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Relaxation dynamics of the toric code in contact with a thermal reservoir: finite-size
scaling in a low temperature regime
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1Berkeley Quantum Information & Computation Center,
University of California, Berkeley, CA 94720, USA

2Department of Chemistry, University of California, Berkeley, CA 94720, USA
3Department of Physics, University of Vermont, Burlington, VT 05405, USA
4Department of Physics, University of California, Berkeley, CA 94720, USA

(Dated: September 22, 2018)

We present an analysis of the relaxation dynamics of finite-size topological qubits in contact
with a thermal bath. Using a continuous-time Monte Carlo method, we explicitly compute the
low-temperature nonequilibrium dynamics of the toric code on finite lattices. In contrast to the
size-independent bound predicted for the toric code in the thermodynamic limit, we identify a low-
temperature regime on finite lattices below a size-dependent crossover temperature with nontrivial
finite-size and temperature scaling of the relaxation time. We demonstrate how this nontrivial
finite-size scaling is governed by the scaling of topologically nontrivial two-dimensional classical
random walks. The transition out of this low-temperature regime defines a dynamical finite-size
crossover temperature that scales inversely with the log of the system size, in agreement with a
crossover temperature defined from equilibrium properties. We find that both the finite-size and
finite-temperature scaling are stronger in the low-temperature regime than above the crossover
temperature. Since this finite-temperature scaling competes with the scaling of the robustness
to unitary perturbations, this analysis may elucidate the scaling of memory lifetimes of possible
physical realizations of topological qubits.

I. INTRODUCTION

The fact that the potential power of a large scale quan-
tum computer has not yet been realized experimentally
is due largely to the fragility of quantum information.
A “conventional” quantum computer stores quantum in-
formation in spatially localized qubits–consequently local
noise can generate errors that destroy the locally stored
quantum information. The theoretical possibility of a
fault tolerant quantum computer is well understood in
the literature; in general this requires building redun-
dancy into the experimental systems such that errors
can be detected and corrected. Although fault tolerance
via such active error correction is theoretically feasible,
the overhead required to perform active error correction
has thus far kept a large scale quantum computer out of
reach.

An alternative approach to fault-tolerant quantum
computing is based on building physically robust quan-
tum hardware with passive error correction. The no-
tion of a topological quantum computer builds on the
possibility of storing quantum information nonlocally in
a robust quantum phase of matter with topological or-
der1–4; consequently, these phases of matter appear to
hint at the potential design of a self-correcting quan-
tum computer. Indeed, while in equilibrium with a ze-
rotemperature reservoir, a topological qubit is “topolog-
ically protected,” in that errors due to local perturba-
tions are suppressed exponentially in the system size.
Despite this promise, subsequent work has demonstrated
that topological phases in two dimensions (2D) are ther-
mally fragile because topological order is destroyed at
any nonzero temperature5–9. While higher-dimensional

topological phases are robust at finite temperature10–17,
it is only in 2D that such phases can act as a universal
quantum computer based on topologically protected op-
erations1,4,18–20. This shortcoming seems to preclude the
possibility of a universal topologically protected quantum
computer.

Accordingly, the 2D toric code fails to be a true fault-
tolerant quantum memory in 2D1,21–29. However, while
topological order is destroyed at any finite tempera-
ture in the thermodynamic limit, on a finite-size sys-
tem the topological order of the toric code neverthe-
less persists up to a finite-size crossover temperature5.
This suggests the possibility of operating a topological
qubit in a low-temperature regime where topological or-
der persists due to finite-size effects. While finite-size
effects reduce the zero-temperature robustness to uni-
tary perturbations1, the existence of a lowtemperature
regime below the crossover temperature suggests that
such finite-size effects may increase the thermal robust-
ness. Consequently, characterizing how the memory life-
time of a topological qubit depends on finite-size effects,
especially in the low-temperature regime, is of practical
importance.

In this paper, we use real-time Monte Carlo simula-
tions to study the relaxation dynamics of finite-size topo-
logical qubits defined by the toric code, in contact with a
thermal reservoir. Previous work using related methods
focused on the high-temperature scaling of decoherence
times30–33; here we focus on the dynamics at low temper-
atures. We find a low-temperature regime that is well de-
scribed by thermal relaxation dominated by quasiparticle
pairs undergoing topologically nontrivial random walks.
At higher temperatures, the decoherence is dominated
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by local creation and annihilation of quasiparticle pairs.
The transition between these two regimes allows for a dy-
namical definition of the crossover temperature T ∗. We
find that T ∗ ∼ 1/ lnN , which agrees with the scaling
of a transition temperature defined from the topologi-
cal entanglement entropy at equilibrium5. Additionally
we find that both the finite-size and finite-temperature
scaling are stronger below than above T ∗.

The structure of this paper is the following: in Sec. II
we present the relevant background of the toric code; Sec.
III introduces a microscopic master equation of the toric
code interacting with a bath as well as an effective model
of the low-temperature dynamics; Sec. IV presents a
numerical study of topologically nontrivial random walks
on a torus that we use to construct the low-temperature
effective model; and, finally, Sec. V presents a numerical
study of the microscopic master equation for the toric
code interacting with a bath and an analysis of these
results in comparison with the low-temperature effective
model.

II. THE TORIC CODE

A. The toric code Hamiltonian

The toric code provides a simple exactly soluble model
with a topologically ordered ground state that may pro-
vide topologically protected qubits at T = 01,21. The
toric code is defined on a square lattice, where Ising spins
sit on the links of the lattice. We define the linear dimen-
sion of the lattice as L and the number of spins N = 2L2.
The Hamiltonian involves four-spin interactions around
the plaquettes and vertices of the lattice:

HTC = −Je
∑
v

Av − Jm
∑
p

Bp, (1)

Av ≡
∏
j∈v

σzj , Bp ≡
∏
j∈p

σxj , (2)

where the sums over v and p are over the vertices and
plaquettes of the lattice, respectively (see Fig. 1). The
ground states are the +1 eigenstate of all Av and Bp op-
erators, since all such operators commute. On a torus,
there are four degenerate ground states that are distin-
guished by the expectation values of non-local winding
operators W x

1,2,W z
1,2:

W x
1,2 ≡

∏
j∈Γ1,2

σxj , W z
1,2 ≡

∏
j∈Γ̃1,2

σzj , (3)

where Γ1,2 and Γ̃1,2 are topologically non-trivial loops
along the links and plaquettes of the lattice, respectively,
that wind around each of the two axes of the torus. There
is a finite gap ∆e,m = 4Je,m to excited states that are
−1 eigenstates of some Av and/or Bp. These correspond
to e-type and m-type anyonic quasiparticle excitations,
respectively1.

