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Abstract
LITT is a minimally-invasive laser ablation technique used to treat a wide variety of intracranial lesions. Difficulties perform-
ing intraoperative mapping have limited its adoption for lesions in/near eloquent regions. In this institutional case series, we 
demonstrate the utility of fMRI-adjunct planning for LITT near language or motor areas. Six out of 7 patients proceeded 
with LITT after fMRI-based tractography determined adequate safety margins for ablation. All underwent successful abla-
tion without new or worsening postoperative symptoms requiring adjuvant corticosteroids, including those with preexisting 
deficits. fMRI is an easily accessible adjunct which may potentially reduce chances of complications in LITT near eloquent 
structures.

Keywords Functional magnetic resonance imaging · Laser therapy · Diffusion tractography · Brain Neoplasms · 
Neuronavigation

Introduction

Laser interstitial thermal therapy (LITT) is a minimally 
invasive surgical ablation technique with shown efficacy 
in the treatment of primary and metastatic brain tumors, 
radiation necrosis (RN), and epileptogenic foci [16]. The 
advent of MR guidance [9] and real-time thermography [12] 
have made LITT an increasingly utilized tool among neu-
rosurgeons. Initially used primarily for deep-seated lesions, 
LITT’s increasing indications include patient frailty, patient 

preference, and decreased morbidity in some cases relative 
to open surgery [13, 10, 17, 1]. Despite these advantages, 
LITT can still pose a risk of unintended thermal damage to 
adjacent normal brain tissue [14]. Near eloquent structures, 
LITT may cause postoperative deficits in motor or language 
function, even with the aid of MR guidance [18]. This is 
further exacerbated by the inability to perform cortical or 
subcortical mapping during ablation secondary to target-
ing/trajectory disturbances from physiologic movement. 
Therefore, many are investigating utilization of awake neuro-
logic assessment [6] or non-invasive patient immobilization 
[11]. However, these additions are not without extra cost to 
the patient and increased discomfort during the prolonged 
procedure.

Given these limitations, our institution has adopted 
fMRI for preoperative language and motor mapping to 
better guide treatment choice and intra-procedural ther-
mal safety. In this institutional case series, we present 
7 patients with intracranial lesions in or near eloquent 
structures who underwent preoperative fMRI for con-
sideration of LITT. By reporting clinical outcomes in 
this cohort, we aim to demonstrate an easily accessible 
adjunct measure for improving LITT outcomes in patients 
with high-risk lesions.
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Case series

Patients who underwent LITT at our institution for any 
indication and fMRI prior to treatment (Neuroblate, Mon-
teris Medical) were identified retrospectively with insti-
tutional IRB approval (Table 1). fMRI was performed to 
lateralize language, localize functional areas with respect 
to lesions, indicate risk of functional deficits, and deter-
mine feasibility and safety margins for LITT (Figs. 1, 2, 
and 3). Only one patient [Patient 7] did not undergo LITT 

due to significant eloquent involvement on fMRI analysis 
and ultimately succumbed to widespread disease progres-
sion (Fig. 4). Surgical outcomes and postoperative deficits 
were subsequently reported (Table 2).

fMRI‑guided tractography

Imaging was obtained on Siemens Prisma 3-Tesla MRI 
scanner. MRI protocol included high-resolution T1 and T2 
images suitable for surgical navigation and a 64-direction 

Table 1  Summary of 7 fMRI-adjuvant LITT candidates including primary disease, lesion location, fMRI indication, and surgical decision 
making

GBM glioblastoma multiforme, SCLC small cell lung cancer, NSCLC non-small cell lung cancer, IOM intraoperative monitoring

Patient Age Sex 1º disease Lesion location fMRI used to assess proximity to: Surgical decision

1 13 M Ganglioglioma L temporal Wernicke’s area, arcuate fasciculus Proceed with LITT
2 56 F Breast cancer L frontal Primary motor cortex, corticospinal tract, Broca’s 

area
Proceed with LITT

3 17 F Ganglioneurocytoma R parietal Primary motor cortex, corticospinal tract, language 
lateralization

Proceed with LITT

4 63 F GBM L peri-atrial Wernicke’s area, arcuate fasciculus Proceed with LITT
5 56 F SCLC R frontal

L parietal
Left primary motor cortex, corticospinal tract, 

Wernicke’s area
Proceed with LITT

6 56 F NSCLC L temporo-parietal Wernicke’s area, arcuate fasciculus Proceed with LITT
7 51 M NSCLC L fronto-parietal Left primary motor cortex, corticospinal tract, 

