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ABSTRACT OF THE THESIS 

 

 

 

Using Multitissue Multiomics Systems Biology to Understand  

Tissue-specific Networks of Autism Spectrum Disorders 

 

by 

 

Cameron Elias Gill  

 

Master of Science in Physiological Sciences 

University of California, Los Angeles, 2024 

Professor Xia Yang, Chair 

 

The genetic heterogeneity of autism spectrum disorder (ASD) has been a long-standing obstacle 

in our understanding of the pathogenic mechanisms of the disease, as the genetic risk of ASD is 

made up of numerous common variants and rare de novo or inherited variants. Previous studies 

have focused primarily on identifying rare variants and their impact on brain cortical cell types, 

and these mutations have been found to primarily affect neurodevelopment by perturbing 

neuronal functions. By contrast, common variants have been found to contribute substantially to 

ASD heritability, but remain understudied. This suggests a need to consider both rare and 

common variants of ASD to understand the genetic mechanisms of the disease. Furthermore, 

previous studies have implicated the subcortical areas of the brain and other organ and tissue 

systems such as the digestive and immune systems in ASD, but tissue-specific mechanisms 
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remain poorly explored. To address these knowledge gaps, this thesis aims to identify gene 

networks and pathways informed by ASD common variants in both brain and peripheral tissues 

across the body and further examine whether these networks also capture genes informed by rare 

variants. We achieve this by integrating tissue level RNA sequencing data, genome wide 

association study (GWAS) summary statistics, and tissue-specific transcriptional regulatory 

networks using the multiomics integration method Mergeomics. Furthermore, we infer tissue-

specific key regulatory genes governing the pathways and networks of ASD common variants by 

leveraging tissue-specific Bayesian gene regulatory networks. Lastly, we investigate whether the 

gene networks informed by ASD common variants converge with those of known ASD rare 

variants. Our multitissue multiomics systems studies incorporating both common and rare 

variants reveal the key tissues, biological pathways, and gene network regulators of ASD and 

identify key similarities and differences between ASD common and rare variants in tissue and 

network specificity. 
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Introduction 

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that 

manifests through social and communication deficits and various behavioral abnormalities [1, 2].   

The prevalence of ASD has continued to grow in recent years, with current epidemiological 

evaluations estimating that more than 50 million people have been diagnosed with a form of 

autism, which equates to 1 in 132 individuals in a given population [3]. A diagnosis is based on 

various criteria established by the American Psychiatric Association’s Diagnostic and Statistical 

Manual of Mental Disorders (DSM)-5 [4]. Social and communication deficits can be categorized 

as challenges in social-emotional reciprocity, nonverbal communicative behaviors, and 

developing and understanding relationships. Behavioral abnormalities include restricted, 

repetitive motor movements, adherence to routines and ritualized patterns, hyperfocused 

interests, and hyper- or hyporeactivity to sensory stimulation. Severity is ranked on three levels: 

Level 3, requiring very substantial support; Level 2, requiring substantial support; and Level 1, 

requiring support. To be diagnosed with ASD, a child must display each of these deficits in a 

persistent fashion during early developmental stages, and demonstrate at least two of the 

behavioral abnormalities [4]. These symptoms must also cause clinically significant impacts on 

everyday functioning in social and occupational contexts.   

The wide range of social and communication deficits and behavioral abnormalities that 

make up the symptoms of ASD, as well as the various levels of severity, indicate that there is a 

diversity of ASD pathogenesis. This diversity of symptoms is likely rooted in substantial genetic 

heterogeneity, as numerous rare mutations and common genetic variants with varying effect 

sizes have been identified in ASD [5]. Despite having a greater risk of causing significant autism 

syndromes, rare variants comprise only around 1% of patients with autism [6]. Common 
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variants, by contrast, are more prevalent in a population and collectively contribute to >50% of 

ASD heritability, but have small effect sizes when compared to rare mutations [5, 7]. Thus, 

common variants likely have an important role in the pathogenesis of ASD given their 

prevalence in the population.  

Both common and rare variants of ASD likely affect molecular and cellular pathways and 

functions in key tissues and organ systems related to ASD pathogenesis. Previous studies have 

identified a number of brain regions that are associated with ASD. For instance, the frontal and 

temporal cortical regions have shown abnormal gene expression patterns in autistic patients 

compared to typically developing children [8]. Two regions that are relevant for complex 

cognitive processes, the anterior cingulate cortex and the amygdala, have exhibited decreased 

neuronal activity and abnormal growth, respectively, in autistic patients [9, 10]. There has also 

been evidence of non-symmetric development in the lateral ventricles and hippocampus when 

comparing autistic and typical children [11]. Other implicated brain regions include the 

prefrontal, parietal, and visual cortices, cerebellum, caudate nucleus, and various gyri and sulci 

[12, 13]. 