FIG. 1. The vertex (Av) and plaquette (Bp) operators of the
toric code as defined in (2). Edges marked in red are operated
on by σx while those marked in blue are operated on by σz.

B. The toric code as a quantum memory

Consider theW z
1,2 basis for the degenerate ground state

subspace; we may label the four ground states by the
eigenvalues of W z

1,2:

{
|Ψ0〉

}
=
{∣∣Ψ++

0

〉
,
∣∣Ψ−+

0

〉
,
∣∣Ψ−+

0

〉
,
∣∣Ψ−−0

〉}
, (4)

where +/− represent the ±1 eigenstates of W z
1 and W z

2 ,
respectively. We choose this basis to be the logical basis
for a two qubit quantum memory. To simplify the discus-
sion of errors we will consider the limit Jm →∞, so that
only e-type quasiparticles have finite energy. The lowest
excited eigenstates have a single pair of localized e-type
quasiparticles which are connected to a ground state by
operation of an error string:

|ev, ev′〉 = Sx
[
Γv,v′

]∣∣Ψ0

〉
, Sx

[
Γv,v′

]
≡

∏
j∈Γv,v′

σxj . (5)

Here, v and v′ are the vertices where the quasiparticles
are located and the string Γv,v′ connects v and v′. Error
strings that form topologically non-trivial loops generate
the W x

1,2 operators and drive transitions between ground
states; such error strings create noncorrectable errors,
i.e., errors in the logical subspace that cannot be cor-
rected. Correctable errors, or self-correcting errors, are
those error strings that close without causing a change
in winding number.

Under local perturbations to HTC, such topologically
nontrivial error strings only occur at order L in perturba-
tion theory; consequently both the splitting of the ground
state degeneracy and transitions between ground states
are suppressed exponentially, and thus this ground state
subspace is “topologically protected” from such unitary
perturbations34–41. The toric code can thus act as a self-
correcting quantum memory at zero temperature.
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C. The toric code at finite temperatures

Despite the topological protection at zero temperature,
in the thermodynamic limit the topological order of the
toric code is destroyed at any finite temperature5,6. Con-
sequently, a topological qubit would be thermally fragile.
While topologically nontrivial error strings due to unitary
perturbations are exponentially suppressed in the sys-
tem size, non-trivial error strings may also be generated
by non-unitary perturbations, e.g., from contact with a
thermal reservoir. Non-correctable errors due to non-
unitary perturbations are not exponentially suppressed
in the system size.

The thermal fragility of the 2D toric code can be under-
stood from a simple picture of the dissipative dynamics
generated from local interactions with an external bath.
A local system-bath interaction can generate a trivial er-
ror string by flipping a single spin, thus creating a single
pair of neighboring quasiparticles:

σxj |Ψ0〉 = |ev, ev′〉 (6)

where v and v′ are the vertices on either end of the link
j. The rate of such a process is suppressed exponentially
in the inverse temperature, due to the energy gap ∆ to
such excited states. Such a trivial error is correctable by
applying another σxj . However, additional trivial error
strings σxj′ with j 6= j′ applied to v or v′ will generate a
longer, non-trivial error string at no energy cost. Conse-
quently, local coupling to a bath can drive a random walk
of quasiparticle pairs around the lattice with a rate that
is only suppressed by a single Boltzmann factor. Such
random walks may generate topologically nontrivial er-
ror loops and return the system back to the ground state
subspace. If an error loop has an odd winding num-
ber, this error loop has caused a non-correctable error
by driving a transition between ground states. Alter-
natively, if the error loop has an even winding number,
the error is self-correcting. Indeed, Alicki et al. have
placed a system-size-independent upper bound on the
relaxation time of a pure toric code ground state that
explicitly demonstrates this thermal fragility of the toric
code in the thermodynamic limit23,24. Additionally, the
analysis of Nussinov and Ortiz demonstrates the lack of
“spontaneous topological symmetry breaking” at finite-
temperature, as the autocorrelation time of the winding
operators is sub-exponential in lattice dimension in the
thermodynamic limit6,42.

D. Crossover temperature

While the toric code is thermally fragile at all non-zero
temperatures in the thermodynamic limit, we can also
consider how this fragility is affected by the finite size of
a lattice. As outlined above, the dissipative error pro-
cesses which lead to thermal fragility occur when there
is a single quasiparticle pair present. Since the number

of excitations in equilibrium is suppressed by the Boltz-
mann factor at low temperatures, we expect that at suf-
ficiently low temperatures the number of quasiparticles
in equilibrium will be vanishingly small. We can then de-
fine an equilibrium crossover temperature T ∗eq which dis-
tinguishes the thermally fragile regime from a low tem-
perature regime with reduced dissipative error processes
by:

Ne−∆/T∗eq ∼ 1⇒ T ∗eq ∼
∆

lnN
. (7)

Castelnovo and Chamon define an equilibrium
crossover temperature T ∗eq above which the topological

entanglement entropy vanishes5. They find that this
equilibrium definition of T ∗ scales inversely with the log
of the system size, and that this becomes a zero temper-
ature phase transition in the thermodynamic limit. Con-
versely, on a finite sized system the crossover temperature
T ∗ defines a low temperature regime where topological
order persists as a finite-size effect. This opens the pos-
sibility of using finite-size effects to exploit the zero tem-
perature topological order at finite temperatures. The
usefulness of this low temperature regime for quantum
information processing depends on the scaling of the re-
laxation time in this regime. Robustness to unitary per-
turbations requires a sufficiently large system size to min-
imize the splitting of the degeneracy and the matrix ele-
ments between ground states, while the thermal fragility
increases with system size. Thus one may expect that
there is an optimal size for computational performance.

Below, we directly address this question of the finite-
size scaling of the relaxation time of a toric code ground
state in contact with a thermal reservoir. This analysis
complements the growing literature concerning active er-
ror correction on the toric code by use of the stabilizer
space and associated stabilizer operations21,25,27,43. Usu-
ally, stabilizer error analysis is considered in the context
of effectively infinite temperature thermal instability30,
in contrast to the finite-temperature dynamics presented
here. A complete toolkit for understanding and control-
ling errors in physical implementations of the toric code
would need a predictive low temperature model, as well
as a recipe for understanding how the fidelity of stabilizer
operations affects the finite temperature operation of the
toric code. Here we focus on the robustness of the passive
error correcting (i.e., self-correcting) dynamics under the
action of the toric code Hamiltonian in contact with a
thermal reservoir.

