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This dissertation introduces a batch fabrication method to manufacture Micro-Electro-

Mechanical System (MEMS) components for NMR atomic sensors, such as NMR gyroscope

(NMRG) and NMR magnetometer (NMRM). The introduced method utilized a glassblow-

ing process, origami-like folding, and a more traditional MEMS fabrication. We developed

an analytical model of imperfections, including errors associated with micro-fabrication of

MEMS components. In light of the developed error model and experimental evaluation of

components, we predicted the effect of errors on performance of NMRG and NMRM. We

concluded that with a realistic design, a 5mrad angular misalignment between coils and

folded mirrors and a 100um linear misalignment between folded coils, it would be feasible

to achieve an NMRG with ARW 0.1◦/
√
hr and an NMRM with sensitivity on the order of

10fT/
√
Hz using MEMS technology.

A design process for miniaturized atomic vapor cells using the micro-glassblowing pro-

cess was presented in this dissertation. Multiple design considerations were discussed, in-

cluding cell geometry, optical properties, materials, and surface coating. The geometry and

the optical properties were studied using experimentally verified analytical and Finite Ele-

ment Models (FEM). The cell construction material and surface coating were the focus of

our experimental study on factors that affect the transverse relaxation time (T2) of nuclear

xiv



spins. We showed that the developed wafer-level coating process with Atomic Layer Depo-

sition (ALD) of Al2O3 increased the relaxation time (T2), which is projected to reduce the

ARW of NMR gyroscopes and the sensitivity of NMR magnetometers by four times.

Complementary to the developed atomic sensors components, an analog emulator for

NMR atomic sensors was developed. The emulator represents the spin dynamics of atoms in

an applied magnetic field that are governed by Bloch equations. Characterization of atomic

sensors’ components using the emulator was achieved by including one or more of those

components with the emulator in a hardware-in-the-loop (HIL) configuration. Finally, we

presented a comparison of the response between the NMR emulator and an actual NMR

system, showing similarities of responses of the two systems and feasibility of using HIL

configuration in development of micro-scale NMR sensors. In summary, the contribution of

this thesis is summarized as follows:

• Developed and experimentally verified the analytical model that links the folding ac-

curacy to the atomic sensor performance;

• Developed a wafer-level fabrication process of a network of interconnected atomic cells

utilizing glassblowing technology;

• Demonstrated the feasibility of filling an array of atomic cells simultaneously with

noble and buffer gases, and measured the noble gas response as well as the pressure of

all gases after sealing.

• Developed a multi-aspect design process for producing highly spherical glassblown cells

within the practical limits of the fabrication process. Identified that the critical design

process aspects are geometry, optical properties, surface coating, and material.

• Presented design and validation of an NMR atomic sensor emulator. The emulator

was developed for characterization and analysis of the developed components in a

hardware-in-the-loop configuration.
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Chapter 1

Introduction

1.1 Motivation

Inertial sensors utilize inertia to measure the relative motion of an object. There are

two types of inertial sensors, accelerometers which measure an object’s linear acceleration,

and gyroscopes which measure the rotation of an object. These sensors have a wide range of

applications from consumer electronics, such as cell phones and gaming consoles, to industrial

applications, such as automotive industry, all the way to navigation and military applications.

The motivation for developing high-performance inertial sensors is to target scenarios

where GPS signal is not accessible. Some examples for those scenarios are underwater

navigation, or when GPS signal is jammed, or cannot be trusted.
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1.2 Trends in Inertial Sensors and Magnetometers

Depending on the physical principle of operation gyroscopes can be divided into three

broad categories

Vibratory: Vibratory gyroscopes depend on Coriolis force, which is a rotation induced

coupling between two modes of vibration of a mechanical resonator, [1, 4]. They are mostly

found in consumer applications, such as smart-phones and video games consoles. Gyroscopes

used for consumer applications have Angle Random Walk (ARW) usually on the order of

10-0.1◦/
√
hr.

Optical: Optical gyros are the standard for Navigation applications, and they are used

on-board of airplanes. Optical gyroscopes deploy the Sagnac effect to detect rotation, where

two beams of light are sent in opposite closed paths and, when a rotation is applied, a phase

shift occur between the two light beams which can be detected using an interferometer. Ring

Laser gyroscope (RLG) can achieve ARW on the order of 0.005◦/
√
hr.

Atomic: The last category is the atomic gyroscopes, where atoms motion is used to detect

rotation. Atomic gyroscopes can be divided into two subcategories. Atomic interferometry

gyros (AIG) (also referred to as cold atoms gyros) and atomic spin gyros (ASG) (usually

referred to as warm atoms gyros), [37]. Atomic interferometry gyros are similar to optical

gyros. However, atoms are treated as waves instead of photons, [58, 55, 105, 27]. On the other

hand, Atomic spin Gyros (ASGs) utilize the spin property of atoms to track rotation. Atomic

spin gyros have multiple implementations. One of them is the Nuclear Magnetic Resonance

Gyroscope (NMRG). These devices are still in the prototype phase and are projected to

achieve ARW better than 0.001◦/
√
hr.

Magnetometers are classified based on their physical principle of operation into two

categories. Sensors with a magnetic core and non-magnetic core.

Magnetometers with magnetic core: These magnetometers contain a magnetic
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core, and the external magnetic field changes the physical properties of the core. Examples

of those magnetometers include fluxgate [10, 78], Hall-effect [103], magnetoresistive [11, 14],

and cavity optomechanical magnetometers [96, 52, 17]. These magnetometers are used in

Earth’s magnetic field mapping and industrial applications, such as current monitoring and

magnetic memory read-out, [71, 131]. These magnetometers usually have medium to low

sensitivity and are limited in performance to pico-Tesla range (10−12T )

Magnetometers with non-magnetic core: These magnetometer respond to a magnetic

field by inducing a quantum mechanical effect (quantum magnetometers), they have high

sensitivity and can measure ultra-small magnetic fields in the ranges of Femto-Tesla (10−15T )

and atto-Tesla (10−18T ). Superconducting quantum interference device (SQUID), [16], op-

tically pumped atomic magnetometers [19], and nitrogen-vacancy center (NV center) in

diamond [119], are examples of this category of magnetometers. Quantum magnetometers

are utilized in non-invasive biomedical applications, such as magnetic resonance imagining

(MRI), magnetocardiography (MCG), and magnetoencephalography (MEG). They are also

used in Nuclear Magnetic Resonance (NMR) spectroscopy, [109]. A subcategory of optically

pumped atomic magnetometers is the NMR magnetometer.

Our discussion in this dissertation is focused on NMR gyroscopes and NMR magne-

tometers.

1.3 Atomic Sensors History

NMRG concept was first introduced in the early 1950s, [47]. However, the actual de-

velopment started in the 1960s when General Electric and TRW started research and de-

velopment on building first prototypes. In these first experiments, they used optical means

similar to what is being used today to polarize the nuclear Spins, [41, 115, 6].
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The 1970s was the prime time for NMRG development; many companies and research

labs started exploring different NMRG implementations. Two of the promising implementa-

tions at that time were introduced by Singer, and Litton Systems. Singer’s implementation

used two isotopes of mercury and a mercury lamp to polarize and detect the nuclear spins

directly, [12]. Litton’s implementation used noble gas spins, Like Xe, and an intermediate

atom species, in their case it was Rb, to polarize the noble gas and detect it, [45]. Most

of today’s implementations use this combination of alkali metal and a noble gas, [64, 70].

Litton reported the highest performance of NMRG at that time, with ten times improvement

in the noise level over Singer’s NMRG, [44].

At the beginning of the 1980s, the rush for NMRG development slowed down. There are

two reasons for that. The first was, the lack of enabling technology, such as stable lasers at

Rubidium wavelength; The second reason was a fast development of competing technologies,

like the fiber optic gyro. For nearly 25 years, there was no significant development in NMRG.

In the 2000s another rush to develop NMRG took place, but this time it was on a

chip-scale. In the past 15 years, the interest to develop miniaturized NMRG has grown up

significantly. Many research groups and companies around the world started developing their

chip-scale versions of NMRG.

1.4 Atomic Sensors Miniaturization

Atomic sensors can deliver a precise measurement of physical quantities, such as time,

magnetic field, and rotation by utilizing a cloud of conditioned atoms, [58]. For example, in

table-top setups, an atomic magnetometer can measure magnetic fields with a sensitivity of

1fT/
√
Hz, [63], and an atomic gyroscope can measure rotation with an Angle Random Walk

(ARW) of 0.002 deg/
√
hr, [69]. The emerging applications that demand low-cost chip-scale
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atomic sensors, [114, 65], have started a trend in the early 2000s on the miniaturization of

atomic sensors and their components. The advancements in miniaturized cell fabrication,

[2, 35, 100, 43], and Vertical Cavity Surface Emitting Lasers (VCSELs), [112], encouraged

developments towards miniaturization of atomic clocks, [62], atomic magnetometers (NM-

RMs), [60, 53, 57], and atomic gyroscopes (NMRGs), [79, 3, 57].

The process of conditioning atoms for atomic sensors (such as NMRM and NMRG)

consists of multiple steps. The first step is to confine the atomic cloud in a container, i.e., a

vapor cell. The next step is to heat the cell, which is necessary to vaporize the alkali metal

and to increase the vapor pressure, which would effectively increase the signal-to-noise ratio

of the measurement. This is followed by aligning the atomic spins of nuclei by applying

a precise static and oscillating magnetic fields via electromagnetic coils. The next step is

to optically polarize the spins using a laser source, assuring that their magnetic moments

are aligned forming a net magnetization vector. Lastly, in the case of NMRG, the sensor is

encapsulated using a µ-metal shield to preserve this conditioning during sensor operation.

In the case of NMRM, no magnetic shield would be typically used.

The utilization of Micro-Electro-Mechanical Systems (MEMS) techniques accelerated

the advancement of miniaturization of atomic cells, [36, 99, 61]. However, MEMS techniques

have not been adopted widely for other essential components of atomic sensors, such as

multi-axis magnetic field coils, cell heaters, and optical components. In previous studies,

[57, 70], multi-axes coils and cell heaters were realized through flexible printed circuit boards

technique. Individually machined optical apparatus, such as lenses and light reflectors, were

assembled to route the light in-and-out of the cell, [84][70]. One obvious limitation of such

techniques was that the components were picked and placed individually, which made the

assembly process inefficient and devices bulky. MEMS techniques offered an approach to

address this limitation by utilizing a lithography driven batch fabrication.

To address the limitation of individually picking and placing components, a minia-
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turization method based on micro-fabrication of NMR components on a wafer-level was

introduced, as a potential approach for size, weight, power, and cost (SWaP+C) reduction.

The method combined micro glassblowing technology for fabrication of miniaturized atomic

cells, [36], and a 3-D folded MEMS structures, [134], for the fabrication of magnetic coils,

interconnects, silicon backbones, and light reflectors. However, miniaturization come with

a cost of imperfections. In this dissertation, we discuss and analyze the contribution of er-

rors introduced by each component on the overall performance of NMR atomic sensors. We

then demonstrate that MEMS-based implementation is a potential candidate for precision

sensing.

Although the miniaturization of atomic sensors started with the miniaturization of the

atomic cells, [36, 99, 61], to date, there are challenges in achieving the full potential of minia-

turized cells. Some of the challenges in cells development that arise from miniaturization

include: developing a batch fabrication process that yields low size, weight, power, and cost

(SWAP+C) cells [114]; developing low SWAP+C cells with geometrical requirements, such

as multiple optical ports and cell symmetry; developing cells with homogeneous wall mate-

rial; developing cells with wall coatings and materials that preserve the atomic polarization

inside the cells.

Multiport cells are needed for some applications, such as Nuclear Magnetic Resonance

(NMR) gyros and magnetometers, [70, 20], while symmetry is preferred to avoid unwanted

phenomena, such as self magnetization and quadruple shift, [130]. In-homogeneity in the

cell wall material creates an electric field gradient across the cell, [31], which results in a

quadruple frequency shift that negatively affects the performance of NMR atomic sensors.

Additionally, as we miniaturize atomic cells, the interaction of the atomic vapor with the cell

walls increases due to increase of the surface area to volume ratio, [56]. So, the cell material

and the surface treatment need to be carefully addressed.

The fabrication and filling of miniaturized-glassblown spherical cells, [34, 91, 94], enabled
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a wafer-level fabrication of highly spherical axis-symmetric multiport cells with homogeneous

wall material that addresses some of the previously mentioned challenges. In this disserta-

tion, we discuss the different design aspects of miniaturized atomic cells. The design process

aspects include geometry, optical properties, material, and surface treatment (coating). The

design process combines analytical, [34], with finite element modeling (FEM) of the cell’s

geometry and optical properties, [8, 9], backed up with experimental validation as well as a

study on different cell wall materials and surface coating, [93].

1.5 Atomic Sensors Emulator

Atomic sensors have been used to measure multiple physical quantities, such as time,

magnetic field, and rotation with high precision, [63, 73, 69, 70, 58]. The main building

blocks of such sensors are the sensing unit (physics package) and control electronics. The

physics package of a Nuclear Magnetic Resonance Gyroscope (NMRG), as mentioned in

the previous section, includes an atomic vapor cell, a cell heater, magnetic field coils, a

magnetic shield, light sources, photo-detectors, and optics, [30]. Control electronics include

temperature control, magnetic field control, light sources control, rotation rate read-out, and

feedback electronics, [125].

Development of physics package received much attention in recent years, [62, 72, 60, 135,

53, 57, 79, 3, 126]. The general approach for the development of atomic sensors starts with

the physics package followed by the control electronics. With this approach, the effect of

individual components on the overall sensor performance can be only measured after assem-

bly of the physics package completed, which is a lengthy and costly process. The sequential

process of development also adds a lead time to the development of control electronics.

Emulators have been used in many applications, including Micro-Electro-Mechanical
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Systems (MEMS) sensors [86], fuel cells [75], and biomedical applications [104]. In this

dissertation, we introduce a reconfigurable analog emulator that mimics the spin dynamics

of a noble gas. The benefits of using a reconfigurable analog emulator are:

• Parallel development of physics packages and control electronics;

• Visualization of characteristics of the atomic sensor components on the overall sensor’s

performance;

• Fine-tuning of control electronics with pre-determined atomic sensors parameters;

• Independent development and testing of electronics dedicated to atomic sensors.

1.6 Research Objective

The research objective to develop an approach for high-performance atomic sensors

components using batch fabrication processes. These components can be used in various

atomic sensors, including NMR gyroscope and NMR magnetometers. There are two processes

involved in component development. The first process is the MEMS 3D folding technique,

which can be utilized for fabrication of the NMR sensor magnetic field coils, heater, light

reflectors, and sensor backbone. The second is the utilization of micro glassblowing technique

in fabrication and filling of miniaturized NMR atomic vapor cells.

The folded components development included the assessment of the process limitations

by developing analytical and finite element models that link fabrication imperfections’ to

sensor performance. The miniaturized atomic vapor cell development includes demonstrating

the fabrication and filling technique as well as optimizing cell design process.

A complementary objective is to develop an atomic sensor emulator that aids sensor

development. The emulator works as a characterization and analysis platform of the devel-
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oped components, by connecting one or more atomic sensors components with the emulator

in a hardware-in-the-loop configuration.

1.7 Dissertation outline

The principle of operation of NMR atomic sensors is introduced in Chapter 2. In

Chapter 3, a miniaturization method for NMR atomic sensors based on the micro-fabrication

of NMR components on a wafer-level is introduced, as well as discussion and analysis of the

contribution of fabrication imperfections to the overall performance of NMR atomic sensors.

Different design aspects for miniaturized NMR atomic vapor cells utilizing the glassblowing

technology are discussed in Chapter 4. Chapter 5 presents an analog NMR sensor emulator

as a tool to characterize the developed components. Finally, Chapter 6, concludes the

dissertation, highlights the dissertation contribution and gives an outlook on future research

direction.
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Chapter 2

NMR Sensors: Principle of Operation

To explain the operation for NMR sensors, we will first discuss the underlying physics

using a simplified model of the atom. Then, the operation of those sensors will be introduced.

2.1 Background

Let us take the example of a hydrogen atom with one valence electron in its outer shell.

This electron’s spin around its axis is identified as ”spin angular momentum,” and it takes

the values of ±1/2 depending on the energy (higher energy +1/2, lower energy −1/2). This

spin can be considered as a vector ~S.

The same electron’s orbit around the nucleus is referred to as ”orbital angular momen-

tum,” which is considered as a vector as well and it is denoted by ~L. We can use the vector

sum, Figure 2.1-(a,b), to add those two angular momenta and we obtain
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~J = ~S + ~L (2.1)

where ~J is the total angular momentum of the electron. Similar to the electrons, protons

a) b) c) d)

    

    

 
 

  
  

  
  

    

  

Figure 2.1: Vector sum of different angular momenta

and neutrons have ”spin angular momentum.” Generally, when two spins pair with each

other they cancel each other out, so the effective spin of the nucleus ~I is the summation

of spins from unpaired protons and neutrons, as shown in Figure 2.1-(c). The net angular

momentum of the whole atom, as seen in Figure 2.1-(d), is then calculated as

~F = ~I + ~J (2.2)

Each one of the angular momenta (~S, ~L, ~J , ~I and ~F ) has an associated magnetic moment.

For our discussion, we will focus on the magnetic moment associated with the nuclear spin

~µI . This magnetic moment of the spin can be considered as a magnetic dipole, as shown in
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Figure 2.2: spinning charged particles have a magnetic moment similar to that of a magnetic
dipole (bar magnet)

Figure 2.2, and it is related to the nuclear spin as follows

~µI = γI~I (2.3)

The quantity γI is a unique value for each element isotope and is called the gyromagnetic

ratio, and it is defined as

γI =
e

2mp

gI , (2.4)

where e is the elementary charge, mp is the mass of a proton, and gI is the nuclear g-factor.

This section reviewed a simplified description of the basic background of the hydrogen

atom model, [120, 39]. A similar model can be applied to the Alkali metals. These elements

occupy the first column of the periodic table (Li, Na, K, Rb, Cs, Fr). Alkali metals have

only one free electron in their outer shell.

2.2 Nuclear Magnetic Resonance

We have established the relation between the spinning motion and the magnetic moment

and the fact that those magnetic moments are considered as magnetic dipoles. Let us now

discuss the concept of magnetic resonance. Assume we have a group of atoms, each one of
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Figure 2.3: States of atoms in external magnetic field

those atoms has a net spin and subsequently a magnetic moment. Naturally, the direction

of the magnetic moment of those atoms is random. If we apply an external DC magnetic

field ~B0, there will be a torque acting on those magnetic moments trying to align them to

the direction of the applied magnetic field. This torque is described as follows

d~I

dt
= ~µI × ~B0 (2.5)

The energy states of the outer electrons and the nucleus distribute the atoms equally into

high and low energy states. High energy states are aligned along the magnetic field, and the

other half is in the opposite direction, as shown in Figure 2.3. Once these atoms are parallel

with ~B0, they start to precess about the magnetic field ~B0. The motion the nuclei spin can

be described by

d~µI
dt

= ~µI × γI ~B0 (2.6)

The frequency of precession is identified as the Larmor frequency and is given by

~ωL = γI ~B0, (2.7)
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where γI is the gyromagnetic ratio described by equation (2.4). Almost half of the atoms

will precess clockwise, and the other half will precess counter-clockwise. If we injected atoms

at the lower energy state with the exact amount of energy, this will bring them to the higher

energy state, and we could achieve a spin-flip. In this case, the magnetic moments of all

atoms will add up to form a net magnetization vector. The spin-flip is achieved by applying

an RF magnetic field with a specific frequency that is proportional to the energy difference

between the higher and lower states:

ν =
E

h̄
(2.8)

where E is the energy difference between the states in (J), h̄ is Planck’s constant, and ν is

the frequency in Hz. Once we remove the RF magnetic field, the atoms will try to go back

to their original state (relaxation), producing a signal proportional in its frequency to the

signal used for the spin-flip. This operation is called Nuclear Magnetic Resonance (NMR).

