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ABSTRACT OF THE DISSERTATION

Development of FlexTrate™ and Demonstration of Flexible Heterogeneously Integrated

Low Form-factor Wireless Multi-channel Surface Electromyography (sEMG) Device

by

Arsalan Alam

Doctor of Philosophy in Electrical and Computer Engineering
University of California, Los Angeles, 2021

Professor Subramanian Srikantes Iyer, Chair

Leading-edge implantable applications such as neural implanted prosthetics and next-generation
Internet of Things (IoT) devices require the integration of high performance and low power logic,
memory and sensors at high interconnect density which is not possible using conventional printed
flexible electronics. As flexible applications mature, there will be a demand that they are “smart,”
which will require leading edge CMOS and RF electronics, advanced sensors, and power
management. There is a need to develop a robust and flexible electronics packaging platform that
will enable the unrestricted integration of high-performance, state-of-the-art components
(processors, memories, sensors, data transmitters and receivers, power sources etc.) on
biocompatible, flexible substrates with the ability to miniaturize, interconnect at high density with

acceptable reliability, and scale-up in manufacturing at economical and cost-effective price points.



Considering all the above requirements, in this work, the development of a highly flexible and
reliable heterogeneous integration platform with fine interconnect pitch (< 40 pm) called
FlexTrate™ is investigated. The fabrication and assembly processes necessary for such a platform
are developed. FlexTrate™ is based on a die-first flexible Fan-Out Wafer-Level Packaging
(FOWLP) approach where Polydimethylsiloxane (PDMS) is used as a molding compound to
embed the heterogeneous dies and integrate them with mechanically robust vertically corrugated
interconnects at 20-40 pm pad pitches without the use of solder. FlexTrate™ is demonstrated to
be bendable to 1 mm bending radius for thousands of bending cycles with minimal degradation in
the system’s electrical performance. The benefits to system performance and flexibility of
FlexTrate™.-style integration are highlighted through three demonstrations: 200 dies integrated at
40 um pad pitches, a foldable display, and a wearable biosensing system in the form of wireless
multi-channel surface electromyography (SEMG) system. The sSEMG system can be attached to
the skin to record quality muscle signals through dry electrodes and can transmit data to a computer
or smartphone via Bluetooth Low Energy (BLE). The ability to acquire muscle signals through
our device in a mobile setting is critical for the study of many muscular physiological phenomena

and disorders.
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1. Introduction

1.1 Conventional flexible electronics

In the past decades, work in flexible devices may be divided into three categories: (1) organic
semiconductors that are deposited on flexible substrates in sheet-level processing or roll-to-roll
processing [1-3]; (2) Thin-Film Transistor (TFT) fabrication on flexible substrates [4, 5]; and (3)
so-called transfer technologies that allow the integration of an extremely thin, single crystal,
inorganic semiconductor layer on flexible substrates, such as Silicon-On-Insulator (SOI) and 11—
V semiconductors on Si [6, 7]. Although the performance of the organic semiconductors has
improved significantly recently [8, 9], the performance of inorganic single crystal semiconductors

represented by Si and III-V compounds has not been achieved by organic semiconductors.

On the other hand, Flexible Hybrid Electronics (FHE) combine the flexibility of flexible substrates
with the performance of single crystal inorganic semiconductor devices to create a new category
of electronics [10, 11]. Traditional rigid/flex packages enable the integration of thick Si dies on
flexible substrates [12, 13]. These technologies are not based on Wafer-Level Packaging (WLP),
and the flexibility is limited by their rigid substrates or large packaged chips. More recently, to
enhance the flexibility of the rigid single crystal semiconductors, ultra-thin dies are mounted on
flexible substrates [ 14, 15]. This is because such thinned dies can be more flexible and can conform
to curved profiles. However, ultra-thin dies are very sensitive to applied stresses [14] by which
both the performance degradation and property deviation would be induced due to die thinning

process and bending to small bending radii. Lee et al. have reported that the retention time of



thinned DRAM (Dynamic Random-Access Memory) having planar capacitors is shortened when

the die thickness is less than 50 um [16].

While recent progress in the field of flexible electronics has been impressive, it is still not easy to
integrate high-performance electronics which require fine pad and interconnect pitches of < 100

um while retaining the flexibility of the overall system.