In addition to the previously identified brain regions, a number of peripheral organ 

systems and tissues have also been implicated in ASD association. For example, the immune 

system has been previously studied in the context of how immune dysregulation causes 

outcomes such as altered neurodevelopment and behavior [14]. The microbiota-gut-brain axis 

has also been explored due to the interactions between commensal bacteria, immune cells, 

enteric nerves, and neurotransmitters, as well as the observation that ASD patients frequently 

present with gastrointestinal complications [15].  
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Despite these discoveries, the tissues, brain regions, causal genes, and biological 

pathways relevant to ASD are not fully understood, and there are currently no medications 

available to effectively treat ASD [16]. Thus, it is important to examine available omics data to 

elucidate the most relevant disease-associated mechanisms in a tissue-specific fashion to 

understand which tissues, pathways, and networks are affected by common versus rare variants. 

We hypothesize that ASD follows an omnigenic model of pathogenesis, which suggests that hub 

genes with large effect sizes interact with peripheral genes with smaller effect sizes through 

highly interconnected networks [17]. It is plausible that rare variants are enriched among the hub 

genes and essential tissues whereas common variants are enriched among the peripheral genes 

and a broader range of tissues. Therefore, elucidating how common and rare variants of ASD 

converge and diverge in tissue-specific gene networks will identify key tissues and gene drivers 

within gene regulatory networks, which will provide further insights for future mechanistic and 

therapeutic studies.  

 

Methods 

Analysis overview 

We utilize a multiomics integration tool, Mergeomics, for our analysis of ASD [18, 19]. 

Briefly, we integrated full summary statistics of an ASD genome-wide association study 

(GWAS) with tissue-specific expression and splicing quantitative traits (eQTLs/sQTLs) and 

tissue-specific gene coexpression networks to allow for the ranked identification of pathways and 

gene subnetworks most associated with ASD based on common variants examined in GWAS. 

The pipeline then performs a key driver analysis to determine network hub genes, termed “key 

drivers”, whose neighboring networks are enriched for disease-associated genes within 
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interconnected gene regulatory networks. The outputs of Mergeomics include a ranking of 

biological pathways and subnetworks informed by ASD GWAS common variants as well as a 

visualization of key drivers within disease subnetworks. The robustness of Mergeomics has been 

substantiated by experimental validations of its computational predictions, and it has been 

successfully applied to the analysis of other complex diseases [20-23]. A key advantage of 

Mergeomics is that it utilizes the full disease association strength spectrum and contains a unique 

test statistic that summarizes disease association enrichment at multiple quantile thresholds to 

derive stable statistics that are less dependent on any given GWAS significance cutoff and 

account for discrepancies in sample size and power. Figure 1 depicts our overall pipeline, 

datasets utilized, and the three steps of our Mergeomics analysis that will be discussed in further 

detail: marker dependent filtering (MDF), marker set enrichment analysis (MSEA), and key 

driver analysis (KDA). 

 

Multiomics datasets and gene networks 

ASD common variant GWAS Summary Statistics   

For our analysis, we utilized the most recent ASD GWAS to retrieve the full summary 

statistics of ASD association p-values for all analyzed single-nucleotide polymorphisms (SNPs) 

[24] This study included 18,381 individuals with ASD and 27,969 controls from a primarily 

Central European (CEU) population. Ricopili [25], a computational pipeline developed by the 

Psychiatric Genomics Consortium, was used for quality control and principal component 

analysis. Following this, PLINK [26] was utilized for the primary association analysis and 

METAL [27] for a meta-analysis. The GWAS summary statistics contained ASD association p-

values for more than 9 million SNPs.  
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ASD Rare Variants 

ASD rare variants were compiled from the Simons Foundation Autism Research 

Initiative (SFARI). The SFARI database is a research consortium database that compiles high 

confidence rare gene variants of ASD [28]. Genes are stratified based on four levels: Level 

Syndromic (high confidence in both ASD and a specific syndrome beyond the characteristics of 

ASD), Level 1 (high confidence in their implication in ASD), Level 2 (strong candidate for ASD 

association), and Level 3 (moderate evidence based on previous research). 

 

Tissue-specific eQTLs and sQTLs 

Tissue-specific eQTL and sQTL from 49 tissues were retrieved from the Genotype Tissue 

Expression (GTEx) project database [29] for mapping SNPs from the ASD GWAS to genes and 

further removing SNPs in high linkage disequilibrium (LD) of r2>0.5 based the CEU LD 

information during MDF. Table 1 shows the complete list of tissue-specific eQTL/sQTL data 

used as input for the Mergeomics analysis.  

 

Weighted Gene Coexpression Network Analysis (WGCNA) to Define Data-driven Functional 

Gene Sets    

To group genes with functional relevance in individual tissues in a data-driven manner, 

we used the transcriptome data from the GTEx database to construct tissue-specific WGCNA 

gene coexpression modules [30]. Typically, these modules contain genes that are coexpressed 

and functionally related. This provided a means of placing our ASD-associated GWAS genes 

from MDF into categories that have biological relevance in individual tissue contexts. These 
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modules are functionally annotated through pathway enrichment analysis using KEGG [31],  

Reactome [32], and BioCarta [33] databases.  

