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Variation in transmission characteristics of signalling environments is hypothesized to influence the
evolution of signalling behaviour, signal form and sensory systems of animals. However, many animals
communicate across multiple signalling environments, raising the possibility that some displays have
evolved explicitly to enable communication across heterogeneous signalling environments. In the pre-
sent paper, we explored multiple potential impacts of the signalling environment on courtship displays
in the wolf spider Schizocosa retrorsa. Males of this species court females on a range of substrate types
using a combination of vibratory and visual signals. Through a series of experiments, we investigated (1)
activity patterns and male microhabitat use, (2) component-specific vibratory signal transmission across
natural substrate types and (3) copulation success across substrate types and light levels. We found that,
in the laboratory, (1) female and male S. retrorsa are most active during daylight hours, and mature males
resided and courted most on leaf litter, as compared to their natural habitat types of pine litter or sand;
(2) male vibratory courtship signals transmitted best on leaf litter, yet (3) males obtained the highest
copulation success on sand, regardless of light level. Our results demonstrate that copulation in S. retrorsa
is more likely to occur in environments with suboptimal vibratory signal transmission, irrespective of
visual signal transmission. We suggest that these results point to (1) a minor role of bimodal (vibratory
and visual) courtship signalling in S. retrorsa, (2) the importance of an additional signalling modality
(most likely air particle movement), (3) a role of other substrate-dependent factors (e.g. predation risk),
and/or (4) a reversed female preference for vibratory signalling.
© 2019 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Effective communication between animals is dependent upon
the successful transmission and reception of signals, which are in
turn influenced by the physical properties of the signalling envi-
ronment. Indeed, optimizing signal form to best match a given
signalling environment has been considered one of themajor forces
driving signal evolution (Boughman, 2002; Endler, 1992; Gerhardt,
1994). Due to variation in transmission characteristics among
microhabitat patches within an animal's natural habitat range, se-
lection has been hypothesized to lead to signals that are well
matched to the physical properties of specific signalling environ-
ments or locations (Boughman, 2002; Cummings, 2007; Elias,
2006; Elias, Land, Mason, & Hoy, 2006; Elias, Mason, & Hebets,
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2010; Elias, Mason, & Hoy, 2004; Endler, 1992; Ng, Landeen,
Logsdon, & Glor, 2013). Additionally, habitat-specific selection is
hypothesized to influence the tuning of receivers' sensory systems,
which can ultimately lead to a tight alignment with the best-
transmitted range of conspecific signals (i.e. sensory drive hy-
pothesis) (Boughman, 2002; Endler, 1992; Seehausen et al., 2008;
Witte, Farris, Ryan, & Wilczynski, 2005). Under sensory drive
then, variation in transmission characteristics among habitats is
expected to exert selection on signal evolution and signalling
habitat specialization to minimize signal degradation and maxi-
mize signal perception by receivers (Boughman, 2001, 2002;
Endler, 1992). Tests of this hypothesis, however, require consider-
ation of the effects of habitat-specific variation in signalling
behaviour and/or receiver responses on communication.

Many animals communicate in heterogeneous signalling envi-
ronments consisting of multiple microhabitats, changing light en-
vironments and/or different microclimates. Even within a specific
evier Ltd. All rights reserved.
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habitat, transmission characteristics can vary greatly across spatial
and temporal scales, particularly for small animals. For example,
the physical properties of both signallers (e.g. size) and signals (e.g.
physical form or signalling modality; e.g. vibratory, chemical) can
influence amplitude, attenuation and overall signalling structure
(e.g. chemical composition, frequency spectra) (Endler, 1993).
Furthermore, transmission properties may vary over time of day e

e.g. most visual signals will transmit further under daylight than
moonlight conditions. Thus, the effective transmission and recep-
tion of communication displays will vary with the specific location
and timing of signal production within a given habitat.

Animals can overcome the challenges associated with environ-
mental variability by (1) adjusting signalling behaviour, such as the
location and/or timing of signalling and/or (2) incorporating signals
or components with more than one distinct physical form e

multimodal signalling (Bro-Jørgensen, 2010; Candolin, 2003; Elias
& Mason, 2014; Hebets & McGinley, 2019; Hebets & Papaj, 2005).
The expectation of adjusting signalling behaviour has only been
explored in a few studies (e.g. Kotiaho, Alatalo, Mappes, & Parri,
2000; McNett, Luan, & Cocroft, 2010; Schmidt & Balakrishnan,
2015; Sueur & Aubin, 2003) while multimodal signalling to over-
come environmental heterogeneity has received more attention
(reviewed by Bro-Jørgensen, 2010; Hebets & McGinley, 2019).
Notably, behavioural plasticity in signalling and multimodal sig-
nalling are not mutually exclusive and both may be important in
increasing signal efficacy for animals living in highly heterogeneous
habitats. Gordon and Uetz (2011), for example, showed that male
Schizocosa ocreata wolf spiders can actively choose to court on leaf
litter and also adjust their multimodal courtship display by
increasing visual signals on substrates where the vibratory signal is
not transmitted effectively.

Furthermore, a receiver's preference may not always be posi-
tively associated with more efficient signal transmission. For
instance, female guppies, Poecilia reticulata, reverse their prefer-
ence for conspicuous male coloration in the presence of predators
(Evans, Kelley, Ramnarine, & Pilastro, 2002; Gong & Gibson, 1996).
In this case, females may avoid conspicuous signals due to preda-
tion risk during copulation. Such variation in female preference
could evolve due to various ecological factors including predation
risk (Evans et al., 2002; Johnson & Basolo, 2003), the risk of het-
erospecific mating (Sætre et al., 1997) or enhanced paternal care
(Griffith, Owens, & Burke, 1999). It could also produce a mating
pattern inconsistent with the predictions of sensory drive e e.g. a
mismatch between transmission characteristics of the signalling
environment and successful communication (i.e. copulation
success).

