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ABSTRACT OF THE THESIS 

 

Application of Statistical Models to Study Protein Stability  

in Subcellular Compartments 

 

by 

 

Shaohua Xiao 

 

Master of Science in Applied Statistics 

University of California, Los Angeles, 2020 

Professor Hongquan Xu, Chair 

 

Gap junction protein connexin-43 (Cx43) is essential for intercellular communication and 

synchronous muscle contraction of the mammalian heart. Cx43 is enriched in the intercalated 

discs in normal hearts, but redistributed in arrhythmic failing hearts. To understand the 

pathophysiological mechanisms for arrhythmias and guide therapeutic interventions, it will be 

important to assess whether the mis-localized Cx43 remains stable or undergoes rapid turnover. 

The M213L mutation in Cx43 has been shown to impair delivery of the protein to the 

intercalated discs. Stabilities of the wild type and M213L mutated Cx43 protein in subcellular 

fractions have been reported. Here we applied multiple statistical models to the protein stability 

data to further analyze the effects of subcellular compartments and mutation on protein 
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degradation. Our results indicated that fraction, but not the M213L mutation, affected Cx43 

degradation, with the protein in the non-junctional fraction being degraded rapidly.  
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CHAPTER 1 

Introduction 

 

Connexin-43 (Cx43) protein forms gap junction channels between cardiomyocytes, one of the 

major cell types in the mammalian heart [1], enabling rapid propagation of electrical impulses 

and synchronous heart muscle contraction [2]. Cx43 channels are mainly localized to specialized 

membrane compartments, the intercalated discs, on the longitudinal ends of cardiomyocytes. In 

the diseased heart, Cx43 expression is down regulated and redistributed laterally [3]. Rescuing 

the localization of Cx43 channels to the intercalated discs could be potential therapies for 

arrhythmias [3]. Understanding the fate of the mis-localized Cx43 protein, whether it is rapidly 

degraded or remains stable, will help decide what biological processes therapeutic interventions 

should target. 

 

The M213L mutation in Cx43 has been shown to impair the targeting of the protein to the 

intercalated discs in the heart of a mouse model [2] and to the junctional fraction in cultured cells 

[4]. The M213L mutant mice display sudden cardiac death phenotype and reduced expression of 

the Cx43 protein [2], similar to phenotypes observed in failing hearts. To investigate how the 

mutation and different subcellular locations affect the stability of Cx43, the authors performed 

pulse-chase experiments in cultured cells, a common method to study protein degradation. The 

authors calculated the exponential time constant, t, of the wild type and M213L mutated Cx43 in 

different cellular fractions. They found that fraction, but not mutation, was significantly 

associated with Cx43 protein degradation [2]. 
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In this thesis project we applied multiple statistical models with R to further analyze the pulse-

chase experimental data, which were obtained from the authors of reference [2]. The statistical 

approaches included ANOVA test [5-6], linear regression [7-8], randomized block design, and 

multivariate analysis [9]. The results indicated that subcellular fraction affected Cx43 protein 

degradation, whereas mutation did not. The protein was more stable in the junctional membrane 

fraction than in the non-junctional fraction. Our findings are consistent with what is reported in 

reference [2]. It is likely that the mutated Cx43 protein unable to traffic to the junctional 

membrane is effectively degraded. Therefore, when targeting Cx43 as therapeutic interventions 

for arrhythmias, we should consider increasing the production of Cx43 and facilitating its 

delivery to the junctional fraction at the same time. 
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CHAPTER 2 

Experimental procedure and data collection 

 

Figure 1A outlines the workflow of the pulse-chase experiments to measure stability the Cx43 

protein (based on reference [2]).  Cells were divided into two groups, which were randomly 

chosen to express either the wild type (w) or the M213L mutated protein (m). The Cx43 protein 

produced in cells within an hour was labeled, which was referred to the “pulse” phase of the 

experiment. The level of the labeled protein was monitored over 7.5 hours with 2.5-hour 

intervals, which was the “chase” phase of the experiment. At four time points (0, 2.5, 5, 7.5) 

during the chase period, aliquots of cells were fractionated into the non-junctional (“A”) and 

junctional membrane (“B”) fractions. Labeled and total Cx43 proteins in each subcellular 

fraction were purified and transferred onto a membrane for detection (Figure 1B). Intensities of 

the protein bands were quantified. The amount of labeled protein was normalized to that of the 

total protein in the same fraction at each time point, which resulted in an output variable, “ratio”. 

