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SUMMARY

Variations in N-glycosylation, which is crucial to glycoprotein functions, impact
many diseases and the safety and efficacy of biotherapeutic drugs. Here, we pre-
sent a protocol for using GlycoMME (Glycosylation Markov Model Evaluator) to
study N-glycosylation biosynthesis from glycomics data. We describe steps for
annotating glycomics data and quantifying perturbations to N-glycan biosyn-
thesis with interpretable models. We then detail procedures to predict the
impact of mutations in disease or potential glycoengineering strategies in drug
development.
For complete details on the use and execution of this protocol, please refer to
Liang et al. (2020).1
BEFORE YOU BEGIN

Overview

Timing: variable (<45 min with preprocessed data; <5 min if MATLAB and relevant tool-

boxes have been pre-installed). Additionally, undetermined amounts of time will be needed

for data curation depending on the total numbers of glycoforms or signals in users’ glycomic

datasets, the curators’ familiarity with LinearCode, and any additional steps to normalize

and organize glycomics data into the required matrix form as shown in the Data.xlsx file.

Glycans coat most cells and decorate most proteins a cell uses to interact with its environment.2–4

Importantly, these glycans frequently modulate protein-protein interactions and participate in

self-non-self recognition.5,6 Small changes in glycan structure can result in major impacts on protein

function and organismal phenotypes.5,7 Thus, there is particular interest in understanding the ge-

netic basis of any changes in glycosylation. Furthermore, the modulation of glycosylation on thera-

peutic proteins can increase potency and safety, and biosimilar development requires the achieve-

ment of glycans that are equivalent to the innovator drug.8–11 However, glycans are complex and

their control is challenging since they are synthesized in complex pathways. Thus, there is a need

to develop computational models of glycosylation to enable the use of systems glycobiology to con-

trol glycan structures.12

Many types of models have been constructed for glycosylation.13–19 While many require the

enumeration of large numbers of kinetic parameters, which are difficult to obtain, more recently a

different approach has been taken wherein glycan biosynthesis is modeled as a Markov pro-

cess,1,16,20 wherein only a glycoprofile is needed for a sample of interest to parameterize a detailed
STAR Protocols 4, 102244, June 16, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Screenshot of the GitHub page from which the toolkit can be downloaded
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and comprehensive model of glycosylation. Such models show great potential in being used to

guide the glycoengineering of cells to obtain desired glycoprofiles on therapeutic proteins and bio-

similars.16 They could further provide insights into the genetic basis of changes in glycosylation seen

in diverse diseases. Here we present a protocol describing GlycoMME, a modeling toolbox that

makes use of the Markov modeling principles.

This section includes minimal hardware requirements, installation process, and the files required for

the pipeline.

Download GlycoMME toolkit

1. Download GlycoMME toolkit from https://github.com/LewisLabUCSD/N-Glycosylation-Markov-

Models (Figure 1). Click the green ‘‘Code’’ button at the upper right corner and download the toolkit

and the example dataset as a zip file by clicking ‘‘Download Zip’’.

2. Unzip everything into the same master folder (default name as N-Glycosylation-Markov-Models-

main).

Note: In the master folder, everything in the Data folder (including those in theOptimization-

Results subfolder), except for Data.xlsx and Data_user.xlsx, should be cleared or stored in

another folder if users intend to use their own datasets.

Initiate working environment in MATLAB

Users must obtain and install MATLAB beforehand. Once installed, choose the master folder as the

‘‘Current Folder’’ if the master folder is not the ‘‘Current Folder’’:

3. Click and open MATLAB.
2 STAR Protocols 4, 102244, June 16, 2023
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Figure 2. Set up the working environment in MATLAB

(A) Click the icon in the red square in MATLAB.

(B) Navigate to the master folder and click ‘‘Select Folder’’.
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4. In MATLAB, click the icon in the red square (Figure 2A).

5. Navigate to the master folder (default name:N-Glycosylation-Markov-Models-main) and click

Select Folder (Figure 2B).
Data collection

Note:Glycomics data can be collected in different forms and some third-party glycomics data

may have incomplete information regarding the glycoforms. For ease of manipulation, glyco-

mics data should be organized in the provided excel sheet Data_user.xlsx (listed in key re-

sources table). An example properly formatted dataset (Data.xlsx) is provided in the Data

folder for reference.