 

Bayesian gene regulatory networks     

To elucidate directional gene regulatory relations, Bayesian networks were constructed 

from tissue-specific GTEx databases using the RIMANET package [34]. As Bayesian networks 

from individual datasets are typically sparse, networks from similar tissues were subsequently 

merged to derive composite networks for brain, digestive, cardiovascular, endocrine, immune, 

adipose, and reproductive tissues to reduce sparsity and ensure each network contains at least 

10k genes. We further merged the immune and adipose tissue networks given the known 

interactions between adipose and immune cells [35]. The merged networks and their 

corresponding tissues and sizes are shown in Table 2.  

 

Marker Dependent Filtering (MDF)  

We first performed SNP-to-gene mapping using SNPs from the ASD GWAS together 

with tissue-specific eQTLs and sQTLs from the GTEx project database. We also used distanced-

based mapping, which maps SNPs to genes at a maximum of ±20 kilobases, as an alternative 

mapping method. We corrected for linkage disequilibrium (LD) to filter known dependencies 

between SNPs based on a LD cutoff threshold of r2 > 0.5 from the CEU population, as the ASD 

GWAS population is mainly CEU. We used -log10 transformed p-values from the ASD GWAS 

to represent SNP association strengths for ASD. The output of MDF contained tissue-specific 

mapping of SNPs to genes based on eQTL, sQTL, and distance-based mapping as well as their 

ASD association strengths in the form of -log10 p-values. No GWAS cutoffs were applied at this 
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stage to capture the full spectrum of disease association signals from strong, moderate, to subtle 

or no association. 

 

Marker Set Enrichment Analysis (MSEA) 

In MSEA, tissue-specific ASD GWAS SNP-enriched gene sets were identified. The 

GWAS-mapped genes from MDF and tissue-specific gene sets derived from WGCNA modules 

were used as input for MSEA. To determine coexpression modules that are enriched in ASD 

GWAS, a chi-like statistic was used as the enrichment test statistic in MSEA:  

𝜒 = ∑
𝑂𝑖 − 𝐸𝑖

√𝐸𝑖  + 𝜅

𝑛

𝑖= 1

 

Briefly, in this formula a chi-statistic value is calculated, where “n” indicates the number 

of quantile points in the dataset, which are thresholds used to divide the GWAS SNPs into 

significant vs non-significant groups. Quantiles, which are rank-based, were used instead of 

specific p-value cutoffs to enable the normalization of different GWAS datasets that have 

different sample sizes and statistical power that influence the specific p-value ranges. For this 

study, we used 10 quantiles ranging from 0.5 to an upper limit that is adjusted based on the 

median module length to ensure that the distribution of these lengths are appropriately taken into 

consideration for each module. The expression inside the summation includes O and E, which 

are the number of observed and expected positive association signals above each quantile point, 

respectively. The difference between these two values is divided by the sum of the square root of 

the expected count of positive signals and a stability parameter, 𝜅, which was set to 1 to account 

for datasets with extremely low counts.  
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The calculated 𝜒 value is a sum of the output of the expression at each quantile point 

from a given test gene set. To create a null distribution, we generated random gene sets matching 

the gene number of the test gene set and calculate the 𝜒 values from the random gene sets.  The 

following null hypothesis is then tested: Given the set of all distinct markers from a set of N 

genes, these markers contain an equal proportion of positive association study findings when 

compared to all the distinct markers from a set of N random genes [18]. The distribution is 

estimated by randomly shuffling the genes mapped from disease-associated markers and 

approximating the parameters to best represent the data (i.e. a parametric model is fit for the 

distribution). From the null distribution, we are able to calculate a corresponding Z score, which 

is a measurement of the number of standard deviations an observed value is from the mean of a 

distribution. The Z score that is determined from the distance between our actual 𝜒 value and the 

mean of the null distribution provides us with an enrichment score for each gene set (i.e., a 

tissue-specific coexpression module in the current study), which is then used to rank tissue-

specific modules for their enrichment in ASD.  

 

Key Driver Analysis 

Key gene drivers of ASD and their associated neighbors within gene regulatory networks 

were identified in KDA. Significant ASD-GWAS enriched coexpression modules generated 

from MSEA and tissue-specific probabilistic Bayesian gene regulatory networks are used as 

input for KDA. Next, key drivers are predicted by first identifying hub nodes that are in the top 

25% in terms of the number of edge connections. For each hub node and its subnetwork, KDA 

utilizes a method that is similar to MSEA to assess enrichment in ASD-associated gene sets 

identified from MSEA. The proportion of nodes in the subnetwork that are among ASD-
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associated modules from MSEA is determined, and an enrichment statistic is calculated by 

creating a null distribution of reshuffled subnetworks for the key driver. This is done to observe 

the likelihood of obtaining the same proportion of disease-associated genes for a random 

network of the same size. As output for KDA, tissue-specific key drivers and their first neighbors 

within gene regulatory networks are identified. These networks are ranked by their enrichment 

for ASD GWAS-informed gene sets from MSEA and are visualized in Cytoscape [36]. Using 

EnrichR, a gene set enrichment annotation tool [37-39], we performed pathway enrichment 

analysis in order to understand the functions of predicted key driver subnetworks. Furthermore, 

genes in the subnetworks that contain known rare variants were annotated based on information 

from the SFARI database. We considered the rare variants both as a collective across all four 

ASD levels and at each individual stratification for the analysis. 

