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Research Article

Genetic Variants in Metabolic Signaling Pathways
and Their Interaction with Lifestyle Factors on
Breast Cancer Risk: A Random Survival Forest
Analysis
Su Yon Jung1, Jeanette C. Papp2, Eric M. Sobel2, and Zuo-Feng Zhang3

Abstract

Genetic variants in the insulin-like growth factor-I (IGF-I)/
insulin resistance axis may interact with lifestyle factors, influ-
encing postmenopausal breast cancer risk, but these interrelat-
ed pathways are not fully understood. In this study, we exam-
ined 54 single-nucleotide polymorphisms (SNP) in genes relat-
ed to IGF-I/insulin phenotypes and signaling pathways and
lifestyle factors in relation to postmenopausal breast cancer,
using data from 6,567 postmenopausal women in the Women's
Health Initiative Harmonized and Imputed Genome-Wide
Association Studies. We used a machine-learning method,
two-stage random survival forest analysis. We identified three
genetic variants (AKT1 rs2494740, AKT1 rs2494744, and AKT1

rs2498789) and two lifestyle factors [body mass index (BMI)
and dietary alcohol intake] as the top five most influential
predictors for breast cancer risk. The combination of the three
SNPs, BMI, and alcohol consumption (!1 g/day) significantly
increased the risk of breast cancer in a gene and lifestyle dose-
dependent manner. Our findings provide insight into gene–
lifestyle interactions and will enable researchers to focus on
individuals with risk genotypes to promote intervention strat-
egies. These data also suggest potential genetic targets in future
intervention/clinical trials for cancer prevention in order to
reduce the risk for breast cancer in postmenopausal women.
Cancer Prev Res; 11(1); 44–51. !2017 AACR.

Introduction
Breast cancer is themost commonly occurring cancer inwomen

and the second most common cause of cancer-related deaths in
theUnited States (1, 2). Incidence anddeath rates for breast cancer
increase with age. Approximately 79% of new cases and 88% of
cancer deaths occur in women age 50 years and older (2, 3). The
insulin-like growth factor-I (IGF-I)/insulin resistance (IR) axis
demonstrates strong associations with breast cancer (4–6). Total
and/or free bioavailable IGF-I proteins are associated with higher
risk of breast cancer and worse cancer survival in premenopausal
and postmenopausal women (7–9). In postmenopausal women,
homeostaticmodel assessment–insulin resistance (HOMA-IR), as
a proxy measure of IR, reflecting compensatory high blood levels
of insulin and glucose, is positively associated with breast cancer

(10). Hyperinsulinemia alone has been associated with a 2-fold
increase in breast cancer risk in postmenopausal women (11, 12).

High IGF-I levels and IR (characterized by hyperinsulinemia
and hyperglycemia) activate the IGF/insulin receptors, which are
overexpressed in breast cancer cells. This overexpression results in
the enhanced anabolic state necessary for cell proliferation, dif-
ferentiation, and antiapoptosis via deregulating or overactivating
multiple downstream signaling pathways, including the PI3K/
protein kinase B (Akt) and MAPK pathways (13–15). Thus, high
IGF-I levels and IR contribute to overexpression of relevant
receptors and tohyperactive and abnormalmultiple cell-signaling
pathways, and therefore may be associated with carcinogenesis.

Considering the associations of the IGF-I/IR axis with breast
cancer risk, the genetic variants that may influence circulating
levels of IGF-I and insulin are possibly associated with breast
cancer risk. In addition, the IGF-I/insulin signaling pathways'
genetic alterations lead to altered gene expression and protein
function and are plausibly associated with increased risk of breast
cancer. However, population-based studies to examine these
genetic variants and breast cancer relationships have been limited
and yield inconsistent findings (16–23).

Behavioral factors may interact with genetic factors and jointly
influence breast cancer susceptibility. In postmenopausalwomen,
obesity is associated with increased risk of breast cancer, which
could be mediated via the IGF-I/IR axis (4). Also, an unhealthy,
unbalanced diet could be a potential risk factor for breast cancer.
In particular, alcohol, even at a few drinks a week, could increase
breast cancer risk (24, 25).

