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ANTIBARYON PRODUCTION AND HIGH ENERGY OSCILLATIONS* 

Joel Koplik 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

April 1974 

Abstract 

We employ multiperipheral models to investigate the proposal that 

the experimentally observed production of antibaryons can account for 

most or all of the rise in the pp total cross section at ISR energies. 

Our models support the proposal, and furthermore predict that this 

rise is the first pa'rt of a long -wavelength damped ·oscillation as a func-

tion of energy. We find that a variety of models accomodate the anti-

baryon effect, and show that these all lead to total cross sections con-

sistent wi~h present data and displaying an oscillation at higher energies. 

We attempt to understand the anHbaryon cross se·ction itself within the 

special case of the ABFST modeL and find that the observed energy 

threshold emerges naturally, but that the predicted magnitude is some-

what small. The oscillations are simply parametrized in terms of com-

- ·- -~- .. 

plex Regge poles, and one of the models studied suggests that the leading 

complex pole be identified with the P' . 

. -. 
* Supported by the U. S. Atomic Energy Commission .. 
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1. INTRODUCTION 

A striking characteristic of recently obtained experimental results 

at high energy [1,2] is a tendency for hadronic cross sections to rise: 

the pp total cross section and most inclusive cross sections are ob-

served to increase substantially with energy. While many explanations 

have been advanced for this phenomenon, we find it most plausible to 

attribute it to threshold effects. In the case_ of inclusive spectra, the 

cross section obviously must increase from zero, and one naturally ex-

pects that higher energies would be required to produce more massive 

particles copiously. Several detailed calculations [ 3] , based on vari-

ants of the multiperipheral model, have lent support to this idea by 

qualitatively reproducing the experimental energy dependence of inclu-

sive spectra. Basically, a "t . " effect is responsible: hadronic 
nun 

scattering amplitudes are large only when momentum transfers are 

small, and if large masses are to be produced, simple kinematics re-

quires the incident energy to be extremely large. Furthermore, once 

most inclusive cross sections are rising, it is not surprising that the 

total cross section rises as well. Our principal intention in this paper 

is to show that just such a multiperipheral threshold effect provides an 

' understanding of the energy dependence of the total cross section. 

Because of the multitude of particles and resonances that may 

occur in a high energy process, a realistic attempt to calculate a total 

cross section based on these ideas would require a morass of detail. 

We will avoid this by adopting the optimistic view that the rise in the 

total cross section may be understood in terms of the production of just 

one prominent, massive system. As noted by several authors [ 4-6], 

a likely candidate is the production of antibaryons. In fig. 1 we-show 
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* the experimental results for the integrated antibaryon inclusive cross 

section as a function of energy [ 7] .· The key features of this curve are 

its large magnitude and the approximate threshold at s "'"150 GeV
2 

The 

latter value is in rough agreement with the energy at which the pp cross 

section probably begins to rise. While our analysis will attempt to 

attribute all of the increase in the total cross section to antibaryon pro­

duction, we will be making several approximations. and using param-

eter s that are not known accurately, so the possibility of other me chan-

isms contributing is not ruled out. However, our re suits will strongly 

support the view that at least a large part of the increase is due to anti-

baryons. 

A byproduct of this analysis is the prediction of long -~avelength 

damped oscillations in the total cross section as a function of energy 

[ 8]. These occur because the effective thresholds for the production 

of various numbers of antibaryons develop an approximate logarithmic 

spacing, due to the aforementioned tmin effect, and the strong energy 

dependence of these partial cross sections reflects itself in the total 

[ 9]. Since these oscillations are perhaps the most unusual feature of 

our discussion, in this paper we pay particular attention to possible 

mitigatingfactors that might suppress them. We will conclude that the 

antibaryon-induced oscillations are quite persistent and stable und.er 

variation of the model used to obtain them. 

Our arguments will be entirely within the context of the multipe­

ripheral model, and we should explain how this model is used here. 

'~ 
This curve is taken from ref. [ 6] ; these autho.rs refer to it as the 

antinucleon cross section, but the arrangement of apparatus at the 
ISR is such that the decay products of antihyperons are included. We 
will·also assume throughout this paper that to a good approximation at 
these energies, at most one antibaryon appears per event. 
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Th~ __ bas_ic assumption is that the bulk of the totaLcross section can be 

attributed to multiparticle events occurring at small momentum trans-

fers, and that these can be described reasonably by a model employing 

repet~tion of a small number oLparticle clusters in the t-channel. Most 

fe·.atures· of observed data are consistent with this assumption [ 10]. It 

will be evident from the particular models we study that our conclusions 

a:re rather insensitive to the specific implementation of the m~tiperiph­

eral idea. For the most part we -..yill use models that have been reduced 

to a ;, one-di~ensional" form by averaging over momentum transfer. 

This provides a great simplification·;'·and we shall argue that no essen- ~ 

tial physics is lost thereby. The main disadvantage of this approxima-

tion is that it precludes a corresponding treatment of inclusive cross 
~ . ~s.~· 

sections.* 

In section 2 of this paper we use the ABFST [ 12] or pion-exchange .. 

multiperipheral model to motivate some of the later discussion and then 

to estimate the relevant energy thresholds. The latter are found to be 

in rough agreement with experiment. We also use this model for a 

crude estimate of the magnitude of the antibaryon cross section: the re-

suit is surprisingly large, but somewhat smaller than experiment in-

dicates. An interpretation of the large size ot the antibaryon cross sec-

tion in terms of resonances induced by the long-range pion-exchange 

force is given. Section 3 presents the derivation of the kind of model 

used in this pa:oer, and successfully applies the simplest version to pp 

data [ 6] . A discussion of oscillations is given and the role of complex 

Regge poles elaborated. In each of the next three sections the simple 

model is made more realistic in one direction at a time. Section 4 

'~Furth.er remarks on this subj~ct are in section 4; a discussion of total 
and inclusive cross sections using a smooth t-dependence may be found 
in ref. [ 11]. 
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·discusses the effect of a smooth antibaryon threshold and that of thresh-

olds for the production of other particles.· Section 5 treats a more 

realistic antibaryon kernel, and-in section 6 we discuss diffractive ef-

fects. The general features of the total cross section are found to be 

the same as in the simplest case. We present some final remarks in 

section 7, and an Appendix contains a more detailed discussion of the 

model used for our treatment of diffractive scattering. 

2. ESTIMATES BASED ON THE ABFST MODEL 

The first question we. wish to examine is whether the observed 

antibaryon cross section can be understood in terms of familiar phe-

nomena and, in particular, whether it is consistent with the multipe-

ripheral ideas to be used in this paper. Rather than the detailed shape 

of fig. 1, whose fitting would require considerable input of information, 

we concentrate in this section on the location of the approximate thresh-

old and the magnitude of the cross section. For the purpose of making 

order-of-magnitude estimates, we adopt the ABFST multiperipheral 

model [ 12], based on repeated pion exchange, which allows us to com-

pute high energy quantities from known, low-energy pion scattering in­

formation. While this model is known to be numerically deficient, in 

that the pion component alone is too small to a_ccount for high energy 

data [ 13] , the general behavior it predicts has been verified and we 

shall assume no gross error is made if we scale the size of the pion-

exchange !cernel upward, as described below. 

We begin by describing the ABFST model, using the notation of 

ref. [ 13] . The contribution of N+2 pion-produced clusters of particles 

to the absorptive part of the a-b forward elastic scattering amplitude.is 

depicted in fig. 2.1, and given by 

• 

.. 



• 

.. where 

A (N)(11) = 
ab 

cosh 11 = 

sinh q 
a 
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1 
sinh 11 

similarly for sinh qb' and 

cosh qi = 
si -\-1 - ti 

2 ...rt.T.1t. 
1- 1 

. ' 

(2.1) 

(2.2a) 

(2.2b) 

(2. 2c) 

The s. and t. are the subenergies and momentum transfers shown in 
1 1 

the figure, S(t) is a pion propagator and G (s;t, t') is proportional to 
71"71" 

the cross section for off-shell pions of squared-masses t and t' to 

produce a particle cluster of subenergy si' integrated over the internal 

variables of the cluster. G will be referred to in the following as the 
71"71" 

1r-1r "kernel" for the cluster in question. For the present we will 

assume these are "low" -subenergy kernels, in that a possible diffrac-

tive tail arising from P and P' exchange is absent. Diffractive effects 

would not alter the present estimates, and their inclusion will be dis-

cussed in section 6. , Furthermore, since the momentum transfers in-

volved are small (we are, after all, studying the multiperipheral 

model), we will assume these cross sections are given by their 
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"on-shell" or physical values. Finally, in formula (2.1) the q's are 

Lorentz boost angles for the transformation between standard refere.nce 

frames [ 14] associated with particles a and band the various pions, 

and the step-function (which essentially expresses energy conservation) 

requires that the overall boost 11 between the a and b standard frames 

be at least as large as the sum of the individual boosts across each 

cluster. 

