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Abstract

We employ multiperipheral models to investigate the pfoposal that
the experimentally observed production of antibaryons can account for
most or all of the rise in the pp total cross section at ISR energies.
Our models support the proposal, and furthermore predict that this

rise is the first part of a long-wavelength damped oscillation as a func-

e

tion of energy. We find that a variety of models accomodate the anti-
baryon effect, and show that thes;a all lead to total cross sections con-
sistent with present data and displaying an oscillation at higher energies.
~
We attempt to understand the antibaryon cross section itself within the
special case of the ABFST model, and find that the obsef§ed energy
threshold emerges naturally, but that the predicted magnitude is some-
what small. The oscillations are simply parametrized in terms of com-
. Plex Regge poles, and one of the models studied su—g“gwéiéts that the leading

complex pole be identified with the P'.

>FSupported by the U. S. Atomic Energy Commission.,



1. INTRODUCTION
A striking characteristic of recently obtained experimental results

at high energy [1,2] is a tendency for hadronic cross sections to rise:

the pp total cross section and most inclusive cross sections are ob-

served to increase substantially with energy. While many explanations
have been advanced for this phenomenon, we find it most plausible to
attribute it to threshold effects. In the case of inclusive spectra, the
cross section obviously must increase from zero, and one naturally ex-
pects that higher energies would be required to produce more massive
particles copiously. Several detailed calculations [3], based on vari-
ants of the multiperiphéx;al model, have lent support to this idea by
qualitatively reproducing the experimental energy dependence of inclu-
sive spectra. Basicélly, a ”tmin” effect is responsible: hadronic
scattering amplitudes are large only when momentum transfers are
small, and if large masses are to be produced, simple kinematics re-
quires the incident energy to be extremely large. Furthermore, once
most inclusive cross sections are rising, it is not surprising that the
total cross section rises as well. Our principal intention in this paper
is té show that just such a multiperipheral threshold effect provides an
understanding of the energy depeﬁ_dence of the total cross secti‘oﬁ.
Because of the multitude of particles and resonances that may
occur in a high energy process, a realistic attempt to calculate a total
cross section ba;ed on these ideas would require a morass of detail.
We will avoid this by adopting the optimistic view that the rise in the
total cross section may be understood in terms of the production of just
one prominent,. massive s.ystem. As noted by several authors [4-6],

a likely candidate is the production of antibaryons. In fig. 1 we show
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the experimental results for the integrated antibaryon%< inclusive cross
section as a function of energy { 7]+ The key features of this curve are
its large magnitude and the approximate threshold at s = 150 GeVZ. The
latter value is in rough agreement with the energy at which the pp cross
section probably begins to rise. While our analysis will attempt to
attribute all of the increase in the total crl'oss section to antibaryon pro-
duction, we will be making several approximations and using param-
eters that are not knﬁwn accurately, so the possibility of other mechan-
isms confribut'tng is not ruled out. However, our results will strongly
support the view that at least a large part of the increase is due to anti-
baryons.

A byproduct of this analysis is the prediction of long —yvavele.ngth
damped oscillations in the total cross section as a function of energy
[8]. These occur because the effective thresholds for the production
of various‘ numbers of antibaryons develop an approximate logarithmic
spacing, due to the aforementioned tnin effect, and the strong energy
dependence of these partial cross sections reflects itself in the total
[9]. Since these oscillations are perhaps the most unusual feature of
our discussion, in this paper we pay particular attention to possible

mitigating factors that might suppress them. We will conclude that the

» antibaryon-induced oscillations are quite persistent and stable under

variation of the model used to obtain them.
Our arguments will be entirely within the context of the multipe-

ripheral model, and we should explain how this model is used here.

kThis curve is taken from ref. [ 6] ; these authors refer to it as the
antinucleon cross section, but the arrangement of apparatus at the
ISR is such that the decay products of antihyperons are included. We
will'also assume throughout this paper that to a good approximation at
these energies, at most one antibaryon appears per event.
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The basic assumption is that the bulk of the total.cross section can be
attributed to multiparticle events occurrii)g at small momentum trans-
fers, and that these can be described reasonably by a model employing

rebetjtion of a small number of._particlle clusters in the t-channel. Most

features' of observed data are consistent with this assumption [10]. It

will be evident from the particular models we study that our conclusions -

are rather insensitive to the specific implementation of the mu{tiperiph-
eral vidga, Fpi- the mos!: part we will use models that have been reduced
to a L one-di‘n;}ensi'onal” fox_"y}'l by averaging over momentum transfer.
This provides a great simplificatioﬁfi'and we shall argue that no essen-
tial physics is lost thereby. The main disadvantage of this approxima-
tion 1s that it precludes a com:es{gonc‘iing treatment of inclusive cross
sections. *. |

In section 2 of this paper we use the ABFST [12] or pion-exchange.
multiperipheral model to motivate some of the later discussion and then
to estimate the relevant energy thresholds. The latter are found to be
in rough agreement with experiment. We also use this model for a
crude estimate of the magnitude of the antibaryon cross section: the re-
sult is surprisingly large, but somewhat smaller than experiment in-
dicates. An interpretati.on of the large size of the antibaryon cross sec-
tion in terms of resonances induced by the long-range pion-exchange
force is given. Section 3 presents the derivation of the kind of model
used in this paper, and successfully applies the simplest version to pp
data [6] . A discussion of oscillations is given and thé role of complex
Regge poles elaborated. In each of the next three sections the simple

model is made more realistic in one direction at a time. Section 4

“Further remarks on this subjéct are in section 4; a discussion of total
and inclusive cross sections using a smooth t-dependence may be found
in ref. [11].
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-discusses the effect of a smooth antibaryon threshold and that of thresh-

olds for the production of other pa'rtic.lies‘.‘ Section 5 treats a more
fealistic antibaryon kernel, and-in section 6 we discuss diffractive ef-
fects. The general features of the total cross section are found to Be
the same as in the simplest case. We present some final remarks in -
section 7, and an Appendix contains a more detailed discussion of the
model used for our treatment of diffractive scattering.
2. ESTIMATES BASED ON THE ABFST MODEL‘

The first question we wish to examine is whether the observed

q

antibaryon cross section can be understood in terms of familiar phe-
nomena and, in particular, whether it is consistent with the multipe-
ripheral ideas to be used in this paper. Rather than the detailed shape
of fig. 1, whose fitting would require considerable input of information,
we concentrate in this section on the location of the approximate thresh-
old and the r.nagnitude of the cross section. For the purpose of making
order -of -magnitude esfimates, we adopt the ABFST multiperipheral
model {12], based on repeated pion exchange, which allows us to com-
pute high energy quantities from known, low-energy pion scattering in-
formation. While this model is known to be numerically deficient, in
that the }gion component alone is too small to a,ccaunt for high energy
data [13], the general behavior it predicts has been verified and we
shall assume no gross error is made if we scale the size of the pion-
exchange kernel upward, as described below.

We begin by describing the ABFST model, using the notation of
ref. [13]. The contribution of N+2 pion-produced clusters of particles
to the absorptive part of the a-b forward elastic écatte'ring amplitude.is

depicted in fig. 2.1, and given by

.
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A 1 | | |
(n) = TR a ds, ds -+ dsydsy dtye.. dty
Gop (555 tg) Sltg) Gpp(sy5t.ty) Sty )
(2.1)
G (51, -7 ) S G (s ity
1 ’ : N
X g (m-a -qp- 0 -qy 7 G,) 8(n-q - =)
where S_-mz 2 » -
cosh n' = -___Z_IEQ_m_h , (2.2a)
a™b .
2 .
. sa-ma—t0 . . .
_-sinh q_ = ———, (2.2b)
.2 2m N -t i
a 0.
similérly for sinh Q> and
- Sitioath
coshgq. = ————= (2.2¢)
1 2~/ti_1t.1 .

