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Distribution‐Based Model Evaluation and Diagnostics:
Elicitability, Propriety, and Scoring Rules for Hydrograph
Functionals
Jasper A. Vrugt1

1Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA

Abstract Distribution forecasts P over future quantities or events are routinely made in hydrology but
usually traded for a (likelihood‐weighted) mean or median prediction to accommodate error measures or
scoring functions such as the mean absolute error or mean squared error. Case in point is the so‐called KG
efficiency (KGE) of Gupta et al. (2009, https://doi.org/10.1016/j.jhydrol.2009.08.003) and improvements
thereof (Lamontagne et al., 2020, https://doi.org/10.1029/2020wr027101), which have rapidly gained
popularity among hydrologists as alternative scoring functions to the commonly used Nash and Sutcliffe
(1970, https://doi.org/10.1016/0022‐1694(70)90255‐6) efficiency, but are equally exclusive in how they
quantify model performance using only single‐valued output of the quantities of interest. This point‐valued
mapping necessarily implies a loss of information about model performance. This paper advocates the use of
probabilistic watershed model training, evaluation and diagnostics. Distribution evaluation opens a mature
literature on scoring rules whose strong statistical underpinning provides, as we will demonstrate, the theory,
context and guidelines necessary for the development of robust information‐theoretically principled metrics
for watershed signatures. These so‐called hydrograph functionals are scalar‐valued mappings of major
behavioral watershed functions embodied in a strictly proper scoring rule. We discuss past developments that
led to the current state‐of‐the‐art of distribution evaluation in hydrology and review scoring rules for
dichotomous and categorical events, quantiles (intervals) and density forecasts. We are particularly concerned
with elicitable functionals and scoring rule propriety, discuss the decomposition of scoring rules into a
sharpness, reliability and entropy term and present diagnostically appealing strictly proper divergence scores
of hydrograph functionals for flood frequency analysis, flow duration and recession curves. The usefulness
and power of distribution‐based model evaluation and diagnostics by means of scoring rules is demonstrated
on simple illustrative problems and discharge distributions simulated with watershed models using random
sampling and Bayesian model averaging. The presented theory (a) enables a more complete evaluation of
distribution forecasts, (b) offers a statistically principled means for watershed model training, evaluation,
diagnostics and selection using hydrograph functionals and/or extreme events and (c) provides a universal
framework for metric development of watershed signatures, promoting metric standardization and
reproducibility.

Plain Language Summary The past decades have witnessed an unbridled growth in goodness‐of‐
fit metrics of hydrologic models. These metrics may satisfy the needs of hydrologists but lack conforming
theory and principles. This state of affairs (a) elicits improper model training and evaluation, (b) provokes
and supports misguided inferences, (c) impedes statistically‐principled uncertainty quantification, metric
standardization and development of universal model benchmarks and (d) obfuscates determination of
whether the model has finished learning. What is more, most hydrologic model evaluation metrics in use
today are rather exclusive in how they quantify model performance using only single‐valued simulated
output of the quantities of interest. Predictive distributions derived from (quasi)‐Bayesian methods or
ensembles are usually traded for a (likelihood‐weighted) mean or median prediction to accommodate error
measures (scoring functions) such as the mean absolute error. This implies a large loss of information. This
paper develops a distribution‐based approach to hydrologic model evaluation and diagnostics. Distribution
evaluation opens the necessary theory and guidelines for development of robust information‐theoretically
principled metrics of watershed signatures. These so‐called hydrograph functionals are scalar‐valued
mappings of major behavioral watershed functions embodied in a strictly proper scoring rule. The
hydrograph functionals offer a statistically principled means for hydrologic model evaluation, diagnostics
and selection.
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1. Introduction and Scope
The topic of model evaluation has received considerable attention in the hydrologic and water resources literature
over the past decades. Model evaluation is an integral part of the model development process and involves
comparing simulated system behavior with observations in pursuit of a qualitative and/or quantitative under-
standing of their similarities and differences and how well the model approximates reality according to some error
measure. This process must acknowledge differences in extent, support and spacing of modeled and observed
quantities (Grayson & Blöschl, 2001). Scientists use error metrics to quantify the goodness‐of‐fit or accuracy of
model predictions (Krause et al., 2005). The need for error metrics and error quantification is generally under-
stood, but the methods and metrics used in practice vary widely (Jackson et al., 2019; Reich et al., 2016). We
follow Gneiting (2011) and use the terminology of a scoring function for an error measure on a general sample
space Ω.

Definition 1. A scoring function is any real‐valued function s : Ω ×Ω → R where s(y, ω) represents the loss or
penalty when the point forecast y ∈ Ω is issued and the observation ω ∈ Ω materializes.

Thus, scoring functions such as the pervasive squared error, sSE(y, ω) = (ω − y)2, absolute error sAE(y, ω) =
|ω − y|, absolute percentage error, sAPE(y, ω) = |(ω − y)/ω|, and relative error, sRE(y, ω) = |(ω − y)/y|,
measure the performance of a point forecast y, where |⋅| is the absolute value operator and ϵ = ω − y is the
so‐called residual. Smaller values of the scoring functions are preferred. If the scoring function is the squared
error, sSE(y, ω), the optimal point forecast is the mean of the predictive distribution. In the case of the
absolute error, sAE(y, ω) the Bayes rule is any median of the predictive distribution (Gneiting, 2011). But in
simulation mode, hydrologic models generate a time series of forecasts rather than a scalar prediction. For a
sequence of observation‐forecast pairs (ωt, yt); t = (1, …, n) we resort to the average score (Ehm
et al., 2016), s̄XX( y,ω) = 1

n∑
n
t=1 sXX ( yt,ωt), a well‐known example of which is the Nash and Sutcliffe (1970)

efficiency, s̄NSE ( y,ω) = 1 − ∑
n
t=1(ωt − yt)

2 ⁄ (ωt − mω)
2, where mω is the sample mean of the verifying data

ω = (ω1,…,ωn)
⊤ and y = ( y1,…,yn)⊤. This extension to a data record adds significant complexity to model

performance evaluation (Jackson et al., 2019; Reich et al., 2016). For the purpose of this discussion, we
classify the research on model evaluation into two groups including (a) theory‐based methods and (b)
empirical methods. Theory‐based methods quantify model performance using scoring functions of the re-
siduals of simulated watershed behavior. Empirical methods exploit hydrological context and theory and
quantify model performance by comparing observed and simulated values of major watershed functions.

Theory‐based methods are rooted in regression analysis and quantify model performance using classical residual‐
based measures of the goodness‐of‐fit of observed and simulated watershed behavior. This includes the use of (a)
formal loss and likelihood functions and/or summary metrics derived from rigorous application of first principles
to the assumed statistical properties of the residuals within the context of weighted and/or generalized least
squares (Kavetski et al., 2006a, 2006b; Stedinger & Tasker, 1985; Tasker, 1980), maximum likelihood and
Bayesian estimation (Ammann et al., 2019; Bates & Campbell, 2001; Kuczera, 1983; Scharnagl et al., 2015;
Schoups & Vrugt, 2010; Sorooshian & Dracup, 1980; Vrugt et al., 2022) approximate Bayesian computation
(Nott et al., 2012; Sadegh & Vrugt, 2013; Vrugt & Sadegh, 2013), information theoretical principled approaches
(Lu et al., 2011; Neuman, 2003; Pachepsky et al., 2016; Schöniger et al., 2014; Volpi et al., 2017; Weijs, Schoups,
et al., 2010; Ye et al., 2008), and sensitivity analysis (Gao et al., 2023), (b) pseudo loss and quasi‐likelihood
functions within the context of model training (Gupta et al., 2009; Knoben, Freer, Fowler, et al., 2019;
Lamontagne et al., 2020; Nash & Sutcliffe, 1970; Pool et al., 2018; Schwemmle et al., 2021), informal Bayesian
approaches (Beven & Binley, 1992; Beven & Freer, 2001; Freer et al., 1996) and multi‐criteria model calibration
(Boyle et al., 2000; Gupta et al., 1998), and (c) tolerable ranges of the simulated output within the context of
limits of acceptability (Beven, 2006; Vrugt & Beven, 2018), regional sensitivity analysis (Spear et al., 2020;
Spear & Hornberger, 1980), dynamic identifiability analysis (Wagener et al., 2003) and the parameter identi-
fication method based on the localization of information (Vrugt et al., 2002). These residual‐based approaches
have proven particularly useful for hydrologic model training and uncertainty quantification but do not guarantee
an accurate representation of the major behavioral functions of a watershed (Vrugt & Sadegh, 2013; Yilmaz
et al., 2008). Also, regression‐based performance metrics fail to relate the information in the data to modeled
processes in a diagnostic manner for the purpose of learning and scientific discovery (Gupta et al., 2008).
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Empirical methods are much more geared toward hypothesis testing and scientific learning by exploiting hy-
drological context and theory in the evaluation of watershed model performance (Yilmaz et al., 2008). These
methods do not work with the residuals of simulated and measured watershed behavior but rather quantify model
performance by evaluating major behavioral functions of watershed behavior. This includes measures of
watershed behavior such as the runoff ratio (Sawicz et al., 2011), baseflow index (Eckhardt, 2005), streamflow
elasticity (Sankarasubramanian et al., 2001), flashiness index (Baker et al., 2004), rising limb density (Shamir
et al., 2005), flow duration curve (FDC) (McMillan et al., 2017; Sadegh et al., 2016; Searcy, 1959; Vogel &
Fennessey, 1994; Yadav et al., 2007), rate of runoff recession (Pool et al., 2017), mean fall and rise rates (Olden &
Poff, 2003), streamflow variability (Jowett & Duncan, 1990), skewness of daily flows (Clausen & Biggs, 2000),
proportion of zero flows (Olden & Poff, 2003) and frequency of low (Olden & Poff, 2003) and high (Clausen &
Biggs, 2000) flows. Shamir et al. (2005) laid the foundation of this empirical approach in their work on
hydrograph indices and this approach has matured further into what is now known as model diagnostics (Gupta
et al., 2008). Watershed signatures are not commonly used for model training as it is not clear how to turn the FDC
and numeral hydrograph descriptors such as the runoff ratio, baseflow index and streamflow elasticity in a proper
loss function (Sadegh et al., 2015; Vrugt & Sadegh, 2013). Note that one may discern a third group of model
evaluation methods which are theory‐based but have a diagnostic intent. In this hybrid group are methods that
couple ubiquitous scoring functions with wavelets (Rathinasamy et al., 2014), self‐organizing maps (Reusser
et al., 2009), interval deviation (Chen et al., 2014) and information theory (Gong et al., 2013).

If the model is expected to match a certain functional of the hydrograph, it is critical that the scoring function be
consistent for it, in the sense that the expected score is maximized (or minimized, if appropriate) when following
the directive (Resin, 2023). Formally speaking, a functional is a mapping T : P → R, where P is a collection of
functions. Usually, functionals are single valued such as the mean μx = Tmean(P) = ∫xdP(x), variance,
σ2x = Tvar (P) = ∫ (x − μx)

2dP(x), and median, Tmed(P) = P− 1 ( 12) , where P∈P is the cumulative distribution
function (CDF) of quantity x, dP(x)= p(x)dx and p(x) is its probability density function (PDF). In this context, we
coin the term hydrograph functional for a scalar‐valued mapping T of a major behavioral function of the
watershed. Thus, hydrograph functionals are real numbers, which quantify the most important characteristics of
the catchment's response to rainfall. Functionals that incentivize a truthful description are called elicitable in
decision‐theory (Fissler et al., 2021; Gneiting, 2011; Roccioletti, 2015). This term was coined by Lambert
et al. (2008), but its roots go back decades to the work of Savage (1971) and Osband (1985). The mean
(expectation), median and quantiles of a distribution are elicitable but its mode and variance are not (Brehmer &
Strokorb, 2019; Gneiting, 2011; Heinrich, 2014). Discrepancies between measured and simulated functionals are
symptoms of model malfunctioning, and if able to relate functionals to a specific process, will provide guidance
on model improvement (Gupta et al., 2008; Westerberg et al., 2011; Yilmaz et al., 2008).

While the diagnostic approach has helped establish a new philosophy and/or paradigm for hydrologic model
evaluation, as a community we continue to hold on to and rely toomuch on, deterministic, non‐inclusive, measures
of model performance. Case in point is the KG efficiency or KG efficiency (KGE) of Gupta et al. (2009) and
refinements thereof (Lamontagne et al., 2020), which have quickly gained popularity with hydrologists as
alternative scoring functions for the Nash and Sutcliffe (1970) efficiency, sNSE( y,ω), but are equally exclusive in
how they quantify model performance using only single‐valued output y = ( y1,…,yn)⊤ of the quantity of interest
at t= 1,…, n. Also, the NSE andKGE are inconsistent scoring functions as themodel efficiency is not an elicitable
data functional. TheNSE directs themodel to track the data as closely and consistently as possible. This directive is
ambiguous and does not help determine the model's success in learning watershed behavior. The KGE is much
more explicit about what it expects the model to do. It should match two data functionals (mean and variance) and
maximize the correlation coefficient of measured and simulated data. Scoring functions should be (strictly)
consistent for hydrograph functionals, in the sense that they optimize the expected score when following the
directive. Thus, the scoring function and forecasting (simulation) taskmust be carefullymatched (Gneiting, 2011).

More than a decade ago,Guttorp (2011) formulated a vision of howclimatemodels should be evaluated against data
(P. 820), “…Climate models are di?cult to compare to data. Often climatologists compute some summary statistic,
such as global annual mean temperature, and compare climate models using observed (or rather estimated)
forcings to the observed (or rather estimated) temperatures. However, it seems more appropriate to compare the
distribution (over time and space) of climate model output to the corresponding distribution of observed data, as
opposed to point estimates with or without con?dence intervals.” This change from point to distributional
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evaluation is supported by information‐theoretic arguments (Weijs, Schoups, et al., 2010, p. 2545), “…models
should preferably be explicitly probabilistic and calibrated to maximize the information they provide.”, computer
hardware and software advances and inspires a paradigm change in hydrologic model evaluation. Distribution
forecasts express diversity in the form of a probability distribution over future quantities or events (Dawid, 1984)
and contain information about model behavior, robustness, sensitivity and uncertainty that is not available in
single‐valued model output. Such forecasts are routinely made in epidemiology (Alkema et al., 2007), finance
(Duffie & Pan, 1997; Groen et al., 2013), macroeconomics (Garratt et al., 2003; Granger, 2005), medicine (Hood
et al., 2004), meteorology (Tracton & Kalnay, 1993) and hydrology (Thielen et al., 2008; Welles et al., 2007) and
support influenza (Cheng et al., 2020), stock‐market Nti et al. (2020), weather and climate (Gneiting et al., 2005;
Palmer, 2002), seismic hazard (T. Jordan et al., 2011) and flood risk (Cloke & Pappenberger, 2009; Krzysztofo-
wicz, 2001) prediction. Yet, predictive distributions P of (quasi)‐Bayesian methods (Beven & Binley, 1992;
Kavetski et al., 2006a; Kuczera & Parent, 1998; Schoups &Vrugt, 2010; Vrugt, 2016; Vrugt et al., 2003, 2022) are
usually traded for some set‐valued mapping P → T(P) ⊆ Ω in hydrologic model evaluation with the (likelihood‐
weighted)mean ormedian prediction ofP as key examples. This point‐valuedmapping is usually given in by a lack
of knowledge of how to properly evaluate simulation distributions against data but necessarily implies a loss of
information about model performance. This information loss is minimal when the modeled distributions are
Gaussian and scoring functions such as the mean squared error, sSE( y,ω), and mean absolute error, sAE( y,ω), will
do their job. The information loss is more colossal when simulated distributions deviate from normality in the face
of epistemic and input data errors. Strictly speaking, the modeled outcomes in this paper are not forecasts as we use
measured values of the exogenous variables. This, however, is inconsequential to the premise of this paper as
methods discussed are equally applicable to simulation distributions.

Forecast verification is an active field of research in the climate, atmospheric and ocean sciences and is concerned
with evaluating the predictive power of prognostic model forecasts (Jolliffe & Stephenson, 2011; Murphy &
Katz, 1985; Storch & Zwiers, 1999). Scoring rules have long been used to evaluate the accuracy of forecast
probabilities after observing the occurrence, or nonoccurrence, of predicted events of dichotomous, categorical
and continuous variables (Gneiting & Raftery, 2007).

Definition 2. A scoring rule is any extended real‐valued function S : P ×Ω → R ≡ [− ∞,∞] such that S(P, ω) is
P‐quasi‐integrable for all P∈P and measures the reward (or loss) when the distribution forecast P is issued and
observation ω ∈ Ω materializes.

Thus, a scoring rule S(P, ω) measures the performance of a distribution forecast P in a single reward (or loss)
value and reduces to a scoring function s(y, ω) for a point forecast. Most scoring rules are real‐valued, thus, take
on values in R with exceptions such as the ignorance score (Roulston & Smith, 2002) or logarithmic rule
(Good, 1952), which can attain scores of infinity and minus infinity, respectively, and, thus, operate in R. The
attractive statistical and information‐theoretic properties of scoring rules benefits ranking of likelihood functions
(Vrugt et al., 2022), hypothesis testing with watershed models and, as we show in this paper, hydrologic model
evaluation. All these are desirable qualities of scoring rules given the plethora of hydrologic models used by
researchers and practitioners (Clark et al., 2008; Fenicia et al., 2011; Schoups et al., 2010).

Weijs, Schoups, et al. (2010) presents a convincing example so as to why scoring rules such as the Brier (1950)
score and continuous ranked probability score (CRPS) of Matheson and Winkler (1976) should be used for hy-
drologic model calibration and evaluation. Otherwise, model training is overly susceptible to misinformation and/
or incomplete (unfinished) learning. Despite their compelling plea, scoring rules such as the CRPS have only found
sporadic application in hydrology, usually for evaluating ensemble forecast skill (Girons Lopez et al., 2021; Laio&
Tamea, 2007; Vrugt et al., 2006). A simulation distribution coalesces model responses across the (prior/posterior)
parameter and/or input space and contains information about model behavior, robustness, sensitivity and uncer-
tainty that is not available in single‐valuedmodel output. Thus, scoring function‐basedmodel evaluation strategies
imply an inherent loss of information about model functioning. This paper is concerned with the basic question of
how we should evaluate predictive (simulation) distributions of observed quantities. This is of crucial importance
in yielding an accurate description of the probability distribution of predictands conditioned by deterministic
model output, for example, using the Bluecat method of Koutsoyiannis and Montanari (2022). We bring scoring
rules to the attention of hydrologists and demonstrate their power, usefulness and applicability to hydrologicmodel
evaluation and model diagnostics. We introduce strictly proper scoring rules for flow duration and recession
curves and the analysis of flood frequencies and extreme events. To understand the different scoring rules for
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dichotomous, categorical and continuous variables, convey their relationship with information theory, explain the
importance of scoring rule propriety, we must review different concepts from probability and information theory.
Hopefully, our work inspires others to delve deeper into the topic of scoring rules and seek the advantages of
distribution‐based model evaluation and diagnostics over the current practice of point‐valued model evaluation.

The remainder of this paper is organized as follows. In Section 2, we formalize our mathematical/statistical
treatment of probability and discuss our use of symbols and notation. Section 3 reviews the use of information
theory, specifically relative entropy, applicable to ideal situations with knowledge of the distribution of each
verifying observation. Sections 4–7 discuss the more common and realistic situation in which we do not have
knowledge of the probability distribution Q∈P that materializes with the event ω ∈ Ω. Section 4 illustrates the
incompleteness of common metrics used in the hydrologic literature for evaluating distribution forecasts. This is
followed by Section 5, which discusses scoring rules for distribution forecasts of categorical (discrete) variables
and their extension in Section 6 to continuous variables. In this section we present diagnostically appealing
divergence scores for hydrograph flow duration and recession curves. Section 7 revisits the decomposition of
strictly proper scoring rules into an uncertainty, sharpness (resolution) and reliability term. The different sections
are permeated with simple illustrative examples and case studies of the rainfall‐discharge transformation. The
penultimate Section 8 presents a brief outlook on the use of scoring rules and functions for diagnostic model
evaluation, sensitivity analysis, Bayesian model selection, the prediction of extreme events and flood frequency
analysis. To this end, we present closed‐form expressions for the CRPS and logarithmic score (LS) for the Pearson
type III distribution of annual maxima discharges. Section 9 concludes this paper with a summary of our main
findings. To the extent possible, mathematical derivations and computational details have been deferred to
Appendices. Those discouraged by our statistical treatment of this topic are directed to the case studies and the
ScoringRules toolbox in MATLAB.

2. Preliminaries
One of the major purposes of hydrologic modeling is to predict watershed behavior under future conditions. We
can shed much light on hydrologic theory, process knowledge, computational implementation, and aleatory and
epistemic uncertainty by formalizing what is involved in making such forecasts and by assessing our methods on
their empirical success at this task (e.g., Dawid, 1984). Statistics helps quantify the uncertainty associated with
future events or quantities. If compelled by the interpretation of Ramsey (1926) and de Finetti (2017) that
probability is a subjective degree of belief, then the laws of probability theory will suffice to revise these sub-
jective probabilities (=learning) and express predictive uncertainty. Consequently, the probabilistic forecasts in
this paper are probability distributions over future events. We wish to quantify the statistical consistency of the
forecasts. This is a joint property of the forecasts and materialized events. Before we proceed any further, we first
expose our treatment of probability and clarify the notation used.

We consider a probabilistic forecast, P, to be a probability measure on the set of all possible outcomes of an
experiment, the so‐called sample space Ω. Let Σ be a nonempty collection of subsets of Ω closed under com-
plement, countable unions, and countable intersections and let P be a convex class of probability measures on
(Ω, Σ). A probabilistic forecast is a set function P∈P from Σ to the real number lineR = (− ∞,∞)which assigns
probabilities P ∈ [0, 1] to any subset Σ ⊆ Ω, called an event, in a countably additive manner so that the entire
sample space has probability of one, P(Ω) = 1. Similarly, the true forecast Q∈P assigns probabilities Q ∈ [0, 1]
to all events Σ ⊆ Ω, with unit sum of all probabilities, Q(Ω) = 1. This measure theoretic treatment of probability
allows us to simultaneously treat discrete and continuous probability distributions.

In the past two decades, probabilistic forecasting methods have found their way into hydrological practice. The
topic of forecast verification has not yet received a systematic treatment in the hydrologic literature (but with
some exceptions, for example Laio and Tamea (2007)) and, as a result, relevant methods are often used
haphazardly. Throughout this paper, x and y are random variables, say, next day's peak discharge and ω ∈ Ω is the
measured (materialized) value. The forecaster's task is to quote a distribution P∈P which characterizes the
uncertainty of x or y. Once the watershed has revealedω ∈Ω the forecaster will obtain a reward S(P,ω) depending
on both the quoted distribution P and the materialized value ω of the peak discharge. We followMcCarthy (1956)
and assume that the forecaster cannot control the events predicted beyond experimentation, data collection and
modeling. To demonstrate the requirements of a meaningful evaluation of distribution forecasts we have to be
comprehensive in our statistical treatment of this topic. We spare the main text from lengthy mathematical
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derivations and defer such technicalities to appendices. The same holds for the description of models, data and
computational procedures.

An adequate mathematical notation is crucially important as it shapes how we think, facilitates understanding and
communication and streamlines problem solving (Holton, 2013). We use a lowercase italic font (a) for scalars, a
lowercase bold font (a) for vectors and an uppercase bold font (A) for matrices. The symbolω is used for verifying
measurement; thus, we write ω1, …, ωn for the time series of materialized outcomes. Statistical distributions are
designated common symbols. If x has a normal distribution with mean μ∈R and variance σ2 > 0, we write
x ∼N (μ,σ2); if the distribution of x is binomial with number of trials n∈N+ and probability of success p ∈ [0, 1]
we write, x ∼ B(n,p) and use x ∼ U (a,b) for the continuous uniform distribution on the closed‐interval [a, b],
where a,b∈R and a < b. We designate a PDF with a lowercase f and a CDF with an uppercase F. Thus,
fN (x,μ,σ2) and FN (x,μ,σ2) signify the PDF and CDF of the normal distribution, respectively. The vertical bar “|”
denotes conditional expectation. Thus, p(x|ω) is the conditional PDF of x given data ω = (ω1,…,ωn)

⊤ with
p(x|ω) ≥ 0 and ∫Ω p(x|ω) dx = 1.

3. Relative Entropy
Let us assume that we have exact knowledge of the distribution Q of the measurement, ω, that will materialize at
some future time. This situation, albeit uncommon, is a logical starting point for our discussion. In mathematical
statistics, the Kullback and Leibler (1951) divergence, dKL(Q, P), also known as relative entropy or I‐divergence
(Csiszar, 1975), measures in a single value the distance between the forecast distribution P and a reference or true
distribution Q (Kullback, 1959; Kullback & Leibler, 1951). Divergence is a physical measure of information gain
in communication theory. For the time being, we adapt the notation in information theory and precede the
probabilistic forecast P with the true distribution Q. These two arguments are swapped later in the context of
scoring rules.

3.1. Continuous Random Variables

For distributions Q and P of a continuous random variable in sample space Ω, the relative entropy from P to Q is
defined as follows (Jaynes, 1963)

dKL(Q,P) = EQ[logb(
Q(x)
P(x)

)] =∫
x ∈ Ω

Q(x)logb(
Q(x)
P(x)

) dx, (1)

where Q(x) and P(x) are the probabilities of Q and P evaluated at the event x ∈ Ω and Q(Ω) = 1 and P(Ω) = 1. In
applications, Q typically signifies the true distribution of data, observations, or possibly, some exactly defined
theoretical distribution, whereas P is an approximation thereof obtained from paper‐and‐pencil calculation,
computer modeling and/or other quantitative means. Note that our assignment of the symbols Q and P to the true
and forecast distribution, respectively, is reversed to common practice in information theory but consistent with
the statistical literature on forecast evaluation. The symbol b is used for the base of the logarithm. Common values
of b are 2, e = 2.7182818… (Euler's number) and 10 and give units of the (relative) entropy in bits (or shannons),
nats and hartleys (also referred to as dits or bans), respectively. In what follows we do not affix the base b of the
logarithm and assume units of bits in our colloquial references to entropy.

The relative entropy dKL(Q, P) is defined only if the ratioQ(x)/P(x) of the two probability measures, the so‐called
Radon‐Nikodym derivative, dQ/dP, exists. This means that there does not exist an event x ∈ Ω for whichQ(x) > 0
and P(x) = 0, otherwise we must divide by zero. As logb(a/b) = logb(a) − logb(b), the familiar information‐
theoretic expression for the relative entropy is

(2)
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whereH(Q,P) is the so‐called cross‐entropy between the true distribution Q and the probabilistic forecast P and
H(Q) is the Shannon entropy of the true distribution Q itself (Shannon, 1948a, 1948b). The cross‐entropy
measures the number of bits required to represent or transmit an average event from distribution Q compared
to distribution P. If Q ≠ P the cross‐entropy H(Q,P) will always exceed the entropy H(Q) and dKL(Q, P) > 0.
This is known as Gibbs' inequality, a common proof of which is given in Appendix A. If P = Q and our dis-
tribution forecast P matches exactly the true distribution Q then H(Q,P) = H(Q) and dKL(Q, P) is zero. Thus,
dKL(Q, P) = 0 if and only if P = Q. Hence, the closer the value of the relative entropy dKL(Q, P) to zero, the more
similar Q and P will be.

IfQ and P are strictly continuous on P and follow a known statistical distribution then it may be possible to derive
analytic expressions for the relative entropy dKL(Q, P) (see e.g. Bouhlel & Dziri, 2019). Appendix B presents such
derivations of the relative entropy for cases when the probabilistic forecast and true distribution are univariate
normal, triangular and uniform, respectively. We also consider the case of a multivariate normal probabilistic
forecast P =Nζ (μP,ΣP) and true distribution Q =Nζ (μQ,ΣQ) with means, μQ,μP ∈Rζ×1, and non‐singular
ζ × ζ covariance matrices ΣQ and ΣP, respectively. The relative entropy in units of nats becomes (see
Appendix B2)

dKL(Nζ (μQ,ΣQ),Nζ (μP,ΣP)) =
1
2
[loge(

⃒
⃒
⃒Σ− 1Q ΣP

⃒
⃒
⃒) − ζ + tr(Σ− 1P ΣQ) + (μQ − μP)

⊤Σ− 1P (μQ − μP)] (3)

where |⋅| is the determinant operator, the symbol ⊤ denotes transpose and the trace function, tr(A), returns the sum
of the elements on the main diagonal of the ζ × ζmatrix, A = Σ− 11 Σ0. Equation 3 is also known as the Dawid and
Sebastiani (1999) divergence, dDDS(P, Q), more of which later in the context of multivariate scoring rules. Note
that the arguments in dDDS(P,Q) have reversed to satisfy convention used in the statistical literature. This analytic
expression of the KL‐divergence is strictly proper only for normal probability measures, which are uniquely
characterized by their respective means and covariance matrices. IfQ and P are univariate normal then Equation 3
reduces to

dKL(N1(μQ,σ2Q),N1(μP,σ2P)) =
1
2
loge(

σ2P
σ2Q
) +

σ2Q + (μQ − μP)
2
− σ2P

2σ2P
. (4)

The analytic expressions of the relative entropy in Appendix B confirm that dKL(Q, P) does not satisfy the
symmetry axiom of a metric d : M ×M → R+ in a metric space M. Indeed, the relative entropy from P to Q
does not equal its counterpart dKL(P, Q) from Q to P. To convey this fundamental asymmetry in the relation
between Q and P it is common to refer to dKL(Q, P) as the relative entropy of Q with respect to P or the in-
formation gain fromQ over P. In Appendix B3 we further show that dKL(Q, P) does not satisfy the fourth and last
axiom, the so‐called triangle inequality, dKL(Q, P) ≤ dKL(Q, R) + dKL(R, P) of a metric d in space M. Thus,
relative entropy dKL(Q, P) is not a metric or distance function in an Euclidean space with its usual physical or
metaphorical notion of length but should be thought of as a divergence of two distributions. This distance is better
known as the Kullback and Leibler (1951) divergence, hence our use of dKL(Q, P). Due to its favorable properties
(Liese & Vajda, 2006) the KL divergence dKL(Q, P) is often used as measure of distance between two
distributions (de Punder et al., 2023). The terminology of reverse KL‐divergence is in use for its counterpart,
dKL(P, Q), or the relative entropy of P with respect to Q.