In classical applications of NMR, such as magnetic resonance imaging (MRI), the spin-

flip is done via an RF magnetic field with frequency on the order of 100’s of MHz, and

detection of the generated signals is done using a superconducting quantum interference

device (SQUID), [16]. SQUID is a coil that is cooled to near 0◦K, which makes it a super-

conductor. It is used as a magnetometer that can measure ultra-low fields on the order of

atto-Tesla (10−18T), [24]. In our discussion throughout this dissertation, for implementation

of NMR sensors we will use laser sources for atoms’ alignment (polarization) and detection

instead of RF signals and SQUID. The polarization of atoms will be introduced later in

section 2.4, while the detection will be discussed in section 2.6.
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2.2.1 NMR Gyroscopes and Magnetometers

To explain how this phenomenon can be used to make NMR sensors (gyroscopes and

magnetometers), let us go back to equation (2.7) and assume that we aligned all the atoms

to the direction of the applied magnetic field. For NMR gyroscopes, if we rotated the whole

frame with a frequency of ~ωR, the observed precession will be

~ω′L = γI ~B0 ± ~ωR (2.9)

For NMR magnetometers, if we applied an external magnetic field δ ~Bz, then the observed

frequency of precession will be

~ω′L = γI ~B0 ± γIδ ~Bz (2.10)

In both cases, a net magnetic field will be generated either due to a rotation of the frame (in

the case of gyroscopes) or due to an external magnetic field (in the case of magnetometers).

This field is given by

~ω′L = γI ~B
′
0 (2.11)

We assume we have a method of measuring the net magnetic field ~B′0. By substituting

equation (2.11) for equation (2.9), the rotation rate of the NMR gyroscope is

~ωR = γI( ~B0 − ~B′0), (2.12)

and from equations (2.10) and (2.11), the external magnetic field for the NMR magnetometer

is

δ ~Bz = ~B0 − ~B′0, (2.13)
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where ~B0 is the applied magnetic field, ~B′0 is the measured field, and γI is a constant value

for our atom species.

2.2.2 Dual Isotopes

We notice from equation (2.12) that the NMR gyroscope is dependent on the net field

experienced by atoms and any fluctuations in that field will be identified as rotation. For this

reason, NMR gyros require magnetic shielding. There are two types of magnetic shielding,

passive shielding and active shielding. Passive shielding is achieved by placing the sensor

inside a high permeability µ-metal shield, however, there are limitations to the passive shield-

ing approach and an active shielding is necessary to achieve high-performance gyros, [31].

Active shielding is carried out by continuously measuring the field fluctuations and canceling

them out. On the other hand, equation (2.13) shows that any rotation of the NMR magne-

tometer will be identified as a change in the magnetic field. To overcome this issue, we need

to monitor the system rotation actively and cancel it out from the sensor’s readout.

Active shielding of NMRG and active rotation cancellation for NMRM can be addressed

by introducing another atom species with different gyromagnetic ratio to the gas mixture,

in most cases another Xe isotope is introduced.

In the case of NMR gyros, the two isotopes will precess at two different frequencies,

equation (2.7) becomes

ω1 = γ1B0 (2.14)

ω2 = γ2B0 (2.15)

When we apply a rotation rate to the sensor, the observed frequencies of the two isotopes
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become

ω′1 = γ1B0 ± ωR (2.16)

ω′2 = γ2B0 ± ωR (2.17)

Solving the two equations (2.16) and (2.17) for B0, we obtain

B0 =
ω′1 − ω′2
γ1 − γ2

, (2.18)

Substituting equation (2.18) into equation (2.16), the rotation rate becomes

ωR =
γ1ω

′
2 − γ2ω

′
1

γ1 − γ2

. (2.19)

We note that ωR is only dependent on the gyro magnetic ratios of the two isotopes, and their

observed frequencies, and it is independent of B0.

On the other hand, in the case of NMRM, when an external magnetic field δBz is applied

and assuming a parasitic system rotation is present, the observed Larmor frequencies of the

two isotopes become

ω′1 = γ1B0 ± γ1δBz ± ωR, (2.20)

ω′2 = γ2B0 ± γ2δBz ± ωR. (2.21)

Solving equations (2.14), (2.15), (2.20) and (2.21) for δBz, we obtain

δBz =
(ω′1 − ω′2)− (ω1 − ω2)

γ1 − γ2

, (2.22)

where ω′1 and ω′2 are the observed frequencies, while ω1 and ω2 are the reference frequencies
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of the two isotopes. We can see that the external magnetic field of NMRM depends on

the observed frequencies, the gyromagnetic ratios, and the reference frequencies of the two

isotopes. With the two isotope approach, the parasitic rotation have been eliminated.

2.3 Choice of Atoms

2.3.1 NMR Elements

The key element in designing of NMR sensors is selecting proper atom species. This

selection process depends on several factors. In this section, we will mention those factors

and why they are important in the selection process. First, the gyromagnetic ratio of the

species needs to be on the smaller side for more precise measurement of rotation, [125]. The

gyromagnetic ratios for some elements (He, Ne, Kr, Xe, and Hg) are in the range of (2π × (1

- 32) Hz/µT). On the other hand, the elements like alkali metals have gyromagnetic ratios

two order of magnitude higher (e.g., 2π × 6998 Hz/µT for 87Rb), [116, 117]. Relaxation time

is another factor for choosing atoms for implementation of NMR sensors. Relaxation times

range from milliseconds, for elements such as alkali metals to several days in the case of 3He,

[40, 51]. The optimum range is tens of seconds for a millimeter size cell, [125]. Selecting

atom species with non-zero nuclear spin is essential for the process of NMR gyro. Finally,

the ability to polarize and detect the atoms optically using lasers is also essential for the

selection process.

These factors help to develop elementary selection criteria for the NMR atom species.

Xenon, and specifically (129Xe), is a great candidate matching our criteria. It has a gyro-

magnetic ratio of (2π × 11.86 rad.s−1/µT), [117], a relaxation time of 180s was reported for

a cell size of 25mm3, [49], and it has a nuclear spin of 1
2
, [121]. Nevertheless, Xe is an inert

element and it is not possible to directly polarize Xe using a laser.
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2.3.2 Alkali Metal

To overcome this problem, we introduce another atom species that can be polarized and

detected using laser sources, and at the same time is capable to transfer that polarization to

and from Xe atoms. This process of transferring the polarization to and from Xe is called

spin exchange, and it is covered in more details in section 2.5. Choosing Alkali metals (Li,

Na, K, Rb, Cs) is an excellent choice for this task, each one of them has a single valence

electron in their outer shell, which makes it easier to model and understand their behavior.

The criteria to choose between the alkali metals are melting point and availability of laser

source to excite them. The melting points of Lithium, Sodium, and Potassium are relatively

high (180◦C-63◦C) when compared to Rubidium and Cesium (39◦C) and (28◦C). High melt-

ing points require large heating power to convert alkali metals from solid to vapor phase,

which consumes a lot of power and is not desirable for potential applications. So, starting

with elements with low melting points is optimal to efficiently utilize the power budget of

implementation. Nevertheless, (NA, K) are prevalent in table-top high-temperature mag-

netometers that are not limited by a power budget, [63, 28, 5]. Recent advancements in

vertical-cavity surface-emitting lasers (VCSEL), [85], made it possible to access small size,

low cost, and power-efficient laser sources at the Cs and Rb absorption wavelengths, [80],

which is a breakthrough in NMR sensors miniaturization. Both Cs and Rb are used in

miniaturized atomic sensors. In our implementation, we will focus on Rb.

Next, we will introduce the process to polarize the alkali metal atoms. This process is

called ”Optical Pumping.”
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Figure 2.4: Energy Level Splitting in 85Rb

2.4 Optical Pumping

As was discussed earlier, polarizing the alkali atoms can be achieved using an RF signal

or optical method. Before we discuss the optical pumping process, we first need to introduce

the energy level diagram of an alkali metal (e.g., 85Rb), shown in Figure 2.4. The diagram

consists of four parts. The first on the left is the hydrogenic state (5S, 5P); it can be

considered as the orbit of the electron in our simplified model. Next, is the fine splitting

resulting from the electron spin ( ~J), equation (2.1), denoted by (52S1/2, 52P1/2, 52P3/2) in

Figure 2.4. Next, the hyperfine splitting, which is a result of adding the nuclear spin to the

electron spin, is introduced in equation (2.2) and denoted by F in Figure 2.4. Finally, the

Zeeman splitting, which will occur whenever there is a magnetic field applied and is labeled

by mF in Figure 2.4.

Let us assume we have an ensemble of Rb atoms in an applied DC magnetic field.
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Those atoms will be distributed across the Zeeman states of 52S1/2 in Figure 2.4. Each one

of those atoms will have a specific mF number depending on its state. It could be any value

of (mF = −2,−1, 0, 1, 2). Applying a left-hand circular polarized light with wavelength

proportional to the energy difference between 52S1/2 and 52P1/2, (D1 line in Figure 2.4),

which is approximately 795nm for Rubidium, excites the atoms to one of the mF states of

52P1/2. Naturally, they will be de-excited, but their original mF number will increase by +1.

These cycles of exciting and de-exciting will continue, and the mF number will increase each

time. Once the atom’s mF number reaches mF = 2, that atom will no longer absorb the

left-hand circular polarized light. After a certain amount of time, most of the atoms will be

in the mF = 2 state. At that point, we can say that the Rb atoms are optically pumped and

their magnetic moments are aligned with the applied magnetic field. In other words, the

atoms are polarized. Figure 2.5 shows the behavior of atoms during the left-hand-polarized

light excitation.
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The Rb atoms will stay in the pumped state for a while. Then, due to collision with

other atoms and walls of the encapsulating cell, they will lose their polarization, and that

is referred to as relaxation. Many factors contribute to the relaxation time constant, buffer

gases and cell coatings are the most critical, [48, 132]. The buffer gas is the third atom

species we introduce in the cell. Usually, the nitrogen gas is used. It serves the purpose

of reducing the collisions between Rb atoms, which increases the relaxation time constant.

As for cell anti-relaxation coating, Rubidium Hydride increases the relaxation time constant

by a factor of four, [67, 68]. In general, those relaxation time constants are on the order of

milliseconds.

Next, we will introduce the spin-exchange process that transfers the alkali metal polar-

ization to Xe atoms.

2.5 Spin Exchange

Now that all of the Rb atoms are pumped, their spin state needs to be transferred to Xe

atoms. The spin-transfer occurs according to the conservation of angular momentum law,

where the angular momentum, or spin, can be transferred between particles but the total

angular momentum is preserved, [129]. There are two mechanisms of spin transfer (spin-

exchange), either by direct collision or by forming of temporary Van Der Waals molecules.

In Direct collision, as the name implies, a Xe atom and a Rb atom collide and the spin-

exchange happens. Figure 2.6-(a) shows the spin-exchange due to a direct collision. This

direct contact, however, has a small chance of occurrence, [7]. On the other hand, Van

Der Waals molecules formed as a result of buffer gas presence, which brings Xe and Rb

atoms closer to each other and increases the interaction time between them, as shown in

Figure 2.6-(b), [124]. The formation of Van Der Waals molecules contributes to a higher

chance of spin-exchange. After the spin exchange takes place, the Rb atoms can absorb light
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Figure 2.6: Sketch showing two mechanisms for spin exchange, a) Direct collision spin ex-
change of two particles with different initial spin, b) Van Der Waals spin exchange of Xe and
Rb in the presence of N2. The illustration is adopted from [49]

again and the optical pumping is repeated.

Since the Xe atoms are now polarized, if we rotated the frame of reference, Xe atoms

will be able to measure rotation. The rotational information is in the magnetic field of

those atoms. Multiple solutions can be used to measure those fields, SQUID is one option.

Another option is placing an atomic magnetometer near the cell; as in [25]. And a third

option is integrating the magnetometer in the same cell that contains the Xe atoms, which

was demonstrated on a large scale in [26]. The integrated atomic magnetometer was reported

to have an enhancement factor of 500x, if compared to a coil near the cell, [81].

Next, we will discuss the integrated atomic magnetometer and present two possible

implementations of that magnetometer.
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2.6 Integrated Atomic Magnetometer

Let us assume the spin-exchange optical pumping took place and the Xe atoms are now

aligned and their magnetic moments ~µI have added up together. The collective magnetic

moments of all Xe atoms can be considered as a magnetization vector ~MXe. We will discuss

the behavior of this vector in an external field in more details in section 2.7.1.

~MXe =
∑

~µI (2.23)

We assume our applied magnetic field ~B0 is in the ẑ-direction, which means that the magne-

tization vector will be pointing towards the ẑ-direction with a negligible component in the

xy-plane as shown in Figure 2.7-(a). The xy-plane component of the magnetization vector

~MXe contains the rotational information. So, in order to maximize the detected signal, we

need to deflect the magnetization vector ~MXe towards the xy-plane. Deflecting ~MXe towards

the xy-plane can be carried out by applying an AC magnetic field, let us call it B1, with a

small amplitude and a frequency almost equal to the Larmor frequency of Xe signal, which

was defined by equation (2.7). The direction of the AC field can be either along the x̂-axis

or ŷ-axis (for consistency of this discussion, we will assume the AC field is along the x̂-axis,

as shown in Figure 2.7-(b)). This field brings the Xe atoms’ precession in phase, which

maximizes the magnetization vector component in the xy-plane.

Now the magnetization vector has a component in the xy-plane (Mxy), we can measure

the magnetic field produced by the Xe atoms. The Rb atoms in the cell will be used to

transfer the spin from Xe atoms using the spin-exchange principle discussed in Section 2.5.

To measure the spin of the Rb atoms, we can use one of two configurations: the Dehmelt

detection, or the Faraday detection.

Next, we will explain the two methods and discuss advantages and disadvantages of
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Figure 2.7: Xe magnetization vector with and without AC field

each method.

2.6.1 Dehmelt Detection

The setup now consists of a circularly polarized light to pump the atoms, a DC magnetic

field ~B0 applied along the ẑ-axis that forms a magnetization vector ~MXe, an oscillating mag-

netic field ~B1 along the x̂-axis to deflect the magnetization vector. The applied DC magnetic

field causes the Rb atoms to precess as well. However, their precession rate is typically at

higher frequencies since their gyromagnetic ratio (γRb) is three orders of magnitude higher

than Xe. An RF field ~BC with a frequency equal to the precession frequency of Rb is applied

along the ẑ-axis and is used as a carrier magnetic field. The carrier magnetic field improves

the signal-to-noise ratio by achieving the hyperfine interaction enhancement factor between

Xe and Rb, [44]. Next, we will apply a circularly polarized light at 795nm along the x̂-axis

(probe light), and place a photo-detector right after the cell.

The Xe magnetization vector ~MXe has a component precessing in the xy-plane, and the

Rb atoms are following that due to the spin-exchange. Looking from the x̂-axis through

the cell, we will be observing as if the magnetization vector is shrinking in +x̂-direction and

growing in -x̂-direction, then shrinking in -x̂-direction and growing in +x̂-direction, and so
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on. As the magnetization vector shrinks in +x̂-direction, it appears to be un-pumped, and

the circularly polarized light in the x̂-direction will be absorbed, and when the magnetization

vector flips its direction, it appears to be pumped so that the light will pass through. The

light intensity hitting the photo-detector will be proportional to the x-component of the

magnetization vector (Mx) rotation, [29].

The advantages of this detection scheme are that it requires only a single photo-detector

for the probe beam, and it is possible to use the same laser source for pumping and probing.

However, partially pumping the atoms by probe beam along the x̂-direction alters the Rb

polarization, which creates a magnetic gradient inside the cell. This gradient has a direct

effect on the Xe atoms. Lowering the probe beam power reduces its interference with Rb

atoms polarization. However, the signal would be limited by the photon shot noise, [33].

2.6.2 Faraday Detection

The Faraday detection setup is similar to the Dehmelt setup, but with a few differences.

The setup consists of a circularly polarized light to pump the atoms, a DC magnetic field

~B0 applied along ẑ-axis to form the magnetization vector ~MXe, an oscillating field applied

to the x̂-axis to deflect the magnetization vector, and a carrier field applied along the ẑ-axis

to improve the signal-to-noise ratio. In the Faraday detection scheme, the probe beam is

linearly polarized, a polarizing beam splitter and two photo-detectors are required right after

the cell. Figure 4.13 shows the characterization setup utilizing the Faraday detection. The

linearly polarized probe light enters the cell with a certain polarization angle, that angle

changes as a result of the magnetic field as seen in Figure 2.8, [97].

We choose a wavelength that can interact with the Rb atoms, so the output signal is

proportional to the Rb magnetic field. Linearly polarized light can be considered as two

circular polarized light components added together with opposite handedness and different
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Figure 2.8: The Faraday rotation principle, initial polarization changes proportional to the
magnetic field. Adopted from [87].

phase. Depending on the initial relative phase between the two components, the polarization

angle is defined, Figure 2.9. When that light passes through the Rb cell, each one of the

two light components will experience a different refractive index, which will cause the two

components to travel at different speeds. The difference in travel speed of the two compo-

nents results in a change of the initial phase difference, which will show as a change in the

polarization angle of the exiting beam. An expanded overview of the use of the Faraday

detection in magneto-optical experiments can be found in [18] and in references within.

The main advantage of the Faraday detection is that it sends a linear polarized light

into the cell, which does not affect the Rb atoms as much as the circular polarized beam.

As a result, a better performance was reported using the Faraday detection, [83, 64]. The

disadvantage of such implementation is that it requires more optical components compared

to the Dehmelt scheme, which makes it challenging when we try to reduce the NMR sensors

size.

This was a brief review of the integrated atomic magnetometer, two detection schemes
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Figure 2.9: Relative phase difference between the left and the right handed components of
the linear polarized light defines the polarization angle. Three cases are presented here in
each case we observe polarization change as a result of the initial phase difference

were introduced and their advantages and disadvantages were discussed. A more detailed

coverage of the topic can be found in [33].