Gene–behavior interaction is a critical area in cancer genetic
epidemiology and has been studied with various statistical
methods. In this retrospective study among non–Hispanic white
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postmenopausalwomen,we evaluated 54 single-nucleotide poly-
morphisms (SNP) in genes related to the IGF-I/insulin pheno-
types and signaling pathways and selected 17 demographic and
lifestyle factors. We evaluated the genetic variants and lifestyle
factors by ranking them according to their predictive value and
accuracy for breast cancer. We then examined the effect of inter-
action between the most influential genetic variants and lifestyle
factors on predicting breast cancer risk. We used a machine
learningmethod, two-stage random survival forest (RSF) analysis.
The recently developed RSF tool is a nonparametric tree-based
ensemble learning method and accounts for the nonlinear
effects of variables that may not be handled in a regressionmodel
(26, 27). This allows for high-order interactions among variables
and has yielded accurate predictions (26). Thus, this methodmay
provide a way to resolve the conflicting findings in previous
studies of genes and behaviors. By applying the two-stage RSF
approach, we tested the hypothesis that the most dominant
genetic and behavioral factors identified through the RSF analysis
interact reciprocally to predict breast cancer risk. We further
evaluated a gene and behavior dose-response relationship and
estimated the combined effect of those variables on breast cancer
risk.

Materials and Methods
Study population

This study included data from 6,567 participants enrolled in
the Women's Health Initiative (WHI) Harmonized and Imput-
ed Genome-Wide Association Studies (GWAS) data, which
contributes a joint imputation and harmonization effort for
GWAS within the WHI Clinical Trials and Observational Stud-
ies. Details of the studies' rationale and design have been
described elsewhere (28, 29). Briefly, WHI study participants
were recruited from 40 clinical centers nationwide from Octo-
ber 1, 1993, to December 31, 1998. Eligible women were 50 to
79 years old, postmenopausal, expected to live near the clinical
centers for at least 3 years after enrollment, and able to provide
written consent. For our study, we initially included 10,703 of
those women who reported their race or ethnicity as non–
Hispanic white (Supplementary Fig. S1). Of those, we excluded
469 women who had been followed up for less than 1 year or
had been diagnosed with any cancer at enrollment. We also
excluded women (n ¼ 1,793) who had diabetes mellitus at
enrollment or later. We excluded another 1,101 women whose
SNP data indicated they were duplicated or related to others in
the dataset. Of the 7,340 women remaining, we finally excluded
773 women for whom the information on covariates was
unavailable, resulting in a total of 6,567 women (90% of the
eligible 7,340). Of these, 352 developed breast cancer after
enrollment. The participants had been followed up through
August 29, 2014 (a median follow-up period of 16 years). This
study was approved by the institutional review boards of each
participating clinical center of the WHI and the University of
California, Los Angeles.

Data collection and cancer outcome variables
Data had been collected using standardized written protocols

with periodic quality assurance (QA) performed by the WHI
coordinating center. At baseline, participants completed self-
administered questionnaires regarding demographic factors
(age, family income, and family history of breast cancer),

lifestyle factors [depressive symptom, smoking status, physical
activity, diet (dietary alcohol in grams per day and percent
calories from fat and from saturated fatty acids per day)], and
reproductive histories [exogenous estrogen (E) use (never vs.
duration of E only and E þ Progestin (P) use), history of
hysterectomy or oophorectomy, ages at menopause and men-
arche, and number of pregnancies]. Anthropometric measure-
ments such as height, weight, and waist and hip circumferences
were measured at baseline by trained staff. The above variables
were initially selected for this study on the basis of a literature
review for their associations with breast cancer. Multicollinear-
ity testing and univariate and stepwise regression analyses
determined the final set to be analyzed.

Cancer outcomeswere determinedusing a centralized reviewof
medical charts, and cancer cases were coded according to the
National Cancer Institute's Surveillance, Epidemiology, and End-
Results guidelines (30). The outcome variables were breast cancer
and the time to development of breast cancer. The time from
enrollment to breast cancer development, censoring, or study
endpointwas estimated as the number of days and then converted
into years.