Within this model, antibaryons may be produced in a pp collision 

through the appearance of either of the clusters shown in fig. 2.2a or 

b, respectively at the ends or in the middle of the multiperipheral chain. 

The effect of cluster involving particles in addition to the baryons will 

be considered later. Now the cross section corresponding to fig. 2.2a 

is small (it has never been measured) and so we neglect it. This is in 

agreement with the experimental fact that the antibaryon inclusive cross 

section falls rapidly near the ends of a rapidity plot [ 7] , whereas the 

products of cluster 2. 2a would populate just this region. The internally-

appearing cluster, fig. 2.2b, has however a substantial cross section, 

and in fig. 2.3 we show the experimental results for the case 

+ - * 
TT TT - pp [ 1 5 ] • 

We first show how the smallness of momentum transfers implies 

the observed energy threshold for this cluster. For simplicity fig. 2.3 

is approximated by a delta-function peak at a mass M = 2.1 GeV, and we 

assume that the amplitude is important only for momentum transfers 

* The reference quoted gives the result of a Chew-Low extrapolation in 
the reaction rr-p - (pp)n, and notes that this agrees well with the cross 
section as determined from the inverse reaction pp-+ TI+rr- and detailed 
balance. This agreement argues against the possible presence of im- · 
portant corrections to pion-pole dominance. 



falling within a cutoff T such that 

- t < T << M 2 
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and negligible outside this range. The first assumption is surely ade­

quate for estimating a threshold, while the assumption of a sharp cutoff 

in momentum transfer, although unrealistic, is justified in section 4 

and by the work of ref. [ 11]. From eq. ( 2. 2c) we see that the boost q 

across the baryon-antibaryon cluster is bounded by 

M2 
cosh q ~ 2T 

or 

M2 
q -;::. 1 og """'T" ( 2.3) 

Any additional 'lT'lT BB cluster appearing in the chain then requires an 

internal boost of at least this value, and from the step-function in 

eq. ( 2.1) we see that each additional anti baryon cluster requires an 

increme~t of at least log(M
2 
/T) in rapidity, TJ· 

The' ·overall energy threshold for antibaryon production is then 

* that of fig. 2.4, where we expect that p , the particle-cluster appearing 
' I 

at the ends, is either a nucleon or 6.-resonance. In the first.case T 

is extremely small: it can be estimated from np backward elastic scat-

tering which is dominated by pion exchange and whose cross section has 

been measured to be 

with 

da -2 -cc s 
du 

bu 
e 

b - 3 0 -1 0 0 GeV- 2 ( 16]. If we assume that the t-damping is the 

same for fig. 2.4, then from eq, (2.2b) the end boosts are negligible: 

sinh q = ~0/2m ~ fi/2m << 1 
p p p 

and the threshold requirement is TJ;:: qBB" The observed threshold 

(fig. 1) would correspond toT= 0.03 GeV 2 , a value quite consistent 
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with the np data, although because of the' inherent uncertainty in this 

procedure a clean prediction cannot be made. For the case of a 

6.(1236) being produced at the end, q is no longer negligible. However,, 
p 

using eqs. (2.2) we find that the observed antibaryon threshold cor-

responds to T = 0.20 GeV
2

, again a value consistent with data obtained 

from pion-pole extrapolation experiments [ 17]. Thus the observed 

antibaryon threshold is in agreement With the ABFST model. 

We now turn to estimating the magnitude of the antibaryon cross 

section. The precise connection between the cross section for 'lT'lT-. BB 

and antibaryon production in a pp collision is not immediately obvious 

and wiil be discus sed in the following sections, but from (2.1) we see 

that some sort of weighted integral of the former over energy is re-

quired. Much of out later discussion will employ a narrow resonance 

approximation for the antibaryon kernel, so it suffices to consider just 

the simple integral-the area under the curve in fig.2.3 -since any mo-

ment of this cross section is then simply related to its area. To take 

into account other charge states of the pions and often types of baryon 

we multiply the area under fig. 2.3 by 3X 8. Strictly speaking, of course, 

we should use the individual cross sections together with the isospin 

and SU(3) cross1ng matrices, but this information is not available and 

the crude procedure should be adequate for an order of magnitude esti-

mate. We should also include the possibility of producing unstable 

baryon-antibaryon pairs (such as 6. ~) which then decay, and to allow 

for this we assume exact SU(6) symmetry and replace the factor of 8 

* (for the baryon octet) by 28 . In this way we find that the net integrated 

* - 1 This number is obtained by attributing half the pp cross section to each 
spin state, and assuming that all members of the 56 representation of 
SU(6) contrl.bute equally. Needless to say, this is a generous estimate. 

• 

• 

"' 
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· 1T'Il' - BB cross section is roughly one-third of the integrated 1r1r-+ 

mesons cross section, where for the latter we use the estimates of 

ref. [ 13]. If the pion-exchange model were quantitatively correct the 

integrated 1T1T - mesons cross section would account for most of the 

total cross section, but in fact it falls short by a factor of 3-4. We 

assume, as described above, that a fair approximation to real life is 

obtained by scaling all pion-exchange results upward by this factor. 

Thus the integrated antibaryon-producing kernel is estimated to have 

roughly one-third the strength of the meson-producing kernel which 

generates most of the cross section. Although this is a large fraction, 

we shall see later that it is still too small to .account for the experi-

mental results. 

At first glance it is rather surprising that the antibaryon cross sec-

tion is so large; the fact itself is sufficient for the other arguments in 

this paper, but we may offer a qualitative explana~ion as follows. The 

two-baryon system is somewhat distinguished in that it allows a long-

rang.e one -pion exchange force, which is prevented by quantum number 

considerations from appearing in many two-meson systems (e. g., 1r1r, 

KK, pp). It was shown some time ago by Ball and Chew [ 18] that a 

simple non-relativistic treatment -of this force in the two-nucleon system 

provides an understanding of the large .cross section for low-energy pp 

• scattering as compared to pp. This is basically a low-kinetic -energy 

classical nuclear physics situation and, as is the case there, it is 

natural to think of it in terms of a number of overlapping resonances 

near threshold. If, therefore, we assume that the BB system near 

threshold is dominated by an unusual accumulation of resonances there, 

the large size of the antibaryon_ kernel is not very surprising. 

The resonance point of view provides us with the means for 

.-10-

remedying an important omission in the preceding analysis. We have 

ignored the fact that a BB system has a strong tendency to annihilate to 

many pions; in other words, final-state interactions within the BB 

system have been omitted.'~ We should add a term to _the multiperipheral 

kernel corresponding to 1r1r - (BB resonance) - many pions. With some 

simplifications, the assumption that the BB system is dominated by 

resonances at low energy allows an estimate of this effect. The key is 

the factorization property of a resonance pole residue. 

We make the approximation of supposing there is only one spin-0 

resonance in question, and that we may approximate the interaction of 

the BB and many-pion states involved as the quasi-two-body scattering 

of spinless particles. The cross section for a- bin a single partial 

wave is then 

SL F.. 
ba - -ba 

2i 

2 

where ka is the center-of-mass momentum of state a. Specializing 

to the s -wave, and extracting the threshold behavior according to 

..J ~ka Tba' 

we have 

O'ba = 1T ~ I Tbal 2 (2.4) 

Now for the pp system, we write 

(2. 5) 

where k~ = s/4 - m~ and f(kp) is a function with an appr~priate reso­

mance peak-a Breit- Wigner form, for example. If the peak is located 

somewhere near threshold, this will give a (rnr- pp) roughly the shape 

* This point has been stressed by Einhorn and Nussinov [ 19]. 
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of fig. 2.3.· Then from equations (2.4) and (2.5), the relative proba-

bility of this resonance decaying to many pions compared to that for a 

pp pair is 

~ k 2 
n mr gmr 

k 2 
= (] (pp annihilation) _ 

2 0 
(] (pP" elastic) - • ' 

p gp 

where the numericaf value quoted is obtained from low-energy data [ 16]. 

