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Background: Maternal psychological stress has been linked to preterm birth.

However, the di�erential contribution of psychological stress versus stress

hormones is not clear. Studies focus primarily on perceived stress and cortisol,

with few assessing its inter-convertible hormone cortisone. Furthermore,

little is known about the potential moderating roles of obstetric risk and

fetal sex in the relationship between maternal stress and gestational length.

This gap in knowledge is particularly evident for rural women who typically

experience chronic multiple stressors during pregnancy. We explored the

relationship of hormonal and psychological stress to gestational length and

the e�ects of obstetric risks and fetal sex on this relationship among Kenyan

pregnant women.

Methods: The sample included 130 women recruited between 22 to 28 weeks

gestation. They completed a clinical and sociodemographic questionnaire

together with the Perceived Stress Scale and provided a hair sample for cortisol

and cortisone assay. Women underwent an ultrasound to assess weeks of

gestation. At delivery, their pregnancy-related health problems were identified

using information extracted from medical records to compile each woman’s

number of pregnancy risks on the Obstetric Medical Risk Index (OMRI).

Results: Perceived stress and hair cortisol were not significant predictors

of gestational length. However, a greater number of obstetric risks on

the OMRI was associated with shorter gestational length. This e�ect was

further explained by the interaction between obstetric risk and hair cortisone

(B = 0.709, p = 0.02). Hair cortisone levels of mothers who had a shorter

gestation were significantly higher inmothers with 2 ormore risks on the OMRI

but not among mothers with only one or no risks (t = 2.39, p = 0.02). Fetal sex

had no relationship to gestational length and also had nomoderating e�ect on

the relationship between any stress-related metric and gestational length.
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Conclusion: Cortisone levels may increase in anticipation of shorter gestation

as a compensatory response to increased obstetric risk. Elevated cortisone

may be a more sensitive marker of risk for early delivery than cortisol or

psychological stress, with salience for both the male and female fetus.

KEYWORDS

perceived stress, cortisol, cortisone, gestational length, obstetric medical risk, fetal

sex

Introduction

Preterm birth (birth occurring before 37 weeks) is a
significant global cause of neonatal morbidity and mortality,
with socioeconomic implications and loss of human
productivity (1). Research suggests that maternal stress is
associated with preterm birth (2, 3). Trends worldwide have
shown increased prevalence of preterm birth both in high
and low-income countries (4). It is possible that multiple
chronic life stressors among pregnant women may contribute
to this observed high prevalence in preterm birth and other
adverse birth outcomes such as low birth weight and fetal
growth restriction (5–9). However, little is known about the
mechanisms by which stress influences adverse birth outcomes
especially preterm birth (PTB) in this population.

Psychological distress

Studies in high income countries have shown an association
between adverse birth outcomes and various self-reported
measures of psychological distress, with mixed results regarding
preterm birth (10–23). The largest study, a prospective cohort
of 5,511 women conducted in the Netherlands between 2001–
2003, found that perceived stress (PS) was associated with infants
being born small-for-gestational-age but not with preterm birth
(24). However, three other studies in the United States of
America with large samples (5,337, 2,533, and 911 women)
reported significant associations between PS and PTB, especially
in women of low socioeconomic status and coming from
disadvantaged minority groups such as those with African
American andHispanic race/ethnicity (25–27). Two studies with
a cumulative sample size of 1,550 women indicated that changes
in PS rather than levels at a single time point predicted PTB
(15, 25).

Physiologic measures of stress

Because self-report measures of stress may have recall,
cultural interpretation, or stigma-related bias, physiologic
measures of stress can be important adjuncts in understanding

effects of stress. They not only provide objective measurement,
but they assess unique components of the stress response beyond
self-report. The Hypothalamic-Pituitary-Adrenal (HPA) axis is
a major physiological system responsible for coordinating and
integrating responses to stress (28). Cortisol and cortisone are
the primary effector hormones of the HPA axis (29). Thus,
these hormones are a key index of HPA axis activity and ideal
physiologic markers to assess. Cortisone is converted from
cortisol by the placenta to protect the fetus from excess cortisol.
Musana et al. (30) discuss the associations between hair cortisol
and perceived stress in pregnant women, citing evidence for both
positive and negative associations. Additionally, Hoffman et al.
reported hair cortisol to correlate with PS in predicting preterm
birth (31). Research also suggests that a larger cortisol awakening
response in late pregnancy is associated with shorter gestational
length (32). The cortisol/cortisone ratio has been linked to
birth weight and cortisone but not cortisol has been associated
with risk of pre-eclampsia (33–35). However, there are no
documented studies in Sub-Saharan Africa that have examined
cortisol and cortisone as measures of the stress response during
pregnancy and their association to gestational length. Studies in
high income countries are also scarce andwith conflicting results
(24, 25).