III. DYNAMICS OF THE TORIC CODE IN
CONTACT WITH AN EXTERNAL BATH

A. Microscopic Quantum Master Equation

We present a microscopic model of the real-time non-
equilibrium dynamics of the toric code in contact with
a thermal reservoir. Due to the fact that the spectrum
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FIG. 2. A torus with a self-correcting error string (left) and
an uncorrectable error string (right).

of HTC has a finite gap to excited eigenstates with lo-
calized quasiparticle excitations, such dynamics may be
described by a Lindblad master equation23,24:

ρ̇ =
∑
ω

2cωρc
†
ω − c†ωcωρ− ρc†ωcω, (8)

here ρ is the toric code system density matrix and {cω}
is a set of Lindblad operators generated by local system-
bath interactions. We will consider the limit where Jm �
Je, such that at low temperatures the system will remain
in the +1 eigensector of all Bp operators and only e-
type quasiparticles will be excited by the reservoir. We
will only consider local system-bath couplings, for which
the bath generates single spin flips in the system. The
relevant Lindblad operators are:

{cω} =
{√

γ0T
e
vv,
√
γ+E

e†
vv,
√
γ−E

e
vv

}
(9)

where Ee†vv′ (Eevv′) creates (annihilates) a pair of quasipar-
ticles at neighboring vertices and T evv′ translates a quasi-
particles across a link. These operators are defined by:

Ee†vv′ =
1

4
σxvv′ (1−Av) (1−Av′) ,

T evv′ =
1

4
σxvv′ (1−Av) (1 +Av′) . (10)

Since the Lindblad form of the master equation only
connects diagonal elements of the density matrix ρ to
other diagonal elements, expectation values of diagonal
elements will evolve independently of off-diagonal density
matrix elements. Correspondingly, the time evolution of
diagonal matrix elements reduces to a classical master
equation:

dPn
dt

= γ0

∑
n0

(Pn0 − Pn) +
∑
n+

(
γ−Pn+ − γ+Pn

)
+
∑
n−

(
γ+Pn− − γ−Pn

)
(11)

where n labels an eigenstate of HTC, Pn = ρnn are the
diagonal matrix elements (probabilities) and {γ0, γ+, γ−}
are the rates at which the operators {T e, Ee†, Ee} act,
respectively. Similarly, in (11), for a given n, the indices
of n0, n+, and n− label the sets of eigenstates connected

to |n〉 by the operators T e, Ee†, and Ee, respectively.
The ratio γ+/γ− is fixed by detailed balance to be

γ+

γ−
= e−∆/T (12)

but the nature of the bath and the coupling strength
determines γ0 and the magnitude of γ− (or equivalently
γ+).

We consider here an Ohmic, Markovian bath with a
power spectrum given by:

J (ω) = ωe−
ω
ωc (13)

with ωc a high frequency cutoff much larger than Je. Tak-
ing wc to infinity gives rise to decay rates of the form30:

γ (ω) = ξ

∣∣∣∣ ω

1− e−βω
∣∣∣∣ (14)

where ξ sets the strength of the phenomenological
system-bath coupling. This leads to the following rates:

γ0 ≡
ξ

β
, γ+ =

ξ∆

eβ∆ − 1
, γ− =

ξ∆

1− e−β∆
. (15)

We are most interested in the dynamics deriving from
the initial condition of a pure ground state. We charac-
terize the relaxation from a pure ground state by consid-
ering the time evolution of the expectation value of the
winding operators:〈

WZ
1,2 (t)

〉
≡ Tr

[
ρ (t)WZ

1,2

]
. (16)

The population dynamics are governed by the creation
of quasiparticle pairs that undergo random walks on the
torus and then annihilate. Thermal transitions between
ground states occur when the quasiparticle pair under-
goes a topologically non-trivial random walk before an-
nihilating. The decay of the expectation values in (16)
from their values in a pure state with eigenvalue ±1 can
be due to both topologically nontrivial random walks
generating transitions between ground states, as well as
transitions to excited states via propagating, open error
strings. Consequently, the statistics of such topological
random walks affect the scaling of the lifetime of a ground
state.

B. Comparison to Ising Model Dynamics

Nussinov and Ortiz showed that one can take advan-
tage of the equivalence of the partition function of the
toric code and that of 1D classical Ising chains to com-
pute equilibrium properties of the toric code6,42. How-
ever, one can not readily take advantage of this map-
ping for the study of non-equilibrium properties. While
the partition function is only a function of the spectrum
of the system, non-equilibrium dynamics depend on the
nature of the (local) coupling to the external reservoir.
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Since the mapping of the toric code to an Ising chain
maps a 2D model onto a 1D model, local couplings of
the toric code to an external reservoir in general can
lead to non-local couplings in the corresponding Ising
model. Thus, a simple model of the 1D non-equilibrium
dynamics of the Ising chains locally coupled to an exter-
nal bath cannot describe the non-equilibrium dynamics
of the toric code with a local bath coupling. Fundamen-
tally, the dynamics of each system at low temperatures
are governed by the random walk of defects (anyons in the
toric code, domain walls in the Ising models); the defects
of the Ising model undergo 1D random walks, whereas
those of the toric code undergo 2D random walks. Con-
sequently, we cannot directly compute the finite-size re-
laxation times of the toric code ground states from an
analysis of the dynamics of the Ising chain. It is never-
theless useful to discuss the nature of thermal relaxation
in a finite-sized Ising chain to help inform our discussion
of such dynamics in the toric code.

Consider a periodic 1D chain of L classical Ising spins
si = ±1 with energy

E = −J
∑
i

sisi+1, (17)

where J > 0 is a ferromagnetic coupling constant. The
ground state of (17) is a ferromagnet, but the long range
order is destroyed at all nonzero temperatures. Exci-
tations above the degenerate ground states are pairs of
domain walls with energy cost ∆ = 4J . If a pair of
domain walls undergoes a topologically non-trivial 1D
random walk, this drives a thermal transition between
ground states, which is we will refer to as “ground state
relaxation”. At sufficiently low temperatures on a finite-
sized system, we can expect that these 1D topologically
nontrivial walks will dominate the relaxation time of the
magnetization. Such a low temperature regime must oc-
cur when there is less than a single pair of defects in
equilibrium:

L · e−∆/T � 1. (18)

At low enough temperatures, there may be a separation
of time scales such that γ+ � γ0 � γ−. Intuitively, the
domain wall production rate, γ+, can be tuned much less
than the domain wall annihilation rate, γ−, simply by
lowering the temperature (c.f. (12)). For certain choices
of bath model, the domain wall hopping rate, γ0, can be
tuned between the latter two rates. On a finite size lattice
the time scale for an extensive random walk of the defects
can be estimated by the diffusion equation to be of the
order of L2/γ0. We consider the low temperature regime
of a finite size lattice where γ+ � γ0/L

2. In this limit,
the rate of topologically nontrivial walks occurring is de-
termined by the rate of production of defect pairs and by
the probability that such pairs undergo a topologically
nontrivial walk before annihilating. This is because any
domain wall pairs which proceed to an extensive random
walk will carry out their walk and annihilate much faster
than another pair of defects will be created.