The fact that dKL(Q, P) is strictly nonnegative and zero only when P = Q suggests its interpretation as a so‐called
Bregman (1967) divergence of Q and P. The term Bregman distance is also used, even though dKL(P, Q) and
dKL(Q, P) are not necessarily equal. We point forward to Figure 3 for a graphical representation of the Bregman
divergence but refrain from detailed comments until Section 5 on scoring rules. In general, Bregman divergences
play a key role in scientific forecast evaluation as they guarantee strict propriety of the scoring rules and asso-
ciated divergence functions. Strict propriety implies that dKL(Q, P) > 0 if P ≠ Q and dKL(Q, P) = 0 if and only if
P = Q. Propriety, “…conformity to conventionally accepted standards of behavior or morals” follows from
Jensen's inequality (the secant line of a convex function lies above the graph of the function) and incentives a
forecaster to be honest and volunteer P = Q rather than any P ≠ Q. In other words, only strictly proper scoring
rules will lead us to the true distribution, Q∈P. The minimum divergence d(P, Q) = 0 is achieved when P = Q,
and this minimum is unique. Proper scoring rules also yield a minimum at P = Q but this minimum may not be
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unique. The J‐divergence named in honor of Sir Harold Jeffreys (Jeffreys, 1946) is a symmetrized variant of the
Kullback and Leibler (1951) divergence

dJ(P,Q) = dKL(Q,P) + dKL (P,Q) =∫
x ∈ Ω
(Q(x) − P(x)) (

Q(x)
P(x)

) dx (5)

and commonly used in pattern recognition and computer vision (Chang et al., 2009; Zheng & You, 2013). Di-
vergences are sometimes called divergence functions or discrepancy functions or validation metrics (Liu
et al., 2011), even though our example in Appendix B3 has shown that they may not necessarily satisfy the re-
quirements of a metric in mathematical sense (Thorarinsdottir et al., 2013).

3.2. Discrete Random Variables

For discrete probability distributionsQ and P the sample space, Ω= {ω1, …,ωm} consists of a finite numberm of
mutually exclusive and collectively exhaustive events, ω, and a probabilistic forecast is a probability vector
p = ( p1,…,pm)⊤ defined on the convex class P= Pm

Pm = {p = (p1,…,pm)
⊤
: p1 +⋯ + pm = 1and pk ≥ 0 for all k}. (6)

It is further assumed that the vector q = (q1,…,qm)⊤ reports the true probabilities of the m events,
{q∈Rm×1

+ : 1⊤q = 1} , where 1m is a m × 1 vector of ones.

For discrete probability distributions P and Q on sample space Ω, Equation 2 reduces to

dKL(q,p) = H(q,p) − H(q), (7)

and the integral of the relative entropy from P to Q becomes a nonnegative sum

dKL(q,p) =∑
m

k=1
qklogb(

qk
pk
), (8)

which is equivalent to

dKL (q,p) = − ∑
m

k=1
qklogb(

pk
qk
). (9)

Appendix C demonstrates the use of the KL‐divergence for two discrete distributions.

In the context of Bayesian inference, dKL(Q, P) may be used as a measure of the information gained by revising
one's beliefs from the prior probability distribution P to the posterior probability distribution Q (Scharnagl
et al., 2010). This is equivalent to the amount of information lost when P is used to approximate Q (Burnham &
Anderson, 2002). For example, if θ = (θ1,…,θd)⊤ is a d‐vector of unknown coefficients of some mathematical
model (hypothesis),H, with prior distribution, p(θ|H) on the parameter (sample) spaceΘ ⊆ Rd. When new data,
D, become available, we can update p(θ|H) to a posterior distribution, p(θ|D,H), using Bayes (1763) theorem.
The relative entropy

dKL (p(θ|D,H),p(θ|H)) = H(p(θ|D,H),p(θ|H)) − H(p(θ|D,H)), (10)

measures the added message length (bits) that an original code with prior distribution p(θ|H) would require
relative to a new code based on the posterior distribution p(θ|D,H). Or in the words of Cover and Thomas (2006)
(Chapter 2, Page 19) “…if we knew the true distribution Q of the random variable, we could construct a code with
average description length H(Q). If, instead, we used the code for a distribution P, we would need
H(Q) + dKL(Q,P) bits on the average to describe the random variable,” whereQ and P are the posterior and prior
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distributions, respectively. Thus, dKL (p(θ|D,H),p(θ|H)), is equal to the information gain about θ learned by the
new data D. Note, that p(θ|D,H) (and p(θ|H) for that matter) must equal a probability measure on Θ and,
thus, ∑θ ∈ Θ p(θ|D,H) = 1.

4. Insufficient Scoring Rules for Density Forecasts
In most practical situations we do not have knowledge of the underlying distribution Q∈P which materializes
with the measurement ω ∈ Ω. Then, we must find ways to evaluate the distribution forecast, P∈P, using only a
single verifying observation, ωst, at given space and time coordinates. The data may arrive en bloc in simulation
mode or in natural (sequential) order in a forecasting problem. Then, it is the forecaster's task, at any time, to
produce a distribution forecast for the next observation. The success at this task can be judged by using methods
from probability forecasting. Before we address the intriguing topic of scoring rules, we must first review past
developments that led to current perspectives. This is a necessary step into understanding the strengths and
weaknesses of current metrics used in hydrology and the need for scoring rules.

The probability integral transform of Dawid (1984) is one of the earliest methods for evaluating the statistical
coherency and association between a time series of forecast distributions P1, …, Pn and observed outcomes ω1,
…, ωn. Integral transforms have a long history dating back to at least the Rosenblatt (1952) transformation and
turn a vector of dependent random variables into a vector of independent uniform distributed values (see
Figure 1a). Let Y be a real‐valued continuous random variable on a sample space Ω with CDF, FY( y) = P(Y ≤ y).
Then, random variable U = FY(y) has a standard uniform distribution. Thus, if ω1, …, ωn are samples of Y
(dependent or not) then ui = FY(ωi); i = (1, …, n) will be uniformly distributed on the unit interval. Hence, the
probability integral transform reduces the assessment of FY to the question whether the sequence of u's behaves as
a random sample ofU [0,1]. Figure 1b illustrates the consequences of using an incorrect distribution for Y on the
relationship between the theoretical quantiles of the standard uniform distribution and the quantiles of the
empirical distribution function of sampled data, ω1, …, ωn. This so‐called predictive quantile‐quantile (Q‐Q) plot
(Casella & Berger, 2002; Dawid, 1984) is a common verification tool for probabilistic forecasts of meteorological
(Gneiting & Raftery, 2007) and hydrologic (Laio & Tamea, 2007; Renard et al., 2011; Thyer et al., 2009) var-
iables. This graph diagnoses errors in ensemble mean (bias) and spread (dispersion) as causes for the deviation
from the theoretical 1:1 line for perfect distribution forecasts.

The uniformity of the u's can be tested formally using the Kolmogorov‐Smirnov statistic (Kolmogorov, 1933;
Smirnov, 1948) and we can inspect the u's for any sign of non‐independence or a trend using the uniform con-
dition test (Cox & Lewis, 1966). To simplify pairwise comparison of Q‐Q plots, we can concatenate the de-
viations of the u's from the 1:1 line into a single numerical value or index. For example, Renard et al. (2010)
introduced the so‐called reliability Rl as affine transformation of the taxicab distance between the empirical
quantiles, ut = FPt

(ωt);t = (1,…,n) and the corresponding quantiles of the standard uniform distribution

Figure 1. (a) Illustration of the probability integral transform and (b) interpretation of the so‐called quantile‐quantile plot (adapted from Laio and Tamea (2007)).
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Rl =
2
n
∑
n

t=1

⃒
⃒
⃒u′t −

t
n

⃒
⃒
⃒, (11)

where u′1,…,u′n denote the ordered values of u1, …, un, |⋅| is the absolute value operator, and the true quantiles
jump up by 1/n at each of the n observations. The multiplier of two scales the index to the closed interval between
0 (most reliable) and 1 (least reliable). Note that Equation 11 is at odds with the formal definition of reliability
derived from reliability diagrams of probability forecasts for dichotomous events (Dimitriadis et al., 2021). This
formal definition is presented in Section 7.

The predictive Q‐Q plot provides a simple and assumption‐free graphical summary of the reliability of distri-
bution forecasts. This graph has become commonplace in the hydrologic literature for evaluating predictive
distributions of precipitation (Renard et al., 2011) and discharge (Evin et al., 2013; Koutsoyiannis & Mon-
tanari, 2022; Renard et al., 2011; Thyer et al., 2009), compare, contrast and rank different formulations of the
likelihood function (Evin et al., 2014; McInerney et al., 2017, 2019) and characterize model input, output and
structural errors (Renard et al., 2010). But the Q‐Q plot and reliability index Rl should not be used as sole de-
terminants of the quality of distribution forecasts (Gneiting et al., 2007; Renard et al., 2011). In a thought‐
provoking example, Hamill (2001) demonstrated that the probability integral transform may yield a uniform
histogram on the unit interval, even if every single forecast is biased. Thus, uniformity of the PIT values is a
necessary but not a sufficient condition for ensemble reliability.

To address these limitations, Gneiting et al. (2007) proposed a more diagnostic approach to the evaluation of
predictive performance that is based on maximizing the sharpness of the distribution forecasts subject to cali-
bration. Within this context, sharpness refers to the concentration of the predictive distributions and is a property
of the forecasts only. Calibration refers to the statistical consistency between the forecast distributions and the
observations and is a joint property of the predictions and the outcomes that materialize. The sharpness principle
has a theoretical underpinning under the assumption of autocalibration (Tsyplakov, 2011) and has become a
useful working paradigm for probabilistic forecasting and forecast evaluation.

Table 1 presents three other measures that have found application and use in hydrology for evaluating the ac-
curacy of probabilistic forecasts. The coefficient of variation Cv is a dimensionless measure of the extent of
variability (dispersion) in relation to the mean of the distribution. This measure should only be computed for data
measured on so‐called ratio scales which have a meaningful zero point. This measure is related to the conjectured
sharpness principle of Raftery et al. (2005). Smaller values of the Cv are preferred subject to the intervals having
the right coverage. The coverage, C, equals the fraction of observations inside the γ = 100(1 − α)% prediction
intervals. To be statistically meaningful and robust, C should equal 1 − α at a significance level α ∈ (0, 1). The
width, W, measures the average size of the γ% prediction intervals. Despite their intuitive appeal and ease of
interpretation, none of the performance metrics of Table 1 provides a complete evaluation of the forecast density,
and may even be invariant to the true distribution Q (see Figure 2). Specifically, the width W and coefficient of

Table 1
Time‐Averaged Performance Measures, M(P,ω), of Distribution Forecasts P = {P1, …, Pn} and Verifying Observations ω = (ω1,…,ωn)

⊤

Performance measure Symbol M(P,ω) Miscellaneous Reference

Reliabilitya Rl 2
n ∑

n

t=1

⃒
⃒u′t − t

n

⃒
⃒ ut = FPt

(ωt) Renard et al. (2010)

Coefficient of variationb Cv 1
n ∑

n

t=1

σPt
μPt

Evin et al. (2013)

Coveragec C 1
n ∑

n

t=1
1{lt ≤ωt ≤ ut}

Dunsmore (1968)

Widthd W 1
n ∑

n

t=1
(ut − lt)

lt = F− 1Pt
( α2) Raftery et al. (2005)

ut = F− 1Pt
(1 − α

2)

Note. FP and F− 1P are the cumulative distribution function (CDF) and inverse CDF of P. au′1,…,u′n are ordered values of u.
bUses sample mean, mP, and sample standard

deviation, sP, for an ensemble forecast. cThe indicator function 1{a} returns 1 if a is true and zero otherwise. dLower lt and upper ut endpoints of 100(1 − α)% prediction
interval at α ∈ (0, 1) significance level.
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variation Cv are properties of the predictive distribution only and, thus, do not guarantee honest forecasts. This
invariance to the materialized outcome, ω, is easily illustrated using Figures 2a and 2b. A shift of the distribution
forecasts to the right will substantially reduce their overlap with the true distribution, but not affect in any way
their widths and coefficients of variation, which will remain fixed atW = 4.5 and Cv = 0.546. The reliability and
coverage measure only two aspects of the statistical consistency between the distributional forecasts and the
observations. Even if the coverage C is adequate at a given significance level α, this does not guarantee accurate
prediction intervals for other confidence levels (Christoffersen, 1998). This necessitates the simultaneous con-
ditional calibration of many different quantile forecasts, which is a daunting task.

As should be evident from our discussion, the Rl, Cv, C, andW performance metrics of Table 1 measure different
and complementary aspects of the distribution forecast P. This is diagnostically appealing (see Section 7), but
frustrates forecast evaluation as we cannot aggregate the Rl, Cv,W, and C criteria into a single performance index
without assigning arbitrary weights. One can adopt “Paretian” theory of general equilibrium and use non‐
dominated sorting of the performance metrics to rank the distribution forecasts (McInerney et al., 2017, 2019).
This is a pragmatic solution but the selection of a single best distribution forecast among the rank one solutions
remains inherently subjective. Furthermore, the performance metrics do not guarantee a complete evaluation of
distribution forecasts.

5. Scoring Rules
Scoring rules are indispensable in our search for the true distribution Q, but have not yet entered mainstream use
in hydrology. In terms of elicitation, scoring rules encourage the assessor to make careful assessments and to be
honest (Garthwaite et al., 2005). In terms of evaluation, scoring rules measure the quality of probabilistic fore-
casts, reward probability assessors for forecasting jobs, and rank competing forecast procedures (Gneiting &
Raftery, 2007). Meteorologists refer to this task as forecast verification. We briefly review underlying theory of
scoring rules and demonstrate their application to categorical forecasts.

5.1. Theory

Per Definition 2, a scoring rule S(P, ω) measures the reward when distribution forecast P∈P is issued and the
observation ω ∈ Ω materializes. The expected score S(P,Q) : P × P → R of probabilistic forecast P under the
true distribution Q∈P is defined by

S(P,Q) = Eω ∼ Q [S(P,ω)] =∫
Ω
S(P,ω)dQ(ω) (12)

Figure 2. Hypothetical true distribution Q = G(3.36,0.64) (gray) and probabilistic forecasts P (in color) with an equal (a) coefficient of variation, Cv = 0.546, and
(b) width,W= 4.5, using lower and upper quantiles of 0.5 and 5.0 at α = 0.05. The peak of the true distribution is equal to the verifying observation, ω. The distribution
forecasts of the left graph are used in later studies: P1 = U (0.11,3.89), P2 =N(2.26,1.52), P3 = GEV(0.04,1,1.86); P4 = LN (0.80,0.26) and P5 = GP(− 0.28,2,0.73).

Water Resources Research 10.1029/2023WR036710

VRUGT 11 of 80



and equal to the expected value of S(P, ω) under the true distribution Q of ω. Note that the order of the arguments
of S(P,Q) has reversed with respect to the convention used in information theory. In line with the statistical
forecasting literature, the probabilistic forecast P precedes the true distribution Q (Bröcker, 2009; Gneiting &
Raftery, 2007). A higher score suggests a better forecast and, thus, our scoring rules S(P, Q) are positively
oriented and defined as reward functions which the forecaster aims to maximize. Then, a scoring rule S is said to
be proper relative to P if

S(P,Q)≤S(Q,Q) for all P,Q∈P, (13)

and is considered strictly proper if the above condition holds with equality if and only if P=Q. This implies that a
strictly proper score rule is a sufficient condition, whereas a proper score rule is a necessary but not sufficient
condition. In plain words, if S(P,Q) is a strictly proper score rule, then the larger its value, the closer the dis-
tribution of Pwill be to that ofQ. This is not true for proper scoring rules, which can attain a maximum score even
if P ≠ Q (Vrugt et al., 2022). Based on early recommendations by Brier (1950) and Shuford et al. (1966), we
restrict attention to the class of proper scoring rules. This includes strictly proper scoring rules.

A scoring rule S : P ×Ω → R is regular relative to the class P if S(P,Q) is real‐valued for all P,Q∈P, except
possibly that S(P,Q) =∞ if P ≠ Q. If S is regular and proper, the excess score

d(P,Q) = S(Q,Q) − S(P,Q), P,Q∈P, (14)

measures the difference of the probabilistic forecast P∈P from the true distribution Q∈P. This is a divergence
function alike the relative entropy in Equations 1 and 8 and equal to a measure of difference between two points
defined in terms of a continuously‐differentiable expected score function, H(P) : P → R. For positively oriented
proper scoring rules, H(P) is the pointwise supremum (least upper bound) over the convex class of probability
measures Q on P (Gneiting & Raftery, 2007)

H(P) = supQ ∈ PS(Q,P) = S(P,P), P∈P, (15)

and is convex on P since S(Q,P) is linear in P (Rockafellar, 1970). The statement holds with proper replaced
by strictly proper, and convex replaced by strictly convex. If the sample space Ω is finite and H(P) smooth, then
d(P, Q) is the Bregman (1967) distance associated with convex function H(P).

To understand the relationship between H(P), S(P,Q) and d(P, Q), Figure 3 displays the entropy function of the
strictly proper quadratic score (QS) for a binary event (rain or no rain)

HQS( p) = p2 + (1 − p)2 = 2p( p − 1) + 1

⇒ HQS( p) ↦ p( p − 1),
(16)

where p ∈ [0, 1] is the quoted probability for rain and ↦ is an affine transformation, of which more later. The
expected score function of the QS is strictly convex on p and satisfies continuity. The H(p) function is referred to
in the statistical literature as the information measure or (generalized) entropy function associated
with the scoring rule S (Buja et al., 2005; Grünwald & Dawid, 2004). This is the maximally achievable utility.
Some authors refer instead to − H(p) as the entropy function (Bröcker, 2009; Dawid & Musio, 2014) or
coherent uncertainty function (Dawid & Sebastiani, 1999). According to Figure 3, the score divergence d(p, q)
equals the difference of the value of H at point q and the first‐order Taylor expansion of H around point p
evaluated at point q

d( p,q) = S(q,q) − S( p,q) = H(q) − H( p) + H′( p)( p − q), (17)

where H′(p) = dH(p)/dp is the derivative of the entropy function with respect to p. Thus, the entropy function
H( p)= p2 has divergence function d(p, q)= (p − q)2. This squared Euclidean distance is equal to the well‐known
(Brier, 1950) score.
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5.2. Scoring Rules for Categorical Forecasts

For a categorical forecast of a finite number of m mutually exclusive and collectively exhaustive events
Ω = {1, …, m} the distribution forecast is a probability vector p = ( p1,…,pm)⊤ issued on the convex class
P = Pm defined in Equation 6. Then Equation 17 may be written as

dQS(p,q) = H(q) − H(p) + 〈∇H(p),p − q〉 (18)

where the gradient ∇H(p) : Rm → Rm at p ∈Pm is a vector‐valued function

∇H(p) =
∂H(p)
∂p

= (
∂H(p)
∂p1

,
∂H(p)
∂p2

,…,
∂H(p)
∂pm

)

⊤

(19)

and 〈a,b〉 denotes the inner product of them‐vectors a and b. Furthermore, a regular scoring rule of a categorical
forecast is proper if and only if (McCarthy, 1956; Savage, 1971)

S(p,j) = H(p) − ⟨∇H(p),p⟩ +∇Hj (p)    for    j = (1,…,m) (20)

and reduces to a pair of functions, S( p,1) : p∈ [0,1]→ R and S( p,0) : p∈ [0,1]→ R, for a binary event (rain or
not). For a probability quote p the reward of the forecaster will equal to S(p, 1) if rainfall materializes and S(p, 0)
otherwise. The expected score of Equation 12 then equals S( p,q) = qS( p,1) + (1 − q)S( p,0), where q is the
true rain probability. For any two assignments p and qwith true probabilities q = (q1,…,qm)⊤ constrained to the
probability simplex, {q∈Rm×1

+ : q⊤1m = 1} and R+ = [0,∞), the binary definition of the expected score gen-
eralizes to (Bröcker, 2009)

S(p,q) =∑
m

j=1
qjS( p,j), (21)

Figure 3. Generalized entropy functionH(p)= p(p − 1) (blue curve) of the quadratic score for a dichotomous event Ω= {1, 0}
with probability forecast (p, 1 − p) and true probability (q, 1 − q) with p, q ∈ [0, 1]. We present the values of the quadratic
scoring rule S( p,q) at p and q (solid black dots) and display the so‐called Bregman divergence, d(p, q). For any probability
forecast, p ∈ [0, 1], the expected score, S( p,q) = qS( p,1) + (1 − q)S( p,0), equals the ordinate of the tangent to H at p (solid
gray line) when evaluated at q ∈ [0, 1]. In particular, the scores, S(p, 0) = H(p) − pH′(p) and S(p, 1) = H(p) + (1 − p)H′(p),
equal the tangent at q = 0 and q = 1, respectively. The divergence, dQS( p,q) = S(q,q) − S( p,q), is equal to the difference
between H(q) and the tangent at p when evaluated at q (Adapted after Figure 1 of Gneiting and Raftery (2007) and Figure 8 of
Buja et al. (2005)).
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The interpretation of the scoring function S(p,q) is that ifω is a random variable of distributionQ, then S( p,q) is
the mathematical expectation of the score of the assignment p in forecasting ω.

Thus, for any hypothesized generalized entropy function H(p) whose graph is cup‐shaped, we can use Equa-
tions 18, 20, and 21 to derive mathematical expressions of its corresponding scoring rule, S(p, j), expected score
function, S( p,q), and score divergence, d(p, q). Appendix D presents such derivations for the entropy functions
H(p) of the quadratic, logarithmic and (pseudo)spherical scoring rules. These Equations are listed in Table 2. By
definition, p and q are dimensionless and, consequently, all functions are unitless except for the entropy function
H(p) of the LS which has units of information and, thus, bits if b = 2. It is important to keep in mind that in
practice we can only evaluate the scoring rule S(p, j) in the absence of knowledge of the true probabilities q.

The LS of Good (1952) is also known as the predictive deviance (Knorr‐Held & Rainer, 2001) or ignorance score
(Roulston & Smith, 2002) and links fundamental aspects from statistical, decision and information theory. The
generalized entropy function of the LS is equal to negative Shannon entropy − H(P) and its score divergence,
dLS (p,q) =∑

m
k=1qklogb (qk ⁄ pk), is the reverse KL‐divergence (Gneiting & Raftery, 2007). Note that the LS is

equal to the logarithmic probability assigned to the materialized event and, thus, is only strictly proper locally.

We look in more detail at the scoring rules of Table 2 and consider a binary event of rain and no rain with
probability forecast (p, 1 − p) on Ω = {1, 0}. Table 3 presents mathematical expressions of the strictly proper
categorical scoring rules of Table 2 for the probability forecast p of this dichotomous event. When rain mate-
rializes ( j = 1) the score is equal to S(p, 1), otherwise j = 0 and the reward is S(p, 0). If q = q1 is the true event
probability, then the expected score equals S( p,q) = qS( p,1) + (1 − q)S( p,0) according to Equation 21.
Figure 4 displays the expected score of the quadratic (green), logarithmic (red), and spherical (blue) rules as
function of p ∈ [0, 1] and q = q1 (different graphs). For the LS we used b = 2 to yield
SLS( p,q) = qlog2( p) + (1 − q)log2(1 − p) in units of bits.

The three scoring rules differ in their response to the quoted forecast probability p = p1 of the rain event. The
colored lines do not intersect and have a dissimilar functional shape, magnitude and range. But despite these
differences, the three scoring rules have one property in common. The expected values of the QS, LS, and

Table 3
Strictly Proper Scoring Rules S(p, j) for a Dichotomous Event (Rain and No Rain) With Probability Forecast p = (p, 1 − p) on Ω = {1, 0} With p ∈ [0, 1]

Scoring rule S(p, 1) S(p, 0)

Brier − p2 + 2p − 1 − p2

Quadratic 4p − 2p2 − 1 1 − 2p2

Logarithmic logb( p) logb(1 − p)

Spherical p(2p2 − 2p + 1)− 1/2 (1 − p)(2p2 − 2p + 1)− 1/2

Pseudospherical pη− 1(pη + (1 − p)η)(1− η)/η (1 − p)η− 1(pη + (1 − p)η)(1− η)/η

Table 2
Entropy Function, Scoring Rule, Expected Score, and Score Divergence of Quadratic, Logarithmic, and Pseudospherical Scoring Rules for a Categorical Distribution
Forecast p = ( p1,…,pm)⊤ on the Convex Class P= Pm of m ≥ 2 Mutually Exclusive and Collectively Exhaustive Events, Ω = {1, …, m}

Score name Entropy function H(p) Scoring rule S(p, j) Expectation S(p,q) Divergence d(p, q)

Quadratica
∑
m

k=1
p2k

2pj − ∑
m

k=1
p2k 2 ∑

m

k=1
pkqk − ∑

m

k=1
p2k ∑

m

k=1
(pk − qk)

2

Logarithmicb,c
∑
m

k=1
pklogb ( pk)

logb ( pj) ∑
m

k=1
qklogb ( pk) ∑

m

k=1
qklogb(

qk
pk
)

Pseudosphericald,e ‖p‖1η pη− 1j

‖ p‖η− 1η

∑
m

k=1
pη− 1k qk

‖ p‖η− 1η
‖q‖1η −

∑
m

k=1
pη− 1
k qk

‖p‖η− 1η

Note. The m‐vector q = (q1,…,qm)
⊤ lists the true event probabilities. aAlso known as proper linear score. Equals Brier (1950) score for a binary event, Ω = {1, 0}.

bRemains strictly proper under any logarithmic base b > 1. cAffine transformation of the pseudospherical score for η→1. dThe η‐norm ‖p‖η = (∑
m
k=1 p

η
k)

1/η raised to the
power 1 or η − 1. eReduces to the spherical score for η = 2 (Good, 1971; Roby, 1964).
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spherical score (SS) are always maximized at the true rain probability q = q1. In other words, the forecaster's
reward is largest when he/she quotes p= q. This is exactly what (strict) propriety implies and prompts a forecaster
to be honest and report the true probabilities. The expected score decreases with increasing distance between the
quoted and true rain probabilities. The rate of decline is largest for the LS followed by the QS and SS. The
magnitude differences of the three scoring rules are not relevant as strictly proper scoring rules S remain strictly
proper under affine transformation

S∗( p,j) = cS(p,j) + ℏ( j), (22)

where constant c is nonzero and ℏ( j) is a P‐integrable function (Gneiting & Raftery, 2007). See Equation 16. If
c < 0 the orientation of S*(p, j) changes from a reward to a loss function.

5.3. Numerical Examples

While it is generally agreed upon that scoring rules must at least be proper to accurately quantify the quality of
probabilistic forecasts (Gneiting & Ranjan, 2011; Winkler et al., 1996), the question which ones to use in practical
application is unresolved (Alexander et al., 2022). For the time being, we restrict our attention to the three cat-
egorical scoring rules of Table 2.

5.3.1. Case Study I: Simple Illustration

We revisit the distribution forecasts of Figure 2a and turn the PDF of the true forecast distribution Q with
continuous sample space Ω = [0, 6] into a probability mass function (PMF) using m = 60 equally spaced values,
ωi = (6i − 3)/m, where i = (1, …, m). The probability of each value (event) is determined from the CDF of Q and
make up the m‐vector q = (q1,…,qm)⊤ of true probabilities with unit sum. Similarly, we yield the probability
assignment p = ( p1,…,pm)⊤ for each distribution forecast, P1, …, P5. Table 4 lists the generalized entropy,H(p),
expectation, S(p,q) and divergence, d(p, q), of the strictly proper quadratic, logarithmic and spherical scoring
rules for P1, …, P5.

The tabulated values of H(p), S(p,q) and d(p, q) vary among the scoring rules and distribution forecasts and
confirm several earlier points, (a) the expected score S(p,q) and score divergence d(p, q) are maximized and
minimized, respectively, when the forecaster quotes the true probabilities, (b) the LS is unbounded and operates
on the extended real‐line R as it applies an indefinitely large penalty to P1 and P5 for each realized event a priori
thought impossible by their respective uniform and generalized Pareto distribution forecasts, (c) the QS, LS, and
SS divergence scores d(p, q) are strictly positive and zero only when P = Q, and (d) strictly proper scoring rules
do not necessarily yield the same ranking of the distribution forecasts. This justifies the use of multiple strictly
proper scoring rules (Vrugt et al., 2022). The LS is sometimes criticized for its unboundedness and (reminder) has
negative Shannon entropy − H(p) (7) and relative entropy dKL(q, p) (8) as its entropy function H(p) and score
divergence d(p, q), respectively.