Schizocosa wolf spiders have become a model system for
studying the evolution of complex communication (Hebets, Vink,
Sullivan-Beckers, & Rosenthal, 2013; Stratton, 2005). Numerous
studies have demonstrated a close link between characteristics of
signal form and transmission characteristics of the signalling
environment. For example, Schizocosa stridulans and Schizocosa
floridana both produce a vibratory signal that transmits well on
their natural substrates of leaf litter, and mating trials indicate high
mating success on their natural leaf litter habitat e i.e. both species
demonstrate a tight signalesubstrate match (Elias et al., 2010;
Rosenthal, Hebets, Kessler, McGinley, & Elias, 2019). Furthermore,
characteristics of the microhabitat influence locomotion in
S. ocreata (Cady, 1984), and mating success in this latter species can
be influenced by visual background complexity and spectral
reflectance (Clark, Roberts, Rector, & Uetz, 2011; Uetz, Clark, &
Roberts, 2011). Male S. ocreata are even known to alter their vi-
sual signalling behaviour based on the light environment (Taylor,
Roberts, & Uetz, 2005).
Unlike the previously mentioned Schizocosa species, prior work
on Schizocosa retrorsa failed to find a match between substrate-
dependent vibratory signal transmission efficacy and mating suc-
cess (Hebets, Elias, Mason, Miller, & Stratton, 2008; Hebets et al.,
2013; Rundus, Santer, & Hebets, 2010). This study thus explores
additional aspects of microhabitat use and modality-specific sig-
nalling success in an effort to understand the function of bimodal
(vibratory and visual) signalling in S. retrorsa. Specifically, we
explore female and male activity patterns, male substrate use,
substrate-specific vibratory signal transmission properties and
substrate-specific mating success.

STUDY SYSTEM

The wolf spider S. retrorsa can be found across a range of distinct
microhabitats. Subadult and mature S. retrorsa females and males
have been collected on substrates consisting of pine litter, pine
litter/sand mix, bare red clay and sand (Hebets, Stratton, & Miller,
1996; E. Hebets, personal observations). Thus, under natural con-
ditions, S. retrorsa males presumably court females on a range of
substrate types, and they do this using a combination of vibratory
and visual signals (Hebets et al., 1996). The vibratory display of
S. retrorsa consists of two components e pedipalpal drumming and
foreleg taps (Hebets et al., 1996). The visual signal components
include pigmentation on the femur of mature male forelegs and
two dynamic visual displays e foreleg waving and ‘push-ups’
(Hebets et al., 1996; Stratton, 2005). The visual and vibratory
components are structurally linked. Push-ups consist of pedipalpal
drumming superimposed with the raising and lowering of the
body. Foreleg waving consists of foreleg movements where the
forelegs are rapidly raised and lowered, with the forelegs and
pedipalps contacting the substrate to produce a percussive impulse
(Hebets et al., 1996).

Prior research on S. retrorsa found no differences in the impor-
tance of vibratory and visual signalling in mating across artificial
environments that varied in their vibratory and visual signal
transmission properties (Hebets et al., 2013; Rundus et al., 2010).
Interestingly, in both studies neither signalling modality appeared
necessary for mating success (Hebets et al., 2013; Rundus et al.,
2010). Furthermore, the only known predictor of mating success
in S. retrorsa is leg-waving ratee i.e. males that engaged inmore leg
waving had an increased likelihood of achieving a mating (Rundus
et al., 2010).

Prior work tested the hypothesis that S. retrorsa's multimodal
courtship facilitates successful communication across microhabitat
types (in terms of amale's ability to secure amating) by quantifying
microhabitat use, vibratory signal transmission and copulation
success of males across three substrate types: leaf litter, pine litter
and red clay (Hebets et al., 2008). Pine litter and red clay represent
habitats upon which the species has been found. Although
S. retrorsa is not commonly found on leaf litter in the field, typical
collection sites are in close proximity/adjacent to available leaf
litter habitats (E. Hebets, personal observation). Hebets et al. found
that regardless of developmental stage or sex, S. retrorsa individuals
tended to choose leaf litter first and to reside on leaf litter more
than on pine litter or red clay. Adults also moved more frequently
among substrate types than did subadults (Hebets et al., 2008). In
terms of vibratory signal transmission, differential filtering was
observed across the three substrate types. Red clay and pine litter
showed a higher-frequency bandwidth at distances further from
the sound source (Hebets et al., 2008). Overall, however, vibratory
signals sent through leaf litter and pine litter experienced less
attenuation than did red clay. Finally, despite the decreased
vibratory signal attenuation on leaf litter, copulation success was
higher on their natural substrates of pine litter and red clay than it
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was on leaf litter. The disconnect between vibratory signal trans-
mission efficacy (best transmission on leaf litter > pine litter > red
clay) and copulation success (highest on red clay ¼ pine litter > leaf
litter) was proposed to be due to either (1) female preference for
high-frequency vibratory courtship signals or (2) differences in
efficacy of visual signal transmission. The latter hypothesis pro-
poses that red clay and pine litter have fewer obstacles for visual
signalling, thereby increasing the likelihood of females perceiving
visual signalling (Hebets et al., 2008). This study directly tests this
hypothesis.

As a follow-up to prior work, this series of studies further ex-
plores (1) male activity patterns and microhabitat use, (2)
component-specific details of vibratory signal transmission across
substrate types and (3) male copulation success across light levels,
which induce variation in visual signal transmission.

METHODS

Study Animals

For all of the experiments, penultimate-stage females andmales
were collected fromMarshall, Co., Mississippi, U.S.A. The collection
site was near Wall Doxey State Park on pipeline E of Old Highway 7
(34�400N, 89�280W). The collection date was 28 April 2017 for ex-
periments on activity pattern, vibratory signal transmission and
microhabitat choice, and 19 May 2008 for the substrate-dependent
mating experiments. Spiders were transported to the laboratory
and individually placed in plastic cages (60 � 60� 80 mm) that had
screening on at least two sides to provide a climbing surface, in a
controlled light environment (12:12 h light:dark cycle) and con-
stant temperature (25 �C). All cages were covered by opaque tape,
so spiders were visually isolated from one another. Water was
provided via a cotton wick dipped into a reservoir of water below
the cage. Spiders were fed two or three small crickets (Gryllodes
sigillatus), approximately half the body length of the spider, twice a
week and fed one cricket additionally the night before an experi-
ment. Following experiments, we euthanized males by freezing
before preserving them in 70% ethanol. All spiders were at the end
of their natural life as they only live 1 year, and all bodies were
retained as voucher specimens in our collection at the University of
Nebraska-Lincoln.