As-suming the same proportionality holds for other baryons, our previous 

estimate of the" anti baryon" kernel strength should be tripled to take 
<:: 

into account this pion production. 

3. THE TOTAL CROSS SECTION 

With both theory and experiment agreeing upon the existence of an 

important component of the multiperipheral kernel associated with anti-

baryon production, we proceed to calculate its effects on the total cross 

section. In the remainder of this paper -yte shall employ a" one-di­

mensional" approximation in which morbentum transfers have been 

.-.. * 
averaged over, leading to amplitudes depending only on rapidity, but 

with the relevant (sharp) peripheral thresholds retained. This simpli-

fies our arguments considerably, and it is shown in section 4 and 

ref. [ 11] that a more careful treatment leads to similar results. 

We will begin by discussing the simplest possible model which ex­

hibits the threshold effects of interest [ 6, 9], and then go on to more 
r 

realistic examples. Consider a reaction in which particles a and b 

produce N+2 clusters of particles which may include mesons or a 

baryon-antibaryonpair. We assume the amplitude. may be approximated 

by. repeated Reggeon or pion exchange. If we square this amplitude and 

integrate over phase space, we find fig. 3.1 for the (N+2)-cluster 

':'such models are discussed by DeTar [ 20]. 
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contribution to the forward a-b absorptive part, where an ordering in 

rapidity is implied. We denote the overall rapidity by T], the rapidity 

intervals across the end clusters by x b and across the internal a, 

clusters by xi' and the rapidities across the Reggeons by yi. Then 

T] 

(N) -1 A ab (T]) - 0 dxa dyo dx1 dy 1 ... dxNdyN dxb 

X o(TJ -x -xb- ~x.- ~y.)G (x )S(y0 ) 
a 1 1 a a 

X G(x1 ) S(y1 ) · · · S(yN) Gb(~), 

(3.1) 

where S(y) is a Reggeon propagator for the sid~s of the ladder, and 

G b (x b) and G(x) ar~ kernels in the sense of the previous section a, a, 

and are proportional to the contribution of a cluster of rapidity interval 

x to the appropriate Reggeon absorptive part. 

It will be trivial to solve for the full absorptive part, 

A - oo ab (T]) = L A (N) 
N=O ab (TJ), 

(3.2) 

once we obtain an integral equation for it. To this end, we define a 

"one-sided" absorptive part F~N) by extracting the left-hand cluster 

and propagator from A~~·); write 
. T] 

A(~) (TJ) =1 dxdy Ga(x) S(y) F~N)(TJ-x-y) 
0 . 

Then F~N) ·obviously satisfies the recursion relation 

(N) r Y · . (N -1 ) 
Fb (Y) = Jo dxdy G(x) S(y) Fb (Y-x-y), 

and summing over N as in (3.2) we have 

where 

::"-' 

F b (Y) = F~O) (Y) + (y dx dy G(x) S(y) F b (Y -x-y) , 
Jo 

(3.3) 

(3.4) 

.. 

~ 

.· 
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(3.5) 

Taking a Laplace transform 
00 

(3.6) 

and noting that (3.3) is a convolution integral, (3.4) becomes 

(3.7) 

Thus from (3.2) and (3.3) 

A b(J) = G (J) S(J) Fb(J) a a. 

Ga (J) S(J) Gb (J) 
= 

1 - G(J)S(J) (3. 8) 

Since we will be making much use of equations of this type, it is 

perhaps worthwhile to sketch an alternative derivation, which will also 

clarify its relation to the ABFST model. We start from formula (2.1) 

and insert the identity 

·1 N 1 1 (J+1)x e ( ) -=--=--:-- d J ..::e'-----,. N! X X :: 2 1T i N+1 , 
c (J+1) 

(2.1) 

where c runs parallelto the imaginary J axis to the right of J = - 1. 

This gives 

A(N) ( ) 
ab 11 f e(J+i)T] 

dJ ...::.,.....,---
'c sinh T] 

(3.a) 

-14:. 

where 

, ) _1_J· d G ( ·t t' ) (J+1)q (s;t, t') 
G1T1T (J;t, t = J+1 s 1T1T s, , e 

a:Q.d similarly for G b" We then approximate the t integrals by a 
1Ta,. 

single average value of momentum transfer: 

S(t) =-T o(t + T) , 
T 

where c is a dimensionless constant and ( t) = - T. As before, T 

is assumed to be much less than the important masses appearing in the 

G' s, which from (2.2c) leads to 

eq(s;T, T)::::: s 
"T 

Equation (3.9) then becomes 

A(N)( ) = _1_1 dJ e(J+1)TJ 
ab T] 21Ti c sinh T] {

G (J) S(J) 
a1r 

(3 .1 0) 

where 

J -J-1 
G (J) = · ds s G '(s;T, T), 

1T1T 1T1T 

similarly for .G b' and -rra, 

If we now sum over N, the quantity in braces is-precisely (3.8), and 

finally we note that for not-too-small values ofT] the J integral in (3.10) 

is just the inverse Laplace transform. 

Our next step is to choose the functions G and S and examine the 

resulting cross section. For the cluster at the ends of the chain we 

assume a single narrow resonance: 
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G (x ) = g o(x - !:. ) , 
a a. a a a (3.11a) 

where g is the integrated strength of this resonance and!:. the ra-
a a 

pidity it spans. The internal cluster may be either a meson or a BB 

system, and we write 

. G(x) = gM o(x) + gB o(x - !:. B). (3.11b) 

The meson and baryon clusters have strengths gM and gB and rapidity 

intervals 0 and !:. B' respectively. From the earlier discussion, !:. B 

should be identified as the internal threshold for a BB system, and 

!:. b as the corresponding thresholds for the ends of the chain. We a, 

have, for the moment, 'assumed the meson rapidity interval is negligible. 

For;fhe propagator we write 

S(y) = ei3Y ., (3.12) 

where 13 is to be.interpreted as 2a-1, "a being the average spin of the 

object exchanged along the multiperipheral chain. In the pion exchange 

case, for example, 13 = - 1. Strictly speaking, an overall constant 

shoul_d appear in ( 3.12), but we choose to absorb it into the G' s. Laplace 

transforming 

finally, 

(3.11) and (3.12) and substituting into 

'-(!:.a +~)J 
gagb e 

.Aab(J) 
J-a -t:.BJ·' 

0- gB e 

where 

(3.8), we obtain, 

(3.13) 

aO = 13 + gM (3.14) 

We now consider the cross section resulting from (3.13). First 

suppose there is no production of BB pairs, a situation which corre-

sponds to g B = 0. If we invert the Laplace transform according to 

A(T)) 
1 

2rri 
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c+ico 

L. dJ eJ 11 A(J) 

where c is to the right of the singularities of . .A:(J), we find 

Aab(,) = 
ao (T) -6. - !i. 

ga gb e a _b) •• 

gB=O 

(3.15) 

(3.16) 

so the meson clusters alone have generated a Regge pole at a 0• For 

gB -f. 0, A(J) has the set of poles shown in fig. 3.2: a real pole to the 

right of a0 plus an infinite sequence of complex poles, together with 

their complex conjugate pairs (not shown). The contribution of such a 

complex pole pair at a =·aR + ia
1 

to A(T)) is 

a * a* re 11tr e 11 

aRT) 
= 2 I r I e cos[a

1
T) + arg(r)], (3.17) 

which is an oscillating function. Since aR is always below the leading 

real pole, the oscillations are damped. The oscillations have the effect 

of reproducing the variation With energy of the total cross section that 

is associated with the threshold structure of the partial cross sections 

for various numbers of antibaryons .. The latter quantities can be found 

by expanding the denominator of (3.13) in powers ofgB before inverting 

the transform [or from direct integration of (3.1)]. The result is 

A ( ) a (T) -6. !:. ab 11 = g g e 0 · a- b) 
00 

a b ~ 
n=O 

1 l.... - t:. ~r n! gB e BaOJ 

(3.18) 

n 
X (T)- .tc. - .tc... - n!:. ) 8 ( 11- .tc. -!:. - nt:. ) , 

a ~ B a b B 

where the ~th term represents the production of n BB pairs. 

~· . 