The ratios of protein with the same mutation and in the same subcellular fraction were divided by 

the ratio at the 0-hour time point, generating another output variable, “percent_of_0hr” (Figure 

1B). The same procedure was performed four times, each of which was treated as a batch. We 

coded the wild type protein and M213L mutation as “-1” and “1”, respectively, for the variable 

“mutation”. The non-junctional fraction and junctional membrane fraction, the two levels of the 

“fraction” variable, were coded as “-1” and “1”, respectively. The original design of the 

experiment had 64 observations. Because of problems with some samples, 4 observations 

corresponding to fraction “1” and mutation “1” in batch 1 were excluded from the analysis. The 

dataset used in this thesis has 60 observations. 
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A 

 

 

 

 

 

 

 

B 

 

Figure 1. Schematic diagrams of experimental workflow (panel A) and data collection (panel B) 
(based on [2]). The subscript “L” and “T” indicate the labeled and total protein, respectively.  
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CHAPTER 3 

Data analysis and results 

 

We first visualized the data by plotting the amount of labeled protein, expressed as the 

percentage to the level at the 0-hour time point, against time, coloring by fraction and mutation 

(Figure 2). The treatment curves colored by fraction showed clear separation, especially after the 

5-hour time point (Figure 2A). The curves colored by mutation were largely overlapped across 

time points (Figure 2B). The observations suggest that subcellular fraction might have an effect 

on protein degradation. 

 

Figure 2. Treatment curves. The amounts of labeled wild type and M213L mutated Cx43 protein 
in junctional membrane and non-junction fractions are plotted against time, colored by 
subcellular fraction (A) and mutation (B). 
 

To quantitatively analyze the contribution of mutation and subcellular fraction on Cx43 protein 

degradation we used multiple statistical models to fit the data. The methods included 1) using 

exponential regression to deduce the time constant of protein, t, follow by a linear regression 

model with t as the response variable; 2) a linear regression model and the response variable was 

the percentage of the labeled protein to the level at the 0-hour time point (the “percent_of_0hr” 
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variable in Figure 1B); 3) a linear regression model and the response variable was the ratio of the 

level of the labeled protein to that of the total protein (the “ratio” variable in Figure 1B); 4) 

multivariate regression models with the “percent_of_0hr” and “ratio” at various time points as 

the dependent variables. 

 

3.1 Exponential time constant as the response variable 

A common way to quantify and analyze protein degradation is to fit the amount of the remaining 

protein, the variable “percent_of_0hr” in this case, at various time points to an exponential decay 

model. The time constant, t, is deduced from the exponential equation 𝑦 = 𝑎𝑒!"/$, where y and t 

denote the percentage of the remaining labeled protein and time, respectively. The “𝑎” is the 

initial amount of labeled protein, which in this case should be around 100%. Significance of the 

effect of mutation and fraction is evaluated using two-way ANOVA [2].  

 

In this project, we first reproduced the results reported by Xiao et al [2] by fitting a linear model 

of log-transformed “percent_of_0hr”, which is theoretically equivalent to fitting an exponential 

equation, to calculate t (“t_1” in Table 1). A linear model (model 1) was used to fit the data and 

identify significant factors associated with t (Table 1). The four replicates of runs, specified in 

the batch variable, were treated as blocks. The residual plot, QQ plot, and Boxcox plot of the 

model showed that no transformation of the response variable was necessary (Supplemental 

Figure S1). The estimated coefficients of the full model are shown in Table 2. Backward and 

forward stepwise regression were used to choose the model with the least AIC and all significant 

predictors. The final fitted model was: 

τ = 3.35 + 1.67 ∗ fraction1																																																																																																							(1) 
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The adjusted R2 of the final model was 0.5784 (Table 2). The regression model and ANOVA 

revealed that subcellular fraction, but not mutation or batch effect, was significant at a = 0.05 

(Table 2 and 3). The coefficient for “fraction1” in the final model was 1.67, whose sign indicated 

that the exponential time constant in the junctional membrane fraction (fraction “1”) was greater 

than that in the non-junctional fraction (fraction “-1”).  

