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Abstract: Any given density matrix can be represented as an infinite number of ensembles of pure
states. This leads to the natural question of how to uniquely select one out of the many, apparently
equally-suitable, possibilities. Following Jaynes’ information-theoretic perspective, this can be framed
as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit
the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow
us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After
formulating the principle mathematically, we give the analytical solution to the maximization problem
in a number of cases and discuss the physical mechanism behind the emergence of such maximum
entropy ensembles.

Keywords: quantum mechanics; geometric quantum mechanics; maximum entropy estimation;
density matrix

PACS: 05.45.-a; 89.75.Kd; 89.70.+c; 05.45.Tp

1. Introduction
1.1. Background

Quantum mechanics defines a system’s state |ψ⟩ as an element of a Hilbert space
H. These are the pure states. To account for uncertainties in a system’s actual state |ψ⟩,
one extends the definition to density operators ρ that act on H. These operators are linear,
positive semidefinite ρ ≥ 0, self-adjoint ρ = ρ†, and normalized Tr ρ = 1. ρ, then, is a pure
state when it is also a projector: ρ2 = ρ.

The spectral theorem guarantees that one can always decompose a density operator as
ρ = ∑i λi|λi⟩⟨λi|, where λi ∈ [0, 1] are its eigenvalues and |λi⟩ its eigenvectors. Ensemble
theory [1,2] gives the decomposition’s statistical meaning: λi is the probability that the
system is in the pure state |λi⟩. Together, they form ρ’s eigenensemble L(ρ) :=

{
λj,
∣∣λj
〉}

j,

which, putting degeneracies aside for a moment, is unique. L(ρ), however, is not the
only ensemble compatible with the measurement statistics given by ρ. Indeed, there is an
infinite number of different ensembles that give the same density matrix: {pk, |ψk⟩}k such
that ∑k pk|ψk⟩⟨ψk| = ∑j λj

∣∣λj
〉〈

λj
∣∣. Throughout the following, E(ρ) identifies the set of all

ensembles of pure states consistent with a given density matrix.

1.2. Motivation

Since the association ρ → E(ρ) is one-to-many, it is natural to ask whether a meaning-
ful criterion to uniquely select an element of E(ρ) exists. This is a typical inference problem,
and a principled answer is given by the maximum entropy principle (MEP) [3–5]. Indeed,
when addressing inference given only partial knowledge, maximum entropy methods have
enjoyed marked empirical success. They are broadly exploited in science and engineering.
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Following this lead, the following answers the question of uniquely selecting an
ensemble for a given density matrix by adapting the maximum entropy principle. We also
argue in favor of this choice by studying the dynamical emergence of these ensembles in a
number of cases.

The development is organized as follows. Section 2 discusses the relevant literature
on this problem. It also sets up language and notation. Section 3 gives a brief summary of
Geometric Quantum Mechanics: a differential-geometric language to describe the states and
dynamics of quantum systems [6–23]. Then, Section 4 introduces the technically pertinent
version of MEP—the Maximum Geometric Entropy Principle (MaxGEP). Section 5 discusses
two mechanisms that can lead to the MaxGEP and identifies different physical situations in
which the ensemble can emerge. Eventually, Section 6 summarizes what this accomplishes
and draws several forward-looking conclusions.

2. Existing Results

The properties and characteristics of pure-state ensembles is a vast and rich research
area, one whose results are useful across a large number of fields from quantum information
and quantum optics to quantum thermodynamics and quantum computing, to mention
only a few. This section discusses four sets of results relevant to our purposes. This also
allows introducing language and notation.

First, recall Ref. [24], where Hughston, Josza, and Wootters gave a constructive charac-
terization of all possible ensembles behind a given density matrix, assuming an ensemble
with a finite number of elements. Second, Wiseman and Vaccaro, in Ref. [25], then argued
for a preferred ensemble via the dynamically motivated criterion of a Physically Realizable
ensemble. Third, Goldstein, Lebowitz, Tumulka, and Zanghi singled out the Gaussian
Adjusted Projected (GAP) measure as a preferred ensemble behind a density matrix in a
thermodynamic and statistical mechanics setting [26]. Fourth, Brody and Hughston used
one form of maximum entropy within geometric quantum mechanics [27].

2.1. HJW Theorem

At the technical level, one of the most important results for our purposes is the
Hughston–Josza–Wootters (HJW) theorem, proved in Ref. [24], which we now summarize.

