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ABSTRACT OF THE THESIS

Using Multitissue Multiomics Systems Biology to Understand

Tissue-specific Networks of Autism Spectrum Disorders

by

Cameron Elias Gill

Master of Science in Physiological Sciences
University of California, Los Angeles, 2024

Professor Xia Yang, Chair

The genetic heterogeneity of autism spectrum disorder (ASD) has been a long-standing obstacle
in our understanding of the pathogenic mechanisms of the disease, as the genetic risk of ASD is
made up of numerous common variants and rare de novo or inherited variants. Previous studies
have focused primarily on identifying rare variants and their impact on brain cortical cell types,
and these mutations have been found to primarily affect neurodevelopment by perturbing
neuronal functions. By contrast, common variants have been found to contribute substantially to
ASD heritability, but remain understudied. This suggests a need to consider both rare and
common variants of ASD to understand the genetic mechanisms of the disease. Furthermore,
previous studies have implicated the subcortical areas of the brain and other organ and tissue

systems such as the digestive and immune systems in ASD, but tissue-specific mechanisms



remain poorly explored. To address these knowledge gaps, this thesis aims to identify gene
networks and pathways informed by ASD common variants in both brain and peripheral tissues
across the body and further examine whether these networks also capture genes informed by rare
variants. We achieve this by integrating tissue level RNA sequencing data, genome wide
association study (GWAS) summary statistics, and tissue-specific transcriptional regulatory
networks using the multiomics integration method Mergeomics. Furthermore, we infer tissue-
specific key regulatory genes governing the pathways and networks of ASD common variants by
leveraging tissue-specific Bayesian gene regulatory networks. Lastly, we investigate whether the
gene networks informed by ASD common variants converge with those of known ASD rare
variants. Our multitissue multiomics systems studies incorporating both common and rare
variants reveal the key tissues, biological pathways, and gene network regulators of ASD and
identify key similarities and differences between ASD common and rare variants in tissue and

network specificity.
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Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that
manifests through social and communication deficits and various behavioral abnormalities [1, 2].
The prevalence of ASD has continued to grow in recent years, with current epidemiological
evaluations estimating that more than 50 million people have been diagnosed with a form of
autism, which equates to 1 in 132 individuals in a given population [3]. A diagnosis is based on
various criteria established by the American Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders (DSM)-5 [4]. Social and communication deficits can be categorized
as challenges in social-emotional reciprocity, nonverbal communicative behaviors, and
developing and understanding relationships. Behavioral abnormalities include restricted,
repetitive motor movements, adherence to routines and ritualized patterns, hyperfocused
interests, and hyper- or hyporeactivity to sensory stimulation. Severity is ranked on three levels:
Level 3, requiring very substantial support; Level 2, requiring substantial support; and Level 1,
requiring support. To be diagnosed with ASD, a child must display each of these deficits in a
persistent fashion during early developmental stages, and demonstrate at least two of the
behavioral abnormalities [4]. These symptoms must also cause clinically significant impacts on
everyday functioning in social and occupational contexts.

The wide range of social and communication deficits and behavioral abnormalities that
make up the symptoms of ASD, as well as the various levels of severity, indicate that there is a
diversity of ASD pathogenesis. This diversity of symptoms is likely rooted in substantial genetic
heterogeneity, as numerous rare mutations and common genetic variants with varying effect
sizes have been identified in ASD [5]. Despite having a greater risk of causing significant autism

syndromes, rare variants comprise only around 1% of patients with autism [6]. Common



variants, by contrast, are more prevalent in a population and collectively contribute to >50% of
ASD heritability, but have small effect sizes when compared to rare mutations [5, 7]. Thus,
common variants likely have an important role in the pathogenesis of ASD given their
prevalence in the population.

Both common and rare variants of ASD likely affect molecular and cellular pathways and
functions in key tissues and organ systems related to ASD pathogenesis. Previous studies have
identified a number of brain regions that are associated with ASD. For instance, the frontal and
temporal cortical regions have shown abnormal gene expression patterns in autistic patients
compared to typically developing children [8]. Two regions that are relevant for complex
cognitive processes, the anterior cingulate cortex and the amygdala, have exhibited decreased
neuronal activity and abnormal growth, respectively, in autistic patients [9, 10]. There has also
been evidence of non-symmetric development in the lateral ventricles and hippocampus when
comparing autistic and typical children [11]. Other implicated brain regions include the
prefrontal, parietal, and visual cortices, cerebellum, caudate nucleus, and various gyri and sulci
[12, 13].

In addition to the previously identified brain regions, a number of peripheral organ
systems and tissues have also been implicated in ASD association. For example, the immune
system has been previously studied in the context of how immune dysregulation causes
outcomes such as altered neurodevelopment and behavior [14]. The microbiota-gut-brain axis
has also been explored due to the interactions between commensal bacteria, immune cells,
enteric nerves, and neurotransmitters, as well as the observation that ASD patients frequently

present with gastrointestinal complications [15].



Despite these discoveries, the tissues, brain regions, causal genes, and biological
pathways relevant to ASD are not fully understood, and there are currently no medications
available to effectively treat ASD [16]. Thus, it is important to examine available omics data to
elucidate the most relevant disease-associated mechanisms in a tissue-specific fashion to
understand which tissues, pathways, and networks are affected by common versus rare variants.
We hypothesize that ASD follows an omnigenic model of pathogenesis, which suggests that hub
genes with large effect sizes interact with peripheral genes with smaller effect sizes through
highly interconnected networks [17]. It is plausible that rare variants are enriched among the hub
genes and essential tissues whereas common variants are enriched among the peripheral genes
and a broader range of tissues. Therefore, elucidating how common and rare variants of ASD
converge and diverge in tissue-specific gene networks will identify key tissues and gene drivers
within gene regulatory networks, which will provide further insights for future mechanistic and

therapeutic studies.