6. Raw glycomic data need to be pre-processed before running the pipeline. Depending on the

data types, two scenarios are possible:
STAR Protocols 4, 102244, June 16, 2023 3
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a. Glycomics data with known glycan composition (monosaccharides), with or without glycan

structure annotations

i. Open Data_user.xlsx in the Data folder and select the sheet ‘‘MS Raw’’.

ii. Enter in the first column all the m/z values at which glycans are detected. Each m/z value

should be unique.

iii. Enter in the second column all the glycan compositions corresponding to the m/z values

in the previous step.

Note: refer to Step0_Data_Preprocessing.pptx, slide 1, for the format of the strings used to

represent the glycan compositions.

iv. Starting from the third column, enter the relative MS signals (‘‘areas under the curve’’)

corresponding to the m/z values.

Note: Each column represents the glycomic profile of one sample and the top cell of each

column should be the sample name. The sample names should only contain alphanumeric

characters and forward slashes. For glycosyltransferase knockout predictions, the sample

name must be ‘‘WT’’ for the base or wildtype glycomic profile, and symbols of knocked-

out glycosyltransferases separated by forward slashes. If the same glycan composition cor-

responds to multiple m/z values (artifacts of different fragmentation patterns or ionization),

the signals should be combined, and the smallest m/z value should be used.

v. If glycan structure annotations are available, select the sheet ‘‘Annotation’’

vi. In the second column, enter all the glycan annotations as strings of Linear Code. Each

glycan annotation should be unique. However, glycan annotations of different glyco-

forms at the same m/z value are allowed.

Note: Linear Code21 is the format utilized by the pipeline to represent glycan structure an-

notations. For users unfamiliar with linear codes, we included a reference list of linear codes

for common N-glycans and their corresponding graphical representations. The lists can be

found in Step0_Data_Preprocessing.xlsx, slide 2–4 in the master folder.

vii. Enter in the first column the m/z values corresponding to the annotations.

viii. For each element of a column (excluding the sample name), enter 1 if the specific anno-

tation (row) is present in the glycomic profile of the specific sample (column), and enter

0 otherwise. The sample names should be identical to those in sheet ‘‘MS Raw’’.

Note: Starting from the third column, each column represents a sample and the top cell of

each column is a sample name.

b. Known glycan structure annotations but without glycan compositions

i. Open Data_user.xlsx in the Data folder and select the sheet ‘‘MS Raw’’.

ii. Similar to step 6a, vii, enter in the second column all the glycan annotations as strings of

Linear Code. Each glycan annotation should be unique.

iii. For each element of a column (excluding the sample name), enter the relative abundance

for each specific glycan structure annotation (row) in each glycomic profile of a sample

(column). Otherwise enter 0.

Note: Starting from the third column, each column represents a sample and the top cell of

each column is a sample name. The sample names should only contain alphanumeric charac-

ters and forward slashes. For glycosyltransferase knockout predictions, the sample namemust

be ‘‘WT’’ for the base or wildtype glycomic profile, and symbols of knocked-out glycosyltrans-

ferases separated by forward slashes.
STAR Protocols 4, 102244, June 16, 2023
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iv. Open and run the script Sup1_Get_compositions_from_linearcodes.m in the master

folder to automatically populate the datasheet Data_user.xlsx.

Once completing data pre-processing, users may compare the format of Data_user.xlsx

with that of Data.xlsx as a quality check.
KEY RESOURCES TABLE
T or RESOURCE SOURCE IDENTIFIER

d data

(Yang et al.22) https://github.com/LewisLabUCSD/N-Glycosylation-
Markov-Models/blob/main/Data/Data.xlsx

ta.xlsx (Liang et al.1) https://github.com/LewisLabUCSD/N-Glycosylation-
Markov-Models/blob/main/Data/DrugXData.xlsx

r.xlsx This article https://github.com/LewisLabUCSD/N-Glycosylation-
Markov-Models/blob/main/Data/Data_user.xlsx

