Lawrence Berkeley National Laboratory
LBL Publications

Title
SDT: A Database Schema Design and Translation Tool Reference Manual Draft 4.1

Permalink

bttgs:ééescholarshiQ.orgéucgitem462b7t9gg

Authors
Markowitz, V M
Fang, W

Publication Date
1991-05-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6pb7t9g0
https://escholarship.org
http://www.cdlib.org/

LLBL-27843
UC-405

E Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

} Information and Computing
Sciences Division

SDT: A Database Schema Design and Translation Tool
Reference Manual | (
Draft 4.1

U. C. .Lawrence Berkeley Laboratory)
Library, Berkeley

FOR REFERENCE

Not to be taken from this room

V.M. Markowitz and W. Fahg

May 1991

m
3 r—-
s 0.
@
u
=]
b
o
. N
2. X o N
H < o
e B
. Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 =

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal Tesponsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. '

SDT

A DATABASE SCHEMA DESIGN AND TRANSLATION TOOL*

Reference Manual

DRAFT 4.1

Victor M. Markowitz’
Weiping Fang?

Data Management Group
Information and Computing Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720

May 1, 1991

Copyright © 1991 Lawrence Berkeley Laboratory '

Do not redistribute without written permission from V.M. Markowitz' or A. Shoshani®

* Issued as Technical Report LBL--27843. This work is supported by the Office of Health and Environmental Research
Program and the Applied Mathematical Sciences Research Program, of the Office of Energy Research, U.S. Department of Ener-
gy, under Contract DE-AC03-76SF00098.

T Author’s E-mail address: V_Markbwilz@lbl.gov Office phone number:(415) 486-6835
* Author’s E-mail address: W_Fang@lbl.gov
§ E-mail address: A _Shoshani@lbl.gov Office phone number:(415) 486-5171

SDT 4.1 : ~ Abstract

ABSTRACT

In this document we describe a database schema design and translation tool called SDT. SDT takes as
input Extended Entity-Relationship (EER) schemas and generates relational database management

(RDBMS) schemas. SDT consists of three main parts: -

1. the first part maps EER schemas into abstract relational schemas,

2. the second part maps abstract relational schemas into schema definitions for RDBMSs; and

3. the third part generates the metadata regarding EER schemas, relational schemas, and their mappings.

SDT 4.1 targets SYBASE 4.0, INGRES 6.3, and INFORMIX 4.0.

NEW FEATURES Compared with SDT 3.1, SDT 4.1 has the following additional features:

1. a graphical editor for specifying and modifying EER schemas, called ERDRAW, can be used in con-
junction with SDT 4.1. ERDRAW is described in technical report LBL-PUB-3084.

2. SDT 4.1 generates procedures for verifying the consistency of an existing database with regard to a
set of referential integrity constraints associated with that database; such a verification is required
when databases are loaded using RDBMS provided bulk copy utilities that bypass the referential
integrity constraints, such as those of SYBASE 4.0 and INGRES 6.3,

3. Attributes and object-sets (entity-sets or relationship-sets) can be described using new description

fields.

4, SDT 4.1 allows the specification of hierarchically organized subject terms for object-sets, attributes,

and the association of subject terms with object-sets and attributes.

5. SDT 4.1 generates metadata describing EER schemas, relational schemas and their niappings; these
metadata is embedded in appropriate insert operations ready for loading into a predefined metadata-

base.

SDT was implemented using C, LEX, and YACC on Sun 3 and Sun 4 workstations under Sun Unix
0S 4.0.3. and Sun Unix OS 4.1, |

NOTE. This is a working, and therefore incomplete, document.

Technical Report LBL-27843 May 1991 i

CONTENTS

1. Introduction
II Overview

2.1 Outline of SDT
2.2 An Example

I Input Formats

3.1 Input Format for EER Schemas

3.1 Input Format for Abstract Relational Schemas

1V Execution

4.1 Command

4.2 Intermediary Output Files Generated by SDT for EER Input Schemas
4.2.1 Abstract Relational Schema

4.2.2 Abstract Relational Schema after Merging

4.3 Output Files Generated by SDT

4.3.1 SYBASE/SQL Schema

4.3.2 INGRES/SQL Schema

4.3.3 INFORMIX/SQL Schema

4.3.4 Referential Integrity Verification Procedures

V The Metadatabase

5.1 Schemas and Mappings

5.2 Subject Terms

5.3 The SDT File for Metaschema Definition

5.4 The SDT Metadata Output File

VI The Program Structure of SDT

References

A The Extended Entity-Relationship Model

A.1 Fundamental Concepts

A.1.1 Object-Sets

A.1.2 Value-Sets

A.1.3 Entity-Relationship Diagram

A.1.4 Entity-Identifier

A.1.5 Existence Dependency

A.1.6 Association and Involvement Cardinality

A.1.7 Mandatory Involvement

A.1.8 Role

A.2 Extended Concepts

A.2.1 Generalization

A.2.2 Types of Generalization

A.2.3 Extended Entity-Relationship Diagram
A.2.4 Role Revisited ‘

A.2.5 Aggregation

00 OO0 00 OO0 O\ W W N N N =

M BB DD B DD BB B A D WWWWWHNR = -
— e e OO O O D 0000 N NN RN W O OO0 N RO =D

SDT 4.1 Introduction

I. INTRODUCTION

We describe in this document a database schema design and translation tool (SDT) developed at
Lawrence Berkeley Laboratory. The purpose of SDT is to provide a pcwerful and easy to use design
interface for non-technical users, and to increase the productivity of the database design process. This

entails insulating the schema designer from the underlying database management system (D‘BMS).

For the schema design interface we have chosen a version of the Extended Entity-Relationship
(EER) fnodel for the specification of the structure of information systems. The EER model we use
includes, in addition to the basic construct of object (entity and relationship), both generalization and full
aggregation abstraction capabilities. Once an EER schema is specified, SDT is employed in order to gen-

erate the corresponding relational DBMS (RDBMS) schema.

SDT consists of four main modules. The first SDT module takes EER schemas as input and gen-
erates abstract relational schemas. This module consists of three parts: the canonical mapping of EER
schemas into normalized relational schemas; the asSignment of names to relational attributes; and merg-

ing relations. The canonical mapping generates relational schemas, including key and referential integrity

-constraints. The high normal form (BCNF) of this schema ensures efficient update performance by the

RDBMS. Name assignment can be customized in order to meet the needs of the user (e.g. short names,

etc.). Finally, merging of relations reduces the number of relations, thus improving query performance.

The second SDT module takes abstract relational schemas as input and generates schema definitions
for specific RDBMS, such as SYBASE, INGRES, and INFORMIX. For an RDBMS that supports the
specification of triggers , such as SYBASE, or rules, such as INGRES, the main part of this module con-

sists of generating the appropriate insert, delete, and update triggers or rules corresponding to the referen-

* tial integrity constraints associated with the abstract relational schema.

The third SDT module generates procedures for verifying the consistency of a database with regard
to a set of referential integrity constraints. Finally, the fourth SDT module generates metadata describing
the EER and relational schemas and their mappings; these metadata is embedded in appropriate insert

operations ready for loading into a predefined metadatabase.

Various research results related to the development of SDT are presented in references {3] to [9].
Most of the algorithms underlying SDT are described in [9]. |

Technical Report LBL-27843 May 1991 ‘ 1

SDT 4.1 Overview

II. OVERVIEW

2.1 Outline of SDT

Input : EER schema.

Output : SQL database definition for SYBASE 4.0, INGRES 6.3, or INFORMIX 4.0.

Steps : 1. Map the EER schema into an equivalent abstract relational schema.

1.1 Check the correctness of the input EER schema; incorrect schemas are rejected.

1.2 Map the EER schema into an abstract relational schema, with relations and relational

attributes having symbolic (internal) names.
1.3 Assign (externally meaningful) names to relations and relational attributes.
1.4 Merge relations in the abstract relational schema.
2. Translate the abstract relational schema into database definition statements.
3. Generate procedures for verifying the consistency of a database with regard to the set of

referential integrity constraints associated with the abstract relational schema associated

with that database.

