaze position space, can
potentially work with low-resolution images [34], at the
cost of acquiring a large amount of user-specific training
data. User-dependent calibration is often necessary. A
main problem with these methods is that they are not
robust to head pose movements [35, 36], unless this is
explicitly taken into account. For example, the method
of Schneider et al. [37] achieves person-independent and
calibration-free gaze estimation, at the cost of assum-
ing fixed head pose. The approach of Ferhat et al.[38]
is based on an iris segmentation algorithm in order to
track anchor points; histogram features are then used
in a Gaussian process estimator. This system requires a
person-dependent calibration and cannot deal with free
head movements.

In this paper we only compare our work with other
projects that integrate 3-D head pose information and
that achieve real-time estimations of gaze tracks. Tab. 1
presents a summary of the most relevant related meth-
ods. For each entry, we provide a description of the
category (model-based or appearance-based), the input
type, computational details, lighting conditions (when
available), details about user-dependent calibration, er-
ror (as reported), and discussion of application in a real
HCI/HRI scenario. Note that we only report light con-
ditions in the case of online testing. For tests on existing
data sets, we refer the reader to the description given
in the data set documentation. We want to emphasize
that this table is meant solely to provide some context
through a snapshot of competing approaches. Quanti-
tative comparative evaluation is complicated by the dif-
ferent experimental setups and data sets considered for
benchmarking.

3 Gaze Estimation Method
Our system analyzes video frames from a regular camera
to detect the pose of the user’s head and the location (in
the image) of facial features using an open source soft-
ware (IntraFace [48]). Subsequently, the center of each
iris is found using a customized version of the Circular
Hough Transform (CHT) [49]. A random forest regres-
sor, trained on a labeled data set, is then used to map
pose and pupil center information into a gaze point on
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Table 1. Summary of relevant state of the art methods: m-b stands for model-based, while a-b stands for appearance-based, n.a. for
not available data.

Method Category Input type Computational Details Lighting Conditions User dependent calibration Error HRI/HCI scenario

Koutras and Maragos [39] a-b camera n.a. n.a. yes under 7○ offline video processing
Yoshimura et al. [40] a-b camera n.a. n.a. no 95.3% (monitor is divided in 12 areas) digital signage

Guo et al. [32] a-b camera n.a. natural light and fluorescent lamp yes 5 − 8○ -
Lu et al. [41] a-b camera potentially real-time good illumination conditions yes 2.49○ -

Sugano et al. [42] a-b multiple cameras n.a. n.a. no 6.5○ -
Xiong et al.[43] a-b stereo camera n.a. natural light source yes 6.43○ -

Funes-Mora and Odobez [44] a-b depth sensor 10 fps (only for gaze, not the whole solution) n.a. no 5.7 − 7○ natural dyadic interaction
Lu et al. [45] a-b camera potentially real-time n.a. yes 3○ -

Wood et al. [27] m-b camera 12 fps n.a. no 6.88○ gaze estimation on tablet
Holland et al. [46] a-b camera 0.65 fps n.a. yes 6.88○ gaze estimation on tablet
Cazzato et al. [29] m-b depth sensor 8.66 fps uniform, left or right no 2.48○ soft-biometric identification
Sun et al. [28] m-b depth sensor 12 fps n.a. yes 1.38 − 2.71○ chess game, eye keyboard
Chen and Ji [47] m-b camera + 2 IR LEDs 20 fps robust no 1.78○ (after 80 frames) -
Zhang et al. [33] a-b camera n.a. n.a. no 6.3○ (cross-data set) -

Fig. 1. A block diagram of the proposed solution.

the screen in real time. A block diagram of the proposed
solution is shown in Fig. 1.

3.1 Head Pose Estimation

The head presence in the scene is detected by using the
Viola-Jones face detector [50]. We use the IntraFace [48]
software to detect face features from the image in real
time. The software also produces the head orientation
(in terms of yaw, pitch and roll angles) with respect to
a reference system centered in the camera. Head orien-
tation is computed by aligning a deformable face model
to the detected face. The model is characterized by the
2-D positions of a number of landmarks, describing the
face, eyes position (not pupils), mouth and nose out-
lines. Feature detection and tracking is based on the
Supervised Descent Method (SDM), an algorithm that
optimizes a non-linear least square problem. For more
details, see [51].