•' 
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To relate this model to pp scattering and provide a numerical 

illustration of these ideas, we can choose the parameters involved in 

the following way: In section 2 we obtained two different estimates for 

the thresholds Ap and AB' depending on whether the end cluster was a 

nucleon or a A -resonance, but both gave an over-all threshold 

For simplicity we will just average the two alternatives, and this leads 

to Ap = 0.5 and~= 4.0. From the separate terms in (3.18), we can 

relate g B to the slope of the anti baryon cross section at threshold. 

(1 is the partial cross section for n BB pairs, then 
n 

H 

R = B 
(3.19) 

Using the data shown in fig. 1, and taking into account the fact that the 

antibaryon kernel has been estimated to have roughly 3 times this 

strength due to additional pion production (section 2), we obtain 

RB :::: 0.3. The Froissart bound requires that the Pomeron intercept in 

the model-the position of the leading (real) pole of (3.13)-not exceed 1. 

H we allow it to attain this value, which· assumes that no ot~er important 

clusters will a pear at still higher energies, we can determine a0 • By 

requiring (3.10) to develop a pole at J = 1, we see that a
0 

is the solution 

of the transcendental equation 

[ 

-ABao] -AB(1-a0 ) 
1-a0 - gBe e =0, (3.20) 

and with the values quoted above we obtain a
0 

= 0. 84. The leading com­

plex poles are then found to occ'-:r at J = 0.50±1.1i and 0.29±2.7i. 

In fig. 3.3 we show the cross section resulting from this param-

etrization. The solid line is the exact cross section obtained from 
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(3.18), while the dotted lines labeled by values of n are the partial 

cross sections. The dashed line is the asymptotic expansion obtained 

from the real pole plus the leading complex pair; it provides a very 

good approximation to the exact result if 11 is not too small. 

Before comparing this curve with experiment, a preliminary re-

mark is required. In formulating multiperipheral equations, one al-

ways diagonalizes wl.th respect to t-channel quantum numbers such as 

angular momentum, isospin, and signature. In particular, since we 

are here concerned with high-energy scattering and the Pomeron, the 

part of the amplitude with even t-channel signature is involved. This 

means we have really constructed a model for the sum of pp and pp 

total cross sections. Unfortunately, very high energy pp scattering 

measurements do not exist, and we are forced to extrapolate this 

amplitude. We shall suppose that for all energies of inte:e st that 

atot ( ) _ tot ( ) + -1/2 - s - a s cs , (3.21) 
PP PP 

where c is chosen to fit the available data at lower energy. With this 

prescription" experiment" is then compared to this model in fig. 3.4, 

and the agreement is satisfactory. As a byproduct of studying the even 

signature amplitude, we can immediately .obtain the full (forward) 

amplitude from its absorptive part by inserting the appropriate Regge 

signature factors: 

1 + e -bra 

sin rra 
(3.22) 

where the sum runs over the Regge poles of (3.13), and the r are pole 
a 

residues. In fig. 3.5 we plot the ratio of real to imaginary part. This 

shows the same oscillations as a tot, but shifted in phase by 90•. 
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From the figures we see that damped oscillations in various ob-

servable quantities are predicted byt his model, and one is immediately 

led to ask if these are observable. This of course depends on the 

period of oscillation; in the model just presented, the period is 4 

units of rapidity, and a modest increase in ISR capabilities would push 

the range of avilable energies past the maximum. Unfortunately, our 

estimate of the period has been crude and might be increased in either 

of two ways: the value of the momentum transfer cutoff might be . 
smaller than we have supposed, or the effective mass of the BB system 

might be la!ger. In particular, within the second category, we could 

have allowed the BB system to have an unlimited mass as given by 

baryon Regge exchange (fig. 3.6). In section 5 we will discuss a model 

which includes this effect, and a substantial increase in oscillation 

period will result. 

4. MORE REALISTIC KERNELS 

In the last section we saw that the incorporation of antibaryon pro-

duction into a very simple model led to a threshold increase and subse-

quent oscillation of the total cross section, and we now begin to investi-

gate whether a more realistic description supports this conclusion. The 

first possible source of error which comes to mind is the use of a sharp 

rapidity threshold, which in turn was based on a fictitious sharp cutoff 

in t. It is conceivable that a model with smooth t-damping would not 

exhibit the strong os~illations we have found; however, a simple argu­

ment shows that this is not the case. The essential point is that anti-

baryon production events occurring at rapidity intervals less than· 

.6.B (i.e., with large momentum transfer) are a small fraction of those 

reactions in which antibaryons are produced. Since antibaryons are 

only produced a fraction of the time, those events falling below the 
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rapidity threshold are a very small fraction of the total cross section, 

and their neglect should not lead to serious error. We can make these 

remarks quantitative: 

Since we have shown that the presence of threshold-induced oscil-

lations is correlated with the existence of complex poles in A(J}, it is 

sufficient to show that the use of smooth damping does not introduce a 

major change in the position and residue of these poles. In our previous 

arguments we have taken the antibaryon kernel to be a delta-function in 

rapidity, as depicted in fig. 4.1a. We can introduce a smooth threshold 

by instead choosing a form like that of fig. 4.1b. There should of course 

be a smooth tail for x > .6.B, as in fig. 4.1c, but we shall treat this 

complication separately in the next section. Given a baryon kernel as 

in fig. 4.1b, it is straightforward to compute the Laplace transform 

and search for the poles of (3.13 ) .. We have done this for a variety of 

choices for the function GB(x), all characterized by GB being large only 

for x near .6.B' and we find that the position and residue of the leading 

complex poles are only slightly altered. In ref. [ 11], an analysis based 

on the systematic use of a smooth t-dependence leads to similar oscil­

lating effects. We conclude, then, that the oscillations do not depend 

in any essential way on an unrealistic t-dependence. 

The preceeding discussion has treated baryon clusters in an in-

equitable manner by negl~cting all other rapidity thresholds. This is 

not an unreasonable approximation, since the mass of a BB system is 

much larger than that of any other (known) meson cluster, but it is 

nevertheless instructive to attempt to include other cluster thresholds. 

Assuming .that the propagator Sis the same for all possible clusters (in 

other.~ords, that-the t-dependence is universal), and for simplicity 
"> 

that only one end-cluster is present. the only change in the above 

.• 
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formalism is to replace (3.11b) by 

(4.1) 

where the sum runs over the various possible meson cluster .M, each 

with rapidity threshold ~ and integrated strength gM. This leads to 

With the semi-realistic formula (4.2) in hand we would like to com-

pare the value of gB required by the measured antibaryon cross sec­

tion with the ABFST mqdel estimate of section 2. In this case the 

quantity RB of eq. (3.19), the slope of C1 B (T]) at threshold normalized to 

the total_cross section there, is given by 

R :::: 
B 

(4.3) 

The additional factor is the derivative of the denominator of (4.2) evalu-

ated at a
0

, the position of the leading pole, and the equality is only 

appr.oximate because there will be further complex poles arising from 

the meson threshold exponentials~ In this case a
0 

satisfies the equation 

(4.4) 

The facilitate the analysis, we suppose it is meaningful to speak of an 

average meson M-cluster threshold (b.M) such that 

(4.5) 
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From eq. (2.3), we suppose that this average meson-cluster threshold 

2 
is related to the average squared-mass (mM) by 

(4.6) 

We can rearrange (4.3-5) into the ratio of baryon to meson cluster 

strengths: 

(4.7) 

There is some numerical uncertainty in this result because of the free-

dom in the quantities entering on the right-hand side. We have tried the 

range of parameters 

3 :S ~B :S 5, -1 :s f3 :s 0, 0.6 ~ (m~) :s 1.2 Gev
2

, 

together with RB::::: 0.3, we find values of a
0 

ranging from 0.75 to 0.85 

and 

The ABFST model estimates of the baryon kernel in section 2 suggest 

this ratio is .at most 1. While these two estimates agree to order of 

magnitude, the size of the baryon kernel indicated by experiment is 

mysteriously large. However, given the crudeness and amount of ex-

trapolation required for these estimates, we do not regard this as a 

critical discrepancy. 

We can now give a sample calculation of a pp cross section based 

on these ideas. To specify the clusters involved we fall back on the 

·pion-exchange model, and choose the p meson, a KK narrow resonance 

near threshold, and the aforementationed BB resonance. Inclusion of 
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the pis obvious, and a KK cluster is chosen because the ;m - KK 

integrated cross section [ 17] is of the same order of magnitude as that 

for 1T1T - BB. We compute the various thresholds according to the rule 

(2.3), using a cutoff T = 0.2 GeV
2

. The end cluster is assumed to be 

always a L1-resonance, and we compute its rapidity interval from 

(2.2b) with the same value ofT. These choices lead to a R-meson 

threshold of s::: 35 GeV
2

, whlch roughly agrees with experiment [ 7]. 