Methods

Analysis overview

We utilize a multiomics integration tool, Mergeomics, for our analysis of ASD [18, 19].
Briefly, we integrated full summary statistics of an ASD genome-wide association study
(GWAS) with tissue-specific expression and splicing quantitative traits (eQTLs/sQTLs) and
tissue-specific gene coexpression networks to allow for the ranked identification of pathways and
gene subnetworks most associated with ASD based on common variants examined in GWAS.
The pipeline then performs a key driver analysis to determine network hub genes, termed “key

drivers”, whose neighboring networks are enriched for disease-associated genes within



interconnected gene regulatory networks. The outputs of Mergeomics include a ranking of
biological pathways and subnetworks informed by ASD GWAS common variants as well as a
visualization of key drivers within disease subnetworks. The robustness of Mergeomics has been
substantiated by experimental validations of its computational predictions, and it has been
successfully applied to the analysis of other complex diseases [20-23]. A key advantage of
Mergeomics is that it utilizes the full disease association strength spectrum and contains a unique
test statistic that summarizes disease association enrichment at multiple quantile thresholds to
derive stable statistics that are less dependent on any given GWAS significance cutoff and
account for discrepancies in sample size and power. Figure 1 depicts our overall pipeline,
datasets utilized, and the three steps of our Mergeomics analysis that will be discussed in further
detail: marker dependent filtering (MDF), marker set enrichment analysis (MSEA), and key

driver analysis (KDA).

Multiomics datasets and gene networks
ASD common variant GWAS Summary Statistics

For our analysis, we utilized the most recent ASD GWAS to retrieve the full summary
statistics of ASD association p-values for all analyzed single-nucleotide polymorphisms (SNPs)
[24] This study included 18,381 individuals with ASD and 27,969 controls from a primarily
Central European (CEU) population. Ricopili [25], a computational pipeline developed by the
Psychiatric Genomics Consortium, was used for quality control and principal component
analysis. Following this, PLINK [26] was utilized for the primary association analysis and
METAL [27] for a meta-analysis. The GWAS summary statistics contained ASD association p-

values for more than 9 million SNPs.



ASD Rare Variants

ASD rare variants were compiled from the Simons Foundation Autism Research
Initiative (SFARI). The SFARI database is a research consortium database that compiles high
confidence rare gene variants of ASD [28]. Genes are stratified based on four levels: Level
Syndromic (high confidence in both ASD and a specific syndrome beyond the characteristics of
ASD), Level 1 (high confidence in their implication in ASD), Level 2 (strong candidate for ASD

association), and Level 3 (moderate evidence based on previous research).

Tissue-specific eQTLs and sQTLs

Tissue-specific eQTL and sQTL from 49 tissues were retrieved from the Genotype Tissue
Expression (GTEX) project database [29] for mapping SNPs from the ASD GWAS to genes and
further removing SNPs in high linkage disequilibrium (LD) of r2>0.5 based the CEU LD
information during MDF. Table 1 shows the complete list of tissue-specific eQTL/sQTL data

used as input for the Mergeomics analysis.

Weighted Gene Coexpression Network Analysis (WGCNA) to Define Data-driven Functional
Gene Sets

To group genes with functional relevance in individual tissues in a data-driven manner,
we used the transcriptome data from the GTEx database to construct tissue-specific WGCNA
gene coexpression modules [30]. Typically, these modules contain genes that are coexpressed
and functionally related. This provided a means of placing our ASD-associated GWAS genes

from MDF into categories that have biological relevance in individual tissue contexts. These



modules are functionally annotated through pathway enrichment analysis using KEGG [31],

Reactome [32], and BioCarta [33] databases.

Bayesian gene regulatory networks

To elucidate directional gene regulatory relations, Bayesian networks were constructed
from tissue-specific GTEXx databases using the RIMANET package [34]. As Bayesian networks
from individual datasets are typically sparse, networks from similar tissues were subsequently
merged to derive composite networks for brain, digestive, cardiovascular, endocrine, immune,
adipose, and reproductive tissues to reduce sparsity and ensure each network contains at least
10k genes. We further merged the immune and adipose tissue networks given the known
interactions between adipose and immune cells [35]. The merged networks and their

corresponding tissues and sizes are shown in Table 2.

Marker Dependent Filtering (MDF)

We first performed SNP-to-gene mapping using SNPs from the ASD GWAS together
with tissue-specific eQTLs and sQTLs from the GTEX project database. We also used distanced-
based mapping, which maps SNPs to genes at a maximum of +20 kilobases, as an alternative
mapping method. We corrected for linkage disequilibrium (LD) to filter known dependencies
between SNPs based on a LD cutoff threshold of r2 > 0.5 from the CEU population, as the ASD
GWAS population is mainly CEU. We used -log10 transformed p-values from the ASD GWAS
to represent SNP association strengths for ASD. The output of MDF contained tissue-specific
mapping of SNPs to genes based on eQTL, sQTL, and distance-based mapping as well as their

ASD association strengths in the form of -log10 p-values. No GWAS cutoffs were applied at this



stage to capture the full spectrum of disease association signals from strong, moderate, to subtle

or no association.