We consider only the lowest order processes at first or-
der in γ+. Once a defect pair is created, the probability
of the pair separating instead of trivially annihilating is
of the order of γ0/γ−. The lowest order processes will an-
nihilate upon their first return to neighboring links. Pro-
cesses for which the defect pair do not annihilate after
the first return to neighboring links will occur at higher
order in γ0/γ−. Consequently the overall order of these
lowest order processes is γ+γ0/γ−. We may then intro-
duce a phenomenological form of the relaxation rate from
a ferromagnetic ground state:

ΓIsing(β,N) ∼ γ0 · e−∆/T · L · PΩ
1D (L) . (19)

The linear scaling in L arises from the number of lo-
cations for domain wall pairs to be created. The factor
PΩ

1D(L) is the probability that any given domain wall that
does not immediately annihilate eventually undergoes a
topologically nontrivial random walk. A symmetry argu-
ment shows that PΩ

1D(L) ∼ L−1 (see Appendix B). This
linear scaling of PΩ

1D(L) suggests that the relaxation rate

of the Ising model is size independent: ΓIsing ∼ γ0·e−∆/T .
In Ref. 44 Glauber solved the exact dynamics of the

Ising chain in contact with a thermal reservoir. Glauber
uses a bath where γ0 is taken to be a constant and

γ0

γ−
=

1

2

1

1− e−∆/T
. (20)

The relaxation time of this model is found to be

ΓGlauber =
γ0

1 + e∆/T
(21)

At low temperatures, ΓGlauber ≈ γ0e
−∆/T , in agreement

with the expected size independent form of the low tem-
perature single defect pair model(19), despite the fact
that γ0/γ− � 1 is not satisfied.

C. Low temperature phenomenological dynamics

We can now make an analogous argument for the toric
code. At sufficiently low temperatures on a finite-sized
lattice, the relaxation rate from a ground state should be
dominated by the dynamics of a single quasiparticle pair.
Transitions between ground states are generated by pairs
of excitations that annihilate after undergoing a topolog-
ically non-trival 2D random walk with an odd winding
number. The low temperature regime dominated by sin-
gle defect pairs occurs when

L2 · e−∆/T � 1. (22)

We consider a separation of time scales for the Ohmic
bath defined by (15):

γ−1
0 L2 � γ−1

+ ⇒ L�
√
T

∆
e∆/2T (23)

γ−1
− � γ−1

0 ⇒ T

∆
� 1 (24)
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Ee

FIG. 3. A depiction of the operation of the Lindblad operators
in the master equation describing the interaction of the toric
code with an external bath, as defined in (10).

In this regime, the lowest-order processes are of the order
of,

γ0
γ+

γ−
∼ ξ · T · e−∆/T (25)

and we write a phenomenological ground state relaxation
rate of the form,

ΓTC(β, L) ∼ ξ · T · e−∆/T · L2 · PΩ
2D (L) . (26)

Analogous to the phenomenological relaxation rate for
the Ising model (i.e., (19)), the term ξ ·T · e−∆/T ·L2 en-
codes the rate at which free quasiparticle pairs are pro-
duced. The number of spins where a defect pair can
be created is N = 2L2. The scaling of the topological
factor PΩ

2D(L), which is the probability of a 2D topo-
logically nontrivial walk (i.e., a walk with odd winding
number) will control finite-size scaling of ΓTC; only if
PΩ

2D(L) ∼ L−2 will the relaxation rate of the toric code be
system size independent, as for the classical Ising chain.
Note that PΩ

2D (L) is, in general, a function of tempera-
ture (see Appendix A).

D. High temperature phenomenological dynamics

At high temperatures, the relaxation of a toric code
ground state will be dominated by the growing popu-
lation of quasiparticles, rather than the dynamics of a
single quasiparticle pair. In this regime, γ+ ≈ γ− ≈ γ0

and the relaxation rate, i.e., the rate of decay of the ex-
pectation values 〈W z

1,2〉, is due to error strings created
across the length of the W z

1,2 operator. Consequently we
expect the decay to be linear in system size:

ΓTH ∼ γ+L. (27)

This linear scaling arises from the short time dynamics of
the master equation (8)45 and is independent of the topo-
logical processes that contribute to PΩ

2D(L) and dominate
the low temperature regime.

E. Low temperature effective model of ground
state transitions

We will now use the form of the scaling of non-trivial
annihilation probabilities discussed above to construct
an effective low temperature minimal Markov model of
the toric code ground state subspace. The ground state
Markov model is defined by the master equation

dP

dt
= ΓP (t) (28)

where P = (P++, P+−, P−+, P−−) is the vector of all
ground state probabilities and Γ is the matrix of transi-
tion rates between ground states.

Here we assume the low temperature form of the tran-
sition rate between ground states to take the form of (26);
correspondingly the matrix elements of Γ take the form

Γij = λPΩ
ij (29)

where Γij corresponds to the transition i → j, λ is a
rate of production of anyon pairs that undergo a non-
trivial random walk, and Pij is the probability that a
given anyon pair will undergo a topologically nontrivial
walk causing the transition i → j. We take the form of
λ to be:

λ = 2L2γ+

(
1− γ−

6γ0 + (2L2 − 7) γ+ + γ−

)
, (30)

where 2L2γ+ is the rate of pair creation for the entire
lattice. The remaining factor in brackets is exactly the
probability that an adjacent pair of quasiparticles on an
otherwise empty lattice does not annihilate. The numer-
ical factors (i.e., 6, (2L2−7), 1) simply index the number
of edges that can be acted upon by the different Lindblad
operators for the lattice configuration with a single pair
of adjacent quasiparticles. By detailed balance, the prob-
ability of a given Lindblad operator acting on the system
(e.g., Ee) is then just the ratio of the rate of that operator
(e.g., γ−) to the weighted sum of the rates of the other
available operators, weighted by the number of edges
available to each operator (e.g., 6γ0 +

(
2L2 − 7

)
γ+ +γ−).