The 's; and t.i'.are the subenergies and momentum transfers shown in
the figure, ‘S(t) is a pion p‘ropagator and G""(s.;t,t') is proportional to
the cfoss section for off-shell pions of squared-masses t and t' to
produce a pérticle cluster of subenergy 855 integrated over the internal
variables of the cluster. G_rTTr will be referred to.in the following as the
-7 "kernel' for the cluster in question. For the present we ‘will
assume these are '""low" —subeﬁergy I;ernels, in.that a possible diffrac-
five tail arising from P and P'  exchange is absent. Diffractive effects
would not alter the pres'eﬁt estimates, and their inclusion will be dis-
cussed in section 6; , Furthermotre, since the momentufn transfgrs in-
volved are small (we are, after all, studying the multiperipheral

‘model), we will assume these cross sections are given by their

b~

" on-shell” or phjrsical values. Finally, in formula (2.1) the q's are

.Lorentz boost angles for the transformation between standard reference

frames [14] associated with particles a and b and the various pions,
and the step-function (which essentially expresses energy conservation)

requires that the overall boost n between the a and b standard frames

be at least as large as the sum of the individual boosts across each

cluster. -

Within this model, antibaryons may be produced in a pp collision
through the appearance of either of thé clusters shown in fig. 2.2a or
b, respe;:tively at the ends or in the middle of the multiperipheral chain.
The effect of cluster invoiving particles in addition to the baryons will
be considered later. Now the cross section corresponding to fig. 2.2a
is small (it has never been measured) and so we neglect it. This is in
agreement with the experimental fact that the antibaryon inclusive cross
section falls rapidly near the ends of _é rapidity plot [ 7], whereas the
producté of cluster 2.2a would populate just this region. The internally-
appearing cluster, fig. 2.2b, has however a substantial cross section,

and in fig. 2.3 we show the experimental results for the case

: - . *
1'r+1r ~ pp {15].

We first show how the smallness of momentum transfers implies
the observed energy threshold for this cluster. For simplicity fig. 2.3
is approximated by a delta-function peak at a mass M = 2.1 GeV, and we

assume that the amplitude is important only for momentum transfers

* ) )
The reference quoted gives the result of a Chew-Low extrapolation in

the reaction m~p -~ (pp)n, and notes that this agrees well with the cross

section as detérmined from the inverse reaction pp — wtn- and detailed

. balance. This agreement argues against the possible presence of im-
- portant corrections to plon pole dominance.



faliing within a cutoff T such that

-t < T << :[\/I2
and negligible outside this range. The first assumption is surély ade-
quatg for estimating a threshold, while the assumption of a sharp cutoff
in momentum transfer; although unrealistic, is justified in section 4

and by the work of ref.[11]. From eq. (2.2¢) we see that the boost q

across the baryon-antibaryon cluster is bounded by

2
M
cosh q > >T
or
2
M .
q> log -5 - (2.3)

Any additional wr - BB cluster appearing in the chain then requires ah
int_ernal boost of at least this value, and from the step-function in

eqg. (2.1) we see that each additional antibaryon cluster requires an
incremen’t of at least log(MZ/T) in rapidity, 7.

;  The overall energy threshold for antibar;ron production is then
tha.‘t of fig. 2.4, where we expect that p*, the particle-cluster appearing
at !the ends, is either a nucleon or A—resonapce. In the first case T .
is extremely small: it can be estimated from np backward elastic scat-
tering .which is dominated by pion‘excﬁange and whose cross section has
been measured to be

do -2 bu *
qaEs e

with b ~ 30-100 Gev ¢ [16]. If we assume that the t-damping is the

same for fig. 2.4, then from eq, (2.2b) the end boosts are negligible:
sinh q = v -tO/Zméﬁ N T/Zmp << 1

and the threshold requirement is n > 9pE" The observed threshold

(fig. 1) would correspond to T = 0.03 GeVZ, a value quite consistent
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with the np data, although because of th.e.f.inherent uncertainty in this .
procedure a clean prediction cannot b"e'made; For the case of a
A(1236) being produced at the end, qp is no longer negligible. However,.
using eqs. (2.2) we find that the observed ant_ibaryon threshold cor-
responds to T = 0.20 GeVZ, again a value consistent with data obtained
from pion-pble extrapolation experiments {17]. Thus the ébserved
antibaryon threshold is in agreement with the ABFST model..

We now turn to estimating the magnitude of the antibaryon cross
section. The precise connection between the cross section for wm—~ BB
and antibaryon production in a pp collision is not immediately ob.vious
and will be discussed in the following sections, but from (2.1) we see
that some sort of weighted integral of the former over energy is re-
quired. Much of out later discussion will employ a narrow resonance
approximation for the antibaryon kernel, so it suffices to consider just
the simple iﬁtegralethe area under the curve in fig.2.3 —since any mo-
ment of tfxis cross section is then simply related to its aréa. To take
into account other charge states of the pions and often types of baryon
we multiply the area under fig. 2.3 by 3X 8. Strictly speaking, of course,
we should use the individual cross sections together with the isospin
and SU(3) crossing matrices, but this information is not a.vailable and .
the crude procedure should be adequate for an order of magnitude esti-
mate. Wé shot.ﬂd also include the‘ possibility of producing unstable
baryon.-a'.ntibaryon pairs (such as AZA) which then decay, and to allow
for this we assume exact SU(6) symmetry and repiace the factor of 8

%
(for the baryon octet) by 28 . In this way we find that the net integrated

) _

This number is obtained by attributing half the pp cross section to each
spin state, and assuming that all members of the 56 representation of
SU(6) contribute equally. Needless to say, this'is a generous estimate.
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“nwmw - BB cross section is roughly one-third of the integrated 7w —
mesons cross section, where for the latter we use the estimates of
ref. {13]. If the pion-exchange model were quantitatively correct the
integrated mww - mesons cross section would account for most of the
total cross section, but in fact it falls short by a factor of 3-4. We
assume, as described above, that a fair approximation to real life is
obtained by scaling all pion-exchange results upward by this factor.
Thus the integrated antibax;yon-pz;oducing kérnel is estimated to have
roughly one-third the strength of the meson-producing kernel which
generates most of the cross section. Although this is a large fraction,
we shall see later that it is still too small to account for the experi-

mental results. .

At first glance it is rather surprising that the antibaryon cross sec-

tion is so large; the fact itself is sufficient for the other arguments in
this paper, but we may offer a qualitative explanation as follows. The

two-baryon system is somewhat distinguished in that it allows a long-

range one-pion exchange force, which is prevented by quantum number °

considerations from appearing in manytwo-mesonsystems (e.g., nm,

KK, pp). It was shown some time ago by Ball and Chew {18] thata

simple non-relativistic treatment of this force in the two-nucleon system

provides ‘ar; understanding of the large cross éection for low-energy pp
scattering as compared to pp. " This is basically a low-kinetic-energy
classical nuclear physics situation and, as is the case there, it is
natural to think of it in terms of_a number of overlap}ﬁng resonances
neaf threshold. If, therefore, we assume that the BB system near
threshold is dominated by an iunusual éccumulation of resonances there,
the large size of the antibaryon kernel is not very surprising.

The resonance point of view prvovides us with the means for
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remedying an. important omission in the precéding analysis. We have
ignored the fact that a BB system has a strong tendency to annihilate to
many pions; in other words, final-state interactions within the BB
system have been omitted. * We éhould add a term to the multiperipheral
kernel corresponding to mw — (BB resonance) - many pions. With some
simplifications, the assumptign that the BB system is dominated by
resonances at low energy allows an estimate of this effect . The key is
the factorizaﬁon property-of a resonance pole residue.

We make the approximation of supposing there is onlir one spin-0
resonance in question, and that we may approximate the interaction of
the BB and many-pion states involved as the quasi-two-body scattering

of spinless particles. The cross section for a = b in a single partial

wave is then

| 2
L
S. -
L _ 4w ba " %a
Tpa "z LA 71 ’
a

where ka is the center-of-mass momentum of state a. Specializing

to the s-wave, and extracting the threshold behavior according to

0 = T
Spa - 5ba N k'bkal Tba’
we have v . V
. . kb 2
O =T | Ty, (2.4)
. . a
Now for the Pp system, we write
Tpa = B, k), ' (2.5)

N

2 2 . :
where k7 =s/4 - mp and f_(kp) is a function with an appropriate reso-

p

mance peak—a Breit-Wigner form, for example. If the peak is located

somewhere near threshold, this will give o (7~ pp) roughly the shape

o
This point has been stressed by Einhorn and Nussinov f19].
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of fig. 2.3. Then from equations (2.4) and (2.5), the relative proba-
bility of this resonance decaying to many pions compared to that for a

pE pair is
Z —
on_ _ 0 (pp annihilation) ~
o (pP elastic)

E Xon 8

> 2.0,
kP gP
where the numerical value quoted is obtained from low-energy data|16].
Assuming thg same propor'ti'onality holds for other baryons, our previous
estimate of the ' antibaryon'' kernel strength should ,-be tripled to take
into accou\rit this pion production.
3. THE TOTAL CROSS SECTION

With both theory and experiment agreeing upon the existence of an
important component of the multiperipheral kernel associated with anti-
baryon production, we proceed to calculate its effects on the total cross
section. In the remainder of this papei' we shall efnploy a' one-di-.
mensional' approximation in which mqn"ilentum transfers have been
averaged over, leading to amplitudes depending only”;:)\n rapidity, * but
with the relevant (sharp) peripheral thresholds retained. This simpli-
fies vour arguments considerably, and it is shown in section 4 and

‘ref.[11] that a rnore. careful treatment leads to similar results.