Obstetric risk

Maternal obstetric risk is a predictor of birth outcomes
and may interact with other predictors such as maternal stress
and health behaviors to influence preterm birth (36, 37).
Obstetric risks can include problems associated with both past
pregnancies and the current pregnancy. For example, a history
of gestational diabetes, previous stillbirth, placenta previa, or
pre-eclampsia as well as current pregnancy-related conditions
such as anemia, genitourinary infection, vaginal bleeding, and
cervical insufficiency have been associated with premature
delivery (38–41). In addition, the cumulative number of such
obstetric risks has been linked to preterm birth (42, 43). While
the direct influence of these risks on preterm birth has been
documented, our understanding of their moderating role in the
relationship between pregnancy stress and preterm birth has not
been fully elucidated.
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Sex di�erences

Sex-specific differences in responses to prenatal maternal
stress and adverse birth outcomes have been reported in the
literature (44–51). Female and male fetuses may be affected
differently by maternal stress, leading to differences in observed
adverse birth outcomes (45). For example, maternal stress may
adversely affect female fetuses by inducing adaptations such as
slow growth (intrauterine growth restriction) or alterations in
the enzyme 11 β -hydroxysteroid dehydrogenase type 2 which
regulates access of glucocorticoids to steroid receptors (52). In a
more recent study looking at sex specific differences and adverse
birth outcomes, male fetuses whose mothers experienced more
prenatal stressors (negative life events) had a shorter gestational
length and higher rates of preterm birth compared to female
fetuses (46). The biological mechanisms for these sex-specific
differences in birth outcomes in response to maternal stress have
not been clarified but placental and fetal hormonal mechanisms
have been implicated (49–54).

Purpose of the study

Whereas, the impact of pregnancy stress on adverse birth
outcomes has been studied in high income countries, this has not
been the case in low to middle income countries and especially
Sub- Saharan Africa where research in this field is very scarce.
Our study attempted to address this gap through collection
of prospective data from a population of pregnant women in
rural Kenya, a low-to-middle income African country with a
high prevalence of preterm birth (5). Our study aims were
twofold. Firstly, we determined the relationship of maternal
psychological stress and stress-related hormones during the 2nd
trimester of pregnancy to the length of gestation. For our second
aim, we examined the moderating roles of maternal obstetric
risk and fetal sex in the relationship between these stress-related
metrics and gestational length.

Based on previous research, we hypothesized that maternal
physiological stress (as measured by cortisol and cortisone
levels) may be a better predictor of gestational length compared
to psychological stress (as measured by self-reported perceived
stress). We also proposed that both maternal obstetric risk
and fetal sex would have influential effects on the relationship
between pregnancy stress (physiological and psychological)
and gestational length. Our study is the first to examine
these potential moderating relationships. Understanding these
relationships may help to explain previous mixed results
regarding the role of perceived stress and physiologic stress in
early delivery and preterm birth. Improved knowledge about
these moderators can ultimately help to better individualize
care and target preventive interventions where they are
most needed.

Methods

Participants

This cohort study was conducted at the antenatal clinics of
rural Migori County in the Western Province of Kenya between
April 2017 and February 2018. Pregnant women were recruited
between 22 and 28 weeks of gestation as dated by the first day
of their last menstrual period. Many women from rural and
under-served areas do not access care until this time in gestation
and it was important to enroll women from these groups. We
limited the gestational span for recruitment to 6 weeks in order
to standardize the period when we assessed our stress measures
as much as possible across participants. Participants included
women aged 18–45 years with a singleton pregnancy, able to
speak and understand at least one of three languages (Dholuo-
the most frequently spoken local language, Kiswahili-National
language or English) and who planned to deliver at either the
Migori County and Referral Hospital or St Joseph’s Catholic
Mission Hospital in Ombo. From the preliminary data we
collected from both recruitment sites, 60–70 percent of women
seen at the antenatal clinics delivered in the same facility.

Women were excluded if they had twins or a higher order
gestation, their fetus was known to have structural or genetic
anomalies, the pregnancy was achieved by artificial technologies,
or women had one of the following conditions: placenta praevia
or abruption, known uterine or cervical anomalies, chronic
renal and heart disease, diabetes mellitus, hypertension, thyroid
disease, adrenal disease and HIV infection or AIDS. Women
who were using steroid medications and those that had used
peroxides or chemicals to bleach their hair were also excluded.