4. Generate the metadata information regarding the EER and relational schemas.

2.2 An Example

For illustration purposes, we use the EER schema represented in figure 2.1; PERSON, COURSE, and
DEPARTMENT are independent entity-sets; FACULTY is a specialization of PERSON, OFFER is a
relationship-set representing courses offered by departments, such that a course is offered by at most one
department; and TEACH is a relationship-set representing the assignment of faculty members to teach

courses offered by departments, such that a course is taught by at most one faculty member.

PERSON 154 FACULTY ! TEACH M OFFER 1 DEPARTMENT

Figure 2.1 An Extended Entity-Relationship Schema.

Technical Report LBL—27843 May 1991 2

P Al

SDT 4.1

Input Formats

M. INPUT FORMATS

3.1 ‘Input Format for EER Schemas (Figure 3.1)

The syntax for specifying EER schemas is given in figure 3.1. A BNF-like notation is used in order

to describe this syntax. Words in italic lower case letters denote non-terminals, while words in italic

upper case letters and roman lower case letters denote terminals. Single-quoted characters are terminal

delimiters whereas the rest are meta characters.

Notes:

1.

2.

A number must be in the syntax for a constant integer in C.
size is an upper bound on the number of objects in EER schema.

A domain must be in the form accepted by SYBASE/SQL, INGRES/SQL, or
INFORMIX/SQL, respectively; the correct specification of the domain is the responsibil-
ity of the user.

An identifier is a letter or an underscore (‘_’), possibly followed by a combined string of

letters, underscores, and digits. Keywords are reserved identifiers.

The default for the null_rule when it is not specified, is NO NULLS.

For arc_type : ID, ISA, and ISA*, represent the arc types exactly as they appear in the
EER schema; ONE represents a relationship cardinality of one and M represents a rela-
tionship cardinality of many; D1 represents both a relationship cardinality of one and
mandatory involvement, and DM represents both a relationship cardinality of many and

mandatory involvement.

Technical Report LBL-27843 May 1991 : 3

SDT 4.1

Input Formats

specification
size
object_subject list
object_subject
object
obj_head

obj name
obj_type
entity
relationship
obj tail
artr_clause
attr_list

attr
attr_name
attr_type
attr_subjects
domain
data_type
null_rule
arc_clause
arc_list

arc

arc_type

role
descr_clause
descr
subject

subj _head
subj _name
subj_type
subj_tail
broader_terms

subject_list

= size object_subject list

;3= number

=object_subject | object_subject_list object _subject
i=object | subject

u=o0bj head obj tail ‘;

i=0bj name ‘(obj type ‘Y

:=identifier

ii=entity | relationship

w=E | ENTITY

=R | RELATIONSHIP

u=attr_clause arc_clause descr_clause

1= ATTRS ‘! attr_list | empty string

z=anr | atr_list *,’ attr | '
z=attr_name ‘(attr_type °,” descr ,’ attr_subjects ‘," domain null_rule‘y
:=identifier

=D | empty string

i=subj name | attr_subjects subj name

i=data_type | data_type ‘(' number ‘)’

::=identifier ‘

2=NO NULLS | NULLS ALLOWED | empty string
um=ARCS ‘" arc_list | empty string

w=arc | arc_list ‘,’ arc

=o0bj name ‘(arc_type ,’ role ‘) | subj_name ‘C ST ‘)
x=ID | ISA | ISA* |\ ONE |M | D1 | DM

::=identifier | empty string

::=DESCR *? descr

frs &1

= ""text
i=subj head subj tail ‘;

i=subj name ‘(subj type ‘Y

:=identifier

n=80 | SA

== broader_terms descr_clause

1=ARCS ‘" subject_list | empty string

i=subj _name (ISA,) | subject list *,’ subj name (ISA,)

Figure 3.1 The Syntax for EER Schemas.

Technical Report LBL-27843 May 1991 : : 4

¥

SDT 4.1 . input Formats

For example, the input file for the EER schema shown in figure 2.1, following the syntax given in

figure 3.1, ié given below:

8 .
PERSON(E) : , :
ATTRS: SSN(ID, "Social Security Number; Used as unique identifier.”, , int NO NULLS),
NAME(, "First and Last Name", , char(50) NULLS ALLOWED)
DESCR: "";
FACULTY(E) .
ATTRS: RANK(, "Rank of faculty members”, , char(25) NULLS ALLOWED)
ARCS: PERSON(ISA,), Course_Teaching(ST,)
DESCR: "Faculty members";
DEPARTMENT(E) ,
ATTRS: NAME(ID, "Name of Department”, , char(30) NO NULLS)
ARCS: Course_Offering(ST,)
DESCR: "";.
COURSEC(E)
ATTRS: NUMBER(ID, "Course number"”, , int NO NULLS)
ARCS: Course_Offering(ST,)
DESCR: ""; '
TEACH(R)
ARCS: FACULTY(ONE,), OFFER(M,), Course_Teaching(ST,)
DESCR: "Assignment of faculty members to téach offered courses™; '

OFFER(R) :
ARCS: DEPARTMENT(ONE,), COURSE(M,), Course_Offering(ST,), Course_Teaching(ST,)
DESCR: "Offering of courses by departments”;

Course_Offering (SO)

DESCR: "";

Course_Teaching (SO)
DESCR: "";

Technical Report LBL—27843 May 1991 5

SDT 4.1

Input Formats

3.2 Input Format for Abstract Relational Schemas (Figure 3.2)

The syntax of the language used for specifying input abstract relational schemas is given in figure 3.2. A

BNF-like notation is used in order to describe this syntax. Non-terminals and terminals are denoted as

specification
size
relations

relation

relation_name
attributes
attribute
attribute_name
domain
data_type
null_rule
primary_key
attribute_names
alternate_keys
alternate_key
foreign _keys
foreign_key

option

= size relations
::=number
i:=relation | relations relation
::= RELATION relation_name
‘C attributes primary key alternate_keys foreign_keys ‘)’
;:=1identifier) |
= attribute | attributes attribute
= attribute_name domain null_rule
:==identifier
i=data_type | data_type ‘(number ‘)
;:= identifier
:=NO NULLS | NULLS ALLOWED | empty string
::== PRIMARY KEY ‘(attribute_names ‘)’
= attribute_name | attribute_names °,’ attribute_name
= empty string | alternate_keys alternate_key
:=ALTERNATE KEY ‘(attribute_names ‘Y
::=empty string | foreign_keys foreign_key
::=FOREIGN KEY ‘(attribute_names ‘Y
REFERENCES relation_name
INSERT option
DELETE option
:=RESTRICTED

Figure 3.2 Syntax for Abstract Relational Schemas.

Technical Report LBL—27843 May 1991 o | 6

SDT 4.1 , Input Formats

above. Notes 1 to 5 above also apply for this definition.

For example, the abstract relational schema below follows the syntax given in figure 3.2:

3
RELATION DEPARTMENT (
NAME char(50) NO NULLS
PRIMARY KEY (NAME)
)
RELATION COURSE (
‘ ' NUMBER int NO NULLS °
PRIMARY KEY (NUMBER)
)
RELATION OFFER (
DEPARTMENT_NAME char(30) NO NULLS
COURSE_NUMEBR int NO NULLS
PRIMARY KEY (COURSE_NUMEBR)
FOREIGN KEY (DEPRTMENT_NAME)
"~ REFERENCES DEPARTMENT
INSERT RESTRICTED
DELETE RESTRICTED
FOREIGN KEY (COURSE_NUMBER)
REFERENCES COURSE
INSERT RESTRICTED
DELETE RESTRICTED

Technical Report LBL—-27843 May 1991 -7

SDT 4.1

Execution

IV. EXECUTION

4.1 Command

where

file

sdt [=ST)[~X1[-mY){ ~tZ] file

can be either e (for EER) or r (for relational), and specifies the type of input schema for
SDT, parameters X, Y, and Z below are ignored when T =r.
If the —s option is not specified, EER schema is assumed by default.

can be either a (for association) or i (for involvement) and specifies the type of relationship
cardinality used in the EER schema.

If the —c option is not specified, association cardinality is assumed by default.

can be either r (for restricted) or n (for no merging) and specifies the type of merging to be
performed.

If the ~m option is not specified, the no merging is assumed by default.
can be either s (for SYBASE), i (for INGRES 6.3), or x (for INFORMIX 4.0), and specifies

the target RDBMS.
If the — option is not specified, SYBASE is assumed by default.

is the input file containing (1) an EER schema specification following the syntax given in
Figure 3.1, or (2) an abstract relational schema specification following the syntax given in

Figure 3.2.