Marker Set Enrichment Analysis (MSEA)

In MSEA, tissue-specific ASD GWAS SNP-enriched gene sets were identified. The
GWAS-mapped genes from MDF and tissue-specific gene sets derived from WGCNA modules
were used as input for MSEA. To determine coexpression modules that are enriched in ASD

GWAS, a chi-like statistic was used as the enrichment test statistic in MSEA:
n

0; — E,

_;\/E + K

Briefly, in this formula a chi-statistic value is calculated, where “»n”” indicates the number

X

of quantile points in the dataset, which are thresholds used to divide the GWAS SNPs into
significant vs non-significant groups. Quantiles, which are rank-based, were used instead of
specific p-value cutoffs to enable the normalization of different GWAS datasets that have
different sample sizes and statistical power that influence the specific p-value ranges. For this
study, we used 10 quantiles ranging from 0.5 to an upper limit that is adjusted based on the
median module length to ensure that the distribution of these lengths are appropriately taken into
consideration for each module. The expression inside the summation includes O and E, which
are the number of observed and expected positive association signals above each quantile point,
respectively. The difference between these two values is divided by the sum of the square root of
the expected count of positive signals and a stability parameter, x, which was set to 1 to account

for datasets with extremely low counts.



The calculated y value is a sum of the output of the expression at each quantile point
from a given test gene set. To create a null distribution, we generated random gene sets matching
the gene number of the test gene set and calculate the y values from the random gene sets. The
following null hypothesis is then tested: Given the set of all distinct markers from a set of N
genes, these markers contain an equal proportion of positive association study findings when
compared to all the distinct markers from a set of N random genes [18]. The distribution is
estimated by randomly shuffling the genes mapped from disease-associated markers and
approximating the parameters to best represent the data (i.e. a parametric model is fit for the
distribution). From the null distribution, we are able to calculate a corresponding Z score, which
is a measurement of the number of standard deviations an observed value is from the mean of a
distribution. The Z score that is determined from the distance between our actual y value and the
mean of the null distribution provides us with an enrichment score for each gene set (i.e., a
tissue-specific coexpression module in the current study), which is then used to rank tissue-

specific modules for their enrichment in ASD.

Key Driver Analysis

Key gene drivers of ASD and their associated neighbors within gene regulatory networks
were identified in KDA. Significant ASD-GWAS enriched coexpression modules generated
from MSEA and tissue-specific probabilistic Bayesian gene regulatory networks are used as
input for KDA. Next, key drivers are predicted by first identifying hub nodes that are in the top
25% in terms of the number of edge connections. For each hub node and its subnetwork, KDA
utilizes a method that is similar to MSEA to assess enrichment in ASD-associated gene sets

identified from MSEA. The proportion of nodes in the subnetwork that are among ASD-



associated modules from MSEA is determined, and an enrichment statistic is calculated by
creating a null distribution of reshuffled subnetworks for the key driver. This is done to observe
the likelihood of obtaining the same proportion of disease-associated genes for a random
network of the same size. As output for KDA, tissue-specific key drivers and their first neighbors
within gene regulatory networks are identified. These networks are ranked by their enrichment
for ASD GWAS-informed gene sets from MSEA and are visualized in Cytoscape [36]. Using
EnrichR, a gene set enrichment annotation tool [37-39], we performed pathway enrichment
analysis in order to understand the functions of predicted key driver subnetworks. Furthermore,
genes in the subnetworks that contain known rare variants were annotated based on information
from the SFARI database. We considered the rare variants both as a collective across all four

ASD levels and at each individual stratification for the analysis.

Results

Marker Set Enrichment Analysis reveals tissue-specific coexpression modules enriched for ASD
GWAS signals

The MSEA analysis identified 47 tissues (10 brain regions, 37 peripheral tissues) from
which at least one coexpression module was significantly enriched for ASD associations in
GWAS below an FDR cutoff of 5% (Figure 2). Across these tissue, there were 196 ASD-
enriched WGCNA modules after MSEA. Table 3 shows the top 10 modules based on the
statistical significance of ASD GWAS enrichment, where coexpression modules from 5 brain
regions and 5 peripheral tissues with diverse annotations were observed. The anterior cingulate
cortex, which is involved in emotional regulation and cognitive control, and the amygdala,

another region crucial for emotional response, contained coexpression modules with the highest



ASD enrichment. The top annotations for these two modules highlight complex neuronal and
cross-system processes that suggest how impairments caused by ASD pathogenesis contribute to
dysregulation. The other top brain tissue coexpression modules (from the frontal cortex
(Brodmann Area 9), cerebellum, and cortex), consist of vital neuronal system activity
annotations. Together these findings support how impaired brain functioning plays a significant
role in ASD pathogenesis. Interestingly, peripheral tissues from the digestive system,
reproductive system, and immune system contained highly significant coexpression modules
relevant to mRNA splicing, immune pathways, cell cycle, and mTOR signaling.

When comparing the statistical significance between brain and peripheral modules, we
did not find significant difference in the average false discovery rate between brain and
peripheral modules (Figure 3). Across all significant modules, pathway annotation revealed a
broad range of consistent pathways including cell cycle, gene regulation (particularly splicing),
neuronal signaling, oxidative phosphorylation, immune system, and mammalian target of
rapamycin (MTOR) signaling (Figure 4).