Procedures

Recruitment and initial data collection

Ethical approval was sought and granted by institutional
research boards at The Aga KhanUniversity Hospital in Nairobi,
Kenya and the University of California in San Francisco, USA.
Women who fulfilled the inclusion criteria and gave consent
to participate in the study underwent an obstetric ultrasound
to further ascertain their gestation at recruitment. They also
completed Cohen’s Perceived Stress Scale to measure their levels
of self-reported psychological stress together with a clinical and
sociodemographic questionnaire. The women then provided a
hair sample for cortisol and cortisone assay.

Follow up data collection

Participants provided two mobile phone numbers to the
research team (self and spouse or next of kin) and were also
given mobile numbers of the research assistants (RA). Women
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were instructed to call the RAs in case of any pregnancy
complications or admissions to hospital and, importantly, to call
when admitted to hospital for labor and delivery or immediately
after delivery before discharge from hospital. They were also
followed up with a monthly phone call from the research
assistants till delivery. Women were given a small financial
compensation for their time in completing study procedures.

A unique identifier was placed on each participant’s prenatal
card and medical record for ease of identification. The principal
investigator and RAs conducted several research sensitization
meetings with staff at the antenatal clinics, labor and delivery
suites, and radiology to enhance their understanding of study
goals and facilitate data collection during recruitment and follow
up to eventual delivery.

The RAs monitored the antenatal wards, labor and delivery
suites and postpartum wards on a daily basis to identify
gestational progress of study participants. RAs also tracked
deliveries that occurred outside the designated study hospitals
(including home deliveries) to minimize loss to follow up.
After delivery and before discharge from hospital, RAs reviewed
participants’ medical records to document gestational length,
identify their number of obstetric risks on the Obstetric
Medical Risk Index (OMRI), and extract other clinical data for
assessment of potential covariates and descriptive information.

Measures

Sociodemographic and clinical questionnaire

This self-report tool provided descriptive information about
the sample and about potential confounds that could influence
testing of the aims. Data included pre-pregnancy and pregnancy
related medical conditions and measures such as weight and
body mass as well as demographic, economic, nutritional,
environmental and socio-cultural factors. Scientific evidence,
clinical knowledge, and expertise regarding the local context
(8, 9) informed covariates that were collected and examined
in analysis of the aims. Culture and linguistic idioms were
considered in developing the questionnaire.

Obstetric medical risk index

A score on Lobel et al. OMRI (42, 43) is based upon
information collected from the woman’s medical record. Thirty-
seven pregnancy-related health risks are given a binary score as
being present or not for each woman. All risks that are present
are summed to create a woman’s total score for obstetric risk.
Major domains in the measure include patient health history
(e.g., hypertension), family history (e.g., diabetes), complications
of past pregnancies (e.g., pre-eclampsia), gynecological and
obstetric history (e.g. previous spontaneous abortion), current
pregnancy conditions (e.g., vaginal bleeding, substance abuse),
and unusual features of the pregnancy (e.g., polyhydramnios).

Scores range from 0 to 37 with higher scores indicating
greater obstetric risk. Content validity of the items was
derived from meta-analysis of key risks of adverse birth
outcomes and clinician consensus ratings. The measure has
demonstrated excellent predictive validity in relation to adverse
birth outcomes (42).

Perceived stress scale

Cohen’s Perceived Stress Scale (55) has 10 items, each on a 5-
point Likert scale, which assess individuals’ feelings and thoughts
about how unpredictable, uncontrollable and overloaded they
find their lives. The PSS has been used worldwide as a tool
to measure perceived stress and has been validated widely in
different languages and cultural contexts. It also has reliable
psychometric properties with Cronbach alphas of between 0.69–
0.91. The internal consistency of the measure with our sample
was α = 0.83. For this study, we translated the measure into
Dholuo (most spoken language in Migori) and Kiswahili (Kenya
national language) and pre-tested its feasibility with 10 pregnant
women attending the antenatal clinic at the Migori County
and Referral Hospital. Women completed a print version of
the translated measure. They were then asked the questions
verbally by the interviewer to determine congruence between
their verbal and written responses. The interviewer reported a
high level of congruence between the two responses. Women
who participated in the feasibility assessment reported items
were easy to understand and they had no difficulty grasping the
overall meaning of the questions asked. As a result, the PSS was
administered in the original translated form.

Hair cortisol and cortisone

Hair samples were used to assess glucocorticoid levels.
In contrast to saliva or plasma specimens, hair cortisol and
cortisone reflect longer term HPA axis regulation over the
prior months. This provided a retrospective assessment of
persistent rather than acute or transient stress (56, 57). Research
assistants were trained to collect and store hair samples
using a standardized procedure, including written and pictorial
instructions (58). Each hair sample consisted of approximately
20–30 strands, 3–4mm thick and 3 cm long cut close to the
scalp. The end closest to the scalp was marked with tape and
the specimen was stored in an aluminum foil placed in a ziplock
bag. Prior research indicates that a 3 cm specimen represents
the cumulative cortisol and cortisone secretion of the previous
3 months (58).