4.2 Intermediary Output Files Generated by SDT for EER Input Schemas

4.2.1 Abstract Relational Schema

This file contains the abstract relational schema before merging. The file name consists of the name

of the file containing the input EER schema, followed by ‘“.r"’.

For example, the abstract relational schema generated for the EER schema of figure 2.1, when no

merging is requested, is given below. Note that names are assigned according to a Name Assignment algo-

rithm selected by us, and which is designed to assign relations and relational attributes names as close as

possible to the names of EER object-sets and attributes.

Technical Report LBL—27843 May1991 -~ 8

SDT 4.1

RELATION PERSON(

RELATI

)
RELATI

)
RELATT

)

SSN int NO NULLS
NAME char (50) NULLS ALLOWED
PRIMARY KEY (SSN)

ONFACULTY (

SSN int NO NULLS

RANK char (20) NO NULLS

PRIMARY KEY (SSN)

FOREIGN KEY (SSN)

REFERENCES PERSON

INSERT RESTRICTED
DELETE RESTRICTED

ON DEPARTMENT(
NAME char(30) NO NULLS
PRIMARY KEY (NAME)

ON COURSE (
NUMBER int NO NULLS
PRIMARY KEY (NUMBER)

RELATION OFFER (

)

DEPARTMENT_NAME char(30) NO NULLS
COURSE_NUMBER int NO NULLS
PRIMARY KEY (COURSE_NUMBER)
FOREIGN KEY (DEPARTMENT_NAME)
REFERENCES DEPARTMENT
INSERT RESTRICTED
DELETE RESTRICTED
FOREIGN KEY (COURSE_NUMBER)
REFERENCES COURSE
"INSERT RESTRICTED
DELETE RESTRICTED

RELATION TEACH (

Technical Rep

FACULTY_SSN int NO NULLS
COURSE_NUMBER int NO NULLS
PRIMARY KEY (COURSE_NUMBER)
FOREIGN KEY (FACULTY_SSN)
REFERENCES FACULTY
INSERT RESTRICTED
DELETE RESTRICTED
FOREIGN KEY (COURSE_NUMBER)
REFERENCES OFFER
INSERT RESTRICTED
DELETE RESTRICTED

ort LBL—-27843 May 1991

Execution

SDT 4.1 Execution

4.2.2 Abstract Relational Schema after Merging

This file contains the abstract relational schema after merging relations, if such a merging is

requested. If merging is done at all, a file with name being the input EER schema, followed by *‘.m”’.

For example, the abstract relational schema generated for the EER schema of figure 2.1, if merging
is requested, is given below. Note that SDT first finds the relations that can be merged and then performs

their merging.

Merged Relations : course, offer, teach

RELATION PERSON (
SSN int NO NULLS
NAME char (50) NULLS ALLOWED
PRIMARY KEY (SSN)
)
RELATION FACULTY (
SSN int NO NULLS
RANK char (20) NO NULLS
PRIMARY KEY (SSN)
FOREIGN KEY (SSN)
REFERENCES PERSON
INSERT RESTRICTED
DELETE RESTRICTED
)
RELATION DEPARTMENT (
NAME char(30) NO NULLS
PRIMARY KEY (NAME)
)
RELATION COURSE(
FACULTY_SSN int NULLS ALLOWED
DEPARTMENT_NAME char (30) NULLS ALLOWED
NUMBER int NONULLS
PRIMARY KEY (NUMBER) -
FOREIGN KEY (FACULTY_SSN)
REFERENCES FACULTY
INSERT RESTRICTED
DELETE RESTRICTED
FOREIGN KEY (DEPARTMENT _NAME)
REFERENCES DEPARTMENT
INSERT RESTRICTED
DELETE RESTRICTED

Technical Report LBL-27843 May 1991 10

SDT 4.1 " Execution

4.3 Output Files Generated by SDT y
The database definition generated by SDT is contained in three files consisting of (1) the table (rela-
tion) definitions; (2) the index (key) definitions; and (3) the referential integrity constraints in declarative
or procedural form. Two additional files contain (4) the procedures for verifying the referential integrity
of an existing database., and (5) the metadata loading operations. The five file names containing the SDT
output, consist of the name of the file containing the input EER schema, followed by (1)
‘*_relations.[Z]”’, (2) “‘_keys.[Z]’, (3) “‘_refint.[Z]’, (4) *‘_check.[Z]”’, and (S) ‘‘_meta.[Z]"’, respec-
tively, where Z is either s (for SYBASE), i (for INGRES), or x (for INFORMIX).
Note : for INFORMIX only three files are currently generated, namely (1), (2), and (5).

The files generéted by SDT can be loaded together. However, if data loading utilities provided by
RDBMSs (such as the bep utility of SYBASE) are going to be employed for loading data into the data-
base, then for efﬁciency'rc;asohs it is preferable to load only the table definitions, then load the data into
the database, and then load the index and referential integrity definitions (for more details consult the
manuals of the RDBMS used). | '

. 43.1 SYBASE/SQL Schema

The SYBASE database definition is contained in three files consisting of (1) the table (relation)
definitions; (2) the index (key) definitions; and (3) the trigger (referential integrity) procedures. . The file
names consist of the name of the file containing the input EER schema, followed by (1) *‘_relations.s’’,
(2) “‘_keys.s’’, and (3) ‘‘_refint.s’’, respectively. The files are in ready-to-be-input-to-SYBASE form.
Examples for these files are given below.

The SYBASE schema definition corresponding to the merged abstract relational schema in section

4.2.2 above is given below:

File ExSybase_relations.s

create database ExSybase

g0

use ExSybase

go

create table PERSON (
SSN int not null,
NAME char(50) null

)

create table FACULTY (
SSN int not null,
RANK char(25) null

Technical Report LBL-27843 May 1991 ' 11

SDT 4.1 Execution

create table DEPARTMENT (

NAME char(30) not null

)

create table COURSE (
FACULTY_SSN int null,
DEPARTMENT_NAME char(30) null,
NUMBER int not null

)

go

quit

File ExSybase_keys.s :

use ExSybase

go

create unique clustered index indexPERSON on PERSON (SSN)
create unique clustered index indexFACULTY on FACULTY (SSN)
create unique clustered index indexDEPARTMENT on DEPARTMENT (NAME)
create unique clustered index indexCOURSE on COURSE (NUMBER)
go

sp_primarykey PERSON, SSN

go

sp_primarykey FACULTY, SSN

go

sp_primarykey DEPARTMENT, NAME

go

sp_primarykey COURSE, NUMBER

go ' '

sp_foreignkey FACULTY, PERSON, SSN

go ‘ -

sp_foreignkey COURSE, FACULTY, FACULTY_SSN

go '

sp_foreignkey COURSE, DEPARTMENT, DEPARTMENT_NAME
g0

quit

File ExSybase_refint.s :

use ExSybase
go
create trigger deletePERSON on PERSON
for delete as
begin
-declare @delFACULTY int
select @delFACULTY = count(*) from deleted, FACULTY
where deleted. SSN = FACULTY.SSN
if @delFACULTY >0 '
begin
raiserror 70002 "Cannot delete from PERSON because of”
print "existing reference from FACULTY"
select * from deleted
where exists

Technical Report LBL—27843 May 1991 o _ 12

SDT.4.1 . o » Execution

(select * from FACULTY .
where deleted.SSN = FACULTY.SSN)
rollback transaction

end
end
g0 ' '
create trigger updatecPERSON on PERSON
for update as
begin

declare @row int, @delFACULTY int
select @row = @@rowcount
if update (SSN)
begin
‘ select @delFACULTY = count (*) from FACULTY
where exists
(select * from deleted
where deleted.SSN = FACULTY.SSN)
and not exists
(select * from inserted
where inserted.SSN = FACULTY.SSN)
if 0 != @delFACULTY
begin
raiserror 70003 "Cannot update PERSON because of”
print "existing reference from FACULTY"
select * from deleted
where exists
(select * from FACULTY
where deleted.SSN = FACULTY.SSN)
and not exists
(select * from inserted
. where deleted.SSN = inserted. SSN)
rollback transaction
end '
end
end
go
create trigger insertFACULTY on FACULTY
for insert as
begin _
declare @row int, @insPERSON int, @nullPERSON int
select @row = @@rowcount
select @nullPERSON = (0
select @insPERSON = count(*) from inserted, PERSON
where inserted.SSN = PERSON.SSN
if @nullPERSON + @insPERSON != 1 * @row
begin :
raiserror 70001 "Cannot insert into FACULTY because of”
print "missing reference to PERSON"
select * from inserted
where not exists
(select * from PERSON