Consider a system with finite-dimensional Hilbert space HS described by a density
matrix ρ with rank r: ρ = ∑r

j=1 λj
∣∣λj
〉〈

λj
∣∣. We assume dimHS := dS = r, since the case in

which dS > r is easily handled by restricting HS to the r-dimensional subspace defined by
the image of ρ. Then, a generic ensemble eρ ∈ E(ρ) with d ≥ dS elements can be generated
from L(ρ) via linear remixing with a d × dS matrix M having as columns dS orthonormal
vectors. Then, eρ = {pk, |ψk⟩} is given by the following:

√
pk|ψk⟩ =

dS

∑
j=1

Mkj

√
λj
∣∣λj
〉

.

Equivalently, one can generate ensembles applying a generic d × d unitary matrix U

to a list of d non-normalized dS-dimensional states in which the first dS,
{√

λj
∣∣λj
〉}dS

j=1
, are

proportional to the eigenvectors of ρ, while the remaining d − dS are simply null vectors:

√
pk|ψk⟩ =

dS

∑
j=1

Ukj

√
λj
∣∣λj
〉

.

Here, we must remember that U is not an operator acting on HS but a unitary matrix
mixing weighted eigenvectors into d non-normalized vectors.

The power of the HJW theorem is not only that it introduces a constructive way to
build E(ρ) ensembles but that this way is complete. Namely, all ensembles can be built in
this way. This is a remarkable fact, which the following sections rely heavily on.
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2.2. Physically Realizable Ensembles

For our purposes, a particularly relevant result is that of Wiseman and Vaccaro [25].
(See also subsequent results by Wiseman and collaborators on the same topic [28]). The
authors argue for a Physically Realizable ensemble that is implicitly selected by the fact that
if a system is in a stationary state ρss, one would like to have an ensemble that is stable
under the action of the dynamics generated by monitoring the environment. This is clearly
desirable in experiments in which one monitors an environment to infer properties about
the system. While this is an interesting way to answer the same question we tackle here,
their answer is based on dynamics and limited to stationary states. The approach we
propose here is very different, being based on an inference principle. This opens interesting
questions related to understanding the conditions under which the two approaches provide
compatible answers. Work in this direction is ongoing and it will be reported elsewhere.

2.3. Gaussian Adjusted Projected Measure

Reference [26] asks a similar question to that here but in a statistical mechanics and
thermodynamics context. Namely, viewing pure states as points on a high-dimensional
sphere ψ ∈ S2dS−1, which probability measure µ on S2dS−1, interpreted as a smooth ensemble
on S2dS−1, leads to a thermal density matrix:

ρth
?
=
∫

dψµ(ψ)|ψ⟩⟨ψ|

Here, ρth could be the microcanonical or the canonical density matrix. Starting with
Schrödinger’s [29,30] and Bloch’s [31] early work, the authors argue in favor of the Gaussian
Adjusted Projected (GAP) measure. This is essentially a Gaussian measure, adjusted and
projected to live on ψ ∈ S2dS−1:

GAP(σ) ∝ e−⟨ψ|σ−1|ψ⟩ .

Written explicitly in terms of complex coordinates ψj, it is clear that this is a Gaussian
measure with vanishing average E[ψj] = 0 and covariance specified by E[ψ∗

j ψk] = σjk. In
particular, σ = ρ guarantees that GAP(ρ) has ρ as density matrix.

The GAP measure has some interesting properties [26,32,33] and, as we see in Section 4,
it is also closely related to one of our results in a particular case. Our results can therefore
be understood as a generalization of the GAP measure. We will not delve deeper into this
matter now but comment on it later.

2.4. Geometric Approach

In 2000, Brody and Hughston performed the first maximum entropy analysis for the
ensemble behind the density matrix [27], in a language and spirit that is quite close to
those we use here. Their result came before the definition of the GAP measure, but it is
essentially identical to it: µ(ψ) ∝ exp

(
−∑j,k Ljkψ∗

j ψk

)
. Their perspective, however, is very

different from that in Ref. [26], which is focused on thermal equilibrium phenomenology.
The work we perform here, and our results, can also be understood as a generalization of
Ref. [27]. Indeed, as we argued in Ref. [34] (and will show again in Section 4), the definition
of entropy used (see Equation (10) in Ref. [27]) is meaningful only in certain cases, in
particular, when the ensemble has support with dimension equal to the dimension of the
state space of the system of interest. In general, more care is required.