The next step in our algorithm is the estimation of
the vector T from the origin of the camera reference
frame to a reference frame centered at the user’s face.
More precisely, the head pose reference system has its
origin centered at the nose base and x-, y-axes paral-
lel to the mouth and nose, respectively (Fig. 3). The
rotation matrix R between the head pose and the cam-

era reference system is produced by IntraFace. In order
to compute T , we assume a fixed distance D = 90 mm
between the external corners of the eye contours and
a fixed distance H = 70 mm from a point at the bot-
tom of the nose (nose base) and the segment joining the
two pupils (see Fig. 2). Note that these feature points
are computed by IntraFace. These values of distances
between the selected features are justified by analysis
of several studies. For example, the study of [52] deter-
mined that the interpupillary distance for the majority
of humans lies in the range 50-75mm. More precisely,
the average interpupillary distance for men is of 64.0
mm with a standard deviation of 3.6 mm and 61.7 mm
with a standard deviation of 3.4 for women (2012 An-
thropometric Survey of US Army Personnel [53]). Con-
sidering that the average palpebral fissure width is of
approximately 30 mm, the distance between the exter-
nal eye contours can be expected to be of approximately
of 94 mm for men and 91 mm for women. The chosen
value of 90 mm is close to these average values. As for
H, since no related data in the literature was found, this
quantity has been chosen empirically.
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The 3-D coordinates of the left and right eye cor-
ners, expressed in the camera reference system, are:

OC
l = [xC

l , y
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l , z
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l ]
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In the head pose reference system, these vec-
tor are expressed as OH

l = [D/2,H, 0]T and OH
r =
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We the express rotation matrix R by its row com-

ponents, i.e.:
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be the projections on the camera’s focal plane of
the left and right eye corners, where K is the intrinsic
camera matrix, and u, v are the image coordinates of
the left (subscript l) and right (subscript r) pupil center
locations.

Putting these equations together, Eq. 3 can be
rewritten as:
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Thus, it is possible to compute the translation vec-
tor T as:
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This directly provides the component zC

l as:
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fxr1(OH
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+ r3(O
H
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H
r )

(6)
from which the vector T is easily computed.

Fig. 2. A scheme of the employed face measurements. Point O

lies on the nose base.

Fig. 3. Head pose coordinate system axes position and orienta-
tion.
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3.2 Iris Detection

IntraFace produces a number of key points in the peri-
ocular region. Within these regions, we extract the iris
areas, whose centers are then used for gaze estimation.
We start from the bounding boxes of the two periocu-
lar regions, as provided by IntraFace, augmented by 10
pixels in each dimension to compensate for alignment
errors. The greyscale image is low-pass filtered to re-
duce noise; then, it is high-pass filtered and histogram
equalized.

A Canny edge detector [54] is used to extract the
irises edges. The parameters of the Canny edge detector
need to be chosen carefully, to avoid the risk of return-
ing a large number of false positives (the small blood
vessels in the sclera) or, conversely, to miss part of or
the entire iris contour. In our experiments, we used a
Gaussian kernel of 15 × 15 pixels with σ = 2. Note that,
due to the histogram equalization, the distribution of
intensity values within each eye region covers the full
available range, and thus adaptive thresholds are not re-
quired. The current implementation sets the minimum
and maximum thresholds of the Canny edge detector
to 60 and 128 respectively, which roughly correspond to
1/4 and 1/2 of the full range [0, 255].

The iris regions appear circular in the image when
the user is imaged front-to-parallel, ellipsoidal other-
wise. We use the Hough transform to extract circles
at multiple radii from the edge image [49]. Specifically,
given an M ×N pixel area, for each radius Riris of the
circle under consideration, a counter is defined at each
pixel. An edge pixel at p = (px, py) triggers an increment
by 1 of all counters at pixels {p + r}, where r spans the
circumference of radius Riris centered at the origin. The
counter with highest value over all radii determines the
estimated iris circle. In our implementation, rA = 5 and
rB = 7 mm, while Riris = 10. We also experimented with
a version of the Hough transform that extracts ellipses;
however, due to the larger number of parameters, this
version was too slow for real time implementation, with-
out appreciable benefits.

This iris detection algorithm can be improved by
observing that the iris is typically darker than the sur-
rounding sclera. This means that, at the iris’ edge, the
image gradient is expected to point outwards. We ex-
ploit this observation by only incrementing a counter at
p+r when it is compatible with the image gradient, that
is, when the vector r forms an obtuse angle with the
image gradient at p. This strategy has proven effective,
but computing this angle introduces a substantial com-
putational cost. This can be alleviated by quantizing the

vector r into angular multiples of 45○, and maintaining,
for each quantized angular value, a look-up table that
determines which gradient angles are compatible with r.
We also experimented with assigning different incremen-
tal values to the counters depending on the magnitude
of the gradient at the edges, but this didn’t result in an
appreciable improvement.

