
Lawrence Berkeley National Laboratory
LBL Publications

Title
Machine learning in materials research: Developments over the last decade and 
challenges for the future

Permalink
https://escholarship.org/uc/item/6pf002vg

Author
Jain, Anubhav

Publication Date
2024-12-01

DOI
10.1016/j.cossms.2024.101189

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pf002vg
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Machine learning in materials research: Developments over the last decade 
and challenges for the future

Anubhav Jain
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

A R T I C L E  I N F O

Keyword:
Machine learning in materials science

A B S T R A C T

The number of studies that apply machine learning (ML) to materials science has been growing at a rate of 
approximately 1.67 times per year over the past decade. In this review, I examine this growth in various contexts. 
First, I present an analysis of the most commonly used tools (software, databases, materials science methods, and 
ML methods) used within papers that apply ML to materials science. The analysis demonstrates that despite the 
growth of deep learning techniques, the use of classical machine learning is still dominant as a whole. It also 
demonstrates how new research can effectively build upon past research, particular in the domain of ML models 
trained on density functional theory calculation data. Next, I present the progression of best scores as a function 
of time on the matbench materials science benchmark for formation enthalpy prediction. In particular, a dra-
matic improvement of 7 times reduction in error is obtained when progressing from feature-based methods that 
use conventional ML (random forest, support vector regression, etc.) to the use of graph neural network tech-
niques. Finally, I provide views on future challenges and opportunities, focusing on data size and complexity, 
extrapolation, interpretation, access, and relevance.

1. Introduction

The use of machine learning techniques in materials research has 
grown in the last decade from a small niche topic to an entire subfield 
within materials science & engineering. Indeed, there have been over 
2000 papers on the topic of materials machine learning in the year 2023 
alone, and over the past decade there has been a 1.67 times yearly 
growth in the number of papers (Fig. 1). A 2020 review by Morgan and 
Jacobs [1] found that not only were the number of papers on the topic 
exponentially increasing, but that the number of review papers per year 
on the topic had already reached nearly 40 by 2019. Indeed, there 
already exist many excellent reviews on various aspects of materials 
machine learning, including its applications in simulation and modeling 
[2–4], synthesis and characterization [5–7], manufacturing [8,9], and 
literature mining [10]. Reviews also exist for specific topics such as 
structural materials [11] or best practices for research reporting [12].

This review both looks back and looks ahead. Looking back, it ex-
amines what has enabled the field of machine learning to advance so 
rapidly. Indeed, about five years ago it was unclear whether the field 
would enter a “trough of disillusionment” or an “AI winter” [13]. 
However, the development of the Transformer architecture [14] in the 
computer science domain and the crystal graph neural network [15,16]

in the materials science domain around the same time revitalized much 
research and led to major advancements in performance. More recently, 
materials machine learning is rapidly building upon advances in natural 
language processing, and in particular large language models such as 
Generative Pre-trained Transformer (GPT) models [17] (e.g., GPT-3, 
GPT-4, and ChatGPT). Thus, the field has largely avoided any periods 
of stagnation thus far and the pace of innovation appears to only be 
increasing.

One factor for the rapid growth of the field is the ability for materials 
machine learning research to rapidly build upon past work such as da-
tabases, software, ML methods, or domain-specific techniques. New 
research papers can build upon data sets from prior papers – bypassing 
expensive data collection and focusing on method development – or 
transfer methods developed by the computer science community to the 
materials domain. Such methods, packaged in reusable software li-
braries, can then be applied directly to tackling specific materials 
problems, often with minimal additional method development, data 
collection, or software programming.

This review is divided into three sections. In the first section, it 
presents an analysis of the cross-fertilization between machine learning 
methods, materials science methods, data and software by analyzing 
common citations between papers. The second section presents a 
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quantitative analysis of the amount of progress achieved in a particular 
subfield of materials machine learning – structure-based property pre-
diction. The final section presents remaining challenges and opportu-
nities, particularly in the areas of data size and complexity, 
extrapolation, interpretation, access, and relevance.

2. Rapid growth by building upon prior work

The rapid rise in publications on the topic of machine learning in 
materials science is fueled by advancements in software, material da-
tabases, domain-specific materials science methods, and domain- 
agnostic machine learning methods (Fig. 2). To examine this relation-
ship further beyond a simple publication count increase, I compiled a 
data set of 6795 research papers on the topic of materials machine 
learning and subsequently analyzed the citations for each of these pa-
pers using the Scopus API and pybliometrics [15] Python library. I then 
analyzed the data set to determine all papers that were cited at least 100 
times within materials science machine learning papers to determine 
commonly used tools and techniques within this subdomain. We note 
that this method only counts citations within the set of 6795 materials 
machine learning papers, and therefore is lower than a full citation 
count which may include citations from many domains or study types.