Technical Report LBL—27843 May 1991 : _ o 13

SDT 4.1

end
g0

Execution

where inserted.SSN = PERSON.SSN)
rollback transaction
end ’

create trigger deleteFACULTY on FACULTY
for delete as '

begin

declare @delCOURSE int

select @delCOURSE = count(*) from deleted, COURSE

where deleted.SSN = COURSE.FACULTY_SSN
if @delCOURSE > 0
begin
raiserror 70002 "Cannot delete from FACULTY because of"
print "existing reference from COURSE"
select * from deleted

- where exists
. (select * from COURSE
where deleted. SSN = COURSE.FACULTY_SSN)
rollback transaction :
end
end
go
create trigger updateFACULTY on FACULTY
for update as
begin

declare @row int, @delCOURSE int, @insPERSON int, @ nullPERSON int
select @row = @@rowcount
if update (SSN)

begin

select @delCOURSE = count (*) from COURSE
where exists
(select * from deleted .
where deleted.SSN = COURSE.FACULTY_SSN)
and not exists
(select * from inserted
where inserted.SSN = COURSE.FACULTY_SSN)
select @nullPERSON =0 _
select @insPERSON = count(*) from inserted, PERSON
where inserted.SSN = PERSON.SSN
if @nullPERSON + @insPERSON
1=1* @row + @delCOURSE
begin :
raiserror 70003 "Cannot update FACULTY because of"
if @delCOURSE != 0
begin
print "existing reference from COURSE"
select * from deleted
where exists
(select * from COURSE
where deleted. SSN = COURSE.FACULTY_SSN)

Technical Report LBL—27843 May 1991 14

SDT 4.1 Execution

.- and notexists o
' (select * from inserted
where deleted.SSN = inserted.SSN)

end
if @nullPERSON + @insPERSON != @row
-begin
print "missing reference to PERSON"
select * from inserted
where not exists
(select * from PERSON
where inserted.SSN = PERSON.SSN)
end
rollback transaction
end
end
end
go
create trigger deleteDEPARTMENT on DEPARTMENT
fordelete as - : -
begin
declare @delCOURSE int
select @delCOURSE = count(*) from deleted, COURSE
where deleted. NAME = COURSE.DEPARTMENT_NAME
if @delCOURSE >0 -
begin ‘
raiserror 70002 "Cannot delete from DEPARTMENT because of"
print "existing reference from COURSE"
select * from deleted
where exists
(select * from COURSE
where deleted NAME = COURSE.DEPARTMENT_NAME)
.. rollback transaction
end
end
go
create trigger updateDEPARTMENT on DEPARTMENT
for update as
begin _-

declare @row int, @delCOURSE int
select @row = @@rowcount
if update (NAME)
begin
select @delCOURSE = count (*) from COURSE
where exists
(select * from deleted
where deleted NAME = COURSE.DEPARTMENT_NAME)
and not exists - :
(select * from inserted
where inserted NAME = COURSE.DEPARTMENT_NAME)
if 0 != @delCOURSE '
begin

Technical Report LBL—-27843 May 1991 | - 15

SDT 4.1

Execution

raiserror 70003 "Cannot update DEPARTMENT because of"
print "existing reference from COURSE"
select * from deleted
where exists
" (select * from COURSE
where deleted NAME = COURSE.DEPARTMENT_NAME)
and not exists
(select * from inserted
where deleted. NAME = inserted NAME)

rollback transaction

end
end
end
g0
create trigger insertCOURSE on COURSE
for insert as
begin

begin

end

end

declare @row int, @insFACULTY int,
@nullIFACULTY int, @insDEPARTMENT int, @nullDEPARTMENT int
select @row = @@rowcount
select @nullFACULTY = count(*) from inserted
where inserted. FACULTY_SSN = null
select @insFACULTY = count(*) from inserted, FACULTY
where inserted FACULTY_SSN = FACULTY.SSN
select @nullDEPARTMENT = count(*) from inserted
where inserted. DEPARTMENT_NAME = nuil
select @insDEPARTMENT = count(*) from inserted, DEPARTMENT
where inserted. DEPARTMENT_NAME = DEPARTMENT.NAME
if @nullFACULTY + @insFACULTY +
@nulIDEPARTMENT + @insDEPARTMENT != 2 * @row

begin
raiserror 70001 "Cannot insert into COURSE because of"
if @nullIFACULTY + @insFACULTY != @row
print "missing reference to FACULTY"
select * from inserted
where not exists
(select * from FACULTY
where inserted FACULTY_SSN = FACULTY.SSN)
if @nullDEPARTMENT + @insDEPARTMENT != @row
begin _
print "missing reference to DEPARTMENT"
select * from inserted
where not exists
(sclect * from DEPARTMENT
where inserted DEPARTMENT_NAME=DEPARTMENT.NAME)
end
rollback transaction
end

Technical Report LBL~-27843 May 1991 16

. SDT 4.1 Execution
g0
create trigger updateCOURSE on COURSE
for update as
begin -

declarc @row int, @insFACULTY. int, @nullFACULTY int,

@insDEPARTMENT int, @nullDEPARTMENT int

select @row = @@rowcount -

if update (NUMBER) or

begin

end
end
go

“quit

update (FACULTY_SSN) or
update (DEPARTMENT_NAME)

‘sélect @nullFACULTY= count(*) from inserted

where inserted FACULTY_SSN = null
select @insFACULTY = count(*) from inserted, FACULTY
where inserted. FACULTY_SSN = FACULTY.SSN
select @nullDEPARTMENT= count(*) from inserted
where inserted. DEPARTMENT_NAME = null
select @insDEPARTMENT = count(*) from inserted, DEPARTMENT
where inserted DEPARTMENT_NAME = DEPARTMENT.NAME
if @mullIFACULTY + @insFACULTY _
+ @nullDEPARTMENT + @insDEPARTMENT
1=2* @row
begin
raiserror 70003 "Cannot update COURSE because of”
if @nullIFACULTY + @insFACULTY != @row

begin
print "missing reference to FACULTY"
select * from inserted
where not exists
(select * from FACULTY
where inserted FACULTY_SSN = FACULTY.SSN)
end
if @nullDEPARTMENT + @insDEPARTMENT != @row
begin
print "missing reference to DEPARTMENT"
select * from inserted
where not exists
(select * from DEPARTMENT
where inserted. DEPARTMENT_NAME=DEPARTMENT.NAME)
end

rollback transaction
end

‘Technical Report LBL—27843 May 1991 : 17

SDT 4.1 Execution

4.3.2 INGRES/SQL Schema

The INGRES database definition is contained in three files consisting (1) the table (relation)
definitions; (2) the index (key) definitions; and (3) the trigger (referential integrity) procedures. The file
names consist of the name of the file containing the input EER schema, followed by (1) *‘_relations.i”’,
(2) ““_keys.i”’, and (3) ‘‘_refint.i’’, respectively. The files are in ready-to-be-input-to-INGRES form.

Examples for these files are given below.

The INGRES schema definition corresponding to the merged abstract relational schema in section

4.2.2 above is given below:

File ExIngres relations.i

CREATE TABLE PERSON (
SSN integer NOT NULL,
NAME char(50) WITH NULL

)

CREATE TABLE FACULTY (
SSN integer NOT NULL,
RANK char(25) WITH NULL

)

CREATE TABLE DEPARTMENT (
NAME char(30) NOT NULL

)

CREATE TABLE COURSE (
FACULTY_SSN integer WITH NULL,
DEPARTMENT_NAME char(30) WITH NULL,
NUMBER integer NOT NULL

)

\g

\quit

File ExIngres keys.i:

CREATE UNIQUE INDEX idxPERSON on PERSON (SSN);

CREATE UNIQUE INDEX idxFACULTY on FACULTY (SSN);

CREATE UNIQUE INDEX idxDEPARTMENT on DEPARTMENT (NAME);
CREATE UNIQUE INDEX idxCOURSE on COURSE (NUMBERY);

\go

\quit

Technical Report LBL-27843 May 1991 . 18

SDT 4.1

File ExIngres refinti:.