To further explore the pathways within the enriched coexpression modules of tissues with
the most relevance to ASD, we categorized tissues into seven regions: Adipose/Immune, Brain,
Cardiovascular, Digestive, Endocrine, Female Reproductive, and Male Reproductive. There were
nearly 800 unique pathways across all regions, and we found that 80 were shared among all
seven regions (Figure 5). We also observed a vast array of shared and unique pathways, which
provided us a unique perspective on region-specific pathway annotations within ASD-enriched
coexpression modules while also highlighting terms that are abundant in nearly all tissues in the
analysis (e.g., immune pathways and cell cycle regulation). For the pathways shared across all

regions, and the regions that contained pathways shared amongst many tissues (e.g., Brain,
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Adipose/Immune), we highlighted annotations that were either abundant and highly enriched in
multiple tissues, or present in one tissue yet remained significant. Of note, brain region-specific
pathways displayed associations with crucial neuronal processes (NMDA receptor activation)
and neurodegenerative conditions (Alzheimer’s disease, Amyotrophic Lateral Sclerosis). Several
regions also displayed associations with immune system regulation, cellular signaling, growth
and proliferation, and protein interactions. These associations suggest the impacts of
dysregulation and abnormalities of these pathways on diseases such as ASD, which are rooted in

neurodevelopmental processes and cellular function.

Key Driver Analysis identifies distinctions between brain and peripheral tissue associations in
ASD

Using the significant tissue-specific coexpression modules identified from MSEA, we ran
KDA to identify tissue-specific key drivers. We also assessed whether the key drivers and their
subnetworks capture both common and rare variants of ASD. These key drivers were further
intersected with genes containing common and rare variants. As seen in Figure 6A, we observed
higher numbers of rare and common variants in the key drivers from our brain Bayesian
networks compared to all of the peripheral networks, supporting the importance of the brain in
ASD, as expected. However, when normalizing the gene counts of rare and common variants
against the total number of genes in the peripheral and brain Bayesian networks, the normalized
count was higher for periphery tissue networks (Figure 6B), due to their much smaller network
size compared to more complex brain network (Table 2). This finding supports that periphery

tissue genes possess sizable contributions to the overall genetic burden of the disease.
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We next sought to assess the relative distribution of common and rare variants among key
drivers from the brain and peripheral tissue networks. Figure 7 shows the percentage of key
drivers across both brain and peripheral tissues that are also either known rare variants from the
SFARI database, or common variants from the GWAS. We observed higher numbers of known
rare ASD variants among brain tissue-derived key drivers compared to peripheral tissue-derived
key drivers. As the rare variants mostly affect brain development and neuronal functions and
have larger effect sizes, our results aligns with the central role of brain tissues in the
pathogenesis of ASD. By contrast, there is a similar number of common variants among key
drivers between brain and peripheral tissues, suggesting that common variants of ASD are less
discriminative between the brain and the peripheral tissues.

To further test whether an observed overlap was statistically significant, we utilized
hypergeometric testing to assess if the overlap between the key drivers and common or rare
variants could be observed by random chance. We first examined all key drivers of a given
tissue, and then explored key drivers within the context of their associated subnetwork. As
shown in Figure 8, brain tissue key drivers showed much stronger enrichment for both the rare
and common variants than peripheral key drivers, further supporting the importance of the brain
in ASD. We also observed that there is a significantly higher enrichment for rare variants than
for common variants among the brain key drivers. As rare variants have larger effect sizes than
common variants, the observation of stronger enrichment of rare variants among brain key

drivers also supports the stronger influence of brain networks in ASD.
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Prioritization of key drivers based on rare/common variant enrichment in key driver
subnetworks

To prioritize key drivers, we assessed the significance of their subnetworks for common
and rare variant enrichment. Figure 9 and Figure 10 show the top 15 subnetworks in terms of
their rare variant overlap enrichment and common variant overlap enrichment, respectively.
There is a higher abundance of brain tissue key driver subnetworks (12 out of 15) that were
enriched for rare variants, and an increasing representation of digestive tissue key driver
subnetworks (5 out of 15) that had enrichment for common variants. We also found that there is
a higher proportion of brain tissue key driver subnetworks with are enriched for both rare and
common variants (Figure 11 and Table 4), supporting convergence between rare and common

variants in these key driver subnetworks.

The predicted key driver subnetworks of Synaptotagmin 1 and Adducin 2 support crucial roles as
regulators of neuronal processes and neurodevelopment.

Two brain tissue key driver subnetworks stood out due to their high overlap enrichment
of either common or rare variants. Synaptotagmin 1 (SYT1), shown in Figure 12, held the
highest rare variant overlap enrichment in its subnetwork across all key drivers. Its prediction in
our analysis as a key driver underscores its significance as a known rare variant and also implies
this gene’s potential impact on other rare (e.g., RELN, NCKAP1) and common variants (e.g.,
CACNB3, SV2B) within its subnetwork (Figure 12A). This gene is a known syndromic ASD
rare variant that causes severe neurodevelopmental abnormalities, and it serves as a membrane

protein of synaptic vesicles involved in neurotransmitter release during calcium binding and thus
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plays a vital role in neuronal processes [40, 41]. The top annotation terms from the SYT1
subnetwork agree with these crucial neuronal processes (Figure 12B).