We will begin by discussing the simplest possible model which ex-
hibits the threshold effects of inter_rest [6,9], and then go on to more
realistic examples; Consider a rééction in which particles a and b
produce N+2 clusters of particles which may include mesons or a
baryon-antibaryon pair. We assume the amplitude may be approximated
by repeated Reggeon or pion exchange. If we square this ampiitu&e and

integrate over phase space, we find fig. 3.1 for the (N+2)-cluster

0}

"Such models are discussed by DeTar [20].
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contribution to the forward a-b absorptive part, where an ordering in
rapidity is implied. We denote the overall rapidity by 7, the rapidity
intervals across the end clusters by X, b and across the internal

clusters by x;, and the rapidities across the Reggeons by ¥ Then

n
N} () = e
0 .

X &6(n - X, =X - Exi‘.,- b yi) Ga(xa)S(yo) (3.1)
X Glxy) Slyy) -+ Slyy) Gy lx)
where S(y)is a Reggeon propagator for the sides of the ladder, and
Ga,b (xa,b) and G(x) are kernels in the sense of the previous section
and are proportional to the contribution of a cluster of rapidity intervall
x to the appropriate Reggeon absorptive part.

It will lbe trivi'al to solve for the full absorptive part,

- :

- Ny, .
Ap(n) —Nfo Aup (), (3.2)

once we obtain an integral equation for it. To this end, we define a

" one-sided" absorptive part Fl()N) by extracting the left-hand cluster
(N),

and propégator from Aab. ; write
Ny AN .
AN ) j dxdy G_(x) Sly) FV (n-x-y) (3.3)
0 .

Then F]gN) ‘obviously satisfies the recursion relation

Y - . -1 ’
FI (¥) = [ dedy Gl Sty) By (Y oxey),
and summing over N as in (3.2) we have
Y
F,(Y) = FO(¥) tf) G SO T (Yoxey) s (34

where
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(0) -
Fy oY) =G (Y) . (3.5)
Taking a Laplace transform
-JY
Fb(J) = ] dY e Fb(Y)’ (3.6)
0

and noting that (3.3) is a convolution integral, (3.4) becomes
F () =F% () + o) s(nF, () (3.7)
b b b :

Thus from (3.2) and (3.3)

A (D) = G,(3) () Fy ()

Ga(J) S(J) Gb(J')

Since we will be making much use of equations of this type, it is
. perhaps worthwhile to sketch an alternative derivation, which will also
- clarify its relation to the ABFST model. We start from formula (2.1)

and insert the identity

AN

J+1)x
-1 N 1 e(
L xNp) = ———j a7 —, @.1)
N! o 2wi e (J+1)N+1
where c¢ runs paralleltotheimaginary J axis to the right of J = - 1.
This gives _
: ' J+1)n r
(N) . 4 / ¢! ,
Aap M= 37 4 Y Simh j dtg - -+ dty

X Gan (J; to) S(to) GTm(J; tO’ ti)' ..

S(tN) G-rrb (J; tN), (3.a)

T-GOISM ° | (3.8)
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where

= ey A | oy () q (st t)
G1TTr (Jit, t' ) = T .jds GTTTr (s;t,t' ) e

and similarly for E;"a b We then approximate the t integrals by a

single average value of momentum transfer:

S(t) =—°2— 5t + T),
T

where ¢ is a dimensionless constant and (t) = - T. As before, T
is assumed to be much less than the important masses appearing in the

G's, which from (2.2c) leads to

q(s;T,T) , s
€ 5T

Equation (3.9) then becohxes

- » (J+1)n
A(:l?(”’: _515 jc aj E_s_u.l_h_ﬁ_ {Gaﬂ(J) 5(J)

XG __(3)--- 8(7) Gy (J)} , (3.10)

where

G .(J) = j as s 7t g (s;T.T).
™ ™

" similarly for 'GTra,b’ and

7.

C

J+1

S(J) =

If we now sum over N, the quantity in braces is precisely (3.8), and

finally we note that for not-too-small values of n the Jintegral in (3.10)

“is just the inverse Laplace transform.

QOur next step is to choose the functions G and S and examine the

‘resulting cross section. For the cluster at the ends of the chain we

assume a single narrow resonance:



-15-

Ga(xa) =g, 5(xa - Aa) , (3.11a)

where g, is the integrated strength of this resonance and Aa the ra-
- pidity it spans. The internal cluster may be either a meson or a BB

A

system, and we write
.G(x) = EM 5(x) + g 6(x - AB). (3.11b)

The meson and baryon clusters have strengths &M and g and rapidity
intervals 0 and A'B; respectively. From the earlier discussion, AB
should be identified as the internal threshold for a BB system, and

Aa b 38 the corresponding thresholds for the ends of the chain. We

have, for the moment, ‘assumed the meson rapidity interval is negligible.

—

For;the propagator we write

S(y) = ePY, (3.12)
where B is to be'interpreted as 2a-1, « being the average spin of the
object exchanged along the multiperipheral chain. In the pion exchange
case, for example, B = - 1. Strictly speaking, an overall constant
should appear in (3.12), but we choose to absorb it into the G's.  Laplace

transforming (3.11) and (3.12) and substituting into (3.8), we obtain,

finally, g g e‘-(Aa..f-Ab)‘:r
_ 2a®b ~
AU =~ R 613
-J-ao—gB e
where
e =Ptey _ (3.14)

“We now consider the cross section resulting from (3.13). First ~
suppose there is no production of BB pairs, ‘a situation which corfe-

sponds to gg ~ 0. If we invert the Laplace transform according to

-16-
ctie
1
Alm) = 5= a7e’ MA() (3.15)
I c-ie

where c is to the right of the singularities of A(J), we find o
T _‘edo(“'Aa'Ab)" (3.16).
ab a®b

gp |
so the meson clusters alone have generated a Regge pole at ay- For .
£p # 0, A(J) has the set of poles shown in fig. 3.2: a real p‘ole to the
right of ag plus an infinite sequence of complex poles, together with -
their complex .conjugate pairs (not shown). The contribution of such a
complex pole pair at a Tap + iaI to A(nm) is

@ *a*
ren+re n

a7 :
2 [rle R cos[a1n+arg(r)], (3.1_7)
which is an oscillating function. Since ap is always below the leading
real pole, the oscillations are damped. The oscillations have the effect
of reproducing the variation with energy of the total cross section that
is associated with the threshold structure of the" partial cross sections
f_or'va'rioué numbers of aLntibaz-'yons., The latteir quantities can be found
by expanding the denominator of (3.13) .in powers of‘gAB before inverting

the transform [ or from direct integration of (3.1)].. The result is

- ~ _ n
A_ ()= So(n78ay) L £B%
ab B8y o B! Ep ©

:IjIMS

(3.18)

n o
X (n-Aa-Ab-nAB) O(n-Aa—Ab-nAB),

- where the nth term represents the production of n BB pairs.
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To relate this model to pp scattering and provide a numerical
illustration of these ideas, we can choose the parameters involved in
the following way: In section 2 we obtained two different estimates for
fhe thresholds AP and AB’ depending on whether the end cluster was a

nucleon or a A -resonance, but both gave an over-all threshold

Bz 5.0 .