2.7 NMR Sensors Dynamics

2.7.1 Bloch Equations

Bloch equations are a set of equations that model the interaction of the magnetization

vector with magnetic fields [15]. When we introduced the magnetization vector, we assumed

it is the summation of all the magnetic moments, equation (2.23). Since equation (2.6)

describes the moments’ motion, we can substitute equation (2.23) for equation (2.6) and we
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obtain

d ~M

dt
= ~M × γ ~B0 (2.24)

from now on we will talk about the Xe signal so we will omit the subscripts of ~MXe and

γI . Equation (2.24) describes the rate of change of the magnetization vector in all three

dimensions. We can expand this cross product to separate x, y, and z components.

dMx

dt
= γ(MyBz −MzBy) (2.25)

dMy

dt
= γ(MzBx −MxBz) (2.26)

dMz

dt
= γ(MxBy −MyBx) (2.27)

Our assumption is ~B0 is in the ẑ-direction, so we can say Bz = B0 in equation (2.25) and

x

y

x

y

x

y

x

y

x

y

x

y

a) b) c)

f) e) d)

Figure 2.10: Oscillating field applied along the x̂-axis can be visualized as two static fields
rotating in opposite direction around the z-axis
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equation (2.26). The oscillating filed ~B1 applied on the x̂-axis can be visualized as two static

fields rotating around z-axis in opposite directions, where the x-components add up and the

y-components always cancel out, as illustrated in Figure 2.10. The x-component for both

fields is Bx = B1cos(ωat), while the y-component for the clockwise field is By = −B1sin(ωat)

and for the counter-clockwise is By = B1sin(ωat). Using the clockwise vector, along with

our assumption Bz = B0, we can re-write equations (2.25), (2.26) and (2.27) as follows

dMx

dt
= γ[MyB0 +MzB1sin(ωat)] (2.28)

dMy

dt
= γ[MzB1cos(ωat)−MxB0] (2.29)

dMz

dt
= −γ[MxB1sin(ωat) +MyB1cos(ωat)] (2.30)

To simplify the set of equations (2.28), (2.29) and (2.30), we will introduce a rotating
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Figure 2.11: Rotating coordinate frame concept

coordinates system that rotates around the z-axis (u, v). Where u rotates in phase with B1

and v is in quadrature with B1. Figure 2.11 illustrates the concept of the rotating coordinate
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frame. Mx and My are defined as

Mx = u cos(ωat) + v sin(ωat) (2.31)

My = −u sin(ωat) + v cos(ωat) (2.32)

The Bloch equations in the rotating coordinates becomes

du

dt
= ∆ωv (2.33)

dv

dt
= −∆ωu+ γB1Mz (2.34)

dMz

dt
= −γB1v (2.35)

where ∆ω = γB0− ωa is the mismatch between the applied oscillating field and the Larmor

frequency of the Xe atoms. In the case of NMR gyroscope, if we apply a rotation rate

to the system ωR, then ∆ω = γB0 − ωa ± ωR. In the case of NMR magnetometer, if we

apply an external magnetic field δBz, then ∆ω = γB0 − ωa ± γδBz. Before we proceed

with the solution to the above equations, we need to consider an important property of the

magnetization vector, which is the relaxation.

2.7.2 Relaxation

As mentioned in section 2.4, Rb atoms lose their polarization due to collision with other

atoms and with the cell walls, and we referred to that as relaxation. A similar phenomenon

acts on the Xe atoms, however, the relaxation time constant for Xe atoms is 3-4 orders of

magnitudes larger than Rb. Xe atoms have two relaxation constants that describe the Xe

magnetization vector. The first relaxation time constant is identified as the longitudinal

relaxation time constant T1, and it is a measure of the time required for the Mz to return

to the equilibrium condition of Mz = M0. If we managed to flip the magnetization vector
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direction such that it points to the -ẑ-direction instead of +ẑ-direction, then the rate of

return to its original direction is governed by T1. The other relaxation time constant is

called the spin-spin or transverse relaxation time T2, and it is a measure of how fast the Mxy

will go to 0 once we stop the oscillating field. Collision of Xe atoms with the wall affects the

longitudinal relaxation time T1, while the magnetic field gradients across the cell disrupt the

coherence of the Xe atoms, which reduces the transverse component of the magnetization

vector and hence T2, [123]. If there was a magnetic field gradient across the cell, that will

mean different groups of atoms will be experiencing different net magnetic field, which leads

to different Larmor precession frequencies of those atoms, [22, 23, 76]. When we try to sum

up the magnetization components of those atoms, we find that T1 is the upper limit for T2.

To model these effects we can write changes of the magnetization vector components due to

each relaxation constant as

dMx

dt
= −Mx

T2

(2.36)

dMy

dt
= −My

T2

(2.37)

dMz

dt
= −M0 −Mz

T1

(2.38)

We then account for those effects in the set of equations (2.28), (2.29) and (2.30) directly.

Then using the rotating coordinates we obtain the Bloch equations in the rotating frame:

du

dt
= ∆ωv − u

T2

(2.39)

dv

dt
= −∆ωu+ γB1Mz −

v

T2

(2.40)

dMz

dt
= −γB1v +

M0 −Mz

T1

(2.41)

For small changes in the magnetic field (either due to input rotation ωR for NMRG or due to

external magnetic field δBz for NMRM) we can assume that there is no change in u, v, Mz

with respect to time and we then set the equations (2.39), (2.40) and (2.41) equal to zero
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and solve. The analytical solution is found to be [15]

u = M0
γB1T

2
2 ∆ω

1 + (T2∆ω)2 + (γB1)2T1T2

(2.42)

v = M0
γB1T2

1 + (T2∆ω)2 + (γB1)2T1T2

(2.43)

Mz = M0
1 + (T2∆ω)2

1 + (T2∆ω)2 + (γB1)2T1T2

(2.44)

The applied input to the NMR sensor (either a rotation to the NMRG or an external magnetic

field to the NMRM) results in shift in the frequency ∆ω, and that can be found either from

u which rotates in phase with oscillating field B1 or from v which rotates in quadrature. A

typical response of (v) and (u) due to changes in ∆ω is shown in Figure 2.12. Note that u

gives the direction of the sensor’s input.
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Figure 2.12: Typical normalized response of dispersion (u) and absorption (v) modes due
to change in ∆ω, obtained from equation (2.42) and equation (2.43), respectively. T1=10s,
T2=5s, γ= 2π×10 rad.s−1/µT , B1 = 10nT

33



2.8 Summary

This chapter summarized the principle of operation of Nuclear Magnetic Resonance

gyroscopes and magnetometers. A short background using a simplified atom model was

used to explain the mechanism of Nuclear Magnetic Resonance and how it can be utilized to

measure different physical phenomena, rotation in the case of NMR gyroscopes, and external

magnetic fields in the case of NMR magnetometers.

Figure 2.13 summarizes the operation of the NMR sensors. A spin-exchange optical

pumping (SEOP) process is used to align Xe atoms, Figure 2.13-(a), [124]. In this process,

a circularly polarized light beam polarizes (pumps) the Rb atoms. Circularly polarized light

is fundamental for the optical pumping process because it has the angular momentum which

can change the quantum state of the outer electrons of the Rb atoms to reach the pumped

state (mF = −2 or mF = 2 by the right or left-handed polarized light, respectively), [33].

Then, direct collisions and formation of Van Dar Waals molecules (spin-exchange) transfer

the polarization from Rb atoms to Xe atoms. This process adds up the magnetic moments

of Xe atoms to form a net magnetization vector. An applied oscillating field B1 at Larmor

frequency along the x-axis synchronizes the atoms in phase so that the effective magneti-

zation vector precesses around the B0 magnetic field with a frequency ωL, equation (2.7),

Figure 2.13-(b).

For the NMR gyroscope, when a rotation rate of ωR is applied to the whole system, the

new observed frequency of the magnetization vector precession becomes

ω′obs = ωL ± ωR (2.45)

This phenomenon is illustrated in Figure 2.13-(c). The behavior of the Xe magnetization

vector is transferred to the ensemble of Rb atoms through the same process of spin-exchange.
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Subsequently, the Rb atoms are detected via a linearly polarized light. The rotational rate

can be extracted from the frequency measurements.

The principle of operation for NMR magnetometer is similar to that of the NMR gyro-

scope. However, instead of detecting the applied rotational rate ωR, NMR magnetometers

detect the changes in the magnetic field along the z-axis, Figure 2.13. The observed frequency

of the magnetization vector becomes

ω′obs = γ(B0 ± δBz) (2.46)
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Chapter 3

MEMS Components for NMR Atomic

Sensors

In this chapter a miniaturization method for NMR atomic sensors based on the micro-

fabrication of NMR sensors components on a wafer-level is introduced. We also discuss and

analyze the contribution of fabrication imperfections to the overall performance of NMR

atomic sensors. In Section 3.1, the essential building blocks of atomic sensors are listed.

Section 3.2 presents a suggested miniaturized implementation of NMRG and NMRM using

the micro-fabrication techniques. Section 3.3 presents an analytical model supported by

experimental evaluation of sources of the fabrication imperfections. Finally, Section 3.4 talks

about the projection of assembly errors on the device performance based on the developed

model.
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3.1 Essential Building Blocks

In this section, an overview of the essential building blocks required for realization of

NMR-based systems is presented.

Figure 3.1: Functional Elements of Nuclear Magnetic Resonance Gyroscope

Figure 3.1 shows a diagram of the components required for NMR sensors. The atomic

vapor cell is in the heart of the NMR sensors and encloses the noble gas and the alkali

metal atoms. Alkali metals are usually in a solid-state at the room temperature and a cell

heater is needed to raise temperature in order to vaporize the metal. Vaporization leads to

increase in the alkali vapor density. Multi-axis magnetic field coils are needed to apply the

static magnetic field B0 along one axis, the oscillating field B1 along a perpendicular axis,

and an additional field along the third axis might be needed to cancel any residual fields

inside the cell. Light sources and photo-detectors are needed for pumping and detecting the

precessing alkali atoms. Optics, such as mirrors, lenses, and linear and circular polarizers

are required to collimate the light, ensuring a proper polarization of the beams (circular and
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linear polarization for the pump and probe beams, respectively). NMR sensors are sensitive

to small magnetic fields, on the order of nano-Tesla. Knowing that the surrounding fields,

such as the Earth’s magnetic field, can be 3 to 4 orders of magnitudes larger, an NMRG

requires a magnetic shield to eliminate those ambient fields. In the case of NMRM, no

magnetic shield would be typically used. Finally, a set of control electronics that controls

the fields and extracts the precession of the magnetization vector from the photo-detector

signal is necessary, [45].

3.2 Miniaturization

In this section, we introduce our implementation of NMR sensors. We start with an

approach for combining the 3-D folded MEMS and micro-glass blowing techniques. Next,

we introduce the fabrication processes of each component and demonstrate fabricated pro-

totypes. Our miniaturized implementation of NMR atomic sensors is sketched in Figure 3.2.

The atomic cell is a glassblown micro-sphere filled with Rb, Xe, and buffer gases, for ex-

ample N2 and Ne. The cell is positioned on top of a cell heater and surrounded by two

orthogonal pairs of Helmholtz coils. This assembly is encapsulated by a foldable backbone

structure that houses 2 VCSEL’s and 2 photo-detectors, all connected by through-wafer-vias

to the outer-side of the backbone structure. Four 45◦ reflectors are included in the design

of the backbone structure that route the light beams from VCSEL’s through the cell to the

photo-detectors. A 4-layer µ-metal shield protects the sensor from surrounding magnetic

interferences (not shown).

Our approach starts with fabrication of a backbone, which is a double-folded structure

with integrated reflectors and Helmholtz coils on a flat silicon wafer, Figure 3.3-(a). Then,

the metallic reflectors are folded, and subsequently the coils are assembled in the middle of

the backbone structure, Figure 3.3-(b). Next, the atomic cell is assembled in the middle
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Figure 3.2: An implementation of NMR atomic sensors

of the folded Helmholtz coils, Figure 3.3-(c). After folding the coils, two Vertical Cavity

Surface Emitting Lasers (VCSEL) and two photo-detectors are assembled, Figure 3.3-(d,

e). The backbone structure is finally folded and placed inside multi-layer magnetic shields,

Figure 3.3-(f, g). The fabrication process and the design descriptions for each of these

components are discussed next.

The assembly of the folded coil and the glassblown cell in the middle of the folded

structure is achieved via pick and place technique. Several alternative folding approaches

were also explored, including a self-assembly triggered either by light, magnetic field, or

resistive heating actuation of shape memory polymers, [77, 88, 38]. However, due to com-

patibility issues of those polymers with our wafer-level process and the sensor operation, we

adopted a guided assembly technique using a folding mold, Figure 3.4. This folding method

is compatible with a wafer-level assembly process.
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Figure 3.4: Sketch of the guided assembly process of the folded Helmholtz coils using a
pre-defined mold, insert: a picture of a coil’s sample inside a folding mold prototype created
using 3D printing

3.2.1 Folded Helmholtz Coils and Integrated Cell Heater

The fabrication process of the folded coils with integrated cell heater starts with a 500µm

silicon wafer coated with 3000Å of LPCVD silicon nitride, Figure 3.5-(a). The first metal

layer (metal-1) of the cell heater was defined by evaporating 500/5000Å Cr/Au, followed

by photo-lithography and wet metal etching using Cr TFE and Au GE8110 etchants from

Transene Company for etching Cr and Au, respectively, Figure 3.5-(b). Note that a lift-off

process can be used on this step. Next, a 14µm parylene film was deposited on top of metal-

1, and subsequently etched using reactive ion etching (RIE) with a 1000Å Ti film as the

hard mask, forming the flexible hinges, Figure 3.5-(c),[106]. Metal-2 was an evaporated and

patterned 500/2500Å Cr/Au layer to form the Helmholtz coil traces, as shown in Figure 3.5-

(d). Finally, the coils and hinges were defined using photo-lithography, followed by RIE-
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Figure 3.5: Fabrication process of the folded Helmholtz coils

DRIE-RIE etching sequence of the Si3N4-Si-Si3N4 layers, respectively, starting from the

backside of the wafer, Figure 3.5-(e).

The generated field by an ideal Helmholtz coil at the center of the coil along the axis is

a superposition of the field generated by two current loops separated by a distance equal to

the radius of a single loop, [46],

Bz =
µ0NIR

2

2
[
(z −R/2)2 +R2

]3/2 +
µ0NIR

2

2
[
(z +R/2)2 +R2

]3/2 , (3.1)

where µ0 is the air permeability, N is the number of turns, R is the coil’s radius. The field

homogeneity is defined as

ηBz(ppm) =
∆Bz

B0

× 106, (3.2)

where ∆Bz is the difference between the field maximum and minimum across the cell, B0 is

the field value at the center of the coil.

The trade-offs in the coil’s design are the size and homogeneity, both can be determined

by the radius of the coil according to equations (3.1) and (3.2). The field homogeneity

improves as the coil’s radius increases relative to the cell. However, for a 1mm cell, a
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Figure 3.6: Heater layout illustrating the (+–+-++-) configuration. Sign convention, (+) is
for counter clockwise and (-) for clockwise flow of current in the heater traces, [21].

coil of radius above 5mm does not provide a significant improvement in the magnetic field

homogeneity, but increases volume of the coil, [46]. For example, homogeneity of an ideal

Helmholtz coil with the radii of 3mm, 5mm, and 6mm across 1mm cell would be around

860ppm, 113ppm, and 55ppm, respectively. A coil of radius of 4.2mm was chosen for our

design. The heater design utilized a multi-pole current carrying conductors with (+ - - + - +

+ -) configuration, illustrated in Figure 3.6. This created a 23 poles magnetic moment that

resulted in a suppressed magnetic field from the heating current, [21]. In addition to using

a magnetic field suppressing heater layout, a modulated heater current with a frequency of

100kHz was utilized (the frequency was intentionally selected far away from Xe resonance

frequencies of ∼100Hz to reduce an interference with Xe precession). The heater was placed

4.2mm below the cell and a thermally conductive micro-pedestal made from silicon was used

to interface the cell to the heater. This distance was chosen to ensure placement of the

cell at the center of symmetry coils and placement of the heater at the base of the coils,

Figure 3.2-(2).
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Latch Slots

Optical Ports 

Bonding Pads

Metal Trace

Flat Folded 

Parylene Flex. Hinges

5mm

Figure 3.7: Fabricated sample of the folded Helmholtz coils: in the flat state (left), and in
the folded state (right)

3.2.2 Folded Structure

The backbone of folded NMR sensors was fabricated using a process similar to the one

used for coils, but with only one metal layer. The process is implemented on a 4-inch silicon

wafer, but can be adopted for larger sizes. Flexible parylene hinges were defined on one side

of the wafer, a metal layer of 500/5000Å Cr/Au was evaporated and patterned to form the

metal reflectors on the other side of the wafer. The fabricated prototype of the double folded

structure is shown in Figure 3.8, with one of the two optical paths illustrated.

The folded structure is the backbone of the sensor and the light reflectors integrated

within. The design consideration is to provide four 45◦ reflectors in a compact design that

route the pump and probe beams in and out of the cell. The angle of each reflector is

determined by three panels that construct each side wall of the folded structure, the required

relative angles between the panels to achieve 45◦ reflectors are listed in Table 3.1. The

reflector panel was designed to be 8×6mm, to provide a mechanical support of the side wall

and to ensure a large enough area for beam routing.
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Optical 

Path

45° Metallic 

Mirror
5mm

Figure 3.8: Fabricated folded structure with 45◦ metallic reflectors. Only one optical path
is shown

3.3 Modeling and Experimental Evaluation

In this section, we introduce our analytical model for errors associated with 3D folding

process, such as misalignment of components after folding and reinforcement against shock,

vibration or thermal expansion. The analytical model was evaluated by experimental val-

idation of each component. The fabrication process utilized lithography-based machining

accuracy to define dimensions of the micro-components in 2-D. However, folding those com-

ponents into a 3-D configuration introduced assembly errors. The considered components in

this analysis were the folded Helmholtz coils and the double-folded backbone structure.

In calculating homogeneity, the volume of interest was a 1mm diameter glass-blown cell

placed at the center of the two coils.
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3.3.1 Folded Helmholtz Coil

Analytical Model

An Ideal Helmholtz coil consists of two identical current loops separated by a distance

equal to the radius of each loop. Assuming there are two current loops perpendicular to

the z-axis, with radius rcoil and their centers at locations of (0, 0,−rcoil/2) and (0, 0, rcoil/2).

The field generated by this Helmholtz coil at any point (x,y,z) can be calculated using the

Biot-Savart law as

~BHH(x, y, z) = ~B1(x, y, z + rcoil/2) + ~B2(x, y, z − rcoil/2), (3.3)

A model developed in [13] was adopted here to study the level of accuracy required for the

folding process.

Misalignment errors in the structure are either due to the angular or linear shift of one

current loop with respect to the other. To simplify the model, we assumed that the total

misalignment is a superposition of angular and linear misalignments by each loop of the coil.

There are two angles of misalignment, as shown by the loop on the left of Figure 3.9:

αz is the angle of the loop with the y-axis and βz is the angle with the x-axis. The loop’s

field due to the angular misalignments is

~B1 = ~B(u− u0, v − v0, w − w0), (3.4)
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where (û, v̂, ŵ) is a rotated coordinate frame and is related to the main frame (x̂, ŷ, ẑ) as


û

v̂

ŵ

 =

[
Tz(αz, βz)

]
×


x̂

ŷ

ẑ

 , (3.5)

where Tz is the rotation matrix,[13], and is defined as


− cos βz − sinαz cosαz sin βz cos2 αz sin βx

0 cosαz sinαz

cosαz sin βz − sinαz cos βz cosαz cos βz

 , (3.6)

where (u0, v0, w0) is the center of the first loop projected on the rotated frame (û, v̂, ŵ) and

is defined as 
u0

v0

w0

 =

[
Tz(αz, βz)

]
×


0

0

−rcoil/2

 (3.7)

Assuming the second current loop is linearly shifted and its center is at C ′2(x0, y0, z0), as

shown by the loop on the right in Figure 3.9. The generated field by the loop is then

~B2 = ~B(x− rcoilΓz sinψz, y − rcoilΓz cosψz, z − rcoilDz − rcoil/2), (3.8)

where Dz is a normalized mismatch in the z-direction, Γz and ψz are the shifts of coil’s center

C ′2 along the y- and x-directions. In polar coordinates, the corresponding parameters can be

defined as

Dz = z0/rcoil (3.9)

Γz = 1
rcoil

√
y2

0 + x2
0 (3.10)

ψz = cos−1 y0√
y20+x20

(3.11)
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Figure 3.9: Sketch of angularly (left) and linearly (right) misaligned coils, (original location
of the coils is illustrated with dashed lines and gray color)

From equations (3.4) and (3.8), the magnetic field of the misaligned Helmholtz coil

becomes

~BHH(x, y, z) = Gz × ~B1 + ~B2, (3.12)

where Gz is the transpose of Tz, which projects the field back to the main frame (x̂, ŷ, ẑ).