Experiment 1: Activity Patterns and Male Substrate Use

Activity patterns
We quantified the circadian activity cycle of female and male

S. retrorsa in order to gain insight into the light levels that these
spiders are most likely to experience during courtship. We moni-
tored the locomotor activity of 16 mature female and 16 mature
male S. retrorsa on an LD 12:12 h cycle for 5 days. This light cycle
matched the cycle that they had experienced in the laboratory. Each
spider was placed in a 25 mm diameter � 125 mm length glass
tube, with half of a wet 10 � 38 mm dental cotton roll inside each
end of the tube to provide moisture. Tubes were inserted into a
locomotor activity monitor (model LAM) from Trikinetics, Inc.
(Waltham, MA, U.S.A.), which houses four rows of eight tubes. Ac-
tivity was recorded as the number of times spiders interrupted one
of three infrared beams passing through the centre of each tube,
counted in 5 min bins. Tubes were taped withmasking tape to limit
visual interactions between spiders, but a gapwas left to permit the
infrared beams to pass through the midline of each tube. The two
ends of each tube were covered with a black vinyl cap. Lights went
on at 0830 hours and off at 2030 hours. Light was provided with a
full-spectrum compact fluorescent light bulb (NaturesSunlite 30 W,
Naturallighting.com, Dickinson, TX, U.S.A.). Although there are no
data available on the critical flicker fusion frequency of S. retrorsa,
previous studies on another wolf spider, Hogna baltimoriana,
demonstrated a critical flicker fusion frequency of 10 Hz, signifi-
cantly lower than the flicker rate of a normal fluorescent bulb
(120 Hz) (DeVoe, 1963; Inger, Bennie, Davies, & Gaston, 2014). To
minimize disturbance and the influence of other light sources, the
set-up was placed in an otherwise unused room accessible only
through another dark room. The roomwas not entered throughout
the duration of the experiment. We placed spiders in the activity
monitor for 6 days and measured activity for days 2e6, thus
allowing the spiders 1 day of acclimation.

Male substrate use
We compared male S. retrorsa habitat use across three substrate

types (leaf litter, pine litter, sand) under two contexts: (1) general
habitat use (no female cues present) and (2) courtship-specific
habitat use (female cue present). Quantifying male substrate use
under conditions that are likely to elicit courtship (i.e. female cue
present) allowed us to test the hypothesis that males engage in
microhabitat-specific courtship behaviour; a hypothesis not tested
in previous work.

We constructed microhabitat choice arenas out of circular
plastic containers (Pioneer Plastics, Inc., Dixon, KY, U.S.A.; 190 mm
diameter, 70 mm height) equally divided into three sections. In
each section, we placed one of the three substrate types (leaf litter,
pine litter or sand; all collected at spider collection sites) at a depth
of 20 mm. Spiders could readily cross between substrates. A circular
central platform (30 mm diameter) connected all three substrate
types. At the bottom of each substrate, we placed a contact
microphone (35 mm diameter, Goedrum Co., Chanhua, Taiwan)
connected to a Tascam DR-05 audio recorder (44.1 kHz sampling
rate, TEAC, Wiesbaden, Germany). Contact microphones recorded
vibratory signals across substrates (Appendix, Fig. A1).

We used a repeated measures design in which males were first
run in the absence of a female cue and then 24 h later, run again in
the presence of a female cue. This order was necessary to eliminate
the possibility that female cues elicit long-term changes in mate
searching. Although an alternative design could have run half of the
males in the presence and half in the absence of female cues, we did
not choose this design due to concerns over sample size.

Female cues consisted of female silk deposited on filter paper at
the central platform. This was the only place that female silk was
present (in cue present trials). The intentionwas for males to detect
the female pheromone and begin courtship behaviour and mate
searching (Tietjen, 1979). Female cues were obtained by placing
mature virgin females on filter paper for 1 h prior to the experiment
to accumulate silk on the paper. After 1 h, we cut the filter paper
into circles (30 mm diameter) to place on the central platform. The
presence of female cues on the central platform alone removed any
potential confounding effects of female silk deposition across
different substrates. We used 89 mature S. retrorsa males in both
cue present and cue absent trials and all individuals were used 18
days after their maturation date.

To begin microhabitat use trials, males were placed within a
transparent barrier of acetate film on the central platform. Once the
spider remained motionless for a few seconds (mean ± SD time to
motionless ¼ 177.747 ± 123.540 s), we lifted the barrier and recor-
ded movement and courtship for 30 min. Courtship was recorded
by the contact microphones (see above) and a Sony HDR-SR10
video camera (Sony Electronics Inc., Minato, Tokyo, Japan) under
two Vita-Lite full-spectrum 30W fluorescent bulbs (Duro-Test
Lighting Inc., Tultitl�an, Mexico). Using a combination of video and
acoustic recordings, we quantified (1) the initial substrate choice,
(2) the number of substrate changes, (3) the residing time and (4)
male courtship vigoure estimated by dividing the courting time by

http://Naturallighting.com
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the residing time on each substrate type. Courting time was
measured as the sum of courting bouts defined from the beginning
of pedipalpal drumming to the end of leg tapping (Hebets et al.,
1996). Raven Pro v.1.5 for Windows (Cornell Lab of Ornithology,
Ithaca, NY, U.S.A.) was used for analysing vibratory signal re-
cordings. Between each trial, we replaced the substrate in each
arena and cleaned the cardboard dividers, central platform andwall
of the arena with distilled water. To monitor male body condition,
we measured male body mass every day before experiments begin
(Rundus et al., 2010).

Statistical analysis
We first performed McNemar's tests to see whether the initial

choice of substrate was significantly different between female cue
present and female cue absent treatments. We next performed
generalized linear mixed effects model analyses on the relationship
between female cues (presence/absence) and the male searching
and courtship behaviour e estimated by the number of substrate
changes, the presence of male courtship, the total courting time
and the proportion of residing time on each substrate. As fixed
effects, we included the presence of female cue in the model with
individual as a random effect. Due to overdispersion, wemodelled a
negative binomial regression for the number of substrate changes
and a gamma regression for the total courting time. We used beta
logistic regression model for the proportion of residing time on
each substrate. Also, to examine the effect of substrate type onmale
courtship vigour, we conducted a mixed effect beta regression
analysis with individual as a random effect.

P values of fixed effects were estimated by likelihood ratio tests
on the full model with the effect in question against the model
without the effect. All the generalized linear mixed regression an-
alyses were conducted using ‘glmmTMB’ functions from R package
‘glmmTMB’ (Brooks et al., 2017). For significant fixed effects, we
subsequently conducted post hoc analyses using pairwise com-
parisons of estimated marginal means (hereafter, EMM) and log
odds ratios for logistic regression using ‘emmeans’ functions from R
package ‘emmeans’ (Lenth, 2018). P values were Bonferroni
corrected.