E Toolkit master folder This article https://github.com/LewisLabUCSD/N-Glycosylation-Markov-Models

and algorithms

v.2020b MathWorks https://www.mathworks.com/products/matlab.html

rs and Elementary Operations MathWorks Accompanied with MATLAB v.2020b

ptimization MathWorks Accompanied with MATLAB v.2020b

omputing MathWorks Accompanied with MATLAB v.2020b

and Machine Learning MathWorks MathWorks Accompanied with MATLAB v.2020b

etrics MathWorks Accompanied with MATLAB v.2020b

tting MathWorks Accompanied with MATLAB v.2020b

dentification MathWorks Accompanied with MATLAB v.2020b

d Network Algorithms MathWorks Accompanied with MATLAB v.2020b

zen 7, 16 GB x2 AMD https://www.amd.com/en/processors/ryzen-processors-
laptop?utm_source=bing&utm_medium=cpc&utm_
campaign=US%7CCONS%7CBP%7CRyzen&utm_
term=Ryzen&utm_content=Ryzen_Phrase
STEP-BY-STEP METHOD DETAILS

Here, the described step-by-step methods are for two purposes as demonstrated in Liang et al.1 First, a

generic Markov model is fitted to the glycomic profiles (glycoprofiles) of a glycoprotein drug produced

by different glycoengineered cell lines. By visualizing the biosynthetic models of N-glycosylation, users

gain insights into the glycoengineering impact on theoretical glycosylation reactions. Second, one

may use the fitted models of single-glycosyltransferase-knockout (single-GT-KO) cell lines to predict

the theoretical glycoprofiles of a glycoprotein produced by the cell lines with combinatorial GT knock-

outs. The glycoprotein whose glycoprofiles are predicted can be a different protein from the glycopro-

tein whose single-GT-KO glycoprofiles are used for fitting. As examples, we generated sample-specific

models for 7 glycoprofiles of glycoengineered erythropoietin (EPO) produced by different single-GT-KO

CHO-K1 or wildtype cell lines.22 We then use a few fitted single-GT-KO EPOmodels to predict 2 glyco-

profiles of EPO produced by the cell lines with combinatorial glycosyltransferase (GT) knockouts. Lastly,

we use a few fitted single-GT-KO EPO models to predict 2 glycoprofiles of Enbrel produced by similar

CHO cell lines with the knockout impact learned from the EPO models.

Visualize and preprocess dataset

Timing: 5 min

This step prepares the data in the Data_user.xlsx for usage by MATLAB and visualizes the user-sup-

plied experimental glycoprofiles (glycomic data) and glycan structure annotations (if available). This

step can also be used to check the quality of entered data.
STAR Protocols 4, 102244, June 16, 2023 5
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1. After initiating the MATLAB working environment, open the MATLAB script Step1A_Load_Pre-

processed_Data_Fitting.m.

2. In the script editor, specify the name of the dataset to be used at line 5.

Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.
> DatafileName = ’Data.xlsx’;
3. Run the entire script. A figure of the relative glycomic signals and a figure of glycan annotations

will be generated for each sample, such as shown in Figure 3.

Note: for advanced users, rendering selected glycan annotations only can be achieved by

modifying the inputs of function visualizeExpData according to the comments in the

script.

4. The pre-processed data are stored in the structure variableDataSet and as MATLAB-readable file

Data.mat in the Data folder.

Note: for advanced users, information regarding the created variables for pre-processed data

can be found as comments in the script.
Construct a generic N-glycosylation Markov model

Timing: 10 min

This step will generate a genericN-glycosylation Markov model, which will be later used to generate

sample-specific models by fitting to the experimental glycoprofiles.

5. Open the MATLAB script Step2A_Create_Generic_Glycan_Network_Fitting.m.

6. In the script editor, specify the name of the dataset to be used in line 4.
Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.

7. Run the entire script.

Note: for advanced users, the scope of the reactions considered can be achieved by modi-

fying the variable RxnSel and the inputs of function CreateGlycanRxnList according to the

comments in the script. For practicality, the complexity level of the network should not exceed

23. Complexity level is defined as the maximal number of times a core Man9 glycan is modi-

fied by glycosidases and/or glycosyltransferases in a stepwise fashion.

8. The generic model and fitting parameters are stored in the structure variable GenericNetwork

and as MATLAB-readable file GenericNetwork.mat in the Data folder.

> load Data.mat
6 STAR Protocols 4, 102244, June 16, 2023



Figure 3. Visualization of the experimental glycoprofile of EPO produced by the wildtype CHO-K1

(A and B) (A) relative glycomic profile (B). glycan structures for each annotated m/z values, if provided. (B) will not be

generated if no annotation is provided.

ll
OPEN ACCESSProtocol
Generate sample-specific N-glycosylation Markov models by fitting to experimental

glycoprofiles

Timing: 40 h (1 h/fitted model 3 15 fitted models per sample (or 30 fitted models for the

WT sample) 3 7 samples / 3 MATLAB sessions)

This step generates sample-specific N-glycosylation Markov models by fitting the generic model

with their corresponding experimental glycoprofiles. This is a time-intensive step, and multiple

MATLAB sessions can run in parallel to expedite the process.