 

Table 1. The exponential time constant, t_1, of Cx43 protein. 
 run mutation* fraction* batch* t_1^ 

1 -1 -1 1 3.9378 
2 1 -1 1 2.8540 
3 -1 1 1 5.3603 
4 -1 -1 2 4.0211 
5 1 -1 2 2.5758 
6 -1 1 2 5.0109 
7 1 1 2 6.1254 
8 -1 -1 3 2.9145 
9 1 -1 3 3.6467 

10 -1 1 3 5.6108 
11 1 1 3 4.3935 
12 -1 -1 4 2.6622 
13 1 -1 4 4.2159 
14 -1 1 4 3.7994 
15 1 1 4 4.8904 

 
*mutation: “-1” – wild type, “1” – M213L mutation 
*fraction: “-1” – non-junctional fraction, “1” – junctional membrane fraction 
*batch: replicates of runs 
^Exponential decay was fit with linear regression of logarithmically transformed response 
variable, “percent_of_0hr”, over time. 
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Table 2. Estimated parameters of models 1 and 2. The response variable is the exponential time 
constant, t.  
  Model 1   Model 2   
  full final full final 
(Intercept) 3.5505   *** 3.3535  *** 1.1073   ** 0.9983  *** 
mutation1 -0.0608   0.0709   
fraction1 1.5614   * 1.6737  *** 0.7639   ** 0.7459  *** 
batch2 0.0556   -0.3140   
batch3 -0.2363   -0.1850   
batch4 -0.4857   -0.0789   
mutation1:fraction1 0.3074   0.0179   
adjusted R^2 0.3932 0.5784 0.5478  0.6492 
AIC 0.15 -8.03 -30.04 -36.57 
Significance codes . p<0.1; * p<0.05; ** p<0.01; *** p<0.001    

 

 

Table 3. ANOVA analysis of full models 1 and 2. 
Model 1             
  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 0.0155 0.0155 0.0208 0.8890   
fraction 1 10.4544 10.4544 14.0354 0.0057 ** 
batch 3 0.6718 0.2239 0.3006 0.8242   
mutation:fraction 1 0.0850 0.0850 0.1142 0.7441   
Residuals 8 5.9589 0.7449       
         
Model 2             
  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 4.33E-05 4.33E-05 0.0004 0.9839   
fraction 1 2.0890 2.0890 20.9961 0.0018 ** 
batch 3 0.1950 0.0650 0.6532 0.6030   
mutation:fraction 1 0.0003 0.0003 0.0029 0.9583   
Residuals 8 0.7960 0.0995       
Significance Codes: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001     

 

 

We also calculated t using nonlinear least square (nls) models, where we could keep the “𝑎” in 

the exponential decay equation 𝑦 = 𝑎𝑒!"/$	closer to the starting percentage, 100%.  The list of 
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estimated t, “t_2”, is shown in Table 4. Based on the Boxcox plot (Figure S2), we performed 

logarithmic transformation of the response variable, “percent_of_0hr”, to stabilize the variance 

of residuals. We fit the data with a linear model (“Model 2” in Table 2). The residual plot and 

QQ plot of model 2 are shown in Figure S2. Based on the result of stepwise regression selection, 

the final regression model was: 

𝑙𝑜𝑔(τ) = 1.00 + 0.75 ∗ fraction1																																																																																												(2) 

The adjusted R2 of the model was 0.6492 (Table2), which indicated a slightly better fit of data 

than model 1. 

 

Table 4. The exponential time constant, t_2, of Cx43 protein. 
 run mutation fraction batch t_2^ 

1 -1 -1 1 3.2844 
2 1 -1 1 3.3478 
3 -1 1 1 5.8083 
4 -1 -1 2 2.5925 
5 1 -1 2 1.9538 
6 -1 1 2 4.7866 
7 1 1 2 5.3252 
8 -1 -1 3 1.9988 
9 1 -1 3 1.9307 

10 -1 1 3 6.9774 
11 1 1 3 8.0344 
12 -1 -1 4 2.7646 
13 1 -1 4 4.9483 
14 -1 1 4 5.1507 
15 1 1 4 4.6930 

 
*mutation: “-1” – wild type, “1” – M213L mutation 
*fraction: “-1” – non-junctional”, “1” – junctional membrane fraction 
*batch: replicates of runs 
^Exponential decay was fit using nonlinear least square estimation. 
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Both the regression model and ANOVA analysis revealed that fraction had a significant effect on 

protein degradation at a = 0.05, whereas mutation, batch, or the interaction term between 

mutation and fraction did not (Tables 2 and 3). The sign of the estimated coefficient for 

“fraction1” was positive, indicating that the exponential time constant of Cx43 was greater, 

hence higher protein stability, in the junctional membrane fraction than in the non-junctional 

fraction.  

 

Since the question of interest is to examine the significant factors contributing to/associated with 

protein decay, one of the advantages of using t as the response variable is that it is 

straightforward to interpret the result. However, the residual degrees of freedom of the full 

models 1 and 2 is 8, which is compromised compared to the total number of runs of the 

experimental design, 60. This approach also assumes that the data of protein degradation follows 

exponential decay. How well the exponential models fit the data will likely affect the estimated t 

and the identification of significant factors. 