Both cortisol and cortisone (a down-stream metabolite
of cortisol) were examined for a more robust assessment of
glucocorticoid activity. Hair cortisol (HCC) and cortisone
(HCNC) concentrations were assayed in the TB Hair Analysis
Lab at UCSF via liquid chromatography-tandem mass
spectrometry (LC-MS/MS). An Agilent LC 1260 (Agilent
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Technologies, Sta. Clara, CA, USA)-AB Sciex API 5500 triple
quadrupole mass spectrometer (AB Sciex, Foster City CA,
USA) system was used, equipped with a Synergi Polar-RP
column (2.1 x 100mm, 2.5µm particle size). Hair samples
were first washed thoroughly with 2.5mL isopropyl alcohol
before being prepared by pulverization using an Omni Bead
Ruptor R© tissue homogenizer. Internal standards (cortisol d4-
at a final concentration of 0.01 ng/mg hair) were added to
pulverized hair, and cortisol and cortisone were then extracted
by methanol for 2 h at 37◦C. Extraction was repeated twice by
vortexing for 15min with methanol at 37◦C. Supernatants from
each extraction were combined and evaporated. The extract
was re-suspended in 2% methanol and cleaned by solid phase
extraction using Waters Oasis HLB column (1 cc, 10mg). The
final SPE eluate was evaporated and the resulting extract was
re-suspended in 100 µL 15% methanol solution with 0.1%
formic acid and 2 mM ammonium acetate.

Two 25 uL aliquots of each sample extract were injected
into the LC-MS/MS for analysis using a mobile phase system
consisting of water with 0.1% formic acid and 2mM ammonium
acetate (mobile phase A, MPA) and methanol with 0.1%
formic acid and 2mM ammonium acetate (mobile phase b,
MPB). Cortisol and cortisone were separated by gradient
elution using the following scheme: 0–0.5min, 15% MPB; 0.5–
1.92min, 15–100% MBP; 1.92–2.92min, 100% MPB; 2.93–
5.00min, 15% MPB. Mass spectrometric detection with positive
ionization by electrospray ionization (ESI) and mass scanning
was done via multiple reaction monitoring (MRM) using the
following transitions: cortisol- 363.2–121.0 m/z, 363.2–77.0 m/z;
cortisone- 361.2–163.2 m/z, 361.2–121.2 m/z; and cortisol-d4,
367.3–121.0 m/z. Quantitation of each hormone was done by
isotope dilution method using a ten-point calibration curve
and cortisol-d4 as an internal standard. AB-Sciex Analyst 1.6
and Multi-Quaint 2.1 software packages (AB Sciex, Foster City,
CA, USA) were used for data analysis. Two quality control
(QC) samples (high and low) were run alongside the samples at
each batch. Data obtained from the analysis were only reported
after determining that the QC values are within 20% of the
target values and replicate measurements have coefficients of
variation within 20%. Cortisol levels for 3 participants were
extreme outliers (very high values that were not compatible with
accepted ranges) so they were excluded. Cortisone and cortisol
are reported in pg/mg.

Preterm delivery

Participants who delivered before 37 completed weeks were
defined as having a preterm delivery.

Gestational length

This was calculated in weeks as the difference between
the first day of the last menstrual period and the date of

delivery and used as a continuous measure. An obstetric
ultrasound done on the day of the recruitment was also
used to ascertain gestational length, especially in cases where
the woman was uncertain about the first day of her last
menstrual period. The ultrasound dating was used to calculate
gestational length if there was a significant discrepancy
between the date of the last menstrual period and the
ultrasound dating.