9. Open the MATLAB script by clicking on Step3A_Fit_Markov_Models_with_WT_Glycoprofile.m

in the ‘‘Current Folder’’ panel in MATLAB.

10. In the script editor, specify the name of the dataset to be used in line 4.
Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.

11. Specify the name(s) of the samples (glycoprofiles) to be fitted in line 13. For example

> load Data.mat
> ProfSel =

{’WT’,’B4galt1’,’St3gal3’,’St3gal4’,’St3gal6’,’B3gnt2’,’Mgat2’};

STAR Protocols 4, 102244, June 16, 2023 7
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Note: The name(s) provided here should be the same as the names appearing in the variable

DataSet.ProfNames. To fit all the profiles in the dataset, users can instead specify the variable

ProfSel as:
12. Specify the number of models to be fitted for the wildtype sample (base glycoprofile) in Line 25

and for each of the other samples in Line 23. For Example:

> ProfSel = DataSet.ProfNames;
num = 5; % Number of models fitted for each profile

if strcmp(ProfSel{a},’WT’)

num = 10; % Number of models fitted for the WT profile
Note: this is the number of models fitted for each profile per MATLAB session. In this case, 3

MATLAB sessions were run in parallel, with a total of 5 3 3 = 15 models fitted for each single-

GT-KO profile and 10 3 3 = 30 models fitted for the wildtype profile.

13. Specify any arbitrary number for IDNum in Line 97. For example:

> end
IDNum = 1;

savedFileName =
Note: The fitted model parameters are stored in the structure variable OptimizationResults

and as MATLAB-readable file OptimizationResults_#.mat in the Data/OptimizationResults

folder. Here, number 1 is arbitrarily chosen as the IDNum and OptimizationResults_1.mat

will be the file name.

14. Run the script.

Note: After step 14, users may decide whether to run multiple MATLAB sessions in par-

allel to reduce the time needed to obtain sufficient models for each sample. The memory-

intensive optimization process will need approximately 8 GB RAM per MATLAB session.

The number of fitted models per hour will be approximately equal to the number of

MATLAB sessions. 3 MATLAB sessions were run in parallel for this demonstration. The

amount of RAM (% usage) used per MATLAB session can be obtained from the operating

system’s task manager while running one session when using the parallel pool

in MATLAB. To ensure fitting quality, MATLAB sessions should not collectively

utilize >95% RAM.

Optional: To run a new MATLAB session in parallel, open a new MATLAB session and repeat

steps 9–14. It is essential to specify a unique IDNum number at step 13 for each MATLAB ses-

sion so that the saved filesOptimizationResults_#.mat from the different sessions do not over-

write each other.

[’OptimizationResults_’,num2str(IDNum),’.mat’];
STAR Protocols 4, 102244, June 16, 2023



Figure 4. A message box will appear when fitting is completed in a MATLAB session
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15. A message box (Figure 4) will show up when the fitting of all the glycoprofiles in a MATLAB ses-

sion is completed. If multiple MATLAB sessions are opened, close all but one MATLAB session

when all runs are completed.
Visualize fitted glycoprofiles from sample-specific models

Timing: 2 h (approx. 15 min per sample)

This step generates figures showing the quality, parameter values (transition probabilities), and

other characteristics of the fitted models and glycoprofiles, in comparison to the experimental pro-

file. This step also stores computed features of the fitted models, which are used for prediction pur-

poses in later steps.

16. Click on Step4A_Visualize_Fitted_Glycoprofiles.m in the ‘‘Current Folder’’ panel in MATLAB.

17. In the script editor, specify the name of the dataset to be used in line 4.
Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.

18. Run the script and generate figures for each glycoprofile.

CRITICAL: Users can assess the fitted models and glycoprofiles from their corresponding

> load Data.mat
output figures. The figures generated from the fitted models of the wildtype profile (WT)

are used as examples:
a. Graphs in Figure 5 allow users to inspect the fitted model parameters (transition probabili-

ties, or TPs) and assess the fitting quality, similarly performed in Liang et al.1

b. Figure 6 allows users to inspect which glycan intermediates are theoretically important to

generate the experimentally observed glycoprofiles (if the models are well-fitted).

c. Figure 7 allows advanced users to compare additional network parameters by reaction types

of the fitted Markov models.
19. Computed model features and glycoprofiles are now generated from the fitted Markov models

and added as new subfields in the structure variable OptimizationResults.