The homogeneity of the magnetic field along the z-direction is defined by equation (3.2).

The linear misalignment in the range from 0 to 1mm shows that the axial shift (along
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Figure 3.10: Analytical modeling of folded Helmholtz coils’ homogeneity as a function of the
linear shift in the axial (circular markers) and radial (square markers) directions

Figure 3.11: Analytical modeling of folded Helmholtz coils’ homogeneity as a function of the
angular misalignment along the x and y axes

the z-axis) has a larger impact on the homogeneity than the radial shift (along the x- and

y-axis), Figure 3.10. The angular shifts αz and βz, on the other hand, show an identical

effect on the field homogeneity in the z-direction, Figure 3.11.

Folded coils are defined by the locking slots at the bottom side and a locking latch at

the top side, visible in Figure 3.2 and Figure 3.7. These components are typically defined

with a few microns of tolerance. The folding is accomplished using a pre-defined mold for

guided assembly, Figure 3.4. However, etching through a 500µm wafer introduces fabrication

imperfections which could be up to 20µm. This translates to 5 mrad angular misalignment

or 20µm linear misalignment.
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Projection of Imperfections to Performance

The resonance line width of Rb atoms in equations (2.42) and (2.43) is determined by

the transverse relaxation time T2, and they are related as, [33],

∆ω =
1

T2

(3.13)

Optical pumping, spin exchange, spin destruction, and wall collisions are all the factors that

contributes to broadening the resonance line, [110]. In addition, the field gradient inside

the cell causes the Rb atoms to precess at different frequencies, which contribute to further

broadening of the resonance line, [33]. By lumping all factors, except for the field gradient,

and calling it ∆ωsetup, we can write the measured resonance line width ∆ωm as

∆ωm = ∆ωsetup + ∆ωgradient (3.14)

Now that the ∆ωgradient is known, equation (3.13) gives the relaxation time associated with

the field gradient. The field gradient is then defined as

∆Bz =
1

πγT2,gradient

(3.15)

Experimental Results

The experimental evaluation of this model was performed using a folded coil sample with

the radius Rcoil=3mm and a 2mm cubic cell. The sample was hand-folded which resulted

in an angular, radial, and axial misalignments measured optically to be 5.2◦, 0.87mm, and

0.6mm, respectively. The folded sample was placed inside a 4-layer magnetic shield with

integrated 3 axes magnetic field coils (reference coils). The main field B0= 4.7 µT was

applied along the z-axis, that is the pump beam axis, and an RF field was applied along the
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Figure 3.12: Normalized absorption and dispersion curves (experimentally measured) of both
the folded coil sample (solid red) and the reference coil (dashed blue)

y-axis, which is the probe beam axis. The RF was swept from 15 kHz to 28 kHz to generate

the Rb absorption and dispersion resonance lines.

First, the main field was applied using the reference coil to calculate ∆ωsetup in equa-

tion (3.14), then repeated using the folded coil sample to estimate ∆ωgradient. Figure 3.12

shows the normalized experimental curves for both cases. It was found that the broadening

due to the field gradient was around 846Hz, which corresponded to the field non-homogeneity

of ηBz(exp)= 38585 ppm, according to equations (3.2), (3.13) and (3.15). The analytically

estimated magnetic field non-homogeneity was derived to be ηBz(model)= 37337 ppm, which

is in a close agreement to what was measured experimentally. This result correlates to the

optimal case with Rcoil=4.2mm, N=5 turns, 1 mm cell. For the optimal case, we estimated

non-homogeneity to be on the level of 345ppm.
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Figure 3.13: Cross sectional view of Folded Structure (only the base panel and one side of
the folded structure are shown for clarity)

3.3.2 Folded Backbone Structure

Analytical Model

The folded structure’s panels in Figure 3.13 are fabricated on the wafer-level (flat), then

subsequently folded into 3D configuration. The folding procedure is performed by rotating

panel 1 with respect to the base, panel 2 with respect to panel 1, and panel 3 with respect

to panel 2, by utilizing three hinges marked as H1, H2, and H3 in Figure 3.13. The rotation

of each panel can be modeled using three Euler’s angles (ψ: about the z-axis, θ: about the

y-axis and, φ: about the x-axis). The orientations of the normal vectors of each panel are

calculated using the directional cosine matrix (DCM) in equation (3.16).
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

cos θ cosψ − cosφ sinψ sinφ sinψ

+ sinφ sin θ cosψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ − sinφ cosψ

+ sinφ sin θ sinψ + cosφ sin θ cosψ

− sin θ sinφ cos θ cosφ cos θ


, (3.16)

To achieve 45◦ mirrors for the current design, the angles of panels relative to each other

are summarized in Table 3.1.

Table 3.1: Rotation of the normal vectors of the folded structure panels relative to the
adjacent panel

Angle Base-Panel1 Panel1-Panel2 Panel2-Panel3

ψ 90 109.5 115.5
θ 0 0 0
φ 0 0 0

The normal unit vector to the base panel is defined as ~vB = [0 1 0]′. Thus, the normal

unit vectors to the other corresponding panels are defined as

~v1 = [DCMB,1] ~vB, (3.17)

~v2 = [DCM1,2]~v1, (3.18)

~v3 = [DCM2,3]~v2, (3.19)

where [DCMi,j] is the directional cosine matrix that describes the jth panel rotation relative

to the ith panel. The normal unit vector to the mirror is ~vm = −~v3 and the unit vector of

the incident ray is ~vI = ~vB. The reflected ray’s unit vector becomes

~vR = [DCMI,R]~vI , (3.20)
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where the Euler’s angles for the [DCMI,R] are (ψI,R = π − 2(π − β), θI,R = 0 and, φI,R =

π/2 − η). β and η are the angles made by the mirror’s unit vector and the y- and z-axis

respectively, Figure 3.13.

Latches on the sidewalls (panels) of the folded structure ensure the proper alignment

of the structure’s parts with respect to each other. Similar to the folding process of coils,

a predefined mold would be used for folding and permanent enforcement. Since the NMR

sensors operation requires heating the cell, a potential misalignment might occur due to

thermal expansion of the enforcement material. Our study of different enforcement materials

on similar structures concluded that the effect of enforcement material’s thermal expansion

is inversely proportional to the size of the folded structure, [74].

For example, the coefficient of thermal expansion (CTE) of an AuSn alloy is 16 PPM/◦C,

a 100◦C temperature difference would result in 0.16% volume expansion of the enforcement

material. Since the hinge volume is 2mm3, and assuming there is 20% more alloy on one of

the hinges between the base and panel 1, the excess would result in 6.3mrad misalignment

of panel 1 relative to the base panel, which is translated to 50µm misalignment of the beam

with respect to the cell, according to equations (3.17)-(3.20).

Projection of Imperfections to Performance

Displacement of the pump beam would result in reduction of the pumping rate, which

would reduce the number of polarized Rb atoms. Misalignment of the probe, on the other

hand, reduces the number of interrogated atoms. Both scenarios result in a drop of the

signal-to-noise ratio (SNR). Since the used beams for pumping and probing are Gaussian

beams, the drop in SNR is expected to follow the Gaussian function:

y = ae−x
2/2c2 , (3.21)

55



where y is the SNR of the magnetometer, a is the SNR value in the perfectly aligned state,

x is the displacement of the beam relative to the cell, c is the width of the Gaussian curve

which determines the relation between the SNR decay and the beam displacement.

Experimental Results

To verify experimentally the effect of reflector misalignment with respect to the cell, a

sample reflector of the folded structure was placed on a 6-axis optical mount and its angle

was controlled to create a displacement of the light beams (pump and probe) relative to a

2mm cell. Figure 3.14 illustrates the experimental setup. Figure 3.15 shows the relationship

of the normalized magnetometer’s sensitivity to displacement of the beam. As predicted

by the model, the drop in the magnetometer sensitivity follows the Gaussian function. We

found that SNR is more sensitive to the probe beam displacement than to the pump beam.

This is explained by the optical power on the pump beam to be higher than the probe beam.

3.4 Prediction of Performance

As discussed in previous sections, the folding error can be either due to the folded

coils, which affects the relaxation time T2 of Xe atoms, or due to the folded structure,

which affects the Signal-to-Noise Ratio (SNR) of the electron paramagnetic resonance (EPR)

magnetometer, [20].

Assuming a closed loop system with the white noise limiting the photo-detector, the

Angle Random Walk (ARW) of the NMRG is predicted by the relation, [42],

ARW =
3600

T2 × SNR
√

∆f
[◦/
√
hr], (3.22)
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Figure 3.14: Sketch illustrating the experimental setup used for measuring the effect of pump
beam displacement relative to the cell on the magnetometer sensitivity

Figure 3.15: Normalized Magnetometer Sensitivity (experimentally measured) vs beams
displacement relative to the cell (pump: triangles, probe: circles)

57



Figure 3.16: Partially folded NMR sensor prototype showing all components of the system

where T2 is the transverse relaxation time, SNR is the signal to noise ratio, ∆f is the

bandwidth of the phase noise in Hz.

On the other hand, the fundamental sensitivity limit of the NMRM is related to two

factors, EPR magnetometer SNR and Xe atoms relaxation time T2. The fundamental sensi-

tivity can be defined as, [20],

δBn =
1

2πγXeT2

× δBe

P × dBn/dP
, (3.23)

where γXe is the gyromagnetic ratio of Xe atoms, δBe is the noise floor of the EPR magne-

tometer, P is the percentage of polarized Xe atoms, dBn/dP is the magnetic field produced

by Xe atoms per unit polarization.

The fundamental sensitivity of EPR magnetometer of a cell with an internal diame-

ter of 1mm containing Rubidium and a buffer gas is limited by the atomic shot noise to

approximately 120fT/
√
Hz, [33].
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Figure 3.17: NMRG ARW as a function of SNR and coils’ angular misalignment

Assuming 129Xe transverse relaxation time T2=20s, the effect of the angular misalign-

ment of the coils on the NMRG ARW and the NMRM fundamental sensitivity is presented

by Figure 3.17 and Figure 3.18, respectively. Similarly, curves with circular markers in Fig-

ure 3.19 and Figure 3.20 represent NMRG ARW and NMRM sensitivity, respectively, due

to linear axial misalignments, while the curves with triangular markers in Figure 3.19 and

Figure 3.20 represent linear radial misalignments. The general trend in both figures is that

as the misalignment increases the required SNR to achieve a certain ARW value increases.

For example, SNR of 150 can achieve ∼1◦/
√
hr with perfectly aligned coils, while 5◦ angular

misalignment increases the SNR requirement by a factor of 4 to achieve the same 1◦/
√
hr.

To visualize the impact of the folded structure misalignment on the device performance,

we assumed a constant SNR=5000. Using equations (3.22), (3.23) and extrapolating the

experimental points presented by Figure 3.15, the NMRG ARW and NMRM sensitivity are

depicted by Figure 3.21 and Figure 3.22, respectively, under different combinations of the

relaxation time (T2) and the folded structure misalignment. The curves with circular markers

of Figure 3.21 and Figure 3.22 represent cases when the misalignment occurs on the pump

side and the curves with triangular markers are on the probe side of NMRG and NMRM,

respectively.
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Figure 3.18: NMRM sensitivity as a function of SNR and coils’ angular misalignment

Figure 3.19: NMRG ARW as a function of SNR and coils’ linear misalignment (axial: circular
markers, radial: triangular markers)
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Figure 3.20: NMRM sensitivity as a function of SNR and coils’ linear misalignment (axial:
circular markers, radial: triangular markers)

Figure 3.21: NMRG ARW as a function of Relaxation time (T2) and Folded Structure
misalignment (Pump: circular markers, Probe: triangular markers)

61



Figure 3.22: NMRM sensitivity as a function of Relaxation time (T2) and Folded Structure
misalignment (Pump: circular markers, Probe: triangular markers)

The developed error model and the phenomenological analytical model suggests that

the introduced design with 5 mrad angular misalignment between the coils and the folded

mirrors and 100µm linear misalignment between folded coils can achieve NMRG’s ARW

∼0.1◦/
√
hr and NMRM fundamental sensitivity better than 10 fT/

√
Hz.

3.5 Conclusion

In this Chapter, we presented an approach for implementation of MEMS components for

NMR sensors utilizing a batch fabrication process, with minimum assembly requirements.

We evaluated the performance boundaries of our suggested design by estimating possible

fabrication imperfections and projected their effect on the device performance. Our error

analysis method is general and could be applied to other implementations. The analysis

suggested that the presented folded MEMS approach is a strong candidate for implementa-

tion of at least a tactical-grade level of performance micro-NMRG and a femto-Tesla level

of performance micro-NMRM.
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Chapter 4

Design Considerations for

Micro-Glassblown Atomic Vapor Cells

This chapter presents a design process for miniaturized atomic vapor cells using the

micro-glassblowing process. It discusses multiple design considerations, including cell geom-

etry, optical properties, materials, and surface coating. In Section 4.1, the overall design

approach of miniaturized cells is briefly described. Then, in Section 4.2, the geometrical

aspect of the cell fabrication is discussed, where we introduced analytical and finite element

models and, subsequently, supported results of analysis by experimental validation. In Sec-

tion 4.3, the optical modeling and simulation results of the fabricated cells backed up by

experimental validation presented. Section 4.4 presents our study of materials and cell wall

coating on the performance of atomic cells.
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4.1 Design

Glassblowing of miniaturized cells on a wafer-level is based on anodic bonding a glass

wafer to a silicon wafer with pre-etched cavities under atmospheric pressure conditions. The

wafer stack is then heated up to a temperature higher than the softening point of the glass;

the combination of glass softening and pressure build-up in the pre-etched cavities creates

axisymmetric spherical shells, Figure 4.1, [34].

After the glassblowing step, the cells are rapidly cooled down to preserve their shape

and to prevent any crystallization of the glass, [82]. This rapid cooling puts a thermal shock

on the cell walls and builds up stresses across the geometry. Additionally, the cooling process

results in a pressure drop inside the cells, which creates a pressure difference across the cell

walls. Depending on the pressure difference and wall thickness, breakage might happen at

the thinnest part of the cell.

For analysis, we use a multi-step approach for designing miniaturized glassblown cells.

The design process starts with an analytical model presented in [34], which estimates dimen-

sions of the resulting geometry of cells. Next, a finite element model predicts a more realistic

geometry of the cell using isothermal flow simulation in COMSOL. The resulting geometry is

then exported to solid mechanics simulation, which estimates the maximum stress on the cell

walls and predicts whether the cell can survive the force generated by the pressure difference

across its walls. Finally, the model is exported to optical simulation software to simulate the

optical behavior of the cells.
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Figure 4.1: Sketch of cross sectional view of a glassblown cell

4.2 Geometry

In this section, we present an analytical model and FEM model, and in light of the two

models we discuss the parameters that influence the geometry of the cells, such as their size,

sphericity, and wall thickness. Subsequently, we present experimental characterization that

validates the simulation results.

4.2.1 Analytical Model

The height hg and the inner radius of the cell rg, shown in Figure 4.1, are given by

equations (4.1) and (4.2), respectively, [34]

hg =

[(
3Vg +

√
r6
oπ

2 + 9V 2
g

)
π2

]2/3

− r2
oπ

2

π

[(
3Vg +

√
r6
oπ

2 + 9V 2
g

)
π2

]1/3
(4.1)
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Figure 4.2: Radius of glassblown cell rg vs. the cavity radius ro for different cavity depths
he, ranging from 600µm to 2000µm

rg =
h2
g + r2

o

2hg
, (4.2)

where Vg is the inner volume of the cell and is defined as

Vg = heπr
2
o

(
TfPs
TsPf

− 1

)
, (4.3)

where Tf and Ts are temperatures of the glassblowing furnace and the cavity sealing measured

in Kelvins, Pf and Ps are the pressure values (in Torr, for example) during the glassblowing

and the cavity sealing, respectively, ro is the radius of the etched cavity and he is the etched

cavity depth. The average thickness of the cell wall can be estimated as [34],

δ =
δ0r

2
o

h2
g + r2

o

, (4.4)

where δ0 is the initial glass layer thickness, as shown in Figure 4.1.

The glassblowing process parameters (ro and he) can produce a wide variety of cell sizes

and sphericity levels. Figure 4.2 depicts a selected subset of these parameters. In this paper,

our target application for the glassblown shells is miniaturized atomic cells, so a cell radius,

rg, on the order of 1mm is desired. A range of the cavity radii ro, that produces a cell

with rg = 1mm, is from 488µm to 945µm. However, as it was noted in [34], a smaller ro is
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recommended to achieve higher sphericity cells.

The increase in cell sphericity reduces its asymmetry. Cells with high asymmetry have

shown larger quadrupole splitting in 131Xe frequency, [130]

4.2.2 Sphericity

The cell sphericity is defined as the ratio of the effective volume to the surface area of

the exposed part of the cell above the glass wafer surface level, [122]. It is calculated as

Ψ =
π1/3(6V ′g )

2/3

Ag
, (4.5)

where V ′g ans Ag are the volume and the surface area of the exposed part of the cell, which

is above the glass wafer surface level, and both are calculated as

V ′g =
π

3
h2
g|exp(3rg − hg|exp), (4.6)

Ag = πhg|exp(4rg − hg|exp), (4.7)

where hg|exp is the height of the exposed part of the shell, defined as

hg|exp = hg − δ0 (4.8)

Note, hg is defined from the silicon /glass interface to the top of the cell, as shown in Figure

4.1.

There are several approaches to produce cells with higher sphericity. These include

controlling the process pressure, either by increasing the initial cavity pressure (Ps), [133],

or reducing the glassblowing furnace pressure (Pf ), [9], or both. Another approach is to
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Figure 4.3: Sketch of cross sectional view of a glassblown cell using a dual-wafer approach
to build the Si cavity

increase the initial volume of the cavity while keeping the cavity radius ro small, as it was

suggested in [34]. In this process, a stack of two wafers was used to build the Si cavity. The

first one is a thick Si wafer, 1mm for example, where large cavities are etched. The second

wafer is a thin wafer, 100µm for example, bonded to the first wafer and smaller openings

are etched through, Figure 4.3. This approach allows for larger volume without sacrificing

sphericity and relaxes the requirement on the depth of etching. The inner volume of the cell

becomes

Vg = [he1πr
2
e + he2πr

2
o]

(
TfPs
TsPf

− 1

)
, (4.9)

where he1 and re are the cavity depth and radius of the wafer 1, and he2 is the wafer 2

thickness.