Data analysis

Histograms, scatter-plots, and stem and leaf plots were
used to check the distribution, linearity and outliers of the
key predictor and outcome variables. Multiple imputation was
used to address missing values. Missing cases ranged from
2 of 130 for PSS-10 to 5 of 130 cases each for obstetric
risk and gestational age. The pattern of missing data was
examined first, with review of the data suggesting that they were
missing at random. We specified key variables to be analyzed
in the imputation model (stress, obstetric risk, age, gestational
age, cortisol and cortisone) and performed 20 imputations.
We then exported the pooled results into our dataset to
account for variation across imputations. Cortisol and cortisone
distributions were positively skewed and were log-transformed
to achieve normal distributions. Pearson correlations and t-tests
were computed to examine the relationships of covariates that
might need inclusion to control for their confounding effects.
Maternal age, education, body mass index, systolic and diastolic
blood pressure, and exposure to violence were examined as
covariates. The relationship between stress-related variables and
gestational length, as well as the moderating role of obstetric
risk, were tested with linear regression procedures. In the model,
gestational length (the dependent variable) was regressed on
perinatal obstetric risk, perceived stress, hair cortisol level,
and hair cortisone level, with an interaction term included to
examine the moderating role of obstetric risk. Three separate
regression models were computed to examine the interaction of
obstetric risk with each of the stress-related metrics (perceived
stress, cortisol and cortisone). The moderating role of fetal
sex was tested in a similar way. In our fetal sex models,
gestational length (the dependent variable) was regressed on
obstetric risk, perceived stress, hair cortisol level, hair cortisone
level, and fetal sex, with an interaction term included to
examine the moderating role of fetal sex. As with the models
for obstetric risk, three separate regressions were computed
to examine the interaction of fetal sex with each of the
stress-related metrics. In each of these models, any covariates
showing a significant relationship to the dependent, predictor
or moderating variables were included. We evaluated all tests
of significance with a two-sided alpha of 0.05. A Bonferroni
correction was applied to address multiple tests for each set
of models.
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Results

Sample

One hundred thirty women participated in the study.
They had a mean age of 25 years (ranging from 16 to
40 years). On average, women were experiencing moderate
stress, with a mean score of 19 (SD = 4) for those
who delivered at term and 20 (SD = 3) for those who
delivered preterm out of a total possible score of 40. In
addition, their score for obstetric risk was 1.38 on average,
with women’s scores ranging from 0 to 8. Mean gestational
length at delivery was 39 weeks for those who delivered
at term and 34 weeks for those who delivered preterm. A
similar proportion of female babies (13%) and male babies
(14%) were born preterm. Table 1 provides detailed data on
participant characteristics.

Preliminary associations of covariates to
key study variables

Table 2 provides correlations of the covariates
with gestational age, obstetric risk, fetal sex, cortisol
and cortisone. Age was significantly associated with
obstetric risk so we included it as a covariate in
all analyses.

The relationship of psychological and
physiological stress to gestational length

Women’s perceived stress was not significantly related
to gestational length. Similarly, neither hair cortisol nor
cortisone levels of women were significant, independent
predictors of gestational length for the sample as a whole
(Table 3).

Obstetric risk as a moderator of the
relationship between stress and
gestational length

The greater the number of obstetric risks experienced
by women, the shorter was their gestational length (Table 3).
Three obstetric risks were associated with the largest differences
between women who delivered earlier in gestation and
those who delivered later. First, 23% of women delivering
earlier had genitourinary tract infections during pregnancy
in contrast to only 13% of women who delivered later.
Another difference was for the prevalence of influenza,
with 13.6% of women who delivered earlier having the flu

TABLE 1 Participants characteristics.

N= 130 Term

N= 116

Preterm

N= 14

P-value

Maternal age

Years (mean± SD) 25 (±5) 24 (±4) 0.51

Gravidity n (%)

1 42 (36) 6 (46) 0.46

2–3 58 (50) 5 (32)

>3 16 (14) 3 (22)

Parity n (%)

0 42 (36) 6 (46) 0.60

1–2 56 (48) 5 (32)

>3 18 (16) 3 (22)

Mode of delivery n (%)

Vaginal delivery 108 (93) 13 (93) 0.65

Caesarean delivery 8 (7) 1 (7)

Gestational age at delivery

Weeks (mean± SD) 39 (±1) 34 (±2) 0.69

Birthweight

Grams (mean± SD) 3293 (±714) 2623 (±721) 1.0

Fetal sex n (%)

Female 71 (61) 6(43) 1.0

Marital status

Single 12 (10) 2 (14) 0.83

Cohabitation 32 (28) 3 (21)

Married 72 (62) 9 (65)

Occupation n (%)

Housewife 55 (47) 5 (36) 0.62

Self employed 24 (21) 4 (28)

Formally employed 37 (32) 5 (36)

Highest education level n (%)

Primary 37 (32) 3 (21) 0.68

Secondary 48 (41) 6 (43)

Tertiary 31 (27) 5 (36)

Income per month (net) Kenya shillings (kes) n (%)

Less than 5,000 66 (57) 8 (57) 1.0

5001–20,000 36 (31) 5 (36)

>20,000 14 (12) 1 (7)

Predictor variables mean (±SD)

Perceived stress 19 (±4) 20 (±3) 0.40

Hair cortisol (log transformed) pg/ml 5.89 (±1.04) 7.63 (±0.94) 0.26

Hair cortisone (log transformed) pg/ml 8.23 (±0.80) 8.61 (±0.86) 0.40

Obstetric risk 1.30 (±1.45) 1.33 (±1.76) 0.33

during their pregnancy while only 6.7% of women who
delivered later contracted the flu. Lastly, 9% of women who
delivered early had experienced a stillbirth in a previous
pregnancy in contrast to only 1.7% of women who delivered
at term.
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TABLE 2 Pearson correlation coe�cients for the relationship of potential covariates to key study variables.