To choose the coupling strengths, we note that the average multiplicity 

of cluster i is given by [ 12] 

., a 
(n.(TJ)) =g. -a- log A b(TJ), 

1. 1 gi a 

and if the leading pole of the model is at J = 1, one has asymptotically 

-L1. 
(n. (T))) - constant X (g. e 

1 rtl· 
1 . 1 

From the data on high-energy multiplicities [ 7] we choose the coupling 

strengths in the ratio 

-6 -6 -6 
gpe p:gKe K:gBe B=2:1:1. 

These numbers are only meant to provide an illustration of threshold 

effects, and we do not claim they give a very accurate picture of cluster 

strengths. With this parametrization we obtain the cross section shown 

in fig. 4.2a. This result was obtained from the Regge expansion, where 

in this case three complex poles are needed for a reasonable approxima-

tion. For comparison, we show in fig. 4.2b the cross section that re-

sults if the K-meson cluster is omitted and the two remaining clusters 

are chosen with strengths in the ratio 

-L1 -6 
g e P.g e B=3·1 p • B . ' 

and in fig. 4. 3c we reproduce the result of section 3 with only the BB 

threshold retained. 

There are two conclusions we wish to draw here. First, note that 

fig. 4.2a with two different neighboring meson thresholds shows less 

short-wavelength variation than fig. 4. 2b, with only one. This indicates 

that nearby thresholds tend to interfere with each other or, in other 

words, their respective oscillati'ons tend to be. out of phase and cancel. 

Secondly, the oscillations associated with the BB resonance are not 

significantly altered by meson thresholds. The essential ingredient 

here is the fact that the mass of a BB system, and thus its associated 

rapidity threshold, is significantly above that of the other important 

clusters in the multiperipheral chain. 

This discussion has, of course, oversimplified matters by attribut-

ing meson production to two or three isolated zero-width resonances, 

and one might wonder what happens if the cluster spectrum approaches 

a continuum. We have investigated this point by calculating the cross 

section resulting from various other choices of kernel characterized by 

G(x) being a continuous function with a prominent peak at x = L1B. The 

conclusions of the previous paragraph are upheld, and we find cross sec-

tions that resemble the simple model of section 3. However, many com-

plex poles are needed to provide a good approximation to the exact cros.s 

section. 

As a byproduct of this analysis, it is possible to discuss other re-

actions alo?g the same lines. If we consider the even-signature 1Tp total 

'~ + -cross section, the sum of-1T p and 1T p, the only change is that a pion 

must be coupled to one end of the multiperipheral chain. There are now 

three possibilities, depending on whether the end cluster is a p, KK, or 

BB system. In the numerator of eq. (4.2) we replace one factor of 

.,.The Kp system is complicated by the presence of several non-leading 
Regge trajectories. 
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-25. J -D. KJ -D.B J 
gp e P + gK e + gB e , where the gi are 

the same but .6.i differs from D.i because the threshold kinematics at 

the end of the multiperipheral chain differs from that of its interior. 

Using eqs. (2.2) with the same cutoff T = 0.2 GeV
2

, we obtain fig. 4.3. 

In this case, because the various clusters can be produced at the ends 

as well as in the middle of the chain, the baryon threshold is not. iso­

lated. Its consequent oscillation is reduced considerably, and is sus-, 

ceptible to being washed out by the threshold effects of other clusters. 

We have only included two possible clusters, so in a more realistic 

model this smoothing i~ likely to be even more pronounced than that 

which appears in the figure. If we ignore this caveat, the model pre-

- + t' diets an increase of up to 2 mb in the sum of 1T p and 1T p cross sec 10ns 

from Serpukhov to ISR energies. 

This would have been a good apportunity to discuss inclusive cross 

sections; unfortunately, the model we have been using is somewhat in­

appropriate. The reason is that an inclusive cross section in a multi­

peripheral model depends critically on the details of momentum transfer 

damping and clllster decay which we have very crudely approximated. 

In fig. 2.4, for eX:ample, the antibaryon inclusive spectrum wip be quite 

sensitive to the t-dependence of the pion links as well as the character­

istics of the BB system, and our averaging procedure will not be reli-

able. 

5. INCLUSION OF BARYON EXCHANGE 

In the p;eceding discussion the baryon-antibaryon system has been 

treated as a single narrow resonance, and we now attempt to improve 

the description by allowing it a high-energy component due to baryon ex­

change (fig. 3.6 ). This will not alter· the general characteristics of the 
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threshold effects and oscillations, as we shall see, but does lead to an 

intriguing interpretation of the earlier results and suggests that the 

complex poles we have found may be identified with the P' Regge 

singularity. The arguments to follow will be based on a model formally 

identical to that of ref. [ 21] , but differing in interpretation. 

Consider an idealized situation in which there is one species of 

self-conjugate meson (M), one species of baryon (B) together with the 

corresponding antibaryon (B), and where at first the meson system 

does not couple to the baryons." The forward absorptive part of the 

meson scattering amplitude, in the multiperipheral approximation, 

then has the form shown in fig. 5.1, where we assume some meson 

cluster is emitted at each vertex with strength yM and the sides of the 

"ladder" correspond to the exchange of a single effective Regge tra­

jectory aM. Similarly, baryon scattering is as shown in fig. 5.2, where 

again a meson cluster (not necessarily the same as in MM scattering) 

is emitted at each vertex with strength yB and there is _an effective 

(baryon) Regge exchange aB. Since only mesons are emitted, thresh­

old factors are omitted. At this stage, because of the de coupling 

assumption, BB scattering does not occur. We must be more explicit 

about the signature of the baryon system: the model just described 

should be specified separately for even and odd signature (BB ± BB in 

the s-channel or BB ± BB in the t-channel). At present, however the 

model is so simple that both signatured amplitudes are equal and we 

have an exactly exchange degenerate situation. (From this point of 

view, the BB scattering amplitude vanishes because it is the difference 

of the even and odd signatured amplitudes.) To identify the Regge 

singularities involved, we 11 sum the ladders" to find the respective 



. . * forward absorptive parts: 

1 
AM(J) a: ~ J-aM 'YM 

1 --- ' 
= J-aM..:yM 

and similarly 

A(±) (J) a: 
B 
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1 1 
J-aM '{M •.• '{M J-aM 

1 
J-aB - 'YB 

If we assume that meson exchange producing meson clusters accounts 

for the bulk of multiparticle events, then the singularity of AM should 

not differ drastically from the Pomeron, and its intercept should not 

lie too far from one. We suppose 

aM + 'YM = aO :::: O. 9 

where this value will be justified below. A~), on the other hand, cor­

responds to BB annihilation to mesons; in the pp case this is approxi­

mately equal to the difference between pp and pp total cross sections, 

usually attributed to the w Regge trajectory [ 22]. Hence we assume 

aB + '{B = aw ::::· 0.5. (5.2) 

At this stage we have exchange degenerate wand P' poles in A~) and 

A
(+) 
B . 

Now we couple the even-signatured meson and baryon systems by 

introducing a vertex for (exchanged meson) + (exchanged baryon) 1; 2 

( -~ J) 
- (produced baryon). We write the associated coupling as gB e . ;· .... ' 

since the product of two of these corresponds to the old vertex for ·-

'lr'lr .... BB. The exponential factor will provide the proper energy 

;~Note~ MM scattering is purely even signature. 
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threshold for production of a BB pair. The various vertices now pres-

ent in the model are shown in fig. 5.3. Because of the coupling between 

channels, the poles at a
0 

and aw will mix to form two new singularities 

in the ~signature amplitude, and P' -w exchange degeneracy will be 

broken. 