Thus, λ accounts for the creation rate of quasiparticle
pairs that do not immediately annihilate, or those pairs
which can generate nontrivial random walks.

The form of PΩ
ij is determined by whether the matrix

element is relating ground states that differ by a winding
on one axis of the torus or on both. We define PΩ

δ1 and
PΩ
δ2 to be the probabilities of a topologically nontrivial

annihilation that has an odd winding about one axis and
both axes of the torus, respectively. Then the form of
Pij is:

PΩ
ij =


PΩ
δ1 if i, j differ by one winding number

PΩ
δ2 if i, j differ by both winding numbers

−2PΩ
δ1 − PΩ

δ2 if i = j

(31)
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We may solve this Markov model exactly by integrat-
ing (28): for P++(t = 0) = 1 we obtain:

P++ (t) =
1

4
(1 + e−4tPΩ

δ1λ + 2e−2t(PΩ
δ1+PΩ

δ2)λ)

P+− (t) = P−+ (t) =
1

4

(
1− e−4tPΩ

δ1λ
)

P−− (t) =
1

4
(1 + e−4tPΩ

δ1λ − 2e−2t(PΩ
δ1+PΩ

δ2)λ). (32)

When PΩ
δ1 ≈ PΩ

δ2 ≈ PΩ
2D, we see that all P (t) are well

described by an exponential decay with rate 4PΩ
2D(L)λ

at a finite temperature, T (see Appendix A).

IV. TOPOLOGICALLY NON-TRIVIAL
RANDOM WALKS ON THE TORUS

A. Scaling of topologically non-trival wallks

As discussed above, at sufficiently low temperatures
on a finite size lattice, we expect the relaxation time of
a toric code ground state to depend on the statistics of
topologically nontrivial random walks on the torus. In
this section we present a numerical study of discrete ran-
dom walks on a square lattice on a torus using Monte
Carlo simulations. Without loss of generality, we may
map the processes of pair creation, two-particle random
walk, and annihilation to a single random walker under-
going a random walk that starts and ends at the origin.
We can compute the probability of a quasiparticle pair
generating a transition between ground states after an-
nihilation from the statistics of topologically non-trivial
walks of the single walker with odd winding.

To estimate the scaling of PΩ
2D(L), we consider a re-

lated quantity: the probability that two random walkers
will annihilate after n steps p(n). Topological walks must
have radius of L; given that the radius of a 2D random
walk scales as

√
n, we may assume that topological walks

hve a minimum number of steps that scales as ntopo ∼ L2.
PΩ

2D(L) may then be estimated as

PΩ
2D ∼

∫ ∞
ntopo

dn p (n) . (33)

This rough estimate assumes that all walks larger than a
certain length are necessarily topologically nontrivial.

Restricting to a planar square lattice with trivial topol-
ogy, the annihilation probability pp(n) can be computed
to give the asymptotic behavior for large n as46:

pp (2n) ≈ 1

2n(ln 2n )
2 . (34)

For small n, the exact result may be computed numer-
ically via a recursion relation46. We then can estimate

the scaling of PΩ
2D by integrating the planar result:

PΩ
2D (L) ∼

∫ ∞
ntopo

dn
1

ntopo (lnntopo)
2 =

1

lnntopo

∼ 1

lnL
. (35)

We expect then that the poly-log scaling of pp(n) will
lead to an inverse logarithmic finite-size scaling of PΩ

2D.
Below we compute PΩ

2D numerically and demonstrate this
finite-size scaling empirically.

B. Monte Carlo study of topologically non-trivial
random walks on the torus

In the low temperature limit, quasiparticle dynamics
are dominated by trivial events where pairs that are cre-
ated and immediately annihilate as γ− � γ0. Addition-
ally, for nontrivial walks, once the anyon pair returns to
occupy nearest neighbor sites on the lattice, the pair will
annihilate with high probability. To model this low tem-
perature regime, we consider an annihilation to occur as
soon as a single random walker returns to a site adjacent
to the origin Fig. 4. This can be understood as a “zero
temperature” limit to the true quasiparticle statistics, as
it ignores higher order processes that occur at finite tem-
perature involving quasiparticle trajectories that meet in
annihilation geometries, but then do not annihilate. Ex-
plicitly, this approximation amounts to taking γ− →∞.
Additionally, to improve efficiency of the Monte Carlo
simulations, we start the walker at one of eight starting
positions away from the origin; we account for the rela-
tive probabilities for reaching these starting positions via
exact enumeration of the combinatorics of short topo-
logically trivial walks (see Fig. 4). The random walker
undergoes a discrete time random walk on the square lat-
tice on a torus until it returns to one of the four vertices
adjacent to the origin.

Using this approach, we compute the probability that
two random walkers will annihilate after n steps, pt(n),
and the average number of steps before annihilation, 〈n〉.
For the true finite temperature toric code, the annihila-
tion probability for nearest neighbor quasiparticles is less
than one, as it is a function of γ0/γ−. The finite tem-
perature probabilities PΩ

2D(L) may be computed from the
zero temperature limit via a “resummation” method de-
scribed in Appendix A.

Fig. 5 shows the annihilation probability on a torus
pt(n) as a function of the number of steps n for the zero
temperature model with several system sizes L, as com-
puted via Monte Carlo. We see that pt(n) agrees with
pp(n) up to a certain value of n for each lattice size.
We can therefore define a characteristic “departure time”
nd(L), as: ∣∣∣∣pp (2nd)− pt (2nd)

pp (2nd)

∣∣∣∣ =
1

4
(36)
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FIG. 4. The eight starting geometries (translucent green,
blue) for Monte Carlo simulations of random walks. The
solid green site denotes the origin at which the “fixed” quasi-
particle sits. Blue configurations were sampled twice as often
as green configurations, owing to the different likelihoods of
different starting geometries. The simulation was terminated
when the traveling quasiparticle reached one of the translu-
cent red vertices—i.e. an annihilation geometry.

101 102 103 104 105

n

100

10−2

10−4

10−6

10−8

p
a

(n
)

pt (L = 8)

pt (L = 16)

pt (L = 32)

pt (L = 64)

pt (L = 128)
pp: asymptotic
pp: exact

FIG. 5. Probability of annihilation pt(n) after n steps on
the torus for the model described in section IV, as computed
via Monte Carlo. We see that the value of pt(n) agrees with
the planar value pp(n) (see (34) and46) up until a character-
istic value of n where it is possible for the walker to make
topologically nontrivial walks on a finite size lattice.