Wernicke’s area
Open resection with IOM

Fig. 1  [Patient 4] fMRI demonstrating left temporal lesion (purple) without invasion of Wernicke’s area (pink) or the communicating superior 
portion of the temporal stem and orbital frontal lobe (orange); green dotted line = trajectory planning for laser ablation probe
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DTI scan (b = 1000, 64 directions, 2 × 2 × 2  mm voxel 
dimension) for tractography. fMRI protocol included 96 T2* 
images (TE/TR/Voxel Size/FOV = 30/2.5/3.1 × 3.1 × 3/200 
mm) with fat saturation. Matched-bandwidth high-resolution 
protocol was acquired at TE/TR/Voxel Size/FOV = 35/5.0/1
.6 × 1.6 × 4/200 mm, 28 slices.

fMRI studies comprised three language tasks: an object 
naming and verb generation task, verbal responsive naming 
task, and auditory responsive naming task per previously 
described methods [2, 5]. Coplanar matched-bandwidth T2 

images were collected before and after each scan for over-
lay in interpretation. fMRI preprocessing involved mini-
mal data adjustments except for a 2-mm spatial smoothing 
kernel. Predicted BOLD correlation (canonical HRF and 
block design) was computed as Pearson’s r. Conjunctive 
AND combined threshold activation (r = 0.2, equivalent to 
p = 0.05) only on all 3 language scans in a set. The result-
ant activation map included only primary language areas 
with p < 0.000125. Functional maps were then overlaid as 
3D objects onto coplanar matched-bandwidth MRI and DTI 

Fig. 2  a [Patient 5] fMRI demonstrating left supramarginal gyrus 
lesion (orange) posterior to the postcentral gyrus without invasion of 
functional language areas (pink); orange dotted line = trajectory plan-

ning for laser ablation probe. b [Patient 5] Intraoperative temperature 
safety points (white crosshairs) and ablation safety margin (blue out-
line) using Monteris Neuroblate system
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Fig. 3  a [Patient 6] fMRI used to determine safety margin for a left 
parietal lesion near angular gyrus (purple) posterior to Wernicke’s 
area; orange dotted line = trajectory planning for laser ablation probe. 

b [Patient 6] Intraoperative temperature safety points (white cross-
hairs) and ablation safety margin (blue outline) using Monteris Neu-
roblate system
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images using BrainLAB planning software. Deterministic 
tractography was done using the fMRI activation regions as 
fiber tract seeds. After the surgeon’s final review and trajec-
tory addition, the completed plan was uploaded into Brain-
LAB Navigation hardware for surgery.

Operative technique

Patients were placed in Mayfield head holders and under-
went stereotactic registration (Brainlab). Stereotactic accu-
racy was improved using preoperative CT with Leksell 
head frame (n = 1), bone fiducials (n = 2), or intraoperative 
AIRO CT (n = 3). Within the BrainLab Elements station, a 

predetermined trajectory was planned along the lesion’s long 
axis. Multiple trajectories were planned if ablation width 
diameter exceeded 2 cm. A stereotactic-guided 4.5-mm 
burr-hole was created. Dura was punctured with a coagula-
tive blunt probe, and stereotactic biopsy was performed. We 
secured Monteris’ LITT bolt into the burr hole then capped 
to maintain sterility during MRI transport. At MRI, the laser 
probe was sterilely driven through the bolt to target using 
Monteris robotic system. Probe position was confirmed on 
initial T1 with half-dose gadavist. Once confirmed, safety 
points were placed by the neuroradiologist (NS) onto the 
intraprocedural scan to represent the functional areas of 
activation from the fMRI, and ablation was performed with 
sequential probe movement until adequate ablation was 

Fig. 4  [Patient 7] fMRI demonstrating paracentral lesion too close to activation of leg motor (green) and hand motor (yellow) shown with 
respective subcortical tracts; patient underwent open resection with mapping instead of LITT

Table 2  Postoperative surgical and long-term clinical outcomes of fMRI-adjuvant LITT

BM brain metastasis, RN radiation necrosis, N/A not applicable. Dagger (†) means unable to assess due to imaging artifact from bolt. Asterisk (*) 
means biopsy not performed. Asterisks (**) mean patient deceased

Patient Volume 
pre (cc)

Volume ablated (cc) Residual (cc) Pathology Preop symptoms Postop 
symptoms

Follow-up

1 0.466 0.466 0 * Seizures, speech latency, verbal comprehension 
deficits

None 1 year

2 1.858 1.52 0.326 BM None None 1 year
3 † † † * Seizures None 1 year
4 2.685 2.685 0 RN Word-finding difficulties, expressive aphasia None 2 months
5 2.143 1.978 0.165 RN Word-finding difficulties, verbal/written  

comprehension deficits
None 1 month

6 1.27 0.927 0.379 RN Tinnitus, gait instability, word-finding difficulties, 
short-term memory loss

None 5 months

7 2.32 2.32 0 BM Seizures, right leg paresthesia N/A** 4 months
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achieved. A post-ablation T1 MPRAGE was obtained after 
administering the remaining contrast agent. Upon comple-
tion, the patient was returned to the MRI antechamber, the 
laser probe and bolt were removed, and the incision was 
closed.