The coupled system is most easily' handled in a matrix formalism, 

and a simple equation is obta1ned if we factor off the ends of the multi-

peripheral chain, analogously to our procedure in section 3. There are 

then two channels, associated with meson and baryon exchange, and the 

forward amplitudes satisfy the canonical multiperipheral equation 

A= G +GSA (5.3) 

depicted in fig. 5.4, where 

A =(AMM 

~B 

AMB\) 

ABB 

(5.4a) 

(
(J-a )-1 

S = M 

\ 0 (J-aB)-1} 
0 

(5.4b) 

( 

'YM 

G = (sa e -"sJ) t/2 
(sa•::BJ) t/) 

(5.4c) 

··and the (+)signature label has been suppressed. If eq. (5.3) is solved 

for A, the J- singularities consist of poles whose location is given by the 

vanishing of a-denomination function 

D(J) = (J-aM) (J~aB) det (1-GS) 

-~BJ = (J-ao) (J-aw)- gB e 
(5.5) 
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In fig. 5.5 we separately plot the quadratic (solid' line) and exponential 

(dashed line) terms in D, for small (unrealistic! ) values of gB. The 

zeros of D at a
0 

and aw in the uncoupled case have been shifted apart 

slightly, and in addition a third zero appears in the left half-plane. For 

slightly larger gB' the exponential in effect shifts to the right, so the 

two leading zeros are further split apart, while the third moves to 

the right. As gB increases further, the two non-leading zeros collide 

and mo.;e off into the. complex plane: see fig. 5. 6. At the experimen­

tally-relevant values of gB (and tl.B) the situation is as indicated in 

fig. 5.6: a leading real pole (ap- the Pomeron) plus a complex'conju­

gate pair (a c). In addition there will be a family of lower-lying complex 

poles, like those appearing in fig. 3.2, which are negligible once moder-

ate energies are reached. 

We are now in a position to argue that the leading complex pole, a , 
c 

should be identified with the P' Regge trajectory. Suppose we expand 

A(J) in powers of the antibaryon coupling, 

A(J) 
a(J) 

00 

+ ~ 
n=1 

(5.6) 

J a(J) and bn (J) are matrices] and consider the inverse Laplace trans­

form (3.15). For energies below the antibaryon threshold, all terms in 
-tl.B J 

the integrand containing one or more powers pf e decrease ex-

ponentially as ReJ- + .00 , and if the contour is closed to the right they 

do not contribute. Therefore, in this energy range only, the amplitude 

is in effect given by the first term of (5.6) and can be represented· by the 

two poles at a
0 

and aw. The latter is the even-signature exchange de-

generate partner of thew trajectory which should clearly be identified 

with the P'. However, it is not obligatory to expand A(J) as in (5."6); 
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and one can equally well work with the singularities of the full ampli-

tude-the poles ap and ac associated with the full denominator function 

(5. 5 ). Below the anti baryon threshold either set of singularities must 

give the same cross section (to the extent that the lower-lying complex 

poles may be neglected). It has been shown in the previous 'paragraph 

that, in the presence of the antibaryon coupling, a 11 turns into" a , w c 

and ac is therefore the approXimately exchange-degenerate partner of 

thew trajectory. The overall situation is as follows: B~low the anti-

baryon threshold one can work with a" bare" Pomeron a 0 :::: 0.9 

and exactly exchange-degenerate w-P' trajectories~ with a renorm-

alized Pomeron ap = 1.0, a complex pair ac' and a real w. Above the 

anti baryon threshold, however, one must use the second set of singu-

larities, and breaking of P' -w exchange degeneracy relationships should 

appear. 

To discuss cross sections in this model it is necessary to couple 

external particles to the multiperipheral chain, and at this point a 

technical difficulty arises. For BB scattering, say, the model should 

include processes such as in fig. 5. 7 in which an external baryon couples 

to a baryon trajectory. The kinematics, unfortunately, are such that a 

baryon-exchange link coupled to an external baryon can involve positive 

momentum transfers, and in this case the foregoing analysis-based on 

strictly spacelike t-is inapplicable. Furthermore, since the average 

baryon momentum transfers for such exchanges will certainly differ 

from the corresponding quantity for 11 internal" baryon exchange, at the 

least some new parameters will be required, and a decent treatment 

would require a specific choice oft-dependence. This is more detail 

than we care to go into, and we shall make the approxi~ation of neg­

iecting such effects. No particular threshold mechanism is involved in 
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* such processes, and their neglect should not affect our conclusions. 

In particular, the Regge pole spectrum is independent of this approxi-

mation since it does not depend on "external" couplings. 

We now consider the immediately interesting case of (even-signa­

ture) pp sc·attering and suppose as before that the leading clusters are 

always either a nucleon or C.-resonance. The elastic amplitude is then 

as shown in fig. 5. 8, and given by 

A(+)(J) 
pp - e P -- + -- A (J) --' -C. J t 1 1 1 J 

- gp · J-aM J-aM MM J-aM g e 
p 

and evaluating this exp!ession from eqs. (5.3-5) we find 

- p w ~ -C. J]2 J -a 
APP (J) - gp e D(J) 

-C. J 
p (5.7) 

(5. 8) 

If the antibaryon term in D(J) is neglected, for energies below its 

threshold, then this formula reduces (as it must) to an expression pro­

-1 
portional to (J -a

0
) • 

The parameters entering into (5.8) can be estimated in a manner 

by now familiar. We choose aw = 0. 5 as stated and the sarrie thresholds 

as previously. The BB coupling gB and the 11 bare Pomeron" intercept 

a 0 are constrained by the. two requirements of reproducing fig. 1 and 

generating a leading pole at J = 1. This leads to values of gB similar 

to those obtained previously and a
0 

near 0.9. Not surprisingly, the 

model gives the same quality of agreement with experiment as its prede-

cessors. 

>!<Processes like that of fig. 5.7 are of interest, for example, when 
studying the inclusive leading proton spectrum for x #.1; see ref.l23]. c 
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In this case, however, the leading complex pole position is typically 

around 0.5±0.5 i-the imaginary part has been roughly halved and the 

consequent period of oscillation doubled to approximately 12 units of 

rapidity. The reason, of course, is that by allowing a high-energy 

component to the· BB system we have increased its effective mass and, 

from eq. (2.3), have thereby effectivelyincreased its rapidity threshold. 

Unfortunately, this reduces the likelihood of foreseeable experiments ob­

serving a full oscillation, rather than a simple increase, in the total 

cross section. 

6. DIFFRACTIVE EFFECTS 

The models previously discussed in this paper may be described as 

referring to the short-range correlation component [ 24] of high-energy 

scattering, in that (exclusive) Pomeron-exchange amplitudes' have not 

been considered. In other words, we have omitted the 11 high-energy 

tail" of the multiperipheral kernel. While it is not our aim in this 

paper to provide a complete discussion of diffraction scattering, it is 

necessary to show that its inclusion does not alter the general features 

of the threshold and oscillatory effects we propose. Specifically; 

Pomeron exchange will be introduced here in a manner based on the 

"schizophrenic Pomeron'i model of Chew and Snider [ 25]. We will 

find that the oscillatory behavior is essentially unchanged, and it will 

be evident from the discussion that the conclusion is somewhat insensi-

tive to the precise way in which diffraction is introduced. (Further re-

marks on this point are in the next section. ) 

In parametrizing the high-energy tail we can take advantage of ~-o 

useful facts. First, since the most-favored configuration in a multi-

peripheral model is a roughly uniform distribution in rapidity, the ob-

served mean multiplicity tells us that the probability of a large 

• 

4 
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subenergy will be small unless the total energy is enormous. The ex-

tremities of the high-energy tail in the kernel, then, will not contribute 

greatly at accessible energies, and it is natural to replace its probably 

complicated J-plane structure by a simpler approximation. Secondly, 

we use the phenomenological observation that the high-energy tails of 

scattering amplitudes approximately factorize with respect to the in­

* cidentparticles, and this fact suggests that as a first approximation 

** we treat the tail as a simple pole. For the moment, we will take the 

pole intercept as a free parameter, and in the appendix we will return 

to discuss its origins and the possibility of improving the approximation. 

We consider a mult~iperipheral model based on exchange of a single 

effective meson trajectory (M) and whose kernel contains a narro~­

resonance meson cluster at low subenergy, a BB resonance localized 

near threshold, and a high-energy tail in the MM scattering amplitude 

due to (interfering) P and P' exchange. The components of the kernel 

are shown in fig. 6.1, and we write the corresponding vertices as gM' 
-Ll.BJ 2 

gB e , and E Sp(J). In the latter quantity, E represents the coupling 

of M to (P + P') and, with our approximations, the Pomeron propagator 

is 
1 

T-a 
c 

(6.1) 

where ac is now the position of the single effective pole. Since the 

kernel is much larger in the resonance region than its high energy tail, 

we expect g~·f and gB to be much larger than E. More explicitly, gM and 

gB should not change drastically from their previous values, of order 

~'In particular, the residues of the Pomeron and P' are proportional [26). 