The other key driver subnetwork of interest, Adducin 2 (ADD?2), also showed a high
enrichment for both rare (e.g., SHANK2, SCN8A) and common variants (e.g., ACTN2, DMN1)
(Figure 13A). Adducin genes encode cytoskeleton proteins that are critical for osmotic rigidity
and cell shape by regulating the formation of the spectrin-actin membrane skeleton [42]. ADD2
is expressed in the brain, and its knock-out results in the loss of activity-dependent connection
formation between neurons when knocked out [43]. This suggests ADD2’s relevance to learning
and development and its contribution to ASD as a key component of the disease pathogenesis.
Similar to SYT1, this is also reflected in the top annotations of ADD2’s subnetwork, which show

important nervous system processes (Figure 13B).

Discussion

ASD is a neurodevelopmental disorder that possesses complex heterogeneity in its
genetic architecture [16]. Previous research has explored the role of both common and rare
variants in the pathogenesis of ASD, and have implicated numerous genes, tissues, and
biological pathways [5, 44, 45]. Therefore, a leading challenge of the disease is the complexity in
both how it manifests in an individual and the underlying genetic mechanisms that vary
significantly. Numerous studies have identified relevant aspects of the central nervous system as
well as various peripheral regions with ASD association, and have highlighted the abundant
interactivity between organs, tissues, and genes [8-15, 46].Thus, given the nature of ASD and the
lack of current pharmacological treatments, continued research aims to fully deconstruct the

genetic intricacies of the disease.
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In our study, we utilize summary statistics from an ASD GWAS [24], publicly available
QTL data from the GTEX database [29], and gene regulatory network information to investigate
ASD with use of a computational tool, Mergeomics [18, 19]. Taking into account both common
and rare variants, we sought to understand the molecular interactions within and between brain
and peripheral tissues to uncover tissues, genes, biological pathways, and gene networks that are
enriched for common and/or rare variants of ASD. Furthermore, we aimed to predict key drivers
within gene regulatory networks that may be of interest for further research and experimental
validation.

From our marker set enrichment analysis (MSEA), we found that there are a diverse
range of ASD-enriched tissues and gene sets. While brain tissues possessed the highest disease
association enrichment, seen in the anterior cingulate cortex and the amygdala, there were also
peripheral tissues that showed relevance to ASD genetic signals (Table 3). The coexpression
module enrichments of the anterior cingulate cortex and amygdala align with previous results
that observed structural abnormalities of this cortex in both ASD mouse models and adult ASD
individuals [47, 48], and that have identified various dysregulations and alterations in the
amygdala of those with ASD [49]. With regards to the enriched modules of the other brain
regions from Table 3 (frontal cortex [Brodmann Area 9], cerebellum, and cortex), previous
neuroanatomical analyses have included these tissues as regions of the brain that display
abnormal development [50-52]. Thus, our findings provide additional evidence suggesting the
importance of cognitive functioning, motor coordination, and complex neuronal system activity
in the context of ASD.

In addition to these confirmatory outcomes of various brain tissues, we found that tissues

in the digestive, reproductive, endocrine, and immune systems also displayed ASD enrichment
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within particular coexpression modules. The digestive system has recently become heavily
implicated in ASD pathogenesis as research has continued to explore the interactions within the
microbiota-gut-brain axis, and how there are distinctive gastrointestinal complications present in
those with ASD [15, 53]. There has also been extensive research on how maternal factors and its
influence on fetal development contribute to ASD risk [54-59]. This influence can occur at a
hormonal level or through immune pathways, which demonstrate not only the cross-system
interactions at play within the pathogenesis of ASD but also highlight its complexity across both
brain and peripheral regions of the body.

Our exploration of pathway annotations from these disease-enriched coexpression
modules further emphasize how the complexity of ASD spans throughout the body. We found
that immune, cellular signaling, and cell growth and regulation pathways were noticeably
abundant in various regions (Figure 4 and Figure 5). In Figure 5, we found that Alzheimer’s
disease and Amyotrophic Lateral Sclerosis (ALS) were amongst brain region pathways that were
consistently enriched, which interestingly aligns with how this has been area of research given
that these two disorders are rooted in neurological dysfunction, similar to ASD. As there exists a
spectrum of neurological disorders ranging from neurodevelopment to neurodegeneration, with
ASD, ALS, and Alzheimer’s falling within these confines, research has explored potential
associations within this spectrum [60-64].

We also noticed how involved the endocrine and immune systems were within various
regions. The male and female reproductive, digestive, and adipose systems contained various
pathways involved in immune regulation (e.g., hyaluronan uptake and degradation, Interleukin-6,
CDA40 pathways) and endocrine function (e.g., cysteine and methionine metabolism, fatty acid

synthesis), or cellular signaling, processes, and regulation (e.g., MAPK pathways, EDG1
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pathways, ENOS activation). As research continues to explore the role of immune dysregulation
and metabolic dysfunction in ASD pathogenesis [65-69], we recognize that our observed
relationships further emphasize the interconnected nature between pathways and across systems.
Dysregulation in one region is likely to impact many others, which thus supports the idea that
these relationships collectively contribute to the diversity and complexity of ASD pathogenesis.
As a whole, our MSEA findings recapitulate previous studies that highlight the impact of altered
neural functioning in various brain regions, and we also emphasize the rising understanding of
the roles that digestive, reproductive, endocrine, and immune system have in ASD.

In our key driver analysis, we discovered that the brain outperforms peripheral tissues in
terms of abundance of significant rare and common variants. Furthermore, we also identified key
drivers and their subnetworks that possessed significant enrichment in either rare or common
variants. A greater number of brain tissue key driver subnetworks contained a significant number
of both rare and common variants, which suggest that these key drivers are crucial regulators
within ASD pathogenesis given the convergence of these two types of variants. The rankings of
key driver subnetworks in terms of their rare or common variant overlap enrichment highlight
the central role of the brain in ASD, yet also point towards the digestive system as the leading
peripheral region for common variant abundance. We visualized the subnetwork of two genes,
SYT1 and ADD2, which we identified as key drivers given the number of edge connections they
contained.