 

3.2 Percentage of protein to the initial amount as the response variable 

The data were also fit with a randomized block design model, with the percentage of the labeled 

protein relative to the starting amount, “percent_of_0hr”, as the dependent variable. We wanted 

to test the effect of mutation, fraction, time, and batch (blocking variable) on the response 

variable. The “time” variable was treated as categorical with four levels, since data were 

collected at four time points during the “chase” period of the experiments. The levels were 

designated as “time0”, “time2.5”, “time5”, and “time7.5”. We used a linear model with two-

factor interactions (model 3), to fit the data and performed Boxcox transformation (Figure S3) of 
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the response variable. The estimated parameters of the full regression model are shown in Table 

5. The residual plot and QQ plot of the model are shown in Figure S3.  

 

Table 5. Estimated parameters of models 3 and 4. The dependent variable is “percent_of_0hr”.  
 

 

 

 

We performed stepwise regression, and chose the following final regression model: 

  Model 3   Model 4   
  full final full final 
Intercept 10.497   *** 10.5723  *** 9.7056   *** 9.5667   *** 
mutation1 0.1584   0.1172   
fraction1 0.1584 0.0818 0.9322   . 0.8119  . 
time_fct2.5 -3.7513   *** -3.7973  ***     
time_fct5 -5.6379   *** -5.4870  ***     
time_fct7.5 -6.5414   *** -6.6031  ***     
time     -1.3018   *** -1.2793   *** 
I(time^2)     0.0538   * 0.0512   * 
batch2 -1.0133   * -1.0081  ** -0.5124   
batch3 -0.6967   . -0.6915  . -0.1958   
batch4 -0.5948 -0.5895 -0.0938   
mutation1:fraction1 -0.1511   -0.1770   
mutation1:time_fct2.5 -0.0921       
mutation1:time_fct5 0.3018       
mutation1:time_fct7.5 -0.1233       
mutation1:time     0.0176   
fraction1:time_fct2.5 2.1618   ** 2.1684   **     
fraction1:time_fct5 2.2604   ** 2.2388   **     
fraction1:time_fct7.5 1.3764   . 1.3852   **     
fraction1:time     0.1897   . 0.1910   * 
adjusted R^2 0.8535 0.8664 0.8408  0.8513 
AIC 10.83 1.8 12.31 3.15 
Significance codes . p<0.1; * p<0.05; ** p<0.01; *** p<0.001    
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>𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑜𝑓_0ℎ𝑟

= 10.57 − 0.08 ∗ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1 − 3.80 ∗ time2.5 − 5.49 ∗ time5– 6.60

∗ 𝑡𝑖𝑚e7.5– 1.01 ∗ 𝑏𝑎𝑡𝑐ℎ2 − 0.69 ∗ batch3 − 0.59 ∗ batch4 + 2.17	

∗ 𝑓𝑟𝑎𝑡𝑖𝑜𝑛1: time2.5 + 2.24 ∗ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1: time5 + 1.39

∗ fraction1: time7.5																																																																																				(3) 

The adjusted R2 of the final model was 0.8664 (Table 5). ANOVA analysis indicated that the 

effect of fraction, time, and the interaction between fraction and time, but not mutation or batch, 

was significant at a = 0.05 (Table 6).  

 

Table 6. ANOVA analysis of full models 3 and 4. The dependent variable is “percent_of_0hr”. 
Model 3             
  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 0.1003 0.1003 0.1047 0.7478   
fraction 1 31.2214 31.2214 32.5806 9.05E-07 *** 
time_fct 3 292.7586 97.5862 101.8344 8.00E-20 *** 
batch 3 7.1889 2.3963 2.5006 0.0718 . 
mutation:fraction 1 0.0821 0.0821 0.0857 0.7711   
mutation:time_fct 3 0.3835 0.1278 0.1334 0.9397   
fraction:time_fct 3 12.1505 4.0502 4.2265 0.0104 * 
Residuals 44 42.1645 0.9583       
         
Model 4        
  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 0.1003 0.1003 0.0963 0.7577   
fraction 1 31.2214 31.2214 29.9651 1.50E-06 *** 
time 1 291.2411 291.2411 279.5214 6.95E-22 *** 
I(time^2) 1 6.0454 6.0454 5.8021 0.0198 * 
batch 3 2.3676 0.7892 0.7574 0.5234   
mutation:fraction 1 0.0821 0.0821 0.0788 0.7801   
mutation:time 1 0.0061 0.0061 0.0058 0.9395   
fraction:time 1 3.9314 3.9314 3.7732 0.0578 . 
Residuals 49 51.0545 1.0419       
Significance Codes: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001  
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The interaction plot of fraction and time demonstrated that in fraction “1”, the amounts of 

remaining protein at the 2.5 and 5 hour time points are higher than those in fraction “-1”, 

although the protein level at the 0 hour time point in both fractions were the same (Figure 3). The 

positive sign of the interaction terms of fraction and time, together with the slopes of the 

interaction plots at the 2.5- and 5-hour time points implied that Cx43 protein degraded faster in 

the non-junctional fraction than the junctional membrane fraction. 