2A_+ A
p

For simplicity we will just average the two alternatives, and this leads-
to Ap = 0.5 and AB: 4.0. From the separate terms in (3.18), we can
relate gg to the slope of the antibaryon cross section at threshold. If

o is the partial cross section for n BB pairs, then

d(J'1 * -a A

R_= e . (3.19)

S S

B 00 dn
n= 2Ap+AB

Using the data shown ih fig. 1, and taking into account the fact tha£ the
antibaryon kernel has been estimated to have roughly 3 times this
strength due to additional pion production (secﬁon 2), we obtain
Rp = 0.3. The Froissart bound requires that the Pomeron intercept in
the model —the position of the leading (real) pole of (3.13)—not exceed 1.
If we aillow it to attain thi_s value, which assumes that no other impor_tant
clusters will apear at still higher energies, we can determine age By

requiring (3.10) to develop a pole at J = 1, we see that @, is the solution

of the transcendental equation
’ ' -Apa] -AL(t-a)) ,
B0 B 0’ _
1 - -[gBe }e =0, - (3.20)
and with the values quoted above we obtain @, = 0.84. The leading com-
plex poles are then found to occur at J = 0.50£1.4i and 0.29+2,7i.

In fig. 3.3 we show the cross section resulting from this param-

etrization.” The solid line is the exact cross section obtained from
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(3.18), while the dotted lines labeled by values of n are the partial
cross sections. The dashed line is the asymptotic expansion obtained
from the real pole plus the leading complex pair; it provides a very
good approximation to the exact result if n is not too small.

Before comparing this curve with experiment, a preliminary re-
mark is required. In formulating multiperipheral equations, one al-
ways diagonalizes with respect to t-channel quantum numbers such as
angular morﬁentum, isospin, .and signature. In partilcular, since we
are here concerned with high-energy scattering and the Pomeron, the
part of the amplitude with even t—chahn_el signature is involved. This
means we have really constructed a model for the sum of pﬁ and p;
total cross sections. Unfortunately, very high energy pp scattering
measurements do not exist, and we are forced to extrapolate this

amplitude. We shall suppose that for all energies of interest that

tot tot -1/2
(o iy =g + 3 .
P (s) - (s) + cs (3.21)

where ¢ is chosen to fit the available data at lower energy. With this
prescription expei‘iment” is then compared to this model in fig. 3.4,
and the agreement.is satisfactory. As a byproduct of studying the even
signature amplitude, we can immediately obtain the full (forward)
amplitudé. from its absorptive part by inserting the appropfiate Regge
signature factors:

~ire
1 +e an
————r e
sinTo o

F(n,0)= = - . (3.22)
. o

where the sum runs over the Regge poles of (3.13), and the r, are pole
residues. ' In fig. 3.5 we plot the ratio of real to imaginary part. This

shows the same oscillations.as OtOt, but shifted in phase by 90°.
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From the figures we see that damped oscillations in various ob-
servable quantities are predicted byt his model, and one is immediately
led to ask if these are observable. This of course depends on the
period of oscillation; in the model just presented, the period is 4
units of rapidity, and a modest increase in ISR capabilities would push
the range of avilable energies past the maximum. Unfortunately, our
estimate of the period has been crude and might be increased in either
of two ways: the value of the momentum transfer cutoff might be
smaller than we have suppoe;e“d, or the effective mass of the BB system
might be larger. In particular, within the second category, we could
ha\_;;e allowed the BB system to have an unlimited mass as given by
baryon Regge exchange (fig. 3.6). In section 5 we will discuss a model
which includes this effect, and a substantial increase in oscillation
period will resulf.

4. MORE REALISTIC KERNELS

In the last section we saw that the incorporation of antibaryon pro-
duction into a very simple model led to a threshold increase and subse-
quent oscillation of the total cross section, and we now begin to inve sti-
gate whether a more realistic description supports this conclusion. The
first pos51b1e source of error which comes to mind is the use of a sharp
rapidity threshold, which in turn was based on a fictitious sharp cutoff
int. Itis conceiv_able.that a model with smooth t-damping would not
exhibit the strong oscillations we have found however, a simple argu-
ment shows that this is not the case. The essential point is that anti-
baryon production events occurring at rapidity intervals less than
AB {(i. e., with large momentum transfer) are a small fraction of those
reactions in which antibaryons are produced. - Since antibaryons are

only produced a fraction of the time, those events falling below the
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rapidity threshold are a very small fraction of the total cross section,
and their neglect should not lead to serious error. We can make these
remarks quantitative:

Since we have shown that the presence of threshold-induced oscil-
lations is correlated with the existence of complex poles in A(J), it is
sufficient to show that the use of smooth damping does not introduce a
major change in the posit‘ic'm and residue of these poles. In our previous
arguments we have taken the antibaryon kernel to be a delta-function in
rapidity, as depicted in fig. 4.1a. We can introduce a smooth threshold
by instead choosing a form like that of fig. 4.1b. There should of course
be a smooth tail for x > AB, as in fig. 4.1c, but we shall treat this
complication separately in the next section. Given a baryon kernel as
in fig. 4.1b, it is straightforward to cornpute the Laplace transfoﬁn
and search for the poles of (3.13).. We have done this for a variety of
choices for fhe function GB(x), all characterized by GB being large only
for x near AB’ and we find that the position and residue of the leading
complex poles are only slightly altered. In ref.[411], an analysis based
on the systematic use of a smooth t-dependence leads to similar‘ oscil-

lating effects. We conclude, then, that the oscillations do not depena

'in any essential way on an unrealistic t-dependence.

The preceeding discussion has treated baryon clusters in an in-
equitable manner by neglecting all other rapidity thresholds. This is
not an unreasonable approxirhation, since the mass of a BB system is

much larger than that of any other (known) meson cluster, but it is

. nevertheless instructive to aftempt to include other cluster thresholds.

Assumlng that the propagator S is the same for all possible clusters (in
other words, that the t- -dependence is umversal), and for simplicity

that only one end- cluster is present, the only change in the above
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formalism is to replace (3.11b) by
G(x) = f/[ BM S(X-AM) + &R S(X*AB), (4.1)

where the sum runs over the various possible meson cluster M, each

with rapidity threshold AM and integrated strength gn This leads to

- ‘-(Aa+Ab)J
.8, ¢
A = AT =
J-B-Z g,, e En €
M B
¢ With the semi-realistic formula (4.2) in hand we would like to com-

pare the value of gR required by the measured antibaryon cross sec-
tion with the ABFST maqdel estimate of section 2. In this case the
quantity RB of eq. (3.19), the slope of O’B(‘r]) at threshold normalized to

the total cross section there, is given by

Ry = - - O (43).

The additional factor is the derivative of the denominator of {4.2) evalu-
ated at g the position of the leading pole, and the equality is only
approximate becauée there will be further complex poles arising from
the meson thréshold bexponentials'. In this case a, ;atisfies the equation

VAN, . ’
agB - T gy e M70 -, (4.4)
M M . .

The facili}:é.te'the'analysis, we suppose it is meaningful to speak of an

average meson - M-cluster threshold <AM> such that

“AL o - - o

M0 : M “0
z g, A e = {a,.)Z g, e
M MM » M7y FM

0 .
g, - (4.5)
N EM
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From eq. (2.3), we suppvose that this average mieson-cluster threshold
is related to the average squared-mass (m&) by
m2)
. (4M> = Ap + log = (4.6)
BB

We can rearrange (4.3-5) into the ratio of baryon to meson cluster

strengths:

gB ~ R CL’O(AB' <AM>) <<AM> 1 ) ) (4.,7)

B e * a’o'p

There is some numerical uncertainty in this result because of the free-
dom in the quantities entering on the right-hand side. We have tried the

range of parameters

3=Ap =5, -1=4=0, 0.6= (mi/[) =1.2 Gev2,

together with RBz 0.3, we find values of a, ranging from 0.75 to 0.85

0

and

2< gB/I‘iI gy S 5

The ABFST model estimates of the baryon kernel in section 2 suggest
this ratio is at most 1. - While these two estimates agree to order of
magnitude, the size of the baryon kernel indicated by e;{periment is
mysteriouslyv large. However, given the crudeness and amount of ex-
trapolation required for these estimates, we do not regard this as a
critical discrepancy. .