Gestational length Stress Cortisol Cortisone Obstetric risk Fetal sex

Maternal age −0.05 0.01 −0.03 −0.05 0.18* 0.08

Maternal education 0.10 −0.04 −0.01 0.00 −0.11 0.02

Systolic blood pressure −0.02 0.05 0.02 0.08 0.06 0.03

Diastolic blood pressure −0.04 0.07 −0.06 −0.10 0.10 0.04

Body mass index −0.04 −0.07 −0.05 −0.06 0.15 0.02

Exposure to violence −0.06 0.13 0.05 −0.02 −0.01 −0.02

*p < 0.05.

TABLE 3 Linear regression models for e�ects of maternal perceived

stress, cortisol, cortisone, and the moderating e�ect of obstetric risk

on gestational length.

Variable B SE Beta 95% CI P value

Perceived stress model

Age −0.002 0.00 −0.04 −0.010, 0.006 0.63

Obstetric risk −0.145 0.31 −0.16 −0.764, 0.474 0.64

Perceived stress −0.002 0.01 −0.04 −0.017, 0.013 0.77

Risk x stress interaction 0.006 0.01 1.33 −0.026, 0.037 0.71

Cortisol model

Age −0.006 0.00 −0.12 −0.015, 0.003 0.19

Obstetric risk 0.133 0.27 0.14 −0.408, 0.874 0.62

Cortisol (pg/ml) −0.024 0.04 −0.07 −0.111, 0.063 0.58

Risk x cortisol interaction 0.103 0.11 0.28 −0.117, 0.323 0.35

Cortisone model

Age −0.005 0.00 −0.11 −0.014, 0.003 0.22

Obstetric risk 1.320 0.32 1.39 0.078, 1.571 0.03

Cortisone (pg/ml) −0.107 0.10 −0.13 −0.312, 0.097 0.30

Risk x cortisone interaction 0.709 0.30 1.50 0.104, 1.313 0.02

The effect of obstetric risk on gestational length was further
explained by its significant interaction with cortisone (B= 0.709,
p = 0.02). There was a significant difference in hair cortisone
levels between women who delivered at 37 weeks gestation
or less (x = 0.018 (0.01) pg/ml) and women who delivered
after 37 weeks gestation (x = 0.010 (0.00) pg/ml; t(42) = 2.39,
p = 0.02). However, this was true only among women who
had 2 or more pregnancy-related risks on the Obstetric Medical
Risk Index (OMRI). Cohens d for this difference was 0.98,
a very large effect size. In contrast, there was no difference
between cortisone levels of women who delivered earlier versus
later and who had only one or no pregnancy-related risks on
the OMRI (Cohen’s d = 0.28). In comparing women who
delivered preterm and full term, mean cortisone levels of term
mothers were identical for higher and lower obstetric risk groups
while cortisone levels of mothers who delivered prematurely
were higher if they had higher obstetric risk than lower risk
(Figure 1).

FIGURE 1

Hair cortisone levels during pregnancy by obstetric risk and

birth outcome.

Fetal/infant sex di�erences in the
relationship between stress and
gestational length

As shown in Table 4, fetal sex had no relationship to
gestational length in any of the models. There were also no
differences based on sex for obstetric risk, any stress-related
variable, or for gestational length (Table 5).

Discussion

Key findings

Scarce research world-wide has examined the relationship
of hormonal and psychological stress to gestational length
or the moderating effects of obstetric risks and fetal sex
on this relationship. In particular, nothing is known of
these relationships among African women. We found that
perceived stress, hair cortisol and cortisone were not significant
independent predictors of gestational length among rural
Kenyan women. However, the risk of shorter gestation increases
with every additional obstetric risk incurred by a woman. This
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TABLE 4 Linear regression models for e�ects of maternal perceived

stress, cortisol, cortisone, and the moderating e�ect of fetal sex on

gestational length.