The QS, LS, and SS may not give the exact same ranking of the distribution forecasts, but they are unanimous in
their assessment of P3 as the best forecast of the true distribution Q. This conclusion is supported by visual

Figure 4. Binary event, Ω = {1, 0}: Expected value of quadratic (green), logarithmic (red) and spherical (blue) scoring rules as function of quoted probability p = p1 of
the first event using true probabilities (a) q = 0.1, (b) q = 0.3, (c) q = 0.5, (d) q = 0.7, and (e) q = 0.9.
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inspection of the distribution forecasts with the lognormal distribution forecast P4 (yellow) as a close contender.
The results further demonstrate that (a) the entropy H(p) cannot be used as sole determinant of the accuracy of a
forecast distribution. This is implicit as the entropy is a function of the forecast distribution only, and (b) outcomes
with a zero‐probability do not count in the entropy of the LS in accordance with the limit, limx↓0 xlogb (x) = 0 for
b > 0. This explains the elevated values of H(p) for P1 and P5 under the LS.

5.3.2. Case Study II: Rainfall Data

Appendix E presents the application of the categorical scoring rules of Table 2 to 24‐hr forecasts of precipitation
probability in south‐central Finland. This study is included for benchmarking purposes.

6. Scoring Rules for Density (Probabilistic) Forecasts
The task of determining whether the probabilistic forecast P matches the true distribution Q appears difficult,
perhaps hopeless, because Q is never observed, even after the fact. But as Diebold et al. (1998) realized early on,
the challenges posed by these subtleties are not insurmountable. Scoring rules for categorical variables can be
generalized to density forecasts to assist in forecast verification of continuous variables. This involves use of a so‐
called Lebesgue (1902) measure μ and is explained in Appendix F. For now, please consider the Lebesgue
measure to be equal to the histogram bin width.

6.1. Univariate Forecasts

We follow the formal measure‐theoretic definition of Gneiting and Raftery (2007). Let μ be a nonnegative,
countably additive set function on the measurable space (Ω, Σ) and let Lη(Ω) with η ∈ [1, ∞) denote the class of
probability measures f : Ω → R on (Ω, Σ) that are absolutely continuous with respect to the measure μ on Σ and
have an integral

‖ f‖η ≡ (∫
Ω
f (ω)ημ(dω))

1/η

< ∞, (23)

equal to the Lη‐norm of the density f. The μ‐density fP of the probabilistic forecast P∈Lη is called a predictive
density or density forecast. The above norm is invariant to changes in the true distribution Q that leave the
probability of ω unchanged and induces a nonnegative metric (divergence) d(P,Q) =

⃦
⃦ fP − fQ

⃦
⃦

η which is zero
only if P = Q. In general, the more compact predictive density P is, the larger will be its Lη‐norm. For η = 1, we
yield that L1 = 1.

Table 4
Entropy, H(p), Expectation, S(p,q) and Divergence, d(p, q) of the Strictly Proper Categorical Scoring Rules of Table 2 for Distribution Forecasts P1 = U (0.11,3.89),
P2 =N(2.26,1.52), P3 = GEV(0.04,1,1.86); P4 = LN(0.80,0.26) and P5 = GP(− 0.28,2,0.73) Displayed in Figure 2a Using m = 60 Discrete
Values, Ω = 1

20 {1,3,5,…,117,119}

Fcst

Quadratic score Logarithmic score, b = 2 Spherical score

H(p)
S(p,q) d(p, q)

Ra H(p)
S(p,q) d(p, q)

R H(p)
S( p,q) d(p, q)

REquation D4 Equation D1 Equation D7 Equation D5 Equation D13 Equation D14

P1 0.026 0.022 0.005 5 − 5.25 − ∞ ∞ 4 0.162 0.150 0.016 5

P2 0.024 0.025 0.003 4 − 5.52 − 5.49 0.102 2 0.156 0.158 0.009 4

P3 0.026 0.027 0.001 1 − 5.48 − 5.44 0.046 1 0.161 0.163 0.003 1

P4 0.028 0.026 0.001 2 − 5.39 − 5.54 0.150 3 0.167 0.162 0.004 2

P5 0.029 0.025 0.003 3 − 5.31 − ∞ ∞ 5 0.172 0.159 0.007 3

Q 0.028 0.028 0.000 − 5.39 − 5.39 0.000 0.166 0.166 0.000

Note. The bottom row presents the values for a perfect distribution forecast, P=Q. aRank R of each distribution forecast obtained from sorting d(p, q) in ascending order.
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In most applications, the probabilistic forecast P will consist of a m‐member ensemble y = ( y1,…,ym)⊤ at given
space and time coordinates. The empirical CDF (eCDF), FP, of the forecast distribution P can be construed from
the ensemble

FP(x) =
1
m
∑
m

j=1
1{yj ≤ x}. (24)

and is assumed continuous and strictly positive on Ω. Usually the ensemble sizem is on the order of a few hundred
members or less and we must use kernel dressing to translate the m discrete outcomes of P into a density fore-
cast fP (Bröcker & Smith, 2008). Such methods guarantee that fP will integrate to one over its support Ω, thus,
∫Ω fP(x)dx = 1. If the samples x1, …, xM (M ≫ m) are evenly distributed on the real line R, then the η‐norm of
density forecast fP simplifies to

‖ fP‖η = [Δx∑
M

k=1
f η
P (xi)]

1/η

, (25)

where Δx = x2 − x1 is equal to the Lebesgue measure of each event xi.

6.1.1. Quadratic, Logarithmic and (Pseudo)spherical Scoring Rules

Scoring rules for the density forecast f assign a numerical score based on the predictive distribution P and on the
value ω that materializes. In analogy to Equation D2, the QS becomes

SQS(P,ω) = 2fP (ω) − ‖ fP‖22 , (26)

where
⃦
⃦ fP

⃦
⃦2
2 equals the sum of the squared normalized densities of the forecast distribution P. This scoring is

strictly proper relative to the class L2 and has entropy function, H(P) =
⃦
⃦ fP

⃦
⃦2
2 and divergence function,

dQS(P,Q) =
⃦
⃦ fP − fQ

⃦
⃦2, where fQ is the density of the true distribution Q. The power scoring rule,

SPS(P,ω) = ηfP(ω)
η− 1
− (η − 1)

⃦
⃦ fP

⃦
⃦η

η, is a generalization of the QS to an arbitrary positive power η > 1. For
η → 1 we yield the LS

SLS(P,ω) = logb ( fP(ω)), (27)

and is strictly proper relative to the class L1 of probability measures. The LS has negative Shannon entropy
− H(P) as its entropy function H(P) and the reverse KL‐divergence as its divergence score (e.g., Table 2). The
pseudospherical score

SPSS (P,ω) =
fP(ω)η− 1
⃦
⃦ fP

⃦
⃦η− 1

η

, (28)

is strictly proper relative to the classLη. Strict convexity of its entropy functionH(P) =
⃦
⃦ fP

⃦
⃦

η and nonnegativity
of its divergence function are implied by the Hölder and Minkowski inequalities. For η→1we yield a multiple of
the LS and η = 2 results in the SS

SSS (P,ω) =
fP(ω)⃦
⃦ fP

⃦
⃦
2
, (29)

which is strictly proper relative to classL2 of probability measures. The expressions of the logarithmic and SSs in
Equations 27 and 29 may inspire the use of a linear score, SLinS(P, ω) = fP(ω). This score may seem intuitively
appealing but is improper as shown in Appendix G and Table 6.
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6.1.2. Continuous Ranked Probability Score

The aforementioned scores are not particularly sensitive to distance in that
they do not receive credit when assigning high probabilities to values near but
not equal to the materialized outcome. The CRPS of Figure 5 addresses this
deficiency. This scoring rule has found widespread application in the atmo-
spheric sciences and is equal to the integral of the squared distance between
the CDF, FP, of the distribution forecast P and the empirical CDF of the
observation (Hersbach, 2000; Matheson & Winkler, 1976)

SCRPS(P,ω) = − ∫
∞

− ∞
(FP(z) − 1{ω≤ z})2 dz

= − ∫

ω

− ∞
F2

P(z)dz − ∫

∞

ω
(FP(z) − 1)2 dz, (30)

where the indicator function 1{a} returns 1 if a is true and zero otherwise, and
the minus sign reverses the orientation to a reward function. The CRPS is
strictly proper relative to the subclass P1 ∈P of Borel probability measures
that have finite first moment. The CRPS is equal to the Brier probability score
of distribution forecast FP (z) = ∫z

− ∞ fP (t)dt of binary event {ω ≤ z} over all
thresholds z∈R

SCRPS(P,ω) =∫

∞

− ∞
SBS (FP(z),1{ω≤ z}) dz, (31)

where SBS (FP(z),1{ω≤ z}) = − (FP(z) − 1{ω≤ z})2. The CRPS can also be written using the τ ∈ [0, 1]‐quantile
forecast yτ = F− 1P (τ) of P (Grushka‐Cockayne et al., 2017; Laio & Tamea, 2007)

SCRPS (P,ω) = − 2∫
1

0
(1{ω< yτ} − τ)( yτ − ω)dτ, (32)

with integrand the piecewise linear quantile score (Bracher et al., 2021; Friederichs & Hense, 2007)

Sτ
QNT(P,ω) = (1{ω< yτ} − τ)(ω − yτ), (33)

known also in negative orientation as the pinball‐loss, tick‐loss or check‐loss function and used by Tyralis and
Papacharalampous (2021) for hydrologic model calibration. Laio and Tamea (2007) proof the equivalence of
Equations 30 and 32. The more friendly form of Equation 32 (see Appendix H)

SCRPS(P,ω) = ω(1 − 2FP(ω)) + 2∫
1

0
τF− 1P (τ) dτ − 2∫

1

FP(ω)
F− 1P (τ) dτ, (34)

simplifies closed‐form solutions of the CRPS for parametric distribution forecasts P (A. Jordan, 2016;
Villez, 2017). Appendix I1 presents such derivation for a normal distribution forecast P =N (μP,σ2P)

SCRPS (N (μP,σ2P),ω) =
σP
̅̅̅
π
√ − 2σ2P fN (ω,μP,σ2P) − (ω − μP)(2FN (ω,μP,σ2P) − 1), (35)

where fN (x,μ,σ2) and FN (x,μ,σ2) are the normal PDF and CDF, respectively.

Nonparametric distribution forecasts do not admit a closed‐form expression for the CRPS and, thus, we must
evaluate the integral of Equation 34 using Monte Carlo techniques, for example, quadrature rules (Staël von

Figure 5. Graphical explanation of the continuous ranked probability scoring
rule for a hypothetical streamflow forecast cumulative distribution function,
FP (black line), and verifying measurement ω (red dot). The continuous
ranked probability score is the integral of squared differences (=gray dotted
lines) of FP and the Heaviside step function, 1{ω≤ z}.
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Holstein, 1970; Unger, 1985). We can also resort to Lemma 2.2 of Baringhaus and Franz (2004) and use the
convenient kernel representation of the CRPS (Gneiting & Raftery, 2005)

SCRPS(P,ω) =
1
2
EP [| y − y∗|] − EP [| y − ω|], (36)

where y and y* are samples of forecast distribution P. This form shows that SCRPS(P, ω) has units of ω. For a m‐
member ensemble forecast, y = ( y1,…,ym)⊤, Equation 36 equals (Grimit et al., 2006)

SCRPS(P,ω) =
1

2m2 ∑
m

i=1
∑
m

j=1
| yi − yj| −

1
m
∑
m

i=1
| yi − ω|. (37)

For a point forecast (m = 1) the first term equals zero and the CRPS reduces to the negative absolute error,
sNAE(y, ω) = − |y − ω|. Thus, the CRPS is a generalization of the absolute residual to a distribution forecast. The
computational complexity O(m2) of Equation 37 reduces to a total of O(mlogb(m)) operations if the CRPS is
evaluated in terms of the quantile form of Equation 32 using the sorted ensemble members (Hersbach, 2000; Laio
& Tamea, 2007; Murphy, 1970)

SCRPS(P,ω) = −
2
m2 ∑

m

i=1
| yi − ω|(m1{ω≤ yi} − i +

1
2
). (38)

The generalized entropy function or information measure of the CRPS

H(P) = − ∫
∞

− ∞
FP(z)(1 − FP(z)) dz = −

1
2
EP [| y − y∗|], (39)

is the negative selectivity function (Gneiting & Raftery, 2007; Matheron, 1984) and intimately related to the
Gini (1909) coefficient G, a measure of the inequality degree in income and wealth distribution. The CRPS
divergence function

dCRPS(P,Q) =∫

∞

− ∞
(FP(z) − FQ(z))

2dz, (40)

is symmetric by virtue of the quadratic term and reminiscent of the Cramér‐von Mises distance between an
empirical and given CDF (Cramér, 1928; Von Mises, 1928) or two sample CDFs (Anderson, 1962).

6.1.3. Energy Score

Gneiting and Raftery (2007) proposed a generalization of the CRPS the so‐called energy score

SES(P,ω) =
1
2
EP [| y − y∗|η] − EP [| y − ω|η], (41)

where η ∈ (0, 2) and y and y* are independent copies of P∈Pη. This is a strictly proper score (Székely, 2003) and
reduces to the CRPS for η = 1 and the negative squared error SSE(P, ω) = − |μP − ω|2 for η → 2 (Gneiting &
Raftery, 2007), where μP is the mean of distribution forecast P. For an ensemble forecast of m values
y = ( y1,…,ym)⊤, the energy score may be computed as follows

SES(P,ω) =
1

2m2 ∑
m

i=1
∑
m

j=1
| yi − yj|η −

1
m
∑
m

i=1
| yi − ω|η. (42)

Table 5 summarizes the different strictly proper scoring rules for a distribution forecast P with density forecast p
defined up to the μ‐measure zero. Functional analysis of the numerical expressions of the scoring rules provides
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insights into how the QS, LS, CRPS, SS, and ES respond to a particular distribution forecast. In general, the more
concentrated the probability mass of P is around ω, the larger the reward. Jose et al. (2009) provide a general-
ization of the sensitivity of scoring rules to distance. As a reminder, the LS ignores model predicted probabilities
of all non‐realized outcomes, thus, is strictly local only and highly sensitive to low probability events.

6.2. Numerical Examples

We demonstrate the power and usefulness of scoring rules by application to a variety of different studies using
two illustrative examples, distribution forecasts of discharge obtained from Bayesian model averaging and the
analysis of model simulated hydrograph recession and flow duration curves.

6.2.1. Case Study III: Graphical Illustration

Suppose the forecast distribution P of discharge (in mm/d) is exactly
described by a gamma distribution P = G(aP,bP) (see Figure 6) with
dimensionless shape parameter aP = 3 and scale parameter bP = 1 mm/d. We
slide the verifying observation ω from left to right across the distribution P
and display the corresponding values of the quadratic (blue), logarithmic
(red), spherical (green) and continuous ranked probability (yellow) scores of
Table 5 on the y‐axis. The scoring rules exhibit a characteristic concave shape
and provide the largest reward (smallest loss) in the high probability density
region of the forecast distribution. Outside this region the scoring rules
decline in value with increasing distance from their maximum reward. The
maximum of the quadratic, logarithmic and spherical scoring rules coincides
exactly with the peak of the gamma distribution at ω = 2. The maximum
reward of the CRPS is well removed from the peak (mode) of the forecast
distribution and concentrates on the median of P at about ω = 2.67. The
overall functional shape of QS, LS, SS, and CRPS is rather similar but their
curvatures are noticeably different. The LS responds strongest to the density
of distribution forecast P, whereas the response and thus curvature of the QS
is much more damped. Suppose ω = 4.0 mm/d (vertical dashed line) mate-
rializes at a future time. According to the gamma discharge forecast
P = G(3,1), we yield fG(ω,3,1) = 0.1465 (black diamond) and the scoring
rules (colored dots) attain values of SQS = 0.106, SLS = − 1.921 nats,
SSS= 0.975, and SCRPS= − 0.758 mm/d, respectively. Appendix I2 presents a
closed‐form expression for the CRPS of P = G(a,b). Equation I37 is in per-
fect agreement with the yellow line.

Figure 6. Gamma distribution forecast P = G(a,b) of discharge (mm/d)
for a = 3 and b = 1 mm/d and traces of the quadratic (green),
logarithmic (red), spherical (blue) and continuous ranked probability
(yellow) scoring rules for a hypothetical measurement ω ∈ [0, 10]. We
use the numerical form of the scoring rules listed in Table 5. The right
y‐axis is the probability density function of the discharge distribution,
fG(ω,a,b) = Γ− 1 (a)b− aωa− 1 exp (− ω ⁄ b), where Γ(x) is the gamma function.

Table 5
Summary of Strictly Proper Scoring Rules for a Density Forecast fP and Verifying Observation ω

Score name XX

Scoring rule, SXX(P, ω)

NoteAnalytic Numerical

Quadratic QS 2fP (ω) − ∫∞
− ∞ f 2P ( y)dy 2fP (ω) −

⃦
⃦ fP

⃦
⃦2
2

a

Logarithmic LS logb ( fP(ω)) logb ( fP(ω))
a

Cnt. Rnk. Prb. CRPS − ∫∞
− ∞(FP(z) − 1{ω≤ z})2dz 1

2m2 ∑
m

i=1
∑
m

k=1
| yi − yk| − 1

m ∑
m

i=1
| yi − ω|

b

Spherical SS fP (ω)(∫∞
− ∞ f 2P ( y)dy)

− 1/ 2 fP (ω)
⃦
⃦ fP

⃦
⃦− 1
2

a

Energy ES 1
2EP [| y − y∗|η] − EP [| y − ω|η] 1

2m2 ∑
m

i=1
∑
m

j=1
| yi − yj|η − 1

m ∑
m

i=1
| yi − ω|η

b,c

Note. The numerical form assumes that the forecast distribution P is am‐member ensemble ( y1,…,ym)⊤. afP(x) is the empirical density of P at x. Determined from eCDF
in Equation 24 using kernel smoothing. byi and yj are independent draws from the distribution forecast P. cIndex η ∈ (0, 2); For η = 1, we yield SCRPS(P, ω) and η → 2
leads to SSE(P, ω) = − |μP − ω|2.
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The strong similarities between QS, SS, and LS do not come as a surprise.
They belong to a limited class of strictly proper scoring rules onL1(Ω) and/or
L2(Ω) and, thus, are expected to be related. Indeed, under some regularity
conditions, Bernardo (1979) has shown that every proper local scoring rule is
equal to an affine transformation (e.g., Equation 22) of the LS. In principle,
we only require one strictly proper scoring rule, though multiple different
scoring rules can aid in singling out the most adequate distribution forecast
(Vrugt et al., 2022).

6.2.2. Case Study IV: Simple Illustration

We revisit the distribution forecasts P1, …, P5 of Figure 2a with an equal
coefficient of variation (Cv) and compute the strictly proper scoring rules of
Table 5 and improper linear score, SLinS(P, ω) = fP(ω), using n = 104 ob-
servations ω1, …, ωn from the true distribution Q. Table 6 documents the
outcome of this analysis. The scoring rules display a considerable variation
between the distribution forecasts of Figure 2a and assign different rewards to

P1, …, P5. The QS, LS and SS single out P3 (green) as best distribution forecast, whereas the CRPS and improper
linear score reward most the uniform and generalized Pareto distribution forecasts, P1 and P5, respectively. This
shows again that strictly proper scoring rules may not always give the exact same ranking of distribution fore-
casts. The last column lists the scoring rules for when the forecaster quotes P=Q. This is the maximum attainable
value for each scoring rule and equals a Monte Carlo estimate of S(Q,Q) in Equation 13. This column confirms
the improperness of the linear score (Winkler, 1969). LinS awards a higher score to P5 than to the true
distribution. If we subtract each column P1, …, P5 from this last column, we yield score divergences, dQS(P, Q),
dLS(P, Q), dSS(P, Q), and dCRPS(P, Q) for P1, …, P5.

6.2.3. Case Study V: Bayesian Model Averaging

We now illustrate the scoring rules by application to density forecasts of river discharge from a multi‐model
ensemble of K = 8 conceptual hydrologic models of the Leaf River watershed (1,950 km2) located north of
Collins, Mississippi. This ensemble is described in Vrugt and Robinson (2007) and interested readers are referred
to this publication for more details. Figure 7 displays the discharge forecasts for a short but representative period
of the n= 3,000 day training record. The discharge ensemble generally envelops the measured streamflows. Some
models issue negative forecasts as a result of linear bias‐correction as recommended by Raftery et al. (2005).

Table 6
Mean Values of the Quadratic, Logarithmic, Spherical, Continuous
Ranked Probability, and Linear Scoring Rules for Distribution Forecasts
P1 = U (0.11,3.89), P2 =N(2.26,1.52), P3 = GEV(0.04,1,1.86),
P4 = LN (0.80,0.26) and P5 = GP(− 0.28,2,0.73) Displayed in Figure 2a

Score P1 red P2 blue P3 green P4 yellow P5 purple P = Q gray

QS 0.219 0.243 0.257 0.255 0.212 0.269

LS − ∞ − 2.302 − 2.202 − 2.309 − ∞ − 2.138

SS 0.470 0.493 0.507 0.505 0.481 0.519

CRPS − 0.658 − 0.661 − 0.669 − 0.673 − 0.665 − 0.645

LinS 0.242 0.236 0.252 0.259 0.299 0.270

Note. The last column reports the mean scores for a perfect distribution
forecast, P = Q.

Figure 7. Streamflow simulations of the ABC, GR4J, HYMOD, TOPMO, AWBM, NAM, HBV, and SAC‐SMA conceptual watershed models for a short but
representative period of the n = 3, 000 day training record. The solid red circles are daily measured streamflows.
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Let βk, ykt, and fk(y|ykt, ψk) denote the weight, streamflow prediction and conditional density of the kth model of
the ensemble, k= (1, …, K), at time t. The density of the multi‐model forecast distribution Pt at t= (1, …, n) now
equals a mixture distribution of the models' conditional PDFs

fPt
( y|β,ψ) =∑

K

k=1
βk fk ( y| ykt ,ψk), (43)

centered on the weighted‐average forecast

μPt
=∑

K

k=1
βk ykt (44)

with weights β = (β1,…,βK)
⊤ on the probability simplex, ΔK− 1 = {β∈RK : β1 +⋯ + βK = 1; βk ≥ 0

for k = 1,…,K} and shape parameters ψk of each model's predictive PDF assembled in the array
ψ = (ψ1,…,ψK)

⊤. Equations 43 and 44 are known as the BMA forecast density and BMA model forecast,
respectively (Raftery et al., 2005). Table 7 lists parametric expressions of the component PDFs fk(y|ykt, ψk); k= (1,
…,K) of the BMAmixture density of Equation 43. The location parameters of the generalized normal, lognormal,
gamma and GEV conditional PDFs are defined so that their means coincide exactly with the model's deterministic
forecasts ykt at each time t, where k = 1, …, K. We cannot center the truncated normal PDF this way and instead
set ykt equal to the mode of this distribution. The shape parameter τk of the generalized normal distribution de-
termines its kurtosis. A value of τk= 2 results in a normal distribution (albeit with variance σ2k/2), a value of τk= 1
gives a Laplace distribution and τk → ∞ converges to a uniform PDF on [ykt − σk, ykt + σk] with a zero density
outside this interval. Thus, the larger the value of τk, the more peaked the PDF of the kth model will be and the
tighter its prediction intervals around ykt. The truncated normal distribution is bounded at zero and assumes an
infinite upper streamflow bound. The shape parameter ξ of the GEV distribution controls its tail behavior. For
ξ = 0, ξ > 0, and ξ < 0 we yield the Gumbel (unbounded), Fréchet (lower tail bounded) and reversed Weibull
(upper tail bounded) distributions, respectively. The maximum likelihood values of the BMAweights β̂ and shape
parameters ψ̂ of the component PDFs of Table 7 are determined for the n = 3,000 day training record using
MCMC simulation with the DREAM algorithm (Vrugt, 2016; Vrugt et al., 2008) as part of the MODELAVG
toolbox of Vrugt (2018). This software package returns the performance metrics, scoring functions, scoring rules
and prediction intervals of the BMA distribution forecasts for the calibration and 2,000 day evaluation periods.
Details of their computation appear in Appendix J.

Table 7
Parametric Expressions, Settings, and Shape Parameters of (1) Generalized Normal, (2) Log Normal, (3) T runcated Normal, (4) Gamma, and (5) Generalized
Extreme Value PDFs of BMA Density

Formulation Settings Shape parameters, ψ

1. fGN ,k ( y|μk,s2k ,τk) =
τk

2skΓ(τ− 1k )
exp[− | y− μk |

τk

sτkk
] μk = yk a: c, τ1, …, τK

b: c1, …, cK, τ1, …, τK
a

2. fLN ,k ( y|μk,v2k) = 1
y · vk

̅̅̅̅
2π
√ exp[− (loge ( y)− μk)

2

2vk ] μk = loge (y2k ( s2k + y2k)
− 1/2

) a: c

v2k = loge (s2k y− 2k + 1) b: c1, …, cK
a

3. fTN ,k ( y|μk,s2k) = 1
sk
̅̅̅̅
2π
√ [

exp[− 1
2(y− μk)

2
/ s2k]

1
2−

1
2erf[− μk/ (sk

̅̅
2
√
)]
] μk = yk a: c

b: c1, …, cK
a,b

4. fG,k ( y|ak,bk) = 1
Γ(ak)b

ak
k
y(ak − 1) exp[− y

bk]
μk = |yk| a: c

ak = y2k/ s2k , bk = s2k/ | yk| b: c1, …, cK
a

5. fGEV,k ( y|ξk) = (1 + ξk y)
− 1− 1

ξk exp[− (1 + ξk y)
− 1

ξk ] μk = yk + (1 − g1 (ξk)) sk/ξk a: c, ξ1, …, ξK

y = ( yk − μk)/ sk b: c1, …, cK, ξ1, …, ξK
a,c

aWith a nonconstant a: group, s2k = ( c · yk)
2, or b: single, s2k = ( ck · yk)

2, forecast variance; k = 1, …, K. bMode of truncated normal is set equal to deterministic forecast,
yk.

cThe function ga(ξ) = Γ(1 − aξ). Note that fk ( y|μk,s2k ,ξk) = s− 1k fk ( y|ξk).
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Figure 8 presents traces of the weighted‐average BMA forecast (black line) and associated 50%, 75%, and 95%
prediction intervals (gray regions) for a small portion of the evaluation period using the (a) normal (τ = 2), (b)
lognormal, (c) generalized normal, (d) truncated normal, (e) gamma, and (f) generalized extreme value PDFs of
Table 7 with a nonconstant forecast variance. The BMA distribution forecasts of the different conditional PDFs
describe the measured discharge record quite well. The 95% prediction intervals encapsulate the large majority of
the discharge observations (red squares) and exhibit a variable spread in accordance with the use of a nonconstant
forecast variance. The BMA prediction intervals are comparatively large for the peak flows but decrease rapidly
in spread with flow level and collapse to a small region surrounding the mean forecast (solid black line) for the
lowest streamflows. Intuitively, one may hypothesize that asymmetric and/or truncated component PDFs hold the
greatest promise for describing the skewed discharge data but the different graphs do not seem to support this
conjecture. At first sight, the BMA distribution forecasts of the lognormal, truncated normal, gamma and GEV
conditional PDFs look very similar to those obtained from the symmetric normal and generalized normal dis-
tributions and have an about equal coverage (shown next). Thus, the symmetry of the normal and generalized
normal distributions does not impair the BMAmodel's ability to describe the measured hydrograph. This testifies
to the adaptability and flexibility of the BMA mixture distribution. On closer inspection, the normal and
generalized normal distributions display the smallest 95% BMA prediction intervals of all conditional PDFs listed
in Table 7. This is followed by the gamma, lognormal, truncated normal and GEV distributions (shown next).
Their positive skew enlarges substantially BMA prediction uncertainty of the largest streamflows. Last but not
least, the weighted‐average BMA forecast (black line) appears largely unaffected by the choice of conditional
PDF and even disappears behind the streamflow data toward the end of the 200‐day evaluation period. Overall,
the normal and generalized normal conditional PDFs yield the sharpest BMA distribution forecasts and, thus,
appear to receive most support by the discharge data. But visual interpretation alone is not enough for judging the
quality of distribution forecasts.

b

a

f

e

c

d

Figure 8. Weighted‐average BMA forecast (black line) and 50% (dim gray), 75% (medium gray) and 95% (light gray) BMA prediction intervals for a 200‐day evaluation
period using the (a) normal, (b) lognormal, (c) generalized normal, (d) truncated normal, (e) gamma, and (e) generalized extreme value distribution with a nonconstant
variance. Red squares are discharge measurements.
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The BMA distribution forecasts offer an excellent application of the scoring rules. For each scoring rule, we
compute a time‐averaged mean score for an independent n = 2,000 day evaluation period

SXX (P,ω) =
1
n
∑
n

t=1
SXX(Pt,ωt), (45)

where P = {P1, …, Pn} is the collection of probabilistic forecasts derived from the BMA model. Table 8 reports
the mean values of the quadratic, logarithmic, spherical, continuous ranked probability and energy scoring rules
for the BMA mixture distribution of Equation 43 using the normal, lognormal, generalized normal, gamma, and
GEV predictive PDFs with a nonconstant group and single variance. We also present the performance metrics of
Table 1 and report the BMA log‐likelihood ℓ( β̂,ψ̂|ω) and Root Mean Square Error (RMSE), NSE and KGE of
the weighted‐average BMA forecast of Equation 44 using the maximum likelihood BMA weights β̂ and shape
parameters, ψ̂.