Overall, we found that our approach to studying ASD aligns with previous research
findings while also revealing new avenues for future exploration. Each of our top 10
coexpression modules (Table 2) held a degree of relevance in ASD pathogenesis based on prior

knowledge, and the most replicated pathways from MSEA (Figure 4 and Figure 5)
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demonstrated how the various cellular processes and immune pathways were abundant across
brain and peripheral tissues. While the insignificant difference in the collective adjusted p-values
between brain and peripheral coexpression modules (Figure 3) may also be a factor of
significance dilution due to the increased complexity of brain tissue genes, it may reflect the
growing body of research that suggests ASD relevance within other regions of the body, namely
the digestive, endocrine, and immune systems [14, 15, 53, 56, 59, 70].

From our key driver analysis, we highlight regulatory relationships of two key gene
drivers, SYT1 (Figure 11) and ADD2 (Figure 12). While SYT1 has previously been found to be
a known rare variant of ASD [28], and ADD2 a common variant [24], our network analysis
highlights unexplored tissue-specific network interactions with both types of variants. These
networks provide the opportunity for future experimentation and validation. In addition, the key
driver that indicated convergence of both variant types in their subnetworks (e.g., SCN8A,
AMPH, ATP9A) also provided a new perspective for genes that possess particularly unique
regulatory interactions in ASD pathogenesis.

Overall, using common variant inputs, we discover significant ASD relevance in both
brain and peripheral regions as well as notable convergence of known rare and common variants
in the brain. Our predicted subnetworks identify a number of key drivers, some of which were
previously implicated, and possess diverse potential interactions and regulatory mechanisms on

neighboring genes.

Limitations of the study
Despite our findings, there are several limitations that are present as well as ample

opportunities for improvement. First, the data used as input is slightly dated. The GWAS was
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published in 2019 [24], and the most recent version of the GTEXx data used for the eQTL and
SQTL data was collected in 2019 as well [29]. Furthermore, the demographics of the GTEx
database tissue donors is heavily skewed against minority populations, with 84.6% of donors
identifying as White. ASD research is constantly updating and new discoveries continue to be
made, so a primary area of improvement is to utilize more recent and culturally diverse data as it
becomes available. Resources that are actively updated such as the Simons Foundation for
Autism Research Initiative [28], the Australia Autism Biobank [71], and the MSSNG database
[72] will undoubtedly provide useful data for our computational tool. Furthermore, there are also
studies that have performed transcriptome, metabolome, and epigenome level analyses of ASD
and which are likely to expand our understandings as well [73-75].

We also acknowledge that we have only performed a tissue-level analysis with the use of
sex-combined data. Cell-level analysis is a fast-growing area of research across numerous fields,
and ASD is a disease that demands this level of cellular specificity. Furthermore, there is a
gender bias in the disease prevalence [70], which emphasizes that a sex-specific analysis is likely
to reveal key insights.

Utilizing updated datasets and carrying out cell-level sex-specific analyses are key areas
of future work. Doing such in conjunction with our initial results will undoubtedly shed further
light on ASD’s genetic complexities. Overall, we hope that our findings will assist in the
generation of new hypotheses and experimental validations to help uncover new mechanisms for

neurodevelopmental disorders such as ASD.
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Tables

Table 1. Summary of eQTLs and sQTLs from the Genotype Tissue Expression Portal

(GTEX) database for Mergeomics analysis.

eQTLs and sQTLs from 14 brain regions and 35 peripheral tissues were retrieved from the GTEx
database to be used for tissue-specific mapping of SNPs from the ASD GWAS to genes that are

potentially regulated by the SNPs in each tissue.
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Table 2: Summary of tissue-specific Bayesian networks constructed using GTEX
transcriptome data.

Bayesian networks were constructed for individual tissues and further merged into seven
Bayesian networks representing major biological systems to reduce sparsity.

Adipose Adipose (Subcutaneous), Adipose (Visceral Omentum) 2262 17758

Brain Amygdala, Anterior Cingulate Cortex, Caudate, Cerebellar 37866 223949
Hemisphere, Cortex, Frontal Cortex, Hippocampus,
Hypothalamus, Nucleus Accumbens, Putamen, Pituitary, Spinal
Cord, Substantia Nigra

Cardiovascular Artery (Aorta), Artery (Coronary), Artery (Tibial), Heart (Atrial 11241 41168
Appendage), Heart (Left Ventricle)

Digestive Colon (Sigmoid), Colon (Transverse), Esophagus 14259 68401
(Gastroesophageal Junction), Esophagus (Mucosa), Esophagus
(Muscularis), Liver, Minor Salivary Gland, Pancreas, Small
Intestine (Terminal lleum), Stomach

Endocrine Adrenal, Ovary, Pituitary, Testis, Thyroid 14720 37690
Female Breast Mammary Tissue, Endocervix, Ectocervix, Fallopian 10020 25117
Reproductive Tube, Ovary, Uterus, Vagina
Immune EBV Lymphocytes, Spleen, Whole Blood 10430 21815
Immune-Adipose Adipose (Subcutaneous), Adipose (Visceral Omentum), EBV 12692 39573

Lymphocytes, Spleen, Whole Blood
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Table 3: Top 10 coexpression modules enriched for ASD GWAS signals from Marker Set
Enrichment Analysis.