Variable B SE Beta 95% CI P-value

Perceived stress model

Age −0.003 0.00 −0.07 −0.012, 0.005 0.43

Fetal sex −0.099 0.18 −0.20 −0.465, 0.267 0.59

Perceived stress −0.008 0.01 0.16 −0.038, 0.022 0.59

Sex x stress interaction 0.006 0.01 0.31 −0.012, 0.024 0.53

Cortisol model

Age −0.008 0.00 −0.16 −0.017, 0.001 0.08

Fetal sex −0.104 0.15 −0.21 −0.408, 0.200 0.50

Cortisol (pg/ml) 0.095 0.09 0.29 −0.087, 0.277 0.30

Sex x cortisol interaction −0.061 0.06 −0.38 −0.187, 0.065 0.34

Cortisone model

Age −0.008 0.00 −0.17 −0.017, 0.001 0.08

Fetal sex −0.252 0.33 −0.51 −0.992, 0.418 0.46

Cortisone (pg/ml) 0.233 0.27 0.28 −0.302, 0.769 0.39

Sex x cortisone interaction −0.138 0.18 −0.65 −0.459, 0.181 0.39

TABLE 5 Means of study variables for women who delivered female

and male infants.

Variable Female Male

M SE M SE

Gestational length 38.95 0.31 38.89 0.26

Obstetric risk 1.48 0.19 1.30 0.19

Perceived stress 19.66 0.50 19.82 0.65

Cortisol (pg/ml) 0.088 0.05 0.049 0.04

Cortisone (pg/ml) 0.010 0.00 0.010 0.00

effect was further explained by the interaction between obstetric
risk and hair cortisone. Hair cortisone levels of mothers who
delivered earlier in gestation were significantly higher than
for women who delivered later, but only among women who
had high obstetric risk during pregnancy. Fetal sex had no
relationship to gestational length nor any moderating effect
on the relationship between any stress-related metric and
gestational length.

Obstetric risk and gestational length

Our findings regarding the importance of obstetric risks
to gestational length are congruent with a growing body of
research showing links between varied obstetric risks and
preterm delivery (34, 35). The particular risks we observed
among women who delivered earlier support previous research
as well. Genitourinary tract infections have been associated with

preterm birth in a number of recent studies (59), including
in Rwanda (60) and Ethiopia (61). Similarly, there is strong
support for the role of influenza (62–65) and a history of
stillbirth (66, 67) in preterm delivery. All three obstetric risks
may have a common mechanism underlying their effects.
There is evidence that enhanced pro-inflammatory responses to
infection are detrimental to pregnancy, with elevated levels of
pro-inflammatory cytokines predicting preterm labor (68). In
addition to the clear-cut role of inflammation in genitourinary
and influenza infection, bacterial and viral infections have
also been implicated in the etiology of stillbirths in both
developing and industrialized countries (69). Networks of
interacting cytokines help to maintain homoeostasis during
pregnancy. Strong or dysregulated inflammatory responses that
disturb these networks may trigger physiologic changes which
precipitate early parturition through processes such as reduced
fetoplacental blood flow or greater production of prostaglandins
(69, 70). In light of this possibility, screening for infection
early in gestation seems essential. Identifying and treating
both genitourinary bacterial infections and viral infections
associated with influenza may decrease the risk of preterm
delivery (71).

Elevated cortisone and shorter gestation
among women with high obstetric risk

Cortisone (a metabolite of cortisol) has recently emerged
as an important biological marker of interest in studies
exploring maternal psychological distress during pregnancy.
Research has shown evidence for cortisone as a potentially
more salient marker of physiologic stress during pregnancy
than cortisol (57, 58). Our finding in this research supports
the importance of cortisone as a stress-related biomarker,
indicating that higher levels of cortisone (but not cortisol) were
present in the hair of women with greater obstetric risk who
delivered earlier in gestation than among high-risk women
who delivered later. During pregnancy, approximately 90%
of cortisol is converted to inactive cortisone by the enzyme
11β-hydroxysteroid dehydrogenase type 2 [11βHSD2; (72, 73)].
This conversion is viewed as a mechanism through which the
hypothalamic-pituitary-adrenal (HPA) axis (the body’s stress
regulation system) protects the fetus from adverse effects of
excessive cortisol levels (72). Elevated glucocorticoids (both
endogenous and exogenous) have been associated with preterm
birth in previous research (74–77). It is likely that women with
more obstetric risk, especially those with infectious processes
that enhance inflammation, had higher glucocorticoid levels
that put them at greater risk of preterm birth. A critical
role of the HPA-axis is regulation of inflammation, including
down-regulation of pro-inflammatory cytokine production
(78). As we noted earlier, the major obstetric risks found
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among women in our sample who delivered earlier in
gestation appeared to involve infectious processes that cause
inflammation in the genitourinary and uteroplacental tracts.
Elevated levels of cortisone may have reflected increased
immunomodulatory activity exerted by the HPA axis to
suppress inflammation.