Discussion

In this series, we described our technique for using fMRI as 
an adjunct in cases with eloquent area lesions to help guide 
patient selection, operative planning, and intraoperative 
guidance for LITT. In our workflow, fMRI activation serves 
as the basis of segmentation of eloquent cortical areas. In 
contrast to standard, anatomical-based tractography, we use 
the fMRI validated cortical functional regions as the seeds 
for the subsequent segmentation of functional tracts. We 
then used these cortical and subcortical tract segmentations 
to guide the LITT trajectory and set heat threshold safety 
points during the ablation. With this approach, we saw good 
functional outcomes in our six LITT-treated patients without 
compromising EOA.

Sharma et al. [19] describe another approach to asleep 
LITT in eloquent areas. Their technique for LITT-ablation 
of a left thalamic GBM employed intraoperative transcra-
nial motor evoked potentials (MEP), somatosensory evoked 
potentials (SSEP), and free-running electromyography 
(EMG) in a patient with preoperative right-sided weakness. 
They observed onset of right-sided EMG firing when the 
real-time temperature at the tumor border encroaching on 
the posterior limb of the internal capsule reached 40 °C, 
at which point they ended the ablation. Their patient had a 
stable exam apart from new right facial droop, which was not 
present immediately postoperatively, likely due to develop-
ing edema as opposed to direct thermal damage. Del Bene 
et al. describe their technique for IOM during LITT for 
lesions near the motor tract [4]. For preoperative planning, 
they integrate DTI and magneto-encephalography to serve 
as a functional tractographic roadmap, similar to how we use 
fMRI and DTI tractography in our practice. Intraoperatively, 
in addition to SSEP and MEP monitoring, they performed 
microelectrode subcortical monopolar stimulation along the 
planned LITT probe tract to map proximity to motor tracts. 
From this, they extrapolated the ablation safety radius using 
the 1 mA = 1-mm framework. They describe the use of this 
approach to treat a previously radiated, asymptomatic rolan-
dic BM without any new postoperative deficits.

Two groups have described their experience with awake 
LITT. In a 10-patient series, Laurent et al. used thermoplas-
tic masks to facilitate head stabilization during ablation [11]. 
They do not comment on proximity to eloquent regions. One 
patient had an intra-procedural seizure which abated with 
anti-epileptics, and four patients required rescans following 

patient movement. Hajtovic et al. report a series of 6 patients 
with eloquent tumors undergoing intraprocedural monitoring 
of speech, motor, or visual function every 5-min during abla-
tion [6]. In this awake series, 5/6 patients were immobilized 
in stereotaxic frames. They report no intraoperative seizures 
or instances of rescanning due to patient movement. Based 
on these early experiences, awake LITT may be feasible in 
experienced centers, but not without challenges unique to 
LITT (e.g., importance of patient immobility) and common 
to awake neurosurgery more generally (e.g., risk of intraop-
erative seizures, patient discomfort).

Regardless of approach used for LITT in awake patients, 
even with accurate targeting and avoidance of direct thermal 
damage to eloquent structures, some patients do experience 
delayed neurological dysfunction. Transient cytotoxic edema 
following ablation is believed to cause temporary periopera-
tive deficits or worsen preexisting deficits [14, 18, 20], which 
often necessitates postoperative steroids to resolve [3, 8, 7]. 
Within our cohort, 4/6 patients were on steroids at time of 
procedure. Steroid treatment was continued post-procedure 
and tapered gradually. The other two patients were placed 
on short dexamethasone tapers (< 1 week) post-procedure. 
None of the patients had to increase dosage or restart ster-
oids after end of taper due to new symptoms. This is an 
unusual finding, as virtually all the aforementioned stud-
ies reported cases of new or worsened perioperative deficits 
which responded to corticosteroids. Even with the use of 
awake testing, Hajtovic et al. reported 3/6 patients experi-
enced delayed neurological deterioration 2–3 weeks post-
ablation, which resolved with subsequent steroid treatment. 
Patients should be advised on the possibility of delayed 
deficits, and that these often respond to corticosteroids and 
abate with time. These may be more common in those with 
preoperative deficits [14, 8, 15].

While our cohort is small, the utility of adjunct fMRI for 
pre- and intra-operative planning is promising. Tractogra-
phy based on fMRI activation can guide safe ablation near 
eloquent regions without awake testing. Our cohort showed 
consistent perioperative improvement, with no evidence of 
permanent neurological deficits. Further studies with larger 
cohorts and more extensive follow-up periods are required 
to better understand the long-term outcomes of fMRI as 
adjunct planning for LITT near eloquent structures.
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