Experiment 2: Substrate Type and Vibratory Signal Transmission

We added to our knowledge of substrate-dependent vibratory
signal transmission in S. retrorsa by including an additional natural
substrate type e sand. Notably, we also analysed vibratory signal
components separately to assess component-specific signal trans-
mission. Ultimately, we quantified the transmission of (1) ped-
ipalpal drumming and (2) foreleg taps across three substrate types
e leaf litter, pine litter and sand.

We quantified vibratory signal transmission across substrate
types by playing recorded S. retrorsa vibratory displays through
three different substrate types (oak leaf litter, pine litter and sand).
We measured signal intensity at eight distances from the source (1,
5, 10, 20, 40, 80, 160 and 240 mm), using techniques adapted from
Hebets et al. (2008). Measurements of signal intensity for different
signal types (see below) were measured at each of the eight dis-
tances with a Polytec PSV�400 scanning laser vibrometer (Polytec
Inc., Irvine, CA, U.S.A.).

We generated playback signals using recordings of live male
S. retrorsa recorded on a stretched nylon substrate impregnated
with female silk. Exemplar recordings were made at a distance of
1e2 mm from the male using a Polytec PSV�400 scanning laser
vibrometer.

Male courtship consists of two distinct vibratory components:
pedipalpal drumming and foreleg taps (Hebets et al., 1996; Hebets
et al., 2013). These two components are acoustically distinct, and
we therefore performed playbacks for them separately. We
measured the transmission of drumming and tapping signals from
three exemplar males across three replicates of each substrate type.
For each replicate, we removed the substrate and reintroduced it,
thus altering its arrangement. By including variation in substrate
arrangement, we attempted to account for natural variability,
which may significantly affect signal transmission. We played back
signals through a 10 mm Samsung DMJBRN 1030BK linear resonant
vibration actuator. Output from the actuator was calibrated using a
digital equalization filter (Cocroft, Gogala, Hill, &Wessel, 2014). For
leaf and pine playbacks, the actuator was affixed to the substrate
with low-temperature hot glue. For the sand treatment, the actu-
ator was pressed gently into the substrate. For all recordings, the
actuator was positioned so that it was at the surface of the
substrate.

We measured signal attenuation as the root mean square (RMS)
amplitude of the signal (in dB) at different distances relative to the
signal amplitude of the single loudest recorded measurement for
each display component for a given male. This reference mea-
surement was always at a distance of 1 mm from the actuator,
usually on leaf litter. By comparing each point to the loudest
recorded measurement, we thus compared signal attenuation at
any given point to the maximum intensity for that signal. As such,
these amplitudes are standardized across substrates, thus facili-
tating cross-substrate comparisons.

We measured the frequency filtering properties for each sub-
strate by playing a sine sweep through the same actuator set-up
described above and recording vibrations at three distances from
the playback source (20 mm, 40 mm, 80 mm). The sine sweep ex-
cites all frequencies equally, and any differences in amplitude
across the measured frequency range are therefore a result of
filtering by the substrate. For each substrate, wemeasured intensity
across the frequency range (in dB) for the three distances relative to
the peak frequency at that distance. These measurements therefore
represent the relative attenuation of all frequencies to the peak
frequency on a given substrate and distance. We generated figures
of these data using cubic smoothing spline fits. For comparison of
these transfer functions, we also generated smoothing spline-fitted
figures of the raw velocities measured across the frequency range
for pedipalpal drumming and foreleg taps. Unlike the frequency
filtering data, the magnitude of these velocities can be compared
across distances and substrates.

Statistical analyses
We conducted a linear mixed effects analysis to test the influ-

ence of substrate on the attenuation of vibratory components
produced by pedipalpal drumming, foreleg tapping and the full
courtship display with individual replicate as a random factor. P
values were obtained by likelihood ratio tests of the full model with
the effect in question against the model without the effect in
question. For modelling, we used ‘lmer’ functions from the R
package ‘lme4’ (Bates, Maechler, Bolker, & Walker, 2015).

Experiment 3: Substrate Type, Light Level and Copulation Success

We compared substrate-specific courtship and copulation pat-
terns among three substrate types (leaf litter, pine litter and sand)
under two separate light conditions (light present and light absent).
If prior results showing higher copulation success on pine litter and
sand was due to increased visual signal transmission on these
substrates, then we would expect this pattern to disappear in the
absence of light.

Mating arenas consisted of circular plastic containers (diameter:
203 mm, height: 76 mm) filled to approximately 30 mm deep with
one of the three substrate types. Between each trial, we completely
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removed the substrate in each arena, rinsed the arenawith distilled
water and refilled them with new substrate. Light present trials
were illuminated using two Vita-Lite full-spectrum 30W fluores-
cent bulbs (Duro-Test Lighting Inc., Tultitl�an, Mexico). Light absent
trials were conducted in complete darkness.

The experiments involved 78 pairs e 13 pairs for each of six
treatment combinations in 2�3 design: light present/absent on leaf
litter, light present/absent on pine litter and light present/absent on
sand. We used each spider only once. During each trial, a single
femaleemale S. retrorsa pair was placed on each substrate type.
Before males were placed in the experimental arena, females had
5 min of acclimation time. After males were placed in the arena, we
observed behaviour for 45 min. We recorded courtship presence/
absence, time to first courtship (i.e. latency), the number of male
attempts to mount, copulation presence/absence and time to
copulation. We considered the time from chemoexploration to the
first pedipalpal drumming as the latency to first courtship and the
time from chemoexploration to the first pedipalpal insertion as
latency to copulation. We observed light absent trials with Rigel
3200 night vision goggles (Rigel Optics Inc., Washougal, WA, U.S.A.)
or with a Sony HDR-SR10 night-shot camera (Sony Electronics Inc.,
Minato, Tokyo, Japan).
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Figure 1. Entrainment profile for locomotor activity of (a) male (N ¼ 16) and (b) fe-
male S. retrorsa (N ¼ 16). Counts represent the average number of interruptions of an
infrared beam per individual, in 30 min intervals, over 5 days of a 12:12 h light:dark
cycle. Shaded background represents the dark period of the light:dark cycle.
Statistical analyses
We first used a binomial logistic regression model for the