1.2 Objective of this work

Leading-edge implantable applications such as neural implanted prosthetics and next-generation
Internet of Things (IoT) devices require the integration of high performance and low power logic,
memory and sensors at high interconnect density which is not possible using conventional printed
flexible electronics. As flexible applications mature, there will be a demand that they are “smart,”
which will require leading edge CMOS and RF electronics, advanced sensors, and power
management. There is a need to develop a robust and flexible electronics packaging platform that
will enable the unrestricted integration of high-performance, state-of-the-art components
(processors, memories, sensors, data transmitters and receivers, power sources etc.) on
biocompatible, flexible substrates with the ability to miniaturize, interconnect at high density with
acceptable reliability, and scale-up in manufacturing at economical and cost-effective price points.
Considering all the above requirements, in this work, the development of a highly flexible and
reliable heterogeneous integration platform with fine interconnect pitch (< 40 pm) called
FlexTrate™ is investigated. The fabrication and assembly processes necessary for such a platform
are developed. The benefits to system performance and flexibility of FlexTrate™.-style integration

are highlighted through three demonstrations: 200 dies integrated at 40 pm pad pitches, a foldable



display, and a wearable biosensing system in the form of wireless multi-channel surface

electromyography (sSEMQG) system [17-26].

1.3. FlexTrate™ technology

™ that is based on

A new approach of making flexible systems is demonstrated called “FlexTrate
die-first flexible Fan-Out Wafer-Level Packaging (FOWLP) technique. FlexTrate™ allows
solderless heterogeneous integration of bare dies at < 40 um pad pitches not achievable using
conventional flexible technologies. FlexTrate™ is bendable to 1 mm bending radius for over
thousands of bending cycles. Through FlexTrate™, we can target next generation wearable and

implantable applications that require high-performance flexible systems, such as multi-channel

sEMG system, optogenetics for neural implants, and so on.



1.3.1 Technology description

Figure 1. 1. Image of the flexible FlexTrate™ platform with embedded Si dies.

In the FlexTrate™ approach, the rigid dies are embedded in a flexible polymeric substrate that is
fabricated at the wafer level using an advanced die-first FOWLP technology, as shown in Fig. 1.1.
FOWLP has become a mainstream packaging technology because of its numerous advantages over
conventional packaging techniques such as Wafer-Level Chip-Scale Packaging (WLCSP) and
Flip-Chip Ball Grid Array packaging (FCBGA) [27, 28]. FOWLP allows heterogeneous
integration and provides good electrical and thermal performances, high density of I/Os,
compatibility with 3D integration, low package profile, and low cost. It also eliminates the need

for wafer bumping, reflow for flip chip, underfill and flux cleaning. FOWLP is expected to reduce
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package sizes, shorten inter-chip wirings by eliminating laminates, and integrate dies in rigid
Epoxy Mold Compounds (EMCs) [29, 30]. Several Redistribution Layer (RDL)-first approaches
with and without wafer-level processing have been reported for rigid [31] and flexible [32, 33]
device system integration. Compared to RDL-first FOWLP with die/flip-chip bonding processes,
die-first FOWLP is more cost-effective [34]. If the die shift issues in die-first FOWLP are
mitigated, the production yield would be further increased, leading to drastic cost reduction. The
most significant advantage of the die-first FOWLP is that wire bonding, printable wiring, and
solder bumping are not required for connecting the neighboring dies, and there are no additional
packaging processes due to the embedded structure [35, 36]. In our embodiment of this approach,
the high flexibility is achieved by the unique structure of FlexTrate™, consisting of the hard and
soft segments analogous to how a bicycle chain is flexible despite rigid chain components. The
dies themselves do not bend, whereas the polymer regions between the dies are bent, similar to the
joints in a bicycle chain. Heterogeneous dies are embedded in a flexible substrate and electrically
connected with high-density interconnects formed via wafer-level processing. Similar structures
using rigid device islands interconnected with horseshoe wirings have been developed for
stretchable electronics [32, 33, 37], but the fabrication concept of these systems is considerably
different from FlexTrate™ which is based on scalable WLP using embedded Si dies that are
assembled in a face-down configuration. Landesberger et al. [38] have presented a similar
approach to our FOWLP-based FlexTrate™, although they employ ultra-thin Si dies having
equalized die thicknesses, which are bonded in a face-up configuration. Due to the advanced die-
first FOWLP approach, the FlexTrate™ process enables scalable integration of heterogeneous dies
of various thicknesses and much tighter interconnect formation than conventional rigid/flex

packages. In addition, fine-pitch interconnects can be formed at the wafer level. Presently, inkjet



printing can draw very fine wirings in parallel, but the wire thicknesses are limited [39].
FlexTrate™ with inorganic single crystal semiconductor dies can realize highly integrated flexible
device systems without using low-performance organic semiconductors, ultra-thin devices/dies, or

colloid/paste based wirings.

1.4 Comparison with conventional technologies

FlexTrate™ leverages the advantages of the die first FOWLP technique to flexible electronics.
The integration of small bare dies increases the flexibility of the FlexTrate™ platform. Here we

discuss the advantages and limitations of FlexTrate™ over conventional technologies.