To improve sphericity, one can reduce the glass thickness to increase the exposed part

on top of the glass surface. However, that would create thin shells, and the pressure differ-

ence across the shell walls will create compressive stress that is larger than the compressive

strength of the glass material, which would lead to breaking of the cell. To estimate the

maximum cell volume, we created a finite element model, which is discussed next.
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Figure 4.4: FEM Simulation shows a cross sectional view of the sample before and after
glassblowing.The scale bar represents the normalized displacement of glass during the glass-
blowing preocess.

4.2.3 Finite Element Model

The glass wall thickness is not uniform in this process, [34], and since this parameter

is essential to accurately predict the light interaction with the cell walls, we used a finite

element model using COMSOL Fluid Flow physics to estimate the wall thickness distribution

in addition to the maximum volume of the cells. The developed model was adopted from

our previous work, [8]. The shape of the glassblown cell at different time steps is predicted

with a Newtonian isothermal fluid flow model with an adaptive re-meshing in COMSOL

Multiphysics FE Package. In this model, the instantaneous volume and pressure of the cell

and the cavity were calculated at each time step of the simulation, and once the equilibrium-

state is reached the deformation of the glass layer stops. Figure 4.4 shows snapshots of initial

and final geometry of cell’s cross-section during the glassblowing.

The resulting geometry from the fluid flow model was exported to a solid mechanics

simulation, and the pressure difference after cooling was calculated and applied to the cell’s

outer surface to estimate the maximum stress value and location. The model predicted

that the maximum stress was always concentrated at the top part of the cell and that it is

because the shell’s minimum thickness is at the top, which matches what was experimentally

demonstrated earlier in [34].
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4.2.4 Glass Thickness δ0

Using a combination of the FEM model and compressive strength of the Borosilicate

glass (100 MPa), we estimated the maximum cell volume that would survive the glassblowing

process. This process was repeated for different ratios of the glass thickness δ0 to the cavity

opening ro. Sphericity of the exposed part of the cell was calculated using equation (4.5).

The trend in Figure 4.5 shows that as we increase the glass thickness relative to the cavity

radius, sphericity of the maximum cell size drops following closely a quadratic line equation

Figure 4.5: Sphericity of the maximum cell volume vs. the normalized glass thickness esti-
mated using FEM modeling. Normalized glass thickness is the ratio of the glass thickness
δ0 to the cavity radius ro.

f(x) = ax2 + bx+ c, (4.10)

where, x represents a normalized glass thickness (δ0/ro), and coefficients a, b and c (with

95% confidence bounds) are -2.55±2.14, -1.83±5, and 98.53±2.57, respectively. Addition-

ally, increasing the normalized glass thickness increases the thickness variation of the cell

walls from top to bottom. On the other hand, the normalized radius of the maximum cell

volume, that would survive the glassblowing and the subsequent cooling, was found to in-

crease quadratically with the increase of the glass thickness relative to the cavity radius

ro. Normalized radius is the radius of a three-point circle fitted to the top and two sides
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of the exposed part of the cell divided by the cavity opening ro. The equation parameters

of the curve fitting line in Figure 4.6, a, b and care -0.29±0.16, 1.98±0.4, and 1.516±0.2,

respectively, with 95% confidence bounds.

Figure 4.6: Normalized radius of the maximum cell volume (rg/ro) vs. normalized glass
thickness (δ0/ro), estimated using FEM modeling.

From Figure 4.5 we deduce that in order to achieve a high sphericity level, one should

use a glass thickness, that is 1/10th of the cavity radius ro. From Figure 4.6, ro should be on

the order of 1.7× of the desired cell radius rg. For example, if a cell of radius 1mm is desired,

the cavity opening radius ro should be 588µm and the glass thickness δ0 should be ≈ 59µm,

to achieve ≈98% sphericity. From equation (4.4), the average thickness of the resulting shell

will be ≈6.5µm. While this combination of parameters would survive the pressure difference

due to glassblowing, from a practical point of view, it might not survive other steps of the

process, such as backside opening and subsequent wet cleaning.

4.2.5 Characterization of Geometry

To validate the model, we fabricated two samples on a 1mm thick wafer, and 350 µm

glass (Pyrex) thickness, the Si cavity radii for the samples were 225µm and 300µm, while

the etch depth was 700µm. The measured cell radius and height of these cells are presented
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in Table 4.1. Visual inspection shows that an agreement between the fabricated cell and the

geometry predicted by the FEM simulation, in terms of the cell height and radius, is within

95%.

Table 4.1: comparison between simulated and experimentally measured parameters of two
fabricated samples, (all measurements are in (mm))

Simulation Experiment
Radius Height Radius Height

Cell 1 0.78 1.33 0.79 1.34
Cell 2 0.93 1.67 0.98 1.71

4.3 Optical Properties

In this section, we present an optical simulation model and discuss optical properties

of the glassblown cells. The optical properties of interest for the atomic cells are light

transmission through the cell and variation in optical polarization. Both parameters are

critical for designs of NMR sensors.

4.3.1 Simulation

The optical simulation was performed using Monte Carlo ray tracing method, [54]. In

this method, the light beam is broken down to a large number of individual rays and the

interaction of those rays with different parts of the miniaturized cell is then integrated using

Monte Carlo integration to predict the behavior of the whole beam within the cell. The

simulation shows that due to the changes of the cell wall thickness (thinner at the top and

thicker at the base, Figure 4.4), different parts of the beam experience different diffraction

angles. The bottom part of the cell is usually the thickest, which causes the beam at that

section to diffract downward and be trapped in the cell, bundle ”A” in Figure 4.7-(top). The
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Figure 4.7: Cross-section illustration showing the interaction of the optical beam with the
cell. Top: 89% sphericity, Bottom: 98% sphericity. Ray bundle (A) in the top illustration
experience the most diffraction and are trapped into the cell
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mid-section of the beam transmits through the cell; however, it still experiences downward

bending, as it propagates out of the cell, bundle ”B” in Figure 4.7-(top). Additionally,

the beam polarization was analyzed by grouping individual rays into pockets and averaging

their polarization parameters (ellipticity and azimuth angle). The polarization maps in

Figure 4.8 show that the cell preserves the azimuth angle and ellipticity for the majority

of the transmitted beam, Figure 4.8-a) and Figure 4.8-b), respectively, and the degree of

polarization is within 95%. This polarization distortion is negligible and it does not affect

the operation of sensors.

The simulation also shows that cells with small normalized glass thickness and high

sphericity pass the light beam through with minimal diffraction, Figure 4.7-(bottom).

4.3.2 Optical Characterization

We measured the optical properties of the fabricated samples, discussed in Section

4.2.5. The experimental setup consisted of a laser beam, a linear polarizer, and a quarter

wave plate, creating a circularly polarized light that enters the sample. The transmitted

light then propagates to a polarimeter (Thorlabs PAX 5710). The power and polarization

of the optical beam were measured before and after the transmission through the samples.

The beam radius was ≈ 0.5× of the cell radius. Table 4.2 shows a comparison between the

measured and simulated optical transmission and polarization of the two fabricated samples.

The simulation results are consistent with the well-known 4% per surface loss at an air/glass

interface. The discrepancy between the measured and simulated values can be a result of

the parasitic glass bubbles on the samples due to defects that could have blocked a part of

the transmitted light and changed its polarization.

As mentioned earlier, micro-glassblown cells have multiple in-plane and out-of-plane

ports. Even though in-plane ports provide optical paths for light transmission through the
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a)

b)

Figure 4.8: Simulation results of the transmitted beam polarization for two cases: a) +45
linearly polarized light, b) right circular polarized light. Dashed lines represent the outer
borders of the cell. Only the beam pockets on edges of the cell experience polarization
changes, either in the polarization angle or ellipticity, while the majority of the beam’s
polarization is unchanged.
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Table 4.2: Comparison of optical properties of two cells

Power Transmission Polarization (ellipticity)
Simulation Experiment Simulation Experiment

Cell 1 86.2% 80.6% 1.43◦ 1.3◦

Cell 2 86.2% 83.1% 1.55◦ 3.8◦

cell, the cells are not perfectly symmetric around them, and the beam would experience

a downward bending, as discussed earlier. On the other hand, the cells are axisymmetric

around the out-of-plane port, but their transmission is limited by the glassblowing cavity

opening ro, which is on the order of 1/2 of the cell radius rg. To estimate the optimal

orientation of light coupling to atomic sensors, we used the optical magnetometer scale factor

as a metric to compare different orientations. The first configuration is in-plane (horizontal)

pumping and probing, Figure 4.9-(a); the second configuration is out-of-plane (vertical)

pumping and horizontal probing, 4.9-b). Figure 4.10 shows the Rubidium magnetometer

response of the two configurations; the vertical pumping improved the magnetometer scale

factor by 2×.

PUMP

a) b)

Figure 4.9: Illustration of two different orientations of pumping and probing; (a) in plane
pumping and probing, (b) out-of-plane pumping and in-plane probing
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Figure 4.10: Experimental results of Rb magnetometer signals for vertical (blue) and hori-
zontal (red) pumping. The figure shows that vertical pump improved the Rb magnetometer
scale factor by 2×.

4.4 Filling and Coating

In this section, the filling and coating process of miniaturized spherical atomic cells are

discussed. We briefly introduce the fabrication and filling process followed by a study on

different wall materials and coating and experimentally measured their effect on the nuclear

spins relaxation.

4.4.1 Background

The transverse relaxation time of the noble gas atoms is directly related to the per-

formance of NMR sensors. For gyroscopes, for example, the angle random walk (ARW) is

predicted to depend on T2 time as follows, [42],

ARW =
3600

T2 × SNR
√
δf

[◦/
√
hr], (4.11)

where T2 is the transverse relaxation time of the Xe atoms, SNR is the signal-to-noise ratio

of the electron paramagnetic resonance (EPR) magnetometer, and δf is bandwidth of the

phase noise in Hz. The fundamental sensitivity limit of an NMR magnetometer (NMRM)
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depends on the T2 time as, [20],

δBn =
1

2πγT2

× δBe

P × dBn/dP
, (4.12)

where δBe is the noise floor of the EPR magnetometer, P is the percentage of polarized Xe

atoms, dBn/dP is the magnetic field produced by Xe atoms per unit polarization, taking

into consideration the ”enhancement factor” of direct interaction with the alkali metal vapor,

[111]. Several factors can affect the relaxation time of the noble gas atoms in atomic vapor

cells, summarized as, [76],

1

T2|total
=

1

T2|coll
+

1

T ′2
+

1

T2|∆B
+

1

T2|wall
, (4.13)

where, T2|total is the effective transverse relaxation time, T2|coll is the relaxation time due to

collisions with alkali metal atoms, T ′2 is the relaxation time due to self-collision of Xe atoms,

T2|∆B is the relaxation time due to magnetic field in-homogeneity inside the cell, and T2|coll

is the relaxation time due to collisions of atoms with cell walls. In mm-sized cells, the wall

collisions and spin exchange relaxation are dominant, [56], and therefore special care needs

to be taken during the cell construction.

4.4.2 Fabrication and Filling Process

There are multiple filling approaches to introduce alkali metal and buffer gas in the

miniaturized cells. The approaches have been discussed widely throughout the literature,

[36, 35, 50, 80, 66, 61, 101]. The approach that we adopted in this paper for filling cells using

an on-chip alkali metal dispenser was introduced previously for planar cells in [32] and [89].

A recent study that reviewed those approaches, [59], comes to the conclusion that a filling

process like the one suggested here, which combines an on-chip dispensing alkali source with

79



high-temperature anodic bonding, has excellent MEMS compatibility, internal atmosphere

quality, and process repeatability.

The fabrication process starts by etching 700 µm cavities in a 1 mm thick Si wafer,

Figure 4.11-(a). Next, the first anodic bonding seals the etched cavities under atmospheric

pressure, Figure 4.11-(b). After placing the wafer stack in a high-temperature furnace at

850 ◦C for Borosilicate glass (Pyrex) and 1000 ◦C for Aluminosilicate glass (ASG) for 5-7

minutes, spherically shaped glass shells are formed, [34], Figure 4.11-(c). The formation

was due to two effects: the trapped air inside the cavities builds up the pressure due to the

temperature increase, and the glass transitions from a solid state to a viscous state.

The next steps in the process are to open the backside of Si wafer and to define 100µm

deep micro-channels using Deep Reactive Ion Etching (DRIE), Figure 4.11-(d). Subse-

quently, the cell coating was applied via atomic layer deposition (ALD) of 10 nm aluminum

oxide (Al2O3) to the opened cells and the capping wafer, Figure 4.11-(e).

The second anodic bonding took place after the alkali dispenser pills have been placed

in the central cell, with the ALD Al2O3 as an intermediate layer between the backside of

the Si wafer and the capping glass wafer, Figure 4.11-(f). The wafer alignment for bonding

was performed inside a chamber with a noble gas and a buffer gas at pressures of 250-350

Torr, Figure 4.11-(f). After the bonding process was complete, each dispenser was activated

by focusing a 3.5-4W laser for 15 seconds, which released the alkali vapor to satellite cells,

Figure 4.11-(g).

4.4.3 Design of Experiment

The study aims to test the effects of different materials and surface coatings on relaxation

time of Xe atoms by isolating all factors that affect the relaxation, except for the effect of
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wall interactions. Three samples were fabricated. The first (PXE01) was fabricated using

Borosilicate glass (Pyrex) and was utilized as a baseline in our study; the second (PAXE01)

was made with Pyrex and coated using Atomic Layer Deposition (ALD) of 10nm Aluminum

Oxide (Al2O3); the third (HXE02) was fabricated using Aluminosilicate glass (ASG). To

isolate other factors beside cell walls, the samples were filled with similar amounts of noble

and buffer gases, and were tested under the same conditions of temperature and magnetic

field levels. Optical heating was used to minimize any interference from resistive heaters.

The pressure values at room temperature were 65 Torr, 45 Torr, and 300 Torr for

natural Xe, Ne, and N2, respectively. A data fitting of the Rb absorption curve (obtained by

sweeping the wavelength of the VCSEL beam passing through the cell) was used to confirm

the amount of noble and buffer gasses inside the cell. Measurements showed a reduction of

the N2 gas pressure by 20%-30%, which was attributed to absorption by the getter material

in the Rb pill. The experimentally measured relaxation time (T2) of 129Xe and 131Xe isotopes

were used to compare cells. The cells were heated optically using a 2.5W laser source at

1550nm, focusing only on the Si part of the cell substrate. We used the free induction decay

(FID) method to estimate the relaxation rate using a dual beam scheme, one for pumping

and another for detection, Figure 4.13. The FID experiment was performed by applying a

static magnetic field B0 along the pump axis, the z-axis in this case, which will cause the

nuclear spins to precesses at their Larmor frequency ωL about the z-axis, then applying a

π/2 pulse with a frequency ωa equal to the ωL of the isotope of interest on a perpendicular

axis to the pump axis, the y-axis here. The pulse would abruptly deflect the magnetization

vector of the nuclear spins to the xy-plane. A signal proportional to the nuclear spins as

they re-align to the pump axis is detected along the y-axis, and an exponentially decaying

sinusoidal wave was measured at a frequency equal to the Larmor frequency ωL and a decay

constant proportional to the transverse relaxation time T2 of the isotope of interest. The

detection was carried out by the probe beam which detected precession of the Rb about the

effective field caused by the Xe and the applied field.

81



4.4.4 Gas Content Measurement

Buffer and noble gasses contribute to the Rb transition line by broadening the light

absorption spectrum and shifting the frequency of absorption by specific values for each gas,

reported in [107] and [102]. The absorption data were fitted to a Voigt profile, which is

a convolution between a Gaussian and Lorentzian functions, [127]. The Gaussian function

accounts for Doppler broadening, while the Lorentzian function estimates broadening due to

collisions with the buffer gas. An approximated Voigt profile is defined as, [127],

F (x) = ax+ b−
8∑
i=1

[
η/

(
1 +

(x− xi
0.5Γi

)2
)

+ (1− η) exp
(x− xi

cΓi

)2
]
, (4.14)

where a and b are parameters of a line, c= 1/(2
√

ln 2), and η is the Lorentzian constant

and its value is between 0 and 1. For each of the four ground transitions of 85Rb and 87Rb,

xi is the center frequency of that transition in MHz, Γi is the Voigt width of that peak in

MHz. The Voigt width is related to the Gaussian and the Lorentzian widths as follows, [95],

ΓV = 0.5346 ΓL +
√

0.2166 Γ2
L + Γ2

G, (4.15)

where ΓV , ΓL, ΓG are the Voigt, the Lorentzian, and the Gaussian widths, respectively.

The Rb dispenser that was used in our process consisted of a pure alkali metal and a

getter material (SAES St 101). Once the dispenser is activated, the alkali metal is released,

and the getter material absorbs active gasses, such as O2, H2, CO, and N2. To estimate

the amount of remaining N2 gas, we filled an additional cell with 300 Torr of only N2 gas.

We split a laser beam in half and passed the two beams, one through a reference cell with

only natural Rb and the other through our fabricated cell, with Rb and other gasses. By

sweeping the laser wavelength, we obtained two Rb light absorption spectrum curves, one
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Figure 4.12: Measured Rb absorption curve for the reference cell (blue) shows multiple
distinguishable absorption peaks. Measured absorption of a micro cell (green), the cell
was filled with 300 Torr of only N2 and Rb, which broadened and shifted the peaks. In
curve fitting to the micro cell spectrum (dashed red), the width of the curve represents 95%
confidence bounds, which confirmed a close fit to the experimentally measured data.

for the reference cell, where the two ground transitions of each isotope 85Rb and 87Rb can

be distinguished, the other is for the fabricated cell, where these transitions are broadened

and shifted due to the N2 gas, [107, 102]. Starting with the Rb light absorption spectrum of

the reference cell and substituting for the broadening and frequency shift rates of N2 in an

iterative curve fitting, we were able to find the N2 pressure that matched Rb light absorption

spectrum curve of the fabricated sample. Fig. 4.12 shows the experimentally obtained Rb

absorption curves for the reference cell, microcell with only Rb and N2, and the curve fit

that satisfies the estimated N2 gas pressure inside the cell. We measured the N2 gas after

two weeks of activation and found that the getter material in the Rb pill was saturated

after absorbing 20% of the N2 gas, [108]. Note that this particular getter absorbs gasses at

different rates. The relative sorption rates of H2, O2, N2 compared to CO are 50×, 6×, 0.5×,

respectively, [98]. Absorbing other active gases faster than N2 ensures a clean environment

inside the cell.

It should be noted that this method of estimating the gas inside the cell has uncertainty

associated with the spin destruction cross-section between Rb and other gases, which affect
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the broadening and frequency shift constants. The spin destruction cross-section used in our

curve fitting was adopted from [107] and [102].
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Figure 4.13: Top: Dual beam optical setup for characterization of cells. (LP: linear polarizer,
QWP: quarter wave plate, PBS: polarizing beam splitter, PD: photo detector, Faraday
Detector: a balanced polarimeter used to detect Faraday rotation). Bottom: Picture of the
experimental setup showing the pump, probe, and the heating laser beams, as well as the
nested magnetic shields and the cell oven.