Random walks that annihilate at small n are not sensi-
tive to the topology of the finite-size lattice. Thus, nd
reflects the characteristic number of steps at which the
random walk distribution is affected by the finite size
torus topology. For n > nd, we see that pt(n) > pp(n)
up to a characteristic number of steps. We therefore de-
fine the “crossing time” nc where pt(n) crosses pp(n) and
then drops significantly. Fig. 6 shows the scaling of both
dynamical quantities, nc and nd as a function of system
size L. Both are seen to be well described by power laws:

nc,d ∼ Lαc,d (37)

with αc = 2.343± 0.001 and αd = 1.66± 0.04.
We also compute the initial and final topological sec-

101 102
L

101

102

103

104

105

〈n
〉

nd

nc

FIG. 6. The finite-size scaling of the characteristic departure
(nd) and crossing (nc) times from an analysis of the Monte
Carlo data shown in Fig. 5. The lines represent the best fit
power laws to the three largest system sizes.

0.20 0.25 0.30 0.35 0.40 0.45 0.50
(ln L)−1

0.0

0.1

0.2

0.3

0.4

P
Ω 2
D

Pd
Pc

Ptopo

FIG. 7. The probability of topologically non-trivial anni-
hilations on a torus, PΩ

2D(L) as a function of system size, as
computed by Monte Carlo simulations. Also shown are the
bounds Pc and Pd, which are computed from pt(n) and pp(n),
as described in the text. The lines represent fits to (lnL)−1

of the three largest system sizes.

tors of each walk; this allows us to compute the prob-
ability of topologically nontrivial annihilation, PΩ

2D(L),
where the walk generates a topologically non-trivial path
with odd winding. Fig. 7 shows the finite size scaling of
PΩ

2D(L); for larger system sizes, we find

PΩ
2D(L) ≈ cΩ2D

ln(L)
(38)

where cΩ2D = 0.472± 0.003.
We may understand the scaling of PΩ

2D(L) from an
analysis of pt(n). Since the deviations of pt(n) from pp(n)
for n > nd are due to topologically nontrivial walks which
contribute to PΩ

2D(L), we can place approximate bounds
on PΩ

2D(L) from pt(n). As an upper bound to PΩ
2D(L), we

assume that all walks for n < nd generate topologically
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nontrivial windings that contribute to PΩ
2D(L); therefore

we define the integrated probability:

Pd ≡
∫ ∞
nd

dn pp (n) . (39)

As both pp and pt integrate to unity, Pd is approximately
equal to the same integral over pt. Pd includes both topo-
logically trivial walks and topologically nontrivial walks
that have even winding; consequently we expect Pd to
provide an upper bound to PΩ

2D(L).
Alternately, we can make the approximation that topo-

logically nontrivial walks are only the excess probabil-
ity for nd ≤ n ≤ nc. By making the assumption that
pt(n > nc) ≈ 0 (see Fig. 5), we may approximate this
excess by:

Pc ≡
∫ ∞
nc

dn pp (n) , (40)

again relying on the normalization of pt and pp. While Pc
should over-count the events that contribute to PΩ

2D(L) in
the region nd ≤ n ≤ nc (as only odd winding topological
events contribute), the approximation pt(n > nc) ≈ 0
leads to an underestimation of PΩ

2D(L), i.e. Pc provides
a lower bound on PΩ

2D(L).
Fig. 7 shows the finite size scaling of Pc (L) and Pd (L)

and confirms that these provide a lower and upper bound
to PΩ

2D(L), respectively. Thus as with PΩ
2D(L), we find

that Pc (L) and Pd (L) scale as (lnL)−1; the lines in Fig.
7 represent a fit to (lnL)−1.

To see the origin of this (lnL)−1 scaling, we can use
the asymptotic form of pp(n) and the power law scaling
of nc,d from (37), to approximate both Pc and Pd:

Pc,d (L) ≈
∫ ∞
nc,d

dn
1

nc,d (lnnc,d)
2 =

1

lnnc,d

≈ 1

αc,d lnL
. (41)

Consequently, we can understand the origin of the
(lnL)−1 scaling which we predicted for PΩ

2D(L) to fun-
damentally be due to the particular form of the polylog
scaling of pp(n). We note that this inverse logarithmic
scaling of PΩ

2D(L) implies a nontrivial finite-size scaling
of ΓTC; indeed for the phenomenological form from Eq.
(26) we have ΓTC ∼ L2/ lnL.

V. REAL TIME MONTE CARLO SIMULATION
OF THE TORIC CODE DYNAMICS

A. Numerical method

We now present Monte Carlo simulations of the real
time dynamics of the toric code in contact with an Ohmic
bath, as described in section III A. We use a continuous
real time Monte Carlo method27 to numerically solve the

0 2.0 4.0 t× 1020

10−1

100

〈Π
+

+
(t

)〉 (a)

0 2.0 4.0 t× 103

10−1

100

〈Π
+

+
(t

)〉(b)

0 1.0 2.0 t× 101
10−1

100

〈Π
+

+
(t

)〉 (c)

0 1.0 3.0 t× 100
10−1

100

〈Π
+

+
(t

)〉(d)

FIG. 8. Time evolution of the expectation value of the Π++

operator (defined in section V) computed via Monte Carlo,
where 1/4 has been subtracted to reveal the exponential de-
cay. These simulations were initialized to a pure ground state
with L = 128 with T = {0.02, 0.08, 0.14, 0.2} respectively for
subfigures (a)-(d). The black lines represent exponential fits
to the Monte Carlo data. Note the stretched exponential be-
havior for early times in (c). γ0 has been set to 1.

master equation given in (11). We focus on the relaxation
dynamics of the system when prepared initially in a pure
ground state. We define the operator:

Π++ ≡
1

4
(W z

1 + 1) (W z
2 + 1) ; (42)

which is one for the |Ψ++
0 〉 ground state and vanishes for

all other ground states. We then compute the expecta-
tion value 〈Π++ (t)〉 to study the decay from |Ψ++

0 〉.
The exponential nature of the decay of Π++(t) is dis-

played in Fig. 8, where the lines represent exponential
fits to the Monte Carlo data. We find such decays are well
described by exponential decays at all but intermediate
temperatures (see Fig. 8 c.), where short time deviations
lead to a stretched exponential decay. We fit Π++(t) to
an exponential:

Π++ (t) =
1

4

(
1 + 3e−Γ++t

)
(43)

to extract the relaxation rate Γ++. The additional sys-
tematic uncertainty of the rate Γ++ due to the stretched
exponential behavior in intermediate regimes does not
appreciably affect the analysis. Fig. 9 shows Γ++/e

−∆/T

computed for four system sizes over a range of tempera-
tures. We see three temperature regimes for each system
size: a low temperature regime where Γ++ ∼ Te−∆/T ,
a high temperature regime where Γ++ ∼ e−∆/T and
an intermediate temperature regime smoothly connect-
ing these two forms of the temperature scaling.
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FIG. 9. Ground state relaxation rates for as a function of temperature for system sizes L = {16, 32, 64, 128} corresponding
to (a)-(d) respectively. The solid lines are the low temperature phenomenological model, (TC), (26), and the high temperature
fit, TH, (27). The vertical dashed line represents the dynamical crossover temperature T ∗dyn. Note that Γ++(T ) is a monotonic,
increasing function of T ; the rescaling by exp(−∆/T ) generates the nonmonotonicity. ∆ has been set to 1.