First, I focus on the results for software (Fig. 3a). The most commonly 
used software and the mostly highly cited work within the data set 
overall is the scikit-learn [18] Python package. This may stem from 
several reasons. First, scikit-learn implements a variety of techniques 
that can be useful for many different types of materials machine 
learning. For example, it can be applied to predict the band gaps of solids 
[19], to predict the strength of cement composites [20], to associate 
processing conditions with final properties in batteries [21], to predict 
the fatigue life of powder metallurgy components [22], or for many 
other materials tasks. Furthermore, although scikit-learn is missing the 
capability to implement more complex deep learning models, the small 
data set sizes of many materials problems often make it practical to use 
more conventional machine learning algorithms that have fewer pa-
rameters to train. Overall, it is interesting to note that the most 
commonly cited paper within the entire data set is a general-purpose 
machine learning tool rather than a domain-specific tool.

Following scikit-learn, the next most highly cited work is the VASP 
software (Fig. 3a). Indeed, the next five software libraries (VASP [23], 
pymatgen [24], Phonopy [25], matminer [26], and AFLOW [27]) are 
generally used to calculate (VASP, Phonopy) or analyze (pymatgen, 
matminer, AFLOW) materials properties through density functional 
theory (DFT). The final software, OVITO [28], is also used to visualize 
simulation results. The high presence of these software libraries within 
the group of materials machine learning papers suggests that a large 
fraction of materials machine learning is being performed on simulation 
data. Analysis of top databases cited within MSE-ML papers (Fig. 3b) 
supports this trend: all three databases (Materials Project [29], OQMD 
[30], and AFLOWLib.org [31]) focus primarily on density-functional- 
theory-generated data sets.

When examining the most popular domain-agnostic machine 
learning methods that are applied to the materials domain (Fig. 3c), 
traditional tree-based machine learning techniques are found to be the 
most dominant. The top two cited works are related to tree-based 
methods (random forest [32] and XGBoost [33]), and the third 
(Gradient Boosting [34]) is also frequently applied to tree-based 
methods. The use of deep learning [35] is becoming more popular; 
nevertheless, the larger data sets needed to train these algorithms likely 
inhibits more widespread usage. Finally, methods for interpreting ma-
chine learning methods, including SHAP model explanations [36] and t- 
SNE [37], are also popular in the materials community.

Finally, I examine commonly used methods developed for the 
domain of materials science (Fig. 3d). As with software and databases, 
simulation methods (DFT-GGA [38], Molecular Dynamics [39], DFT- 
Monkhorst Pack [40], and Ab Initio Molecular Dynamics–AIMD [41]) 
make up much of the list. The next category of methods are descriptors 

Fig. 1. The number of publications per year on the topic of machine learning in 
materials science. Data was retrieved on Jan 23, 2024 via http://api.elsevier. 
com and http://www.scopus.com using the pybliometrics Python library. See 
Code and Data Availability for data collection code and extracted information.

Fig. 2. Progress in machine learning in materials science is stimulated by advances in software, materials databases, materials science methods, and machine 
learning methods.
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for materials – i.e., methods that use crystal structure or composition as 
an input and produce a library of features that describe the input for use 
in machine learning techniques. Popular methods include Magpie de-
scriptors [42], SOAP descriptors [43], Coloumb matrix [44], moment 
tensor potentials [45], Atom-centered symmetry [46], and PL fragment 
descriptors [47]. A third category is methods for ML force fields, 
including Behler-Parrinello potentials [48], GAP potentials [49], SNAP 
potentials [50], and Deep potentials [51]. Finally, two of the results are 
separate from the categories of simulation method, materials descriptor, 
or force field. The first is the crystal graph neural network [15] which 
popularized a neural-network-based approach to structure–property 
relationships by solving the problem of crystal representation as a pe-
riodic graph. The second is Gaussian Processes for iterative exploration 
[52], which is becoming an increasingly popular technique as machine 
learning is being integrated into for materials discovery campaigns.