presence of male courtship/copulation and a Poisson regression
model for the number of attempts by the male to mount the female
to determine whether the behaviours were dependent on substrate
type in different light conditions. Next, to accommodate all of our
data, we used beta regression analyses to investigate the effect of
substrate type, light condition and the interaction term on the
proportional latency to male courtship behaviour and copulation.
The proportional latency was calculated by dividing the starting
time of courtship/copulation by the total duration of a trial. P values
of each fixed effect were estimated by likelihood ratio tests of the
full model with the effect in question against themodel without the
effect. All generalized linear mixed regression analyses were con-
ducted using ‘glmmTMB’ functions from R package ‘glmmTMB’
(Brooks et al., 2017). For significant fixed effects, we subsequently
conducted post hoc analyses using pairwise comparisons of esti-
mated marginal means (hereafter, EMM) and log odds ratios for
logistic regression using ‘emmeans’ functions from R package
‘emmeans’ (Lenth, Singmann, Love, Buerkner, & Herve, 2019). P
values were Bonferroni corrected.

Ethical Note

No special protocols are required for the handling of use of
spiders in research. We nevertheless ensured the proper mainte-
nance and ethical care for all spiders in our study. Collecting per-
mits (0706161) were provided by the Mississippi Department of
Wildlife Fisheries and Parks. After experiments, spiders were
individually euthanized by freezing, and then preserved in 70%
ethanol. To the best of our knowledge, we followed the suggestions
of ASAB/ABS Guidelines for the use of animals in research.

RESULTS

Experiment 1: Activity Patterns and Male Substrate Use

Activity patterns
Both females andmales showed peak activity in the light (Fig.1).

Males were most active 7e8 h after lights on, and female activity
was the highest 1 h earlier than that (6e7 h after lights on).

Male substrate use
There was no change in body mass of spiders during the

experimental period (Wilcoxon signed-rank test: W ¼ 1702.5,
Z ¼ 0.195, P ¼ 0.847). The presence of female cues did not affect the
initially chosen substrate type (McNemar's test: leaf litter:
P ¼ 0.311; pine litter: P ¼ 0.728; sand: P ¼ 0.174).

The presence of female cues had significant effects on the
number of substrate changes (c2

1 ¼17.633, P < 0.001), the presence
of male courtship (c2

1 ¼18.242, P < 0.001) and the total courting
time (c2

1 ¼10.980, P ¼ 0.001). In the presence of female cues,
changes among substrates were more frequent (EMM ± SE: pres-
ence: 11.93 ± 1.477; absence: 6.65 ± 0.866; t ¼ �4.46, < 0.001),
more males courted (EMM ± SE: presence: 0.245 ± 0.096; absence:
0.035 ± 0.034; t ¼ �3.041, P ¼ 0.003) and courtship lasted longer
(EMM ± SE: presence: 205.1 ± 36.7; absence: 42.9 ± 14.4;
t ¼ �4.121, P < 0.001).

Male courtship vigour was influenced by substrate type
(c2

2 ¼ 35.601, P < 0.001) and presence of the female cue
(c2

2 ¼ 14.742, P ¼ 0.002). Males courted less vigorously on sand
(EMM ± SE ¼ 0.015 ± 0.005) than on leaf litter (EMM ± SE ¼ 0.040
± 0.014) and pine litter (EMM ± SE ¼ 0.063 ± 0.020) (versus leaf
litter: t ¼ 3.958, P < 0.001; versus pine litter: t ¼ 5.149, P < 0.001).
There was no significant difference in male courtship vigour
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between leaf litter and pine litter (t ¼ �1.233, P ¼ 0.662). Also,
across substrate types, male courtship was more vigorous in the
presence of the female cue (EMM ± SE ¼ 0.064 ± 0.015) than in the
absence of the female cue (EMM ± SE ¼ 0.017 ± 0.008; t ¼ �3.589,
P ¼ 0.001).

The presence of female cues had a significant influence on the
proportion of residing time on sand (c2

1 ¼ 4.759, P ¼ 0.029) but not
on leaf litter (c2

1 ¼ 0.181, P ¼ 0.671) or pine litter (c2
1 ¼ 2.304,

P ¼ 0.129). The proportion of residing time on sand was signifi-
cantly larger in the presence of the female cue (EMM ±
SE ¼ 0.118 ± 0.022) than in the absence of the female cue (EMM ±
SE ¼ 0.082 ± 0.016) (t ¼ �2.191, P ¼ 0.030; Fig. 2). Courting time on
each substrate was significantly correlated with residing time
across all the substrates (Spearman's correlation: leaf: rS ¼ 0.576,
P ¼ 0.001; pine: rS ¼ 0.743, P < 0.001; sand: rS ¼ 0.464, P ¼ 0.011).

In summary, the presence of female cues elicited male mate
searching and courtship behaviour and influenced male substrate
use. Although males resided mostly on leaf litter, males tended to
invest more time on sand in the presence of female cues.
Experiment 2: Substrate Type and Vibratory Signal Transmission

There was a significant effect of substrate type on signal atten-
uation by distance. Using both signal components in the model,
attenuation was dependent on substrate type and on the interac-
tion term between substrate type and distance (substrate:
c2

4 ¼ 398.96, P < 0.001; substrate)distance: c2
2 ¼ 10.975,

P ¼ 0.004). Using only pedipalpal drumming in the model, atten-
uation was also dependent on substrate type and the interaction
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Figure 2. Residing and courting time allocation among substrates (N ¼ 65). Black bars:
proportion of residing time in the absence of the female cue; grey bars: proportion of
residing time in the presence of the female cue; white bars: proportion of courting
time among courting individuals.
term between substrate and distance (substrate: c2
4 ¼ 200.060,

P < 0.001; substrate)distance: c2
2 ¼ 6.384, P ¼ 0.041). The effect of

the interaction termwas not significant in the model with only leg
taps (substrate: c2

4 ¼ 202.160, P < 0.001; substrate)distance:
c2

2 ¼ 4.898, P ¼ 0.086). Vibratory signals were transmitted best on
leaf litter, followed by pine litter and then by sand, regardless of
structural variation (all components: leaf litter versus pine litter:
t ¼ 7.322, P < 0.001; leaf litter versus sand: t ¼ 14.876, P < 0.001;
pine litter versus sand: t ¼ 17.265, P < 0.001; pedipalpal drum-
ming: leaf litter versus pine litter: t ¼ 5.021, P < 0.001; leaf litter
versus sand: t ¼ 17.319, P < 0.001; pine litter versus sand:
t ¼ 12.298, P < 0.001; leg tap: leaf litter versus pine litter: t ¼ 5.332,
P < 0.001; leaf litter versus sand: t ¼ 17.469, P < 0.001; pine litter
versus sand: t ¼ 12.137, P < 0.001) (Fig. 3).