The top ten gene sets from MSEA were ranked based on false discovery rate (FDR) of ASD
GWAS enrichment. Tissue corresponds to the sample name from GTEX data, with the module
name indicating which coexpression module within each tissue showed ASD GWAS enrichment.
The top annotations indicate the pathway terms that had the highest enrichment p-value based on
pathway annotation of the genes in each tissue-specific coexpression module.

1 | Anterior Cingulate Cortex blue 1.27E-24 Protein Degredation, Long Term Potentiation, Immune System

2 | Amygdala black 3.07E-24 Spliceosome Activity, Proteasome Activity, Electron Transport

3 | Liver turquoise  5.59E-23 Cell Cycle Regulation, DNA Repair, mTORC1 Activity

4 | EBV Lymphocytes blue 2.01E-19 TNF-a Signaling, Pancreatic Cancer, Neurotrophin Signalling

5 | Minor Salivary Gland lightgreen 6.69E-19 RNA Splicing, TGF-B signaling, Membrane Trafficking

6 | Frontal Cortex gray60 7.77E-19 Immune Response and Regulation, Neuronal, Synaptic Processes
7 | Uterus turquoise  3.33E-16 Transcription, mMRNA processing

8 | Cerebellum purple 1.04E-15 Energy Metabolism, Cellular Stress Response, Oxygen Transport
9 | Cortex blue 2.49E-15 Olfactory Signal Transduction

10 | Testis magenta 2.52E-13 Cell Cycle Regulation, DNA Repair
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Table 4: Table displaying the convergence of brain and peripheral tissues in terms of their
rare and common variant overlap enrichment scores among network key drivers.

Specific overlap enrichment scores for sixteen key driver subnetworks that possessed an overlap
enrichment p-value of less than 0.05 for both rare and common variants.

ADD2 2.07E-09 8.12E-07 Substantia Nigra, Pituitary, Frontal Cortex Brain
AMPH  0.000143 0.004631 Substantia Nigra Brain
ATP9A  8.83E-06 0.000623 Cerebellum Brain
CALD1 0.00222 0.024888 Colon Sigmoid Digestive
CD74 0.033097 0.000532 Colon Sigmoid Digestive
DYNC1H1 0.01168 0.007854 Cerebellum Brain
DYNC1I1 0.030137 0.011718 Cerebellum Brain
MAP2K1 0.000191 0.031176 Caudate Brain
PCDH7 1.61E-05 0.036614 Colon Sigmoid Digestive
PLPP3 0.0006  0.036894 Putamen, Frontal Cortex Brain
RBFOX2 242E-05 0.013884 Substantia Nigra Brain
SCN8A 0.000599 0.00065 Substantia Nigra Brain
SNAP91 9.16E-08 0.016832 Substantia Nigra Brain
SYP 0.000796 0.021754 Substantia Nigra, Pituitary Brain
TMEM130 3.45E-08 0.001244 Pituitary Brain
XKR4 0.021331 0.006791 Colon Sigmoid Digestive
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Figures

Figure 1: Analysis workflow.
The first step of the overall analysis pipeline for Mergeomics is marker dependent filtering

(MDF) to correct of linkage disequilibrium (LD) in GWAS SNPs. Summary statistics from the
genome-wide association study are taken with tissue-specific eQTL and sQTL data to map
genetic markers to corresponding genes. ASD-enriched modules are identified in marker set
enrichment analysis (MSEA) by organizing the marker-mapped genes from MDF into
coexpression gene sets and assessing their enrichment against a null distribution. By assessing
their disease enrichment in a gene regulatory network, important regulatory genes are identified
in key driver analysis (KDA). Figure created with BioRender.com.
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Figure 2: Numbers of ASD GWAS enriched modules by tissue from Marker Set
Enrichment Analysis.
Tissues were ranked by the number of WGCNA modules that were below an FDR cutoff of 5%

for ASD GWAS association enrichment.
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Figure 3: No significant difference was observed in the ASD GWAS enrichment
significance between brain and periphery coexpression modules in MSEA.

The difference between the -log10 false discovery rate of brain and peripheral modules was
calculated utilizing a two-sided Wilcoxon test given the non-parametric distribution of the data
based on Shapiro-Wilk test (W = 0.64228, p-value < 2.2e-16).
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Figure 4: Most consistent functional terms across significant coexpression modules from
Marker Set Enrichment Analysis show cellular processes, mMRNA splicing, immune system,
and mTOR signaling pathways.

All pathway annotation terms for genes within ASD-associated modules were collected and

ranked based on the number of modules enriched for each pathway.
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Figure 5: Shared and unique terms across MSEA coexpression module pathway
annotations between seven groups.
The seven groups were Adipose/Immune, Brain, Cardiovascular, Digestive, Endocrine, Female

Reproductive, and Male Reproductive. The pathways were ranked based on the median values of
the -log10 transformed adjusted p-values if the pathway was derived from multiple coexpression
modules, and the top three terms (where applicable) were subsequently depicted on the figure.
Adipose/Immune, Brain, and the group of pathways shared across all tissues were extensive
enough that we categorized pathways based on whether they were shared across >3 tissues in the
groups (and >30 tissues in the case of the shared group), or if they were still moderately enriched
but only present in one tissue within this region. Adipose/Immune: Phospholipid Metabolism
(Whole Blood), Metabolism of Porphyrins (Spleen), ENOS Activation and Regulation (Cultured
Fibroblasts). Brain: Olfactory Signaling and Transduction (Cortex), ALS Pathway (Putamen),
Cytokines and Inflammatory Response (Caudate). Shared: Because at a minimum, pathways in
this group must be shared by at least one tissue in each of the seven regions, the three “uniquely
enriched” terms came from 9 tissues at a minimum.
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Figure 6: Numbers of common and rare ASD variants among brain and peripheral tissue
Bayesian networks.