CREATE PROCEDURE p_delPERSON (0_SSN integer, o_NAME char(50)) AS
DECLARE . o
msg VARCHAR(256) NOT NULL; check_val INTEGER;
BEGIN .
. SELECT COUNT(*) INTO :check_val FROM FACULTY
WHERE SSN = :0_SSN;
IF check_val > 0 THEN ,
msg = "Error 1: FACULTY "’ +:0_SSN + " found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
msg = "PERSON deleted’ +
(SSN=""+:0_SSN+’'",NAME =" + :0_NAME +°")’;
MESSAGE :msg;
END;
\go .
CREATE RULE r_delPERSON AFTER DELETE FROM PERSON
EXECUTE PROCEDURE p_delPERSON
(0_SSN = 0ld.SSN, o_NAME = old. NAME);
\go '
CREATE PROCEDURE p_updPERSON (o_SSN integer, o NAME char(50),
n_SSN integer, n_NAME char(50)) AS
DECLARE
msg VARCHAR(256) NOT NULL;
check_val INTEGER;
BEGIN '
SELECT COUNT(¥*) INTO :check_val FROM FACULTY
’ WHERE SSN = :0_SSN;
IF check_val > 0 THEN
msg = 'Error 1: FACULTY ™ +:0_SSN + " found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;"
msg = 'PERSON updated’ +
(SSN=""+:n_SSN +’", NAME ="’ + :n_NAME +’")";
- MESSAGE :msg; '
END;
\go
CREATE RULE r_updPERSON AFTER UPDATE OF PERSON
EXECUTE PROCEDURE p_updPERSON
o (0_SSN = 0ld.SSN, 0_NAME = 0ld NAME,
n_SSN = new.SSN, n_NAME = new.NAME);

Technical Report LBL—27843 May 1991

Execution

19

SDT 4.1 Execution

CREATE PROCEDURE p_insFACULTY (n_SSN integer, n_RANK char(25)) AS
DECLARE
msg VARCHAR(256) NOT NULL;
check_val INTEGER,;
BEGIN
IFn_SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM PERSON
WHERE SSN = :n_SSN;
IF check_val = 0 THEN
msg = "Error 1: PERSON "’ + :n_SSN + ’" not found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
ELSE
msg = "Error 2: FACULTY:: nulls in SSN not allowed.’;
RAISE ERROR 2 :msg;
RETURN;
ENDIF;

msg = "FACULTY inserted’ +
*(SSN=""+:n_SSN+ ", RANK ="’ + :n_RANK + '")’;
MESSAGE :msg;
END;
\go
CREATE RULE r_insFACULTY AFTER INSERT INTO FACULTY
EXECUTE PROCEDURE p_insFACULTY
(n_SSN = new.SSN, n_RANK = new.RANK);

\go
CREATE PROCEDURE p_delFACULTY (o_SSN integer, o_RANK char(25)) AS
DECLARE
msg VARCHAR(256) NOT NULL,;
check_val INTEGER,;
BEGIN :
SELECT COUNT(*) INTO :check_val FROM COURSE
WHERE FACULTY_SSN =:0_SSN;
IF check_val > 0 THEN
msg = 'Error 1: COURSE "’ + :0_SSN + " found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
msg = 'FACULTY deleted’ +
(SSN=""+:0_SSN+'",RANK =" + :0_RANK + *")";
MESSAGE :msg;
END;
\go

CREATE RULE r_delFACULTY AFTER DELETE FROM FACULTY
EXECUTE PROCEDURE p_delFACULTY _
(0_SSN = 0ld.SSN, o_RANK = old.RANK);
\go '

Technical Report LBL-27843 May 1991 20

SDT 4.1

CREATE PROCEDURE p_updFACULTY (o_SSN integer, o_RANK char(25),

n_SSN integer, n_RANK char(25)) AS

DECLARE

BEGIN

END;
\go

-msg VARCHAR(256) NOT NULL;

check_val INTEGER;

SELECT COUNT(*) INTO :check_val FROM COURSE
- WHERE FACULTY_SSN =:0_SSN;
IF check_val > 0 THEN
msg = "Error 1: COURSE "’ + :0_SSN + " found %
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
IF n_SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM PERSON
WHERE SSN = :n_SSN; '
IF check_val =0 THEN

msg = Error 1: PERSON " + :n_SSN + " not found.’;

RAISE ERROR 1 :msg;
RETURN;
ENDIF;
ELSE
msg = "Error 2: FACULTY: nulls in SSN not allowed.’;
RAISE ERROR 2 :msg;
RETURN;
ENDIF;

msg = 'FACULTY updated’ +
. ’(SSN - "y + :n—SSN + 1“, RANK = "y + :n_RAN'K + ’")7;
MESSAGE :msg;

CREATERULE 1 udeACULTY AFI'ER UPDATE OF FACULTY

\go

EXECUTE PROCEDURE p_updFACULTY
(0_SSN = 0ld.SSN, 0_RANK = old.RANK,
n_SSN = new.SSN, n_RANK = new.RANK);

CREATE PROCEDURE p_delDEPARTMENT (0_NAME char(30)) AS
DECLARE

BEGIN

msg VARCHAR(256) NOT NULL;
check_val INTEGER;

SELECT COUNT(*) INTO :check_val FROM COURSE
WHERE DEPARTMENT_NAME = :0_NAME;

IF check_val > 0 THEN
msg = 'Error 1: COURSE ™’ + :0_NAME + ’" found.’;
RAISE ERROR 1 :msg;
RETURN;

ENDIF;

‘'msg = 'DEPARTMENT deleted’ +

'(NAME = "" + :0_NAME + ’"); -

Technical Report LBL~27843 May 1991

Execution

21

SDT 4.1

Execution

MESSAGE :msg;
END;
\go
CREATE RULE r_deIDEPARTMENT AFTER DELETE FROM DEPARTMENT
EXECUTE PROCEDURE p_delDEPARTMENT
(0_NAME = 0ld.NAME);
\go
CREATE PROCEDURE p_updDEPARTMENT (0_NAME char(30),
n_NAME char(30)) AS
DECLARE
msg VARCHAR(256) NOT NULL;
check_val INTEGER;
BEGIN
SELECT COUNT(*) INTO :check_val FROM COURSE
WHERE DEPARTMENT_NAME = :0_NAME;
IF check_val > 0 THEN '
msg = ’Error 1: COURSE ** + :0_NAME + " found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF,;
msg = 'DEPARTMENT updated’ +
’(NAME ="’ + :n_NAME +'")’;
MESSAGE :msg;
END;
\go
CREATE RULE r_updDEPARTMENT AFTER UPDATE OF DEPARTMENT
EXECUTE PROCEDURE p_updDEPARTMENT
(0_NAME = old. NAME,
n_NAME = new.NAME);
\go
CREATE PROCEDURE p_insCOURSE
(n_FACULTY_SSN integer, n_DEPARTMENT_NAME char(30), n_NUMBER integer) AS
DECLARE
msg VARCHAR(256) NOT NULL;
check_val INTEGER,;
BEGIN
IF n_FACULTY_SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM FACULTY
WHERE SSN = :n_FACULTY_SSN;
IF check_val =0 THEN
msg = 'Error 1: FACULTY "’ + :n_FACULTY_SSN + " not found.”;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
ENDIF;
IF n_DEPARTMENT_NAME IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM DEPARTMENT
WHERE NAME = :n_DEPARTMENT_NAME;
IF check_val =0 THEN
msg = 'Error 2: DEPARTMENT " + :n_DEPARTMENT_NAME + " not found.’;
RAISE ERROR 2 :msg; ' :