The tabulated data highlight several important findings.

1. The time‐averaged values of the strictly proper scoring rules display only a small variation within and be-
tween the predictive PDFs of Table 7.

2. A common slope c for the models' discharge‐variance relationships, s2k = (c · yk)
2 suffices for maximizing the

overall quality of the BMA distribution forecasts. A model‐dependent slope, ck; k = 1, …, K, does not
improve the values of the strictly proper scoring rules.

3. The scoring rules differ in their rankings of the conditional PDFs but are confident in their selection of the
best predictive distributions for the BMA model. The LS and SS favor the GEV distribution, the QS and ES
assign the largest rewards to the lognormal distribution and the CRPS is maximized by both conditional
PDFs. This dichotomy in the “best” conditional PDF is a result of the strong resemblance in the maximum
likelihood BMA mixture distributions of the lognormal and GEV PDFs at each t (not shown). Differences in
the rankings of the conditional PDFs by each scoring rule highlights differences in how they evaluate dis-
tribution forecasts, and are impacted by structural errors of the BMA model. The preference of the scoring
rules for asymmetric component PDFs testifies to the skewed distribution of measured streamflows.

Table 8
Evaluation Period: Time‐Averaged Values of the Strictly Proper Scoring Rules of Table 5 for the BMA Density Forecast fPt

( y
⃒
⃒β,ψ);t = (1,…,n) of Equation 43 Using

the Conditional PDFs of Table 7 With a Nonconstant Group and Single Variance

Normal Lognormal Gen. Normal Trunc. Normal Gamma GEV

Group Single Group Single Group Single Group Single Group Single Group Single

Scoring rules QS 0.071 − 0.131 0.156 0.245 0.143 − 0.158 − 0.126 0.026 0.133 0.086 − 0.033 − 0.037

LS 0.000 0.011 0.124 0.125 0.014 0.026 0.008 0.020 0.095 0.092 0.141 0.132

SS 1.100 1.114 1.178 1.179 1.117 1.123 1.100 1.133 1.156 1.153 1.188 1.182

CRPS − 0.216 − 0.216 − 0.207 − 0.207 − 0.215 − 0.216 − 0.212 − 0.220 − 0.210 − 0.209 − 0.208 − 0.206

ES − 0.346 − 0.353 − 0.335 − 0.333 − 0.349 − 0.351 − 0.337 − 0.403 − 0.339 − 0.337 − 0.343 − 0.343

Metrics Rl 0.119 0.109 0.124 0.132 0.112 0.117 0.135 0.129 0.130 0.132 0.105 0.102

Cv 0.558 0.573 0.602 0.627 0.564 0.556 0.580 0.692 0.588 0.588 0.675 1.005

C 0.974 0.983 0.966 0.972 0.970 0.970 0.980 0.986 0.970 0.973 0.961 0.955

W 1.713 1.819 1.959 1.956 1.698 1.722 1.718 2.235 1.843 1.821 2.036 2.032

Summary ℓ( Φ̂|ω) 0.282 14.64 171.4 173.1 19.46 36.42 11.05 27.27 131.6 128.0 195.4 183.6

RMSE 0.588 0.596 0.579 0.579 0.590 0.591 0.581 0.596 0.580 0.580 0.586 0.583

NSE 0.877 0.874 0.881 0.881 0.876 0.876 0.880 0.874 0.880 0.880 0.878 0.879

KGE 0.807 0.807 0.807 0.811 0.808 0.808 0.812 0.809 0.808 0.810 0.805 0.805

d 9 16 9 16 17 24 9 16 9 16 17 24

Note. We also list the performance metrics, Rl, Cv, C, and W of Table 1 and report the BMA log‐likelihood ℓ( β̂,ψ̂|ω) and RMSE, NSE, and KGE of the
weighted‐average BMA forecast. The bottom row lists the number d of BMA model parameters.
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4. The BMA likelihood confirms the findings of the scoring rules and advantages of using a skewed distribution
for the models' predictive PDFs. The GEV distribution maximizes ℓ(β, ψ|ω) followed by the lognormal,
gamma, generalized normal, truncated normal and normal distributions.

5. The reliability Rl of the BMA mixture distribution displays only small differences between the conditional
PDFs. The variation in this measure of statistical consistency of the BMA distribution forecasts and mate-
rialized discharge events is reminiscent of some of the scoring rules. The smallest value of Rl is obtained by
the GEV distribution followed by the normal, generalized normal, lognormal, gamma and truncated normal
distributions.

6. The coefficient of variation Cv of the BMA mixture distribution is remarkably similar for the conditional
PDFs of Table 7 with exception of the GEV distribution which attains largest Cv values. The use of a model‐
dependent slope of the discharge‐variance relationship tends to increase the coefficient of variation of the
BMA distribution forecasts. The BMA mixture distribution admits an analytic expression for its Cv (see
Appendix J), otherwise time‐averaged values of this metric are difficult to compute and interpret, particularly
for skewed distribution forecasts with mean close to zero. As a result, the Cv correlates only mildly
(r = 0.589) with the average spread W of the 95% BMA prediction intervals.

7. All distributions of Table 7 achieve an approximately adequate coverage at significance level α = 0.05. This
inspires confidence in the formulation of the BMA log‐likelihood function and maximum likelihood BMA
weights and shape parameters inferred by the DREAM algorithm. The coverage uses only the α‐quantiles of a
predictive distribution and, thus, does not judge the overall quality of a distribution forecast. Section 7 turns
the coverage into a proper scoring rule.

8. The combined performance metrics single out the normal and/or generalized normal distribution. These two
conditional PDFs minimize the coefficient of variation Cv and width W of the BMA distribution forecasts
with a reliability Rl and coverage C comparable to the other distributions.

9. Tabulated data highlight the limitations of the conjectured sharpness principle of Gneiting et al. (2007). The
generalized normal PDFminimizes the spread of the 95% BMA prediction intervals, but this distribution does
not receive most support from the scoring rules and log‐likelihood. Sharpness is a property of the forecast
distribution only, thus is an improper scoring rule.

10. The RMSE, NSE, and KGE appear almost unaffected by the choice of conditional PDF and forecast variance.
The mean functional Tmean(P) voluntarily relinquishes information about the underlying distribution of P for
a performance assessment of the weighted‐average forecast. Scoring functions such as the RMSE, NSE, and
KGE are unresponsive therefore to the members' predictive distributions unless the choice of conditional
PDF strongly controls the mean forecast. The BMA log‐likelihood, on the other hand, is strictly local as well
but does not suffer this same limitation as it evaluates the PDF of the BMA distribution forecasts at the
materialized streamflows. As a result, ℓ( β̂,ψ̂|ω) can differentiate between the six conditional PDFs.

11. The logarithmic scoring rule is an affine transformation of the BMA log‐likelihood and, thus, ℓ(β, ψ|ω) and
LS exhibit a perfect linear relationship (see Table 9). The BMA log‐likelihood also displays a relatively
strong relationship with the CRPS.

Strictly proper scoring rules equip hydrologists with an arsenal of robust measures for the quality‐of‐fit of dis-
tribution forecasts. The QS, LS, SS, CRPS, and ES favor the use of skewed component PDFs for the BMA
mixture distribution of the measured hydrograph. This is a testament to the asymmetric (zero‐bounded) distri-
bution of discharge. The Rl, Cv, C, and W performance metrics, on the other hand, favor a symmetric conditional
PDF for each model of the BMA ensemble. Summary metrics of the weighted‐average BMA forecasts are not
helpful for choosing an appropriate conditional PDF.

To provide insights into the temporal behavior of the scoring rules, please consider Figure 9 which presents time
series plots of the quadratic (green), logarithmic (red), spherical (blue), continuous ranked probability (yellow),
and energy (cyan) scoring rules. The scoring rules vary dynamically in time and display an intermittent pattern of

Table 9
Pearson Correlation Coefficients of BMA Log‐Likelihood ℓ(β, ψ|ω) and Time‐Averaged Values of Scoring Rules, Performance Metrics of Table 1 and Root Mean
Square Error, NSE, and KGE Scoring Functions

QS LS SS CRPS ES Rl Cv C W RMSE NSE KGE

ℓ(β̂,ψ̂|ω) 0.447 1.000 0.637 0.825 − 0.440 − 0.360 − 0.756 0.018 − 0.367 0.771 − 0.769 − 0.758
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smooth day‐to‐day variations followed by sudden small and occasionally larger fluctuations independent of flow
level. The LS appears most responsive to the BMA forecast distribution and expresses the largest interdaily
variability across the hydrograph and evaluation record. This is followed by the spherical and then the QS. Their
two traces show many similarities confirming a strong affinity of their mathematical definitions. The CRPS and
ES appear unresponsive at low and intermediate streamflows and react strongly when the discharge measure-
ments materialize in the tails of the BMA distribution forecasts.

The scoring rules show important similarities and differences. The QS, LS, and SS attain their largest values when
the discharge event materializes within the high probability density region (dark gray) of the BMA mixture
distribution and this distribution forecast is compact so as to maximize fP(ω). These two conditions are easiest to
satisfy at the lowest flow levels, hence, the QS, LS, and SS attain their largest values in the nondriven slow part of
the hydrograph. But the more compact or leptokurtic the BMA distribution forecast is, the larger its L2‐norm⃦
⃦ fP‖2 will be. Then, if as on days 1,827–1,830 the discharge event materializes outside the high density region of
the BMAmixture distribution this results in very low values of the QS and to a lesser extent the SS. The CRPS and
ES also value compactness but reward more closeness of the BMA distribution forecasts and the verifying

(
)

b
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c
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Figure 9. (a) 50%, 75%, and 95% BMA prediction intervals for the 180‐day evaluation period using the GEV distribution with a nonconstant forecast variance and
associated traces of the (b) quadratic, (c) logarithmic, (d) spherical, (e) continuous ranked probability, and (f) energy scoring rules.

Water Resources Research 10.1029/2023WR036710

VRUGT 26 of 80



discharge measurements. They attain values of near zero when the BMA mixture distribution centers on the
materializing discharge event and this distribution forecast is as sharp as possible. Most scoring rules attain their
lowest values when the discharge events materialize in the upper or lower tails of the BMA forecast distribution
(see dotted vertical lines).

In principle, any of the strictly proper rules should suffice for evaluating the quality of the distribution forecasts of
the BMAmodel. Yet, as model structural errors will obscure the uniqueness of the true forecast distribution there
will be benefits to using multiple scoring rules simultaneously. This yields a more robust ranking of the con-
ditional PDFs. The question which scoring rule(s) to use in practice depends on application specifics and goals.
For the BMA model, the scoring rules will yield a similar characterization of predictive uncertainty and the LS
will maximize general utility.

6.2.4. Case Study VI: The Flow Duration Curve

One obvious hydrologic application of the scoring rules is the FDC. This signature catchment characteristic
relates the exceedance probability of streamflow, P(X > x), to its magnitude, x, and plays a critical role in
(among others) flood frequency analysis, hydrologic model diagnostics, water quality management and the
design of hydroelectric power plants (Sadegh et al., 2016). The FDC is known as the survival func-
tion SX(x) in statistics and the reliability function RX(x) in engineering. We adopt the nomenclature of
reliability

RX(x) = P(X > x) =∫

∞

x
fX(t) dt = 1 − ∫

x

− ∞
fX(t) dt = 1 − FX(x), (46)

and reconfirm that the FDC is the complement of the streamflow CDF, FX(x) (Vogel & Fennessey, 1994).
Existing studies compare the slope (McMillan et al., 2017; Sawicz et al., 2011; Yadav et al., 2007), discharge
values at given exceedance probabilities (Vogel & Fennessey, 1994), concavity index (Zhang et al., 2016) and
ratio of high and low flow percentiles (Olden & Poff, 2003; Sadegh et al., 2015) of measured and simulated FDCs.
These approaches elicit only partial information from the measured FDC, lack theoretical rigor and do not support
formal Bayesian estimation.

Suppose Pθ = (y1, …, yn) is the simulated discharge time series of a hydrologic model indexed by the parameter
vector θ = (θ1,…,θd)⊤. Now, if we enter the above relationship, FX(x) = 1 − RX(x), in Equation 40

dCRPS(P,Q) =∫

∞

0
( (1 − RP(z)) − (1 − RQ(z)))

2dz, (47)

we yield the divergence function of the continuous ranked exceedance probability score

dFDC(P,Q) =∫

∞

0
(RQ(z) − RP(z))

2 dz = dCRPS(P,Q). (48)

We do not need an expression for the scoring rule, SFDC(P, ω), of the FDC divergence as this will yield the same
rankings of the simulated FDCs. Furthermore, dFDC(P, Q) is nonnegative and zero only when RP = RQ. We draw
inspiration from Thorarinsdottir et al. (2013) and decompose the FDC divergence into a term that summarizes the
variability between the reliability functions of P andQ, and two other terms that measure the within‐variability of
the FDCs of P and Q

dFDC(P,Q) = EP,Q [| y − ω|] −
1
2
(EP [| y − y∗|] + EQ [|ω − ω∗|]), (49)

where (ω, ω*) and (y, y*) are independent copies of the measured and simulated discharge records, respectively.
For a measured ω1, …, ωn and simulated y1, …, yn streamflow time series, we use a Monte Carlo estimate of
Equation 49
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dFDC(P,Q) =
1
n2

∑
n

i=1
∑
n

j=1
| yi − ωj| −

1
2
1
n2

∑
n

i=1
∑
n

j=1
{| yi − yj| + |ωi − ωj|}, (50)

The above function is easy to compute and satisfies all the properties of a score divergence deemed desirable by
Ferson et al. (2008). The dFDC(P,Q) function is (a) mathematically well behaved and understood; dFDC(P,Q) > 0
unless RP = RQ then dFDC(P, Q) = 0, (b) expressed in physical units (discharge, mm/d), (c) sensitive to all
moments of the FDC, not just mean and variance, and (d) equal to the absolute error dFDC(δy, δω) = |δy − δω|
between two point measures, δy and δω.

We illustrate the usefulness of the FDC divergence of Equation 50 by application to the Sacramento Soil Moisture
Accounting (SAC‐SMA) model of Burnash et al. (1973). Appendix K presents our numerical implementation of
the SAC‐SMA model along with a description of its parameters. We simulate the rainfall‐discharge relationship
of the Leaf River watershed for the n = 3,000‐day training record using daily estimates of areal average rainfall
and potential evapotranspiration. The model equations are solved using a mass‐conservative second‐order inte-
gration method with adaptive time stepping. A 1‐year spin‐up period eliminates the impact of state variable
initialization.

We drawm= 10,000 vectors {θ1, …, θm} from the prior parameter ranges using Latin hypercube sampling. Then,
for each parameter vector θ = (θ1,…,θd)⊤ we simulate the daily discharge record, Pθ = ( y1(θ),…,yn(θ))

⊤ and
compute the FDC divergence dFDC(Pθ, Q) and mean squared residual

sSE (y(θ),ω) =
1
n
∑
n

t=1
(ωt − yt(θ))

2, (51)

Figure 10 compares measured (red) and SAC‐SMA simulated (gray lines) reliability functions of the 3,000‐day
training record using only the 50 best parameter vectors according to dFDC(P, Q). The black and blue lines
correspond to the minima of dFDC(P, Q) and sSE (y(θ),ω) , respectively. To benchmark the FDC divergence, we
also present scatter plots of (b) dFDC(P, Q) and the mean taxicab distance, dT(P,Q) = 1

n∑
n
t=1|ω′t − y′t(θ)|,

where ω′1,…,ω′n and y′1,…,y′n are ordered records of measured and simulated streamflows, respectively, and
(c) dFDC(P, Q) and sSE (y(θ),ω) . Each square is a different parameter vector.

The FDCs of the 50 ensemble members with lowest values of dFDC(P, Q) are in close agreement with the
measured reliability function of the Leaf River. The relatively large discrepancies for the lowest flows are a result
of the logarithmic streamflow scale. The FDC divergence correlates quite well (r= 0.74) with the taxicab distance
dT(P,Q) of measured and simulated reliability functions. This confirms that lower values of dFDC(P,Q) generally
imply better agreement with the measured FDC. But the FDC divergence is not exactly equal to a Manhattan
(=Euclidean) distance and, thus, we find minimum values of dFDC(P, Q) over a range of taxicab distances. The
FDC divergence correlates poorly with the mean squared residual of the simulated discharge records and attains

Figure 10. The flow duration curve (FDC) divergence score: (a) measured FDC (red dots) and SAC‐SMA simulated reliability functions (gray lines) of the 50 discharge
records with lowest values of dFDC(P,Q) and (b, c) scatter diagrams of dFDC(P,Q) and (b) mean taxicab distance dT(P,Q) and (c) mean squared residual sSE (y(θ),ω) of
Equation 51 using all 25,000 simulated discharge records. The black and blue reliability functions correspond to the minima of the FDC divergence and mean squared
residual, respectively.
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its lowest value (black triangle) well removed from the minimum of sSE (y(θ),ω) (blue square). The optimal
reliability functions of the FDC divergence (black line) and mean squared residual (blue line) differ substantially.
This confirms once again that purely statistical metrics of the goodness of fit compromise the SAC‐SMAmodel's
ability to describe hydrologically relevant signatures of watershed behavior. This well‐known trade‐off between
“statistical” and “hydrologic” model training testifies to the added value of hydrograph functionals for hydrologic
model training. As a side note, we could apply differential weighting ∫∞

0 w(z) dz< ∞ to the exceedance
probabilities

dWFDC(P,Q) =∫

∞

0
w(z)(RQ(z) − RP(z))

2 dz, (52)

to emphasize particular flow levels of the FDC. When P,Q∈P1 the above expression is a valid generalization of
the FDC divergence score. So‐called localization and censored scoring rules help evaluate a model's ability in
predicting accurately certain parts of a distribution, for example, the frequency of extreme events (de Punder
et al., 2023; Diks et al., 2011).

6.2.5. Case Study VII: Hydrograph Recession Analysis

Brutsaert and Nieber (1977), hereafter referred to as BN77, made simplifying assumptions about the catchment
water balance in a recession period to arrive at the following relationship between the time rate of change in
discharge dy/dt (mm/d2) and discharge y (mm/d)

dy
dt
= − ayb, (53)

where a (d− 1/b) and b (− ) are unknown recession constants that depend on watershed characteristics. BN77
estimate a and b using a logb − logb graph of − dy/dt versus y but this graphical interpretation of recession
hydrographs is not without practical problems and has been subject to active debate in the hydrologic literature
(Kirchner, 2009; Roques et al., 2017; Rupp & Selker, 2006; Tashie et al., 2020; Thomas et al., 2013). In fact, we
do not need to know the values of a and b for a meaningful model evaluation or calibration (e.g., Jepsen
et al., 2016). We can devise a much stronger test of model performance by comparing directly measured Q and
simulated P distributions of the log10(y) and log10(− dy/dt) relationship. This necessitates use of a bivariate form
of the scoring rules.

Suppose FQ and FP are bivariate CDFs of the true and simulated ( log10( y),log10(− dy/ dt)) point clouds and
ω = (ω1,ω2)

⊤ is a sample drawn at random from Q. The multivariate CRPS is

SMCRPS(P,ω) = − ∫
Ω
(FP(u) − 1{ω≤ u})2du, (54)

with associated divergence function

dMCRPS(P,Q) =∫
Ω
(FP(u) − FQ(u))

2du, (55)

where u ∈ Ω ⊆ R2. By expanding the integrand of Equation 54 we yield a term ∫Ω1{ω≤ u}2du, which depends
only on ω and not FP. Thus,

S∗
MCRPS(P,ω) = − ∫

Ω
F2

P(u)du + 2∫
Ω
FP(u)1{ω≤ u}du, (56)

is an affine transformation of theMCRPS scoring rule (see e.g., Meng et al., 2022). If the distribution P is made up
of m samples Y = { y1,…,ym} ∈R2×m of ( log10( y),log10(− dy/dt)) data pairs, yi = ( yi1,yi2)

⊤ ∈R2×1, then the
bivariate eCDF at point u = (u1,u2)⊤ is equal to
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FP(u) = FP(u|Y)≜
1
m
∑
m

i=1
1{yi1 ≤ u1,yi2 ≤ u2}. (57)

Langrené and Warin (2021) present two algorithms for CPU‐efficient estimation of multivariate eCDFs neces-
sitating O(m) operations if samples are sorted. This formulation can be inserted in Equation 55 and yields the
statistical distance dMCRPS(P, Q) of the bivariate distributions P and Q. The mass‐conservative numerical solver
of the watershed models will help remedy artifacts of BN77 analysis due to a constant time step between suc-
cessive discharge observations.

We illustrate the application of Equations 55 and 57 to hydrograph recession analysis using the BMA model
ensemble. Figure 11 compares measured (red circles) and simulated (blue squares) log10(y) and log10(− dy/dt)
point clouds of the K= 8 watershed models. Each graph also lists the corresponding value of the divergence score
dMCRPS(P, Q). BN77 scatterplot analysis demonstrates that the recession curves of (a) NAM, (b) GR4J,
(c) HYMOD, and (d) TOPMO compare poorly to the measured y and − dy/dt point cloud. This may be a side‐
effect of linear bias‐correction, nevertheless is sufficient grounds for removal of these four models from the
BMA ensemble. The recession curves of the HBV and SAC‐SMA models display the best match with the
measured point cloud. The MCRPS divergence score, dMCRPS(P, Q), confirms our visual assessment of the point
clouds and attains its lowest values for the SAC‐SMA model with HBV as runner‐up. The MCRPS divergence
score can serve as a loss function for model training to promote hydrologic characterization of recession periods.

6.3. Quantile and Interval Scoring Rules

We may summarize a distribution forecast of a continuous variable using predictive quantiles. Suppose a fore-
caster quotes quantiles r = (r1,…,rk)⊤ and x materializes, then the reward equals S(r; x) and the expected score
S(r;P) under probability measure P∈P becomes (Gneiting & Raftery, 2007)

S(r;P) =∫ S(r; x)dP(x). (58)

Figure 11. Scatter plots (blue squares) of the log10(y) − log10(− dy/dt) relationship for the different models of the BMA discharge ensemble. The red dots correspond to
the measured discharge record.
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If q1, …, qk are the true quantiles for the class P of Borel probability measures onR then a scoring rule is proper if
(Cervera & Muñoz, 1996)

S(q1,…,qk;P)≥S(r1,…,rk;P) (59)

for all real numbers r1, …, rk and P∈P. Gneiting and Raftery (2007) present a general form of a scoring rule for
quantiles among which Sτ(r; x) = (1{x≤ r} − τ)(x − r) of Equation 33 discussed in the context of the CRPS.

We focus our attention on the coverage C in Table 1 and formulate this insufficient performance metric as a
proper scoring rule of the 100(1 − α)% prediction interval

Sα
IS(P,ω) = (l − u) −

2
α
(l − ω)1{ω≤ l} −

2
α
(ω − u)1{ω≥ u}, (60)

where l = F− 1P (α/2) and u = F− 1P (1 − α/2) denote the lower and upper endpoints of the predictive quantiles at
significance levels α/2 and 1 − α/2, respectively. The interval score Sα

IS(P,ω) is positively oriented and incurs a
penalty, the size of which depends on significance level α, if ω is outside the [u, l] prediction interval. The first
term, l − u, of Equation 60 confirms that SαIS(P,ω) rewards narrow prediction intervals. The interval score is
proper and not strictly proper as shown in Appendix L. To guarantee an accurate description of the true forecast
distribution one would need to compute Sα

IS(P,ω) for many different α‐values. But this is a daunting task (see
Christoffersen, 1998) certainly in the presence of trade‐offs in the interval score of different prediction intervals.
When confronted with a time series of forecasts P1, …, Pn we work with the time‐averaged interval score

Sα
IS(P,ω) =

1
n
∑
n

t=1
Sα
IS(Pt,ωt). (61)

6.4. Multivariate Forecasts

Up until now, we have considered forecast distributions of only a single variable of interest, say, discharge, and
verifying data measured at different times. The overall skill score, S(P,ω), is then a time‐averaged mean score as
in Equation 45. We can expand this approach to multi‐variable forecasts by treating the distribution of each
variable, say discharge, soil moisture content, groundwater table and aspects of stream water chemistry, sepa-
rately. But for such multi‐variable forecasts, P∈P ∈Rζ, we can also resort to multivariate scoring rules such as
the energy score of Gneiting and Raftery (2007)

SES (P,ω) =
1
2
EP [‖ y − y∗‖

η
2] − EP [‖ y − ω‖η2], (62)

where ‖⋅‖2 is the Euclidean norm on Rζ, ω = (ω1,…,ωζ)
⊤, η ∈ (0, 2), and y = ( y1,…,yζ)

⊤ and y∗ = ( y∗
1,…,y∗

ζ)
⊤

are independent copies of the ζ‐variate distribution, P∈Pη. For ζ= 1, the above expression reduces to SES(P,ω) in
Equation 41. The multivariate form of the energy score is a strictly proper score (Székely, 2003) and for η → 2
reduces to

SSE(P,ω) = −
⃦
⃦μP − ω

⃦
⃦2
2 , (63)

where μP = (μP,1,…,μP,ζ)
⊤ is the mean of the distribution forecast. In analogy to the numerical form of the CRPS

in Equation 37, the ES may be approximated using a large collection {y1, …, ym} of m samples of the forecast
distribution P (Grimit et al., 2006)

SES (P,ω) =
1

2m2 ∑
m

i=1
∑
m

j=1

⃦
⃦ yi − yj

⃦
⃦η
2 −

1
m
∑
m

i=1

⃦
⃦ yi − ω

⃦
⃦η
2 . (64)
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Dawid (1998) and Dawid and Sebastiani (1999) studied scoring rules that depend only on the mean, μP ∈Rζ×1,
and covariance matrix, ΣP ∈Rζ×ζ of forecast distribution P. Their divergence function, dDDS(P,Q), in Equation 3
is linked to the proper scoring rule (Dawid & Sebastiani, 1999)

SDSS(P,ω) = − loge (|ΣP|) − (ω − μP)
⊤Σ− 1P (ω − μP), (65)

with entropy function H(P) = − loge(|ΣP|) − ζ. The DSS is equal to the unnormalized log‐likelihood of a
multivariate normal density. For a univariate forecast, ζ = 1, the DSS simplifies to
SDSS (P,ω) = − loge(σ2P) − (ω − μP)

2 ⁄ σ2P, where, again, μP and σ2P are the mean and variance of the forecast
distribution.

A multivariate forecast does not necessarily imply use of different variables but can equal a single variable that is
forecasted at many different sites. Suppose i, j ∈ (1,…, ζ) are linear indexes of points in a two‐dimensional grid of
ζ sites. Scheuerer and Hamill (2015) investigate the accuracy of the forecast distribution P in describing the
spatial structure of gridded measurements ω = (ω1,…,ωζ)

⊤ of wind speed forecasts. They introduced the so‐
called variogram score of order ς > 0

SςVS(P,ω) = − ∑
ζ

i=1
∑

ζ

j=1
wij( |ωi − ωj|

ς − EP [|yi − yj|ς])
2, (66)

where wij ≥ 0 is a nonnegative weight attached to the (i, j)th pair of sites and yi and yj are the ith and the jth
elements (sites) of a random vector that is distributed according to P. The weights can be used to emphasize or
downplay specific aspects of the distribution forecast. The variogram scoring rule is analogous to the squared
error SSE(P, ω) of Equation 63 using residuals of the powered differences of pairs of measurement sites and pairs
of forecast sites. For ς= 2 the powered difference is known as the semi‐variance. When P is given in the form of a
m‐member ensemble {y1, …, ym} the second term of Sς

VS(P,ω) can be approximated by
EP [|yi − yj|ς] = 1

m∑
m
k=1|yik − yjk|ς. The variogram score is more sensitive than the other scoring rules to multi-

variate site dependencies. But as it uses site differences, it is insensitive to location, thus, is a proper and not
strictly proper scoring rule. Distribution forecasts that differ only in their mean will yield the same value
of SςVS(P,ω).

We could ignore time as governing variable of the rainfall‐discharge transformation and treat a modeled
streamflow time series as a multivariate forecast y = ( y1,…,yζ)

⊤ with ζ the length n of the simulated record.
Then, Equations 64–66 will yield SES(P, ω), SDSS(P, ω) and Sς

VS(P,ω), respectively.

Atmospheric scientists have put forth the use of skill scores (Briggs & Ruppert, 2005; Murphy, 1973a). Skill
scores are unitless and express the model's performance relative to a hypothetical ideal and reference (benchmark)
model. Skill scores may help communicate model performance (Knoben, Freer, &Woods, 2019) but are improper
even if the underlying scoring rule S is proper.

7. Decomposition of Scoring Rules for Categorical Forecasts
Strictly proper scoring rules condense the accuracy of a distribution forecast P to a scalar with attractive statistical
properties. This compression simplifies forecast verification, model evaluation and likelihood function selection
(e.g., Vrugt et al., 2022), but makes it difficult to detect which attributes of P are deficient and in need of
improvement. Scoring rule decomposition yields attributes related to the overall consistency, accuracy and
precision of distribution forecasts. Such deconstruction is well‐known in the context of scoring functions such as
the mean squared error (Gupta et al., 2009; Hodson et al., 2021). Kull and Flach (2015) presents a decomposition
of the logarithmic and Brier scoring rules into an epistemic and aleatoric loss term. Decomposition of the expected
loss into a calibration and refinement loss has stimulated the development of calibration methods (Bella
et al., 2013). Refinement loss consists of an uncertainty and a resolution term (DeGroot & Fienberg, 1983;
Murphy, 1973b). We review the decomposition of strictly proper scoring rules into an uncertainty, resolution and
reliability term. These components relate directly to forecast attributes that are deemed desirable on grounds
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independent of the scoring rules themselves and provide an epistemological justification of measuring forecast
quality by strictly proper scoring rules (Bröcker, 2009).