We can now give a sample calculation of a pp cross section based
én these ideas. To specify the clusters involved we fall back on the
.pion—excha.nge model, and choose the p meson, .a KK narrow resonance

near threshold, and the aforementationed BB resonance. Inclusion of
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the p is obvious, and a KK cluster is chosen because the wnm - KK
integrated cross section [17] is of the same order of magnitude as that
for mmr - BB. We compute the various thresholds according to the rule
(2.3), using a cutoff T = 0.2 G&V2. The end cluster is assumed to be
always a A-resonance, and we compute its rapidity interval from
{2.2b) with the saxhe value of T. These choices lead to a R-meson
threshold of s = 35 GeVZ, wiliich roﬁghly agrees with experiment [7].
To choosve the éoupling stll",_eri'g'fhs, we note that the average multiplicity
of cl;lster i is given by [12]

. . | ,

(n(n)) =g Bg, 108 AgpM)

and if the leading pole of the model is at J = 1, one has asymptotically

A,
(ni(n)> ~ constant X (gi e 17]).

From the dat; on high-energy multiplicities [ 7] we choose the coupling
strengths in the ratio

—Ap' -éK. -AB =2:1:1 .
These numbers are ohly meant to pfovide an illustration of threshold
effects, and we do not claim they give a very accurate picture' of cluster
strengths. With this parametrization _v}e obtain the cross section showr;
in fig. 4.2a. This result was obtained from the Regge expansion, Qhere
in this case three complex poles are needed for a reasonable approxima-
tion. For c‘omparison, we show in fig. 4.2b the cross section that re-
sults if the K-ﬁeson cluster is omitted and the two remaining clusters

are chosen with strengths in the ratio

-A -A
g e p:gBe B=3:1,

and in fig. 4.3c we reproduce the result of section 3 with only the BB

threshold retained.
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There are two conclusions we wish to draw here. First, note that

fig. 4.2a with two different neighboring meson thresholds shows less

short-wavelength variation than fig. 4.2b, with only one. This indicates
that nearby thresholds tend to interfere’ with-each other or, in other
words, their respective oscillations tené ..t';i) be, out of phase and cancei.
Secondly, the oscillations associated with the BB resonance are not
significantly altered by meson thresholds. The essential ingredient
here is the fact that the mass of a BB system, and thus its associated ;
rapidity threshold, is significantly above that of the other important
clusters in the multiperipheral chain.

This discussion has, of course, oversimplified matters by attribut-
ing meson production to two or three isolated zero-width resonances,
and one might wonder what happens. if the cluster spectrum approaches
a continuum. We have investigated this point by calculating the cross
section resulting from various other choices of kernel characterized by
G(x) being a c‘ontinuousv function with a prominent peak at x = AB. The
conclusions of the previous paragraph are upheld, and we find cross éec-
tions that resemble the simple model of section 3. However, many com- -
plex poles a;_re needed to p_rovide a good approximation to the. exact cfos,s
section. | |

As a byproduct of this analysis, it is possible to discuss other re-
actions alozlg the same lines. If we co‘nsider the even-signature wp total
cross section, *the sum of-n+p. and m p, the only change-is that a pion
must be coupled t6 one-end of the multiperipheral chain. There are now
three possibilities, dependiﬁg on whe';her the end cluster is a p, KK, or

BB system. In the numerator of eq. (4.2) we replace one factor of

“The Kp system is complicated by the presence of several non-leading
Regge trajectories. .
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gpe by gp e + gk © + gg e , where the g; are

the same baut Zi differs from Ai because the threshold kinematics at
the end of the multiperipheral chain differs from that of its interior.
Using egs. (2.2) with the same cutoff T = 0.2 GeV>, we obtain fig. 4.3.
In this case, because the various clusters can be produced at the ends
.as well as in the middle of the chain, the baryon threshold is not iso-
lated. 1Its consequent‘ oscillation is reduced consideré.bly, and is sus-
ceptible to being washed out by the threshold effects of other clusters.
We have only included two possible clusters, so in a more realistic
model this smoothing is likely to be even more pronounced than that
which appears in the figure. If we ignore this caveat, the model pre-
dicts an increase of up to 2 mb in the sum of 7 p and Tr+p cross sections
from Serpukhov to ISR energies.

This' would have been a good apportunity to discuss inclusive cross
sections; unfortunately, the m.odel we have been using is somewhat in-
appropriate. The reason is that an inclusive cross section in a multi-

- peripheral model depends critica_lly on the details of morﬁentum transfer
damping and clgster decay which we hav‘e very crudely approximatéd.

‘In fig. 2.4, for e}‘i‘a.n."xple, the antibaryon inclusive spéctrum wi1'1> be quite
sénsitive to the t—depeﬁdence_ of the pion links as well as the character-

-~ istics of the BB system, and our averaging procedure will not be reli-
able. |

5. INCLUSION O.F BARYON EXCHANGE

In the p;eceding discuss.ion the baryon—ahtibaryon system has. been
treated as a single narrow resonance, and we now attempt to improve
the description by allowing it a high-energy component due to baryon ex-

change (fig. 3-.6). This will not alter'the general characteristics of the
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threshold effects and oscillations, as we shall see, but does lead to an
intriguing interpretation of the earlier results and suggests that the
complex poles we have found may be identified with the P' Regge
singularity. The arguments to follow will be based on a model formally
identical to that of ref. [21], but differing in interpretation.

Consider an idealized situation in which there is one species of
self-conjugate meson (M), one species of baryon (B) together with the
corresponding antibaryon (B), and whére at first the meson system
does not couple to the baryons. The forward absorptive part of the
meson scattering amplitude, in the mu.ltiperiphéra.l approximation,
then has the form shown in fig. 5.1, where we assume some meson
cluster is emitted at each vertex with strength M and the sides of the
""ladder' correspond to the exchange of a single effective Regge tra-
jectory an Similarly, baryén scattering is as shown in fig. 5.2, where
again a meson cluster (not necessarily the same as in MM scattering)
is emitted at each vertex with strength Yg and there is an effective
(baryon) Regge exchange ap- Since only mesons are emitted, thresh-

old factors are omitted. At this stage, because of the decoupling

‘assumption, BB scattering does not occur. We must be more explicit

about the signature of the baryon system: the model just described
should Be specified separ;ately for even and odd signature (BB * BB in
the s-channel or BB # BB in the t-channel). At present, _however the‘
model is so simple that both signatured amplitudes arve equal and we
have an exactly exchange degeherate situation. (From this.point of
view, the BB scattering amplitude vanishes because it is the difference
of the even and odd signatured amplitudes. ) To identify the Regge

singularities involved, we ' sum the ladders" to find the respective
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_ . *
forward absorptive parts:
1 ' 1 : 1
Ap (D) = Z Y Yp U Y
M J-ap, "M J-ap, M M J-a,
= ——1—-———
J-aM-yM
and similarly
() 1
AL (J) &« —————— .
B J-aB " Yg

If we assume that meson exchange producing meson clusters accounts
for the bulk of mu.}tip'article events, then the singularity of AM should
not differ drastically from the Pomeron, and its intercept should not
lie too far from one. We suppose

= a

a 0

M T Y™ = 0.9

where this value will be justified below. Ag); on the other hand, cor-
responds to BB annihilation to mesons; in the PP case this is approxi-

mately equal to the difference between pp and pE total cross sections,

usually attributed to the w Regge trajectory [22]. Hence we assume
- ag + YR = a = 0.5. . (5.2)
At this stage we have exchange degeherate w and P' poles in Ag) and
(+)
AB .
Now we couple the even-'signa.tured‘meson and baryon systems by
introducing a vertex for (exchanged meson) + (exchanged baryon) 1/2
) - _ -AT
- (produced baryon). We write the associated coupling as gge - ) "

since the product of two of these corresponds to the old vertex for

wT - BB. The exponential factor will provide the proper energy

“Note: MM scattering is purely even signature.
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threshold for production of a BB pair. The various vertices now pres-

ent in the model are shown in fig. 5.3. Because of the coupling between
channels, the poles at @, and a, will mix to form two new singularities
in the _e_v_g&signéture amplitude, and P'-w exchange degeneracy will be’
broken.

The coupled system is most easily'r].n‘aﬁdled in a matrix formalism,
and a simple equation is obté.ined if we‘fe;ctor off the ends of the multi-
peripheral chain, analogously to our procedure. in section 3. There ére
then two channels, associated with meson and baryon exchange, and the

forward amplitudes satisfy the canonical multiperipheral equation

A=G+GSA ' (5.3)

depicted in fig. 5.4, where

AyM Ams)\
A= ' (5. 4a)

AvB  “BB

/(:r-uzM)'1 0
S = ‘ . ' (5.4b)
\ 0 (-ag)
- ‘ 1/2
M Ep*
G = '_A_BJ_ 1/2 : (5.4c)
gBe . YB ’

"-and the (+) signature label has been suppressed. If eq. (5.3) is solved

. for A, the J-singularities consist of poles whose location is given by the

vanishing of a. denomination function

(J-dM) (Jiag) det (1-GS)

D(J)
. ApT .