Technical Report LBL-27843 - May 1991 : 22

SDT 4.1 | - Execution

RETURN;
ENDIF;
ENDIF; , .
‘msg = 'COURSE inserted” +
'(FACULTY_SSN ="'+ :n_FACULTY_SSN + ", DEPARTMENT_NAME ="’
+:n_DEPARTMENT_NAME + ", NUMBER = "" + :n_ NUMBER + '")’;
MESSAGE :msg; ' '
END; :
\go ,
CREATE RULE r_insCOURSE AFTER INSERT INTO COURSE
EXECUTE PROCEDURE p_insCOURSE (n_FACULTY_SSN = new FACULTY_SSN,
: n_DEPARTMENT_NAME = new.DEPARTMENT_NAME, n_NUMBER = new. NUMBER);
\go
CREATE PROCEDURE p_updCOURSE -
(0_FACULTY_SSN integer, o_DEPARTMENT_NAME char(30), o_NUMBER integer,
n_FACULTY_SSN integer, n DEPARTMENT_NAME char(30), n_NUMBER integer) AS
DECLARE '
msg VARCHAR(256) NOT NULL;
check_val INTEGER;
BEGIN
IF n_FACULTY_SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM FACULTY
WHERE SSN = :n_FACULTY_SSN;
IF check_val = 0 THEN
msg = 'Error 1: FACULTY " +:n_FACULTY_SSN + ’" not found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
ENDIF;
IF n_DEPARTMENT_NAME IS NOT NULL THEN
SELECT COUNT(*) INTO :check_val FROM DEPARTMENT
WHERE NAME = :n_DEPARTMENT_NAME;
IF check_val = 0 THEN
msg = "Error 1: DEPARTMENT "’ + :n_DEPARTMENT_NAME + " not found.’;
RAISE ERROR 1 :msg;
RETURN;
ENDIF;
ENDIF;
msg = "COURSE updated’ +
*(FACULTY_SSN ="+ :n_FACULTY_SSN + ', DEPARTMENT_NAME ="’
+ :n_DEPARTMENT _NAME + ’", NUMBER ="’ + :n_NUMBER + ’")’;
_ MESSAGE :msg;
END; :
\go
CREATE RULE r_updCOURSE AFTER UPDATE OF COURSE
EXECUTE PROCEDURE p_updCOURSE (0o_FACULTY_SSN = old. FACULTY_SSN,
o_DEPARTMENT_NAME = old. DEPARTMENT_NAME,
0_NUMBER = 0ld. NUMBER, n_FACULTY_SSN = new.FACULTY_SSN,

\go n_DEPARTMENT_NAME = new.DEPARTMENT_NAME, n_ NUMBER = new NUMBER);

\quit

Technical Report LBL—27843 May 1991 . ' 23

SDT 4.1 _ - Execution

4.3.3 INFORMIX/SQL Schema

The INFORMIX database definition is contained in two files consisting of (1) the table (relation)
definitions; and (2) the index (key) definitions. An additional file contains the (3) metadata loading opera-
tions. The file names consist of the name of the file containing the input EER schema, followed by (1)
‘“_relations.i’’, (2) ‘‘_keys.i’’, and (3) ‘‘_meta.x’’, respectively. The files are in ready-to-be-input-to-

INFORMIX form. Examples of the files containing the table and index definitions are given below.

The INFORMIX schema definition corresponding to the merged abstract relational schema in sec-

tion 4.2.2 above is given below:

File ExInformix_relations.x

create database ExInfomﬁx;
database ExInformix;

create table PERSON (
SSN int not nuli,
NAME char(50)
)
create table FACULTY (
SSN int not null,
RANK char(25)
) o
create table DEPARTMENT (
NAME char(30) not null
)
create table COURSE (
FACULTY_SSN int,
DEPARTMENT_NAME char(30),
NUMBER int not null
)

close ExInformix;

File ExInformix_keysx :

database ExInformix;

create unique cluster index indexPERSON on PERSON (SSN);

create unique cluster index indexFACULTY on FACULTY (SSN);

create unique cluster index indexDEPARTMENT on DEPARTMENT (NAME);
create unique cluster index indexCOURSE on COURSE (NUMBER);

close ExInformix;

Technical Report LBL—27843 May 1991 24

SDT 4.1

Execution

4.3.4 Referential Integrity Verification Procedures

SDT generates procedures for verifying the referential integrity of an existing database. For every

~ relation (table) in a database, a procedure for verifying the integrity of data in that relation is generated;

the name of the procedure is of the form check_[T] where T is the name of the corresponding relation. For

verifying the integrity of an entire database, a global procedure called check_all is provided.

4.3.4.1 Verification Procedures for SYBASE

- The procedures for verifying the referential integrity of an existing SYBASE database defined as in

section 4.3.1 above are given below:

File ExSybase_check.s :

create procedure check FACULTY as

if (select count(*) from PERSON) =0

use ExSybase

go

begin
begin
end
else
begin
end

end

go

select * into #1 from FACULTY

if (select count(*) from #1) !=0

begin
print "The following tuples in FACULTY do not have references in PERSON"
select * from #1

end

select * into #2 from FACULTY

where not exists (select * from PERSON
A where FACULTY.SSN = PERSON.SSN)

if (select count(*) from #2) =0

begin
print "The following tuples in FACULTY do not have references in PERSON"
select * from #2 ‘

end

create procedure check_COURSE as

begin

if (select count(*) from FACULTY) =0

begin

select * into #1 from COURSE -
where COURSE.FACULTY_SSN is not null
if (select count(*) from #1) !=0
begin .
print "The following tuples in COURSE do not have references in FACULTY"

Technical Report LBL—27843 May 1991 | | 25

SDT 4.1

end
go

‘Execution

select * from #1

end
end
else
begin
select * into #2 from COURSE
where COURSE.FACULTY_SSN is not nuil
and not exists (select * from FACULTY
where COURSE.FACULTY_SSN = FACULTY.SSN)
if (select count(*) from #2) 1=0
begin
print "The following tuples in COURSE do not have references in FACULTY"
select * from #2
end
end
if (select count(*) from DEPARTMENT) =0
begin
select * into #3 from COURSE
where COURSE.DEPARTMENT_NAME is not null
if (select count(*) from #3) !=0
begin
print "The following tuples in COURSE do not have references in DEPARTMENT"
select * from #3 »
end
end
else
begin
select * into #4 from COURSE
where COURSE.DEPARTMENT_NAME is not null
and not exists (select * from DEPARTMENT ,
where COURSE.DEPARTMENT_NAME = DEPARTMENT .NAME)
if (select count(*) from #4) 1= 0 S
begin ' , ‘
print "The following tuples in COURSE do not have references in DEPARTMENT"
select * from #4 :
end
end

create procedure check_all as

begin

end
g0

quit

exec check_FACULTY
exec check_COURSE

Technical Report LBL—27843 May 1991 26

SDT 4.1

43.4.2 Verification Procedures for INGRES

Execution

The procedures for verifying the referential integi‘i't)fof an ezﬁ_isﬁng INGRES database defined as in

section 4.3.2 above are given below:

File ExIngres check.i :

CREATE PROCEDURE check_FACULTY AS
DECLARE o
msg VARCHAR(256) NOT NULL;
BEGIN N
~ ' TF (SELECT COUNT(*) FROM PERSON) = 0
BEGIN ' ‘
SELECT * INTO xxxx FROM FACULTY;
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN '
msg = "The following tuples in FACULTY’ +
*do not have references in PERSON’;

MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;
END; ' '
END
ELSE
BEGIN _
SELECT * INTO xxxx FROM FACULTY
WHERE NOT EXISTS (SELECT * FROM PERSON
. WHERE FACULTY.SSN = PERSON.SSN);
IF (SELECT COUNT(*) FROM xxxx) !=0
BEGIN ,
msg = "The following tuples in FACULTY’ +
*do not have references in PERSON’;
MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;
END;
END;
END;
o h . :
' CREATE PROCEDURE check_COURSE AS
DECLARE '
msg VARCHAR(256) NOT NULL;
BEGIN ' '

IF (SELECT COUNT(*) FROM FACULTY) = 0
BEGIN
SELECT * INTO xxxx FROM COURSE
WHERE COURSE.FACULTY_SSN IS NOT NULL; .
IF (SELECT COUNT(*) FROM xxxx) != 0 '
BEGIN
msg = "The following tuples in COURSE’ +

Technical Report LBL—-27843 ' May 1991

27

SDT 4.1

END;
\go

END
ELSE
BEGIN

END;

*do not have references in FACULTY’;
MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;
END;

SELECT * INTO xxxx FROM COURSE
WHERE COURSE.FACULTY_SSN IS NOT NULL
AND NOT EXISTS (SELECT * FROM FACULTY

WHERE COURSE.FACULTY_SSN = FACULTY.SSN);