':":'This idea has had considerable recent popularity in both phenom.eno­
logical [ 27] and theoretical [ 28] applications. 
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one, while in the Appendix we estimate E z 0.01-0.1. 

We write the meson exchange Regge propagator as 

(6.2) 

where f3M is to be understood as 2aM-1, aM being an average meson 

spin. To complete the specification of the model we assume the exter-

nal particles are attached as before: external protons couple through 

either a nucleon or Ll. -resonance via either meson or Pomeron exchange, 

as shown in fig. 6.2. The amplitude may now be written succinctly in 

a two-channel matrix formalism, where now the channels refer to M 

and (P+P' ): 

A (J) = B T (J) [ S(J) + S(J) A(J) S(J)]B (J), 
pp p· p 

(6.3) 

where the external coupling vector is 

Bp(J) {M ~pv ) (6.4) 

the 

(6. 5) 

and A(J) satisfies the equation 

A(J) = G(J) + G(J) S(J) A(J) , (6.6) 

where now the kernel matrix is 

( 

-Ll.B J 

G(J) ~ gM + g: e :) (6. 7) 

The M-M element of G represents the resonant part of the kernel, the 
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sum 'of the first two terms in fig. 6.1, while the M-P coupling is the 

Regge residue e: and the P-P element is assumed to be negligible. 

Solving this system of equations we find 

A (J) = B T (J) A(J) B (J) 
pp p p 

(6.8) 

where · ( £ "" 
1 J-a \ 

c I 
- 1 \ 
A(J) = D(J) ( -Ll.BJ ) 

~
€2 J-a0 -gB e 

J-a J-a 
c c 

(6, 9) 

We have defined a 0 = gM + 13M' and the denominator function is 

,/ 

D(J) J-ao - gB e- Ll.BJ (6.10) 
€2 

- -.r:a-
c 

In discussing this result, it is convenient to consider various special 

cases. If E = 0 (no exclusive Pomerons) and gB = 0 (no antibaryon pro­

duction) we have 

which yields* 

(J (T)) 
PP 

A(J)= 

1 
J-ao 

0 

"' 
2 (ao - 1 )ll 2 

rM e + rp 

0 

~. 
1 

J -a / 
c/ 

(a -1)Tj 
e c 

I 
/. 

(E=gB=O). (6.11) 

"'The thresholds associated with the ends of the chain are not essential 
to this discussion, so in the remainder of this section we set !:::,. = 0 to 
simplify the notation. p 
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The first term is the inelastic cross section, which has been built up 

by the repetition of meson clusters, and the second is the elastic cross 

section, given by the aforementioned average of P and P' exchanges. 

Next, if E = 0 but gB ::/= 0, it is easy to se~ that the inelastic cross sec­

tion is identical to the simple anti baryon model of section 3. The elastic • 

scattering term is unchanged; in fact, even in the general case of E and 

gB ::/= 0 elastic scattering is still given b.y the second term in the lost 

equation. This crude, single -pole approximation will deteriorate in 

accuracy for higher energies. 

The case E ::/= 0 but gB = 0 is the original schizophrenic Pomeron 

model; there are now two poles, given by the vanishing of 

and located at 

a± 

D(J) = J-ao 
2 

E 

J-a 
c 

1 J 1 2 (ao + ac) ± 4 (ao 

(gB = 0) 

a )2 + E2 
c 

For smal e: 2
, the experimentally relevant situation, this becomes 

a+ :::: ao + oa, a 
2 -1 

:::: ac - oa, where oa = E (a0 - ac) . The (even-

signature) total cross section is now 

where 

(J (T)) 
pp 

(a+ -1 )T) (a -1 )T) 

r+e +r e 

r = ± 
1 r 2 

D'(a) J rM + 
± .._· 

2 2 
2rMrPE + rp (a± 

a - a 
± c 

(gB 0) (6.13) 

ao) J (6.14) 

In view of our earlier -remarks we expect that until T) is large the con-

tribution of exclusive Pomeron exchange should be small and (6.13) 

should be approximately equivalent to (6.11 ). Indeed, it can be shown 
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directly that (6.13) differs from (6.11) only by terms of order 
2 

E '11• 

and for small values of the latter quantity one can describe the inelastic 

cross section adequately by a
0 

above. A higher energies a+ will dom­

inate, and since a > a the eros s section will fall (slightly) less + 0 

rapidly than in the absense of diffractive effects. Another way to see 

this is to note that the extra terms in E are positive definite. A similar 

result will hold for the dependence of a scattering amplitude on any sub-

energy . 

Returning to our major concern after this disgression, we now con-

\ 

sider a non-vanishing anti baryon coupling. Below the anti baryon thres-

hold the cross section is identical.to that of the schizophrenic Pomeron 

model just described. Above the threshold antibaryons appear, and it is 

almost self-evident that the situation is roughly the same as in the 

simpler model of section 3. The only difference, after alL is that the 

other parts of the multiperipheral chain have been made more compli­

cated in that a combination of two Regge poles is used in their descrip­

tion, leading to a gentler energy dependence, and an elastic scattering 

term has bee:::l added. To be explicit, if we use the same values of gB 

and l!.B as before, determine E from triple Regge couplings (see the 

Appendix) anc ac from the pp elastic cross section (at energies below 

the antibaryo::; threshold), and constrain a
0 

so as to produce a leading 

pole at J = 1, we find a cross section greatly resembling that obtained 

with diffract::':>n omitted (fig. 3.4) with roughly the same set of complex 

poles. The e = sential reason that the inclusion of exclusive Pomeron 

effects has not altered our conclusions is that at presently access.ible 

energies these complications are a small effect, whereas antibaryon 

production is a large effect. 
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7. CONCLUDING REMARKS 

We have shown in this paper that the essential features of the thres-

hold and rising effects in the antibaryon and pp total cross sections can 

be nicely correlated and understood within simple multiperipheral 

models. With the possible exception of the size of the antibaryon kernel, 

such models successfully account for the thresholds, energy dependence, 

and increase in magnitude of both cross sections. We were then led to 

a simple description in terms of complex Regge poles and the prediction 

of asymptotic oscillations in cross sections. 

A crucial question which immediately arises ·is whether the oscilla-

tory behavior is an artifact of the model used. We have investigated 

this by attempting to make the model realistic in several different 

ways-by including other thresholds, a better antibaryon kernel, and 

diffractive effects-and found no essential change. Another potential 

source of criticism is our use of a sharp cutoff in momentum transJer, 

but we have argued that this is not an essential requirement. There re-

main, however, other possible means of avoiding asymptotic oscillations 

which we have not mentioned: 

1. The existence of an indefinite sequence of other important particle-

clusters of increasing mass. In this case, new thresholds might be 

reached before the antibaryon-induced oscillations can manifest them-

selves. While there is no evidence for the existence of such new 

clusters, we cannot rule out their existence" 

2. The antibaryon kernel may be so large that the naive summation 

of kernels in eq. (4.2) generates a leading pole above J = 1, and eventu-

ally unitarity effects restore the Froissart bound. 
"•' 

In this case the 

"~suzuki [ 5] discussed the connection between antibaryon production 
and the pp total cross section in this manner. 
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cross section may increase approximately as a power of s temporarily, 

and eventually as (log s)2 , .with no oscillation. 

3. Unitarity effects related to the Pomeron might invalidate the 

simple model used here. While this is possible, the unitarity bounds 

on the pp amplitude are in no danger of saturation [ 1] , and there is 

no reason to believe that such effects are large enough to affect the 

gross behavior of the cross section at foreseeable energies. 

4. It has been claimed [19] that unitarity effects within the coupled 

BB-many pion system invalidate simple multiperipheral arguments. 

We disagree with this assertion; in the pion-exchange case it is known 

from the success of Chew-Low extrapolations that any such effects must 

be of short range in rapidity, and thus the resonance description of the 

coupled system in section 2 should suffice. 

The best test of the ideas presented here would, of course, be the 

observation of a genuine oscillation. Unfortunately, our estimates of 

the period very likely rule this out for the present. For inclusive cross 

sections the amplitude of oscillation is likely to be much larger, but on 

the other hand the period doubles [ 8]. The most accessible test, it 

seems, is based on the fact that the oscillation in the ratio of real to 

imaginary part of the elastic amplitude is advanced by one -quarter cycle 

over the total cross section, and this quantity would pass through its 

maximum at lower energy. 