 

Results 

Marker Set Enrichment Analysis reveals tissue-specific coexpression modules enriched for ASD 

GWAS signals 

The MSEA analysis identified 47 tissues (10 brain regions, 37 peripheral tissues) from 

which at least one coexpression module was significantly enriched for ASD associations in 

GWAS below an FDR cutoff of 5% (Figure 2). Across these tissue, there were 196 ASD-

enriched WGCNA modules after MSEA. Table 3 shows the top 10 modules based on the 

statistical significance of ASD GWAS enrichment, where coexpression modules from 5 brain 

regions and 5 peripheral tissues with diverse annotations were observed. The anterior cingulate 

cortex, which is involved in emotional regulation and cognitive control, and the amygdala, 

another region crucial for emotional response, contained coexpression modules with the highest 
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ASD enrichment. The top annotations for these two modules highlight complex neuronal and 

cross-system processes that suggest how impairments caused by ASD pathogenesis contribute to 

dysregulation. The other top brain tissue coexpression modules (from the frontal cortex 

(Brodmann Area 9), cerebellum, and cortex), consist of vital neuronal system activity 

annotations. Together these findings support how impaired brain functioning plays a significant 

role in ASD pathogenesis. Interestingly, peripheral tissues from the digestive system, 

reproductive system, and immune system contained highly significant coexpression modules 

relevant to mRNA splicing, immune pathways, cell cycle, and mTOR signaling.  

When comparing the statistical significance between brain and peripheral modules, we 

did not find significant difference in the average false discovery rate between brain and 

peripheral modules (Figure 3). Across all significant modules, pathway annotation revealed a 

broad range of consistent pathways including cell cycle, gene regulation (particularly splicing), 

neuronal signaling, oxidative phosphorylation, immune system, and mammalian target of 

rapamycin (mTOR) signaling (Figure 4).   

To further explore the pathways within the enriched coexpression modules of tissues with 

the most relevance to ASD, we categorized tissues into seven regions: Adipose/Immune, Brain, 

Cardiovascular, Digestive, Endocrine, Female Reproductive, and Male Reproductive. There were 

nearly 800 unique pathways across all regions, and we found that 80 were shared among all 

seven regions (Figure 5). We also observed a vast array of shared and unique pathways, which 

provided us a unique perspective on region-specific pathway annotations within ASD-enriched 

coexpression modules while also highlighting terms that are abundant in nearly all tissues in the 

analysis (e.g., immune pathways and cell cycle regulation). For the pathways shared across all 

regions, and the regions that contained pathways shared amongst many tissues (e.g., Brain, 
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Adipose/Immune), we highlighted annotations that were either abundant and highly enriched in 

multiple tissues, or present in one tissue yet remained significant. Of note, brain region-specific 

pathways displayed associations with crucial neuronal processes (NMDA receptor activation) 

and neurodegenerative conditions (Alzheimer’s disease, Amyotrophic Lateral Sclerosis). Several 

regions also displayed associations with immune system regulation, cellular signaling, growth 

and proliferation, and protein interactions. These associations suggest the impacts of 

dysregulation and abnormalities of these pathways on diseases such as ASD, which are rooted in 

neurodevelopmental processes and cellular function.  

 

Key Driver Analysis identifies distinctions between brain and peripheral tissue associations in 

ASD 

 Using the significant tissue-specific coexpression modules identified from MSEA, we ran 

KDA to identify tissue-specific key drivers. We also assessed whether the key drivers and their 

subnetworks capture both common and rare variants of ASD. These key drivers were further 

intersected with genes containing common and rare variants. As seen in Figure 6A, we observed 

higher numbers of rare and common variants in the key drivers from our brain Bayesian 

networks compared to all of the peripheral networks, supporting the importance of the brain in 

ASD, as expected. However, when normalizing the gene counts of rare and common variants 

against the total number of genes in the peripheral and brain Bayesian networks, the normalized 

count was higher for periphery tissue networks (Figure 6B), due to their much smaller network 

size compared to more complex brain network (Table 2). This finding supports that periphery 

tissue genes possess sizable contributions to the overall genetic burden of the disease.   
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We next sought to assess the relative distribution of common and rare variants among key 

drivers from the brain and peripheral tissue networks. Figure 7 shows the percentage of key 

drivers across both brain and peripheral tissues that are also either known rare variants from the 

SFARI database, or common variants from the GWAS. We observed higher numbers of known 

rare ASD variants among brain tissue-derived key drivers compared to peripheral tissue-derived 

key drivers. As the rare variants mostly affect brain development and neuronal functions and 

have larger effect sizes, our results aligns with the central role of brain tissues in the 

pathogenesis of ASD. By contrast, there is a similar number of common variants among key 

drivers between brain and peripheral tissues, suggesting that common variants of ASD are less 

discriminative between the brain and the peripheral tissues.  