2.5. Summary

We summarized four relevant sets of results on selecting one ensemble among the
infinitely many that are generally compatible with a density matrix. Our work relies heavily
on the HJW theorem [24], and it is quite different from the approach by Wiseman and
Vaccaro [25]. Moreover, it constitutes a strong generalization with respect to the results on
the GAP measure [26] in a thermal equilibrium context and with respect to the analysis by
Brody and Hughston in [27].
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3. Geometric Quantum States

Our maximum geometric entropy principle relies on a differential-geometric approach
to quantum mechanics called Geometric Quantum Mechanics (GQM). The following gives a
quick summary of GQM and how its notion of Geometric Quantum State [6,7,34] can be
elegantly used to study physical and information-theoretic aspects of ensembles. More
complete discussions are found in the relevant literature [8–23].

3.1. Quantum State Space

The state space of a finite-dimensional quantum system with Hilbert space HS is
a projective Hilbert space P(HS), which is isomorphic to a complex projective space
P(HS) ∼ CPdS−1 :=

{
Z ∈ CdS : Z ∼ λZ, λ ∈ C/0

}
. Pure states are thus in one-to-one

correspondence with points Z ∈ CPdS−1. Using a computational basis as reference basis
{|j⟩}dS

j=1, Z has homogeneous coordinates Z = (Z1, . . . , ZdS) where |Z⟩ = ∑dS
j=1 Zj|j⟩ ∈ HS.

One of the advantages in using the geometric approach is that one can exploit the symplectic
character of the state space. Indeed, this implies that the quantum state space CPn can
essentially be considered as a classical, although curved, phase space. With probability
and phases being canonically conjugated coordinates, Zj =

√pje
iϕj , we have

{
pj, ϕk

}
= δjk.

The intuition from classical mechanics can then be used to understand the phenomenology
of quantum systems.

3.2. Observables

Within GQM, observables are Hermitian functions from CPdS−1 to the reals:

fO(Z) :=
dS

∑
j,k=1

Zj∗ZkOjk/

√√√√ dS

∑
h=1

|Zh|2 ,

where Ojk = ⟨j|O|k⟩ are the matrix elements of the Hilbert space self-adjoint operator O.
An analogous relation holds for Positive Operator-Valued Measures (POVMs).

3.3. Geometric Quantum States

The quantum state space P(HS) has a preferred metric gFS and a related volume
element dVFS—the Fubini–Study volume element. The details surrounding these go beyond
our present purposes. It is sufficient to give dVFS’s explicit form in the coordinate system
we use for concrete calculations. This is the “probability + phase” coordinate system, given
by Z ↔

{
(pj, ϕj)

}dS
j=1:

dVFS =
√

det gFS

dS

∏
j=1

dZjdZj∗ =
dS

∏
j=1

dpjdϕj

2
.

This volume element can be used to define integration. Indeed, calling Vol[B] the
volume of a set B ⊆ P(HS), we have Vol[B] :=

∫
B dVFS. In turn, this provides the

fundamental, unitarily invariant, notion of a uniform measure on the quantum state space.
This is the normalized Haar measure µHaar:

µHaar[B] = Vol[B]/Vol[P(HS)] .

µHaar is a probability measure that weights all pure states uniformly with the total
Fubini–Study volume of the quantum state space. Probability measures [35,36] are the
appropriate mathematical formalization behind the physical notion of ensembles and they
formalize the concept of a Geometric Quantum State (GQS): A probability measure on
the (complex projective) quantum state space. For example, a pure state corresponds
to a Dirac measure δψ with support on a single point ψ ∈ P(HS), with Hilbert space
representation |ψ⟩.
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3.4. GQS as Conditional Probability Measures

One way to embed the HJW theorem in this geometric context is the following.
Any density matrix can be purified in an infinite number of different ways. A pu-

rification |ψ(ρ)⟩ of ρ is a pure state in a larger Hilbert space |ψ(ρ)⟩ ∈ HS ⊗HE such that
TrE|ψ(ρ)⟩⟨ψ(ρ)|, where TrE is the partial trace over the additional Hilbert space HE. It is
known that, for the purification to be achieved, dE ≥ r. Since we assume r = dS, we have
dE ≥ dS. Any purification of ρ will have a Schmidt decomposition of a specific type:

|ψ(ρ)⟩ =
dS

∑
j=1

√
λj
∣∣λj
〉∣∣SPj

〉
,

where
{∣∣SPj

〉
∈ HE

}dS
j=1 are the dS orthonormal “Schmidt partners”. These can be extended

to a full orthonormal basis on HE by adding dE − dS orthonormal vectors which are
orthogonal to span(

{∣∣SPj
〉}

j).