We implemented one more variation to the original
Hough algorithm, one that still exploits the property
that the iris is typically darker than the surrounding
sclera. This approach selects a Hough peak by taking
into account not only the value of a counter, but also the
average brightness within the candidate circle. Specifi-
cally, we keep 10% of the candidate circles with highest
value of the associated counter; among these, we select
the one with the lowest average brightness value within
its boundary. Figs. 4 and 5 show some examples of iris
detection with our algorithm.

Our iris detection algorithm is applied to both the
left or right eye image region. Let (u, v) represent the
pixel coordinate of the iris center (the pupil) for one of
the two eyes. Our next step is to transform this location
into a 3-D point expressed in the head reference system.
Denoting the iris center position in camera coordinates
by pC and in head pose coordinates by pH , the following
relationship holds:

pC
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where K is the intrinsic calibration matrix and α is
an unknown scale factor. Then,
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C
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C
−RH

C T
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where the notation Ry
x = (Rx

y)
T indicates the rota-

tion matrix from the coordinate system x to the coor-
dinate system y, and Tx is a translation vector in the
coordinate system x. pH lies in the straight line s.t.:
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This line intersects the plane zH
= 0 at (using Eqs. 7

and 8):
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(10)
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Fig. 4. The proposed feature extraction algorithm for an incoming frame. Green points represent IntraFace facial tracking output,
while red circles on the eyes represent iris detection output.

Fig. 5. Sample results from our pupil center detection algorithm.
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This implies, decomposing RH
C in three vectors r1,

r2 and r3:

αr3 (K−1
[u v 1]

T
) − r3T

C
= 0⇒

⇒ α =
r3T

C

r3 (K−1 [u v 1]
T
)

(11)

Substituting in Eq. 9, one obtains the pupil center
location pH in the head pose coordinate system.

3.3 Gaze Estimation by Random
Regression Forests

The algorithm described above results in the location
(in the image plane or in the head coordinate system)
of the two iris centers. The next step is to map this
information (together with the head pose) into a gaze
point on the screen. We design a separable regressor to
compute the (x, y) screen coordinates of the gaze point
(one independent regressor per coordinate). We use a
random forest regressor [55], based on a combination of
decision tree predictors [56] such that each tree depends
on the values of a random vector sampled independently
and with the same distribution for all trees in the for-
est [57]. When used as a regressor, the random forests
algorithm works as follows:
1. Take ntree bootstrap sample from the data by ran-

dom sampling with replacement from the original
training data, where ntree represents the number of
trees in the forest.

2. Grow, for each sample, an unpruned regression tree
where at each node, m variables at random out of
all M possible variables are selected independently
at each node, and the best split is chosen on the
selected m variables.

3. Predict new data by aggregating the predictions
(average value) of the ntree trees.

An estimation of the error can be obtained at each boot-
strap iteration by using the tree grown with the boot-
strap sample to predict the data that does not lie in the
bootstrap sample (i.e. the out-of-bag predictions, see [58]
for more details).

The random forest is trained on labeled data as ex-
plained in the next section.

4 Experiments
In this section we discuss our experiments. In partic-
ular, the experimental setup is discussed in Sec. 4.1,
while Sec. 4.2 introduces two different data sets for our
experiments. Results of the experiments are shown in
Sec. 4.3.

4.1 Experimental Setup

For our experiments, we used a laptop (a MacBook 15”
with retina display, 2.6 GHz Intel Core i7 processor,
and 16 GB 1600 MHz DDR3 of memory) with built-in
camera. The laptop was placed on a desk during the
experiments. Images were acquired at a resolution of
1280 × 780 at 30 fps, while the screen resolution for the
test was set to 2880× 1800. The system has been tested
on a Windows 7 machine with 8 GB of RAM on a virtual
machine run by Parallels Desktop v10.

The software was implemented in a single threaded
C++ application using OpenCV [59] and Qt libraries
[60] for the user interface. Facial features are detected
and tracked by the IntraFace library [48], that also re-
turns the head rotation in real-time. The random forest
regressor used the OpenCV implementation with the
following parameters: maximum tree depth = 25; max-
imum number of tree in a forest = 200; size of the ran-
domly selected subset of features at each node used to
find the best split = 4; minimum number of samples
required at a leaf node for it to be split = 5.