Comparing frequency filtering across substrate types (Fig. 4aec),
leaf and pine litter acted as low-pass filters, significantly attenu-
ating frequencies above 1000 Hz. Conversely, sand did not appear
to filter any specific frequencies. The lack of frequency filtering on
sand most likely occurred because sand does not pass any fre-
quencies well. At 20 mm from the source on sand, the amplitude of
both taps and drumming were less than at 80 mm from the source
on both leaf and pine. Comparing the velocities of drumming and
tapping playbacks across the three substrate types (Fig. 4dei), we
found that S. retrorsa's courtship mostly resided in the 1e500 Hz
range, which transmits well through both leaf and pine. We also
found evidence that the peak frequencies of both drumming and
tapping shifted towards lower frequencies at greater distances from
the source, potentially as a result of the low-pass nature of the
substrate.
Experiment 3: Substrate Type, Light Level and Copulation Success

The likelihood ofmales courting was not influenced by substrate
type (c2

4 ¼ 4.615, P ¼ 0.329), light condition (c2
3 ¼ 3.236,

P ¼ 0.357) or any interactions (c2
2 ¼ 3.016, P ¼ 0.221; Fig. 5a). The

likelihood of copulation was significantly influenced by substrate
type (c2

4 ¼ 10.127, P ¼ 0.038) but not by light condition
(c2

3 ¼ 2.128, P ¼ 0.546) or any interactions (c2
2 ¼ 2.071, P ¼ 0.355).

Spiders were more likely to copulate on sand (EMM ±
SE ¼ 0.748 ± 0.090) than on leaf litter (EMM ± SE ¼ 0.345 ± 0.094;
t ¼ �2.730, P ¼ 0.024). The likelihood of copulation on pine litter
(EMM ± SE ¼ 0.500 ± 0.098) was not significantly different than
that on other substrates (versus leaf litter: t ¼ �1.121, P ¼ 0.798;
versus sand: t ¼ �1.755, P ¼ 0.250; Fig. 5c).

The number of males attempting to mount females was not
dependent on substrate type (c2

4 ¼ 2.375, P ¼ 0.667), light condi-
tion (c2

3 ¼ 2.101, P ¼ 0.552) or interactions (c2
2 ¼ 0.816,

P ¼ 0.665).
The latency to first courtship was significantly influenced by

substrate type (c2
4 ¼ 9.537, P ¼ 0.049) but not by light condition

(c2
3 ¼ 7.456, P ¼ 0.059) or interactions (c2

2 ¼ 5.335, P ¼ 0.069).
However, a post hoc pairwise comparison did not showa significant
difference between substrates (leaf litter versus pine litter:
t ¼ �0.716, P ¼ 1.000; leaf litter versus sand: t ¼ �2.187, P ¼ 0.097;
pine litter versus sand: t ¼ �1.439, P ¼ 0.465; Fig. 5b). The latency
to copulation did not differ between the two light conditions
(c2

3 ¼ 2.376, P ¼ 0.498), but there was a significant difference in
the latency to copulation between substrate types (c2

4 ¼ 10.056,
P ¼ 0.040). There was no significant effect of the interaction term
on the latency to copulation (c2

2 ¼ 2.145, P ¼ 0.342). The latency to
copulation on sand (EMM ± SE ¼ 0.778 ± 0.049) was significantly
shorter than on leaf litter (EMM ± SE ¼ 0.901 ± 0.254; t ¼ 2.928,
P ¼ 0.014). There was no significant difference in the latency to
copulation between pine litter (EMM ± SE ¼ 0.877 ± 0.031) and
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other substrates (versus leaf litter: t ¼ 0.772, P ¼ 1.000; versus
sand: t ¼ 2.176, P ¼ 0.099; Fig. 5d).
DISCUSSION

The signalling environment that S. retrorsa males experience, in
terms of both time (of day) and space (substrate type), influences
their activity patterns, their vibratory signal transmission, their
visual signal transmission and their copulation success. The influ-
ence of the signalling environment, however, does not conform to
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predictions of the sensory drive hypothesis (i.e. we found no
signalesubstrate match). We found that female andmale S. retrorsa
appear to be most active during daylight hours, and mature males
reside longer on leaf litter, as compared to pine litter or sand
regardless of the presence/absence of female cues. Additionally,
vibratory courtship signals transmitted best, in terms of attenua-
tion, on leaf litter. While these results would predict that leaf litter
would yield the highest copulation success, instead, we found that
males obtained the highest copulation success on sand, regardless
of the light level. Consistent with prior research on S. retrorsa
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(Hebets et al., 2008; Hebets et al., 2013; Rundus et al., 2010), but in
contrast to data on other Schizocosa species (Elias et al., 2010;
Gordon & Uetz, 2012; Hebets, 2008; Hebets et al., 2013;
Rosenthal et al., 2019), our results support the hypothesis that
neither vibratory nor visual courtship signals are necessary for
S. retrorsa copulation success. Additionally, while the microhabitat
(i.e. substrate type) influences copulation success in S. retrorsa, this
influence is not through its effects on visual or vibratory signal
transmission. Together, our results are inconsistent with the pre-
dictions of sensory drive.

Activity Patterns and Microhabitat Use

Our activity data suggest that S. retrorsa females and males are
most active in daylight hours e implying the potential for visual
signalling to play an important role in courtship. In terms of activity
across microhabitats, males resided longest on leaf litter and
courted more vigorously on leaf and pine litter than on sand. Not
surprisingly, courting timewas correlatedwith residing time. These
results are similar to a previous study that used subadult and adult
female and male S. retrorsa. The prior study found that the first
substrate choice and residing time did not differ between substrate
types for any of the groups, but spiders tended to reside longer on
leaf litter (Hebets et al., 2008). These authors also observed that
adult males moved more than subadults and they suggested that
this may be driven by mate searching (Hebets et al., 2008). In
support of this hypothesis that the increased movement is due to
mate searching, when a female cue was present (versus absent),
mature males changed substrates more times. Field research on the
locomotion of wolf spiders also supports the hypothesis that
mature males move more than females (S. ocreata; Cady, 1984;
Venatrix lapidosa; Framenau, 2005).