Genotyping
TheWHIHarmonized and Imputed GWAS is a combination of

six substudies (Hip Fracture GWAS, SHARe, GARNET, WHIMS,
GECCO, and MOPMAP) within the WHI study. Genotyping
included alignment ("flipping") to the same reference panel and
imputation via the 1,000 Genomes reference panels. SNPs for
harmonization were checked for pairwise concordance and for
identity by descent in Plink to identify relatedness among all
samples in the substudies. Initial QAwas implemented according
to a standardized protocol, with 90% R2 imputation quality
scores, a missing call rate of <2%, and a Hardy–Weinberg equi-
librium of P ! 10$4. Fifty-four SNPs in 9 genes (Supplementary
Table S1)were chosen based on the biological significance of their
gene products, or whether epidemiologic and/or experimental
data support an association between the gene and the levels of IGF
and insulin, or between the gene and risk of cancer (13, 16–23,
31–33). The allele frequencies of these SNPs in our population
were consistent with the frequencies in a European population
(ref. 34; http://browser.1000genomes.org).

Statistical analysis
Differences in baseline characteristics and allele frequencies by

breast cancer status were evaluated by using unpaired two-sample
t tests for continuous variables and c2 tests for categorical vari-
ables. If continuous variables were skewed or had outliers, Wil-
coxon rank-sum test was used. The Cox proportional hazards
regressionmodelwas conducted to obtain hazard ratios (HR) and
95%confidence intervals (CI) for IGF-I/insulin–related SNPs (as a
categorical variable of an additive model and major-allele dom-
inantmodel) and for the combined effect of the SNPs and lifestyle
factors in predicting breast cancer.

The RSF analysis involves obtaining bootstrap samples from
the original cohort and growing a tree for each bootstrapped
sample, based on a splitting rule applied to a tree node to
maximize survival differences across daughter nodes. The process
is repeated numerous times (number of trees ¼ 5,000 in this
study) so that a forest of trees is created (35, 36). An ensemble
cumulative hazard estimate for each individual was calculated
from each tree and averaged over all trees, yielding a predicted
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cumulative incidence rate of breast cancer. The prediction algo-
rithm was applied to the out-of-bag (OOB) data (37% of the
original data not used for bootstrapping) to calculate the OOB
concordant index (c-index), ameasure of prediction performance,
which is conceptually similar to the area under the ROC curve
(AUC; refs. 35, 37). The importance of each variable was deter-
mined by two predicted values: (i) minimal depth, where vari-
ables with a small minimal depth split the tree close to the root
and are considered highly predictive and (ii) variable importance
(VIMP), calculated as the difference between the OOB c-indexes
from the original OOB data and from the permuted OOB data,
where variables with larger VIMP are themore predictive (26, 38).

We used a two-stage RSF approach. In the first stage, we
performed an RSF on each SNP and each lifestyle factor individ-
ually (Supplementary Tables S2 and S3; Supplementary Figs. S2
and S3); only those SNPs with significantly low minimal depth
and high VIMP scores were selected for the second stage. During
stage two, we performed another RSF using all lifestyle factors but
only the SNPs selected during stage one. All lifestyle factors were

used in the second stage because their rank did not change to
reduce noise in both stages. This method allows us to eliminate
the SNPs that may not have effects on predicting breast cancer,
which will result in more statistical power with the correct
type I error than the original RF-based analysis (36). A P value
< 0.05 was considered statistically significant. R version 3.3.2
with survival, randomForestSRC, ggRandomForests, and gamlss
packages were used.