 

 

 

 

 

 

 

 

      

Figure 3. Interaction plot of fraction and time (model 3). 

 

Because the values of the factor “time” is continuous and protein decay is expected to follow an 

exponential equation, we were interested in assessing the linear and quadratic effect of “time” on 

the response variable. We fit a second order, randomized block model to the data, treating “time” 

as numeric and using “time” and “time2” to reflect the respective linear and quadratic 

components of the variable. The Boxcox plot (Figure S4) suggested a square-root transformation 

of the dependent variable. Estimated coefficients of the full model (model 4) are listed in Table 
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5. Residual plots and QQ plots are shown in Figure S4. The final fitted model after stepwise 

selection was: 

>𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑜𝑓_0ℎ𝑟

= 9.57 + 0.81 ∗ fraction1– 1.28 ∗ time + 0.05 ∗ (𝑡𝑖𝑚𝑒&) + 0.19

∗ fraction1: time																																																																																(4) 

 

The adjusted R2 of the reduced model was 0.8513 (Table 5). Both the regression model and 

ANOVA analysis revealed that the linear and quadratic effects of time were significant at a = 

0.05 (Tables 5 and 6). This is consistent with the exponential regression of the “percent_of_0hr” 

variable over time in models 1 and 2. The ANOVA result also indicated the significance of the 

effect of fraction on the dependent variable (Table 6), while the regression model identified the 

significant interaction term between fraction1 and time at a = 0.05 (final model 4, Table 5).  

 

The response variable in model 3 and 4 is “percent_of_0hr”, whereas the response variable in 

models 1 and 2 is the exponential time constant, which is calculated by fitting the values of the 

“percent_of_0hr” variable at all the time points. Therefore, models 3 and 4 relax the grouping of 

the “percent_of_0hr” data of a certain mutation in a certain fraction, which might increase the 

variance of the dependent variable. However, these models gain more degrees of freedom. The 

residual degrees of freedom of the full models 2 and 3 is 8 and 44, respectively. The overall fit of 

model 3 to the data is improved compared to model 2, with the respective adjusted R2 of the final 

model 2 and model 3 at 0.6492 and 0.8664 (Tables 2 and 5).  
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3.3 Ratio of labeled to total protein as the response variable 

The variable “ratio” is directly proportional to the amount of labeled protein in a specific 

subcellular fraction, rather than the percentage of the remaining labeled protein to the initial 

amount. We used “ratio” as the response variable and fit a linear model to examine the effect of 

mutation, fraction, time, and batch on protein stability. We treated “time” as a categorial variable 

with four levels as described for model 3. Estimated coefficients of the full model, with 

logarithmic transformation of the response variable, are shown in Table 7 (Model 5). The 

Boxcox plot, residual plots and QQ plots of the model are shown in Figure S5. We performed 

stepwise regression and selected the final model as: 

𝑙𝑜𝑔(𝑟𝑎𝑡𝑖𝑜) = −0.85 + 0.21	 ∗ 	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛1	 + 	0.15	 ∗ 	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1 − 1.01 ∗ 𝑡𝑖𝑚𝑒2.5– 1.62 ∗

time5– 2.24 ∗ time7.5– 2.20 ∗ batch2– 1.36 ∗ batch3 + 0.07	 ∗ 	batch4	 − 	0.30	 ∗

	mutation1: fraction1	 + 	0.64 ∗ fraction1: time2.5 + 0.81 ∗ 	fraction1: time5 + 0.74 ∗

fraction1: time7.5																																																																																																																								(5)  

 

The adjusted R2 of the final model is 0.9307 (Table 7), which was higher than the models using 

other response variables. The ANOVA analysis indicated that fraction, time, batch, and the 

interaction term between fraction and time were significantly associated with the response 

variable at a = 0.05 (Table 8). The interaction plot of fraction and time also revealed that the 

amounts of labeled protein at the 2.5, 5, and 7.5 hour time points were higher in fraction “1” than 

fraction “-1”, whereas the amount of labeled protein at the 0 hour time point in the two 

subcellular fractions were similar (Figure 4). The interaction plots, as well as the positive sign of 

the coefficients of the interaction terms between fraction and time in the regression model, 
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suggested that the turnover rate of the Cx43 protein was faster in the non-junctional fraction than 

in the junctional fraction. 