7.1. Theory

Let Ω = {1, 0} be the sample space of a binary event of rain or no rain. Let the quoted probability p = p(D) of
rain be a function of the data D available to the forecaster up to a certain lead time, where p ∈ [0, 1]. Once we
observe ω ∈ Ω, we assign a score S( p,ω): P2 ×Ω → R to the prediction. Thus, ω is either 0 (no rain) or 1 (rain).
The law of total expectation states that if S(p, ω) and D are random variables on the same probability space then

E[S( p,ω)] = E[E[S( p,ω)|D]]. (67)

For the Brier or QS, SQS( p,ω) = − ∑
2
k=1(δωk − pk)

2, where δωk = 1 if ω = k and δωk = 0 otherwise, the con-
ditional expectation can be decomposed to (see Appendix M1)

E[SQS( p,ω)] = − Var[ω] + Var[E[ω|D]] − E[(p(D) − E[ω|D])2 ], (68)

where E[ω|D] is simply equal to the conditional probability of rain and p(D) equals the unconditional rain
probability. Bröcker (2009) generalized the above decomposition to a generic strictly proper scoring rule,
S(p,ω): Pm ×Ω → R of a categorical forecast of m ≥ 2 events to yield

(69)

where p = ( p1,…,pm)
⊤ is the unconditional probability of ω (called climatology) and πk = P(ω = k| p) signifies

the conditional probability of observation ω for the probabilities p quoted, k = (1, …, m). Hence, π is a mapping
(m ×mmatrix) which specifies for every ω ∈ Ω a probability measure on Pm. The three terms are nonnegative for
strictly proper scoring rules and referred to as (a) uncertainty (of ω), (b) resolution (or sharpness) and (c) reli-
ability (Bröcker, 2009). Entropy and resolution have a positive effect on E[S( p,ω)], whereas reliability decreases
the expected score. Note that the minus sign of − Var[ω] in Equation 68 has vanished from the uncertainty term as
Bröcker (2009) uses − H(p) for the entropy function. Furthermore, our use of positively oriented scoring rules
reverses the sign of the resolution and reliability terms. Appendix M2 explains in detail the three terms of
Equation 69.

Equation 69 is a generalization of the well known decomposition of the Brier score of Murphy (1973b)

1. uncertainty = p(1 − p) 2. resolution = E[( p − π1)
2
] 3. reliability = E[(p − π1)2], (70)

where π1 = π is the conditional probability of rain given p, π1 = P(x = 1| p). Weijs, van Nooijen, et al. (2010)
present a similar decomposition of the relative entropy, the divergence of the logarithmic scoring rule.

7.2. Case Study VII: Discharge Forecast Ensemble

We illustrate the analytic decomposition of Equation 69 by application to the multi‐model ensemble of discharge
forecasts displayed in Figure 7. Appendix M3 defines the unconditional p and conditional π probabilities of the
K = 8 watershed models. Table 10 lists the expected value of the QS, entropy, resolution and reliability of the
BMAmixture distribution for the PDFs of Table 7 using a constant group and sole forecast variance, respectively.
In each case, the forecast probabilities p = ( p1,…,pK)⊤ are set equal to the maximum likelihood weights
β1, …, βK of the BMA mixture distribution. Tabulated data confirm the decomposition of Equation 69. The QS
(top row) is indeed equal to the sum of the entropy H(p) and resolution E[d(p,π)] minus the reliability,
E[d( p,π)]. The first two terms of this decomposition depend only on the unconditional p and conditional π event
frequencies, hence, are invariant to the constituent PDFs of the BMA mixture density. With exception of the
generalized normal PDF, the use of a model‐dependent nonconstant forecast variance increases forecast reli-
ability. The forecast probabilities derived from the truncated normal PDF maximize the QS. This finding con-
tradicts results from distribution‐based model evaluation in Table 8 which ranks the truncated normal PDF last for
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the QS. This testifies to this paper's premise that only distribution‐based evaluation provides an accurate
assessment of model adequacy.

8. Outlook
Scoring rules guarantee a more robust and complete evaluation of hydrologic models but may satisfy other
purposes as well. We describe a few avenues for future work.

8.1. Flood Frequency Analysis

Flood frequency analysis usually involves the fitting of the parameters of some known probability distribution to a
training data record of log‐transformed annual maxima discharges, ω1, …, ωn. The marginal likelihood (Bayes
factors) of the estimated parameters will convey which assumption about the mean of the distribution is most
supported by the data (Luke et al., 2017). Scoring rules come in handy for hypothesis testing of stationary and
nonstationary flood frequency models. Suppose we use the Pearson type III distribution P = PIII(μ,σ2,ρ) for log‐
transformed annual maxima discharges. If we reparameterize the location μ, shape ρ and scale σ2 ofPIII (μ,σ2,ρ) to
ξ = μ − 2σ/ρ, a = 4/ρ2 and b = 1

2σ|ρ|, respectively, then the PDF of P simplifies to (Hosking & Wallis, 1997;
Tegos et al., 2022)

fP(x,ξ,a,b) =
|x − ξ|a− 1

baΓ(a)
exp (− b− 1|x − ξ|), (71)

where x,ξ,a,b∈R, a > 0 and b > 0. If ρ > 0 then x ∈ (ξ, ∞), otherwise for ρ < 0 we yield x ∈ (− ∞, ξ). The LS,
SLS(P,ω) = logb ( fP(ω)) , of distribution forecast P = PIII(ξ,a,b) for the materialized outcome ωt is now equal to

SLS (PIII(ξ,a,b),ωt) = (a − 1)loge (|ωt − ξ|) − a loge (b) − loge (Γ(a)) − b− 1|ωt − ξ|, (72)

with Euler's number as logical choice for the score base. The model that maximizes the LS is preferred by the data.
The QS, PSS, and SS are readily computed as well but a closed‐form expression for the CRPS of a PIII distri-
bution forecast is more involved (see Appendix I2)

SCRPS (PIII(ξ,a,b),ω) = 2 ×
4− ab
B(a,a)

− ab + |ω − ξ| + 2abFG(|ω − ξ|,a + 1,b)

− 2|ω − ξ|FG(|ω − ξ|,a,b),
(73)

where B(u, v) = Γ(u)Γ(v)/Γ(u + v) is the beta function of the first kind and FG(z,a,b) is the CDF of the gamma
distribution G(a,b) with shape and scale parameters, a > 0 and b > 0, respectively. The quotient in the above
expression is equal to EP [| y − y∗|] in Equation 36 and can be rewritten using the concentration index G of
Gini (1909) (McDonald & Jensen, 1979; Scheuerer & Möller, 2015)

Table 10
Time‐Averaged Values of the Strictly Proper Quadratic Scoring Rule E[SQS (p,ω)] and Entropy H(p) , Resolution E[d(p,π)] and Reliability E[d(p,π)] of BMA Density
Forecasts of Equation 43 Using the Normal, Lognormal, Generalized Normal, Truncated Normal, Gamma, and GEV Distributions With a Nonconstant Group and
Single Variance

Normala Lognormal Gen. Normal Trunc. Normal Gamma GEV

Group Single Group Single Group Single Group Single Group Single Group Single

E[SQS (p,ω)] − 0.013 0.002 − 0.026 − 0.015 − 0.002 − 0.011 0.022 0.035 − 0.012 − 0.009 − 0.074 − 0.069

H(p) 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132

E[d(p,π)] 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155

E[d( p,π)] 0.300 0.285 0.313 0.302 0.289 0.298 0.265 0.253 0.299 0.296 0.361 0.356

Sum − 0.013 0.002 − 0.026 − 0.015 − 0.002 − 0.011 0.022 0.035 − 0.012 − 0.009 − 0.074 − 0.069

Note. The bottom row completes the decomposition of Equation 69. aWe fix τ = 2 in the PDF of the generalized normal distribution (Table 7).
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1
2
EP [| y − y∗|] = 2 ×

4− ab
B(a,a)

= abG = ab
Γ(a + 1

2)̅̅̅
π
√

Γ(a + 1)
. (74)

Then, Γ( 12) =
̅̅̅
π
√

and ab
π B(a +

1
2 ,

1
2) is a numerically more stable expression of the first term of Equation 73. For

completeness, Appendix I3 also derives an analytic expression for the CRPS of a generalized extreme value
distribution forecast P = GEV(μ,σ2,ξ) and verifying observation ω ∈ Ω.

8.2. Bayesian Model Selection

Let us look in more detail at the normalization constant p(D|H) of Bayes theorem

p(D|H) =∫
Θ
p(D|θ,H)p(θ|H) dθ. (75)

where L(θ|D,H) ≡ p(D|θ,H) is the likelihood under hypothesis H and p(θ|H) denotes the prior parameter
distribution. For two competing model hypothesis, H0 and H1, with parameters θ ∈ Θ in a d‐dimensional
Euclidean space, we wish to determine which hypothesis is most supported by a sample D = (ω1,…,ωn)

⊤ of
outcomes of Ω. The Bayes factor B1,0 for H1 against H0

B1,0 =
p(D|H1)

p(D|H0)
, (76)

summarizes the evidence provided by the data D in favor of hypothesisH1 as opposed to the null hypothesisH0
(Jeffreys, 1939; Kass & Raftery, 1995). Good (1952) established a simple relationship between the LS and the
logarithmic value of the Bayes factor

logb (B1,0) = logb(
p(D|H1)

p(D|H0)
) = SLS (H1,D) − SLS (H0,D), (77)

where logb (B1,0) is also referred as the weight of evidence. We can use this identity to compute the values of
the Bayes factors for the competing distribution forecasts of Figure 2a. This confirms that P3 is the best pre-
dictive density among the distribution forecasts unless, of course, we set P=Q. The evidence for P3 is strong as a
result of the large sample of ten‐thousand observations. For this same reason, the time‐averaged values SLS(P,ω)
of the LS in Table 8 convey that there is overwhelming evidence for the lognormal conditional PDF of the BMA
model.

When the data come in a particular sequence, wemay develop a more intuitive understanding of the identity above
if we look at the predictive density of ωt given past observations Dt− 1 = (ω1,…,ωt− 1)

⊤

p(ωt|Dt− 1,H) =∫
Θ
p(ωt|θ,H)p(θ|Dt− 1,H)dθ. (78)

where p(ωt|θ,H) is the predictive density ofwt given θ ∈ Θ, p(θ|Dt− 1,H) signifies the posterior distribution of the
parameters and t = (1, …, n). The LS for ωt is now equal to

SLS (H,ωt) = logb (p(ωt
⃒
⃒Dt− 1,H)), (79)

and the total score in Equation 77 becomes

SLS (H,D) =∑
n

t=1
logb (p(ωt

⃒
⃒Dt− 1,H)). (80)
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and is asymptotically equivalent to Bayes information criterion (Dawid, 1984). Thus, the LS does not only help
evaluate distribution forecasts but has broader application to model selection.

8.3. Sensitivity Analysis

Suppose χ = (χ1,…,χm)
⊤ are them variables of the data generating process that determines river discharge y via a

mapping or aggregation function g : Rm → R, such that y= g(χ). Not all governing factors χ of y are known and/
or observable and the available information is summarized into a vector X = (x1,…,xr)⊤ of r variables, where
r ≪ m. This may include rainfall and temperature data, land‐surface characteristics, soil properties, and pa-
rameters θ = (θ1,…,θd)⊤ of model hypothesis H. Sensitivity analysis is an essential step in model development
and ascertains the relative importance of input factors X in determining model output, y = ( y1,…,yn)

⊤ (Saltelli
et al., 2008). But this analysis does not relate to materialized eventsω ∈ Ω. A question that has received much less
attention is how sensitive is y with respect to X or more specifically, what is the gain in predictive accuracy for y
when knowingX? Truthful prediction amounts to specifying the correct conditional distribution ofω givenX or a
functional thereof. If this functional T is elicitable and s(y, ω) is a strictly consistent scoring function, then the
reduction in predictive uncertainty, Eω ∼ Q [s(T(P), ω)] − Eω ∼ Q [s(T(P|X), ω)] , equals the information value of
X for y (Borgonovo et al., 2021). Fissler and Pesenti (2023) extend this notion to a score‐based sensitivity measure
of ω to information X

ξs(ω, X) =
Eω ∼ Q [s(T(P), ω)] − Eω ∼ Q [s(T(P|X), ω)]

Eω ∼ Q [s(T(P), ω)]
. (81)

This unitless sensitivity measure varies between 0 and 1 and quantifies the relative improvement in predictive
accuracy when input factors X are optimally used. The well‐known Sobol (1993) indices correspond to Tmean and
a squared loss strictly consistent scoring function (Borgonovo et al., 2021).

8.4. Localized Scoring Rules: Extreme Events

One may only be interested in certain aspects of a forecast distribution, for example, the probability of extreme
events in its lower and/or upper tail. The FDC divergence dWFDC(P, Q) in Equation 52 allows differential
weighting of the flow levels that make up the FDC. If all weights are positive, then this localization should not
sacrifice strict propriety of the FDC divergence. The nonnegative weight function wij = max(0,1 − 1

9|i − j|2) used
by Scheuerer and Hamill (2015) in the application of the SςVS(P, ω) favors an accurate probabilistic description of
the powered differences between nearby sites over such differences of distant sites. But as all sites with |i − j| ≥ 3
receive a zero weight, such formulation of the variogram score is locally proper at best (de Punder et al., 2023;
Diks et al., 2011). The weight function also allows users to incorporate soft information in model evaluation.

8.5. Synthesis With Model Diagnostics

There is an urgent need for proper scoring rules of hydrologic functionals in support of diagnostic model
evaluation. We proposed steps in this direction for hydrograph recession and flow duration curves using the
bivariate form of the CRPS and FDC divergence score, respectively, but are in need of a much larger family of
(strictly) consistent scoring functions and strictly proper scoring rules for hydrograph functionals. This paper
focused attention on scoring rules but a consistent scoring function is a special case of a proper scoring rule that
depends on the predictive distribution via a target functional only, such as the mean, median or a quantile
(Gneiting & Katzfuss, 2014).

Let us restrict attention to numeral descriptors of the stream hydrograph such as the baseflow index, runoff ratio
and flashiness index (Baker et al., 2004). Time‐averaged values of these hydrograph functionals are commonly
used for model evaluation, but this mapping of the hydrograph to a handful of points implies a significant loss of
information about the watershed's response to rainfall. This loss does not have to be as colossal if we work instead
with distribution functions of hydrograph functionals. The moving‐block bootstrap of Kunsch (1989) will yield
frequency distributions of hydrograph functionals by shifting a window of constant width, say 365 days, by one or
more days through the streamflow record and/or hyetograph. The choice of increment controls the smoothness of
the signatures' distribution functions. Distribution‐based model diagnostics is more robust and complete as it (a)
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compares measured and simulated signature distributions and not just their mean values, (b) acknowledges
temporal variability of hydrograph functionals and (c) accounts implicitly for signature uncertainty. We can
compute the CRPS divergence for each hydrograph functional separately or quantify at once the divergence of
measured and simulated signature distributions using dMCRPS(P, Q) in Equation 55. Confidence intervals can be
derived from the Dvoretzky‐Kiefer‐Wolfowitz‐Massart inequality (Dvoretzky et al., 1956) and its extension to
multivariate distributions by Naaman (2021).

8.6. Standardization of Model Evaluation Metrics

The past decades have witnessed an unbridled growth in the number of performance measures used to evaluate
hydrologic models. This proliferation is in large part a result of the lack of conforming theory and principles for
metric development. Widely used scoring function in hydrology such as the NSE quantify the model's ability in
describing all of the measured hydrograph. This is a desirable quality for any hydrologic model but “describe all”
is not an elicitable quantity nor is the common verbiage “as closely and consistently as possible.” The exception is
the ideal situation where the NSE takes on a unit value and the model matches exactly any data functional whether
it is statistical or hydrograph‐based. In all other cases, the directive “describe all” is ambiguous and cannot be used
to determine a model's success in learning watershed behavior from the verifying data. The KGE on the other
hand is explicit in what it expects the model to do. The model is directed to match the mean and variance of the
discharge data while simultaneously maximizing the correlation between measured and simulated streamflow
records. In this context, the KGE is a large improvement over the NSE. Yet, as the KGE is a summary measure of
three functionals it is not a consistent scoring function. Scoring functions should be (strictly) consistent for
hydrograph functionals, in the sense that they optimize the expected score when following the directive. Scoring
rules should at least be proper to warrant an accurate characterization of the distribution of hydrograph
functionals.

Principles of elicitability and propriety from scoring functions and scoring rules in forecast verification extend to
model simulation and set much higher standards for metric development of hydrograph functionals, thereby
promoting metric standardization and reproducibility and reducing a model's susceptibility to misinformation and
unfinished learning. There are ample opportunities to expand the use of scoring rules to hydrologic functionals
derived from high‐dimensional data of ground‐based sensor networks and Earth‐observing satellites, possibly
with extensions to the spectral domain.

9. Conclusions
Scoring functions such as the NSE and KGE have found widespread application and use to quantify the agreement
between a point forecast (simulation) and materialized outcome. This point‐valued mapping necessarily implies a
loss of information about model performance. This paper was concerned with the basic question of howwe should
evaluate simulation distributions of observed quantities. A simulation distribution summarizes the diversity of
model responses (behaviors) across the model input space and coalesces information about model functioning,
behavior, robustness, sensitivity, and uncertainty that is not available in single‐valued model output. But such
distributions demand a fundamentally different approach to model evaluation and diagnostics. We discussed past
developments that led to the current state‐of‐the‐art of distribution‐based evaluation in hydrology and brought
scoring rules to the attention of hydrologists. Scoring rules condense a distribution forecast to a single reward
value for the materialized outcome(s) and have a strong underpinning in statistical, decision and information
theory. We reviewed scoring rules for dichotomous and categorical events, quantiles and density forecasts,
discussed the importance of scoring function elicitability and scoring rule propriety, presented diagnostically
appealing strictly proper divergence scores for flow duration and recession curves and addressed the decom-
position of scoring rules into a sharpness, reliability and entropy term.

We first summarize the main conclusions of the theoretical treatise on scoring rules. These conclusions may be
known to statisticians but are of importance to model evaluation in general.

1. Any generalized entropy function, H(P), has a corresponding expression for its scoring rule, S(P, ω), expected
score function, S(P,Q), and score divergence, d(P, Q).

2. If H(P) is cup‐shaped then the score divergence d(P, Q) is a Bregman distance, strictly positive and zero only
when the distribution forecast P is equal to the true but unknown distribution Q. This guarantees strict pro-
priety of the scoring rule S(P, ω) and score divergence d(P, Q).
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3. The LS, SLS(P, ω), is directly related to the log‐likelihood function ℓ(β, ψ|ω) and Bayes factor B and has
negative Shannon entropy − H(P) as its generalized entropy functionH(P) and the well‐known KL‐divergence
(or relative entropy) as its score divergence d(P, Q).

The power and usefulness of distribution‐based (probabilistic) model evaluation by means of strictly proper
scoring rules was demonstrated using simple illustrative examples, 24‐hr forecasts of daily rainfall and discharge
distributions simulated with conceptual watershed models using Bayesian model averaging and random sam-
pling. Our most important practical findings are as follows.

1. Diagnostically appealing distribution verification metrics such as the coefficient of variation, reliability, width
and coverage do not provide a complete evaluation of distribution forecasts.

2. Scoring functions such as the RMSE, NSE, and KGE which quantify model performance using single‐valued
output are insensitive to the underlying distribution of this output. The likelihood is also strictly local but
preserves information about the distribution of simulated quantities.

3. The strictly proper quadratic, logarithmic, spherical, continuous ranked probability, and energy scoring rules
enable a complete evaluation of distribution forecasts and offer robust metrics for probabilistic model eval-
uation. This warrants a honest and fair assessment of model adequacy. Given one strictly proper scoring rule,
one can construct others by affine transformation (shifting and scaling). The CRPS is a generalization of the
mean absolute error to distribution forecasts.

4. The directive to describe a measured discharge record “as closely and consistently as possible” is ambiguous
and cannot be used to determine a model's success in learning watershed behavior.

In analogy to statistical functionals such as the mean and variance, we coined the term hydrologic functional for a
scalar‐valued mapping of the catchment's response to rainfall in ways that correspond to major behavioral
functions of watershed behavior. The hydrograph functionals are (a) rooted in statistical and information theory,
(b) have a strong and compelling diagnostic power and (c) remove susceptibility of model evaluation to
misinformation and incomplete learning. Frequency distributions of hydrograph functionals derived from a
moving‐block bootstrap method admit the application of strictly proper scoring rules to model diagnostics. In this
context, we introduced diagnostically appealing strictly proper divergence scores for flow duration and recession
curves.

1. The FDC divergence score dFDC(P, Q) measures in a single real number the distance between a measured RQ

and simulated RP FDC. This function is strictly positive and zero only if RP = RQ, expressed in physical units
of discharge, sensitive to all moments of the FDC and equal to the absolute error of two point measures of the
survival function.

2. The bivariate form of the CRPS offers a strictly proper scoring rule for hydrograph recession analysis. The
MCRPS divergence dMCRPS(P, Q) measures in a single numerical value the distance between measured and
simulated bivariate distributions of the time rate of change in discharge − dy/dt and discharge y itself. This
avoids many of the problems reported with analysis of the − dy/dt and y point clouds and simplifies model
diagnostics and selection.

Furthermore, we also presented a closed‐form expression of the CRPS for flood frequency analysis with the
Pearson type III distribution and discussed differential weighting (censoring) as a means for characterizing better
the distribution of extreme events. In general, watershed model diagnostics would benefit from decision‐
theoretically principled hydrograph functionals.

Finally, elicitability and propriety offer two useful working paradigms for the development and application of
scoring functions and rules for hydrograph functionals. These principles set universal standards for metric
development thereby promoting metric standardization, reproducibility and comparative analysis across models
and data sets. Furthermore, information‐theoretic principled metrics reduce a model's susceptibility to misin-
formation and unfinished learning.

Then, a final remark. The past decades have witnessed important developments in statistics and mathematics
(inverse methods!) to help bridge the gap between hydrologic theory and data. You would expect this work to fit
into hydrometrics by analogy with biometrics, bibliometrics and econometrics. But the application of statistical
and mathematical methods to hydrologic data does not fall under the umbrella of hydrometry as presently defined
by the International Organization for Standardization as “…the science of monitoring water in natural water
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resources”. To rectify this inconsistency, we should think of broadening the scope of hydrometry. This would
create the new job title of hydrometrician.

Appendix A: On Gibbs’ Inequality
Gibbs' inequality

H(Q,P) ≥ H(Q) (A1)

was presented by the American scientist Josiah Willard Gibbs (1839–1903) and states that the cross‐entropy
H(Q, P) of two probability distributions Q and P will always exceed the entropy H(Q) = H(Q, Q) of distribu-
tion Q alone unless P = Q then H(Q, P) = H(Q). Different mathematical proofs exist of this inequality. For
completeness, we present one of them in this Appendix.

Suppose Q and P are discrete probability distributions on a common sample space Ω. If x is a possible outcome
then q(x) ≥ 0 and p(x) ≥ 0 denote the probability for x ∈ Ωwith ∑x ∈ Ω q(x)= 1 and ∑x ∈ Ω p(x)= 1. Equation A1
may now be written in discretized form

H(q, p)≥H(q) (A2)

where q and p are vectors with probabilities of Q and P for all events of Ω. Now we can write

∑
x ∈ Ω

q(x)logb(
1

p(x)
) ≥ ∑

x ∈ Ω
q(x)logb(

1
q(x)

), (A3)

which is equal to

∑
x ∈ Ω

q(x)logb (q(x)) − ∑
x ∈ Ω

q(x)logb (p(x))≥ 0, (A4)

and simplifies further to

∑
x ∈ Ω

q(x)( logb (q(x)) − logb (p(x)))≥ 0

∑
x ∈ Ω

q(x)logb(
q(x)
p(x)

) ≥ 0

⇒ dKL(Q, P)≥ 0.

(A5)

Thus, to prove Gibbs' inequality we need to demonstrate that the relative entropy, dKL(Q, P), is nonnegative. We
define the function t(x) = p(x)/q(x). This function satisfies the following condition

logb (t(x))≤ t(x) − 1 (A6)

for all t(x) > 0 and b > 0 with equality if and only if t(x)= 1 and, thus, P=Q. The above inequality may be written
as follows

− logb(
q(x)
p(x)

) ≤
p(x)
q(x)
− 1, (A7)

and, thus, we yield

logb(
q(x)
p(x)

) ≥ 1 −
p(x)
q(x)

. (A8)
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We can multiply both sides of Equation A8 with q(x)

∑
x ∈ Ω

q(x)logb(
q(x)
p(x)

) ≥ ∑
x ∈ Ω

q(x)(1 −
p(x)
q(x)

)

≥ ∑
x ∈ Ω

q(x) − ∑
x ∈ Ω

p(x),
(A9)

to arrive at the following inequality

dKL(Q, P)≥ 1 − ∑
x ∈ Ω

p(x). (A10)

Thus, for Gibbs' inequality to hold we simply need to show that

1 − ∑
x ∈ Ω

p(x)≥ 0 ⟺ ∑
x ∈ Ω

p(x)≤ 1. (A11)

In plain words, the sum of the probabilities of distribution P at the collection of outcomes x ∈ Ω cannot exceed
unity. This condition will always be satisfied as, (a) all non‐zero q(x) values will sum to one and so do their p(x)
values, and (b) all points x ∈ Ω at which p(x) > 0 but q(x) = 0 do not contribute to the relative entropy as
limq↓0 q log(q) = 0. Hence, the sum of the p(x)'s at which q(x) > 0 will almost surely be smaller than one unless
P = Q then H(Q, P) = H(Q) and dKL(Q, P) = 0.

Appendix B: Analytic Expressions of the Relative Entropy
The relative entropy dKL(P, Q) is a measure of the statistical distance between a probability distribution P and
reference probability distribution Q. In this Appendix, we derive closed‐form expressions of dKL(P, Q) and the
reverse KL‐divergence dKL(Q, P) for some well‐known forecast P and true Q distributions in Rζ. We consider
univariate (ζ = 1) and multivariate (ζ > 1) distribution forecasts and confirm that the relative entropy does not
satisfy the triangle inequality.

B1. Univariate Distribution Forecast

B1.1. Uniform Forecast and Normal True Distribution

We derive an analytic expression for the relative entropy dKL(Q, P)

dKL(Q, P) = H(Q, P) − H(Q), (B1)

of a normal true distribution Q =N (μQ,σ2Q) and uniform forecast distribution P = U (aP,bP) on a bounded
sample space x ∈ [aP, bP] and bP > aP. The cross‐entropy of Q and P is equal to

H(Q, P) = − ∫
bP

aP
Q(x)logb (P(x)) dx

= − ∫

bP

aP
Q(x)loge(

1
bP − aP

) dx

= loge (bP − aP)∫

bP

aP
Q(x)dx

= loge (bP − aP),

(B2)

in units of nats. Note that the cross‐entropy will attain an infinite value on the extended real line, x∈R as P
(x) → 0. The entropy of the normal true distribution Q may be computed as follows
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H(Q) = − ∫
bP

aP
Q(x)logb (Q(x)) dx

= − ∫

bP

aP
Q(x)loge

⎡

⎢
⎢
⎢
⎣

1
σQ

̅̅̅̅̅
2π
√ exp

⎛

⎜
⎜
⎜
⎝
−
1
2

(x − μQ)
2

σ2Q

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦
dx

= − ∫

bP

aP
Q(x)

⎛

⎜
⎜
⎜
⎝
loge[

1
σQ

̅̅̅̅̅
2π
√ ] −

1
2

(x − μQ)
2

σ2Q

⎞

⎟
⎟
⎟
⎠
dx

= loge(2πσ
2
Q)

1/2
∫

bP

aP
Q(x)dx +

1
2σ2Q

∫

bP

aP
(x − μQ)

2
Q(x)dx

=
1
2
loge (2πσ

2
Q) × 1 +

1
2σ2Q
× σ2Q

=
1
2
loge (2eπσ

2
Q).

(B3)

The relative entropy in units of nats is now equal to

dKL(Q,P) = H(Q,P) − H(Q) = loge (bP − aP) −
1
2
loge (2eπσ

2
Q), (B4)

and may go to infinity with support of P on the extended real line, R. Note that if we link Q and P using
σ = (bP − aP)/ν with ν∈R+ then the relative entropy simplifies to dKL(Q, P) = loge(ν) − 1

2loge(2eπ).

To resolve problems with the uniform distribution of P on an unbounded interval we could specify P(x) ∝ 1
instead. Then the cross‐entropy H(Q,P) = 0 and the relative entropy dKL(Q, P) reduces to the so‐called differ-
ential entropy 1

2loge (2eπσ
2
Q) of the normal distribution Q.