Note: Please refer to the comments in the script for additional information regarding the sub-

fields. The new OptimizationResults variable is stored as ProcessedModels.mat in the Data

folder.
STAR Protocols 4, 102244, June 16, 2023 9



Figure 5. Visualization of fitted model parameters (transition probabilities) and theoretical glycoprofiles computed from the fitted Markov models

for the wildtype EPO glycoprofile

(A) Boxplot of the log10(transition probabilities) (log10(TP), or the model parameters) of all the fitted Markov models by reaction types. The reaction

types are organized in three separate panels depending on where they primarily occur in the three different Golgi compartments represented in the

models (cis, medial, and trans). The boxplot data can be inspected in the variable Optimization.WT.xval, where each row represents a fitted model and

each column represents a reaction type in the same order of the plot’s (left to right).

(B) The average of fitted glycoprofiles (Prediction) is compared with the experimental glycoprofile (Experimental). Fitted RMSE represents the root

mean squared error between the fitted average and the experimentally measured signals, whereas the random RMSE represents the error between

the average signals generated by multiple random models and the experimentally measured signals. Leakage represents the percentage of total

signals that are not detected in the experimental measurement. Generally, well-fitted models should meet at least two criteria: Random RMSE

should be at least 10 times bigger than the Fitted RMSE and the leakage should be smaller than 10%. The entirety of predicted data can be

inspected in the variable Optimization.WT.Predata_noRes, where each column represents a m/z value (or numbering) and each row represents a

fitted model.

(C) The graph shows the predicted major glycoforms at the m/z of fitted signals with top relative intensities as shown in (B). These predicted glycoforms

can be cross validated with existing experimental annotations if available.
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Predict EPO glycoprofiles following combinatorial GT knockouts from fitted EPO

glycoprofiles of single GT knockouts

Timing: 15 min

This step predicts the EPO glycoprofiles of combinatorial GT knockouts de novo from the fitted EPO

glycoprofiles of single GT knockouts.

20. Click on Step5A_Conduct_Comparative_Analytics.m in the ‘‘Current Folder’’ panel in MATLAB.
10 STAR Protocols 4, 102244, June 16, 2023



Figure 6. An interactive figure generated by MATLAB shows the major intermediate glycans (blue nodes) that are theoretically important to

generate the experimentally observed glycans (red nodes)

The size of a node is proportional to the log-scale values of all model fluxes into the node. The glycan that a node represents can be revealed by clicking

the node in the MATLAB figure. Each edge represents a reaction (or reactions) required to convert one glycan to another. An edge is only labeled if there

is only one reaction converting one glycan to the other.
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21. In the script editor, specify the name of the dataset to be used in line 4.
Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.

22. Run the script.

23. Click on Step6A_Predict_glycoprofiles_of_combinatorial_KOs.m in the ‘‘Current Folder’’ panel

in MATLAB.

24. In the script editor, specify the name of the dataset to be used in line 4. ‘‘Data.xlsx’’ is the name

for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name for the user-supplied dataset.

> load Data.mat
Note: ‘‘Data.xlsx’’ is the name for the demonstration dataset and ‘‘Data_user.xlsx’’ is the name

for the user-supplied dataset.

> load Data.mat
STAR Protocols 4, 102244, June 16, 2023 11
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Figure 7. Additional network information regarding the fitted models

(A) model pseudo-fluxes by reaction types and by compartments (left to right, cis, medial, trans-Golgi). The edges of a Markov network are associated

with different reaction types, and the summations of all edge weights (models fluxes through the edges) associated with respective reaction types were

defined as pseudo-fluxes. The model pseudo-fluxes can be inspected in the variable OptimizationResults.WT.FluxesbyComp.

(B) model reactant pseudo-concentration for each reaction type and by compartments (left to right, cis, medial, trans-Golgi). For each reaction type,

pseudo-concentration is defined as the summation of edge weights of all in-edges into the nodes that represent the glycan substrates of the reaction

type. The values can be inspected by clicking the individual bars in the plot.