Results
Participants' baseline characteristics by breast cancer status are

presented in Table 1. Women with breast cancer were more likely
to have a family history of breast cancer, consume more dietary
alcohol per day, be inactive, and have greater body mass index
(BMI). In addition, women with breast cancer tended to have
undergone earlier menarche and were less likely to have a history
of hysterectomy or oophorectomy. Finally, women with breast
cancer had a lower rate of exogenous E-only use and shorter

Table 1. Characteristics of participants, stratified by breast cancer

Controls Breast cancer cases
(n ¼ 6,215) (n ¼ 352)

Characteristic n (%) n (%)
Age in years, median (range) 67 (50–81) 68 (50–79)
Family income
<$35,000 2,941 (48.3) 155 (44.8)
!$35,000 3,145 (51.7) 191 (55.2)

Family history of breast cancer
No 5,200 (83.7) 275 (78.1)a

Yes 1,015 (16.3) 77 (21.9)
Depressive symptomb, median (range) 0.002 (0.000–0.919) 0.002 (0.000–0.880)
Dietary alcohol per day in g, median (range) 1.02 (0.00–153.60) 1.57 (0.00–106.70)a

% calories from fat, median (range) 33.58 (7.81–65.54) 34.15 (11.71–60.35)
% calories from SFA, median (range) 11.21 (2.22–30.80) 11.76 (3.86–20.10)
METs%hour/weekc 2.25 (0.00–142.30) 0.63 (0.00–54.33)a

Smoking now
No 5,943 (95.6) 331 (94.0)
Yes 272 (4.4) 21 (6.0)

BMI in kg/m2, median (range) 27.01 (15.42–58.49) 28.30 (18.31–47.67)a

Waist-to-hip ratio, median (range) 0.81 (0.44–1.26) 0.82 (0.64–1.07)
Age at menarche in years, median (range) 13 (&9–!17) 12 (&9–!17)a

Age at menopause in years, median (range) 50 (23–71) 50 (21–63)
Number of pregnancies, median (range) 3 (0–8) 3 (0–8)
History of hysterectomy or oophorectomy
No 3,831 (61.6) 241 (68.5)a

Yes 2,384 (38.4) 111 (31.5)
Exogenous estrogen use (E only use)
Never use 4,427 (71.2) 275 (78.1)a

<5 years 948 (15.3) 32 (9.1)
5 to <10 years 303 (4.9) 12 (3.4)
10 to <15 years 213 (3.4) 15 (4.3)
15þ years 324 (5.2) 18 (5.1)

Exogenous estrogen use (E þ P use)
Never use 5,278 (84.9) 276 (78.4)a

<5 years 582 (9.4) 44 (12.5)
5 to <10 years 188 (3.0) 16 (4.5)
10 to <15 years 99 (1.6) 13 (3.7)
15þ years 68 (1.1) 3 (0.9)

Abbreviations: BMI, body mass index; E, estrogen; E þ P, estrogen þ progestin; MET, metabolic equivalent; SFA, saturated fatty acids
aP < 0.05, c2 or Wilcoxon rank-sum test.
bDepression scales were estimated using a short form of the Center for Epidemiologic Studies Depression Scale.
cPhysical activity was estimated from recreational physical activity combining walking and mild, moderate, and strenuous physical activity; each activity was
assigned aMETvalue corresponding to intensity, and the totalMET%hours/weekwas calculated bymultiplying theMET level for the activity by the hours exercisedper
week and summing the values for all activities (46).
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duration of use, but had a higher rate of E þ P use and longer
duration of use.

The most influential variables for breast cancer risk identified
via minimal depth and VIMP

In the two-stage RSF analysis, we used two predicted mea-
sures to identify the most influential variables (i.e., having the
highest predictive value and least prediction error). After
selecting the most influential SNPs at the first stage (Supple-
mentary Table S3 and Supplementary Fig. S3), we then per-
formed the second RSF on the five selected SNPs and all 17
lifestyle factors to predict breast cancer risk. The minimal
depth and VIMP measures use different criteria, so we expected
the variable ranking to be somewhat different. We thus esti-
mated those values in Table 2 and compared the two measures
using Fig. 1A. In the plot, variables were sorted via the minimal
depth's rank in the y-axis, and points are colored and shaped
by the sign of VIMP. The red dashed line indicates where the
two measures were in agreement: The further the points were
from the line, the more the discrepancy between measures. In
this figure, both minimal depth and VIMP indicate the fol-
lowing three genetic variants and two lifestyle factors are
strong predictive markers of breast cancer risk: AKT1
rs2494740, AKT1 rs2494744, and AKT1 rs2498789, BMI, and
dietary alcohol intake per day.