Schizocosa retrorsa males generally resided longer on leaf litter
and courted more vigorously, despite leaf litter being the substrate
onwhich theywere least likely tomate.We suspect that differences
in residing time and courtship vigour across substrates reflect the
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different physical structures of the microhabitat rather than
courtship location preferences. By controlling the depth of sub-
strates, we unintentionally created microhabitats with drastically
different physical structure and surface area. Our leaf litter con-
sisted of dried oak leaves and twigs, each with distinct three-
dimensional properties. This environment was a complex, three-
dimensional labyrinth of spaces that males (and females had they
been present) could hide in and/or explore. Pine needles had
relatively less structural variation than deciduous leaf litter, but
nevertheless, there was still three-dimensional spaces created. In
stark contrast, spiders in the sand were restricted to a two-
dimensional horizontal plane of movement. Ultimately, leaf litter
most likely had the largest possible surface area for males to
manoeuvre, followed by pine litter, then sand. This matches the
residing time observed by males in this study. Taken together with
the context-dependent substrate choice (i.e. males resided longer
on sand when they were exposed to female cues), it is possible that
our observed residing time does not reflect microhabitat prefer-
ences, but instead reflects movement patterns related to structural
complexity.

Note, however, that our experimental design could not control
for the potential impact of a time effect between female cue pres-
ence/absence trials. Experience with the experimental set-up may
have influenced a male's subsequent behaviour e e.g. making him
more acclimated and thus more likely to move or court the second
time. Nevertheless, in both sets of trials, there was no significant
difference in the pattern of male substrate use, suggesting that
males behaved similarly across time.

Vibratory Signal Transmission Across Substrate Types

Unsurprisingly, leaf litter, pine litter and sand had different
vibratory transmission properties. Our sine sweep experiment,
which allowed us to generate transfer functions for each substrate,
demonstrated that the three substrate types filter frequencies
differently. In particular, leaf litter and pine litter were low-pass
filters. In relation to leaf litter and pine litter, sand did not appear
to differentially filter frequencies but instead attenuated all vibra-
tory signals to a higher degree than pine or leaf litter habitats.
Notably, on sand, energy in vibratory signals was indistinguishable
from the noise floor at 20 mm. When we compared the trans-
mission of a spider's actual song across substrate types e both
drumming and leg tappingewe similarly found that the substrates
attenuated drumming and leg tapping to different degrees. In
particular, the attenuation of drumming was dependent on sub-
strate type, whereas foreleg tapping was independent of substrate.
This suggests that foreleg tapping might be a more effective signal
across variable environmental conditions whereas pedipalpal
drumming is more effective in particular signalling locations. Also,
we found evidence that frequency filtering alters the frequency
spectra of S. retrorsa drumming and leg tapping on leaf litter.
Together, our data suggest that leaf litter and pine litter are good
low-pass filters, that leaf litter alters the vibratory song and that
sand is similar to a vibration absent signalling environment (Fig. 4).

Copulation Success Across Substrate Types and Light Levels

When confined to distinct substrate types, S. retrorsa pairs were
more likely to mate on sand than on leaf litter, while copulation
success on pine litter did not differ from that on the other sub-
strates tested. This same pattern of mating was seen regardless of
the light conditions. This substrate-dependent copulation pattern is
similar to that found in a previous study that used leaf litter, pine
litter and red clay as substrate types (Hebets et al., 2008). Our re-
sults suggest that any variation in the transmission efficacy of
vibratory or visual signalling (which we did not quantify here)
across substrate types cannot explain substrate-dependent copu-
lation success. These results are also consistent with previous work
suggesting that the light environment had no influence on copu-
lation success of S. retrorsa (Hebets et al., 2013; Rundus et al., 2010).

We found a mismatch between the best substrate type for
vibratory signal transmission and the substrate upon which
S. retrorsa obtained the highest copulation success. This mismatch
was not limited to effective vibratory signalling and copulation
success, but included visual signalling as well. Approximately 80%
of pairs mated in complete darkness on sand (Fig. 3) e i.e. in the
effective absence of both vibratory and visual signal perception. The
copulation success of S. retrorsa on sand in the absence of visual
signals was much higher than that reported for S. retrorsa on
granite in the same light environment (27% in Rundus et al., 2010,
26% in Hebets et al., 2013). Although structural complexity might
help explain low levels of copulation success on leaf and pine litter
(see earlier discussion of microhabitat preference), pairs remain
capable of mating in the absence of vibratory and visual signals.
Similar mismatches have been observed in other communication
systems as well (Jain & Balakrishnan, 2012; Schmidt &
Balakrishnan, 2015; Smith et al., 2011; Smith, van Staaden, &
Carleton, 2012; Zhao et al., 2017).
Summary

In stark contrast to other Schizocosa species (Elias et al., 2010;
Hebets et al., 2013), microhabitat use and vibratory and visual
transmission properties cannot explain substrate-dependent mat-
ing success in S. retrorsa. Assuming that our experimental design is
sufficient, we propose the following possibilities. (1) Male S. ret-
rorsa ‘courtship displays’ do not influence copulation success (2)
alternative signalling modalities (e.g. air particle displacement or
chemical signalling), play a role (3) other substrate-dependent
factors (e.g. perceived predation risk), influence female prefer-
ence for male vibratory signalling and copulation success and/or (4)
females exhibit a reversed preference (i.e. deterrence) for vibratory
signalling.

The first potential explanation for the mismatch between signal
transmission and signal function (i.e. successful copulation) is that
the conspicuous (to human observers) vibratory and visual court-
ship signalling in S. retrorsa no longer function in courtship. If the
courtship display serves only a minor role in S. retrorsa copulation,
for example, the substrate-dependent copulation success may be
an outcome of the difference in the chance that males randomly
run into females in different physical structures of microhabitats e
i.e. more likely on sand. We find this explanation highly unlikely
though, as male courtship is initiated by contact with female silk
cues alone (Rundus, Biemuller, DeLong, Fitzgerald, & Nyandwi,
2015), and male courtship vigour is the best predictor of mating
success in S. retrorsa (Rundus et al., 2010). Furthermore, the number
of attempted mounts did not significantly differ between signalling
environments, suggesting that the substrate-dependent copulation
success was caused by female responses tomale signal, not by other
factors such as encounter rate in structurally different substrates.