Overall, what conclusions can we draw from such analysis? First, it is 
worth pointing out that despite the seeming dominance of deep learning 
techniques in achieving good performance in tasks like language 
modeling or image generation, in the materials domain such techniques 
are still overall less popular than conventional techniques. As found in 
the matbench study [53], deep learning becomes much more attractive 
for larger data sets (a threshold of approximately 10,000 data points was 
found in that study). Many materials ML problems simply do not have 
the data to make effective use of deep learning techniques. A second 
conclusion is that common databases, software libraries, and techniques 
are now readily available for simulation-based machine learning. 
However, there still remains a need for similar large and concerted ef-
forts in other domains of materials science such as synthesis, charac-
terization, and materials processing data. Although such databases have 
been developed [54–56], they do not factor heavily in our literature 
review of materials ML and are still in the process of realizing a large, 
coordinated research community. This may potentially be due to 
complexity and heterogeneity of data in experimental domains, making 
data preprocessing (e.g., cleaning and standardization) cumbersome for 
subsequent ML. It is possible that the push for automation in experi-
ments may help in this endeavor, however the complexity of describing 
materials samples in experiments makes this far from straightforward.

3. Steady gains in accuracy

The ability of materials machine learning to draw upon prior work 
has led to steady gains in accuracy for a variety of tasks. In particular, 
the degree of improvement can be quantified for the field of materials 
property prediction from crystal structures. As I will later show, the 
state-of-the-art-models today can outperform those from 7 years ago by 
over a factor of 7 improvement in accuracy. With the remarkable gains 
in accuracy comes the potential to do more science with greater confi-
dence using machine learning models.

To study the improvement of structure–property models in greater 
detail, I make use of the matbench [53] leaderboard (https://matbench. 
materialsproject.org). The leaderboard measures the performance of 
various algorithms on a series of benchmark tasks. The current top 
performers for each of the 13 tasks is presented in Table 1. The tasks are 
ordered by the number of samples (i.e., data points) in the task. There is 
a clear delineation in the leading algorithms based on the number of 
samples in the task. The MODNet algorithm [57] is the clear leader on 
tasks with <10,000 samples, leading 5 out of 7 tasks in this category. 
However, these particular tasks do not have a structure provided and 
only chemical composition is known. Meanwhile, for tasks with 
>10,000 samples, the (related) coNGN [58] and coGN [58] algorithms 
lead 5 out of 6 tasks. This separation based on sample size (with different 
leading algorithms at that time) was observed in the original matbench 
paper [53]. However, a more careful interpretation of the data shows 
that today, in all tasks where a structure is provided (even the phonons 
task with only 1,265 samples), some form of crystal graph neural 
network is the dominant algorithm. Algorithms such as MODNet [57]
and AMMExpress [53] come into play only in tasks in which the struc-
ture is not provided, for which the crystal graph neural networks cannot 
be applied at all. In such cases, using classical (i.e., scientifically 
designed) features and classical machine learning algorithms can be a 
valid decision. It should also be pointed out that in many scenarios, such 
algorithms may give “good enough” results for the task at hand even if 
they are not the optimally scoring model.

I next examine progress over time for one of the matbench tasks. In 
Fig. 4, I plot the improvement in mean absolute error over time in 
predicting formation enthalpies of compounds as calculated by density 
functional theory simulations and tabulated in the Materials Project 
database. The most significant feature of Fig. 4 is the sharp drop in mean 

Fig. 3. Analysis of papers with >100 citations within the collection of 6795 research papers collected on the topic of materials machine learning. Data was retrieved 
on Jan 23, 2024 via http://api.elsevier.com and http://www.scopus.com using the pybliometrics Python library. See Code and Data Availability for data collection 
code and extracted information.
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absolute error when progressing from the random forest model with 
Magpie descriptors [42] to the crystal graph neural network [15]
(CGCNN). The switch from more conventional machine learning tech-
niques with a series of hand-tuned features to that of a neural network 
architecture with features that are largely learned on-the-fly led to a 
tremendous, immediate jump in performance (from >100 meV/atom to 
<35 meV/atom). Indeed, for large data tasks, it is generally the case that 
hand-tuned features are not necessary for good performance [59]. 
Subsequently, various extensions and improvements to the CGCNN ar-
chitecture have steadily reduced the error further. State-the-art-models 
today can reproduce formation enthalpies of compounds within the 
Materials Project database to <20 meV/atom, which is in most cases 
lower than the error of the density functional calculations as compared 
to experiments [60] and of various experiments amongst themselves 
[61]. Further examination of the chemical and structural spaces in 
which such models produce low versus high errors would be a fruitful 
area of research. Overall, however, the matbench task can likely be 
considered “solved” and more difficult tasks need to be designed.