4.2 Data Sets

We have used two different data sets in our experiments.
The first set (Data Set 1) comprises six short videos
from two different users. Users were asked to look at
a circle moving in the screen in order to capture and
evaluate different eye positions. These videos were 20
seconds long, and all frames have been manually labeled.
The users’ faces were illuminated by a desktop lamp
positioned behind the camera. This data set was used
to assess the error in the estimation of the irises’ position
in the image, as described in Sec. 4.3.1.

The second set (Data Set 2), which was used to
evaluate the mapping between pupil center and gaze
point, is composed by 1130 images taken from 10 dif-
ferent participants. 70% of the images in this data set
were acquired with a light source coming from a desk
lamp positioned behind the screen, while the remaining
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images were acquired with artificial room illumination,
thus reproducing common user interaction scenarios in
an indoor environment. Participants were asked to look
at a colored marker (a red circle with radius of 90 pixel,
corresponding to a field of view of 0.8○) appearing at
random locations on a black screen. When a circle is
displayed, participants were tasked with looking at it
and pressing a key on the keyboard. Then the circle
was reduced in diameter by two thirds, at which point
participants pressed a second key. The system acquired
and stored, along with the position of the circle center
in the screen, the left and right irises’ position in the
camera and in the head pose reference systems.

Each participant was tested with both illumination
conditions. Participants took turns in the data collec-
tion, with each participant testing with 10 circle loca-
tions before another participant took over. Note that the
rotation matrix RH

C and translation vector relating the
screen and the camera reference systems are also stored
in the file (the origin of the screen reference system is
placed at the top left corner of the screen).

4.3 Experimental Results

With the aim to provide a complete analysis of the solu-
tion, our system evaluation was divided in two different
steps. In the first test, we assessed the iris detection
system (Sec. 4.3.1). In the second one, we evaluated the
performance of the the gaze estimation algorithm by
means of leave-one-out cross-validation (Sec. 4.3.2). A
qualitative evaluation of the system in an HCI scenario
is described in Sec. 4.3.3. Several possible sets of feature
vectors have been analyzed and their performance has
been compared.

4.3.1 Iris Detection

Data Set 1 (see Sec. 4.2) was used for this test. At each
frame, we measured the distance E (in pixels) between
the location of the center of the detected circle and the
manually labeled pupil center for both the left and right
eye. Fig. 6 shows the histograms of E over all frames and
users for the left and right eye. Note that computing
the center of both irises (as explained in Sec. 3.2) takes
about 5.4 msec in our implementation.

It should be noted that the precision of iris center
estimation is affected by the quality of the acquired im-
ages, the limited image size of the periocular regions,
and the illumination changing conditions (including the

shadows on the head surface that are generated by head
movement).

With respect to other algorithms in the literature
that may achieve higher gaze localization accuracy, our
system has the advantage that it can be implemented at
a high fame rate, and thus represents an attractive so-
lution for those solutions in which speed is more critical
than high precision.

4.3.2 Gaze Point Detection

We used Data Set 2 to assess the quality of the map-
ping from iris center measurement to gaze point using
regression random forests. We used two cross-validation
modalities. In the first modality, each vector in the data
set was selected in turn as a test vector, and the sys-
tem was trained on all remaining vectors. Error statis-
tics are shown by means of histograms in Fig. 7. The
feature vector given in input to the regressor includes
the 3-D head pose (rotation and translation) as well as
the irises’ locations. We considered different representa-
tions for these quantities, specifically: Euler angles vs.
quaternions for the head rotation, and camera vs. head
reference system for the irises’ location. In addition, we
experimented both with single (left) pupil center and
with both centers. Note that the feature length varied
between 8 and 11, depending on the representation cho-
sen and on whether one or two eyes were considered. The
best results were found when using both pupils and the
quaternion representation of the head rotation. Fig. 8
shows results in terms of gaze point errors in the x and
y coordinate. Note that, in general, detection accuracy
tends to be higher for the x-axis.

In the second cross-validation modality, we selected
the data from each participant in turn as test data
set, and trained the system with data from the other
participants. For these tests, we used the configuration
with the head rotation expressed using quaternions, and
pupils centers position expressed in terms of the head
pose reference system. Tab. 2 shows the results for each
participant.