We can follow a similar derivation for the reverse KL‐divergence, dKL(P, Q). The cross‐entropy of P and Q in
units of nats is equal to

H(P,Q) = − ∫
bP

aP
P(x)logb (Q(x)) dx

= − ∫

bP

aP
P(x)logb

⎡

⎢
⎢
⎢
⎣

1
σQ

̅̅̅̅̅
2π
√ exp

⎛

⎜
⎜
⎜
⎝
−
1
2

(x − μQ)
2

σ2Q

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦
dx

= − ∫

bP

aP
P(x)

⎛

⎜
⎜
⎜
⎝
loge[

1
σQ

̅̅̅̅̅
2π
√ ] −

1
2

(x − μQ)
2

σ2Q

⎞

⎟
⎟
⎟
⎠
dx

= loge(2πσ
2
Q)

1/2
∫

bP

aP
P(x)dx +

1
2σ2Q

∫

bP

aP
(x − μQ)

2
P(x)dx

=
1
2
loge (2πσ

2
Q) +

1
2(bP − aP)σ2Q

⃒
⃒
⃒−⃒

1
3
(μQ − x)

3
⃒
⃒
⃒
⃒

bP

aP

=
1
2
loge (2πσ

2
Q) +

(μQ − aP)
3
− (μQ − bP)

3

6(bP − aP)σ2Q
.

(B5)
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The entropy of P is equal to Equation B2 to yield

H(P) = − ∫
bP

aP
P(x)logb (P(x)) dx

= − ∫

bP

aP
P(x)loge(

1
bP − aP

) dx

= loge (bP − aP)∫

bP

aP
P(x)dx

= loge (bP − aP),

(B6)

in units of nats. Now we yield the following expression for the relative entropy dKL(P, Q) in nats

dKL(P,Q) = H(P,Q) − H(P)

=
1
2
loge (2πσ

2
Q) +

(μQ − aP)
3
− (μQ − bP)

3

6(bP − aP)σ2Q
− loge (bP − aP).

(B7)

This confirms again that the relative entropy is not symmetric in Q and P.

B1.2. Triangular Forecast and Uniform True Distribution

Suppose that the true probability distribution Q of the quantity of interest x equals the uniform distribution,
Q = U (a, b) on the closed interval Ω = [a, b] with PDF, fU (x, a, b) = 1/ (b − a) (see Figure B1). The distribution
forecast P of x is a symmetric triangular distribution, P = T (a,b), with midpoint c = (a + b)/2 and PDF

fT (x, a, b) =
2(b − a) − 2|a + b − 2x|

(b − a)2
, (B8)

where |⋅| denotes the absolute value. If we enter the analytic expressions of the PDFs of P andQ into the integral of
Equation 1 we yield

Figure B1. PDFs of the uniform true distribution Q = U (a, b) and symmetric triangular forecast distribution P = T (a, b) of
random variable x on the closed sample space Ω = [a, b].
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dKL(Q,P) = ∫

b

a

1
b − a

logb(
(b − a)2

(b − a)(2(b − a) − 2|a + b − 2x|)
) dx

=
1

b − a
∫

c

a
logb(

b − a
2(b − a) − 2(a + b − 2x)

) dx +
1

b − a
∫

b

c
logb(

b − a
2(b − a) − 2(2x − a − b)

) dx

=
1

b − a
∫

c

a
logb(

1
4
b − a
x − a

) dx +
1

b − a
∫

b

c
logb(

1
4
b − a
b − x

) dx

=
1

b − a

⃒
⃒
⃒
⃒(x − a)[logb(

1
4
a − b
a − x

) + 1]
⃒
⃒
⃒
⃒

c

a
+

1
b − a

⃒
⃒
⃒
⃒(x − b)[logb(

1
4
b − a
b − x

) + 1]
⃒
⃒
⃒
⃒

b

c
.

(B9)

At the midpoint c, we yield x − a = 1
2 (b − a) and x − b = 1

2 (a − b), thus, the expression above simplifies to

dKL(Q, P) =

⎛

⎜
⎜
⎜
⎝

1
2
(b − a)

b − a
[logb(

1
4

a − b
12(a − b)

) + 1] − 0

⎞

⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝
0 −

1
2
(a − b)

b − a

⎡

⎢
⎢
⎢
⎣
logb

⎛

⎜
⎜
⎜
⎝

1
4

b − a
1
2
(b − a)

⎞

⎟
⎟
⎟
⎠
+ 1

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

=
1
2
[logb(

1
2
) + 1] +

1
2
[logb(

1
2
) + 1]

= 1 − logb(2).

(B10)

Note that dKL(Q, P) does not depend on the width of the sample space Ω. Interestingly, for b = 2 the relative
entropy dKL(Q, P) = 0 even though Q ≠ P. This artifact is easily resolved with a temporary change to the base of
the logarithm to yield, dKL(Q,P) = (1 − loge(b))/ loge(b). If we then admit b = 2 we yield dKL(Q, P) = 0.4427
bits. If we swap the arguments Q and P in our derivation and compute the relative entropy from Q to P we yield

dKL(P,Q) = ∫

b

a

2(b − a) − 2|a + b − 2x|
(b − a)2

logb(
(b − a)(2(b − a) − 2|a + b − 2x|)

(b − a)2
) dx

= ∫

c

a

4(x − a)
(b − a)2

logb(
4(x − a)
b − a

) dx +∫

b

c

4(b − x)
(b − a)2

logb(
4(b − x)
b − a

) dx

=

⃒
⃒
⃒
⃒
⃒

(4a − 4x)2

8(a − b)2
[logb(

4(a − x)
a − b

) −
1
2
]

⃒
⃒
⃒
⃒
⃒

a+b
2

a

+

⃒
⃒
⃒
⃒
⃒
−
(4b − 4x)2

8(a − b)2
[logb(

4(x − b)
a − b

) −
1
2
]

⃒
⃒
⃒
⃒
⃒

b

a+b
2

= (
4(a − b)2

8(a − b)2
[logb(

2(a − b)
a − b

) −
1
2
] − 0) + (0 +

4(b − a)2

8(a − b)2
[logb(

2(a − b)
a − b

) −
1
2
] − 0)

=
1
2
[logb(2) −

1
2
] +

1
2
[logb (2) −

1
2
]

= logb(2) −
1
2
.

(B11)

Thus, dKL(P, Q) = logb(2) − 1
2 or dKL(P, Q) = 0.2787 bits.

B1.3. Univariate Normal Forecast and True Distribution

In the special case of two univariate normal distributions, Q ∼N (μQ,σ2Q) and P =N (μP,σ2P), the relative en-
tropy dKL(Q, P) is equal to
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dKL (Q,P) =
1
2

⎡

⎢
⎢
⎢
⎣
loge(

σ2P
σ2Q

) − 1 +
σ2Q
σ2P
+
(μQ − μP)

2

σ2P

⎤

⎥
⎥
⎥
⎦

= loge(
σP

σQ
) +

σ2Q + (μQ − μP)
2
− σ2P

2σ2P
.

(B12)

This expression follows directly from the multivariate case of the relative entropy discussed in the next section.
Specifically, Equation B25 reduces to the above expression for a univariate normal true and forecast distribution.

B2. Multivariate Distribution Forecast

B2.1. Normal Forecast and True Distribution

Suppose that the true joint distributionQ of x = (x1,…,xζ)⊤ and its probabilistic forecast, P, are each described by
a multivariate normal distribution, Nζ (μQ,ΣQ) and Nζ (μP,ΣP), respectively, with means, μQ = (μQ,1…μQ,ζ)

⊤

and μP, and ζ × ζ covariance matrices, ΣQ and ΣP, respectively. The probability density at x is then equal to

fN (x, μ, Σ) =
1

(2π)ζ/2|Σ|1/2
exp(−

1
2
(x − μ)⊤Σ− 1(x − μ)), (B13)

where |⋅| is the determinant operator and the symbol ⊤ denotes transpose. We can use the above expression to
derive a closed‐form expression for the KL‐divergence, dKL(Q, P), of Q and P in Rζ. Indeed, we can write

dKL(Q,P) = EQ[loge(
Q(x)
P(x)

)]

= EQ[loge (fN (x,μQ,ΣQ)) − loge ( fN (x,μP,ΣP))].

(B14)

To cancel the exponential function in Equation B13, the base of the logarithm must be fixed to Euler's number,
e= 2.7182818…, and as a result the relative entropy, dKL(Q, P), has units of nats. If we admit to Equation B14 the
normal density of Equation B13 we yield

dKL(Q,P) = EQ[loge(
1

(2π)ζ⁄2⃒⃒ΣQ
⃒
⃒1⁄2) −

1
2
(x − μQ)

⊤Σ− 1Q (x − μQ)

− [loge(
1

(2π)ζ⁄2|ΣP|
1⁄2) −

1
2
(x − μP)

⊤Σ− 1P (x − μP)]]

= EQ[−
ζ
2
loge (2π) −

1
2
loge (

⃒
⃒ΣQ

⃒
⃒) −

1
2
(x − μQ)

⊤Σ− 1Q (x − μQ) +
ζ
2
loge (2π)

+
1
2
loge (|ΣP|) +

1
2
(x − μP)

⊤Σ− 1P (x − μP)]

=
1
2
EQ[loge (|ΣP|) − loge (

⃒
⃒ΣQ

⃒
⃒) + (x − μP)

⊤Σ− 1P (x − μP)

− (x − μQ)
⊤Σ− 1Q (x − μQ)]

(B15)

The expected value of a constant, E[c], is equal to c itself and, thus, Equation B15 becomes
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dKL (Q,P) =
1
2
loge(

|ΣP|⃒
⃒ΣQ

⃒
⃒)
+
1
2
EQ[(x − μP)

⊤Σ− 1P (x − μP) − (x − μQ)
⊤
Σ− 1Q (x − μQ)]

=
1
2
loge (|Σ− 1Q ΣP|) +

1
2
EQ[(x − μP)

⊤Σ− 1P (x − μP)]

−
1
2
EQ[(x − μQ)

⊤
Σ− 1Q (x − μQ)].

(B16)

The vector‐matrix‐vector product, (x − μ)⊤Σ− 1(x − μ), produces a scalar whose value depends on the entries of
the vector x. The covariance matrix, Σ, is constant and can be taken out of the expectation

E[(x − μ)⊤Σ− 1(x − μ)] = E[tr( (x − μ)⊤Σ− 1(x − μ))]

= E[tr(Σ− 1(x − μ)(x − μ)⊤)]

= tr(E[Σ− 1(x − μ)(x − μ)⊤])

= tr(Σ− 1E[(x − μ)(x − μ)⊤]),

(B17)

where the trace function

tr(A) = ∑

ζ

i=1
aii = a11 + a22 +⋯ + aζζ, (B18)

computes the sum of the elements on the main diagonal of the ζ × ζ matrix, Σ− 1E[(x − μ)(x − μ)⊤]. We can use
Equation B17 to write Equation B16 as follows

dKL (Q,P) =
1
2
loge (|Σ− 1Q ΣP|) +

1
2
tr(Σ− 1P EQ[(x − μP)(x − μP)

⊤
])

−
1
2
tr(Σ− 1Q EQ[(x − μQ)(x − μQ)

⊤
]),

(B19)

The expected value of the vector outer product, (x − μQ)(x − μQ)
⊤
, with respect to Q is simply equal to the

covariance matrix, ΣQ, of this distribution. Thus, we yield

dKL(Q,P) =
1
2
loge(|Σ− 1Q ΣP|) −

1
2
tr(Σ− 1Q ΣQ) +

1
2
tr(Σ− 1P EQ [(x − μP)(x − μP)

⊤
])

=
1
2
loge(|Σ− 1Q ΣP|) −

1
2
ζ +

1
2
tr(Σ− 1P EQ [xx⊤ − xμ⊤

P − μPx⊤ + μPμ⊤
P ])

=
1
2
loge(|Σ− 1Q ΣP|) −

1
2
ζ +

1
2
tr(Σ− 1P EQ [xx⊤ − 2xμ⊤

P + μPμ⊤
P]),

(B20)

where the sum of the diagonal elements of the ζ × ζ identity matrix, Iζ = Σ− 1Σ, equals the dimension, ζ ∈N+, of
the multivariate normal distribution and the ζ × ζ matrix, − xμ⊤

P − μPx⊤, is conveniently written as − 2xμ⊤
P . This

formulation for the sum of the two vector outer products holds only for the main diagonal elements of xμ⊤
P − μPx⊤

on which the trace function operates. We can generate a large collection of N points, {x(1), x(2), …, x(N)}, from
Q ∼Nζ (μQ,ΣQ), and compute numerically the expected (mean) value of the ζ × ζmatrix, xx⊤ − 2xμ⊤

P + μPμ⊤
P ,

between square brackets of Equation B20. With a little bit more effort, however, we can yield an analytic
expression for the KL‐divergence. The expected value of x under Q is equal to the mean, μQ, of this distribution.
From the general definition of the covariance matrix, we can derive a simple expression for the expected value of
the vector outer product, xx⊤, in Equation B20 as follows
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Σ = E[(x − μ)(x − μ)⊤]

= E[xx⊤ − xμ⊤ − μx⊤ + μμ⊤]

= E[xx⊤] − E[xμ⊤] − E[μx⊤] + E[μμ⊤]

= E[xx⊤] − E[x]μ⊤ − μE[x⊤] + μμ⊤

= E[xx⊤] − μμ⊤ − μμ⊤ + μμ⊤

= E[xx⊤] − μμ⊤

⇒ E[xx⊤] = Σ + μμ⊤.

(B21)

Thus, Equation B20 is equal to

dKL (Q,P) =
1
2
loge (|Σ− 1Q ΣP|) −

1
2
ζ +

1
2
tr(Σ− 1P (ΣQ + μQμ⊤

Q − 2μQμ⊤
P + μPμ⊤

P))

=
1
2
[loge (|Σ− 1Q ΣP|) − ζ + tr(Σ− 1P ΣQ + Σ− 1P μQμ⊤

Q − 2Σ− 1P μQμ⊤
P + Σ− 1P μPμ⊤

P)]

=
1
2
[loge (|Σ− 1Q ΣP|) − ζ + tr(Σ− 1P ΣQ) + tr(Σ− 1P μQμ⊤

Q)

− 2tr(Σ− 1P μQμ⊤
P ) + tr(Σ− 1P μPμ⊤

P )].

(B22)

As corollary of Equation B17, we yield

tr(Σ− 1(x − μ)(x − μ)⊤) = (x − μ)⊤Σ− 1(x − μ), (B23)

and, consequently, Equation B22 may be written as follows

dKL(Q,P) =
1
2
[loge (|Σ− 1Q ΣP|) − ζ + tr(Σ− 1P ΣQ) + μ⊤

QΣ
− 1
P μQ − 2μ⊤

QΣ
− 1
P μP

+ μ⊤
PΣ
− 1
P μP].

(B24)

The three vector‐matrix‐vector products in the above expression can be factorized to yield

dKL(Q,P) =
1
2
[loge(|Σ− 1Q ΣP|) − ζ + tr(Σ− 1P ΣQ) + (μQ − μP)

⊤Σ− 1P (μQ − μP)]. (B25)

This concludes our derivation of the KL‐divergence of two multivariate normal distributions, Q ∼Nζ (μQ,ΣQ)

and P =Nζ (μP,ΣP) in Rζ with ζ ∈N+.

The use of the natural logarithm in our derivation of Equation B25 affixes the unit of nats to dKL(Q, P). To change
units of the relative entropy, one should just divide dKL(Q, P) by loge(z). Then for z= 2 we yield dKL(Q, P) in bits.
Furthermore, we obtain the reverse KL‐divergence dKL(P, Q) by swapping arguments Q and P in the respective
Equations.

B3. Triangle Inequality

Suppose that we have three distributions, Q =N (μQ,σ2Q), P = U (aP,bP) and R =N (μR,σ2R). Equa-
tion B4 and B12 will help demonstrate that the relative entropy does not honor the triangle inequality,
dKL(Q, P) ≤ dKL(Q, R) + dKL(R, P). Indeed, we yield
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dKL (N (μQ,σ2Q),U (aP,dP)) ≤ dKL(N (μQ,σ2Q),N (μR,σ2R)) + dKL (N (μR,σ2R),U (aP,dP))

loge(bP − aP) −
1
2
loge (2eπσ

2
Q) ≤

1
2
loge(

σ2R
σ2Q
) +

σ2Q + (μQ − μR)
2
− σ2R

2σ2R
+ loge (bP − aP) −

1
2
loge (2eπσ

2
R)

−
1
2
loge (σ

2
Q) ≤

1
2
loge(

σ2R
σ2Q
) +

σ2Q + (μQ − μR)
2
− σ2R

2σ2R
−
1
2
loge (σ

2
R)

⇒σ2Q + (μQ − μR)
2
− σ2R ≥ 0.

(B26)

The trivial example, σ2Q < σ2R and μQ= μR, violates the triangle inequality. To convey the fundamental asymmetry
in the relation betweenQ and P it is common to refer to dKL(Q, P) as the relative entropy ofQwith respect to P or
the information gain from Q over P.

Appendix C: Numerical Computation of the KL‐Divergence
To illustrate the computation and interpretation of the KL‐divergence, please consider the PMFs of Q and P
depicted in Figure C1. The true distribution Q of the quantity of interest x is a binomial distribution with n= 4 and
p = 0.5 and the distribution forecast P is discrete uniform with equal density for Ω = (0, 1, …, 4). The relative
entropy, dKL(q, p), may now be computed

dKL (q,p) = ∑
4

x=0
fB(x,4,

1
2
) logb

⎛

⎜
⎜
⎜
⎜
⎝

fB(x,4,
1
2
)

fU d
(x,5)

⎞

⎟
⎟
⎟
⎟
⎠

=
1
16

logb

⎛

⎜
⎜
⎜
⎝

1
16
1
5

⎞

⎟
⎟
⎟
⎠
+
1
4
logb

⎛

⎜
⎜
⎜
⎝

1
4
1
5

⎞

⎟
⎟
⎟
⎠
+

6
16

logb

⎛

⎜
⎜
⎜
⎝

6
16
1
5

⎞

⎟
⎟
⎟
⎠
+
1
4
logb

⎛

⎜
⎜
⎜
⎝

1
4
1
5

⎞

⎟
⎟
⎟
⎠
+

1
16

logb

⎛

⎜
⎜
⎜
⎝

1
16
1
5

⎞

⎟
⎟
⎟
⎠

=
1
8
logb(

5
16
) +

1
2
logb(

5
4
) +

3
8
logb(

30
16
),

(C1)

which with base of the logarithmic function equal to two leads to dKL(q, p) ≈ 0.2913 bits. If we divide the so‐
obtained value of dKL(q, p) by log2(e) then we yield the KL‐divergence in units of nats. Note that if qk = 0
for some xk ∈ Ω, the summand, qklogb (qk), is set to zero in accordance with the limit, limq↓0 qlogb(q) = 0. If we
swap the discrete distributions of Q and P we yield the so‐called reverse KL‐divergence

dKL(p,q) = ∑
4

x=0
fU d
(x,5)logb

⎛

⎜
⎜
⎜
⎜
⎝

fU d
(x,5)

fB(x,4,
1
2
)

⎞

⎟
⎟
⎟
⎟
⎠

=
1
5
logb

⎛

⎜
⎜
⎜
⎝

1
5
1
16

⎞

⎟
⎟
⎟
⎠
+
1
5
logb

⎛

⎜
⎜
⎜
⎝

1
5
1
4

⎞

⎟
⎟
⎟
⎠
+
1
5
logb

⎛

⎜
⎜
⎜
⎝

1
5
6
16

⎞

⎟
⎟
⎟
⎠
+
1
5
logb

⎛

⎜
⎜
⎜
⎝

1
5
1
4

⎞

⎟
⎟
⎟
⎠
+
1
5
logb

⎛

⎜
⎜
⎜
⎝

1
5
1
16

⎞

⎟
⎟
⎟
⎠

=
2
5
logb(

16
5
) +

2
5
logb(

4
5
) +

1
5
logb(

16
30
),

(C2)

which is equal to dKL(p, q) ≈ 0.3611 bits. This again confirms that dKL(q, p) is not a metric but rather a (Bregman)
divergence, more of which later.
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Appendix D: Strictly Proper Categorical Scoring Rules
In this Appendix we present analytic derivations of the quadratic, logarithmic, and (pseudo)spherical scores for a
categorical forecast.

D1. Quadratic Score

For a categorical forecast of m events with true probabilities, p1, …, pm issued on the probability simplex P∈Pm

the entropy function of the QS becomes H(p) =∑
m
k=1p

2
k and equals an affine transformation of the Gini‐index

G(p) =∑
m
k=1pk (1 − pk) (Gini, 1909). If we enter the gradient of the QS, ∇H( p) = (2p1,…,2pm)

⊤, into Equa-
tion 18 we yield the divergence function of the QS

dQS(p,q) = H(q) − H(p) + ⟨∇H(p),p − q⟩

= ∑
m

k=1
q2k − ∑

m

k=1
p2k + ⟨(2p1,…,2pm), ( p1 − q1,…,pm − qm)⟩

= ∑
m

k=1
q2k − ∑

m

k=1
p2k + 2⟨p,p⟩ − 2⟨p,q⟩

= ∑
m

k=1
q2k +∑

m

k=1
p2k − 2∑

m

k=1
pkqk

= ∑
m

k=1
(pk − qk)

2

(D1)

According to Equation 20 the scoring rule of the QS is now equal to

Figure C1. Illustration of the computation of the relative entropy dKL(Q, P) on a sample space Ω = {0, 1, 2, 3, 4}: (a) true distribution, Q = B(n,p), and (b) forecast
distribution, P = Ud(n). According to data, the variable of interest x follows a binomial distribution with n = 4, p = 1

2 and probability mass function
fB(x,n,p) = c(n,x)px(1 − p)n− x where c(a, b) = a!/b!(a − b)! denotes the binomial coefficient and ! is the factorial function. Theory predicts a discrete uniform distribution
for x with equal density fUd

(x,n) = 1/n for all n = 5 values.
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SQS( p,j) = H(p) − ⟨∇H( p),p⟩ + ∇Hj (p)

= ∑
m

k=1
p2k − 2⟨p,p⟩ + 2pj

= 2pj − ∑
m

k=1
p2k

(D2)

The QS is also known as the proper linear score or Brier (1950) scoring rule

SBS(p,j) = − ∑
m

k=1
(δjk − pk)

2
= 2pj − ∑

m

k=1
p2k − 1, (D3)

where the Kronecker symbol δjk = 1 when the jth event materializes ( j = k) and δjk = 0 otherwise.

If the true probabilities q = (q1,…,qm)
⊤ are known then Equation 21 will yield the expected score of the

quadratic rule

SQS(p, q) =∑
m

j=1
qjSQS(p, j) = ∑

m

j=1
qj(2pj − ∑

m

k=1
p2j )

= 2∑
m

j=1
pjqj − ∑

m

j=1
qj ∑

m

k=1
p2k

= 2∑
m

j=1
pjqj − ∑

m

k=1
p2k

(D4)

and we can confirm the divergence function of the QS in Table 2 and Equation D1

dQS(p,q) = SQS(q,q) − SQS( p,q)

= 2∑
m

j=1
qjqj − ∑

m

k=1
q2k − 2∑

m

j=1
pjqj +∑

m

k=1
p2k

= ∑
m

k=1
q2k +∑

m

k=1
p2k − 2∑

m

k=1
pkqk

= ∑
m

k=1
(pk − qk)

2
.

D2. Logarithmic Score

The LS of Good (1952) is a linear equivalent of the relative entropy or KL divergence (Lai et al., 2011) and also
known in the statistical literature as the predictive deviance (Knorr‐Held & Rainer, 2001) and ignorance score
(Roulston & Smith, 2002). The entropy function of the LSH(p) =∑

m
k=1pklogb ( pk) is equal to negative Shannon

entropy − H(P) with gradient function ∇H(p) = ( logb( p1) + 1,…,logb ( pm) + 1)⊤. The divergence function
dLS(p, q) of the LS may now be derived from Equation 18 to yield
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dLS (p,q) = H(q) − H( p) + ⟨∇H(p),p − q⟩

= ∑
m

k=1
qklogb(qk) − ∑

m

k=1
pklogb( pk) + ⟨( logb( p1) + 1,⋯,logb ( pm) + 1), ( p1 − q1,⋯,pm − qm)⟩

= ∑
m

k=1
qklogb(qk) − ∑

m

k=1
pklogb( pk) + ⟨logb( p),p⟩ + ⟨1m,p⟩ − ⟨logb (p),q⟩ − ⟨1m,q⟩

= ∑
m

k=1
qklogb(qk) − ∑

m

k=1
qklogb ( pk) +∑

m

k=1
pk − ∑

m

k=1
qk

= ∑
m

k=1
qk ( logb (qk) − logb ( pk))

= ∑
m

k=1
qklogb(

qk
pk
).

(D5)

According to Equation 20, the scoring rule of the LS is now equal to

SLS (p,j) = H( p) − ⟨∇H( p),p⟩ + ∇Hj (p)

= ∑
m

k=1
pklogb ( pk) − ⟨( logb ( p1) + 1,…,logb ( p1) + 1), ( p1,…,pm)⟩ + logb ( pj) + 1

= ∑
m

k=1
pklogb ( pk) − ∑

m

k=1
pklogb ( pk) − ∑

m

k=1
pk + logb ( pj) + 1

= logb ( pj).

(D6)

Thus the LS has negative Shannon entropy as its generalized entropy function and the reverse KL‐divergence,
dLS (p,q) =∑

m
k=1qklogb (qk/ pk), as its associated score divergence. Roulston and Smith (2002) provide an in-

formation‐theoretic perspective on the LS and advocate using the so‐called ignorance
score, SIS(p,j) = − logb ( pj).

With true probabilities, q = (q1,…,qm)
⊤, the expected score of the logarithmic rule becomes

SLS( p,q) = ∑
m

j=1
qjSLS (p,j) =∑

m

j=1
qjlogb ( pj). (D7)

Next, we verify the divergence score of the logarithmic rule in Equation D5 and Table 2

dLS (p,q) = SLS (q,q) − SLS (p,q)

= ∑
m

j=1
qjlogb(qj) − ∑

m

j=1
qjlogb ( pj)

= ∑
m

k=1
qklogb(

qk
pk
),

which, again, is equal to the relative entropy dKL(q, p) from P to Q.

D3. Pseudospherical Score

The entropy function of the pseudospherical score, H(p) = ‖p‖1η is equal to the Lη‐norm of the forecast proba-

bilities p = (p1,…,pm)
⊤
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‖p‖1η = (pη
1 +⋯ + pη

m)
1/η, (D8)

which for η = 2 reduces to the Euclidean norm,
̅̅̅̅̅̅̅̅
p⊤p
√

. The m × 1‐vector of partial derivatives ∇H(p) of the
pseudospherical score is now equal to

∇H( p) = (
pη− 11

‖ p‖η− 1η
,

pη− 1
2

‖ p‖η− 1η
,…,

pη− 1
m

‖ p‖η− 1η
)

⊤

, (D9)

where ‖p‖η− 1η = (∑
m
k=1p

η
k)
(η− 1)/η. The gradient vector of the pseudospherical score can be written as a scalar‐

vector product, ∇H(p) = ‖p‖1− ηη pη− 1. According to Equation 18 the score divergence dPSS(p, q) of the pseu-
dospherical score becomes

dPSS (p,q) = H(q) − H( p) + ⟨∇H(p),p − q⟩

= ‖q‖1η − ‖ p‖
1
η + ‖ p‖

1− η
η ⟨pη− 1,p − q⟩

= ‖q‖1η − ‖ p‖
1
η + ‖ p‖

1− η
η ⟨pη− 1,p⟩ − ‖ p‖1− ηη ⟨pη− 1,q⟩

= ‖q‖1η − ‖ p‖
1
η + ‖ p‖

1− η
η ‖ p‖

η
η − ‖ p‖

1− η
η ⟨pη− 1,q⟩

= ‖q‖1η − ‖ p‖
1− η
η ⟨pη− 1,q⟩,

(D10)

for p, q∈Pm and η > 1. Next, we yield the scoring rule SPSS(p, j) of the pseudospherical score

SPSS (p,j) = H(p) − ⟨∇H(p),p⟩ + ∇Hj(p)

= ‖ p‖1η − ‖p‖
1− η
η ⟨pη− 1,p⟩ + ‖p‖1− ηη pη− 1

j

= ‖ p‖1η − ‖p‖
1− η
η ‖ p‖

η
η + ‖ p‖

1− η
η pη− 1

j

= ‖ p‖1− ηη pη− 1
j .

(D11)

With true probabilities, q = (q1,…,qm)
⊤, we yield the expected pseudospherical score SPSS(p,q)

SPSS(p,q) = ∑
m

j=1
qjSPSS(p,j)

= ∑
m

j=1
qj‖p‖1− ηη pη− 1

j

= ‖p‖1− ηη ⟨pη− 1,q⟩,

(D12)

and we can confirm the divergence function of the pseudospherical score in Table 2 and Equation D10

dPSS (p,q) = SPSS(q,q) − SPSS (p,q)

= ‖q‖1− ηη ⟨qη− 1,q⟩ − ‖ p‖1− ηη ⟨pη− 1,q⟩

= ‖q‖1η − ‖ p‖
1− η
η ⟨pη− 1,q⟩.

For η = 2 the pseudospherical rule in Equation D12 reduces to the well known spherical scoring rule

SSS (p,q) = ‖p‖− 12 ⟨p,q⟩, (D13)
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with associated divergence function

dSS (p,q) = ‖q‖12 − ‖p‖
− 1
2 ⟨p,q⟩. (D14)

Appendix E: Rainfall Data
Table E1 is taken from Hughes and Topp (2015) and summarizes a data set of n = 346 forecasts of 24‐hr pre-
cipitation probability made by the Finnish Meteorological Institute during 2003 for the city of Tampere in south‐
central Finland. The left block presents the original data, and the right block lists the data used in our case study.