To further test whether an observed overlap was statistically significant, we utilized 

hypergeometric testing to assess if the overlap between the key drivers and common or rare 

variants could be observed by random chance. We first examined all key drivers of a given 

tissue, and then explored key drivers within the context of their associated subnetwork. As 

shown in Figure 8, brain tissue key drivers showed much stronger enrichment for both the rare 

and common variants than peripheral key drivers, further supporting the importance of the brain 

in ASD. We also observed that there is a significantly higher enrichment for rare variants than 

for common variants among the brain key drivers. As rare variants have larger effect sizes than 

common variants, the observation of stronger enrichment of rare variants among brain key 

drivers also supports the stronger influence of brain networks in ASD.   
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Prioritization of key drivers based on rare/common variant enrichment in key driver 

subnetworks  

To prioritize key drivers, we assessed the significance of their subnetworks for common 

and rare variant enrichment. Figure 9 and Figure 10 show the top 15 subnetworks in terms of 

their rare variant overlap enrichment and common variant overlap enrichment, respectively. 

There is a higher abundance of brain tissue key driver subnetworks (12 out of 15) that were 

enriched for rare variants, and an increasing representation of digestive tissue key driver 

subnetworks (5 out of 15) that had enrichment for common variants. We also found that there is 

a higher proportion of brain tissue key driver subnetworks with are enriched for both rare and 

common variants (Figure 11 and Table 4), supporting convergence between rare and common 

variants in these key driver subnetworks.  

 

The predicted key driver subnetworks of Synaptotagmin 1 and Adducin 2 support crucial roles as 

regulators of neuronal processes and neurodevelopment.  

Two brain tissue key driver subnetworks stood out due to their high overlap enrichment 

of either common or rare variants. Synaptotagmin 1 (SYT1), shown in Figure 12, held the 

highest rare variant overlap enrichment in its subnetwork across all key drivers. Its prediction in 

our analysis as a key driver underscores its significance as a known rare variant and also implies 

this gene’s potential impact on other rare (e.g., RELN, NCKAP1) and common variants (e.g., 

CACNB3, SV2B) within its subnetwork (Figure 12A). This gene is a known syndromic ASD 

rare variant that causes severe neurodevelopmental abnormalities, and it serves as a membrane 

protein of synaptic vesicles involved in neurotransmitter release during calcium binding and thus 
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plays a vital role in neuronal processes [40, 41]. The top annotation terms from the SYT1 

subnetwork agree with these crucial neuronal processes (Figure 12B).  

The other key driver subnetwork of interest, Adducin 2 (ADD2), also showed a high 

enrichment for both rare (e.g., SHANK2, SCN8A) and common variants (e.g., ACTN2, DMN1) 

(Figure 13A). Adducin genes encode cytoskeleton proteins that are critical for osmotic rigidity 

and cell shape by regulating the formation of the spectrin-actin membrane skeleton [42]. ADD2 

is expressed in the brain, and its knock-out results in the loss of activity-dependent connection 

formation between neurons when knocked out [43]. This suggests ADD2’s relevance to learning 

and development and its contribution to ASD as a key component of the disease pathogenesis. 

Similar to SYT1, this is also reflected in the top annotations of ADD2’s subnetwork, which show 

important nervous system processes (Figure 13B). 

 

Discussion 

ASD is a neurodevelopmental disorder that possesses complex heterogeneity in its 

genetic architecture [16]. Previous research has explored the role of both common and rare 

variants in the pathogenesis of ASD, and have implicated numerous genes, tissues, and 

biological pathways [5, 44, 45]. Therefore, a leading challenge of the disease is the complexity in 

both how it manifests in an individual and the underlying genetic mechanisms that vary 

significantly. Numerous studies have identified relevant aspects of the central nervous system as 

well as various peripheral regions with ASD association, and have highlighted the abundant 

interactivity between organs, tissues, and genes [8-15, 46].Thus, given the nature of ASD and the 

lack of current pharmacological treatments, continued research aims to fully deconstruct the 

genetic intricacies of the disease. 
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In our study, we utilize summary statistics from an ASD GWAS [24], publicly available 

QTL data from the GTEx database [29], and gene regulatory network information to investigate 

ASD with use of a computational tool, Mergeomics [18, 19]. Taking into account both common 

and rare variants, we sought to understand the molecular interactions within and between brain 

and peripheral tissues to uncover tissues, genes, biological pathways, and gene networks that are 

enriched for common and/or rare variants of ASD. Furthermore, we aimed to predict key drivers 

within gene regulatory networks that may be of interest for further research and experimental 

validation.  

From our marker set enrichment analysis (MSEA), we found that there are a diverse 

range of ASD-enriched tissues and gene sets. While brain tissues possessed the highest disease 

association enrichment, seen in the anterior cingulate cortex and the amygdala, there were also 

peripheral tissues that showed relevance to ASD genetic signals (Table 3). The coexpression 

module enrichments of the anterior cingulate cortex and amygdala align with previous results 

that observed structural abnormalities of this cortex in both ASD mouse models and adult ASD 

individuals [47, 48], and that have identified various dysregulations and alterations in the 

amygdala of those with ASD [49]. With regards to the enriched modules of the other brain 

regions from Table 3 (frontal cortex [Brodmann Area 9], cerebellum, and cortex), previous 

neuroanatomical analyses have included these tissues as regions of the brain that display 

abnormal development [50-52]. Thus, our findings provide additional evidence suggesting the 

importance of cognitive functioning, motor coordination, and complex neuronal system activity 

in the context of ASD.  