Tab. 3 compares the average mean square error us-
ing our system (evaluated with the first cross-validation
modality) against similar results for other real-time sys-
tems reported in the literature. Results are expressed in
units of angular error for consistency.

Our experiments have highlighted a noticeable dif-
ference in accuracy between the x component (mean er-
ror = 2.29○) and the y component (mean error = 5.33○).
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(a) Left eye errors (b) Right eye errors

Fig. 6. Iris detection performance histograms.

(a) Image Plane and Euler angles; MSE = 4.55○. (b) Image Plane and Quaternions; MSE = 4.40○.

(c) Head Pose Plane and Euler angles; MSE = 4.04○ (d) Head Pose Plane and Quaternions; MSE = 3.81○.

Fig. 7. Data Set #2 validation results for different short feature vector combinations with 2 eyes: errors are expressed in degrees.
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(a) Error on the x-axis (in degrees). (b) Error on the y-axis (in degrees).

Fig. 8. Error analysis by using two eyes and expressing rotations by quaternions.

Table 2. Mean square eye gaze direction error (in degrees) with a truncated Data Set 2 with a person excluded from the training set.

Person # Error (degrees)
1 3.99○

2 4.01○

3 3.65○

4 3.68○

5 3.90○

6 4.02○

7 4.12○

8 3.86○

9 3.75○

10 3.91○

Table 3. Mean square eye gaze direction error (in degrees) compared with other published real-time systems.

Method FPS Reported Test Distance (≈) Additional
Error Requirements

Proposed Method 8.88 3.81 ○ 40-70 cm –
Wood and Bulling [27] 12 6.88○ 20 cm 20 cm distance only
Holland et al. [46] 0.65 3.95○ 50 cm 5 mins of personal user calibr.
Cazzato et al. [29] 8.66 2.48 ○ 70 cm Depth sensor
Sun et al. [28] 12 1.38 − 2.71○ 55 cm Depth sensor & personal user calibr.
Chen and Ji [47] 20 1.78○ 45-70 cm 2 IR LEDs (error for

first 80 frames is 2.01○)

The main reason for this behavior is the higher error in
the y component of iris localization.

4.3.3 Qualitative Results

We conducted a qualitative test in order to assess how
our system could be used for a real-world human-
computer interface (HCI) application. In this simple
test, two videos with a target (represented by the red
circle) moving on the screen was shown to three partici-



Real-time Gaze Estimation Via Pupil Center Tracking 11

pants. In the first video, the circle was moving on a sim-
ple rectangular trajectory, while in the second video the
circle followed a sawtooth trajectory. Participants sat in
front of the screen at a distance varying between 40 and
70 cm. Uniform illumination was created by artificial
light in the room. Participants were asked to follow the
circle’s trajectory with their gaze. They were informed
prior to the test about the details of the test, and about
the expected trajectory of the circle.

Fig. 9 shows the circle’s trajectories (blue line) and
the measured gaze point trajectories (red line) for user
#1. Fig. 10 shows the complete hit maps for all three
users interacting with our system with both videos.
Each user is represented by a different color, with the
brightness of the color (light to dark) indicating the
progress of the trajectory.

Note that our system, in the configuration consid-
ered for this test, can process images at 8.88 frames per
second on average, for an input resolution of 1280× 780
pixels. This frame rate makes it suitable for various real-
time HCI applications [29, 61, 62]. When a faster track-
ing rate is required, hardware-based gaze tracking solu-
tions should be used [63–66].

5 Conclusion
We proposed a novel real-time gaze estimation system
suitable for HCI applications. This system uses a regular
camera, of the type that is typically embedded in lap-
tops and computer screens. The proposed system does
not require a user-dependent calibration, can deal with
illumination changes, and can work with a variety of
head poses. The solution is based on an appearance-
based method that uses video from a regular camera to
detect the pose of the user’s head and the location (in
the image) of the eye features. This information is fed
to a machine learning system, which produces the gaze
point location on the screen. Our end-to-end system is
able to process images at more than 8 frames per second
on a regular laptop computer. Quantitative and quali-
tative tests in natural conditions have shown promising
results in terms of robustness and accuracy.

The main shortcoming of the proposed system is
its reduced accuracy in the vertical component of the
estimated gaze point. Future work will explore strate-
gies to overcome this problem, as well as methods to
automatically calibrate some of the user-dependent sys-
tem parameters (e.g. interpupillary distance). Finally,

we plan to benchmark our system against existing data
sets such as MPIIGaze [33].
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