IF (SELECT COUNT(*) FROM xxxx) !=0
BEGIN
msg = "The following tuples in COURSE’ +
*do not have references in FACULTY’;
MESSAGE :msg; '
SELECT * FROM xxxx;
DROP TABLE xxxx;
END;

IF (SELECT COUNT(*) FROM DEPARTMENT) =0

BEGIN

END
ELSE
BEGIN

END;

SELECT * INTO xxxx FROM COURSE
WHERE COURSE.DEPARTMENT_NAME IS NOT NULL;
IF (SELECT COUNT(*) FROM xxxx) !=0
BEGIN
msg = "The following tuples in COURSE’ +
*do not have references in DEPARTMENT";
MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;
END;

SELECT * INTO xxxx FROM COURSE
WHERE COURSE.DEPARTMENT_NAME IS NOT NULL
AND NOT EXISTS (SELECT * FROM DEPARTMENT

Execution

WHERE COURSE.DEPARTMENT_NAME = DEPARTMENT. NAME),

IF (SELECT COUNT(*) FROM xxxx) !=0
BEGIN
msg = "The following tuples in COURSE’ +
’do not have references in DEPARTMENT’;
MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;
END;

Technical Report LBL—27843 May 1991

28

SDT 4.1 - : Execution

CREATE PROCEDURE check_all AS
BEGIN
EXECUTE PROCEDURE check_FACULTY;
' * EXECUTE PROCEDURE check_ COURSE;
END;
o
\quit

Technical Report LBL-27843 May 1991 .29

SDT 4.1 The Meiadatabase

V. THE METADATABASE

The metadatabase schema consists of four main parts regarding : (1) the description of EER sche-
mas; (2) the description of relational schemas; (3) the mapping of EER into relational schemas; and (4)

subject term structures and associations.

5.1. Schemas and Mappings.

The metadatabase schema part regarding the description of EER schemas, the description of rela-
tional schemas, and the mapping of EER into relational schemas is shown in figure 5.1 and is self-

explanatory.

5.2. Subject Terms.

Let DB denote a relational database associated with an EER schema. Object-sets, attributes, and

object instances represented in DB can be associated with subject terms as follows:

1. The subject terms related to object-sets are grouped into an object-set called OBJECT-SET SUBJECT
TERMS represented in the metadatabase associated with DB, as shown in figure 5.2. The subject
terms related to attributes are grouped into an object-set called ATTRIBUTE SUBJECT TERMS

represented in the metadatabase associated with DB, as shown in figure 5.2.

2. An object-set or attribute represented in DB, can be associated with one or several subject terms
from OBJECT-SET SUBJECT TERMS or ATTRIBUTE SUBJECT TERMS, respectively. These associa-
tions are specified during the process of defining the schema for DB, and are stored in the metadata-
base as instances of the relationship-sets OBJECT SUBJECT ASSOCIATION and ATTRIBUTE SUB-
JECT ASSOCIATION, respectively.

3. Subject terms of both object-set OBJECT-SET SUBJECT TERMS and object-set ATTRIBUTE SUB-
JECT TERMS can be organized in a classification hierarchy by associating every subject term with its
broader and narrower terms. These classifications are represented as instances of relationship-sets
OBJECT SUBJECT CLASSIFICATION and ATTRIBUTE SUBJECT CLASSIFICATION, respectively, as
shown in figure 5.2. '

4. Object-set and attribute subject terms are grouped together into an objéct-set called GLOBAL SUB-
JECT TERMS as shown in figure 5.2. Global subject terms can also be organized in a classification
hierarchy by associating every global subject term with its broader and narrower terms, where these
classifications are represented as instances of relationship-set GLOBAL SUBJECT CLASSIFICATION
(see figure 5.2). |

Technical Report LBL-27843 May 1991 30

SDT 4.1 o ' ‘ The Metadatabase

EER Schema » Mapping Relational Schema

CONNECTION
MAPPING

Role t—= Update Rule
M| Connection Type <— M M > Delete Rule M
Existence Type «— - L Insert Rule
OBIJECT OBJECT-SET RELATION | ID RELATION
SET MAPPING SCHEME KEYS
Name «— _ L—> Name " = Number
Description «<— D D M [|HAS Lo Type
OBIJECT RELATIONAL KEY
ATTRIBUTE [1 U M| A ATTRIBUTE
MAPPING TTRIBUTE
Name <« 4} T L Name
Null Rule <— - 5 M| L NullRuke
Description -—
2 <>
1 1

VALUE-SET

DOMAIN

Name SET"

Description
—s= Name

— Description

VALUE VALUE
FORMAT RANGES
Code -—] Code =—

Description ~— Lower Bound «—

Upper Bound «—

Description «e—

Figure 5.1. The Metadatabase: Information on the EER and Relational Schemas, and their Mapping.

Technical Report LBL-27843 ' May 1991 _ 31

SDT 4.1 The Metadatabase

5. - The'instances of an entity-set E represented in DB can be associated with subject terms by grouping
these instances into specialization entity-sets of E. Accordingly, the classification of subject terms
associated with entity-set instancés is represented by relationships of the relationship-set OBJECT-
SET CONNEC_TIONS of the meta&atabase assbciated with DB (see figure 5.2), where attribute TYPE
is equal to ISA. o

Subject terms are used for grouping related object-sets or attributes together by subject term, and are

employed for schema browsing.

GLOBAL

BROADER SUBJECT. NARROWER
TERM CLASSIFICATION TERM
—3s Name
—== Description
M GLOBAL SUBJECT M

TERMS
OBIJECT : .
BROADER SUBJECT ' NARROWER BROADER NARROWER .
CLASSIFICATION CLASSIFICATION
ISA ISA
M M : M M
OBJECT-SET — ATTRIBUTE
SUBIJECT TERMS ' SUBJECT TERMS
OBIJECT
SUBJECT
ASSOCIATION ASSOCIATION
D
OBJECT SET OBIJECT ATTRIBUTE

Figure 5.2. The Metadatabase: Subject Terms and Classifications.

Technical Report LBL-27843 May 1991 \ 32

SDT 4.1 The Metadatabase

5.3. The SDT File for Metaschema Definition.

The input file ‘for SDT contaxmng the (ﬁxed) definition of the metadatabase schema is provided as
part of the SDT package. The only part of this definition that must be adapted to the underlying DBMS
are the attribute datatypes. For example, the SDT input file contatining the schema definition of a meta-
database intended for SYBASE is given below:

28
RELATION_KEYS(E)
ATTRS: Number(ID, "", , int NO NULLS), Type(, "", , char(30) NO NULLS)
ARCS: RELATION_SCHEME(ID,)
DESCR: "";
HAS(R)
ARCS: OBJ ECT_A'I"I'RIBUTE(DM',), VALUE_SET(ONE,)
DESCR: "";
OBJECT_SET(E)
ATTRS: NAME(ID, ", , char(30) NO NULLS), Description(, "", , varchar(255) NULLS ALLOWED)
DESCR: "Entity and Relationship Sets.";
RELATION_SCHEMEC(E)
ATTRS: NAME(ID, ", , char(30) NO NULLS)
DESCR: "";
REFERENTIAL_INTEGRITY(R)
ATTRS: Insert_Rule(, ™", , char(30) NULLS ALLOWED), Delete_Rule(, "", , char(30) NULLS ALLOWED),
Update_Rule(, "", , char(30) NULLS ALLOWED)
ARCS: RELATION_SCHEME(M, TO), RELATION_KEYS(M; FROM)
DESCR: "";
OBJECT_CONNECTION(R)
ATTRS: Role(ID, "", , char(30) NO NULLS), Connection_Type(, "", , char(30) NO NULLS),
Existence_Type(, "", , char(30) NULLS ALLOWED) '
ARCS: OBJECT_SET(M, FROM), OBJECT_SET(M, TO)
DESCR: "";
CONNECTION_MAPPING(R)
ARCS: OBJECT_CONNECTION(ONE,), REFERENTIAL_INTEGRITY(D1,)
DESCR: "";
VALUE_SET(E) _
ATTRS: Name(ID, ", , char(30) NO NULLS), Description(, "", , varchar(255) NULLS ALLOWED)
DESCR: ""; .
OBJECT_SET_MAPPING(R)
ARCS: OBJECT_SET(M,), RELATION_SCHEME(D1,)
DESCR: "";