1.4.1 Advantages

Some of the key merits of the FlexTrate™ technology, and a comparison to the approaches used

in rigid FOWLP, conventional FHE, and flexible PCB, are listed below.

Properties Epoxy Mold PDMS (MDX4-4210) Advantage
Compound (EMC)
Elongation at break <1% 500 % Flexibility
Curing T > 150 °C 25 °C- 80 °C Low die shift
Glass transition T (T,) 165 °C -120 °C Room T cure
Young’s modulus 22 GPa 0.5 MPa Low thermo-

mechanical stress

Biocompatibility No Yes Implantable

Table 1. 1. Properties of biocompatible PDMS used in FlexTrate™ and non-biocompatible rigid

epoxy used in conventional FOWLP.



Rigid FOWLP integration has four major challenges: (1) the high glass transition
temperature (Tg) of rigid molding compound used in wafer reconstitution, (2) the
coefficient of thermal expansion (CTE) mismatch with respect to Si dies, (3) high drag
forces from the mold reflow during mold compression process, and (4) mold shrinkage
during the curing process [38]. These process challenges cause substrate warpage, poor die
co-planarity with respect to the molding compound (die pop-up), and, most importantly,
die shift from the original placement position [29, 40, 41]. The state-of-the-art die shifts
are of the order of 10-20 um [40]. These large die shifts result in large overlay tolerances
for the interconnects that are used to connect the dies, which in turn limits the finest
interconnect pitch to ~3X the worst-case die shift (i.e., 40-80 um). To overcome the above
mentioned FOWLP challenges, a biocompatible molding compound is chosen, namely
PDMS based “Silastic MDX4-4210”, which has significantly improved thermo-
mechanical properties compared to rigid epoxy-based molding compounds, as shown in
Table 1.1 Although PDMS has significantly higher CTE mismatch with respect to both Si
and Cu (300 vs. 3 and 17 ppm/K, respectively) when compared to rigid molding
compounds (7.5 ppm/K), the die shift is reduced because of two main reasons: (1) since
the T, of PDMS is -120 [, it can be cured at room temperature, minimizing cure shrinkage
after curing; (2) PDMS exhibits four orders of magnitude lower Young’s modulus as
compared to rigid molding compounds, and the drag force during mold compression and
flow is, therefore, not large enough to cause significant die shift. As such, die co-planarity
and die tilt of <1 pm and maximum die shift of < 8 um across a 100 mm wafer have been

demonstrated on FlexTrate™.
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Figure 1. 2. (a) Schematic of a large, thin die bonded on a flexible substrate in the conventional
FHE approach, where the die undergoes high stress upon bending to small bending radii, (b)
schematic of the “dielet” approach in FlexTrate™, showing multiple dies connected at fine

interconnect pitch.



_ Conventional FHE FlexTrate™

Die thickness Thin (< 50 pm) 100-300 pm

Interconnect Printed Electroplated Cu
Interconnect pad pitch ~ Coarse (> 100 pm) Fine (£40um)

Die bonding High T Embedded, Room T.

Table 1. 2. Advantages of FlexTrate™ over conventional FHE.

To enhance the flexibility of conventional FHE, ultra-thin dies, typically less than 20 pm,
are mounted on flexible substrates [11] because such thinned dies can conform to curved
surfaces. However, there are three major drawbacks to this approach. First, ultra-thin dies
are susceptible to the stress-induced device variation and circuit performance degradation.
For example, Lee et al. have reported that the retention time of thinned DRAM having
planar capacitors is reduced when the die thickness is 50 um or less by more than 50%
[16]. Second, the potential manufacturability of products is dependent on achieving high
yield after two processes: (1) wafer thinning from bulk inorganic substrates and (2)
handling of ultra-thin dies using flip-chip techniques [42, 43]. Third, and most importantly,
the printed interconnects on flexible substrates have coarse pitches, typically in the range
of hundreds of microns, which limits the integration of high-performance logic/memory
dies requiring high number of I/Os. In addition, either wire bonding/ball bumping is
typically used to create connections to communicate with other integrated chips, which
does not allow for a high number of I/Os needed for high-performance logic and memory

dies [44], and also limits the flexibility of the entire assembly [45]. On the other hand,
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FlexTrate™ has various benefits in terms of enabling heterogeneous integration, form
factor reduction, and overall higher performance. Fig. 1.2 shows the schematic of
conventional FHE approach and the FlexTrate™ approach. The advantages of FlexTrate™

vs. conventional FHE techniques are summarized in Table 1.2.

Flexible PCB Approach

I Additional passivation required for chips

>

Nonplanar top
Packaged

Packaged Chip 3 Solder
(> 100 pu