Second, our study focused on vibratory and visual signalling, but
spiders may also rely on other sensory modalities during courtship
e e.g. air particle movement or airborne chemical cues. For
instance, female silk contains chemical cues of the female's
reproductive state, receptivity or age (Roberts & Uetz, 2005;
Rundus et al., 2015). While females may alter their silk cues
across substrate types, this possibility would require future testing.
The possibility that S. retrorsa use air particle movement (near-field
sound), however, has already received some attention.
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Previous studies have suggested that air particle movement is
probably used by many insects and arthropods (Barth, Humphrey,
Wastl, Halbritter, & Brittinger, 1995; Cator, Ng’Habi, Hoy, &
Harrington, 2010; Klopsch, Kuhlmann, & Barth, 2013; Lapshin &
Vorontsov, 2017; Santer & Hebets, 2008; Santer & Hebets, 2011;
Shimozawa & Kanou, 1984). Some argue that the ability of ani-
mals to use air particle movements to guide behaviour has been
dramatically underestimated (Barth & H€oller, 1999; Bathellier,
Steinmann, Barth, & Casas, 2012; Klopsch et al., 2013; Raboin &
Elias, 2019; Shamble et al., 2016). In line with this suggestion,
Rundus et al. (2010) previously suggested that the air particle
movement generated by the leg waving during S. retrorsa courtship
may play a role in courtship signalling. Their hypothesized role of
air particle displacement was based upon prior findings that
documented (1) the maintenance of male copulation success in the
absence of visual and vibratory courtship components (similar to
results of the current study) and (2) a positive relationship between
the number of leg waves and copulation success (not tested in the
current study). The authors further demonstrated mathematically
that the leg waving of S. retrorsa could generate air particle
movement that was of sufficient velocity to be detected by sensory
hairs on the female from a distance of 65 mm (Rundus et al., 2010).
While we did not quantify the potential for air particle displace-
ment across our substrate types in the present study, we expect
that it would have high efficacy on red clay and sand and lower
transmission efficacy on pine litter and leaf litter e a pattern that
matches the copulation success in the current study as well as prior
research (Hebets et al., 2008). Similar to Rundus et al. (2010), we
suspect a significant role of air particle displacement in S. retrorsa
courtship e a hypothesis that is not mutually exclusive of others.

Third, other substrate-dependent factors may have been
responsible for our observed substrate-dependent mating success.
In Schizocosa wolf spiders, for example, predation risk during
courtship signalling and copulation is most likely high due to
decreased vigilance (Hebets, 2005), eavesdropping by predators
(Roberts, Taylor, & Uetz, 2007) or prolonged copulation (1e8 h;
Stratton, Hebets, Miller, & Miller, 1996). Furthermore, in other wolf
spiders, courtship is known to increase predation risk. Courting
male Rabidosa punctulatawolf spiders, for example, are attacked by
heterospecifics more often than noncourting males (Wilgers,
Wickwire, & Hebets, 2014). Due to this risk, males may choose to
decrease the active space of their signals (Long & Rosenqvist, 1998)
or alter their courtship behaviour. As predicted, R. punctulatamales
switch from a courtship mating tactic to a direct mount tactic in the
presence of predatory heterospecific cues (Wilgers et al., 2014).
Along the same lines, under natural conditions where predators are
present, Schizocosa retrosa females may actively avoid copulating
on leaf litter, which may increase predation risk or interrupt mate
assessment by the enhanced vibratory signal conspicuousness.
Consistent with this hypothesis, in a recent review, Schmidt and
Balakrishnan (2015) suggested that other ecological factors such
as predation may drive animals to produce signals in suboptimal
signalling microhabitats (in terms of signal transmission).

Fourth, female S. retrorsa may be overly sensitive to conspecific
vibratory signals or actively dislike them. All of our results are
consistent with the notion that females avoid males that they can
hear well, regardless of the light environment. Given that S. retrorsa
females predominantly live on substrates that may dampen
vibratory cues (e.g. sand), they may be frightened, startled or
repelled by loud vibrations such as those produced by males
courting on leaf litter. Alternatively, or in addition, attending to
vibratory signals may be costly for S. retrorsa females. It may
somehow reduce their ability to ‘choose’ among males, or may
increase their risk of predation due to eavesdropping predators.
Such costs might have led to female resistance to vibratory
signalling over evolutionary time in an antagonistic, chase-away
fashion (Cordero & Eberhard, 2005; Holland & Rice, 1998). Unfor-
tunately, we are unable to assess these possibilities given our
present data.

Finally, in addition to the previously discussed hypotheses, we
can also include possibilities of reproductive character displace-
ment (upland chorus frog, Pseudacris feriarum: Malone, Ribaldo, &
Lemmon, 2014) and physiological plasticity (Malawi cichlids:
Smith et al., 2012). At this time, however, the use of an additional
sensory modality e air particle displacement e in S. retrorsa
courtship is our favoured hypothesis to explain the seeming
mismatch between vibratory and visual signal transmission and
mating success.

In conclusion, like other studies that demonstrate equivocal
support for sensory drive (Ey & Fischer, 2009; Malone, Ribado, &
Lemmon, 2014; Schmidt & Balakrishnan, 2015; Smith et al.,
2012), our results do not support a match between effective
multimodal (vibratory and visual) signal transmission and signal
function (copulation success) in S. retrorsa. We suggest that the
discordance between the theoretical predictions and empirical
tests of sensory drive may arise when factors other than mate
choice take precedence, or when other (less conspicuous) modal-
ities are at play. Nevertheless, our results, in combination with
earlier studies, clearly demonstrate interspecific variation in the
dominance and function of specific sensory modalities across
Schizocosamultimodal courtship displays (Elias et al., 2010; Gordon
& Uetz, 2011; Hebets, 2008; Hebets et al., 2013; Stratton, 2005;
present study). Such interspecific variation suggests that different
selective regimes have acted across species and that we need to
broaden our hypotheses regarding complex signal evolution
beyond that of sensory drive and mate choice, and beyond the
traditional, conspicuous sensory modalities.
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r plastic container (190 mm diameter, 70 mm height) equally divided into three sections
m. A circular central platform (30 mm diameter) connected all three substrate types. A
e bottom of each section.
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