(5.5)

(J-ap) (J-a ) - gge B
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In fig. 5.5 we separately plot thé quadratic (solid line) and exponential
(dashed line) tefrns in D, for small (unreaiistic! } values of gg- The
zeros of D at ay and a in the uncoupled case have been shifted apart
slightly, and in addition a third zero appears in the left half-plane. For
slightly larger gp’ the exponen-tial in effect shifts to the right, so the
two leading zeros are further split apart, while the 'third moves to
~the right. As gP; increases further, .the two non-leading zeros collide .
and move off into the complex plane: seebfig. 5.6. At the experimen-
tally-relevant values of éB {and AB) the situation is as indicated in

fig. 5.6: a leading real pole (aP— the Pomeron) plus a complex conju-
gate pair (ac). In addition there wi.ll be a family of lower-lying complex
poles, like those appearing in fig. 3.2, which are negligible once moder-
ate energies are reached. v

We are now in a position to argue that the leading complex pole, a;,'

should be identified with the P' Regge trajectory. Suppose we expand

A(J) in powers of the antibaryén coupling,

© NS
_
ag) = —=2J) 4 5 [gBe B ] b_(3), (5.6)

(J-ao) (J-aw) n=1
[ a(q) and bn(J) are matrices] and consider the inverse Laplace trans-
.fo.rm (3.15). For énergies below the antibaryon thr.eshold, all terms in
the integrand containing one or more powers pf e-A ! decrease ex-
ponentially as ReJ = + .o , anci if the C()‘;ltour is closed to the right they
do ﬁot contribute. Therefore, in this energy range. only, the amplitude
is in effect given by the first term of (5.6) and can be represented by the
two poles at a and @ . The latter is the even-signature exchange de-

generate partner of the trajectory which should clearly be identified

with the P'. However, it is not 6b]igatory to expand A(J) as in (5.6);
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and one can equally well work with the singularities of the full ampli-

tude —the poles a., and @, associated with the full denominator function

P
(5.5). Below the antibaryon threshold either set of singularities must
give the saﬁe cross section {to the extent that the lower-lying complex
poles may be neglected). It has been shown in the previous paragraph
that, in the presence of the antibaryon coupling, a "turns into" @
and @ _ is therefore the Qm{ir_m_at:elz exchange-degenerate partger of
the w trajectory. The overall situation is as follows: Below the anti-
baryon threshold one can work with a '"bare' Pomeron ay ® 0.9
é,nd exactl.y exchange-degenerate w-P' trajectories or with a renorm-
alized Pomeron ap = 1.0, a complex pair @ and a real w. Above the
antibaryon threshold, however, one must use the second set of singu-
larities, and breaking of P' -w exchange degenei‘acy relationships should
appear. ;
To discuss cross sections in this model it is necessary to couple
external particles to the multiperipheral chain, and at this point a
technical difficulty arises. For BB scattering, say, the model should
include processes such as in fig. 5.7 in which an external baryon couples
to a baryon trajectory. The kinematicbs, unfortunately, are such that a
baryon-‘exchange link coupled to aﬁ external baryon can involve positi\re
momentum transferé, and in tilis caser the foregoing analysis—based on
strictly spacelike t—is inapplica.ble. Furthermore, since the averagge
baryon momentum transfers for such exchanges will certainly differ
from t.he corresponding quantity for ''internal” baryon exchange, at the
least some new parameters will be required, and a decent treatment
would require a specific choice of t-dependence. This is more detail

than we care to go into, and we shall make the approximation of neg-

iecting such effects. No particular threshold mechanism is involved in
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such processes, and th.eir neglect should not affect our conclusions.”<
In particular, ‘the Regge pole spectrum is independent of this approxi-
mation since it does not depend on "external" couplings.
We now consider the immediately interesting case of (even-signa-
ture) pp scattering and suppose as before that the leading clusters are

always either a nucleon or A-resonance. The elastic amplitude is then

as shown in fig. 5.8, and given by

s -A T : -A_ T
)y = P 1 1 1
AT =g e + =~ A J) mem—— 1Y , 5.7
PP P .]'-aM .T—aM MM( ) J-on gp e -7)
and evaluating this expression from eqs. (5.3-5) we find
-APJ 2 J—aw
A _(J)= .
pp'7) 7 |Epe D(J) | (5-8)

If the antibaryon term in D(J) is neglectedr, for energies beléw its
threshold, then this formula reduces (as it must) to an expression pro-
portional to (J’—ao)_i.
The parameters entering into (5.8) can be estimated in a manner
by now familiar. We choose a, = 0.5 a‘s stated and the samie thresholds
"~ as previously. The BB coupling gp and the 'bare Pomeron" intercept
. IQOI are constrained by the. two requiréments of reproducing fig. 1 and
generating a leading pole at J = 1. This léads to values of gg similar

to those obtained previously and @, near 0.9. Not surprisingly, the

model gives the same quality of agreement with experiment as its prede-

cessors.

"Processes like that of fig. 5.7 are of interest,v for example, when
studying the inclusive leading proton spectrum for x #.1; see ref.|23].
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In this case, however, the leading complex pole position is typically

around 0.5%0.5 i—the imaginary part has been roughly halved and the

v consequent period of oscillation doubled to approximatelin units of

rapidity. The reason, of course, is that by allowing a high-energy
component to the BB system we have increased its effective mass and,
from eq. (2.3), have thereby effecti.vel'sr"increased its rapidity threshold.
ﬁnfortunately, this reduces the likelihood of fo‘reseéable' experiments ob-
serving a full oscillation, rather than a simple increase, in the total
cross section.
6. DIFFRACTIVE EFFECTS

The models previously discussed in this paper may be described as
referring to the short-range correlation component [ 24] of high-energy
scattering, in that (exclusive) Pomeron-exchange amplitudes have not
been considered.. In other words, we have omitted the ""high-energy
tail" of the mulfiperipheral kernel. While it is not our aim in this
paper to provide a complete discussion of diffraction scattering,' it is
necessary to show that its inclusion does not alter the general features
of the threshold and oscillatory effects we propose. Specifically,
Pomeron exchange. will be introduced here in a manner based on the
"schizophrenic Pom.eroﬁ"' model of Chew and Snider | 25]. .We will :
find that the oscillatory behavior is essentially unchanged, and it will
be ev‘ident from the discussion that the céonclusion is somewhat insensi-
tive to the precise way in which diffraction is introduced. (Further re-
mérks on this point z;re in the next section. )

In parametrizing the high-energy tail we can take advantage of two
useful facts. First, since the most-favored configuration in a multi-
ééripheral model is a roughly_ uniform distribution in rapidity, the ob-

served mean multiplicity tells us that the probability of a large
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subenergy will be small unless the total energy is enormous. The ex-
tremities of the high-energy tail in the kernel, then, will not contribute
greatly at accessible energies, and it is natural to replace its probably
complicated J-plane structure by a éimpler approximation. Secondly,
we use the phenomenological observation that the high-energy tails of
scattering amplitudes approximately factorize with respect to fhe in-

. cident particles, * and this fact suggests that as a first approximation

FON

we treat the tail as a simple pole. * For the moment, we will take the
pole intercept as a free parameter, and in the appendix we will return
‘té discuss its origins and the possibility of improving the approximation.
We consider a mulfiperipheral model based on exchange of a single
effective meson vtrajectory (M) and whose kernel contains a narrow-
resonance meson cluster at low subenergy, a BB resonance localized
_hear t.hreshold, and a high-energy tail in the MM scattering amplitude
due to (interfering) P and P' exchange. The components of the kernel
are S}X)Wn in fig. 6.1, and we write the correspond1ng vertices as M’
gR e- BJ, and € SP(J). In the latter quantity, € represents the coupling
of M to (P + P') and, with our approximatioﬁs, the Pomeron propagator

is

Lsp s g (6.1)

[od

where @, is now the position of the single effective pole. Since the
kernel is much larger in the resonance region than its high energy téil,

we expect g., and g, to be much larger than €. More explicitly, and
P Eant B : : g . exp y

&M
gp should not change drastically from their previous values, of order

sk

In particular, the residues of the Pomeron and P' are proportlonal [26].