 

Table 7. Estimated parameters of models 5 and 6.  The dependent variable is “ratio”.  
  Model 5   Model 6   
  full final full final 
Intercept -0.8542   *** -0.8539   *** -1.0982   *** -1.1275   *** 
mutation1 0.2120 0.2112  . 0.1773 0.2112  . 
fraction1 0.1481 0.1480 0.3266   . 0.3277   * 
time_fct2.5 -1.0023   *** -1.0098   ***     
time_fct5 -1.6448   *** -1.6218   ***     
time_fct7.5 -2.2273   *** -2.2443   ***     
time     -0.3257   *** -0.3087   *** 
I(time^2)     0.0017   
batch2 -2.2042   *** -2.2042   *** -2.0016   *** -1.9986   *** 
batch3 -1.3607   *** -1.3607   *** -1.158   *** -1.1550   *** 
batch4 0.0688 0.0688 0.2714   * 0.2744   * 
mutation1:fraction1 -0.3047   . -0.3047  . -0.3189   . -0.3176  . 
mutation1:time_fct2.5 -0.0150       
mutation1:time_fct5 0.0460       
mutation1:time_fct7.5 -0.0340       
mutation1:time     0.0095   
fraction1:time_fct2.5 0.6407   * 0.6417   *     
fraction1:time_fct5 0.8117   ** 0.8085   **     
fraction1:time_fct7.5 0.7409   ** 0.7433   **     
fraction1:time     0.1038   ** 0.1035   ** 
adjusted R^2 0.9262 0.9307 0.9302 0.9327 
AIC -114.76 -120.61 -121.61 -125.43 
Significance codes . p<0.1; * p<0.05; ** p<0.01; *** p<0.001    
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Table 8. ANOVA analysis of full models 5 and 6. The response variable is “ratio”.  
Model 5             

  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 0.1318 0.1318 1.1154 0.2967   
fraction 1 2.6370 2.6370 22.3189 2.38E-05 *** 
time_fct 3 29.1537 9.7179 82.2506 4.52E-18 *** 
batch 3 55.4464 18.4821 156.4296 1.74E-23 *** 
mutation:fraction 1 0.3342 0.3342 2.8287 0.0997 . 
mutation:time_fct 3 0.0187 0.0062 0.0529 0.9838   
fraction:time_fct 3 1.5439 0.5146 4.3557 0.0090 ** 
Residuals 44 5.1986 0.1181       
         
Model 6        
  Df Sum Sq Mean Sq F value Pr(>F)   
mutation 1 0.1318 0.1318 1.1786 0.2829   
fraction 1 2.6370 2.6370 23.5853 1.26E-05 *** 
time 1 33.2987 33.2987 297.8260 1.83E-22 *** 
I(time^2) 1 0.1264 0.1264 1.1308 0.2928   
batch 3 51.2788 17.0929 152.8803 7.18E-25 *** 
mutation:fraction 1 0.3342 0.3342 2.9892 0.0901 . 
mutation:time 1 0.0017 0.0017 0.0155 0.9014   
fraction:time 1 1.1771 1.1771 10.5281 0.0021 ** 
Residuals 49 5.4785 0.1118       
Significance Codes:   . p<0.1; * p<0.05; ** p<0.01; *** p<0.001  

 

 

 

 

 

 

 

 

       Figure 4. Interaction plot of fraction and time (model 5). 
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We also fit a second-order model, with “time” as numeric and “ratio” as the response variable, to 

assess the linear and quadratic effect of time. The linear and quadratic components of “time” was 

assessed with terms “time” and “time2”, respectively. The estimated parameters of the full 

model, with the response variable logarithmically transformed, are listed in Table 7 (Model 6). 

The Boxcox plot, residual plots and QQ plots of the model are shown in Figure S6. The final 

fitted model based on stepwise regression was: 

𝑙𝑜𝑔(𝑟𝑎𝑡𝑖𝑜) = −1.13	 + 	0.21	 ∗ 	𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛1	 + 0.33	 ∗ 	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1 − 0.31 ∗ 𝑡𝑖𝑚𝑒 − 2.00

∗ 𝑏𝑎𝑡𝑐ℎ2 − 1.16 ∗ 𝑏𝑎𝑡𝑐ℎ3 + 0.27 ∗ 𝑏𝑎𝑡𝑐ℎ4	 − 	0.32	 ∗ 	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛1: 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1

+ 0.10 ∗ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1: 𝑡𝑖𝑚𝑒																																																																																											(6) 

 

The adjusted R2 of the reduced model was 0.9327 (Table 7). The regression and ANOVA results 

revealed that fraction, time, batch, and the interaction between fraction and time were significant 

factors associated with the dependent variable at a = 0.05 (Tables 7 and 8). Interestingly, the 

quadratic effect of time was not significant even at a = 0.1.  