L(ρ) is therefore understood as the ensemble resulting from conditioning on the
Schmidt partners. Namely, when measuring the environment in the basis

{∣∣SPj
〉}dE

j=1, the

state of the system after the measurement will be
∣∣λj
〉

with probability λj. Its GQS is

µL = ∑dS
j=1 λjδλj . If we now measure the environment in a generic basis, instead of using

the Schmidt partners, we generate a different ensemble. Calling {|vα⟩}dE
α=1 one such basis,

we have:
dS

∑
j=1

√
λj
∣∣λj
〉∣∣SPj

〉
=

dE

∑
α=1

√
pα|χα⟩|vα⟩ ,

with
√

pα|χα⟩ = IS ⊗ |vα⟩⟨vα|ψ(ρ)⟩, {pα, |χα⟩}dE
α=1 ∈ E(ρ), and GQS µ = ∑dE

α=1 pαδχα .
Starting from the Schmidt partners, these bases are in one-to-one correspondence with

dE × dE unitary matrices acting on HE: |vα⟩ := U|SPα⟩. And these, in turn, are in one-to-
one correspondence with the unitary matrices in the HJW theorem. Therefore, they are an
analogously complete classification of ensembles. The reason for this slight rearrangement
of things with respect to the HJW theorem is that we now have an interpretation of |χα⟩ as
the conditionally pure state of the system, conditioned on the fact that we make a projective
measurement {|vα⟩}dE

α=1 on the environment where the result α occurs with probability pα.

3.5. Quantifying Quantum Entropy

To develop entropy, the following uses the setup in Refs. [6,7,34] to study the physics
of ensembles using geometric quantum mechanics. Since the focus here is a maximum
entropy approach to select an ensemble behind a density matrix, it is important to have a
proper understanding of how to quantify the entropy of an ensemble or, equivalently, of
the GQS.

First, we look at the statistical interpretation of the pure states which participate in
the conditional ensembles {pα, |χα⟩}. The corresponding kets {|χα⟩} are not necessarily
orthogonal

〈
χα

∣∣χβ

〉
̸= δαβ, so the states are not mutually exclusive or distinguishable in

the Fubini–Study sense. However, these states come with the classical labels α → |χα⟩
associated with the outcomes of projective measurements on the environment. In this sense,
if α ̸= β, we have a classical way to distinguish them, and thus we can understand how to
interpret expressions like −∑α pα log pα.

Then, we highlight that the correct functional to use to evaluate the entropy of µ is not
always the same. It depends on another feature of the ensemble, the quantum information
dimension, which is conceptually related to the dimension of its support in quantum state
space. To illustrate the concept, consider the following four GQSs of a qubit:

µ1 = δψ µ2 = ∑
k

pkδψk

µ3 =
1
T

∫ T

0
dtδψ(t) µ4 = µHaar .
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Naturally, the entropy of µ1 vanishes, since there is no uncertainty. The system inhabits
only one pure state, ψ. The entropy of µ2 is already nontrivial to evaluate. Indeed, while
one obvious way is to use the functional −∑k pk log pk, it is also very clear that this notion
of entropy does not take into account the location of the points ψk ∈ P(HS). Intuitively, if
all these points are close to each other, we would like our entropy to be smaller than in the
case in which all the points are uniformly distributed on ψk ∈ P(HS).

The entropy of µ3 is perhaps the most peculiar, but it illustrates the points in the best
way. Let us assume that our qubit is evolving with a Hamiltonian H such that E1 − E0 = h̄ω.
Then, ψ(t) = (

√
1 − p0,

√
p0eiϕ0−ωt). If we aggregate the time average and look at the

statistics we obtain, it is clear that the variable p is a conserved quantity—p(t) = p0, while
ϕ(t) = ϕ0 −ωt is an angular variable that, over a long time, will be uniformly distributed in
[0, 2π]. This means limT→∞ µ3 = 1

2π δ
p
p0 , where δ

p
p0 is a Dirac measure over the first variable

p with support on p = p0. How do we evaluate the entropy of µ3?
While to evaluate µ4 = µHaar we simply integrate over the whole state space and

obtain log Vol(CP1), this does not work for µ3. Indeed, with respect to the full, 2D quantum
state space (p, ϕ) ∈ [0, 1]× [0, 2π], the distribution clearly lives on a 1D line, which is a
measure-zero subset.

To properly address all these different cases, a more general approach is needed.
Reference [34] adapted previous work by Renyi to probability measures on a quantum state
space. This led to the notions of Quantum Information Dimension D and Geometric Quantum
Entropy HD that address these issues and properly evaluate the entropy in all these cases.
We now give a quick summary of the results in Ref. [34].