Alternatively, elevated cortisone levels, as an indicator
of physiological stress, may have placed women at greater
risk for infectious processes that increased their vulnerability
to shorter gestation. Accumulating evidence suggests that
glucocorticoids such as cortisone can have permissive effects
on the immune system under specific conditions (78, 79).
Enhanced cortisone production in response to stressor-
induced HPA-axis activation may increase susceptibility to
infectious disease or augment its severity through suppression
of immune activity that typically controls or eliminates
pathogens (78, 79). Development of infection, in turn, could
then increase vulnerability to early delivery or preterm
birth (67).

Psychological stress and shorter
gestation

Our null findings regarding perceived stress support a
growing body of research suggesting that physiological stress
may be a greater risk factor for early delivery than psychological
stress (68, 75). However, we used the Perceived Stress Scale,
a global measure of general stress, to measure psychological
stress. Some research indicates that pregnancy-specific stress
(e.g., concerns about fetal health, impending childbirth, or
changes in the body) may be a better predictor of adverse birth
outcomes, including preterm birth (41). The effects of type of
stress and its timing during pregnancy warrant attention in
future research.

Fetal sex as a moderator

As we noted in the introduction, some literature suggests
that male and female fetuses respond differently to maternal
stress with subsequent sex-specific differences in birth outcomes
(44–48). It has been proposed that these differences may stem
from interactions of the maternal and fetal HPA axes, the
placenta, the autonomic nervous system, immune system, and
other yet undetermined mechanisms (49–54). Still, conflicting
results have been reported with varied studies suggesting that
male fetuses or female fetuses may be more vulnerable to stress
and yet others finding no sex differences (44, 45, 48, 49, 80,
81). Our study did not demonstrate any moderating effect of
fetal sex on relationships between stress-related measures and
gestational length.

Limitations and strengths

Our study had several limitations. Both hair cortisone and
cortisol together with perceived stress were only measured
at one point in time during pregnancy (between 22 and 28
weeks of gestation). Serial measurements over all trimesters
might have yielded different results as seen by the Hoffman
et al. (31) study. Hair segmental analysis to examine shorter,
more specific time periods during pregnancy was not done.
Studies have shown that different hair segments may yield time-
specific associations between prenatal stress and preterm birth.
We used a global measure of psychological stress which had
not undergone full psychometric testing for our population.
Use of pregnancy-specific assessments in conjunction with
general stress measures may be more fruitful in studying
prenatal stress. We did not examine a wide swath of mental
health covariates or other measures of biological stress, nor
did we control for hair washing, seasonal variations or
hair complexion.

The study had several strengths. We assayed both hair
cortisone and cortisol. We studied the second trimester of
pregnancy, a critical period for fetal development during
which the fetus transitions to a state of possible viability
and adaptation to extra-uterine life. Fetal organ systems are
undergoing maturation to support extra-uterine life, making
this time period especially vulnerable to changes in the
internal or external milieu such as maternal stress. This
is one of very few studies worldwide, and a first of its
kind in Sub Saharan Africa, to explore the associations
of maternal stress, hair cortisol and cortisone to adverse
birth outcomes.

Conclusions

In this study, we found that higher levels of second
trimester maternal cortisone were associated with shorter
gestation among women with higher obstetric risk. Hair
cortisone levels may be an important stress-related biomarker
in the prediction of preterm birth. In contrast, hair cortisol
and maternal perceived stress were not associated with
earlier delivery. There were no moderating effects of
fetal sex in the relationship between maternal stress and
gestational length.

Future studies should incorporate both hair cortisone and
cortisol assays as biological measures of stress. These assays
can be taken at multiple time points in pregnancy and
incorporate segmental hair analysis to elicit more nuanced
effects of potential HPA axis dysregulation on birth outcomes.
Pregnancy-specific psychological measures administered at
different time points in pregnancy (especially those that
have undergone full psychometric testing for the intended
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study populations) are recommended for future studies. Sex-
specific differences in adverse birth outcomes warrant further
study to understand their underlying biological mechanisms,
including epigenetic and gene expression studies. Such studies
might offer further explanations regarding sex-specific fetal
effects of maternal stress. Lastly, our research indicates
that the moderating effect of obstetric risk is essential to
consider in examining the relationship between stress-related
measures and shorter gestation. In addition, assessment of
risk-related inflammatory markers such as cytokines and
TNF-a will be important in order to better understand the
potential effects of the relationship between the immune
system and the HPA-axis on increased vulnerability to
preterm birth.
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