 

The blocking effect of “batch” is significant in models 5 and 6 at a = 0.05, unlike in models 1, 2, 

and 4. This can be explained by the high variance in the response variable, “ratio”, among 

batches in models 5 and 6. On the other hand, the response variable in models 1 to 4 is either the 

exponential time constant or the variable “percent_of_0hr”. The calculation of these response 

variables involved dividing of the amount of protein at later time points by that at the 0-hour 

time point (Figure 2). Thus, the transformation of “ratio” to time constant or “percent_of_0hr” 

might have reduced the variance in the response variable among batches, resulting in similar 

effect to including “batch” as a blocking variable in a regression model. 
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3.4 MANOVA analyses 

To investigate how the amount of protein at a specific time point was affected by or associated 

with mutation and fraction, we grouped variables “percent_of_0hr” and “ratio” by time points 

and used them as the dependent variables in MANOVA tests. In a model assessing the effect of 

factors on “percent_of_0hr”, there were three dependent variables, corresponding to the 

percentage of protein at the 2.5, 5, and 7.5-hour time points. The 0-hour time point was excluded 

because the value of “percent_of_0hr” was always 100%. The response variables were 

logarithmically transformed so that a normal distribution was satisfied (Table 9). A linear model 

of “mutation” and “fraction”, with “batch” as a blocking variable, was fit to the data. The 

MANOVA analysis indicated that “fraction”, but not “mutation” or “batch”, was a significant 

factor at a = 0.05 (Table 10). Multiple univariate ANOVA further revealed that “fraction” was 

significant to all three response variables, suggesting that any of the 3 timepoints could be used 

to study the effect of fraction on the remaining amount of protein expressed as “percent_of_0hr” 

(Table 10). 

 

Table 9. Shapiro-Wilk normality test of the response variables in MANOVA analyses. 
 

 

 

 

 

 

 

  original   log-transformed 
  W p-value W p_value 
percent_of_0hr_2.5 0.9332 0.3044 0.8954 0.0810 
percent_of_0hr_5 0.8395 0.0124 0.9680 0.8272 
percent_of_0hr_7.5 0.9252 0.2309 0.8952 0.0804 
ratio_0 0.8657 0.0292 0.8888 0.0644 
ratio_2.5 0.8772 0.0430 0.9220 0.2063 
ratio_5 0.8597 0.0239 0.9241 0.2221 
ratio_7.5 0.8461 0.0153 0.9528 0.5689 
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Table 10. MANOVA and multiple univariate ANOVA analyses with “percent_of_0hr” as the 
response variables. Responses 1, 2, and 3 represents “percent_of_0hr” at 2.5-, 5-, and 7.5-hour 
time points, respectively. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In another MANOVA test, the response variables were “ratio” grouped by 0, 2.5, 5, and 7.5-hour 

time points. We also transformed the response variables logarithmically to achieve normal 

distribution of the data (Table 9). A linear model of “mutation”, “fraction”, and the blocking 

variable “batch” was fit to the data. MANOVA result showed that none of the factors or their 

interaction was significant at a = 0.05 (Table 11). However, multiple univariate ANOVA 

revealed that “fraction” was significantly associated with protein level at 2.5- and 5-hour time 
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points at a = 0.05 (Table 11). Therefore, we could use either of the two time points to assess the 

effect of “fraction” on the amount of remaining protein expressed as “ratio”. The effect of 

“batch” was significant to all the dependent variable at a = 0.05, implying high variance among 

batches at all the time points. Taken together, 2.5 and 5 hours would be reasonable time points to 

study the decay of Cx43 protein in different subcellular fractions. 