(C) Heatmap of model predicted relative glycoform ratios at each m/z values (or numbering of glycans) based on model pseudo-fluxes. The most

abundant glycoform at each m/z value is highlighted in red. Each row represents a glycoform and each column represents an m/z value. The heatmap

data and the labels can be inspected in OptimizationResults.WT.GlycoformData.
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25. Starting from Line 13, specify EPO glycoprofiles with the desired combinations of isozyme

knockouts that will be predicted, along with the wildtype EPO glycoprofile.
> KnockoutSel = {{’St3gal4’,’St3gal6’};...

{’Mgat2’,’St3gal4’,’St3gal6’}};
Note: The demonstration specifies two predictions of EPO glycoprofiles from cell lines with

St3gal4/St3gal6 double knockouts and with Mgat2/St3gal4/St3gal6 triple knockouts.

26. Run the script and generate relevant figures for each predicted glycoprofile.

Note: Figure 8 shows an example of the predicted EPO glycoprofile produced by the cell line

with Mgat2/St3gal4/St3gal6 double knockouts.

> BaseProfSel = ’WT’;
Predict Enbrel glycoprofiles from a combinatorial GT knockout, based on fitted EPO

glycoprofiles of single GT knockouts and Enbrel glycoprofile produced in wildtype cells

Timing: 12 h

This step predicts the Enbrel glycoprofiles of combinatorial GT knockouts de novo from the fitted

EPO glycoprofiles of single GT knockouts.

27. Following the same step for data collection (before you begin, step 10), organize the Enbrel glyco-

profile produced by the wildtype cell line (as a demonstration) as the Excel file DrugXData.xlsx.

28. Click Step1B_Load_Preprocessed_Data_for_WT_DrugX.m in the ‘‘Current Folder’’ panel in

MATLAB and run the script.

29. Click Step2B_Create_Generic_Glycan_Network_Prediction_for_WT_DrugX.m in the ‘‘Current

Folder’’ panel in MATLAB and run the script.

30. Click Step3B_Fit_Markov_Models_with_WT_Glycoprofile_for_DrugX.m in the ‘‘Current Folder’’

panel in MATLAB.

31. Specify the number of models to be fitted for the wildtype glycoprofile of Enbrel in Line 17. For

example:
32. Specify an arbitrary number for IDNum in Line 31. For example:

> num = 10; % Number of models fitted for each profile
> IDNum = 1;

> savedFileName =

[’OptimizationResults_DrugXWT_’,num2str(IDNum),’.mat’];

STAR Protocols 4, 102244, June 16, 2023 13



Figure 8. Visualization of the predicted model parameters (transition probabilities) and theoretical glycoprofiles computed from the predicted EPO

glycoprofile produced by the cell line with Mgat2/St3gal4/St3gal6 triple knockouts

(A) Boxplot of the log10(transitionprobabilities) (log10(TP), or themodel parameters) of all the fittedMarkovmodelsby reaction types. The reaction types areorganized

in three separate panels depending on where they primarily happen in the three different Golgi compartments represented in the model (cis, medial, and trans).

(B) The average of predicted glycoprofiles.

(C) The graph shows the predicted major glycoforms at the m/z of predicted signals with top relative intensities shown in (B). Refer to Appendix E of

Liang et al.1 for a complete assessment of the prediction performance of 6 different combinatorial knockouts.

(D) Heatmap of model predicted relative glycoform ratios at each m/z values (or numbering of glycans) based on model pseudo-fluxes. The most

abundant glycoform at each m/z value is highlighted in red. Each row represents a glycoform and each column represents an m/z value. The values of
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Note: The fitted model parameters are stored in the structure variable OptimizationResults

and as MATLAB-readable file OptimizationResults_#.mat in the Data/OptimizationResults

folder. Here, number 1 is chosen and OptimizationResults_DrugXWT_1.mat will be the file

name.

these visualized results can be found in corresponding variables detailed in the Figure 5 description.
14 STAR Protocols 4, 102244, June 16, 2023



Figure 9. A message box will show up when fitting is completed in a ‘MATLAB session
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33. Run the script.

Note: After step 33, users may decide whether to run multiple MATLAB sessions in parallel to

reduce the time needed to obtain sufficient models for the wildtype glycoprofiles of Enbrel.

Thememory-intensive optimizationprocesswill needapproximately 8GBRAMperMATLAB ses-

sion. Thenumberof fittedmodels per hourwill beapproximately equal to thenumberofMATLAB

sessions. 3 MATLAB sessions were run in parallel for this demonstration and took �10 h.