In this paper we have not touched upon the t-dependence of the 

amplitude. The main reason for this is simplicity-the sharp cutoff 

approximation which makes the models discussed here so tractab.le is 

obviously inadequate if one wishes ·to study the variation in t. Further-

more such a discussion would require considerably more input of in-

formation on choice of propagator, off-shell effects., and so on, and we 
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have tried to use as few parameters as possible .. This subject cer-

tainty deserves further study. 

A very interesting question we have only touched on is the relation 

of the complex poles to the conventional set of non-leading Regge singu-

larities. In the moder of section 5, involving a baryon exchange com-

ponent in the kernel, the complex pole is naturally identified with the P', 

while in the model of section 6, where diffraction has been combined 

with a narrow resonance BB kernel, one finds the P' and complex poles 

appearing as distinct singularities. If the two models are simply com-

bined, by including both effects in the kernel, there would still be two 

distinct singularities. Aside from the point of principle, this is a 

matter of considerable- phenomenological interest, since its answer 

would dictate the number of distinct Regge poles to be used in fitting , 

data. Unfortunately, the present arguments do not provide a resolution 

* to this question. 
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APPENDIX 

The de~>cription of the schizophrenic Pomeron model used to in-

corporate diffraction in section 6 was rather brief, and we wish to 

present a more detailed discussion which emphasizes the physical ap-

proximations involved. The analysis is most understandable if we 

i~agine a set of different regimes of total energy. 

L T) ::::: 0-2: * the inelastic cross section vvill be dominated by the 

production of only a small nuiTlber of meson clusters. Pomeron exchange 

amplitudes are possible, but since the various subenergies cannot be 

** large, their contribution may be neglected. The energy dependence 

of the inelastic cross section is 

(j3M-1 )T] 
a. 1(1'}) a: e (1 + '{MT) + ... ). 1ne 

ll. T)::::: 2-4: multiple production of meson clusters occurs, while the 

total energy is still too low for exclusive Pomeron exchange to be im-

portant. The energy dependence is 

and the bare Pomeron provides a reasonable description of the inelastic 

cross section. 

*Recall s = 2m2 · (1 + cosh 11 ). p ' 
** 

The dependence on rapidity interval y of the meson propagator is 
2 13MY 2 acY 

'{ M e , compared to E e for the Pomeron propagator. Since yM 

is much larger thanE and ac is 0.5-1.5 units above PM' Pomeron ex­

change only becomes an important ingredient once large y is possible. 
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Ill. T) ~ 4: the incident energy is now sufficiently high that ex-

elusive Pomeron exchange becomes important. If we consider 

eqs. (6.8-10) for the amplitude, this means we cannot negle.ct terms in 

E and the relevant Regge singularities are the two poles a± of (6.12). 

The presence of a diffractive tail has thus 11 split" the bare Pomeron 

a into two poles a and a , to be identified with the P and P' respec-0 + 
tively, which should provide a simple parametrization of ainel for large 

n- For lower values of n. in energy regime II for example, we can still 

use a+ and a_, but it is more economical and physically equivalent to 

use just a
0

. This is because a
0 

11 differs" from the combination of a+ 

and a just by processes which are negligible in region II. However, 

in region Ill .aO is inadequate and a± must be used. 

One can iterate this procedure by successively improving the de­

scription of the exclusive Pomeron amplitude (see also ref. [ 28] ). 

Since the singularity at ac represents the elastic _cross section, over a 
· ..• :c 

range of energies where the elastic amplitude iflfproportional to 

ea(t)TJ, one should interpret a as 2a( (t) )-1. When we introduce an 
c 

internal Pomeron component in region III, since the typical internal 

subenergies are much lower, say in region II, the appropriate choice 

is ac::::: za0 -1 (neglecting the effect of trajectory slope). If we were to 

introduce a region IV, for example T) ::::: 7-10, the typical internal sub-

energies would be unlikely to exceed those of region III and ac should be 

understood as the three poles Za+-1, a++a_-1, and Za_-1. One could 

then include all three in the multiperipheral equation to give the elastic 

amplitude appropriate for this region, which would involve four Regge 

poles. One could also introduce this complicated Regge spectrum in the 

lower-energy region III. but the resulting description would only be an 

inefficient and physically equivalent alternative to a± (just as a± are an 



-43-

inefficient alternative to a
0 

in region II). This procedure can be re­

peated indefinitely, at the cost of complicating the description as the 

incident energy increases. The result would be a sequence of energy . 
regimes such that in region N one determines the elastic amplitude by 

parametrizing the exclusive Pomeron amplitudes in the, manner appro~ 

priate to region N-1. The description appropriate for region N is valid 

although unnecessarily complicated in regions 1, 2, · · ·, N-1, and in-

adequate for regions N + 1, N + 2, · . . . 

One might wonder what happens to the threshold effects under this 

iterative procedur~. It turns out that the position and residue of the 

leading complex pole is ·stable under (at least) the fir~t step of the iter a-

tion. The reason is essentially that this complex pole is "responsible" 

for generating the antibaryon thresholds in the asymptotic expansion, 

and should not be significantly altered by the inclusion of Pomeron fine 

structure. 

Finally, we turn to the estimation of E· Consider double diffrac-

tion dissociation into (moderately) large masses, shown in fig. A.ia. 

To lowest order in the small parameter E, the contribution of this 

process to the forward elastic amplitude is shown in fig. A.ib, and 

from the formulae in ·section 6 it is given by 

1 1 1 
rM ---E---E--r 

J-a0 J-ac J-a0 M · 

On the other hand, in a model with a single (moving) Regge trajectory 

a
0

(t) with residue function r(t) and triple-Regge coupling g(t), and con­

ventional normalization, the expression corresponding to this figu're is 

[ 28] 
1 

riO) J-a
0

(o) 

0 

j 
-00 

~~-
16n -J-2a

0
(t)+1 

1 
J-a

0
(o) r(O). 

-44-

As we have said, it is a reasonable approximation at moderate energies 

to take 

ac z 2a
0

( (t)) -1, 

and comparing the two expressions we identify 

2 
E 

1 
z 16n 

0 

100 
2 

dt g (t) . 

If several trajectories are present, E
2 

is an average of such terms. 

Using triple -Regge couplings obtained either from a single bare -Pomeron 

parametrization [ 27] or more conventional fits [ 2], together with g(t) 

having a width in t of 1-2 GeV-
2 , we find typical values 

2 0 

€~- 0.01- 0.1. 

... 



.. 
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FIGURE CAPTIONS 

Fig. 1. Integrated antibaryon inclusive cross section as a function of 

energy. 

Fig. 2.1. Production of N + 2 clusters of particles in the ABFST model. 

Fig. 2.2. Possible antibaryon-producing clusters. 

Fig. 2.3. 
+ - . 

Experimental TT TT - pp cross section. 

Fig. 2.4. Amplitude controlling the antibaryon threshold. 

Fig. 3.1. One-dimensional inultiperipheral model. 

Fig. 3.2. Regge-pole spectrum of eq. (3.13). 

Fig. 3.3. Cross sections resulting from (3.13): exact (solid line), 

three -pole asymptotic expansion (dashed line), and partial (dotted lines). 

Fig. 3.4. Even-signatured pp total cross section compared to "experi-

ment." 

Fig. 3. 5. Ratio of real to imaginary parts of the forward scattering 

amplitude. 

Fig. 3.6. Large-mass component of the BB system. 

Fig. 4.1. Possible antibaryon kernels. 

Fig. 4.2. Total cross section with (a) p, KK, and BB thresholds, 

(b) p and BB thresholds, and (c) BB threshold only. 

Fig. 4.3. Even-signatured rrp total cross section. 

Fig. 5;1. Uncoupled meson system. 

Fig. 5.2. Uncoupled baryon system. 

Fig. 5.3. Vertices in the coupled meson-baryon system. 

Fig. 5.4. Multiperipheral equation . . 
Fig. 5. 5. Quadratic (solid line) and exponential (dashed line) factors 

in eq. (5.5). 

Fig. 5. 6. Motion of Regge poles as a function of gB, 

Fig. 5. 7. A contribution to BB scattering. 
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Fig. 6.1. Components of the kernel in the (extended) schizophrenic 

Pomeron model. 

Fig. 6.2. End vertices. 

Fig. A.1. Double diffraction dissociation. 
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States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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