Forecast probabilities of rainfall pk; k = (1, …, m) were issued using m = 11 categories. The variable nk lists the
number of days for which the FinnishMeteorological Institute quoted pk. Then, ok, signifies the number of days on
which measured rainfall depths for the city of Tampere exceeded ≥0.2 mm, otherwise a no‐rain day was recorded.
Next, the ratio ok = ok/nk equals the true rainfall probability for each forecast category. Finally, nk /n corresponds
to the relative frequency of each forecast category. We refer readers to Hughes and Topp (2015) for a more
detailed description of the data set. The raw precipitation data can be found at https://www.cawcr.gov.au/projects/

Table E1
Rainfall Data From Table 1 of Hughes and Topp (2015) for the City of Tampere, Finland

a: Original data

k pk nk ok ok nk/n

1 0.05 46 1 0.0217 0.1329

2 0.1 55 1 0.0182 0.1590

3 0.2 59 5 0.0847 0.1705

4 0.3 41 5 0.1220 0.1185

5 0.4 19 4 0.2105 0.0549

6 0.5 22 8 0.3636 0.0636

7 0.6 22 6 0.2727 0.0636

8 0.7 34 16 0.4706 0.0983

9 0.8 24 16 0.6667 0.0694

10 0.9 11 8 0.7273 0.0318

11 0.95 13 11 0.8462 0.0376

Σ 346 81 1.0000

b: Adapted data

k pk qk

1 0.1727 0.1359

2 0.1636 0.1364

3 0.1455 0.1272

4 0.1273 0.1220

5 0.1091 0.1097

6 0.0909 0.0884

7 0.0727 0.1011

8 0.0545 0.0736

9 0.0364 0.0463

10 0.0182 0.0379

11 0.0091 0.0214

Σ 1.0000 1.0000
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verification/POP3/POP_3cat_2003.txt and was used by Hughes and Topp (2015) to provide a diagrammatic
interpretation of the Brier scoring rule and associated score divergences.

The right block tabulates the data that was used in our case study. The forecast probabilities of the individual
categories are normalized to sum to unity. This defines a m‐vector p = (p1,…,pm)

⊤ of rainfall probability

forecasts. We apply a similar normalization to the ok’s to yield the vector q = (q1,…,qm)
⊤ of true rainfall

probabilities. Table E2 reports the entropy, expected score and score divergence of the quadratic, logarithmic and
spherical scoring rules for the normalized probabilities of true and forecasted rainfall. The bottom row presents
the function values when the forecaster quotes the true rainfall probabilities, p = q.

This case study is intentionally presented to assist in testing, benchmarking and evaluating numerical imple-
mentations of the scoring rules in coding languages other than MATLAB.

Appendix F: The Lebesgue Measure
Scoring rules for density forecasts are defined up to a so‐called Lebesgue measure μ. Henri Lebesgue describes
this measure in his PhD dissertation together with the Lebesgue integral (Lebesgue, 1902). To explain the
Lebesgue measure, please consider Figure F1 which displays an example Lebesgue density of the standard normal
distribution. The Riemann integral partitions the domain of a function into a collection of small intervals and bars
are constructed to meet the height of the graph. Then in R2 the resulting rectangles make up the area under the
graph. The Lebesgue integral also uses rectangles, but these rectangles are formed by partitioning the function's
range (also called codomain) into different intervals. For each horizontal slice, a rectangle is drawn with height of
the corresponding function value and width equal to the length of all intervals on the real line R (e.g., sample
space) where the function reaches approximately this height. This horizontal slicing of the codomain leads to
much more complicated sets of x values, certainly for multivariate densities. Thus, the Lebesgue definition

Table E2
Entropy, H(p), Expectation, S( p, q) and Divergence, d(p, q) of the Strictly Proper Categorical Scoring Rules of Table 2 for the True and Forecasted Rainfall
Probabilities of Table E1

Fcst

Quadratic score Logarithmic score, b = 2 Spherical score

S(p,q) d(p, q) S(p,q) d(p, q) S(p,q) d(p, q)
H(p) Equation D4 Equation D1 H(p) Equation D7 Equation D5 H(p) Equation D13 Equation D14

p 0.124 0.103 0.0043 − 3.156 − 3.351 0.045 0.352 0.323 0.0052

q 0.108 0.108 0.0000 − 3.305 − 3.305 0.0000 0.328 0.328 0.0000

Figure F1. Illustration of the standard normal Lebesgue density on sample space Ω= [− 3, 3] with range (codomain) ofN(0,1) partitioned intom= 8 small intervals. We
use color coding to discern the intervals of x. The Lebesgue measure μ(xk) is equal to the length of each color coded interval containing xk. The Lebesgue density fX(x) is
constant in each interval x1, …, xm of x values. The sum of the areas of the rectangles is equal to the Lebesgue integral.
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extends integral calculation to a much broader class of functions. Now, the Lebesgue measure μ is equal to the
width of each slice, which, in turn, is the sum of the widths of all rectangles with the same height. For univariate
densities, we can divide each interval of x in non‐overlapping bins with Lebesgue measure the bin width. This
representation of the Lebesgue density is almost equal to a PMF with each bin made up of different points
(univariate case) or sets (bivariate case and higher).

Appendix G: Impropriety of Linear Scoring Rule
The linear score

SLinS(P, ω) = fP(ω), (G1)

may seem appealing but is improper as we will demonstrate next.

Suppose fP(ϵ) = 1
2ϵ and fQ (ϵ) = 1̅̅ ̅̅

2π
√ exp (− ϵ2/2) are Lebesgue densities of the uniform forecast distribution P and

standard normal true distribution Q on the closed interval [− ϵ, ϵ]. According to Equation 12, the expected score of
probabilistic forecasts P and Q under true distribution Q becomes

SLinS(P,Q) = ∫

ϵ

− ϵ
SLinS(P,ω)dQ(ω) SLinS(Q,Q) = ∫

∞

− ∞
SLinS(Q,ω)dQ(ω)

= ∫

ϵ

− ϵ

1
2ϵ

1
̅̅̅̅̅
2π
√ exp (− ω2

/2)dω = ∫

∞

− ∞
(

1
̅̅̅̅̅
2π
√ exp (− ω2

/2))
2

dω

=
1
2ϵ

1
̅̅̅̅̅
2π
√ ∫

ϵ

− ϵ
exp (− ω2

/2)dω =
1
2π
∫

∞

− ∞
exp (− ω2)dω

=
1
2ϵ

1
̅̅̅̅̅
2π
√

⃒
⃒
⃒
̅̅̅̅̅
2π
√

erf(ω/
̅̅̅
2
√

)

⃒
⃒
⃒
ϵ

0
=

1
2π

⃒
⃒
⃒
̅̅̅
π
√

erf(ω)
⃒
⃒
⃒
∞

0

=
1
2ϵ
erf(ϵ/

̅̅̅
2
√

) =
1

2
̅̅̅
π
√ ,

(G2)

and the score divergence dLinS(P, Q) is equal to

dLinS(P,Q) = SLinS(Q,Q) − SLinS(P,Q)

=
1

2
̅̅̅
π
√ −

1
2ϵ
erf(ϵ/

̅̅̅
2
√
).

(G3)

Figure G1 displays the divergence of the linear score as function of the Lebesgue measure 0 < ϵ ≤ 3. The score
divergence is negative for small values of ϵ and changes sign at the root, ϵ = 1.5634, of Equation G3. Thus, the
score divergence of SLinS(P, ω) = fP(ω) does not have a proper zero point. At this point distribution forecast
P = U [− 1.56,1.56] is certainly not equal to the standard normal true distribution Q. Thus, SLinS(P, ω) is an
improper scoring rule.
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Appendix H: Quantile Form of Continuous Ranked Probability Score
The CRPS of a distribution forecast P and verifying observationω ∈ Ω is equal to the integral of the quantile score
function (Laio & Tamea, 2007)

SCRPS(P, ω) =∫

1

0
SτQNT(P, ω) dτ, (H1)

and, thus, we yield

SCRPS (P,ω) = − 2∫
1

0
(1{ω< yτ} − τ)( yτ − ω)dτ. (H2)

If we work out the product under the integral sign we yield

SCRPS(P,ω) = 2∫
1

0
τ( yτ − ω)dτ − 2∫

1

0
1{ω< yτ}( yτ − ω)dτ

The τ ∈ [0, 1]‐quantile forecast of P is equal to yτ = F− 1P (τ) and, thus, the above expression equals

SCRPS(P, ω) = 2∫
1

0
τ(F− 1P (τ) − ω) dτ − 2∫

1

0
1{FP(ω)< τ} (F− 1P (τ) − ω) dτ

= 2∫
1

0
τF− 1P (τ) dτ − 2ω∫

1

0
τ dτ − 2∫

1

FP(ω)
(F− 1P (τ) − ω) dτ

= 2∫
1

0
τF− 1P (τ) dτ − 2ω∫

1

0
τ dτ − 2∫

1

FP(ω)
F− 1P (τ) dτ + 2ω∫

1

FP(ω)
dτ

= 2∫
1

0
τF− 1P (τ) dτ − 2ω[

1
2
τ2]

1

0
− 2∫

1

FP(ω)
F− 1P (τ) dτ + 2ω[τ]1FP(ω)

= 2∫
1

0
τF− 1P (τ) dτ − ω − 2∫

1

FP(ω)
F− 1P (τ) dτ + 2ω − 2ωFP(ω)

= 2∫
1

0
τF− 1P (τ) dτ + ω − 2∫

1

FP(ω)
F− 1P (τ) dτ − 2ωFP(ω),

(H3)

Figure G1. Score divergence dLinS(P, Q) of the linear scoring rule SLinS(P, ω) = fP(ω) for a uniform probabilistic forecast P
under a standard Gaussian true distribution Q and symmetric interval [− ϵ, ϵ] with ϵ ∈ (0, 3]. The horizontal green and blue
lines correspond to the Lebesgue measure μ(ϵi) or the length of the interval containing event ϵi.
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and finally, we yield

SCRPS(P, ω) = ω(1 − 2FP(ω)) + 2∫
1

0
τF− 1P (τ) dτ − 2∫

1

FP(ω)
F− 1P (τ) dτ. (H4)

This concludes the derivation.

Appendix I: Analytic Expressions for Continuous Ranked Probability Score
The continuous ranked probability score (CRPS) is given by

SCRPS(P, ω) = − ∫
∞

− ∞
(FP(z) − 1{z≥ω})2dz, (I1)

where FP(z) denotes the CDF of P and the indicator function, 1{a}, returns 1 if a is true and zero otherwise. In the
next sections, we derive closed‐form expressions of the CRPS for a univariate normal, P =N (μ,σ2), Pearson
type III, P = PIII(μ,σ2,ρ), and generalized extreme value, P = GEV(μ,σ2,ξ), distribution forecast and verifying
observation ω ∈ Ω. Some of the derivations in this Appendix were completed before turning my attention to the
quantile form of the CRPS in Equation H4. The use of this quantile form may have simplified analytic derivation
of some of the CRPS expressions presented below.

I1. Continuous Ranked Probability Score for N (μ,σ2)

If we make the convenient assumption that the probability measure is univariate normal, P =N (μ,σ2), then the
CDF of P has a closed‐form expression

FP(x,μ,σ2) =
1
2
[1 + erf(

x − μ
σ

̅̅̅
2
√ )], (I2)

where erf(x) is the error function for element x

erf(x) =
2
̅̅̅
π
√ ∫

x

0
exp (− t2) dt, (I3)

and the CRPS becomes

SCRPS (N (μ,σ2),ω) = − ∫
ω

− ∞
(
1
2
[1 + erf(

z − μ
σ

̅̅̅
2
√ )])

2

dz − ∫

∞

ω
(
1
2
[1 + erf(

z − μ
σ

̅̅̅
2
√ )] − 1)

2

dz. (I4)

We use the symbolic toolbox in MATLAB to yield closed‐form expressions for the two definite integrals in the
above expression. We first write out the left integral
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− ∫

ω

− ∞
(
1
2
[1 + erf(

z − μ
σ

̅̅̅
2
√ )])

2

dz = −

⃒
⃒
⃒
⃒
⃒

z
4
+
(μ − z)

2
erf(

μ − z
σ

̅̅̅
2
√ ) −

(μ − z)
4

erf(
μ − z
σ

̅̅̅
2
√ )

2

+
σ

2
̅̅̅
π
√ erf(

μ − z
σ

) +
σ
̅̅̅̅̅
2π
√ exp(−

(μ − z)2

2σ2
)

−
σ
̅̅̅̅̅
2π
√ exp(−

(μ − z)2

2σ2
)erf(

μ − z
σ

̅̅̅
2
√ )

⃒
⃒
⃒
⃒
⃒

ω

− ∞

=

⃒
⃒
⃒
⃒
⃒
−
z
4
−
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z, μ, σ)2 −
σ

2
̅̅̅
π
√ g(z, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ)

⃒
⃒
⃒
⃒
⃒

ω

− ∞

,

(I5)

where f (z,μ,σ) = erf(
̅̅̅
2
√
(μ − z)/ (2σ)), g(z, μ, σ) = erf((μ − z)/σ) and h(z,μ,σ) = exp (− (μ − z)2 ⁄ (2σ2)). We

follow a similar recipe for the right integral of Equation I4 to yield

− ∫

∞

ω
(
1
2
[1 + erf(

ω − μ
σ

̅̅̅
2
√ )] − 1)

2

dz = −

⃒
⃒
⃒
⃒
⃒

z
4
−
(μ − z)

2
erf(

μ − z
σ

̅̅̅
2
√ ) −

(μ − z)
4

erf(
μ − z
σ

̅̅̅
2
√ )

2

+
σ

2
̅̅̅
π
√ erf(

μ − z
σ

) −
σ
̅̅̅̅̅
2π
√ exp(−

(μ − z)2

2σ2
)

−
σ
̅̅̅̅̅
2π
√ exp(−

(μ − z)2

2σ2
)erf(

μ − z
σ

̅̅̅
2
√ )

⃒
⃒
⃒
⃒
⃒

∞

ω

=

⃒
⃒
⃒
⃒
⃒
−
z
4
+
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z,μ,σ)2 −
σ

2
̅̅̅
π
√ g(z, μ, σ)

+
σ
̅̅̅̅̅
2π
√ h(z,μ,σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ)

⃒
⃒
⃒
⃒
⃒

∞

ω

.

(I6)

Before admitting the integral bounds, we first perform limit analysis of the constituent functions

lim
z → − ∞

f (z, μ, σ) = lim
z → − ∞

erf(
μ − z
σ

̅̅̅
2
√ ) = 1

lim
z → ∞

f (z, μ, σ) = lim
z → ∞

erf(
μ − z
σ

̅̅̅
2
√ ) = − 1

lim
z → − ∞

g(z, μ, σ) = lim
z → − ∞

erf(
μ − z
σ

) = 1

lim
z → ∞

g(z, μ, σ) = lim
z → ∞

erf(
μ − z
σ

) = − 1

lim
z → − ∞

h(z, μ, σ) = lim
z → − ∞

exp(−
(μ − z)2

2σ2
) = 0

lim
z → ∞

h(z, μ, σ) = lim
z → ∞

exp(−
(μ − z)2

2σ2
) = 0.

(I7)

The left integral is now equal to
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− ∫

ω

− ∞
(
1
2
[1 + erf(

z − μ
σ

̅̅̅
2
√ )])

2

dz =

⃒
⃒
⃒
⃒
⃒
−
z
4
−
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z, μ, σ)2 −
σ

2
̅̅̅
π
√ g(z, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ)

⃒
⃒
⃒
⃒
⃒

ω

− ∞

= (−
ω
4
−
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2 −
σ

2
̅̅̅
π
√ g(ω, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

− lim
z → − ∞

(−
z
4
−
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z, μ, σ)2

−
σ

2
̅̅̅
π
√ g(z, μ, σ) −

σ
̅̅̅̅̅
2π
√ h(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ))

= (−
ω
4
−
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2 −
σ

2
̅̅̅
π
√ g(ω, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

− lim
z → − ∞

(−
z
4
−
(μ − z)

2
× 1 +

(μ − z)
4
× 12 −

σ
2

̅̅̅
π
√ × 1

−
σ
̅̅̅̅̅
2π
√ × 0 +

σ
̅̅̅̅̅
2π
√ × 0 × 1)

= (−
ω
4
−
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2 −
σ

2
̅̅̅
π
√ g(ω, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

− lim
z → − ∞

(−
z
4
+

z
2
−

μ
2
−

z
4
+

μ
4
−

σ
2

̅̅̅
π
√ )

= −
ω
4
−
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2 −
σ

2
̅̅̅
π
√ g(ω, μ, σ)

−
σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ) +

μ
4
+

σ
2

̅̅̅
π
√ ,

(I8)

and the right integral becomes
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− ∫

∞

ω
(
1
2
[1 + erf(

z − μ
σ

̅̅̅
2
√ )] − 1)

2

dz =

⃒
⃒
⃒
⃒
⃒
−
z
4
+
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z, μ, σ)2 −
σ

2
̅̅̅
π
√ g(z, μ, σ)

+
σ
̅̅̅̅̅
2π
√ h(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ)

⃒
⃒
⃒
⃒
⃒

∞

ω

= lim
z → ∞

(−
z
4
+
(μ − z)

2
f (z, μ, σ) +

(μ − z)
4

f (z, μ, σ)2

−
σ

2
̅̅̅
π
√ g(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ h(z, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (z, μ, σ)h(z, μ, σ))

− (−
ω
4
+
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2

−
σ

2
̅̅̅
π
√ g(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

= lim
z → ∞

(−
z
4
+
(μ − z)

2
× (− 1) +

(μ − z)
4
× (− 1)2 −

σ
2

̅̅̅
π
√ × (− 1)

+
σ
̅̅̅̅̅
2π
√ × 0 +

σ
̅̅̅̅̅
2π
√ × 0 × (− 1)) − (−

ω
4
+
(μ − ω)

2
f (ω, μ, σ)

+
(μ − ω)

4
f (ω, μ, σ)2 −

σ
2

̅̅̅
π
√ g(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ h(ω, μ, σ)

+
σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

= lim
z → ∞

(−
z
4
+

z
2
−

μ
2
−

z
4
+

μ
4
+

σ
2

̅̅̅
π
√ )

− (−
ω
4
+
(μ − ω)

2
f (ω, μ, σ) +

(μ − ω)
4

f (ω, μ, σ)2

−
σ

2
̅̅̅
π
√ g(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) +

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ))

= −
μ
4
+

σ
2

̅̅̅
π
√ +

ω
4
−
(μ − ω)

2
f (ω, μ, σ) −

(μ − ω)
4

f (ω, μ, σ)2

+
σ

2
̅̅̅
π
√ g(ω, μ, σ) −

σ
̅̅̅̅̅
2π
√ h(ω, μ, σ) −

σ
̅̅̅̅̅
2π
√ f (ω, μ, σ)h(ω, μ, σ).

(I9)

We can now add up Equations I8 and I9 to yield the CRPS of P =N (μ,σ2) in Equation I4
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SCRPS (N (μ,σ2),ω) = (−
ω
4
−
(μ − ω)

2
f (ω,μ,σ) +

(μ − ω)
4

f (ω,μ,σ)2 −
σ

2
̅̅̅
π
√ g(ω,μ,σ)

−
σ
̅̅̅̅̅
2π
√ h(ω,μ,σ) +

σ
̅̅̅̅̅
2π
√ f (ω,μ,σ)h(ω,μ,σ) +

μ
4
+

σ
2

̅̅̅
π
√ ) +

(−
μ
4
+

σ
2

̅̅̅
π
√ +

ω
4
−
(μ − ω)

2
f (ω,μ,σ) −

(μ − ω)
4

f (ω,μ,σ)2

+
σ

2
̅̅̅
π
√ g(ω,μ,σ) −

σ
̅̅̅̅̅
2π
√ h(ω,μ,σ) −

σ
̅̅̅̅̅
2π
√ f (ω,μ,σ)h(ω,μ,σ))

= −
2(μ − ω)

2
f (ω,μ,σ) −

2σ
̅̅̅̅̅
2π
√ h(ω,μ,σ) +

2σ
2

̅̅̅
π
√

= − (μ − ω)erf(
μ − ω
σ

̅̅̅
2
√ ) −

σ
̅̅̅
2
√

̅̅̅
π
√ exp(−

(μ − ω)2

2σ2
) +

σ
̅̅̅
π
√ .

(I10)

We can manipulate this expression into a function of the normal PDF, fN (x,μ,σ2), and normal CDF, FN (x,μ,σ2),
in Equation I2 as follows

SCRPS (N (μ,σ2),ω) = − (ω − μ)erf(
ω − μ
σ

̅̅̅
2
√ ) − 2σ2

1
σ

̅̅̅̅̅
2π
√ exp(−

(μ − ω)2

2σ2
) +

σ
̅̅̅
π
√

= − (ω − μ)[1 + erf(
ω − μ
σ

̅̅̅
2
√ )] + (ω − μ) − 2σ2fN (ω,μ,σ2) +

σ
̅̅̅
π
√

= − 2(ω − μ)
1
2
[1 + erf(

ω − μ
σ

̅̅̅
2
√ )] + (ω − μ) − 2σ2fN (ω,μ,σ2) +

σ
̅̅̅
π
√

= − 2(ω − μ)FN (ω,μ,σ2) + (ω − μ) − 2σ2fN (ω,μ,σ2) +
σ
̅̅̅
π
√ ,

(I11)

which may be rearranged and simplified to

SCRPS (N (μ,σ2),ω) =
σ
̅̅̅
π
√ − 2σ2fN (ω,μ,σ2) − (ω − μ)(2FN (ω,μ,σ2) − 1). (I12)

Note that the quantile form of the CRPS in Equation 34 would lead to an equivalent solution as above but in fewer
steps. This concludes the derivation of the CRPS for a normal distribution forecast P =N (μ,σ2) and verifying
observation ω ∈ Ω.

I2. Continuous Ranked Probability Score for PIII (μ,σ2,ρ)

The CRPS is equal to the integral of the quantile scores

SCRPS(P, ω) = − ∫
∞

− ∞
Sτ(FP(z) − 1{z≥ω})2dz, (I13)

where FP(z) denotes the CDF of P and the indicator function, 1{a}, returns 1 if a is true and zero otherwise.
Suppose that the distribution forecast P follows a univariate Pearson type III distribution PIII(μ,σ2,ρ) with mean
μ, variance σ2 and skewness ρ. If we reparametrize the PIII distribution and define ξ = μ − 2σ/ρ, a = 4/ρ2 and
b = 1

2σ|ρ| as location, shape and scale parameters, respectively, then the CDF of P = PIII(ξ, a, b) simplifies to
(Tegos et al., 2022)
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FP(x, ξ, a, b) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ(a)

γ(a,b− 1(x − ξ)) if ρ> 0

1
Γ(a)

Γ(a,b− 1(ξ − x)) if ρ< 0
(I14)

where x, ξ, a, b∈R, a > 0, b > 0 and

Γ(a, q) =∫

∞

q
ta− 1 exp(− t) dt (I15)

and

γ(a, q) =∫

q

0
ta− 1 exp(− t) dt (I16)

denote the upper and lower incomplete gamma functions, respectively. If ρ > 0 then x ∈ (ξ, ∞) and if ρ < 0 then
x ∈ (− ∞, ξ). Next, we derive an analytic expression for the CRPS of P = PIII(ξ, a, b) and verifying observa-
tion ω ∈ Ω.

I2.1. Analytic Expression for SCRPS(PIII(ξ, a, b), ω)ρ > 0: Positive Skewness

Let us first assume that ρ > 0 and, thus, x ∈ [ξ, ∞). In our derivation we work with z= x − ξ and, thus, z ∈ [0, ∞).
This change of variables simplifies an analytic solution of the CRPS as we will demonstrate next. Equation I13 is
now equal to

SCRPS(PIII(ξ,a,b),ω)ρ> 0 = − ∫
zω

0
[

1
Γ(a)

γ(a,b− 1z)]
2

dz − ∫

∞

zω
[

1
Γ(a)

γ(a,b− 1z) − 1]
2

dz, (I17)

where zω = ω − ξ. We first derive an expression for the left integral using integration by parts

∫ udv = uv − ∫ vdu, (I18)

with u = γ2(a, b− 1z) and dv = 1dz. Then

du =
2
z
exp (− b− 1z)(b− 1z)aγ(a,b− 1z) (I19)

and v = z to yield

−
1

Γ2(a)
∫ γ2(a,b− 1z)dz = −

1
Γ2(a)

(zγ2(a,b− 1z) − ∫ z
2
z
exp (− b− 1z)(b− 1z)aγ(a,b− 1z))

= −
1

Γ2(a)
(zγ2(a,b− 1z) − 2∫ exp (− b− 1z)(b− 1z)aγ(a,b− 1z)).

(I20)

The online calculator of Wolfram|Alpha (Wolfram Research, 2024) returns a closed‐form expression for the
indefinite integral
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∫ exp (− b− 1z)(b− 1z)aγ(a,b− 1z)dz = ∫ exp (− b− 1z)(b− 1z)a (Γ(a) − Γ(a,b− 1z)) dz

= bexp (− b− 1z)(b− 1z)aΓ(a,b− 1z) +
1
2
abΓ2(a,b− 1z)

− 4− abΓ(2a,2b− 1z) − bΓ(a)Γ(a + 1,b− 1z) + C.

(I21)

If we substitute Equation I21 into Equation I20

−
1

Γ2(a)
∫ γ2(a,z)dz =−

1
Γ2(a)

(zγ2 (a,b− 1z) − 2(bexp (− b− 1z)(b− 1z)aΓ(a,b− 1z) +
1
2
abΓ2(a,b− 1z)

− 4− abΓ(2a,2b− 1z) − bΓ(a)Γ(a + 1,b− 1z))) + C,

(I22)

and admit the integral limits

−
1

Γ2(a)
∫

zω

0
γ2(a,b− 1z)dz = −

1
Γ2(a)

⃒
⃒zγ2(a,b− 1z) − 2(bexp (− b− 1z)(b− 1z)aΓ(a,b− 1z)

+
1
2
abΓ2(a,b− 1z) − 4− abΓ(2a,2b− 1z) − bΓ(a)Γ(a + 1,b− 1z))

⃒
⃒
⃒
⃒

zω

0
,

(I23)

then we yield the following expression for the left integral of Equation I17

−
1

Γ2(a)
∫

zω

0
γ2(a,b− 1z)dz = −

1
Γ2(a)

( zωγ2(a,b− 1zω) − 2(bexp (− b− 1zω)(b− 1zω)
aΓ(a,b− 1zω)

+
1
2
abΓ2(a,b− 1zω) − 4− abΓ(2a,2b− 1zω) − bΓ(a)Γ(a + 1,b− 1zω)))

+
1

Γ2(a)
(− 2(

1
2
abΓ2(a) − 4− abΓ(2a) − bΓ(a)Γ(a + 1)))

= −
1

Γ2(a)
( zωγ2(a,b− 1zω) − 2(bexp (− b− 1zω)(b− 1zω)aΓ(a,b− 1zω)

+
1
2
abΓ2(a,b− 1zω) − 4− abΓ(2a,2b− 1zω) − bΓ(a)Γ(a + 1,b− 1zω)))

+
2

Γ2(a)
(4− abΓ(2a) + bΓ(a)Γ(a + 1)) − ab.

(I24)

Next, we proceed with the right integral of Equation I17

− ∫

∞

zω
[

1
Γ(a)

γ(a,b− 1z) − 1]
2

dz = − ∫
∞

zω
(

1
Γ2(a)

γ2(a,b− 1z) −
2

Γ(a)
γ(a,b− 1z) + 1) dz

= −
1

Γ2(a)
∫

∞

zω
γ2(a,b− 1z)dz +

2
Γ(a)

∫

∞

zω
γ(a,b− 1z)dz − ∫

∞

zω
dz.

(I25)

The first of three integrals is equal to Equation I22, and the other two integrals yield

2
Γ(a)

∫

∞

zω
γ(a,b− 1z)dz − ∫

∞

zω
dz =

⃒
⃒
⃒
⃒

2
Γ(a)

( zΓ(a) − zΓ(a,b− 1z) + bΓ(a + 1,b− 1z)) − z
⃒
⃒
⃒
⃒

∞

zω

=

⃒
⃒
⃒
⃒z −

2
Γ(a)

( zΓ(a,b− 1z) − bΓ(a + 1,b− 1z))
⃒
⃒
⃒
⃒

∞

zω
.