4.4.5 Experimental Setup

The atomic cell was placed in a miniaturized oven made from a thermally insulating

material, all housed by a nested 4-layer µ-metal shield with integrated 3-axis magnetic field

84



Time (s)
0 1 2 3 4 5 6 7 8 9

X
e
 S

ig
n

a
l 

(v
)

-0.1

-0.05

0

0.05

0.1 Data Points

Curve Fitingt

Figure 4.14: Example of FID signal of 131Xe isotope recorded from a sample PAXE01 (Pyrex
coated with 10nm ALD Al2O3).

coils. The pump beam of 2.5mW with a circularly polarized light locked on Rb D1 line

(795nm) along the z-axis. A DC field of 3.5µT and an RF field of 17.8kHz with an RMS

amplitude of 3.5µT were applied along the z-axis. The probe beam was a linearly polarized

beam of 1mW set off resonance from D2 line (780nm) and was applied along the y-axis. The

produced RF signal was used as a reference for the lock-in amplifier that demodulated the

output of the Faraday detector at the probe side (Faraday Detector is a balanced polarimeter

used to detect Faraday Rotation). A π/2 pulse at the frequency of the Xe isotope of interest

was applied along the y-axis to obtain the FID signal, which was fitted to an exponentially

decaying sine wave to extract the relaxation time T2. Figure 4.14 shows an example of the

FID signal for 131Xe of PAXE01.

4.4.6 Coating

Alkali metals, like Rb, react with glass cells at elevated temperatures, which leads to a

consumption of the metal. One method to reduce this interaction is by passivating the glass

walls of the cells. In [128], it was shown that a 20nm layer of Al2O3 can reduce the interaction

between alkali metals and cell glass walls by 100x. It was also found that anodic bonding,

the process used for fabrication of the cells, worked with ALD Al2O3 as an intermediate
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layer.

ALD is a thin film conformal coating technique, the reaction of two chemicals in a gas

phase with a surface creates one atomic layer, for example, Trimethylaluminum (TMA) and

H2O creates Al2O3. The process is self-limiting to a single atomic layer per cycle. The

coating is achieved by repeating deposition cycles until the desired thickness is reached. In

our study, we used a commercial ALD deposition system by Cambridge Nanotech to deposit

10 nm of Al2O3, on both samples and the capping wafer. The deposition parameters are

summarized in Table 4.3.

Table 4.3: Summary of ALD Al2O3 deposition parameters

pulse
time(s)

purge
time(s)

Ncycles
N2 rate
[sccm]

Temp
(◦C)

TMA 0.015 10 100 20 200
H2O 0.05 10 100 20 200

4.4.7 Results

Table 4.4 summarizes the studied parameters and the average relaxation time of 129Xe

and 131Xe isotopes in the range from 115◦C to 140◦C. We observed that Atomic Layer

Deposition (ALD) of 10 nm Al2O3 on the cell walls increased the transverse relaxation time

of the 131Xe isotope by a factor of 4.7x, when compared to cells without coating. When using

Aluminosilicate glass (ASG) instead of Borosilicate glass (Pyrex), we observed a similar effect

on the relaxation time of 131Xe isotope, demonstrating an increase of T2 by a factor of 3.2x.

We did not observe the quadruple frequency splitting with the 131Xe in any of the micro-

glassblown cells. We believe this is due to symmetry of the cells and the fact that the active

area of the cell is made from the same material, which agrees with conclusions in [31]. On

the other hand, ALD coating of Al2O3 was found to reduce the relaxation time of the 129Xe
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isotope by a factor of 2x, while the ASG glass did not show a significant difference in T2 of

129Xe, as shown in Table 4.4.

Table 4.4: summary of cells used in this study and the corresponding relaxation times of
each isotope

Cell PXE01 PAXE01 HXE02

Glass Pyrex Pyrex ASG
Coating n/a 10nm Al2O3 n/a
129Xe T2(s) 1.4 0.79 1.2
131Xe T2(s) 0.74 3.55 2.35

4.4.8 Discussion

Reduction of the relaxation time of the 129Xe isotope in PAXE01 (ALD Al2O3 coated

cell) is believed to be due to a magnetic field gradient inside the cell created by non-uniform

pumping of Rb atoms. This pumping non-uniformity is a result of different beam bending

angles as it transmits through the cell, which was discussed earlier in section 4.3. Vertical

pumping and in-plane probing of the same sample showed an increase of relaxation time to

1.22s, which is on par with PXE01, and that supports our hypothesis.

To analyze improvements of the relaxation time constant of 131Xe, we performed Fast

Fourier Transform (FFT) to the FID signal of 131Xe of the three cells at temperature of 135◦C.

Subsequently, the FFT data were fitted with a triplet of Lorentzian functions. Table 4.5

summarizes the data fitting results. We observed two phenomena. The first observation is

that the ALD Al2O3 coating and ASG glass suppressed quadrupole splitting by reducing the

splitting frequency between the three peaks by 100× and 2.2×, respectively. The second

observation is that ALD coating of AL2O3 and the use of ASG glass material reduced the

width of the central peak by 3.2× and 2.5×, respectively. Figure 4.15 shows FFT of FID

signals of the three cells.
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Table 4.5: Data fitting results of FFT of the 131Xe FID signal to triplet Lorentzian peaks
for three cells.

Splitting
(mHz)

Central Peak
width (mHz)

Fitting
RMSE

PXE01 153 509 4%
PAXE01 1.5 161 0.4%
HXE02 69.5 195 1.2%

4.5 Conclusion

This Chapter discussed different design considerations of micro-glassblown spherical

cells for atomic sensors applications. These aspects included geometry, optical properties,

material selection, and surface coating. We studied cell inner wall coating as well as cell

glass materials. We found that 10nm ALD Al2O3 suppressed the quadrupole splitting of

131Xe by 100× and reduced the central frequency peak width by 3×, which was observed as

4.7× increase in the relaxation time. We also found that using ASG glass instead of Pyrex

suppressed the quadrupole splitting of 131Xe by 2.2× and reduced the central frequency peak

width by 2.5×, which was observed as 3.2× increase in the relaxation time. We concluded

that the ALD Al2O3 coating and the ASG glass did not have a significant impact on the T2

of 129Xe. In light of the experimental results and analytical models of NMRG ARW, [42], the

NMRM fundamental sensitivity δBn, [20], and assuming the same SNR values, the Al2O3

coating is projected to reduce the NMRG ARW and NMRM δBn by more than fourfold.
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Chapter 5

Reconfigurable Analog Emulator: a

Tool for Development of NMR

Atomic Sensors

This chapter presents an analog emulator for NMR atomic sensors. The emulator rep-

resents the spin dynamics of atoms in an applied magnetic field that are governed by Bloch

equations. The principle of operation and the mathematical model that is represented by the

emulator were described in Chapter 2. The first section of this chapter presents a design flow

of the emulator and its sub-blocks. The second section presents an experimental evaluation

of emulator functionality.

5.1 Emulator Design

In this section, we introduce the emulator design and highlight its main building blocks.

The emulator is set to represent a mathematical description of the magnetization vector
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dynamics, captured by equations (2.28), (2.29) and (2.30), to a circuit representation. In

our implementation, a magnetic field amplitude of 1 micro-Tesla corresponds to 1 volt.

Each component of the magnetization vector is represented by a single analog computer

that solves the corresponding differential equation, Fig. 5.1-(insert). These computers were

interconnected to represent the three components of the magnetization vector, Fig. 5.1.

5.1.1 Emulator building blocks

Each analog computer is composed of multiple sub-blocks, these are multipliers, scalar

gains, a summing block, an integrator, and a feedback network. The emulator inputs are

the constant magnetic field B0, the oscillating field B1 sinωa, and the amplitude of the

magnetization vector M0. Next, we will briefly describe theses blocks for the X-axis sub-

circuit.

Σ ʃ 

β 

×

×
MZ

MY

B0

B1sin(ωa)

MXγ  

multipliers

Gyromagnetic

Ratio 

constant

Feedback

constant

integratorsum

dMX/dt

X-axis

Y-axis

X-axis

Z-axis

MZ

B1cos(ωa)

MZ

B0

MX

MY

B0

B1sin(ωa)

MZ

MY

MX

Figure 5.1: Block diagram representation of Bloch equations, where the output of X, Y, and
Z represent the magnetization vector components. Insert shows a block diagram example of
the X-axis component.
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Figure 5.2: Circuit schematic of Σ and γ blocks in Fig. 5.1-insert

Off-the-shelf analog multipliers (TI-MPY634) were used to multiply the inputs B0 and

B1 sinω by the magnetization vector components My and Mz. The output of the multipliers

was then connected to the scalar gain γ (gyromagnetic ratio). Scaling the outputs of the

multipliers by γ was carried out by selecting the input and the feedback resistors of the

summing amplifier (Rγ and Rf in Fig. 5.2), such that the amplifier gain is

Av = −Rf

Rγ

= −γ (5.1)

After the scalar gain, the signals were passed to the summing block (Σ in Fig. 5.2), which

was an inverting summing op-amp. The output of the summing op-amp, which is the time

derivative of the X-axis component of the magnetization vector, was passed to an integrator

to calculate the time integral of the signal.

An Ideal op-amp integrator is shown in Fig. 5.3-(a), and its output is described as

Vout = − 1

RinCint

∫ T

0

Vindt, (5.2)

where Rin is the input resistance and Cint is the negative feedback capacitor. However, due

to nonidealities in op-amps, a slight input offset voltage (VOS) will saturate the op-amp, and

a manual discharge of the capacitor would be required. A practical integrator design includes

a large resistor in parallel with the feedback capacitor, as seen in Fig. 5.3-(b). The practical
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Figure 5.4: Circuit schematic of β block in Fig. 5.1-insert

integrator has a frequency response similar to that of a low-pass filter. The integrator has a

lower cut-off frequency below which it works as a constant gain, that prevents the op-amp

from saturating due to DC input offset voltage. A critical aspect of integrator design is

the RC constant. It is essential to consider the RC constant to avoid systematic errors in

calculations.

Once the signal has been integrated, the output was connected to the feedback network β

and fed back to the summing op-amp. Simultaneously, the integrated output was connected

as an input to the Y-axis and the Z-axis circuits. The feedback scaling of the X-axis and Y-

axis circuits was accomplished by selecting the feedback and input resistors of the β network,

such that Rf2/RT2= T−1
2 , as shown in Fig. 5.4.

The complete schematic of the emulator is shown in Fig. 5.5. For Mz, the β network

is a differential op-amp that outputs the relaxation term of equation (2.30). Note that the

output of the emulator sub-circuits are inverted outputs and an optional inversion step can
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Figure 5.5: Schematic diagram of the emulator showing Mx, My, and Mz circuits
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be carried out by choosing the inverting input of the multiplier.

5.1.2 Emulator voltage gain and feedback constant

In NMR systems, M0 is the magnitude of the magnetization vector, and it is represen-

tative of a number of polarized atoms in the system, as shown by the analytical solution of

equations (2.42), (2.43) and (2.44). For the emulator, this can be viewed as the voltage gain

of the output to the input (Mx, for example, and B1). This voltage gain is controlled by the

M0 constant in the feedback network of Mz circuit in Fig. 5.5.

The relaxation terms in equations (2.28), (2.29) and (2.30) are representations of how

long the atoms can preserve their polarization. By analogy, the negative feedback networks

β in Mx, My, and Mz control the loss of the signal in the emulator circuits. The β networks

in Mx and My circuits are proportional to the transverse relaxation time constant T2, while

the feedback network β in Mz is proportional to the longitudinal relaxation time constant

T1.

5.2 Experimental Results

In this section, we present an experimental validation of the NMR sensor emulator,

discuss its noise characteristics, and compare it to an actual NMR system. We show the

validation of equation (2.7), absorption and dispersion modes, predicted by the analytical

solution equations (2.42) and (2.43), relaxation time control, emulator voltage gain control,

and steady-state response (if the forcing was continuously applied) of the emulator to different

drive B1 amplitudes. We characterized the emulator noise by interfacing it with a simplified

control loop implemented on a digital platform dSPACE. Finally, we show the absorption

and dispersion curves of the NMR sensor emulator and an actual NMR system. The emulator
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Figure 5.6: PCB prototype of emulator showing input and output ports and (X, Y, Z)
sub-circuits

parameters used in the experimental validation are summarized in Table 5.1.

5.2.1 Validation

Larmor Frequency

The frequency response of the emulator was obtained using the signal spectrum analyzer

by applying a constant B0 value and sweeping the frequency of the drive signal B1 sin(ωa).

Fig. 5.7 shows an example of the emulator frequency response of Mx for B0 = 4V and γ=

10 rad.s−1/V . This experiment was repeated for different values of the static field B0 from

1V to 14V. We were able to verify the linear relationship between the applied B0 and the

observed frequency, and the slope of the line was equal to the set value of γ. Fig. 5.8 shows

the Larmor relationship for three different γ values.
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Figure 5.7: Example of the emulator frequency response. B0=4V, B1 = 2mvpp, γ =
10 rad.s−1/V , T2=2s.

Figure 5.8: Measured frequency response of the emulator in response to B0 change for
different gyro-magnetic ratio values
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Table 5.1: Summary of parameters used in emulator design for experimental validation

Parameter unit value

Rint Ω 1 M
Rin Ω 100K
Cint µF 10
γ rad.s−1/V 10
T1 s 10
T2 s 2
RF1 Ω 1k
RF2 Ω 1k
M0 V 12
B0 V 7.714
B1 mv 1
Op-amp ADA4077
multiplier Ti MPY634

Absorption and Dispersion

The general behavior of the magnetization vector in a rotating frame was predicted by

equations (2.42) and (2.43). To verify that the emulator resembles the analytical model, we

applied a small driving signal B1=10mv and swept its frequency from 9Hz to 13.5Hz. The

emulator output Mx was connected to a lock-in amplifier to demodulate Mx at the frequency

of the swept signal. Fig. 5.9 shows that the experimentally measured absorption and disper-

sion curves of the emulator (solid lines) and the analytical model prediction (dashed lines)

are in a close match.

Relaxation time T2

NMRG emulator provides the option to set different values for relaxation time, by

changing the gain of the feedback network, β in Fig. 5.1, as it was described in the previous

section. To measure the emulator’s relaxation time we conducted an experiment similar

to the Field Induction Decay (FID), which is used in NMR, where a constant B0 and a
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Figure 5.9: Absorption and Dispersion modes obtained experimentally from the emulator.
B0=7.71V, γ =10, T1=10s, T2=2s.

sinusoidal B1 with a frequency equal to the Larmor frequency are applied. After 30s, B1

was switched off and the transient output of the emulator (Mx or My) was recorded and

then fitted to an exponentially decaying sinusoidal wave to extract T2. Fig. 5.10 shows an

example of the emulated FID signal.

This experiment was then repeated for different T2 settings, (T2=2, 4, 14, and 32s) and

corresponding envelopes of the decaying signals are presented in Fig. 5.11.
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Figure 5.10: Emulated FID signal showing an exponentially decaying sinusoid, T2=11s.
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Figure 5.12: Emulator voltage gain vs. M0. This voltage gain is the ratio of the emulator
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Emulator gain

As described in the previous section, the emulator gain can be adjusted by modifying

the value of M0. A constant B0 and an oscillating B1 sin(ωat) were applied to the emulator.

Using the signal spectrum analyzer, we swept the frequency of the drive signal (B1) and

extracted the voltage gain of the emulator (this gain is the ratio of the emulator output Mx

to its input B1). Fig. 5.12 shows the experimentally measured voltage gain vs. M0.

Transient response

The driving field amplitude of B1 plays a crucial role in determining the amplitude of the

xy-plane component of the magnetization vector. With the goal to maximize the amplitude

of the xy-component of the magnetization vector and to minimize the time required to reach

the steady-state, we studied the transient of Mx under different B1 values. Fig. 5.13 shows

the emulator transient response of Mx for B1 amplitudes of 1mv, 2mv, 3mv, 5mv, and 10mv,

illustrating an increase in steady-state amplitude as well as ringing of the Mx with the

increase of B1 amplitude, as predicted by the model.

5.2.2 Noise Characteristics

The next step of the emulator design was to test its noise characteristics. We imple-

mented a simplified version of the control loop presented in [45] on dSPACE digital platform

to drive and control the emulator. Fig. 5.14 shows a block diagram that highlights main

parts of the control loop. The control loop supplies the emulator with input signals B0 and

B1 sinωa and it reads the emulator’s outputs Mx, My, and Mz. At the control loop input,

a phase-locked loop (PLL) locks onto the emulator frequency (ωa = γB0). The voltage-

controlled oscillator (a sub-block of the PLL) generates the B1 sinωa signal that drives the
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Figure 5.13: Emulator response (Mx) to different B1 amplitudes, a) B1=1mv, b) B1=2mv,
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Figure 5.14: Block diagram shows emulator circuit and the control loop implemented on
dSPACE, the control loop was reproduced from [45].

Figure 5.15: Allan deviation plot (ADEV) for different T2 settings. T2=1s (blue diamond),
T2=2s (black triangles), T2=10s (green circles). For all 3 curves, M0=12V

emulator at resonance. A frequency comparator was used to detect the frequency shift, ∆ω

in Fig. 5.14, of the emulator vs. a reference frequency set by the master oscillator.

The frequency stability of the emulator was measured for different Signal-to-Noise Ratio

(SNR) and T2 values. SNR was modified by changing the M0 value, while T2 was modified by

changing the gain of the β block in Mx and My circuits, as was described in Sec. 5.1. Allan

deviation (ADEV) plots of ∆ω for different T2 and SNR settings are presented in Fig. 5.15

and Fig. 5.16, respectively. Both figures show a negligible deviation of the emulator’s noise

profile for different SNR and T2 settings. The noise floor of the emulator frequency was within
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Figure 5.16: Allan deviation plot (ADEV) for different SNR settings. M0=3V (red squares),
M0=6V (green circles), M0=12V (blue triangles). For all 3 curves, T2=2s

1µHz. The noise characteristics of the emulator make of a good candidate for visualization

and analysis of the noise propagation through the system from other components of the

atomic sensor, such as laser sources, photodetectors, and current generator.

5.2.3 NMR Emulator vs. NMR system

The final experiment of the NMR sensor emulator presented in this chapter was a com-

parison between its functionality and an actual NMR system. The absorption and dispersion

modes were generated experimentally from a physical NMR system for 131Xe that was pre-

cessing at ωXe = 2π × 12.4 rad/s. The relaxation time T2 for 131Xe in this system was 3s,

[93], Fig. 5.17-(solid lines). The same experiment was repeated for the NMR sensor emula-

tor by setting its γ constant close to γ131, γ ≈ 2π × 3.52 rad.s−1/V and applying B0=3.5V,

T2 = 2s, Fig. 5.17-(dashed lines). The two sets of curves were compared to the analytical

model response equations (2.42) and (2.43), Fig. 5.17-(translucent lines). Fig. 5.17 shows

behavior similarities between both the experimentally measured responses and predictions

of the analytical model, with more than 90% matching between the experimental data and

the model.
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Figure 5.17: Experimentally measured absorption and dispersion curves of an NMR system
(solid lines) and an NMR sensor emulator (dashed lines) compared to the prediction by the
analytical model equations (2.42) and (2.43) (translucent lines).

5.3 Conclusion

This chapter presented an analog re-configurable emulator for NMR atomic sensors.