The OOB c-index (Fig. 1B) for the nested RSF model orders
variables according to their predictive value assessed via the
minimal depth method. Results indicated that the above top five
variables (three SNPs and two lifestyle factors) improved the
overall OOB c-index and thus had complementary predictive
value, while others did not add to a significant improvement of
the prediction accuracy.

Cumulative incidence rate of breast cancer for the most
influential variables and their cumulative effects on breast
cancer risk

To account for the nonlinear effects of variables on cancer
risk, the predicted cumulative incidence rate of breast cancer for
the top five variables were estimated based on the RSF model
(Fig. 2A–E). The genotype of each SNP was analyzed as a
continuous variable.

The cumulative effects of the three SNPs and two lifestyle
factors were further calculated and shown in Table 3. Based on
the results in Fig. 2A–C, the genotypes of AKT1 rs2494740 AA,
AKT1 rs2494744 AA, and AKT1 rs2498789 GG were determined
as risk genotypes and analyzed as categorized variables in Table 3.
In Fig. 2E, the BMI had aU-shaped risk for breast cancer, diverging
from around 30 kg/m2; we thus stratified by BMI using 30 kg/m2

as a cutoff value andobtained the joint effect of BMIwith the three
SNPs and alcohol intake on cancer risk.

In an individual SNP analysis (Supplementary Table S4) with
additive and major-allele dominant models, no significant asso-
ciations were found; however, the combination of the SNPs
in Table 3 provided different results. Compared with nonobese
women with null risk genotypes, obese women carrying one or
more risk genotypes had higher risk of breast cancer (HR 5.65;
95%CI, 2.08–15.36). Consistently, obesewomenwho consumed
dietary alcohol !1 g/day had higher breast cancer risk than
nonobesewomenwho consumed alcohol <1 g/day. Furthermore,
compared with women with null risk genotypes and alcohol
consumption <1 g per day, those with both factors had higher
risk of breast cancer, suggesting the cumulative effect of genetic
and lifestyle factors. When stratified by BMI, obese women
with one and both factors of risk genotypes and alcohol intake
(!1 g/day) had a 2-fold and 7-fold increased breast cancer risk,
respectively, compared with nonobese women with null risk
genotypes and alcohol consumption <1 g/day. These results
indicate a gene and lifestyle dose–response relationship and
significant joint effect of BMI with the SNPs and alcohol con-
sumption on cancer risk.

Discussion
Using the two-stage RSF approach, we identified three genetic

variants (AKT1 rs2494740, AKT1 rs2494744, and AKT1
rs2498789) and two lifestyle factors (BMI and dietary alcohol
intake) as the top five most influential predictors for breast
cancer risk in this dataset of postmenopausal women. We
further examined interaction effects of those factors on cancer
risk. In the individual SNP analysis, no significant association
was observed, but the combination of the three SNPs in
addition to BMI and alcohol intake significantly increased the
risk of breast cancer.

The PI3K/Akt pathway leads to metabolic activity, including
glucose uptake and decreased apoptosis and is a main signaling
cascade in controlling the cellular process promoting carcinogen-
esis (39). Two members of the AKt family, AKt1 and AKt2, are
important signaling molecules related to a diabetic phenotype
such as IR; in addition, at the genomic level, each is amplified in
various cancers including breast cancer (40, 41). The AKT1/2
genes are thus key components of this pathway, but studies of
the association of their genetic variants with breast cancer have
been limited (13, 32). In our study of 10 SNPs in the AKT1/2
genes, three SNPs were identified as the top threemost influential