Optional: To run a new MATLAB session in parallel, open a new MATLAB session and repeat

steps 9–14. It is essential to specify a unique IDNum number at step 13 for each MATLAB ses-

sion so that the saved filesOptimizationResults_#.mat from the different sessions do not over-

write each other.

34. A message box (Figure 9) will appear when fitting of all the glycoprofiles in a MATLAB session is

completed. If multipleMATLAB sessions are opened, close all but oneMATLAB session when all

runs are complete.

35. Click on Step4B_Visualize_Fitted_WT_Glycoprofiles_for_DrugX.m in the ‘‘Current Folder’’

panel in MATLAB. Run the script, and figures will be generated for the fitted wildtype Enbrel gly-

coprofile.

Note: Refer to step 18 and the descriptions of Figures 7 and 8 for the interpretation of these

figures.

36. Click on and open Step6B_Predic_glycoengineered_glycoprofiles_of_DrugX.m in the ‘‘Current

Folder’’ panel in MATLAB.

37. Starting from Line 13, specify EPO glycoprofiles with the desired combinations of isozyme

knockouts that will be predicted, along with the name of the wildtype EPO glycoprofile.
> KnockoutSel = {{’B3gnt2’},.
Note: The demonstration specifies two predictions of EPO glycoprofiles from cell lines with

B3gnt2 single knockout or with B3gnt2/St3gal3/St3gal4/St3gal6 quadruple knockouts.

38. Run the script, and three graphs will be generated for each predicted glycoprofile.

CRITICAL: Figure 10 shows an example of the predicted Enbrel glycoprofile produced by

{’B3gnt2’,’St3gal3’,’St3gal4’,’St3gal6’}};
cell lines with B3gnt2/St3gal3/St3gal4/St3gal6 quadruple knockouts.
EXPECTED OUTCOMES

GlycoMME is a simple-to-use yet powerful toolkit that allows users to interrogate theoretical perturba-

tions toN-glycosylation biosynthesis caused by glycoengineering efforts by inferring the glycosylation

processes from glycomics data. Specifically, GlycoMME is a low-parameter, biologically interpretable
STAR Protocols 4, 102244, June 16, 2023 15



Figure 10. Visualization of the predicted model parameters (transition probabilities) and theoretical glycoprofiles computed from the predicted

Enbrel glycoprofile produced by B3gnt2/St3gal3/St3gal4/St3gal6 quadruple knockouts

(A) Boxplot of the log10(transition probabilities) (log10(TP), or the model parameters) of all the fitted Markov models by reaction types. The reaction

types are organized in three separate panels depending on where they primarily occur in the three different Golgi compartment represented in the

model (cis, medial, and trans).

(B) The average of predicted glycoprofiles.

(C) The graph shows the predicted major glycoforms at the m/z values of predicted signals with top relative intensities as shown in (B).
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modeling framework that quantifies the impact of knocking out specific glycosyltransferase isozymes

on the glycoprofiles of glycoproteins by modeling glycosylation as a Markov process.1,16,20 The frame-

work does not rely on anymanual parameter optimization or approximation of enzyme kinetics, and has

demonstrated its usefulness in facilitating rational glycoengineering by predicting glycoprofiles de

novo.1 Here, we demonstrated that the framework can visualize glycomic data of various resolutions

(with or without glycoform annotations). The fitted results shed light on the complex interactions be-

tween glycosyltransferases and their specificities toward different N-glycan epitopes.1 GlycoMME

can further use the learned impact of the GT isozymes for de novo prediction of glycoprofiles produced

from cells with complex GT isozyme knockout genotypes, even for different recombinant glycopro-

teins.1 While shown here for the analysis of glycoengineered proteins, this framework could be used

to investigate a wide range of questions, including the identification of the genetic basis of congenital

disorders of glycosylation, differential regulation of glycosylation in diseases such as cancer, and a va-

riety of other biological questions involving changes in glycan structures.23–26

Given that the model parameters are associated with specific glycosyltransferase reactions,

GlycoMME has the potential to generate hypotheses directly testable by other omics data, such

as proteomics and transcriptomics. The integration of glycomics with other omics data in the frame-

work of GlycoMME will help us decipher the complex regulatory machinery of N-glycosylation and

make rational glycoengineering a near possibility.
16 STAR Protocols 4, 102244, June 16, 2023
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LIMITATIONS

While GlycoMME can accurately reproduce a variety of glycoengineered glycoprofiles, the real

biological system of N-glycosylation is more complicated than the Markov model in its current

form. Evidently, fitted models are in general more accurate than predicted models, and some

fitted glycoprofiles are more accurate than others. Therefore, errors may be expected when pre-

dicted glycoprofiles are generated under different conditions from those of the fitted glycopro-

files, such as variations in cell types, media/supplement, and other genetic manipulations that

may indirectly influence GT activities in N-glycosylation. More research is needed to improve

model parametrization and make GlycoMME more versatile in considering glycoengineering

impact beyond GT knockouts.