The emulator is an electronic representation of the phenomenological model of atoms in an

applied magnetic field. We presented the design of the emulator sub-blocks. Subsequently,

we experimentally validated the emulator’s functionality, such as the Larmor frequency, dis-

persion and absorption modes, and the relaxation time constant. We presented a comparison

between the experimentally measured responses of the NMR emulator and an actual NMR

system, showing similarities in response of both systems with more than 90% matching

to the analytical model predictions. Finally, we showed that noise characteristics were in-

dependent of the emulator’s relaxation time and SNR settings, which makes it suitable for

visualizing noise characteristics of other atomic sensor components in a hardware-in-the-loop

configuration.
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Chapter 6

Conclusion

Atomic sensors have shown great performance in measuring physical quantities, such

as time, rotation, and magnetic field, with high precision on tabletop setups. The emerg-

ing applications that require high performance miniaturized sensors sparked the interest in

miniaturizing atomic sensors at the beginning of this century. To date, these sensors are as-

sembled by picking and placing of individual components. This limitation can be addressed

by developing processes that yield low cost, size, weight, and power sensors while maintaining

the expected high performance.

This dissertation explored batch fabrication techniques for development, design, and as-

sembly of atomic sensor components. The limitations of the developed fabrication processes

were examined experimentally and verified analytically and using finite element models. An

emulator of the atomic spin dynamics was developed for characterization and analysis of the

developed atomic sensor components.
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6.1 Contribution of the Dissertation

The work in this dissertation takes forward the efforts of previous team members of

the NMRG project in the MicroSystems Laboratory. The designs of the 3D folded coils and

structures were proposed in [33]. The initial demonstration of the fabrication on flat samples

was shown in [46]. A fabrication process of 3D glassblown cells was introduced [34], and the

feasibility of using them as atomic cells was presented in [35]. However, the noble gas (Xe)

response was not demonstrated before in micro glassblown cells. Leveraging the results of

the previous research in the lab, bellow are the contributions of this dissertation.

• Fine-tuning the fabrication process of folded structures, while introducing different

polymer material for the hinges that solved the problem of polymer cracking, which

limited the component characterization to flat samples in [46].

• Developed and experimentally verified the analytical model that links the folding ac-

curacy to the atomic sensor performance.

• Developed a wafer-level fabrication process of a network of interconnected atomic cells

utilizing glassblowing technology.

• Built a custom filling station for filling the cell network samples and sealing them in a

controlled atmosphere of buffer and noble gases.

• Demonstrated the feasibility of filling an array of atomic cells simultaneously with

noble and buffer gases, and measured the noble gas response as well as the pressure

of all gases after sealing. The demonstration of feasibility was carried out by building

atomic cells characterization setup capable of measuring nuclear spins of the noble gas.

Measuring the noble and buffer gases pressures inside the cell was achieved by adopting

methods used for large-sized cells.
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• Developed a multi-aspect design process for producing highly spherical glassblown cells

within the practical limits of the fabrication process. Identified that the critical design

process aspects are geometry, optical properties, surface coating, and material.

• Presented design and validation of an NMR atomic sensor emulator that mimics the

dynamics for the noble gas atoms in an applied magnetic field. The emulator was

developed for characterization and analysis of the developed components in a hardware-

in-the-loop configuration.

• The research presented in this dissertation was published in three peer-reviewed journal

articles, [94, 90, 92], and two international conference papers, [91, 93].

6.2 Future Research Directions

NMR Atomic Gradiometer

Atomic gradiometers are gaining popularity in applications that require measuring ultra-

low magnetic fields, a better estimation of the spatial field information at the target, and

common noise rejection, [113]. These applications include compact non-invasive bio-magnetic

imaging such as magnetoencephalography (MEG) and magnetocardiography (MCG). State

of the art in the implementations of those gradiometers is using multiple atomic cells filled

with a comparable amount of alkali metal and buffer gas and separated by some distance to

estimate the field gradient, [118, 113]. Filling the cells with a comparable amount of alkali

and buffer gas helps to cancel common noise from the laser source.

A future research direction could be adopting the developed cell network approach for

creating atomic gradiometer. The advantage of using interconnected cells is that it ensures a

better laser source noise cancellation since the cells are interconnected, and the cells have the
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same gas pressure all the time. Additionally, the 3D geometry of the cells provides multiple

optical ports for orthogonal pumping and probing of the cells, which gives a better signal-

to-noise-ratio (SNR) of the signal as was concluded in [118]. Figure 6.1 shows an example

of the characterization setup that can be used to pump and probe multiple cells at the same

time and can potentially be used as an atomic gradiometer.
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Figure 6.1: Experimental setup for pumping and probing two cells of the same sample simul-
taneously, insert: a photograph of fabricated prototype which was used in the experiment.

Moreover, using a single source for pumping and a single source for probing in combina-

tion with a switching mechanism such as digital light processor (DLP) is an attractive path

to explore to shrink the sensor size and increase the number of interrogated cells.
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Appendix A

Custom Filling Station

The previously described process for filling cells with alkali metal and buffer gas in

Chapter 4 requires certain conditions for the final anodic bonding. After the cell network is

opened from the backside and the pill is inserted, the network needs to be filled with buffer

gasses and then sealed. For this purpose, a special chamber was designed with the capability

of generating a vacuum level of 10−6 Torr, included multiple ports for injecting gasses, and

combined with anodic bonding which is capable of sealing cells with injected gases. To be

able to perform the anodic bonding, the chamber was equipped with a heater that can heat

the samples up to 400◦C, electrical connections and electrodes to apply 600V, and a loading

mechanism that is capable of applying a 10N force during the anodic bonding process.

Since these options were not commercially available, we built the custom chamber in

the MicroSystems Lab at UCI. A specially designed chamber with a special heater for that

purpose was designed and built, see Figure A.1 and Figure A.2 for the chamber and the

heater drawings. The bill of material is shown next.
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Figure A.1: Illustration showing the front and back sides of the filling station chamber.

KF 50 Flange 

Thermocouple 

connector

Heater electrodes

Bot. Electrode

Sample 

stack Top Electrode

mm

13
5
m
m

Figure A.2: Illustration showing the sample heater mounted on a KF 50 Flange

120



Table A.1: Bill of material for the filling station from two vendors Ceramisis Ltd. and Pfeiffer
Vacuum Inc.

Quantity Description Catalog # Unit Price

Ceramisis Ltd

1 2” Vacuum heater HTWM6-CCC-02 $12,862.66
1000C version of the heater
(HTWM6-CCC-02) in Figure A.2

Pfeiffer Vacuum Inc

1 Vacuum pump, HiCube 80 Eco PM 015 888 -T $4,995.00
DN 40 ISO-KF, Figure B.4

1 CUSTOMIZED Vacuum chamber 320R1ZS160 $1,180.00
(DN 160 ISO-K cross), Figure A.1

1 Quick-Access-Door, with Viewport, 520KTU160-G $2,032.68
DN 160 ISO-F Stainless steel, Figures A.1 and B.4

1 Rotary/Linear Feedthrough, DN 40 ISO-KF Elastomer 120MDD040-0250 $1,017.00
-sealed stroke 250 mm, Figures A.1 and B.4

1 CUSTOMIZED Blank Flange, DN 20 ISO-K 320FBL160 $670.00
Stainless Steel 304/1.4301, Figure B.5

1 Rotatable Bolt Ring, 320FLU160 $197.00
DN 160 ISO-K Stainless
Steel 304/1.4301 circlip included

1 Angle valve DN 40 ISO-KF PF A51 033 $389.27
manually operated

1 Angle valve DN 16 ISO-KF PF A31 033 $276.04
manually operated

1 DualGauge Display and control unit for two PT G28 290’ $1,334.80
gauges 100-250 V AC, 50/60 Hz

1 PKR 361, Active Pirani/ Cold PT T03 140 010 $1,060.20
cathode gauge DN 25 ISO-KF
high current

1 Active Pirani/Capacitance Transmitter PT R26 855 $488.48
DN 16 ISO-KF, 80C

1 Supporting adapters and valves $1,053.85
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Figure A.3: Picture of the Filling Station at EG2119

Figure A.4: Backside of the filling chamber showing pump, gas and venting valves, pressure
gauge, high voltage and pump line.
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Loading Arm
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Sample Heater

Electrode Down Electrode Up

Figure A.5: Pictures from inside the filling chamber showing electrodes, loading arm, cables
with ceramic beads, and additional ceramic parts that connects the top electrode to the
loading arm. The picture on the left shows when the top electrodes is lowered and the force
is applied and the picture on the right shows the top electrode in the up position.
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Appendix B

Fabrication Recipes

B.1 Micro Resistive Heaters

In this Appendix the detailed recipes of the fabrication processes. For the fabrication of

the micro resistive heaters, we are starting with 4” Si substrates with 1µm thermally grown

oxide or a 4” glass wafer.

B.1.1 Metal 1: Electroplated Nickle

• Dehydrate wafers in the oven at 120◦C for 60 minutes.

• Evaporate 250Åof Ti and 1500Åof Au on your substrate using Ebeam1 evaporator at

INRF (Ask Mo or Richard for help).

• Cover the tom of the wafer with a small piece of blue tape (this where the clamp will

be attached for electroplating)

• Spin coat wafers with AZ4620 PR at (500 for 10 seconds then 1500 for 30 seconds).
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• bake in the oven 95◦C for 30 minutes.

• Expose wafer using MA-6 mask aligner (10mW, g-line lamp) for 90 seconds (soft con-

tact, 50um gap).

• Develop in 1:4 solution of AZ400K(Developer): H2O, for about 150 seconds-180 seconds

(carefully check your wafer for PR residues under the microscope).

• Remove the blue tape piece to expose the metal seed layer.

• Place a blue low tack dicing tape on the back (if it was Si wafer) to prevent Ni from

depositing on the back of your wafer.

• Prepare the nickle electroplating process setup (talk to INRF staff about setup).

• When the setup is ready, place your wafer with wafer flat parallel to the bottom of

the beaker, run the current source at 15mA for 10 minutes. (the electroplating time

is highly dependent on the pattern, and if there were any uncovered parts with PR it

would take longer) after 10 minutes check in Daktak for Ni desired thickness.

• After achieving the desired Ni thickness, remove the PR using AZ400K remover while

heating it up to 50-80◦C on the hot plate.

• Use Idoide-FREE gold etchant (GE-8110 from Transene Company, Inc.) to etch seed

layer (40 seconds), use 2% HF to etch Ti adhesion layer (20-40 seconds dip).

B.1.2 Insulator Layer: SU-8

For the sake of testing the heater, SU-8 was used as an insulator layer. Polyimide or

Parylene-c can be used as well. But will need to refer to their recipes.

• Spin coat SU-8 5 on your wafer at 2000rpm with 300rpm/s acceleration to achieve 7um

film. (if the Ni was too thick ≥ 10µm it might be difficult to coat it with uniform film)

125



• Soft bake at 65◦C for 2 minutes, then increase temp. to 95◦C and bake for 5 minutes.

• Expose in MA-6 mask aligner for 20 seconds, then bake at 65◦C then 95◦C for 1 minute

each.

• Develop in the SU-8 developer for 1 minute, check for undeveloped regions. (DO NOT

use water, only use IPA to rinse the developer)

• bake on the hot plate at 150◦C for 60 minutes (to make it hard and can withstand the

heater temperature).

B.1.3 Metal 2: Sputtered Cu

Metal 2 was chosen to be sputtered Cu, sputtering gives a better coverage of steps and

allows connection between metal 1 and metal 2 through the insulating material.

• Sputter Cr/Cu (250Å/10000Å), (DO NOT perform SPUTTER ETCHING as it might

degrade the insulator layer and cause Cr to be irremovable).

• Spin coat AZ 4620 PR on the wafer (2000rpm 425rmp/s acceleration for 40 seconds)

then bake at 90◦C for 30 minutes.

• Expose in MA-6 mask aligner (CH2) for 90 seconds using Metal2 mask. Develop in

1:4 solution of AZ400K(Developer): H2O for 2-3 minutes. (check every 60 seconds)

• Use Cu etchant (PCB copper etchant) to etch Cu (40-60 seconds), use chrome etchant

1020 from Transene Company, Inc. for 40 seconds to etch Cr adhesion layer.

• Dicing.
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B.2 Folded Micro Helmholtz Coils

All wafers in this run were 500µm DSP Si+ (400nm) LPCVD SiN, from University

Wafers.

B.2.1 Metal 1: electroplated Nickle

Metal 1 is the same process recipe as for the heater in B.1.1.

B.2.2 Insulator layer: Parylene

Parylene needs adhesion promoter to improve the parylene adhesion to the substrate.

• Mix 200ml water with 200ml IPA and 2ml A-174 silane adhesion promoter, and let it

sit for two hours.

• Soak wafers in the solution for 30 minutes, take wafer out without blowing or rinsing

and put it on a clean-room wipe and let it sit for 30 minutes to dry.

• Soak in IPA for 20 seconds, then dehydrate on the hotplate at 110◦C for 120 seconds.

• Place a blue low tack tape on the backside of the wafer to prevent parylene from

depositing on the backside.

• Load wafers on the wafer holder and put it in the parylene machine.

• Make a foil boat and measure 30 grams of parylene dimer, and load it in the vaporizer

chamber in the parylene machine.

• Run the parylene machine following the standard operating procedures.
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• Deposit 1500Åof Ti using Ebeam1 metal evaporator as a hard mask to etch parylene.

• Spin 2000 RPM AZ4620 PR, bake in the 90◦C oven for 20 minutes or less. NOTE:

NEVER let the wafer in the oven for more 20 minutes, this causes cracks in the parylene.

• Expose using parylene mask in the MA-6 mask aligner.

• After developing, dip wafers in 2% HF for 40 seconds, to etch Ti, remove PR using

Acetone.

• Load wafer in Tion RIE machine, using O2CLEAN recipe with the parameters (250mT

gas pressure, 150W RF power) etch for 10 minutes intervals for about 50-60 minutes.

• Dip wafer in 2% HF for 60 seconds to remove Ti hard mask and the residues deposited

in the RIE machine.

B.2.3 Metal 2

The metal 2 step is similar to the metal 2 step in the heater recipe in B.1.3. The

only difference is that we evaporate 250Åof Cr to protect the parylene from the high energy

sputtered Cr atoms. Then we did Cr/Cu sputtering.

B.2.4 Backside Etch Though

The last step is to etch through the wafer to release the coil samples.

• Spin AZ4620 on the front-side of the wafer at 2000 rpm and bake at 90◦C for 15

minutes.

• Spin AZ4620 on the backside of the wafer at 2000 rpm, bake at 90◦C for 30 minutes.

Expose using backside etch-through mask, then develop in AZ400K: H2O solution.
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• Place a blue low tack tape on the front-side of the wafer to protect parylene and other

features.

• Attach wafer to a handle Si wafer using small double-sided Kapton tape.

• Load wafer in STS, etch using PROCESSB for 100 minutes in 20 minutes intervals to

protect the photo-resist.

• After etching is done, soak in Acetone to remove coil samples from the blue tape.

• Clean using Acetone and IPA (don’t soak in Acetone for too long, as Acetone cause

parylene to swill which might damage the Cu traces.
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B.3 Cell Network

This are detailed steps of the fabrication process shown in Figure 4.11. It requires three

masks, front side (Si Cavities), backside (Backside), and through holes (Through Holes).

B.3.1 Top-side Si-Cavities and Through Holes

• Starting with new wafer, RCA Clean the wafer, dehydrate on 120◦C hotplate for 2

minutes. If the wafer was used before, you need to perform O2 clean for at least 10

minutes.

• Spin coat wafer with AZ4620 PR at (500 for 10 seconds then 1500 for 40 seconds),

bake 10 minutes in 90◦C oven.

• Spin coat another layer of AZ4620 PR at (500 for 10 seconds then 1500 for 40 seconds),

bake 30 minutes in 90◦C oven, Be careful to spread the PR nicely by choosing low

acceleration in the first step.

• Expose in mask aligner (10mW, g-line lamp) for 180 seconds using mask 1 (Si Cavities).

• Expose the same PR in mask aligner again (10mW, g-line lamp) for 180 seconds using

mask 3 (Through Holes).

• Develop in 1:2 AZ400k developer: DI-water, for around 2-3 minutes (stir and pay

attention not to overdevelop the wafer).

• Hard bake the wafer in 120◦C oven for 15 minutes.

• Apply Blue tape to the back of the wafer and make sure there are no trapped air

bubbles (this will help protect the backside for better bonding surface).
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• Spin coat a single side polished handle wafer with AZ4620 PR at (500 for 10 seconds

then 3000 for 40 seconds)

• Place the wafer on top of the handle wafer while it is on the spinner and press gently

on the edges only. Remove the stack from the spinner and bake for 20 minutes in 90◦C

oven.

• Etch in STS DRIE system using PROCESSB for multiple segments of 30 minutes each.

Stop the etching for 5 minutes in between the segments.

• Check the etch depth using Daktak to confirm that the required depth is achieved.

• Use a thin blade to separate the wafers, DO NOT use excessive force, it might break

the wafer.

• Place the wafer on top of wipe and slowly remove the blue tape, do not use ACETONE.

• Use AZ400T photo-resist remover to remove the photo-resist. It is recommended to

heat up the solution to 70-80 ◦C.

• After removing the bulk of the photo-resist in AZ400T. Rinse the sample with DI

water, blow-dry it with N2.

• Use oxygen plasma to clean both sides of the wafer. Example of oxygen plasma clean-

ing: 20 minutes with 200Watt and 150 mTorr of process gas and 50cc Oxygen flow in

PlasmaTherm.

This ends the part of etching Si Cavities. By now the wafer is etched 750µm from the

top-side using both the Si Cavities and the through-holes masks. Next, we will complete

etching through the wafer using ”Through Holes” mask and pre-etch the backside using the

(Backside) Mask. Pre-etching the channel makes it easier to perform photo-lithography on

die level after the wafer has been diced and the alignment marks are no longer usable. It
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also shortens the time required to open the backside of the cells after glassblowing.

B.3.2 Pre-etching backside channels and Through Holes

• Apply Blue tape to the top-side (etched Si Cavities) of the wafer and make sure there

are no trapped air bubbles (this step is necessary to be able to load the wafer on the

spinner since the blue tape is translucent it will allow us to perform wafer alignment

without troubles).

• Spin coat the back of the wafer with AZ4620 PR at (500 for 10 seconds then 1500 for

40 seconds), bake 30 minutes in 90◦C oven.

• Expose in mask aligner (10mW, g-line lamp) for 90 seconds using mask 3 (Through

Holes).

• Develop in 1 part AZ400k developer to 2 parts DI-water, for around 1-2 minutes (stir

and pay attention not to overdevelop the wafer).

• Spin coat a single side polished handle wafer with AZ4620 PR at (500 for 10 seconds

then 3000 for 40 seconds)

• Place the wafer on top of the handle wafer while it is on the spinner and press gently.

Remove the stack from the spinner and bake for 20 minutes in 90◦C oven.

• Etch in STS DRIE system using PROCESSB for 30 minutes each for 2mm thick wafer.

• Check the etch depth using Daktak to confirm that the required depth is achieved (it

should be around 200µm).

• Repeat the photo-resist removing steps.

• Apply Blue tape to the top-side of the wafer.
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• Spin coat wafer with AZ4620 PR at (500 for 10 seconds then 1500 for 40 seconds),

bake 10 minutes in 90◦C oven.

• Spin coat another layer of AZ4620 PR at (500 for 10 seconds then 1500 for 40 seconds),

bake 30 minutes in 90◦C oven.

• Expose in mask aligner (10mW, g-line lamp)for 180 seconds using mask 2 (Backside).

• Expose the same PR in mask aligner again (10mW, g-line lamp)for 180 seconds using

mask 3 (Through Holes).