Table 2. Prediction of variable using the RSF model

Variablea Predictive valueb VIMP
AKT1 rs2494740 2.7162 0.0066
BMI 2.8566 0.0011
AKT1 rs2494744 2.9388 0.0090
AKT1 rs2498789 3.1114 0.0075
Dietary alcohol per day 3.1386 0.0016
Age at menopause 3.2740 0.0002
Depressive symptom 3.4122 0.0004
AKT1 rs1130214 3.6116 0.0030
Waist-to-hip ratio 3.8390 $0.0005
IRS1 rs1801278 4.0562 0.0066
Percent calories from SFA per day 4.0592 0.0011
Percent calories from fat per day 4.1002 $0.0007
Physical activity 4.8408 0.0003
Age 4.9082 0.0002
Age at menarche 4.9662 0.0001
Family income 5.4110 0.0000
Number of pregnancies 5.8770 $0.0001
E þ P use 7.8110 0.0008
Family history of breast cancer 8.2020 0.0006
History of either hysterectomy
or oophorectomy

10.1706 0.0002

Smoking status 10.2046 0.0000
E only use 11.2790 $0.0001

Abbreviations: BMI, body mass index; E, estrogen; P, progestin; SFA, saturated
fatty acids; VIMP, variable of importance.
aVariables are ordered by predictive value.
bPredictive value of variable was assessed via minimal depth method in the
nested RSF models. A lower value is likely to affect greatly prediction.
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genetic factors.However, studies of the functional biology of these
SNPs have been limited, warranting further study.

Alcohol use is causally associatedwith several cancers, and even
a low dose (&1 drink/day) increases the risk of breast cancer
(24, 25, 42). Consistently, we found that women who consumed
!1 g/day of alcohol had higher risk of breast cancer; furthermore,
in obese women, the low-dose consumption level (!1 g/day)
caused a 2-fold increased risk for breast cancer, compared with
nonobese women consuming <1 g/day of alcohol.

Combined with alcohol intake of !1 g/day, the effects of the
three SNPs significantly strengthened, suggesting the cumulative
interacting effect of those genetic and lifestyle factors on breast
cancer risk. In addition, in obese women, those factors were
associated with breast cancer risk in a gene and lifestyle dose-
dependent manner, indicating a joint effect of BMI with those
factors on breast cancer risk.

The self-reporting of the dietary alcohol intake, smoking, and
physical activity data limits study conclusions regarding these

Figure 1.
Predictive value of variable. A,
Comparing minimal depth and VIMP
rankings. (BMI, body mass index;
E, exogenous estrogen; P, progestin;
SFA, saturated fatty acids; VIMP,
variable of importance; w/h ratio,
waist-to-hip ratio). B, OOB
concordance index. [Improvement in
OOB concordant index (c-index) was
observed when the top five variables
(*) were added to the model, whereas
other variables (*) did not further
improve the accuracy of prediction.]
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variables due to the likely prevalence of underreporting of
alcohol intake and smoking and overreporting of physical
activity, especially in obese women. Our study population
included data from non–Hispanic white postmenopausal
women only, so the generalizability of our findings to other
populations is limited. We acknowledge that the statistical
power for detecting gene–environment interaction was rela-
tively low in this study; we conducted a two-stage RSF analysis
to have more statistical power with the correct type I error than
the original RF-based analysis. Despite these limitations, the
potential impact of our findings clearly warrants further study.
We used a two-stage RSF method to identify the most predictive
variables for breast cancer risk. The RSF provides a robust way
to handle high-level interactions in variables and allows for
accurate prediction. In several research areas, including molec-

ular genetic epidemiology, this method has outperformed the
traditional models by accounting for the nonlinear effects of
variables (36, 43–45).

In conclusion, this study revealed that three SNPs in the AKT1
gene, alcohol intake!1 g/day, and BMI were the most influential
variables for predicting breast cancer risk. While single genetic
variants may not be enough to influence the risk, they may work
together and interact with lifestyle factors (BMI and alcohol) to
increase breast cancer risk. Our results provide insight into gene–
lifestyle interactions and allow researchers to target efforts to
promote intervention strategies to those within the population
with risk genotypes. It also suggests the careful use of data on
potential genetic targets in the intervention and clinical trials for
cancer prevention to reduce the risk for breast cancer in postmen-
opausal women.

Figure 2.
Cumulative breast cancer incidence rate
for the five most influential variables based
on anRSF analysis. Dashed gray lines indicate
95% CI.
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