In addition to these confirmatory outcomes of various brain tissues, we found that tissues 

in the digestive, reproductive, endocrine, and immune systems also displayed ASD enrichment 
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within particular coexpression modules. The digestive system has recently become heavily 

implicated in ASD pathogenesis as research has continued to explore the interactions within the 

microbiota-gut-brain axis, and how there are distinctive gastrointestinal complications present in 

those with ASD [15, 53]. There has also been extensive research on how maternal factors and its 

influence on fetal development contribute to ASD risk [54-59]. This influence can occur at a 

hormonal level or through immune pathways, which demonstrate not only the cross-system 

interactions at play within the pathogenesis of ASD but also highlight its complexity across both 

brain and peripheral regions of the body.  

Our exploration of pathway annotations from these disease-enriched coexpression 

modules further emphasize how the complexity of ASD spans throughout the body. We found 

that immune, cellular signaling, and cell growth and regulation pathways were noticeably 

abundant in various regions (Figure 4 and Figure 5). In Figure 5, we found that Alzheimer’s 

disease and Amyotrophic Lateral Sclerosis (ALS) were amongst brain region pathways that were 

consistently enriched, which interestingly aligns with how this has been area of research given 

that these two disorders are rooted in neurological dysfunction, similar to ASD. As there exists a 

spectrum of neurological disorders ranging from neurodevelopment to neurodegeneration, with 

ASD, ALS, and Alzheimer’s falling within these confines, research has explored potential 

associations within this spectrum [60-64].  

We also noticed how involved the endocrine and immune systems were within various 

regions. The male and female reproductive, digestive, and adipose systems contained various 

pathways involved in immune regulation (e.g., hyaluronan uptake and degradation, Interleukin-6, 

CD40 pathways) and endocrine function (e.g., cysteine and methionine metabolism, fatty acid 

synthesis), or cellular signaling, processes, and regulation (e.g., MAPK pathways, EDG1 
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pathways, ENOS activation). As research continues to explore the role of immune dysregulation 

and metabolic dysfunction in ASD pathogenesis [65-69], we recognize that our observed 

relationships further emphasize the interconnected nature between pathways and across systems. 

Dysregulation in one region is likely to impact many others, which thus supports the idea that 

these relationships collectively contribute to the diversity and complexity of ASD pathogenesis. 

As a whole, our MSEA findings recapitulate previous studies that highlight the impact of altered 

neural functioning in various brain regions, and we also emphasize the rising understanding of 

the roles that digestive, reproductive, endocrine, and immune system have in ASD.  

In our key driver analysis, we discovered that the brain outperforms peripheral tissues in 

terms of abundance of significant rare and common variants. Furthermore, we also identified key 

drivers and their subnetworks that possessed significant enrichment in either rare or common 

variants. A greater number of brain tissue key driver subnetworks contained a significant number 

of both rare and common variants, which suggest that these key drivers are crucial regulators 

within ASD pathogenesis given the convergence of these two types of variants. The rankings of 

key driver subnetworks in terms of their rare or common variant overlap enrichment highlight 

the central role of the brain in ASD, yet also point towards the digestive system as the leading 

peripheral region for common variant abundance. We visualized the subnetwork of two genes, 

SYT1 and ADD2, which we identified as key drivers given the number of edge connections they 

contained.  

Overall, we found that our approach to studying ASD aligns with previous research 

findings while also revealing new avenues for future exploration. Each of our top 10 

coexpression modules (Table 2) held a degree of relevance in ASD pathogenesis based on prior 

knowledge, and the most replicated pathways from MSEA (Figure 4 and Figure 5) 
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demonstrated how the various cellular processes and immune pathways were abundant across 

brain and peripheral tissues. While the insignificant difference in the collective adjusted p-values 

between brain and peripheral coexpression modules (Figure 3) may also be a factor of 

significance dilution due to the increased complexity of brain tissue genes, it may reflect the 

growing body of research that suggests ASD relevance within other regions of the body, namely 

the digestive, endocrine, and immune systems [14, 15, 53, 56, 59, 70].  

From our key driver analysis, we highlight regulatory relationships of two key gene 

drivers, SYT1 (Figure 11) and ADD2 (Figure 12). While SYT1 has previously been found to be 

a known rare variant of ASD [28], and ADD2 a common variant [24], our network analysis 

highlights unexplored tissue-specific network interactions with both types of variants. These 

networks provide the opportunity for future experimentation and validation. In addition, the key 

driver that indicated convergence of both variant types in their subnetworks (e.g., SCN8A, 

AMPH, ATP9A) also provided a new perspective for genes that possess particularly unique 

regulatory interactions in ASD pathogenesis. 

Overall, using common variant inputs, we discover significant ASD relevance in both 

brain and peripheral regions as well as notable convergence of known rare and common variants 

in the brain. Our predicted subnetworks identify a number of key drivers, some of which were 

previously implicated, and possess diverse potential interactions and regulatory mechanisms on 

neighboring genes. 