4. Future challenges and opportunities

Next, I briefly review progress and outline challenges in 5 areas that 
are outlined in Fig. 5: data size and complexity, extrapolation, inter-
pretation, access, and relevance.

Data size and complexity: Data is the essential raw material for 
machine learning. Unfortunately, materials data can be limited in 
quantity and high in complexity. Nevertheless, new advancements may 
help make progress in this area. The use of natural language processing 
techniques to parse the scientific literature has resulted in many new 
structured data sets being compiled from previous literature [62]. New 
advancements in large language models may allow researchers to 
extract data sets by simply providing a few examples of structured 
output from unstructured text [63]. Nevertheless, even though algo-
rithmic improvements are rapid, gaining access to the raw literature 
data for parsing remains difficult. In parallel, researchers continue to 
compile data sets outside the materials modeling domain through user 
contributions [54,55,64], with tools such as Foundry-ML [65] aiming to 
simplify data access. From the analysis side, progress on small data re-
mains more challenging as compared to large data sets. A previous study 
has generally found a power law scaling of performance with respect to 
data size for various graph neural network models [66]. Such scaling 
relies on larger data and is often ineffective for small data sets. There-
fore, techniques such as multi-fidelity modeling [67,68], hybrid featu-
rization and neural networks [57], and transfer learning [69] may be 
needed to leverage big data sets when analyzing small data. While we 

Table 1 
Current snapshot of matbench leaderboard (Jan 23, 2024).

Task name Samples Algorithm Verified 
MAE (unit) 
or ROC-AUC

Structure 
Required

matbench_steels 312 MODNet 
(v0.1.12)

87.763 
(MPa)

matbench_jdft2d 636 MODNet 
(v0.1.12)

33.192 
(meV/atom)

matbench_phonons 1265 MegNet 
(kgcnn 
v2.1.0)

28.761 
(cm− 1)

X

matbench_expt_gap 4604 MODNet 
(v0.1.12)

0.333 (eV)

matbench_dielectric 4764 MODNet 
(v0.1.12)

0.271 
(unitless)

matbench_expt_is_metal 4921 AMMExpress 
v2020

0.921

matbench_glass 5680 MODNet 
(v0.1.12)

0.960

matbench_log_gvrh 10,987 coNGN 0.067 
(log10(GPa))

X

matbench_log_kvrh 10,987 coNGN 0.049 
(log10(GPa))

X

matbench_perovskites 18,928 coGN 0.027 (eV/ 
unit cell)

X

matbench_mp_gap 106,113 coGN 0.156 (eV) X
matbench_mp_is_metal 106,113 CGCNN 

v2019
0.952 X

matbench_mp_e_form 132,752 coGN 0.0170 (eV/ 
atom)

X

Fig. 4. Progress made on a smaller data task (elastic constants) and a larger data task (formation enthalpy) by various machine learning models.

Fig. 5. Overview of major challenges and opportunities in materials ML. Cur-
rent progress and future needs for each area are discussed in the main text.
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are likely still far away from true “few shot” learning on general and 
extrapolative materials science tasks, progress has been reported in 
using large language models in this manner [70,71]. It is possible that 
foundational models, trained on large materials data sets and with 
general purpose “understanding” of materials science, will be able to 
serve as the basis for training more targeted machine learning algo-
rithms using smaller data sets.

Extrapolation: No clear standard has emerged for how to quantify 
the extrapolative limits of machine learning models. Standard cross- 
validation is designed for interpolation; alternate methods such as 
LOCO-CV [72] are needed to ensure that the test set is significantly 
different than the training set for evaluating extrapolation. For example, 
several reports have indicated that the current set of crystal graph neural 
network algorithms, despite performing well on the matbench data set, 
may have issues generalizing out of distribution [73,74]. To this end, 
extensions like matbench-discovery [75] attempts to test on out of 
sample (i.e., not in Materials Project [29]) structures to better test 
extrapolation. Nevertheless, the issue is far from solved. As training data 
sets grow in size and scope, it becomes more difficult to find and eval-
uate samples that are significantly outside the training domain. More 
fundamentally, evaluating ML models for open-ended exploration (e.g., 
as in iterative machine learning or generative models) remains a fruitful 
area of research because standard performance metrics do not translate 
directly to these areas [76,77] and validating each new prediction for 
every algorithm can be expensive. Thus, many opportunities remain to 
better investigate the extrapolation capability of ML models. In parallel, 
efforts to clarify and calibrate [78] the uncertainty of such models is 
needed.