TROUBLESHOOTING

Problem 1

At step 3, MATLAB returns an error message and Figure 3B cannot be generated even though there

are experimental glycan annotations entered in the Data.xlsx or Data_user.xlsx file.

Potential solution

Theremay be an error in the glycan annotations entered in theData.xlsx orData_user.xlsx file. Please

double check glycan annotations entered in the second column in the sheet ‘‘Annotation’’. Also

check if there are any identical annotation strings in the column.

Problem 2

While running the script Step4A_Visualize_Fitted_Glycoprofiles.m or Step4B_Visualize_Fit-

ted_WT_Glycoprofiles_for_DrugX.m (steps 18 or 35), MATLAB returns an error message indicating

‘‘Error in PlotTPbyComp (line 54)’’

Potential solution

The error is caused by inability to reconstruct the models from the providedmodel parameters. First,

the user should ensure that the variable OptimizationResults.Name.xval is not empty. Users may

check directly by typing ‘‘isempty(OptimizationResults.(ProfSel{a}).xval)’’ in the command window.

If the variable is indeed empty, change the value of Method (line 48) from ‘‘’KernalDensity’’ to

‘‘Outlier’’ for the function FilterOptimizationResults and rerun the entire script. If the issue is still

not resolved, obtain additional models by rerunning the fitting steps for the specific profile from

steps 9–19.

Problem 3

At steps 18 or 35, the fitting quality is not satisfactory, such that the leakage is greater than 0.15 and/

or the ratio of random RMSE/fitted RMSE is less than 5 (Figure 5B).

Potential solution

Double check the grammar of the Linear Code and the composition strings for this profile in the

‘‘Annotation’’ or ‘‘MS Raw’’ sheets of the source data file (e.g., Data_user.xlsx), especially for sig-

nals with significant errors between the experimental and the fitted profiles. Upon confirmation,

obtain additional models (>6 models) by rerunning the fitting steps for the specific profile from

steps 9–19.

Problem 4

At steps 18 or 35 (Figure 5B), the uncertainties of the top signals (>5%) are very large (signals >0.05,

and error bars >30% of the signals).

Potential solution

If annotation exists for these signals, recheck the corresponding glycoforms of their annotations (Fig-

ure 1B). Upon confirmation, change their values from 1 to 0 in the ‘‘Annotation’’ sheet of the source
STAR Protocols 4, 102244, June 16, 2023 17
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data file (e.g.,Data_user.xlsx). Rerun steps 1–8. Next, type ‘‘open SetUpFittingProblem’’ in the com-

mand window and change the value for ‘‘MaxTime’’ from 3600 to 7200 at line 70 of the opened

script. Save the modified script. Finally, obtain additional models (>6 models) by rerunning the

fitting steps for the specific profile from steps 9–19.

Problem 5

MATLAB returns an error message ‘‘Unrecognized field name ‘‘XX".’’ at step 26, where ‘‘XX’’ is an

entered profile name.

Potential solution

This error occurs when the enzyme names used for knockout annotations are inconsistent between

the single-knockout models and the predicted multiple-knockout models. Ensure to only use alpha-

numerical characters for knockout profile names (e.g., the knocked-out enzymes’ names) without

space. Upon confirmation, ensure the variables KnockoutSel and BaseProfSel modified at step 25

are consistent with the names of the fitted profiles.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Nathan E. Lewis, (nlewisres@ucsd.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The EPO datasets were obtained from a previous study22 and processed to be used as a part of the

example dataset. The processed example datasets and the pipeline codes are available at https://

github.com/LewisLabUCSD/N-Glycosylation-Markov-Models/tree/main (https://doi.org/10.5281/

zenodo.7742912). The complete Enbrel dataset supporting the current study has not been depos-

ited in a public repository because of ongoing investigation of the dataset but is available from the

corresponding author on request.
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