Technical ‘Report LBL—-27843 May 1991 33

SDT 4.1 ‘ The Metadatabase

OBJECT_ATTRIBUTE(E)
ATTRS: NAME(D, "", , char(30) NO NULLS), Null_Rule(, "", , char(30) NULLS ALLOWED),
" Description(, ", , varchar(255) NULLS ALLOWED)
ARCS: OBJECT_SET(D,)
DESCR: "Attributes for Entity and Relationship Sets.";
RELATIONAL_ATTRIBUTE(E)
ATTRS: NAME(ID, "", , char(30) NO NULLS), Null Rule(", char(30) NULLS ALLOWED)
ARCS: RELATION_SCHEME(ID,)
DESCR: "";
DOMAIN(E) : '
ATTRS: NAME(ID, "", , char(30) NO NULLS), Description(, "", , char(120) NULLS ALLOWED)
DESCR: "";
WITH_A(R) ‘ ,
ARCS: RELATIONAL_ATTRIBUTE(DM,), DOMAIN(ONE,)
DESCR: ""; '
ATTRIBUTE MAPPING(R)
ARCS: OBJECT_ATTRIBUTE(ONE,), RELATIONAL A’I'I'RIBUTE(DM)
" DESCR: "";
VALUE_SET_MAPPING(R)
ARCS: VALUE_SET(ONE,), DOMAIN(DI,)
DESCR: "";
KEY_ATTRIBUTE(R)
ARCS: RELATIONAL_ATTRIBUTE(M,), RELATION_KEYS(DM, IN)
DESCR: "";
WITH_FORMAT(R)
ARCS: VALUE_SET(M,), VALUE_FORMAT(M,)
~ DESCR:"";
CONSISTS OF(R)
ARCS: VALUE_SET(M,), VALUE RANGES(M)
DESCR: ";
VALUE FORMAT(E)
ATTRS: Code(ID ", char(30) NO NULLS) Description(, ™", , varchar(255) NO NULLS)
DESCR: "Format of Value Set.";
VALUE_RANGES(E)
ATTRS: Code(D, ", , char(30) NO NULLS), Upper_Bound(, "",, varchar(255) NULLS ALLOWED),
Lower_Bound(, "", , varchar(255) NULLS ALLOWED),
Description(, "", , varchar(255) NULLS . ALLOWED)
DESCR: "Ranges of Value Set.";
GLOBAL_SUBJ_TERM(E)
ATTRS: NAME(ID, "", , char(30) NO NULLS)
DESCR: "";

“Technical Report LBL—27843 May 1991 T34

SDT 4.1 The Metadatabase

OBJ_SUBJ_TERM(E)

ATTRS: Description(, "Description of object subject term.", , varchar(255) NULLS ALLOWED)
ARCS: GLOBAL_SUBJ_TERM(ISA,)
DESCR: "Object Set Subject Term";

ATTR_SUBJ_TERM(E)
ATTRS: Description(, "Description of attribute subject term.", , varchar(255) NULLS ALLOWED)
ARCS: GLOBAL_SUBJ_TERM(ISA,)
DESCR: "Attribute Subject Terms";

OBJ_SUBJ_CLASS(R)
ARCS: OBJ_SUBJ_TERM(M, BROADER), OBJ_SUBJ_TERM(M, NARROWER)
DESCR: "";

ATTR_SUBJ_CLASS(R)
ARCS: ATTR_SUBJ_TERM(M, BROADER), ATTR_SUBJ_TERM(M, NARROWER)
DESCR: " ";'

OBJ_SUBJ_ASSOC(R)
ARCS: OBJ_SUBJ_TERM(M,), OBJECT_SET(M,)
DESCR: "";

ATTR_SUBJ_ASSOC(R) ‘
ARCS: ATTR_SUBJ_TERM(M,), OBJECT_ATTRIBUTE(M,)
DESCR: ""; o '

- GLOBAL_SUBJ_CLASS(R)

ARCS: GLOBAL_SUBJ_TERM(M, BROADER), GLOBAL_SUBJ_TERM(M, NARROWER)
DESCR: "";

54. The SDT Metadata Output File.

As mentioned in the previous section, SDT generates a file containing metadata embedded in inser-
tion operations appropriate for the underlying DBMS. The name of this file is ‘‘*_meta.s’’ for SYBASE,
‘*_meta.i”’ for INGRES, and ‘‘*_meta.x”’ for INFORMIX, respectively.

For example, the metadata file corresponding to the EER schema described in section 2, and the

abstract relational schema described in section 4.2.2, for a SYBASE metadatabase is given below:

File ExSybase_meta.s

use Meta_ExSybase

g0 ’

insert OBJECT_SET(NAME, Description)
values("PERSON", "")

go

insert OBJECT_SET(NAME, Description)

- values("FACULTY", "Faculty members")

go

insert OBJECT_SET(NAME, Description)
values("DEPARTMENT", "")

go

Technical Report LBL-27843 May 1991 ' 35

SDT 4.1 The Metadatabase

insert OBJECT_SET(NAME, Description)
values("COURSE", "ll)
go
insert OBJECT_SET(NAME, Description)
values("TEACH", "Represents assignments of faculty members to offered courses™)
g0
insert OBJECT_SET(NAME, Description)
values("OFFER", "Represents offering of courses by departinents™)
go
insert OBJECT_ATTRIBUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)
values("PERSON", "SSN", "NO NULLS", "Social Security Number; Used as unique identifier.")
go B o : .
insert OBJECT_ATTRIBUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)
values("PERSON", "NAME", "NULLS ALLOWED", "First and Last Name")
g0 , ..
insert OBJECT_ATTRIBUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)
values("FACULTY", "RANK", "NULLS ALLOWED", "Rank of faculty members™) -
go ‘ . : .
insert OBJECT_ATTRIBUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)
values("DEPARTMENT", "NAME", "NO NULLS", "Name of Department")
go
insert OBJECT_ATTRIBUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)
' values("COURSE", "NUMBER", "NO NULLS", "Course number")
go » ») .
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET_NAME, Role,
Connection_Type, Existence_Type)
values("FACULTY" "PERSON", "INONE!", "ISA", null)
go ,
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET_NAME, Role,
Connection_Type, Existence_Type)
values("TEACH" "OFFER", "{INONE!", "REL", null)
g0 .
insert OBJECT_CONNECTION(FROM_OBJECT_SET _NAME, TO_OBJECT_SET_NAME, Role,
Connection_Type, Existence_Type)
values("TEACH", "FACULTY", "INONE!", "REL", null)
go)) . _
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET_NAME, Role,
Connection_Type, Existence_Type)
-values("OFFER", "COURSE", "!NONE!", "REL", null)
go .
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET_NAME, Role,
Connection_Type, Existence_Type)
values("OFFER" "DEPARTMENT", "INONE!", "REL" null)
go
insert RELATION_SCHEME(NAME)
values("PERSON")
g0
insert RELATION_SCHEME(NAME)
values("FACULTY")
go
insert RELATION_SCHEME(NAME)

Technical Report LBL—-27843 May 1991 . 36

SDT 4.1 The Metadatabase

~ values("DEPARTMENT")
go
insert RELATION_SCHEME(NAME).
- values("COURSE") .
go
insert RELATION_SCHEME(NAME)
values("TEACH") -

go

insert RELATION_SCHEME(NAME)
values("OFFER") '

go

insert RELATIONAL A'I'I'RIBUTE(RELATION SCHEME_NAME, NAME, Null_Rule)
' values("PERSON", "SSN", "not null")
go
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME, Null_Rule)
' values("PERSON", "NAME", "null")
go
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME, Null_Rule)
values("FACULTY", "SSN", "not null")
go '
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME, Nuil_Rule)
values("FACULTY", "RANK", "null")
g0
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME Null Rule)
values("DEPARTMENT", "NAME", "not null")
go
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME, Null_Rule)
values("COURSE", "FACULTY_SSN", "null")
go '
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_NAME, NAME, Null_Rule)
“values("COURSE", "DEPARTMENT_NAME", "null")
. 80. S
insert RELATIONAL_ATTRIBUTE(RELATION_SCHEME_ NAME, NAME, Null_Rule)
values("COURSE", "NUMBER", "not null")
g0
insert OBJECT_SET_MAPPING(OBJECT_SET_NAME, RELATION_SCHEME_NA