Interpretation: Interpretable models are desirable because they 
may help uncover physical insights and relations rather than simply 
make predictions. [79,80] Interpretability can also clarify the domain 
under which the model is valid. Unfortunately, the general situation 
today is that the most accurate models also tend to be the most opaque. 
There exist many model-agnostic interpretation methods that can be 
applied on top of such models, such as partial dependence plots, indi-
vidual conditional expectation plots, Shapley additive explanations 
[36], or surrogate modeling. Nevertheless, these methods do not fully 
capture nor do they explain the decision-making of the underlying 
model. As an alternative, some recent work has focused on building 
interpretation within the model itself [81] or in restricting models to 
symbolic regression [82]. Unfortunately, without a clear metric for 
quantifying the interpretability of a model, it remains difficult to mea-
sure progress in this area.

Access: Access is increasingly becoming an issue; the popularity of 
proprietary models trained on proprietary data sets such as OpenAI’s 
GPT have made it difficult to conduct open science using such models. 
Worse, such models can sometimes only be accessed by an API with the 
underlying performance and results of the “same” model changing over 
time [83]. Thus, researchers publishing a certain set of results at the 
beginning of a project may find that the results have changed when 
running the same analysis on ostensibly the same model towards the end 
of that project. Such behavior clearly poses issues for the reproducibility 
requirements of published scientific research. It is at present unclear 
what role such models have in the future of science. It is possible that 
studies incorporating such models are inadmissible outright, or it may 
be that the models may be considered as black boxes (similar to human 
intuition or manual data processing) and can form part of the procedure 
so long as their output is independently verifiable by some other means.

The issue of access is not limited to large language models. For 
example, Google recently reported a breakthrough in the journal Nature 
for models to predict energies and forces from crystal structures [84]. 
However, neither the model nor the full data set required for training 
that model was made available, and attempting to reproducing the data 
would require exorbitant amounts of computing. This is particularly 
problematic because the paper also showed that many of the advance-
ments in performance of the model stemmed from increasing the size of 

the data set rather than improving the architecture of the model. As the 
resources needed to produce a state-of-the-art result increases, the issue 
of who will be able to access data and models becomes of greater 
concern.

Relevance: Finally, as the performance of machine learning models 
improves, it is worth keeping in mind that these models are intended to 
be a means to an end rather than the end in themselves. There are many 
examples where ML was helpful to an outcome even if it was not 
perfectly optimized [85]. Conversely, there are also examples where ML 
models obtain good scores on one metric that does not always translate 
to seemingly related metrics. Examples include formation enthalpy 
scores not translating to phase stability [86] or MAE scores not trans-
lating to materials discovery acceleration factors [75]. Furthermore, 
materials or design suggestions are not valuable unless they are even-
tually made and tested. To that end, machine learning in the “virtual” 
world needs to be more closely integrated with automated laboratories 
[87,88] and more attention should be paid to ways in which computa-
tional predictions might be validated.

5. Conclusion

The application of machine learning to materials research has seen 
remarkable transformations in a relatively short amount of time. Not too 
long ago, machine learning in materials was considered a niche field 
with relatively few publications. Today, with many thousands of articles 
being published yearly, keeping track of the various developments has 
become a major challenge. The citation analysis presented in this article 
provides clues as to the fuel behind the rapid advancements. New 
publications are built upon algorithms and tools not only from within 
the materials science community but also from the computer science 
community. This has led to rapid advancements in performance on 
benchmark tasks such as those in the matbench protocol.

Despite the challenges, outstanding challenges and questions still 
remain. In an age where model size and data set size translates directly 
to performance, what will be the role of individual research labs? The 
situation today is that few academic groups have the resources to 
reproduce state-of-the-art results from industry in many areas of ma-
chine learning, making the issue of access and reproducibility particu-
larly concerning at the current moment. Furthermore, challenges related 
to data set size and complexity, extrapolation, interpretation, and rele-
vance still require innovative solutions. Nevertheless, researchers 
continue to make progress in all areas, marking the current time as a 
particularly exciting era for machine learning in materials research.

6. Data and software availability

Data and analysis scripts for the literature analysis can be found at 
Github: https://github.com/computron/pybliometrics_ml.

Data for the matbench analysis is derived from the archived bench-
mark data found in: https://github.com/materialsproject/matbench.

The raw data table used to derive the literature analysis plot is 
provided in the supplementary material.
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