“ Thls idea has had considerable recent popularity in both phenomeno-
logical [27] and theoretical [28) applications.
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one, while in the Appendix we estimate € = 0.01-0.1.

We write the meson exchange Regge propagator as

i
Sy(9) = , (6.2)
M T-By
where ﬁM is to be understood as ZEM-i, EM being an average meson

spin. To complete the speci’fic?.tion of the model we assun';e the exter-
nal particles are att_ached as before: external protons couple through
eifher a nucleon or A -resonance via either meson or P‘o.rneron exéhange,
as shown in fig. 6.2. The amplitude may now be written succinctly in

a two-channel matrix formalism, where now the channels refer to M

and (P+P' ):

T
A__(J)=B_(J)[S(T) +S(T) A(T) S(J)]B_(J), 6.3
Pp( ) pl ) [8(I) (J) A(T) s(3)] p , (6.3)
where the external coupling vector is
-A J
I'M e P
E B _(J) = : (6.4)
p() ,
2 rP
the propagator matrix is
SM(J) 0
S(J) = , h (6.5)
0 SP(J)
and A(J) satisfies the equation
A(T) =G(J) + G(J) S(J) A(T) , (6.6)
where now the kernel matrix is AT
B .
By + gg © - : . €
Gy = | ' ' . (6.T)
€ 0

The M-M element of G represents the resonant part of the kernel, the
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sum'of the first two terms in fig. 6.1, while the M-P coupling is the
Regge residue € and the P-P element is assumed to be negligible.

'Solving this system of equations we find

T ~ . .
A (I)=B_(J)AJ)B (1), 6.
pp( ) P (J) A(J) P( ) . {6.8)
where 2
1 €
J-a \
c
A = = | \ 6
- D(.]')I ) -ABJ . - (6.9)
i 62 J—ao-gBe
J-a J-a
c c

We have defined @ = gm + QM, and the denominator functién is

Sl B €

D(J) = J'-ozo -gg © © Fea . : (6.10)
In discussing this result, it is convenient to consider various special

cases. If € = 0 (no exclusive Pomerons) and B~ 0 (no antibaryon pro-

duction) we have

1 . ™
J-an - 0
0
A(J) = _ ' ,
o Jia
\ c/
which yields
(ay-1)m {a_-1)n
_ .2 0 2 . -
Gpp(n) Tryvoe + rp e ¢ ( “gp —_0)- _ (6.11)

"The thresholds associated with the ends of the chain are not essential
to-this discussion, so in the remainder of this section we set Ap=0 to
simplify the notation..
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The first term is the inelastic cross section, which has been built up
by the repetition of meson clusters, and the second is the elastic cross
section, given by the aforementioned average of P and P' exchanges.
Next, if € = 0 but gR # 0, it is easy to ses that the inelastic cross sec-
tion is identical to .the simple antibai‘ly.qxil.:mﬁdel of section 3. ' The elastic,
scattering term is unchangeci; in fact, even in the general case of € and
Eg #0 elastic scattering is“ still given b-y the secénd term in t_he‘ lost .
equafion. 'This ‘érude, single—pble approximation will deteriorate in
accuracy for higher energies. ..

The case € 0 but gp = 0 is the original schizophrenic Pomeron

model; there are now two poles, given by the vanishing of

. 2
= - - € » =
D) = J-a, Toa - (gg=0)
and located at
_ 1 ’ 1 2 2
ai-—z(ao-fa)i '\/4(ao—ar)+€

For smal 62, the experimentally relevant situation, this becomes

~ ~ _ .2 -1
a, = ag t ba, a_ = a_ - 6a,‘where Sa = € (a/O - Qc)_ . The (even-
signature) total cross section is now .
, (@,-tn (@ _-1)n R
cpp(n)_ =r, e | tr_e (gB = 0) (6.13)

where

r (6.14)

M Lo, -

: 2r 2+r2( -« )—T'
q [rz MIPS p'%: ~ % J
+ C

. S +
1

+ D (oz:h) I

In view of our earlier remarks we expect that until  is large the con-

tribution of exclusive Pomeron exchange should be small and (6.13)

should be approximately equivalent to (6.11). Indeed, it can be shown
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directly that {6.13) differs from (6.11) only by terms of order ezn, '
and for small values of the latter quantity one can describe the inelastic

cross section adequately by a, above. A higher energies o, will dom-

+
inate, and since a, > e the cross section will fall (slightly) less
rapidly than in the absense of diffractive effects. Another way to see
this is to note that the extra terms in € are positive definite. A similar
result will hold for the dependence of a scattering amplitude on any sub-
energy.

Returning to our major concern after this disgression, we now con-
sider a non-vanishing antibaryon coupl‘ing. Below the antibaryon thres-
hold the cross section is idenﬁcal to that of the schizophrenic Pomeron
model just described. Above the threshold antibaryons appear, and it is
valmost self-evident that the situation is roughly the same as in the
simpler model of section 3. The only difference, after all, is that the
other parts of the multiperipheral chain have been made more compli-
cated in that = combination of two Regge poles is used in their descrip-
tion, leading to a gentler energy dependence, and an elastic scattering
term has been added. To be explicit, if we use the same values of gg
and AB as before, determine € from triple Regge couplings (se‘e‘the.
Appendix) and ,dc from the pp elastic cross section (at enefgies below
the antibaryon fhreshold), and constrain ao.so as to produce a leading
pole at J =1, we fi;'xd a cross section greatly resembling that obtained
with diffracti>n omitted (fig. 3.4) with roughly the same set of complex
poles. The essential reason that the inclusion of exciusive Pomeron
effe;ts he}s not altered our conclusions is that at presently accessible
energies these complications are a small effect, whereas antibaryon

production is a large effect.
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7. CONCLUDING REMARKS
We have shown in this paper that the essential features of the thres-

hold and rising effects in the antibaryon and pp total cross sections can
be nicely correlated and understood within simple multiperipheral
models. With the pzlyssible exception of the size of the antibaryon kernel,
such models successfully account for the thresholds, energy dependence,
and increase in magnitude of both cross sectioné. We were then led to
a siinplé description in terms of complex Regge poles and the prediction
of as"ymptotic oscillations in cross sections.

| A crucial question which immediately arises is whether the oscilla-

tory behavior is an artifact of the model used. We have investigated

this by attempting to make the model realistic in several different

‘ways—by including other thresholds, a better antibaryon kernel, and

diffractive effects—and found no essential change. Another potential
source of criticism is our use 6f a sharp cutoff in momentum transfer,
but we have argued that this is not an essential requirement. There re-
main, however, other possible means of avoiding asymptotic oscillations
which we have not mentioned: )
1. The existence of an indefinite sequence of other important particle-
clusters of increasing mass. In thi_s case, new thresholds might be
reached b,e.for.e the antibaryon-induced oscillations can manifest them-
selves. While there is no evidence for the existence of such new
clusters, we cannot rule out their existence. |

2. The antibaryon kernel may be so large that the naive summation
of kernels in eq. (4.2) generates a leading pole above J = 1, and eventu-

ally unitarity effects restore the Froissart bound. " In this case the

“Suzuki [5] discussed the connection between antibaryon production

and the pp total cross section in this manner.
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" cross section may increase approximately as a i)ower of s temporarilyv,
and eventually as (log s)z, Vwith no oscillation.
3. Unitarity effects related to the Pomeron might invalidate the
simple model used here. While this is possible, thg unitarity bounds
on the pp amplitude are in no danger of saturation (1], and there is
no reason to believe that such effects are large enough to affect the
gross behavior of the cross section at foreseeable energies.
4. It has been claimed {19] that unité.rity effects within the coﬁpled
BB-many pién system invalidate simple multiperipheral arguments.
We disagree with this assertion;‘ in the pion-exchange case it is known
from the success of Chew-Low extrapolations that any such effects must
be c;f short range in rapidity, and thus the resonance description of the
coupled system in section 2 should suffice. -

.The best test of the ideas presented here would, of course, be the
observation of a genuine oscillation. Unfortunately,i our estimates of
the period very likely rule this out for the present. For inclusive cross
sections the amplitude of oscillation is likely to be much larger, but on
the other hand the period doubles [8]. The most accessible test, it
seems, is based on the fact that the oscillation in the ratio of real to
imaginary part of the elastic amplitude i»s advanced by one-quarter cycle
c;x,;ér the total cross éection, and this qﬁantity would pass through its
maximum at lower energy.