 

Limitations of the study 

Despite our findings, there are several limitations that are present as well as ample 

opportunities for improvement. First, the data used as input is slightly dated. The GWAS was 
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published in 2019 [24], and the most recent version of the GTEx data used for the eQTL and 

sQTL data was collected in 2019 as well [29]. Furthermore, the demographics of the GTEx 

database tissue donors is heavily skewed against minority populations, with 84.6% of donors 

identifying as White. ASD research is constantly updating and new discoveries continue to be 

made, so a primary area of improvement is to utilize more recent and culturally diverse data as it 

becomes available. Resources that are actively updated such as the Simons Foundation for 

Autism Research Initiative [28], the Australia Autism Biobank [71], and the MSSNG database 

[72] will undoubtedly provide useful data for our computational tool. Furthermore, there are also 

studies that have performed transcriptome, metabolome, and epigenome level analyses of ASD 

and which are likely to expand our understandings as well [73-75].  

We also acknowledge that we have only performed a tissue-level analysis with the use of 

sex-combined data. Cell-level analysis is a fast-growing area of research across numerous fields, 

and ASD is a disease that demands this level of cellular specificity. Furthermore, there is a 

gender bias in the disease prevalence [70], which emphasizes that a sex-specific analysis is likely 

to reveal key insights.  

Utilizing updated datasets and carrying out cell-level sex-specific analyses are key areas 

of future work. Doing such in conjunction with our initial results will undoubtedly shed further 

light on ASD’s genetic complexities. Overall, we hope that our findings will assist in the 

generation of new hypotheses and experimental validations to help uncover new mechanisms for 

neurodevelopmental disorders such as ASD.  
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Tables 

Table 1. Summary of eQTLs and sQTLs from the Genotype Tissue Expression Portal 

(GTEx) database for Mergeomics analysis.  

eQTLs and sQTLs from 14 brain regions and 35 peripheral tissues were retrieved from the GTEx 

database to be used for tissue-specific mapping of SNPs from the ASD GWAS to genes that are 

potentially regulated by the SNPs in each tissue. 
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Table 2: Summary of tissue-specific Bayesian networks constructed using GTEx 

transcriptome data.   

Bayesian networks were constructed for individual tissues and further merged into seven 

Bayesian networks representing major biological systems to reduce sparsity.  
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Table 3: Top 10 coexpression modules enriched for ASD GWAS signals from Marker Set 

Enrichment Analysis.  

The top ten gene sets from MSEA were ranked based on false discovery rate (FDR) of ASD 

GWAS enrichment. Tissue corresponds to the sample name from GTEx data, with the module 

name indicating which coexpression module within each tissue showed ASD GWAS enrichment. 

The top annotations indicate the pathway terms that had the highest enrichment p-value based on 

pathway annotation of the genes in each tissue-specific coexpression module. 
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Table 4: Table displaying the convergence of brain and peripheral tissues in terms of their 

rare and common variant overlap enrichment scores among network key drivers.  

Specific overlap enrichment scores for sixteen key driver subnetworks that possessed an overlap 

enrichment p-value of less than 0.05 for both rare and common variants. 
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Figures  

Figure 1: Analysis workflow.  

The first step of the overall analysis pipeline for Mergeomics is marker dependent filtering 

(MDF) to correct of linkage disequilibrium (LD) in GWAS SNPs. Summary statistics from the 

genome-wide association study are taken with tissue-specific eQTL and sQTL data to map 

genetic markers to corresponding genes. ASD-enriched modules are identified in marker set 

enrichment analysis (MSEA) by organizing the marker-mapped genes from MDF into 

coexpression gene sets and assessing their enrichment against a null distribution. By assessing 

their disease enrichment in a gene regulatory network, important regulatory genes are identified 

in key driver analysis (KDA). Figure created with BioRender.com. 
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Figure 2: Numbers of ASD GWAS enriched modules by tissue from Marker Set 

Enrichment Analysis.  

Tissues were ranked by the number of WGCNA modules that were below an FDR cutoff of 5% 

for ASD GWAS association enrichment.  
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Figure 3: No significant difference was observed in the ASD GWAS enrichment 

significance between brain and periphery coexpression modules in MSEA. 

The difference between the -log10 false discovery rate of brain and peripheral modules was 

calculated utilizing a two-sided Wilcoxon test given the non-parametric distribution of the data 

based on Shapiro-Wilk test (W = 0.64228, p-value < 2.2e-16). 
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Figure 4: Most consistent functional terms across significant coexpression modules from 

Marker Set Enrichment Analysis show cellular processes, mRNA splicing, immune system, 

and mTOR signaling pathways. 

All pathway annotation terms for genes within ASD-associated modules were collected and 

ranked based on the number of modules enriched for each pathway. 
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Figure 5: Shared and unique terms across MSEA coexpression module pathway 

annotations between seven groups.  

The seven groups were Adipose/Immune, Brain, Cardiovascular, Digestive, Endocrine, Female 

Reproductive, and Male Reproductive. The pathways were ranked based on the median values of 

the -log10 transformed adjusted p-values if the pathway was derived from multiple coexpression 

modules, and the top three terms (where applicable) were subsequently depicted on the figure. 