• Develop in 1 part AZ400k developer to 2 parts DI-water, for around 2-3 minutes (stir

and pay attention not to overdevelop the wafer).

• Hard bake the wafer in 120◦C oven for 15 minutes.

• Repeat the steps for attaching the wafer to a handle wafer.

• Etch in STS DRIE system using PROCESSB in segments of 30 minutes each. Stop the

etching for 5 minutes in between the segments, and inspect the photo-resist, remove

the wafer when all of the ports are open.

• Repeat cleaning steps mentioned earlier.

B.3.3 Anodic Bonding to Glass wafer

Clean the wafer carefully to achieve successful anodic bonding and reduce the chances

for bond voids.

• After the Oxygen plasma cleaning of both sides of the wafer. Perform RCA cleaning

for 20 minutes of the etched sample and a glass wafer at the same bath, use TEFLON

holder.
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• Rinse with DI water and make sure to blow dry it carefully, residual water will leave

stains and lead to bond voids.

• Bring your samples to the wafer bonder and perform the anodic bonding in 1atm or

higher of N2 gas.

Samples were diced and processed individually to optimize different parameters of the

process. The following description is for die-level processing.

B.3.4 Glass-Blowing

The process is described in Chapter 4, and here are some supplementary details.

Required and Recommended equipment

This procedure can use either annealing furnaces to blow an entire wafer or use the 2” tube

Figure B.1: Tube Furnace setup for vacuum blowing option.

furnace to blow single die. Tube furnace gives the advantage of blowing samples in partial
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vacuum which gives better spherecity samples. The furnace used is: MTI Corporation (GSL-

1500X) with a roughing vacuum pump, Figure B.1.

• Set the tube furnace to 880◦C.

• Use the fused silica tube for the glassblowing process.

• Clean the sample: Apply standard solvent cleaning to the sample before it is glassblown

to remove all organic residue on it. Use nitrogen-gun to dry it.

• Load your dies on the alumina sample boat, Figure B.2, and place the boat in the

fused silica tube. Push it all the way to the end.

• Close the tube using the flange.

• Connect the temperature sensor and the pressure sensor as well as the vacuum pump

hose to the flange.

• Turn on the vacuum pump, adjust the venting valve to set the desired blowing pressure

using the pressure sensor.

• Turn off the pump and wait for the tube to vent, (DO NOT change the venting valve

position).

• Push the tube into the furnace and wait for some time (3-7 minutes depending on the

glass wafer thickness). Multiple iterations are needed to optimize the preheat time.

• Start the vacuum pump.

• Adjust the vent valve to control the pressure (50-300 torr). Note: this adjustment

needs to be done in 30 seconds.

• Wait for (80 seconds) to blow the bubble up.
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• Pull the tube out and slightly tighten the vent valve to reduce the pressure by 5-15

torr. This is required to prevent the bubble from collapsing.

• Wait 2 minutes then turn the vacuum pump off.

• Let the tube vent slowly, Note: if you vented quickly, it would break your sample.

• Open the tube and be careful not to damage the thermocouple.

• Use the special clamps to take out the boat and the sample, Figure B.3.

• Place the sample on a metal or ceramic piece and allow it to cool down.

Figure B.2: Alumina Boat.

Figure B.3: Clamp to carry hot boat.

B.3.5 Backside opening

This procedure for is used to open the backside of the glassblown samples and prepare

them for subsequent steps. Important points to be considered, the backside of the cells need
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to be protected during DRIE process, the photo-resist needs to be cleaned completely after

opening.

• Dice a dummy 500µm thick Si wafer into 25mm×25mm chips. These chips will be

used to mount the glassblown cells.

• Dice a 2mm thick wafer into 5mm×10mm pieces. Theses will be used as spacers.

NOTE: Make sure your bubble height is less than 2mm.

• set the hotplate to 95◦C.

• Spin AZ4620 photo-resist (2000 RPM) on the 25mm×25mm chips, bake for 15 min on

95◦C hotplate.

• Spin AZ4620 photo-resist (2000 RPM) again on the 25mm×25mm chips, put two

spacers, bake for 15 min on 95◦C hotplate.

• Spin AZ4620 photo-resist (3000 RPM) on the spacers, bake for 15 min 95◦C hotplate.

• Spin AZ4620 photo-resist (3000 RPM) on the spacers, place the glassblown bubble

upside down, press gently on the edges, bake for 15 min on 95◦C hotplate.

• Using the glass pipette, pour AZ4620 photo-resist on your sample, if it has a through-

hole in the middle try not to let the PR get into that opening, make sure to cover the

edges with PR, spin (3000 RPM), bake for 10 min on 95◦C hotplate, cover it with a

glass petri dish while it is baking.

• repeat the previous step.

• Place the soft-mask on your sample using Kapton tape.

• Place the Si chip with the sample and the mask on a wafer using double-sided adhesive

tape.
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• Transfer the wafer to the exposure system, expose using a 10mW, g-line lamp, for 180

seconds.

• Remove the sample from the wafer, remove the mask, and develop in 1:3 Az400K: H2O

solution. Rinse with DI water.

• Double check under the microscope that the photo-resist is completely developed.

• Hard bake the sample on 120◦C hotplate for 45 minutes, cover with glass petri dish

while it is baking.

• The next step is mounting the Si chips with the upside-down samples on a handle wafer

for backside DRIE etching.

• Cut blue tape into pieces equal in size to the Si Chips used for sample mounting.

Attach the pieces to a handle wafer. One blue tape piece for each Si chip.

• Spin AZ4620 photo-resist (2000 RPM) on the handle wafer with blue tape pieces, bake

for 30 min in the 90◦C oven.

• Remove the Blue tape pieces. Apply a small drop of SANTOVAC 5 oil, spread it,

attach the Si chip.

• Etch in STS for 10 to 15 minutes.

• Check if the bubble is open.

• Repeat the previous two steps until the bubble is open. DO NOT etch for longer than

15 minutes intervals. The PR will be consumed and the surface will be damaged and

subsequent bonding will not be possible.

• Place the wafer of a 120◦C hotplate for 2-3 minutes. Remove the Si chips from the

wafer.
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Figure B.4: Sample mounted upside down on spacers and a Si chip. The lithography step is
completed here, ready for loading into STS.

B.3.6 Cell Cleaning

• Heat AZ400T to 70-80◦C on the hotplate.

• Place the Si chip with the opened bubble in the solution.

• Check the sample gently if it can be released from the spacer. This may take up to an

hour or two. DO NOT leave hot plate un-attended.

• Rinse sample with water, by placing the sample in a DI water bath.

• Repeat the previous step 2-3 times to remove AZ400T.

• Bake in 120◦C oven for 20-60 minutes.

• Place the sample upside-down on a clean spacer (do not use PR to assemble this spacer).

Perform oxygen plasma cleaning for 20-30 minutes In PlasmaTherm, for example.

• Perform RCA cleaning of the samples. Rinse with DI water.

• Make sure to blow dry the backside surface GENTLY using nitrogen gun.

• Place in 120◦C dehydration bake oven for 2-3 hours.
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B.4 Cell Filling

Figure B.5: Backside of the filling chamber showing pump, gas and venting valves, pressure
gauge, high voltage and pump line.

Figure B.6: sample loading sequence: loading sample on the lower electrode then putting
the ceramic frame, putting the metallic frame, putting dummy silicon sample to make the
stack taller than the ceramic frame, returning the lower electrode to its position.

B.4.1 Procedure

Sample Loading

• Under a fume hood inside the clean room, place one Rb pill on the backside glass cover,

place the cleaned sample on top of the glass cover and make sure the pill is setting
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inside its chamber. Bring the sample stack to the filling station in EG 2119.

• On the filling station, close the valve that connects the pump to the chamber, figure B.5.

• Turn off the pump.

• Loosen the chamber’s door nut.

• Vent the chamber using venting valve on the back, figure B.5.

• Remove the lower electrode and place it on the edge of the chamber door.

• Place the sample stack with the glass cap to the bottom on the center of the bottom

electrode, figure B.6.

• Place the ceramic frame such that the sample fits in the center, adjust using tweezers,

figure B.6.

• Carefully place the bonding frame on top of the sample, place dummy silicon die on

top of the frame, such that the dummy die level is higher than the ceramic frame,

figure B.6.

• Return the bottom electrode to its location, figure B.6.

• Close the chamber door, close the vent valve.

• Make sure the pump is completely stopped, and the frequency reading is 0Hz.

• Vent the pump using the venting valve.

• Open the pump line valve.

• Open the gas line valve.

• Start the pump.

• Keep pumping until the pressure reading is below 1x10−5 Torr.
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Figure B.7: Example of the 4 valves on each gas cylinder (1:Bottle valve, 2:pressure regulator,
3:regulator valve, 4:pipe valve)

• Set the heater to 350◦C, turn it on to remove moisture, keep pumping until the pressure

reading is around 1x10−5 Torr.

• Turn off the heater and let the sample cool down for few hours.

• Close the pump valve and turn off the pump.

Filling with gases

• Each gas cylinder has 4 valves (Bottle valve, pressure regulator, regulator valve, pipe

valve). make sure all of them are closed before starting this, figure B.7.

• We will start by Xe.

• Reduce the regulator knob on the Xe bottle, to have control over the flow once the

bottle is opened.

• Open the Xe bottle (using the bottle valve) and slowly adjust the regulator knob to

control the flow, pump the desired amount (80-100 Torr), close the regulator valve,

then the bottle valve.
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• Repeat for other gases, Ne and N2.

• Wait 15 minutes to allow the gases to fill the sample.

Figure B.8: Sample heater controller interface

Sealing the Cell

• Use Allan key to lower the top electrode slowly. Put the weights.

• Set the heater to 685◦C then turn the output on, figure B.8. Wait 10 minutes until the

sample is heated.

• Turn on the High Voltage supply, set the max current to 1mA (turn knob 1 on figure B.9

to ”AMPS” then adjust knob 2 so that the reading in display 4 is ”0.001”), set the

Figure B.9: High Voltage supply interface showing: 1) voltage or current selection knob, 2)
adjustment knob, 3) Voltage reading, 4) current reading, and the main output toggle button)
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max voltage to 600V (turn knob 1 on figure B.9 to ”VOLTS” then adjust knob 2 so

that the reading in display 4 is ”600.0”). Turn the main output on. (you will observe

the current display 4 on figure B.9 showing ”0.002” that is the resolution of the device.

you will also observe that the voltage is slowly rising and will stop around 350V, this

is the bond-forming).

• Change the maximum current to 3mA and keep the voltage the same 600V. Turn on

the output and wait 5 minutes. This will strengthen the bond

• Turn off the heater output and the voltage supply output.

• Wait a few hours or so to allow the sample to cool down. Never open the chamber

while the heater is reading more than 200◦C

• Remove the weights and lift the top electrode. Use Allan key to hold it in place.

• Vent the chamber and remove the bottom electrode, carefully remove the ceramic frame

and use tweezers to remove the filling frame. Use tweezers to take the sample out.

• Inspect the bonding visually. There shouldn’t be any large voids.

Activation of Rb pill

• Place the sample under activation laser, it is recommended to place it on a vertical

stage with small steps to improve the focus.

• Put on the appropriate laser goggles and warn everyone in the room that you will be

using the laser. It is invisible to the naked eye.

• Turn on the laser by turning the key switch to the left.

• Set the output power to 10% using the optical power slide, see figure B.10. Then start

the emission
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Figure B.10: Activation laser controller interface

• Use the IR viewer to focus the laser beam on the Rb dispenser. This Laser is dangerous

and invisible, be careful when using it, always put on safety goggles

• After focusing the laser beam, turn off the emission, then increase the power to 75%

and start the emission again for 30 seconds then stop. (the pill should be glowing in

orange color).

• Now the cell is filled with an alkali metal and buffer gas, next step is to verify the

presence of Rb using optical absorption experiment. The buffer gas content can be

estimated using line-width shift and broadening of the absorption dips.
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Appendix C

Vendors

Optics

Newport Corp.
1791 Deere Avenue, Irvine, CA, 92606.
Contact: 949-863-3144.
Website: http://www.newport.com
NOTE: High quality optical components, IR viewer and the optical rails were purchased from this
vendor.

Thorlabs Inc.,
56 Sparta Avenue, Newton, New Jersey, 07860.
Contact: 973-579-7227.
Website: http://www.thorlabs.us
NOTE: Very versatile collection of optical components, most of the lenses, beam splitters, photo-
detectors, and kinematic mounts used in the optical setup shown in Chapter 4 were purchased from
this vendor. Fast shipping usually components arrive in one week.

CVI laser optics,
200 Dorado Place SE, Albuquerque, NM 87123.
Contact: 505-296-9541.
Website: https://www.cvimellesgriot.com/
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Lasers

IPG Photonics Corporation,
50 Old Webster Road, Oxford, MA 01540.
Contact: 508-373-1169 (Gregory Swope).
Website: www.ipgphotonics.com
NOTE: 5W CW 1455nm Raman Fiber Laser, used for activating Rb pills and optical heating.

Photodigm Corp.,
1155 E. Collins Blvd., Suite 200, Richardson TX 75081.
Contact: 972-235-7584 (Esther Moreno).
Website: http://www.photodigm.com/
795nm compact tunable laser for Rb spectroscopy up to 100mW, narrow line-width 1MHz

Wafers

Silicon wafers

Ultrasil Corporation,
3527 Breakwater Ave, Hayward, CA, 94545.
Contact: 510-266-3700 (Raymond Martin Duque).
Website: http://www.ultrasil.com/
NOTE: This vendor provides Si wafers with LPCVD films. The wafers used for fabricating the
folded coils (Si + LPCVD 400nm SiN) were purchased from this vendor.

University Wafer,
850 Summer St. Suite# 207, Boston, MA 02127, USA
Contact: 800-713-9375 (Chris Baker).
Website: www.UniversityWafer.com
NOTE: Prime Si wafers with different thicknesses as well as Pyrex wafers. The 1mm thick prime
Si wafers used for fabricating the cell network samples were purchased from this vendor.

Glass wafers

Mark Optics,
1424 E. St. Gertrude Place, Santa Ana, CA 92705
Contact: 714-545-6684 (Erika Puentes).
Website: www.markoptics.com
NOTE: Has a wide variety of glass wafers with different compositions and sizes. The Borosilicate
glass (Pyrex) wafers used in the fabrication of cell network samples were supplied by this vendor.
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HOYA Corp.,
680 North McCarthy Blvd, Suite 120, Milpitas, CA 95035-5120.
Contact: 408-654-2274.
Website: www.hoyaoptics.com
E-mail: naoko.sato@hoya.com (SATO Naoko)
NOTE: This vendor supplies the Aluminosilicate Glass (SD-2) wafers used in the study of different
cell walls materials in Chapter 4.

Photo-lithography Masks

Photo-sciences,
2542 W 237th St., Torrance, CA, 90505.
Contact: 310-634-1500.
Website: https://dev.photo-sciences.com/
NOTE: This vendor provides high-quality chrome masks with fast turn around (less than a week).
The masks for fabricating the folded coils and heaters described in Chapter 3 were purchased from
this vendor.

CAD/Art Services,Inc.
87509 Oberman Lane, Bandon, OR 97411
Contact: 541-347-5315.
Website: https://www.outputcity.com/
Email: cas@outputcity.com
NOTE: This vendor provides lower resolution and inexpensive printed soft-masks. The masks for
fabricating the cell network designs used soft masks from this vendor.

PCB

JLC PCB
Shenzhen, China
Website: https://jlcpcb.com/
Email: support@jlcpcb.com
NOTE: This vendor provides fast and affordable PCB prototyping. The emulator PCB was supplied
by this vendor. The turn-around time is less than 10 days.

Sierra Assembly Technology Inc.
10880 Mulberry Ave, Fontana, CA 92337
Contact: 909-355-5400.
Website: https://www.protoexpress.com/
NOTE: This vendor supplies high-quality, specialized PCBs. The PCB for the folded NMR sensor
prototype shown in Chapter 3 was ordered from this vendor. Usually long lead time (3-5) weeks
and more expensive than JLCPCB.
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Clean Room and Vacuum Systems Supplies

Ceramisis Ltd.
30 Brunel Road, St. Leonards on Sea, East Sussex, TN38 9RT, England, UK.
Contact: +44-7793-363440.
Website: http://www.ceramisis.com/
NOTE: Custom Vacuum Heater installed in the atomic cell filling station in EG2119, UCI. This
heater heats up the sample to 400◦C for the anodic bonding process. It can go up to 1200◦C.

Ceramco Inc.
1467 E MAIN ST, CENTER CONWAY, NH 03813.
Contact: 603-447-2090.
Website: https://www.ceramicfasteners.com
NOTE: Replacement ceramic screws for the filling station heater.

Pfeiffer Vacuum Inc.
1622 Garland Ave, Tustin, CA 92780, USA.
Contact: 714-803-1895.
Website: http://www.pfeiffer-vacuum.com/
NOTE: This vendor supplied the custom Vacuum Chamber, turbopump, loading arm, and vacuum
parts of the filling station shown in Appendix A.

PTB Sales
1361 Mountain View Circle, Azusa, CA 91702
Contact: 626-334-0500.
Website: http://www.ptbsales.com/
NOTE: Local Vacuum pumps repair, they provided option to pick-up pumps form lab. Affordable,
lead time 3-4 weeks.

MTI Corp.
860 S. 19th Street, Richmond, CA 94804-3809.
Contact: 510-525-3070.
Website: http://www.mtixtl.com/
NOTE: This vendor provided the 2” tube vacuum glassblowing furnace that was shown in Appendix
B.3.4

TDI International
4595 Mountain Lakes Blvd, Redding, CA 96003.
Contact: 530-243-2200.
Website: https://www.tedpella.com/
NOTE: Clean-room supplies, SEM Supplies. Chemical resistant tweezers sample and wafer tweezers
were purchased from this supplier.
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Atomic

SAES Getters
1122 E. Cheyenne Mountain BLVD Colorado Springs, CO 80906
Contact: 719-527-4116.
Website: https://www.saesgetters.com/
Email: Heather Florence@saes-group.com (Heather Florence)
NOTE: This vendor supplied the Rb dispensers described in Chapter 4. Lead time is 8 weeks,
minimum order amount applies.

Airgas USA, LLC-West Region.
23585 Los Adornos Aliso Viejo, CA 92656
Contact: 619-787-1425.
Website: http://www.airgas.com/
Email: Todd.Price@airgas.com (Todd Price)
NOTE: This vendor supplied the processing gases for cell filling such as, natural Xenon, Neon, and
Nitrogen gases.

Machining and Prototyping

UCI FABWorks.
University of California Irvine, California IT2, Irvine, CA 92697.
Contact: 949-824-5667.
Website: http://manufacturing.uci.edu/index.php/fabworks-2/
NOTE: self serve 3D printing, laser cutting, and CNC machining. The guided folding mold discussed
in Chapter 3 was 3D printed by this vendor.

UC Irvine Research Machine Shop.
B012 Reines Hall, Irvine CA 92697
Contact: 949-824-6445.
Website: https://ps.uci.edu/content/ps-machine-shop-research
Email: msteinbo@uci.edu (Manager: Mark Steinborn)
NOTE: This shop provides quality machined parts and welding services to faculty and students.
Several parts were machined in this machine shop including, Aluminum and ceramic filling frames
shown in appendix B.4, and attachments to the electrodes of filling station shown in appendix A.
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