In this paper we have not touched upon the t—de}::endence of the
amplitude. The rﬁain reason.for this is simplicity—tlhe sharp cutoff
approximation which makes the models discussed here so tractable is
obviously inadequate if oné wishes lto study the variation in t. Further-
more such a discussion would require considerably more input of in-

formation on choice of propagator, off-shell effects,, and so on, and we
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have tried to use as few para?neters as possible. ‘This subject cer-
tainty deserves further study.

A very interesting question we have only touched on is the relation
of the complex poles to the conventional set of non-leading Regge singu-
larities. In the model of section 5, involving a baryon exchange com-
ponent in the kernel, fhe complex pole is naturally identified with the P',
while in the model of section 6, where diffraction has beén combined
with a narro;\av resonance BB kernel, one finds the P' and complex poles
appearing as distinct singularities. If the two models are simply com-
bined, by including both effects in the kernel, there would still be two
distinct singularities. Aside from the point of principle, this is a
matter of considerable phenomenological interest, since its answer
would dictate the number of distinct Regge poles to be used in fitting |

data. Unfortunately, the present arguments do not provide a resolution

. %
to this question.
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APPENDIX

The description of the schizopHrenié Pomeron model used to in-
co.rpora’;e diffraction in section 6 was rather brief, and we wish to
present a more detail}ed discussion which emphasizes the physical ap-
proxim'a.tions‘ipvolved. The analysis is 'rhost understandable if we
imagine a set of differe_nt regifne's of total energy. |

L n= O-é:% the inelastic c-foss section will be dominated by the
production of only a small Inun“lber of méson clusters, Isomeron exchange
amplitudes are ?ossible, but since the various sﬁbenergi/es cannot be

The energy dependence

large, their contribution may be neglected. *

of the inelastic cross séction is

(By,-1)m
M (1+\(Mn+---)..

ainel(ﬂ)oc €
II. m = 2-4: multiple production of meson clusters occurs, while the
total energy is still too low for exclusive Pomeron exchange to be im-
portant. The energy dependence is |

: (Byg-1m
OiperM = e % trym)/m!

(Vy + Byg-thn (ag-1)n
- e = e

’_an'd the bare Pomeron pfovides a reasonable description of the inélastic

cross section.

¥
Recall s = ng'(i + cosh n).

* : . . :
The dependence on rapidity interval
y2 BmY

b y of the meson propagator. is
M€ » compared to € e " for the Pomeron propagator. Since Y

is much larger than € and @, is 0.5-1.5 units above SM' Pomeron ex-

change only becomes an important ingredient once large y is possible.

" understood as the three poles 2a+—1, a
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II. n 2 4: the incident energy is now sufficiently high that ex-
clusive Pomeron exchange becomes important. If we consider

eqs. (6.8-10) for the amplitude, this means we cannot neglect terms in

- € and the relevant Regge singularities are the two poles @, of (6.12).

The presence of a diffractive tail has thus ' split" the bare Pomeron

@, into two poles a, and o_, to be identified with the P and P' respec-
tively, which should providé :a. simple par#metrization of Oinel for large
n. For lower values of 7, in energy regime I for exémple., we can still
use a, and ¢_, but it is more economical and physically equivalent to
use just ag- This is because a, " differs’ from the combination of a

0 +

and o_ just by processes which are negligible in region II. However,
in region III @y is inadequate and o, must be used.
One can iterate this procedure by successivel? improving the de-

scription of the exclusive Pomeron amplitude (see also ref. [28]).

Since the singularity at @, represents the elastic cross section, over a

range of energies where the elastic amplitude i

S

proportional to
,-one should interpret @ as 20 (t) );1. W:hen we introduce an

internal Pomeron component in region III, since the typical internal

-subenergies are much lower, say in region II, the appropriate choice

is a = 2010—1 (neglecting the effect of trajectory slope). If we were to
introduce a ;egion IV, for example 1 ~ 7-10, the typical internal sub-
energies would be unlikély to exceed those of region III and a. should be
4¥e -1, and 2a_-1. One could
then include all three in the multiperipheral equation to give the elastic
amplitude appropriate for this region, which would involve four Regge
polés. One.could also introduce this complicated Regge spectrum in the

lower-energy region III, but the resulting description would only be an

inefficient and physically equivalent alternative to o (just as @, are an
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inefficient aIternatiVe to a, in region II). This procedure can be re-
peated indefinitely, at the cost of complicating the description as the
incident energy increases. The result would be a sequence of energy
regimes such that in region N one determines the 'elastic amplitude by
parametriziﬁg’ the exclusive Pomeron amplitudes in the manner appro-
priate to regidn N-1. The description appropriate for region N is valid
although unnecessarily complicated'in regions 1,2,..., N-1, and in-
adequaté for regions N+1, N+2, ...

One might wonder what happens to the threshold effects under this
iterati\;e' procedure. It turns out that the position and residue of the
leading complex pole is-stable under (at least) the first step of the itera-
tion. The reason is essentially that this complex pole is " responsible"
for generating the antibaryon thresholds in the asymptotic expansion,
and should not be significantly altered by the inclusion of Pomeron fine
structure.

Finally, we turn to the estimation of €. Consider double diffrac-
tion dissociation into (moderately) large masses, shown in fig. A.1a.

To lowest order in the small parameter €, the contribution of this
process’to the forward elastic amplitude is shown in fig. A.1b, and

from the formulae in section 6 it is given by

On the other hand, in a model with a single .(moving) Regge trajectory
ao(t) with residue function rﬂ(t) and triple-Regge coupling g(t), and con-

ventional normalization, the expression corresponding to this figure is
0 .

[28] ) : d 2() L .
0) ——— b at. g (t . '
rio) T-a,(0) / T6r T-2agF1  T-ag(0] r(0).
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As we have said, it is a reasonable approximation at moderate energies

to take 7
a = Zaro( (t)) -1,

and comparing the two expressions we id_ehtify
0

2 1 2
€ ~m—/ dt g (t) .
.

If several trajectories are present, 62 is an average of such terms.
Using triple-Regge couplings obtained either from a single bare-Pomeron
parametfization [27] or more conventional fits [2], together with g(t)

having a width in t of 1-2 Gev™2, we find typical values

€3~"0.01 - 0.1.
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FIGURE CAPTIONS
Fig. 1. Integrated antibaryon inclusive cross section as a function of

energy.

Fig. 2.14. Production of N + 2 clusters of particles in the ABFST model.

4

Fig. 2.2. Possible antibaryon-producing clustets.
Fig. 2.3.. Experimental 'n'+‘n'— - p'§ éross section.
Fig. 2.4. Amplitude éontrolling the antibaryon threshold.
Fig. 3.1. Oné;dimensippai r'nultiperiphe-ra.l model.

Fig. 3.2. Regge-pole spectrum of eq. (3.13).

Fig. 3.3. Cross sections resulting from (3.13): exact (solid line),

three-pole a‘symptotic éxpansion (dashed line), and partial (dotted lines).

Fig. 3.4. Even-signatured pp total cross section compared to ''experi-

ment. "'

Fig. 3.5. Ratio of real to imaginary parts of the forward scattering
amplitude.

Fig. 3.6. Large-mass corhponent of the BB system.

Fig. 41 éossible antjb;ryon kgrnels.

Fig. 4.2. Total cross section with (a) p,» KK, and BB thresholds,
(b) p and BB thre.sholds, and (c). BB threshold only.

Fig. 4.3. Even-signatured wp total cross section.

F.ig. 5.4. Unc;oﬁpled meson sys‘t'em.

Fig. 5.2. Uncoupled bgryori system. ’

Fig‘.. 5.3. Vertices in the coupled meson-baryon systeni.

Fig. 5.4. Multiperipheral equation. | |

Fig. 5.5.  Quadratic (so}id !.ine)'and exponential (dashed line) féctors
in eq. (5.5). S B

Fig. 5.6. Métion of Regge'pn;)les as a function of Ep

Fig. 5.7. A contribution to BB scattering.
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Fig.- 6.1. Components of the kernel in the (exter;ded) schizophrenic
Pomeron model.
Fig. 6.2. End vertices.

Fig. A.1. Double diffraction dissociation.
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