B. Low Temperature regime

Fig. 9 shows the low temperature model predictions of
(26) as well as the Monte Carlo data. The regime of lin-
ear behavior of Γ++/e

−∆/T and corresponding agreement
with the effective model at low temperatures allows us to
identify this regime as the low temperature regime where
the finite-size scaling of the relaxation time is determined
by the scaling of topologically non-trivial random walks.
Fig. 10 shows the finite-size scaling of Γ++ in this low
temperature regime, where we have performed a data col-
lapse to remove the leading temperature dependence of
(28). We find good agreement with the parameter free
low temperature model (28) (with temperature depen-
dent PΩ

2D(L) obtained by the resummation procedure in
appendix A) which has an approximate L2/ lnL scaling.
This non-trivial finite-size scaling is a key feature of this
low temperature regime.

On increasing temperature, we can understand the
transition out of this low temperature regime as follows.
The separation of timescales breaks down as the ratio
L2 · γ+/γ0 grows larger. As the temperature increases,
the decay rate is significantly affected by multi-pair pro-

cesses which are not accounted for in (28). Interactions
between multiple pairs of quasiparticles modify the an-
nihilation probability distributions used in the low tem-
perature model. Additionally, at higher temperatures, as
the lifetime of quasiparticle pairs increases, the decay of
Π++ is sensitive to trivial error strings (i.e., single appli-
cations of Ee†) acting across the edges shared with the
winding operators. At higher temperatures, these trivial
error strings dominate the decay rate.

C. High temperature regime

At higher temperatures in Fig. 9, we see that Γ++ ∼
e−∆/T ; this is the high temperature regime described by
(27) where we expect a linear scaling in system size. In
Fig. 11 we show a fit to the linear finite-size scaling for
several different temperatures, where we have scaled the
Γ++ by the rate of formation of quasiparticle pairs, γ+.
This one parameter linear fit to the scaled data gives a
single functional form for all system sizes and tempera-
tures

Γ++ = cTHγ+L, (44)



11

0 1 2 3
L2/ln L ×103

0

1

2

Γ
+

+
/
(
γ

+

γ
−
γ

0
)

×104

TH fit

T = 0.02

T = 0.03

T = 0.04

T = 0.05

FIG. 10. Low temperature regime: Finite-size scaling of Γ++

in the low temperature regime where we have collapsed the
temperature dependence of the data according to (26). The
solid lines are the low temperature model (T ) predictions as
described in (28); these lines nearly completely overlap due
to the weak residual temperature dependence in (26). The
dotted line indicates the best fit to purely linear scaling in L
which is expected in the high temperature regime (TH).
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FIG. 11. High temperature regime: finite-size scaling of Γ++

in the high temperature regime. The solid line represents a fit
of all high temperature data (TH) to a linear scaling in L. The
dotted line indicates a best fit to the poly-log scaling L2/logL
which is expected in the low temperature regime (TC).

where we find the constant cTH = 2.5 ± 0.1. If only the
lowest order process trivial anyon pairs contributed to
the decay across both winding operators, we would have
cTH = 2. Obtaining a fit to the finite-size scaling with
cTH > 2 suggests that higher order processes are also
providing significant contributions. The solid red line in
Fig. 9 shows that this one parameter high temperature
fit is in good agreement with the Monte Carlo data in the
high temperature regime. We note that the linear finite-
size scaling of Γ++ is distinct from the L2/ lnL scaling
in the low temperature regime (see Fig. 10).

0.1 0.2 0.3 0.4
(ln L)−1

0.0

0.1

0.2

0.3

0.4

T
∗
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T∗dyn

FIG. 12. The dynamical crossover temperature T ∗dyn as a func-

tion of system size L. The line represents the fit to ln(L)−1

scaling for the largest system sizes. Also shown is the equi-
librium crossover temperature T ∗eq as defined in Ref. 5.

D. Dynamical Crossover Temperature

Analysis of the results shown in Fig. 9 strongly sug-
gests that we can identify two distinct regimes where the
relaxation rate is dominated by distinct physical pro-
cesses. We can therefore define a dynamical crossover
temperature T ∗dyn which signifies the crossover between
these regimes. We define T ∗dyn as the local maxima on
Fig. 9 where the linear temperature scaling breaks down;
this does not correspond to a maximum of Γ++ itself,
which is monotonically increasing as a function of tem-
perature, since we have removed the temperature depen-
dence of the Boltzmann factor by rescaling. Clearly T ∗dyn
is a function of system size, since the low-temperature
regime shrinks as L increases; Fig. 12 displays the finite-
size scaling of T ∗dyn as well as the equilibrium crossover

temperature T ∗eq computed in [5] from the topological
entanglement entropy. We find an inverse logarithmic
scaling of T ∗dyn with system-size, in agreement with the
scaling of T ∗eq.

VI. DISCUSSION

We have demonstrated the non-trivial finite size scal-
ing of the relaxation time of the toric code in contact
with a thermal reservoir, using numerical simulations of
real time dynamics of quasiparticles. We have identified
a low temperature regime in which the relaxation dynam-
ics are dominated by topologically non-trivial random
walks of quasiparticle pairs; consequently the finite-size
and temperature scaling of this regime are distinct from
the high temperature regime above the crossover temper-
ature. We find that both the finite-size and finite temper-
ature scaling are stronger in this low temperature regime
than at higher temperatures where the behavior coincides
with the expected scaling in the thermodynamic limit45.
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In the low temperature regime, we find the relaxation
rate to scale as L2/ lnL, in contrast to the scaling as
L above T ∗dyn. Consequently, the lifetime of topological
qubits will increase faster in this regime as the system
size is decreased, than above T ∗dyn. We also find that the
relaxation rate is suppressed by an additional factor of
T in the low temperature regime; the memory lifetime
will increase with inverse temperature β = 1/T as βe∆β ,
faster than the e∆β scaling of the lifetime above T ∗. We
note that the particular form of the additional crossover
suppression is dependent on the nature of the bath, since
it arises from the temperature scaling of the diffusion rate
for the ohmic bath studied here, γ0 = ξkT . In contrast,
for a super-Ohmic bath γ0 = 0; however, the effective dif-
fusion rate will scale as e−2∆/T , due to indirect hopping
of quasiparticles from 2nd order pair creation events30.
Consequently the low temperature suppression will be
even stronger for a super-Ohmic bath.