A) Raw counts of the number of genes in each network that were either known rare variants or
common variants from the ASD GWAS were calculated and compared across each merged
Bayesian network. B) Normalized counts of the number of genes in each network.

Overlap of Rare and Common Variants in Different Tissues

A

Variant Type [l Rare Variant Raw Counts [ll Common Variant Raw Counts

ILLLLLLL

Brain Digestive Endocrine Cardiovascular Adipose-Immune Immune Female-Reproductive Adipose

2000

1750

1500

1250

Raw Counts
=i
o
S
S

750

501

o

25

o

Variant Type [l Rare Variant Percent ll Common Variant Percent
10.00

8.75

7.50
6.2
5.0
3.7
2.5
1.2
0.00

Brain Cardiovascular Digestive  Adipose-Immune  Adipose Endocrine Immune Female-Reproductive

Percentage (%)
o o o

o

[6;]

29



Figure 7 : Average percentage of key drivers overlapping with known ASD rare variants

and common variants.

The percentage of key drivers for a given tissue and their overlap with known rare variants from
the SFARI database and common variants from the ASD GWAS was calculated for brain and
peripheral key drivers. Each dot corresponds to all the key drivers from a given brain or
peripheral tissue. Given the non-normal distribution of the data and the percentages of the
Shapiro-Wilk test (W = 0.95837, p-value = 0.008316), we performed a Wilcoxon test to
determine the significance between groups. As we expected the medians of the brain tissues to be
higher than that of the peripheral tissues, this was one-sided.
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Figure 8: Overlap enrichment score comparisons of key drivers with rare variants and
common variants.

Hypergeometric testing was utilized to compare a set of key drivers for a given tissue and the
collective set of rare variants, or alternatively the common variants that correspond to that given
tissue based on marker dependent filtering. For this comparison, all brain tissues were pooled
into one category and all peripheral tissues into the other category. The significance was assessed
in the context of a background set of genes, which for rare variants were the respective merged
Bayesian networks that corresponded to the tissue, combined with all SFARI rare variants. For
common variants, the background set of genes was the corresponding merged Bayesian network
combined with the set of GWAS common variants that were mapped from the respective tissue.
A two-sided Wilcoxon test was used due to the non-parametric nature of the data based on the
Shapiro-Wilk test (W = 0.45273, p-value = 6.194e-16).
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Figure 9: Top 15 key driver subnetworks ranked by rare variant overlap enrichment.

Key drivers were ranked by their -log10 transformed p-value generated from hypergeometric
testing of the key driver subnetwork and its overlap with SFARI rare variants. Within each bar is
the key driver’s tissue(s) with the name of the gene set in parentheses. The numbers to the right
of each bar display the fold enrichment for each subnetwork, which indicates the subnetwork’s
enrichment of key driver-regulated genes for known rare variants. The background set of genes
for this analysis were all genes in the GTEX transcriptome data for each tissue. SN: Substantia
nigra. PT: Pituitary. FC: Frontal Cortex.
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Figure 10: Top 15 key driver subnetworks ranked for common variant overlap enrichment.
Key drivers were ranked on their -log10 transformed p-value generated from hypergeometric
testing of the key driver subnetwork and its overlap with ASD GWAS common variants. Within
each bar is the key driver’s tissue(s) with the name of the gene set in parentheses. The numbers
to the right of each bar display the fold change for each subnetwork, which indicates the
subnetwork’s enrichment or depletion of key driver-regulated genes in relation to the common
variants associated with the tissue of the key driver. The background set of genes for this
analysis were in the GTEX transcriptome data for each tissue. SN: Substantia nigra. PT: Pituitary.

FC: Frontal Cortex.
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Figure 11: Venn Diagrams displaying the convergence of brain and peripheral tissues in
terms of their rare and common variant overlap enrichment scores.

Sixteen key driver subnetworks shared an overlap enrichment p-value of less than 0.05 for both
rare and common variants. The two diagrams separate the data by region and indicate that brain
key driver subnetworks were more abundant. KD = Key Driver. CV = Common Variant. RV =

Rare Variant.
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Figure 12: Key Driver Subnetwork for Synaptotagmin 1 (SYT1), a key driver with high
rare variant overlap enrichment.

A) SYT1 and its first neighbors visualized using Cytoscape and colored based on their SFARI
database ASD confidence stratification or by their ASD GWAS common variant disease
association strength. B) EnrichR was used to analyze the key driver subnetwork genes to
generate pathway annotation terms. Terms were ranked based on their -log10 false discovery
rate.
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Figure 13: Key Driver Subnetwork for Adducin 2, (ADD?2) a key driver with high rare and
common variant overlap enrichment.
A) ADD?2 and its first neighbors visualized using Cytoscape and colored based on their SFARI

database ASD confidence level stratification or by their ASD GWAS common variant disease
association strength. B) EnrichR was used to analyze the key driver subnetwork genes to
generate pathway annotation terms. Terms were ranked based on their -log10 false discovery
rate.
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