Adipose/Immune, Brain, and the group of pathways shared across all tissues were extensive 

enough that we categorized pathways based on whether they were shared across >3 tissues in the 

groups (and >30 tissues in the case of the shared group), or if they were still moderately enriched 

but only present in one tissue within this region. Adipose/Immune: Phospholipid Metabolism 

(Whole Blood), Metabolism of Porphyrins (Spleen), ENOS Activation and Regulation (Cultured 

Fibroblasts). Brain: Olfactory Signaling and Transduction (Cortex), ALS Pathway (Putamen), 

Cytokines and Inflammatory Response (Caudate). Shared: Because at a minimum, pathways in 

this group must be shared by at least one tissue in each of the seven regions, the three “uniquely 

enriched” terms came from 9 tissues at a minimum.  
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Figure 6: Numbers of common and rare ASD variants among brain and peripheral tissue 

Bayesian networks.  

A) Raw counts of the number of genes in each network that were either known rare variants or 

common variants from the ASD GWAS were calculated and compared across each merged 

Bayesian network. B) Normalized counts of the number of genes in each network. 
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Figure 7 : Average percentage of key drivers overlapping with known ASD rare variants 

and common variants.  

The percentage of key drivers for a given tissue and their overlap with known rare variants from 

the SFARI database and common variants from the ASD GWAS was calculated for brain and 

peripheral key drivers. Each dot corresponds to all the key drivers from a given brain or 

peripheral tissue. Given the non-normal distribution of the data and the percentages of the 

Shapiro-Wilk test (W = 0.95837, p-value = 0.008316), we performed a Wilcoxon test to 

determine the significance between groups. As we expected the medians of the brain tissues to be 

higher than that of the peripheral tissues, this was one-sided.   
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Figure 8: Overlap enrichment score comparisons of key drivers with rare variants and 

common variants.  

Hypergeometric testing was utilized to compare a set of key drivers for a given tissue and the 

collective set of rare variants, or alternatively the common variants that correspond to that given 

tissue based on marker dependent filtering. For this comparison, all brain tissues were pooled 

into one category and all peripheral tissues into the other category. The significance was assessed 

in the context of a background set of genes, which for rare variants were the respective merged 

Bayesian networks that corresponded to the tissue, combined with all SFARI rare variants. For 

common variants, the background set of genes was the corresponding merged Bayesian network 

combined with the set of GWAS common variants that were mapped from the respective tissue. 

A two-sided Wilcoxon test was used due to the non-parametric nature of the data based on the 

Shapiro-Wilk test (W = 0.45273, p-value = 6.194e-16). 
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Figure 9: Top 15 key driver subnetworks ranked by rare variant overlap enrichment.  

Key drivers were ranked by their -log10 transformed p-value generated from hypergeometric 

testing of the key driver subnetwork and its overlap with SFARI rare variants. Within each bar is 

the key driver’s tissue(s) with the name of the gene set in parentheses. The numbers to the right 

of each bar display the fold enrichment for each subnetwork, which indicates the subnetwork’s 

enrichment of key driver-regulated genes for known rare variants. The background set of genes 

for this analysis were all genes in the GTEx transcriptome data for each tissue. SN: Substantia 

nigra. PT: Pituitary. FC: Frontal Cortex. 
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Figure 10: Top 15 key driver subnetworks ranked for common variant overlap enrichment.  

Key drivers were ranked on their -log10 transformed p-value generated from hypergeometric 

testing of the key driver subnetwork and its overlap with ASD GWAS common variants. Within 

each bar is the key driver’s tissue(s) with the name of the gene set in parentheses. The numbers 

to the right of each bar display the fold change for each subnetwork, which indicates the 

subnetwork’s enrichment or depletion of key driver-regulated genes in relation to the common 

variants associated with the tissue of the key driver. The background set of genes for this 

analysis were in the GTEx transcriptome data for each tissue. SN: Substantia nigra. PT: Pituitary. 

FC: Frontal Cortex.  
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Figure 11: Venn Diagrams displaying the convergence of brain and peripheral tissues in 

terms of their rare and common variant overlap enrichment scores.  

Sixteen key driver subnetworks shared an overlap enrichment p-value of less than 0.05 for both 

rare and common variants. The two diagrams separate the data by region and indicate that brain 

key driver subnetworks were more abundant. KD = Key Driver. CV = Common Variant. RV = 

Rare Variant.  
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Figure 12: Key Driver Subnetwork for Synaptotagmin 1 (SYT1), a key driver with high 

rare variant overlap enrichment.  

A) SYT1 and its first neighbors visualized using Cytoscape and colored based on their SFARI 

database ASD confidence stratification or by their ASD GWAS common variant disease 

association strength. B) EnrichR was used to analyze the key driver subnetwork genes to 

generate pathway annotation terms. Terms were ranked based on their -log10 false discovery 

rate. 
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Figure 13: Key Driver Subnetwork for Adducin 2, (ADD2) a key driver with high rare and 

common variant overlap enrichment.  

A) ADD2 and its first neighbors visualized using Cytoscape and colored based on their SFARI 

database ASD confidence level stratification or by their ASD GWAS common variant disease 

association strength. B) EnrichR was used to analyze the key driver subnetwork genes to 

generate pathway annotation terms. Terms were ranked based on their -log10 false discovery 

rate. 
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