This work may help guide the design of ground state
relaxation of optimal topological qubits. While it is now
evident that true topological protection is not achievable
for the 2D toric code in the thermodynamic limit, as a
practical matter in a finite size realization, one may wish
to balance robustness to unitary perturbations, which is
maximized by using the largest possible system, against
thermal robustness, which decreases with system size.
The stronger finite-size and temperature scaling of the
relaxation time (corresponding to the quantum memory
lifetime) in the low temperature regime suggests that the
optimal balance will be achieved below T ∗dyn. The corre-
sponding optimal size will of course depend on the pref-
actors of the scaling relations and will therefore be de-
pendent on both the microscopic form of the coupling to
the bath and the unitary perturbations.

Thus, although the topological order required for topo-
logical protection of quantum information processing is
destroyed at all temperatures in the thermodynamic
limit, we have identified a dynamical low temperature
regime for finite size systems which may prove practi-
cally useful for quantum information processing.
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Appendix A: Resummation method

The probabilities of return were calculated by numeri-
cally tabulating the fraction of random walks that arrived
at the annihilation geometries depicted in Fig. 4. At
finite temperature, quasiparticles have a nonzero proba-

bility of not annihilating after reaching these positions,
and continuing a random walk. Only in the ‘zero tem-
perature’ limit do these quantities represent the true an-
nihilation statistics for the quasiparticles. To distinguish

between these, we define PΩ
δ1 and PΩ

δ2 as the “zero tem-
perature” probabilities of return.

To calculate this temperature dependent annihilation
probability, we define:

PΩ
ij =


PΩ
δ1 if i, j differ by one axis

PΩ
δ2 if i, j differ by both axes

1− 2PΩ
δ1 − PΩ

δ2 if i = j

(A1)

PΩ
ij represents the transition matrix for a discrete

Markov chain. This matrix encodes the zero tempera-
ture transit probabilities for a quasiparticle pair to meet
in an annihilation geometry. To account for the possi-
bility of both annihilation and continued traversal, we
define:

Σ =

(
(1− τ)PΩ

ij 0

τPΩ
ij I

)
, (A2)

τ =

(
γ−

6γ0 + (2L2 − 7) γ+ + γ−

)
, (A3)

where τ is the probability that an adjacent pair of quasi-
particles annihilates, I is the 4 × 4 identity matrix, and
where 0 represents a 4× 4 zero matrix. The initial state
vector for this Markov chain represents a single pair of
quasiparticles initialized to one of the starting configu-
rations in a given sector. By convention, these are the
++,+−,−+,−− sectors for the first four entries of the
state vector. The latter four entries encode the proba-
bilities of a pair of walkers annihilating in a given sector
after some number of steps. The long time steady state
solution of this larger Markov chain then determines the
temperature dependent probabilities that a given quasi-
particle pair causes a transition.

For example, consider a pair initialized to the ++ sec-

tor, with an initial state vector (1, 0, 0, 0, 0, 0, 0, 0)
T

. The
state in the long time limit is

lim
k→∞

Σk· (1, 0, 0, 0, 0, 0, 0, 0)
T

=(
0, 0, 0, 0, 1− 2PΩ

δ1 − PΩ
δ2, P

Ω
δ1, P

Ω
δ1, P

Ω
δ2

)T
(A4)

In the higher temperature limit all transition probabili-
ties tend towards 1/4. The zero temperature limit corre-

sponds to the bare probabilities PΩ
δ1 and PΩ

δ2. The tem-
perature dependent PΩ

δ1,2 are used in the manuscript in
sections III and V. The “zero temperature” limits are
used exclusively in section IV.
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a)

b)

c)

d)

FIG. 13. Various configurations of domain walls in 1 dimen-
sion. a) An “annihilation geometry”, where the domain walls
(in red) are separated by a single spin. b) A “free” pair of
domain walls. This configuration will annihilate trivially with
probability 1/2. c) Domain walls are further separated. d)
Domain walls are separated by half the system size. The right-
most domain wall is the same as the leftmost domain wall due
to periodic boundary conditions.

Appendix B: Finite size scaling in the 1D Ising
model

Here we demonstrate the scaling of PΩ
1D discussed in

III B. Consider a pair of domain walls on a 1D periodic
chain of L classical Ising spins separated by two spins
(i.e., configuration (b) in Fig. 13). In such a configura-
tion, it is equally likely for the domain walls to move one
unit to the left or right. If either of the domain walls is
separated from the other by only a single spin, they are
in an “annihilation geometry” (i.e., configuration (a) in
Fig. 13), and in the T → 0 limit will annihilate with unit
probability.

Without loss of generality, fix one domain wall as an
“origin”. A pair initially in configuration (b) from Fig.
13 will either annihilate with probability 1/2, or become
separated by at least 2+1 spins with probability 1/2. In
random walks for which the domain walls become sep-
arated by 2+1 spins (i.e., configuration (c) in Fig. 13),
the domain walls will either annihilate trivially with con-
ditional probability 1/2 or become separated by at least
4+1 spins with conditional probability 1/2.

In this way, the set of random walks available to a
domain wall pair separated by d + 1 spins can always
be partitioned into those that return to the annihilation
geometry, and those that separate the domain wall pair
by an additional d spins, because the inverse process that
results in an annihilation event is a random walk that sep-
arates the domain walls by an additional d spins. Once
d + 1 is exactly half the system size, the probability of
the domain walls separating by an additional d spins is
equivalent to annihilating nontrivially, as the free domain
wall “wraps around” and annihilates from the opposite
side of the fixed domain wall.

For simplicity, if we suppose the system size is of the
form L = 2n + 2 for some positive integer n, then do-
main walls which are separated by L/2 spins (equiva-
lently, 2n−1 + 1 spins) have a conditional probability of
1/2 of annihilating either trivially or nontrivially. The
total probability of the domain walls reaching this config-
uration is just the product of the conditional probabilities
of the domain walls reaching 2+1, 4+1, ..., 2n−1+1 spins
of separation. Thus: PΩ

1D = 1/2n, or by rearrangement:
PΩ

1D = 1/(L− 2).
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