 

Table 11. MANOVA and multiple univariate ANOVA analyses with “ratio” as the response 
variables. Responses 1, 2, 3, and 4 represents “ratio” at 0-, 2.5-, 5-, and 7.5-hour time points, 
respectively. 
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CHAPTER 4 

Summary 

 

We applied multiple statistical models to fit the data of Cx43 protein degradation to examine the 

effect of subcellular fraction and mutation on protein stability. The dependent variables in our 

models included the exponential time constant (models 1, 2), the percentage of remaining protein 

to the initial amount (models 3, 4), and the ratio of the amount of labeled protein to that of the 

total protein (models 5, 6). The analyses consistently indicated that fraction, but not mutation, 

had a significant effect on Cx43 protein degradation, with the protein being more stable in the 

junctional membrane fraction than in the non-junctional fraction (Tables 2-3, 5-8). The overall fit 

of the final models 5 and 6 was the best among the models tested, with the adjusted R2 around 

0.93 (Table 7). On the other hand, the adjusted R2 of the final models 1 and 2 was 0.58 and 0.65, 

respectively (Table 2), which is probably due to the reduced degrees of freedom in the two 

models compared to the others. The difference between models 1 and 2 is how exponential 

regression was conducted to deduce the time constant of the Cx43 protein. In model 1 linear 

regression models were fit to logarithmically transformed response variable, whereas a nls (non-

linear least square) method was used in model 2. MANOVA analyses with the response variables 

being the amount of proteins at various time points revealed that the effect of mutation and 

fraction on the degradation of Cx43 protein was evident at the 2.5 and 5-hour time points (Tables 

10 and 11). For similar experiments in the future, extending the chase period to 7.5 hours might 

not be necessary, which could help shorten the duration of experiments. 
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The finding that the subcellular location of Cx43 affects protein stability, with the protein being 

more stable in the junctional fraction than the non-junctional fraction, implies that it is better to 

keep the protein on the membrane to extend its life. Therefore, to correct for the mis-localization 

of Cx43 and its overall reduced expression in arrhythmic failing hearts, we should consider 

increasing protein production, together with rapid delivery of the protein to the junctional 

fraction to minimize protein degradation. 
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APPENDIX 

Supplemental figures 

 

A         B    C 

 

 

 

 

 

Figure S1. Residual plot (A), QQ plot(B), and the Boxcox plot (C) of model 1. lmax = 0.950, 

suggesting that it is not necessary to transform the response variable, t. 

 

Residuals and QQ plots Boxcox plot

(! = 0.950)

Residuals and QQ plots Boxcox plot

(! = 0.950)
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A    B    E 

    
 
 

C    D 
 

 

 

 

 

Figure S2. Residual plot of model 2 before (A) and after transforming t (C), QQ plot before (B) 
and after transforming t (D), and the Boxcox plot (E). lmax = 0.222, suggesting a logarithmic 
transformation of t. 
 

  

 

  

Residuals and QQ plots Boxcox plot

(! = 0.222)

Residuals and QQ plots Boxcox plot

(! = 0.222)

Residuals and QQ plots
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A    B    E 

   
 
 

C    D     
 
 

 

 

 

 
Figure S3. Residual plot of model 3 before (A) and after (C) transforming the response variable, 
QQ plot before (B) and after (D) transforming the response variable, and the Boxcox plot of 
model 3 (E). lmax = 0.586, suggesting a square-root transformation of the response variable. 
 

  

Residuals and QQ plots

Before 
transformation

After 
transformation

Boxcox plot

(! = 0.586)

Residuals and QQ plots

Before 
transformation

After 
transformation

Boxcox plot

(! = 0.586)

Residuals and QQ plots

Before 
transformation

After 
transformation

Boxcox plot

(! = 0.586)
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A    B    E 

 
C    D     

 
 
Figure S4. Residual plot of model 4 before (A) and after (C) transforming the response variable, 
QQ plot before (B) and after (D) transforming the response variable, and the Boxcox plot of 
model 4 (E). lmax = 0.424, suggesting a square-root transformation the response variable.  
  

Residuals and QQ plots

Before transformation

After transformation

Boxcox plot

(! = 0.424)

Residuals and QQ plots

Before transformation

After transformation

Boxcox plot

(! = 0.424)
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After transformation

Boxcox plot

(! = 0.424)
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A          B    E 
   
 
 
 
 
 
 

 
 
             

C          D      
 
 
 
 
 
 
 
 
 
 

Figure S5. Residual plot of model 5 before (A) and after (C) transforming the response variable, 
QQ plot before (B) and after (D) transforming the response variable, and the Boxcox plot of the 
model (E). lmax = 0.101, suggesting a logarithmic transformation the response variable. 
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A           B       E 
 
 
 
 
 
 
 

 
 
 

C           D 
 
 
 
 
 
 
 
 
 
 

Figure S6. Residual plot of model 6 before (A) and after (C) transforming the response variable, 
QQ plot before (B) and after (D) transforming the response variable, and the Boxcox plot of the 
model (E). lmax = 0.061, suggesting a logarithmic transformation the response variable.  
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