(I26)

Water Resources Research 10.1029/2023WR036710

VRUGT 62 of 80



Thus, Equation I25 becomes

(I27)

The sum of Equations I24 and I27 equals SCRPS(PIII(ξ, a, b), ω)ρ> 0, whence we can write

Water Resources Research 10.1029/2023WR036710

VRUGT 63 of 80



SCRPS(PIII (ξ,a,b),ω)ρ> 0 = −
1

Γ2(a)
( zωγ2(a,b− 1zω) − 2(bexp (− b− 1zω)(b− 1zω)

aΓ(a,b− 1zω)

+
1
2
abΓ2(a,b− 1zω) − 4− abΓ(2a,2b− 1zω) − bΓ(a)Γ(a + 1,b− 1zω)))

+
2

Γ2(a)
(4− abΓ(2a) + bΓ(a)Γ(a + 1)) − ab

+
1

Γ2(a)
(zωγ2(a,b− 1zω) − 2(bexp (− b− 1zω)(b− 1zω)

aΓ(a,b− 1zω)

+
1
2
abΓ2(a,b− 1zω) − 4− abΓ(2a,2b− 1zω) − bΓ(a)Γ(a + 1,b− 1zω))

− zωΓ2(a) + 2Γ(a)( zωΓ(a,b− 1zω) − bΓ(a + 1,b− 1zω)))

=
2

Γ2(a)
(4− abΓ(2a) + bΓ(a)Γ(a + 1)) − ab −

1
Γ2(a)

( zωΓ2(a)

− 2Γ(a)( zωΓ(a,b− 1zω) − bΓ(a + 1,b− 1zω)))

= 2
4− abΓ(2a)

Γ2(a)
+ 2b

Γ(a + 1)
Γ(a)

− ab − zω + 2
zωΓ(a,b− 1zω)

Γ(a)

− 2b
Γ(a + 1,b− 1zω)

Γ(a)

= 2
4− ab
B(a,a)

+ ab − zω + 2zω (1 − FG(zω,a,b))

− 2ab(1 − FG (zω,a + 1,b)),

(I28)

where B(u, v) = Γ(u)Γ(v)/Γ(u + v) is the beta function of the first kind and FG (z, a, b) is the CDF of the gamma
distribution

FG(z,a,b) =
1

Γ(a)
γ(a,b− 1z), (I29)

with z > 0, unitless shape parameter a > 0 and scale parameter b > 0. We can rearrange Equation I28 to yield a
final expression for the CRPS of a PIII distribution forecast P = PIII(ξ, a, b) with positive skewness, ρ > 0 and
zω = ω − ξ

SCRPS(PIII (ξ,a,b),ω)ρ> 0 = 2
4− ab
B(a,a)

+ ab(2FG(zω,a + 1,b) − 1) + zω (1 − 2FG(zω,a,b)). (I30)

I2.2. Analytic Expression for SCRPS(PIII(ξ, a, b), ω)ρ < 0: Negative Skewness

Let us now assume that ρ < 0 and, thus, x ∈ (− ∞, ξ]. We define z = ξ − x and, thus, z ∈ [0, ∞). Equation I13
becomes

SCRPS(PIII(ξ,a,b),ω)ρ< 0 = − ∫
zω

0
[

1
Γ(a)

Γ(a,b− 1z)]
2

dz − ∫

∞

zω
[

1
Γ(a)

Γ(a,b− 1z) − 1]
2

dz. (I31)

We take advantage of the following identity

γ(a,b− 1z) + Γ(a,b− 1z) = Γ(a), (I32)

to write Equation I31 in another form
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SCRPS(PIII(ξ,a,b),ω)ρ< 0 = − ∫
zω

0
[

1
Γ(a)

(Γ(a) − γ(a,b− 1z))]
2

dz

− ∫

∞

zω
[

1
Γ(a)

(Γ(a) − γ(a,b− 1z)) − 1]
2

dz

= − ∫

zω

0
[

1
Γ(a)

γ(a,b− 1z) − 1]
2

dz − ∫

∞

zω
[

1
Γ(a)

γ(a,b− 1z)]
2

dz,

(I33)

which is identical to Equation I17 but with left and right integrals swapped. This confirms that

SCRPS(PIII(ξ, a, b), ω)ρ< 0 = SCRPS(PIII(ξ, a, b), ω)ρ> 0, (I34)

and, thus, we yield the following expression for the CRPS of a PIII distribution forecast P = PIII (ξ,a,b)with ρ ≠ 0
and zω = ξ − ω

SCRPS(PIII(ξ,a,b),ω)ρ< 0 = 2
4− ab
B(a,a)

+ ab(2FG(zω,a + 1,b) − 1) + zω (1 − 2FG (zω,a,b)), (I35)

I2.3. Analytic Expression for SCRPS (PIII(ξ, a, b), ω) : Positive/Negative Skewness

We can combine the mathematical expressions of SCRPS(PIII(ξ, a, b), ω)ρ> 0 and SCRPS(PIII(ξ, a, b), ω)ρ< 0 into
one general Equation for the CRPS of P = PIII(ξ, a, b) and verifying observation ω ∈ Ω

SCRPS (PIII(ξ, a, b),ω) = 2
4− ab

B(a, a)
− ab + |ω − ξ| + 2abFG(|ω − ξ|, a + 1, b)

− 2|ω − ξ|FG(|ω − ξ|, a, b),
(I36)

where zω = |ω − ξ|. The first term in the above expression is equal to the first term, 12EP [| y − y∗|] , of Equation 36
and the sum of all the remaining terms of Equation I36 equals − EP [| y − ω|] .

We would be remiss not to address two well‐known limiting cases of the PIII distribution. For ξ= 0, thus, μ= 2σ/
ρ, the PIII distribution PIII(ξ, a, b) reduces to the gamma distribution G(a, b) and Equation I36 simplifies to

SCRPS (G(a, b), ω) = 2
4− ab

B(a, a)
− ab + |ω| + 2abFG(|ω|, a + 1,b) − 2|ω|FG(|ω|, a, b). (I37)

This expression for the CRPS of P = G(a, b) matches the numerical estimates of the CRPS shown in Figure 6
using the solid yellow line. If ρ = 0, then the PIII distribution PIII (μ,σ2,0) simplifies to a normal distribution
N (μ,σ2) and the CRPS can be computed using Equation I12. This concludes the derivation of the CRPS for a
Pearson type III distribution forecast P = PIII(μ,σ2,ρ) and verifying observation ω ∈ Ω.

I3. Continuous Ranked Probability Score for GEV(μ,σ2,ξ)

We revisit the quantile form of the CRPS

SCRPS(P, ω) = ω(1 − 2FP(ω)) + 2∫
1

0
τF− 1P (τ) dτ − 2∫

1

FP(ω)
F− 1P (τ) dτ. (I38)

Suppose that the distribution forecast P follows a generalized extreme value distribution GEV(μ,σ2,ξ) with mean
μ∈R, variance σ2 > 0 and shape parameter ξ∈R. Appendix A of Friederichs and Thorarinsdottir (2012) derives a
closed‐from expression for SCRPS (GEV(μ,σ2,ξ),ω) . We present our own analytic derivation for the CRPS of
P = GEV(μ,σ2,ξ) and verifying observation ω ∈ Ω.
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The CDF of the GEV distribution equals

FGEV (x,μ,σ2,ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp[− exp(−
ξ
σ
(x − μ))] if ξ = 0

exp[− (1 +
ξ
σ
(x − μ))

− 1⁄ ξ

] if ξ< 0 and x< −
1
ξ

1 if ξ< 0 and x≥ −
1
ξ

0 if ξ> 0 and x≤ −
1
ξ

exp[− (1 +
ξ
σ
(x − μ))

− 1⁄ ξ

] if ξ> 0 and x> −
1
ξ
,

(I39)

and its quantile function has the following explicit expression

F− 1GEV (x,μ,σ
2,ξ) =

⎧⎪⎨

⎪⎩

μ − σloge (− loge (τ)) if ξ = 0 and τ ∈ (0,1)

μ +
σ
ξ
((− loge (τ))

− ξ
− 1) if ξ ≠ 0,

(I40)

where τ ∈ [0, 1) if ξ > 0 and τ ∈ (0, 1] if ξ < 0. Next, we derive an analytic expression for the CRPS of
P = GEV(μ,σ2,ξ) and verifying observation ω ∈ Ω. For ξ ≥ 1 the CRPS of P = GEV(μ,σ2,ξ) is undefined. We
must separately consider the cases ξ < 1 and ξ = 0.

I3.1. Analytic Expression for SCRPS(GEV(μ,σ2,ξ),ω)ξ < 1, ξ≠0

We first consider the case of a non‐zero shape parameter, ξ ≠ 0, of the GEV distribution. The indefinite form of
the first integral of the CRPS in Equation I38 can be expressed analytically using integration by parts

∫ τF− 1P (τ) dτ =
τ
ξ
(μξτ + σΓ(1 − ξ, − loge(τ)) − στ) + C

− ∫
1
ξ
(μξτ + σΓ(1 − ξ, − loge(τ)) − στ) dτ

=
τ
ξ
(μξτ + σΓ(1 − ξ, − loge(τ)) − στ)

−
1
2ξ
[τ(μτξ + 2σΓ(1 − ξ, − loge(τ)) − στ) − 2ξσΓ(1 − ξ, − 2loge(τ))] + C,

(I41)

where

Γ(a,q) =∫

∞

q
ta− 1 exp(− t) dt (I42)

denotes the upper incomplete gamma function. If we now admit the lower and upper limits of the quantiles, we
yield
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∫

1

0
τF− 1P (τ) dτ = [

τ
ξ
(μξτ + σΓ(1 − ξ, − loge(τ)) − στ)

−
1
2ξ
[τ(μτξ + 2σΓ(1 − ξ, − loge(τ)) − στ) − 2ξσΓ(1 − ξ, − 2loge(τ))] + C]

1

0

= (μ +
σ
ξ
Γ(1 − ξ) −

σ
ξ
−

μ
2
−

σ
ξ
Γ(1 − ξ) +

σ
2ξ
+
2ξσΓ(1 − ξ)

2ξ
) − (0)

=
μ
2
+

σ
2ξ
(2ξΓ(1 − ξ) − 1).

(I43)

The second or right integral of the CRPS in Equation I38 results in

∫

1

FP(ω)
F− 1P (τ)dτ = [

1
ξ
(μξτ + σΓ(1 − ξ, − loge (τ)) − στ) + C]

1

FP(ω)

= (μ +
σ
ξ
Γ(1 − ξ) −

σ
ξ
) − (μFGEV (ω,μ,σ2,ξ)

+
σ
ξ
Γ(1 − ξ, − loge (FGEV (ω,μ,σ2,ξ))) −

σ
ξ
FGEV (ω,μ,σ2,ξ))

= μ − μFGEV (ω,μ,σ2,ξ) +
σ
ξ
[Γ(1 − ξ) + FGEV (ω,μ,σ2,ξ)

− Γ(1 − ξ, − loge (FGEV (ω,μ,σ2,ξ))) − 1]

(I44)

Next, we can insert the analytic expressions of the two integrals into Equation I38

SCRPS(GEV(μ,σ2,ξ),ω)ξ< 1, ξ≠0 = ω(1 − 2FGEV (ω,μ,σ2,ξ)) + μ +
σ
ξ
(2ξΓ(1 − ξ) − 1)

− 2μ + 2μFGEV (ω,μ,σ2,ξ) −
2σ
ξ
[Γ(1 − ξ) + FGEV (ω,μ,σ2,ξ)

− Γ(1 − ξ, − loge (FGEV (ω,μ,σ2,ξ))) − 1].

The above expression may be rearranged and rewritten to yield

SCRPS(GEV(μ,σ2,ξ),ω)ξ< 1, ξ≠0 = (μ − ω)(2FGEV (ω,μ,σ2,ξ) − 1) +
σ
ξ
(1 − (2 − 2ξ)Γ(1 − ξ))

+
2σ
ξ
[Γ(1 − ξ, − loge (FGEV (ω,μ,σ2,ξ)))

− FGEV (ω,μ,σ2,ξ)].

(I45)

I3.2. Analytic Expression for SCRPS (GEV(μ,σ2,0),ω)

Next, we consider ξ = 0. We use integration by parts

∫ udv = uv − ∫ vdu, (I46)

and yield the following expression for the first of two integrals of Equation I38
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∫ τF− 1P (τ) dτ =
1
2
μτ2 −

1
2
στ2loge (− loge(τ)) + C − ∫ −

στ2

2τloge(τ)
dτ

=
1
2
μτ2 −

1
2
στ2loge (− loge(τ)) + C +

1
2
σ∫

τ
loge(τ)

dτ

=
1
2
μτ2 −

1
2
στ2loge (− loge(τ)) +

1
2
σEi(2loge(τ)) + C,

(I47)

where Ei(x) is the exponential integral function. If we admit the integral limits, we yield

∫

1

0
τF− 1P (τ) dτ = [

1
2
μτ2 −

1
2
στ2loge (− loge(τ)) +

1
2
σEi(2loge(τ)) + C]

1

0

=
1
2
μ −

1
2
σ lim
τ → 1−

( τ2loge (− loge(τ)) − Ei(2loge(τ)))

=
1
2
μ +

1
2
σ( γc + loge(2)),

(I48)

where γc = 0.57721566… is the Euler‐Mascheroni constant. The right integral of Equation I38 becomes

∫

1

FP(ω)
F− 1P (τ)dτ = [μτ + σLi(τ) − στloge (− loge (τ))]

1
FP(ω)

= (μ + lim
τ→1−

(σLi(τ) − στloge (− loge (τ))))

− (μFGEV (ω,μ,σ2,0) + σLi(FGEV (ω,μ,σ2,0))

− σFGEV (ω,μ,σ2,0)loge (− loge (FGEV (ω,μ,σ2,0))))

= μ + γcσ − μFGEV (ω,μ,σ2,0) − σLi(FGEV (ω,μ,σ2,0))

+ σFGEV (ω,μ,σ2,0)loge (− loge (FGEV (ω,μ,σ2,0))).

(I49)

where Li(x) signifies the logarithmic integral function. If we substitute Equations I48 and I49 into Equation I38,
we yield the following expression for the CRPS of P = GEV(μ,σ2,0)

SCRPS (GEV(μ,σ2,0),ω) = ω(1 − 2FGEV (ω,μ,σ2,0)) + μ + σ( γc + loge (2)) − 2μ

− 2γcσ + 2μFGEV (ω,μ,σ2,0) + 2σLi(FGEV (ω,μ,σ2,0))

− 2σFGEV (ω,μ,σ2,0)loge (− loge (FGEV (ω,μ,σ2,0)))

= ω(1 − 2FGEV (ω,μ,σ2,0)) − μ − γcσ + σloge (2)

+ 2μFGEV (ω,μ,σ2,0) + 2σLi(FGEV (ω,μ,σ2,0))

− 2σFGEV (ω,μ,σ2,0)loge (− loge (FGEV (ω,μ,σ2,0)))

= ω − μ − γcσ + σloge (2) + 2σLi(FGEV (ω,μ,σ2,0))

− 2[ω − μ + σloge (− loge (FGEV (ω,μ,σ2,0)))]FGEV (ω,μ,σ2,0).

(I50)

Per the quantile function in Equation I40, we find that

− μ + σloge (− loge (FGEV (ω,μ,σ2,0))) = − ω, (I51)

and, thus, the CRPS of P = GEV(μ,σ2,0) simplifies to
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SCRPS (GEV(μ,σ2,0),ω) = ω − μ − γcσ + σloge (2) + 2σLi(FGEV (ω,μ,σ2,0)). (I52)

This concludes the derivation of the CRPS for a generalized extreme value distribution forecast P = GEV(μ,σ2,ξ)
and verifying observation ω ∈ Ω.

Appendix J: BMA Model Training and Evaluation
If we assume that the models' forecast errors are independent, then the d‐vector θ = (β,ψ) of weights β and shape
parameters ψ of the conditional PDFs of Table 7 can be determined from maximization of the BMA log‐
likelihood function, ℓ(β,ψ

⃒
⃒ω) =∑

n
t=1log( fPt(ωt|β,ψ)) , using MCMC simulation with the DREAM algorithm

(Vrugt et al., 2008) and weights constrained to the probability simplex. Although the model ensemble does not
satisfy the independence assumption, this should not affect much the estimates of the weights β and shape pa-
rameters ψ, because we are estimating the conditional distribution for a scalar observation given K forecasts,
rather than for several observations simultaneously (Raftery et al., 2005).

The variance of the BMA forecast density fPt
( y
⃒
⃒β,ψ) in Equation 43 is equal to

σ2Pt
=∑

K

k=1
βk (σ2k + y2kt) − μ2Pt

(J1)

where ykt and σ2k denote the mean and variance of the fk(y|ykt, ψk)'s at time t. As each conditional PDF of Table 7
has an analytic or closed‐form solution for its variance, σ2k ; k = (1, …, K), the coefficient of variation of the
BMA distribution forecast is exactly defined at each time t; Cv,t = σPt

/μPt
. Lower and upper endpoints of the

γ = 100(1 − α)% prediction interval of the BMA mixture density can be derived from the CDF

FPt
( y|β,ψ) =∑

K

k=1
βk Fk ( y| ykt ,ψk), (J2)

so that FPt(lt|β, ψ) = α/2 and FPt
(ut|β,ψ) = 1 − α/2. At each time t, we solve for the lower and upper predictive

quantiles at different α values using an iterative root finding procedure. If we evaluate the CDF in Equation J2 at
each verifying observation and sort the resulting values in ascending order, then the reliability Rl of the BMA
forecast distribution is easily computed using Equation 11. We use the MODELAVG toolbox of Vrugt (2018) in
MATLAB to determine maximum likelihood values of the BMA model parameters for the conditional PDFs of
Table 7 along with performance metrics, scoring rules and discharge prediction intervals of the BMA forecast
density.

We use different metrics to evaluate the performance of the BMA model. This includes the log‐likelihood

ℓ(β,ψ|ω) =∑
n

t=1
{loge(∑

K

k=1
βk fk (ωt| ykt,ψk))}, (J3)

of the maximum likelihood weights β̂ and shape parameters ψ̂ and the RMSE

sRMSE(μP,ω) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

t=1
(ωt − μPt

)
2

√

, (J4)

Nash and Sutcliffe (1970) efficiency

sNSE (μP,ω) = 1 −
∑n

t=1(ωt − μPt
)
2

∑n
t=1(ωt − mω)

2 , (J5)

Water Resources Research 10.1029/2023WR036710

VRUGT 69 of 80



and KG efficiency (Gupta et al., 2009)

sKGE (μP,ω) = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a − 1)2 + (b − 1)2 + (r − 1)2
√

, (J6)

of the weighted‐average BMA forecast μP = (μP1 ,…,μPn
)

⊤ of Equation 44 using the maximum likelihood
weights, where a = mμP

/mω and b = sμP
/ sω are the unitless ratios of the sample means and sample standard

deviations, respectively, and r is the sample Pearson correlation coefficient of the n‐data
pairs, (ωt,μPt

); t = (1,…,n).

Appendix K: Description of SAC‐SMA Model
The Sacramento Soil Moisture Accounting (SAC‐SMA) model of Burnash et al. (1973) is used by the National
Weather Service River Forecast System for flood forecasting throughout the United States. The model converts
areal average precipitation into streamflow. Our model implementation in MATLAB and C++ follows Clark
et al. (2008) and is presented in Figure K1. A mass‐conservative second‐order integration method with adaptive
time stepping solves the state variables, ut, uf, lt, lfp, lfs, r1, r2, r3, and fluxes, qxx, of the control volumes using daily
time series of areal average rainfall (p1,…,pn)

⊤ and potential evapotranspiration (ep1,…,epn)⊤ and values of the
model parameters listed in Table K1. A 1‐year spin‐up period eliminates the impact of state variable initialization.

Figure K1. Schematic illustration of the SAC‐SMA model after Burnash et al. (1973) and Clark et al. (2008). Gray boxes labeled in red correspond to fictitious
control volumes which govern the rainfall‐runoff transformation. The model has eight state variables, including the free water storages of the upper soil layer,
uf, and primary, lfp, and secondary, lfs, base flow reservoirs, the tension water storages of the upper, ut, and lower, lt, soil layers and the water levels, r1, r2,
and r3, of the three routing reservoirs. Arrows portray fluxes in and out of the compartments, including precipitation, pt, evaporation from the upper soil layer,
e1, overflow from tension storage in upper soil layer, qut, surface runoff, qsx, overflow from free storage in upper soil layer, quf, interflow, qif, percolation from
upper to lower layer, qul, evaporation from lower soil layer, e2, overflow from tension storage in lower soil layer, qlt, flow into primary and supplemental
storage, qpr, overflow from primary qlfp and secondary qlfs base flow storage in the lower soil layer and base flow from primary qbp and secondary qbs
reservoirs. These fluxes are computed as follows, e1 = ep(ut/ut,max), qsx = ac,max(ut/ut,max)pt, qut = (pt − qsx)f(ut, ut,max), qul = q0dlz(uf /uf,max),
quf = qut f(uf, uf,max), qif = ki(uf /uf,max), e2 = (ep − e1)(lt/lt,max), qlt = κqul f(lt, lt,max), qpr = 1

2 (1 − κ)qul + 1
2qlt, qlfp = qprf(lfp, lfp,max),

qlfs = qpr f(lfs, lfs,max), qbp = νplfp, qbs = νslfs, where ep is the potential evapotranspiration, q0 = νplfp,max + νslfs,max, dlz = 1 + α[( lt + lfp + lfs)/ ( lt,max + lfp,max + lfs,max)]
ψ ,

the smoothing function f (x1,x2) = {1 + exp[(x2 − ϵρx2 − x1)/(ρx2)]}− 1 with ϵ = 5 and ρ = 10− 2, and uf,max, ut,max, lfp,max, lfs,max, lt,max, α, ψ, ki, κ, νp, νs, and ac,max are
unknown parameters. Channel inflow qch= qsx+ quf+ qif+ qlfp+ qbp+ qlfs+ qbs is routed through three linear reservoirs with common recession constant kf and yields the
streamflow qt = kfr3 at the watershed outlet.
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Appendix L: The Interval Score
We perform a simple numerical experiment to demonstrate that Sα

IS(P,ω) is a proper scoring rule. We draw at
random n = 104 observations, ω1, …, ωn, from a standard normal distribution. From tabulated critical values, we
expect that about 95% of these observations lie in the interval − 1.96 < ω < 1.96. Thus, if we fix α = 0.05 in
Equation 60 then l= − 1.96 and u= 1.96 should maximize the expected value of Sα

IS(P,ω). We verify this assertion
in Figure L1 and plot the mean value of the interval score as function of the lower endpoint l ∈ [− 5, − 0.1] using
u= 1.96 and α= 0.05 (red), α= 0.25 (blue) and α= 0.50 (green). The colored lines display a strong dependency of
the mean interval score SαIS(P,ω) on the choice of the lower endpoint l = F− 1P (α/2). The interval score achieves its
largest value, on average, when the forecaster quotes the true lower endpoints, l= − 1.96, l= − 1.15, and l= − 0.67
of the 100(1 − α)% prediction intervals of ω ∼N(0,1) at significance levels α = 0.05, α = 0.25, and α = 0.50,
respectively. This encourages the forecaster to be honest and volunteer his or her true beliefs.

Table K1
SAC‐SMA Model Parameters and Their Symbols, Units, Lower, and Upper Bounds

Symbol Description Units Min. Max.

ut,max Upper zone tension water maximum storage mm 50 500

uf,max Upper zone free water maximum storage mm 10 500

lt,max Lower zone tension water maximum storage mm 10 500

lfp,max Lower zone free water primary maximum storage mm 10 1,000

lfs,max Lower zone free water supplemental maximum storage mm 10 1,000

α Percolation multiplier for the lower layer – 1 250

ψ Percolation exponent for the lower layer – 1 5

ki Upper zone free water lateral depletion rate (interflow rate) mm d− 1 10–2 100

κ Fraction of percolation to tension storage in the lower layer – 0.05 0.95

νp Base flow depletion rate for primary reservoir d− 1 10–3 0.25

νs Base flow depletion rate for secondary reservoir d− 1 10–3 0.25

ac,max Maximum fraction of saturated area – 0.05 0.95

kf Recession constant of routing reservoirs d− 1 10–1 5

Figure L1. Traces of the expected value of the interval score Sα
IS(P,ω) as function of the lower endpoint l of the 100(1 − α)%

prediction interval using α = 0.05 (red), α = 0.25 (blue) and α = 0.50 (green). The colored dots are a projection of the
maximum interval score on the x‐axis.
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Appendix M: Decomposition of Scoring Rules
M1. Decomposition of Conditional Expectation of Quadratic Score

Let Ω = {1, 0} be the sample space of a binary event of rain or no rain. Let the quoted probability p = p(D) of
rain be a function of the data D available to the forecaster up to a certain lead time, where p ∈ [0, 1]. Once we
observe ω ∈ Ω, we can assign a score S( p,ω): P2 ×Ω → R to the prediction. Thus, ω takes on values of 0 (no
rain) and 1 (rain).

Suppose we use the Brier or QS, SQS( p,ω) = − ∑
2
k=1(δωk − pk)

2, where δωk = 1 if ω = k and δωk = 0 otherwise.
Then we can decompose the conditional expectation E[SQS( p,ω)

⃒
⃒D] of the QS as follows

E[SQS ( p,ω)|D] = E[− (ω − p(D))2
⃒
⃒D]

= − E[(ω − E[ω|D] + E[ω|D] − p(D))2
⃒
⃒D]

= − Var[ω|D] − (E[ω|D] − p(D))2,

(M1)

and insert Equation M1 into Equation 67 to yield

E[SQS( p,ω)] = E[− Var[ω
⃒
⃒D] − (E[ω|D] − p(D))2]

= − E[Var[ω|D]] − E[(E[ω|D] − p(D))2]

= − Var[ω] + Var[E[ω|D]] − E[(p(D) − E[ω|D])2],

(M2)

where E[ω|D] is simply equal to the conditional probability of rain and p(D) equals the unconditional rain
probability.

M2. Explanation of Terms of General Decomposition Strictly Proper Scoring Rule

The first term of the decomposition of Bröcker (2009) in Equation 69 is uncertainty and quantifies our state of
knowledge in the absence of an underlying theory to generate forecasts. This is equivalent to the expected score of
the average event frequencies or climatology as forecast probabilities. This term is independent of the forecasting
system and depends only on the statistics of the observations (Christensen, 2015). The second term, E[d(p,π)] or
resolution measures the mean divergence of the conditional event probabilities π from their average probabilities
p and, thus is a proxy for the variance of π over the sample Ω or dataD space. At zero resolution π is always equal
to the climatology (or prior mean) p and, thus, the data D provides no useful information. Thus, in accordance
with the sharpness principle of Gneiting and Raftery (2007) larger values of the resolution are preferred and

Table M1
Unconditional, p, and Conditional, π, Probabilities of the Watershed Models Estimated From the 3,000‐Day Training Data
Record: πjk = P(ω = yj

⃒
⃒ yk) Is the Probability of yj Given That yk Is the Best Forecast in the Ensemble at the Previous Time

Model ABC GR4J HYMOD TOPMO AWBM NAM HBV SAC‐SMA

p 0.064 0.148 0.088 0.101 0.080 0.142 0.175 0.203

π ABC 0.267 0.050 0.075 0.056 0.046 0.056 0.048 0.035

GR4J 0.157 0.534 0.098 0.076 0.087 0.033 0.061 0.100

HYMOD 0.099 0.063 0.343 0.102 0.083 0.035 0.057 0.051

TOPMO 0.099 0.070 0.094 0.383 0.054 0.059 0.061 0.069

AWBM 0.037 0.043 0.053 0.063 0.442 0.052 0.033 0.059

NAM 0.099 0.045 0.087 0.106 0.062 0.609 0.038 0.061

HBV 0.105 0.086 0.094 0.102 0.033 0.061 0.608 0.094

SAC‐SMA 0.136 0.110 0.155 0.112 0.192 0.094 0.094 0.531
∑

8
j=1πjk 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. The values on the main diagonal are highlighted in bold.
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reflect case‐dependent probabilistic forecasts. The third and last term, reliability, measures the average deviation
of the probabilistic forecast p from the conditional event probabilities π. This is a measure of the statistical
consistency of a forecast and evaluates whether the quoted forecast probabilities are in agreement with the
materialized event frequencies. Thus, the reliability penalizes poorly calibrated forecasts.

M3. Case Study VII: Discharge Forecast Ensemble

We apply the analytic decomposition of Equation 69 to the multi‐model ensemble of discharge forecasts
displayed in Figure 7. In doing so we must first convert discharge to a categorical variable with number of
possible outcomes m equal to the ensemble size, K = 8. In this discrete sample space, Ω = {1, …, m}, the
measured daily discharge ωt at t ≥ 1 coincides with the “best” discharge forecast among the watershed
models. As index ℏt ∈ (1, …, K) of this “best” forecast at time t we take the index of the minimum entry of
the K‐vector of absolute residuals (|ωt − y1t|, …, |ωt − yKt|) of forecasted discharges y1t, …, yKt by the
different models

ℏt = arg min
ℏ ∈ (1,…,K)

|ωt − yℏt|, (M3)

Now the n‐vector (ℏ1, …, ℏn) stores the indices of the best models in the ensemble for our training record of
n = 3,000 days, we yield the event frequencies p = (p1,…,pm)

⊤

pk = P(ω = yk) =
1
n
∑
n

t=1
1{ℏt = k}, (M4)

and the conditional forecast probabilities

πjk = P(ω = yj| yk) =
∑n

t=21{ℏt = j|ℏt− 1 = k}
∑n

t=11{ℏt = k}

=
∑n

t=21{ℏt = j|ℏt− 1 = k}
npk

,

(M5)

where j, k= (1, …, K). Table M1 reports the unconditional and conditional probabilities of the watershed models.
The unconditional forecast probabilities tend to increase with model complexity and is largest for the SAC‐SMA
model. The conditional forecast probabilities are largest on the main diagonal (in bold) confirming that a model's
probability is largest conditional on it having the best forecast in the ensemble. Note that each column of π sums
to unity.

Data Availability Statement
The case studies of this paper are part of the MATLAB toolbox Scoring_Rules. This toolbox can be obtained
from GitHub at https://github.com/jaspervrugt/Scoring_rules. Data, models and algorithms are organized in
separate folders. The MODELAVG toolbox of Vrugt and Beven (2018) can be obtained from GitHub at https://
github.com/jaspervrugt/MODELAVG. The CAMELS data set is described in Newman et al. (2015) and can be
downloaded from https://doi.org/10.5065/D6MW2F4D.
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