3.6. Quantum Information Dimension and Geometric Entropy

Thanks to the symplectic nature of P(HS), the quantum state space is essentially
a curved, compact, classical phase space. We can therefore apply classical statistical
mechanics to it, using

{
(pj, ϕj)

}dS
j=1 as canonical coordinates. Since the Fubini–Study

volume is dVFS ∝ ∏j dpjdϕj, we can coarse-grain P(HS) by partitioning it into phase-space
cells C⃗a,⃗b:

C⃗a⃗b =
dS−1

∏
j=1

[ aj

N
,

aj + 1
N

]
× 2π

[ bj

N
,

bj + 1
N

]
of equal Fubini–Study volume Vol

[
C⃗a⃗b

]
= Vol[P(HS)]

N2(dS−1) = ϵ−2(dS−1), where a⃗ = (a1, . . . , adS−1),

b⃗ = (b1, . . . , bdS−1) and aj, bj = 0, 1, . . . , N.
The coarse-graining procedure produces a discrete probability distribution

q⃗a⃗b := µ[C⃗a⃗b], for which we can compute the Shannon entropy:

H[ϵ] := −∑
a⃗,⃗b

q⃗a⃗b log q⃗a⃗b .

As we change ϵ = 1/N → 0, the degree of coarse-graining changes accordingly. The
scaling behavior of H[ϵ] provides structural information about the underlying ensemble.
Indeed, since one can prove that for ϵ → 0, H[ϵ] has asymptotics

H[ϵ] ∼ϵ→0 D(− log ϵ) + hD ,

two quantities define its scaling behavior: D is the quantum information dimension and
hD is the geometric quantum entropy. Their explicit definitions are:

D := lim
ϵ→0

H[ϵ]

− log ϵ
, (1a)

hD := lim
ϵ→0

(H[ϵ] +D log ϵ) . (1b)

Note how this keeps the dependence of the entropy on the information dimension
explicit. This clarifies how, only in certain cases, one can use the continuous counterpart
of Shannon’s discrete entropy. In general, its exact form depends on the value of D and
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it cannot be written as an integral on the full quantum state space with the Fubini–Study
volume form.

4. Principle of Maximum Geometric Quantum Entropy

This section presents a fine-grained characterization of selecting an ensemble behind a
given density matrix. This leverages both the HJW theorem and previous results by the
authors. First, we note that D foliates E(ρ) into non-overlapping subsets ED(ρ) collecting
all ensembles µ at given density matrix ρ and with information dimension D:

ED(ρ) ∩ E
D

′ (ρ) = δ
D,D′ ED(ρ) , E(ρ) = ∪DED(ρ) .

As argued above, ensembles with different D pertain to different physical situations.
These can be wildly different. Therefore, we often want to first select the D of the ensemble
we will end up with and then choose that with the maximum geometric entropy. Thus, here
we introduce the principle of maximum geometric entropy at fixed information dimension.

Proposition 1 (Maximum Geometric Entropy Principle). Given a system with density matrix
ρ, the ensemble µD

ME that makes the fewest assumptions possible about our knowledge of the ensemble
among all elements of E(ρ) with fixed information dimension dimension D is given by:

µD
ME := arg max

µ∈ED(ρ)

hD .

Several general comments are in order. First, we note that µD
ME might not be unique.

This should not come as a surprise. For example, with degeneracies, even the eigenensemble
is not unique. Second, the optimization problem defined above is clearly constrained: the
resulting ensemble has to be normalized and the average of (Zj)

∗Zk must be ρjk. Calling
Eµ[A] the state space average of a function A performed with the GQS µ, these two
constraints can be written as C1 := Eµ[1]− 1 = 0 and C

ρ
jk := Eµ[(Zj)

∗Zk]− ρjk = 0. Using

Lagrange multipliers, we optimize Λ[µ, γ1,
{

γjk

}
] defined as:

Λ[µ, γ1,
{

γjk

}
] := hD[µ] + γ1C1 + ∑

j,k
γjkC

ρ
jk .

While the vanishing of Λ’s derivatives with respect to the Lagrange multipliers γ1, γjk

enforces the constraints C1 = C
ρ
jk = 0, derivatives with respect to µ give the equation whose

solution is the desired ensemble µD
ME. We also note that the

{
γjk

}
are not all independent.

This is due to the fact that ρ is not an arbitrary matrix: Tr ρ = 1, ρ ≥ 0, and ρ† = ρ. A
similar relation holds for γjk.

To illustrate its use, we now solve this optimization problem in a number of relevant
cases. In discussing them, it is worth introducing additional notation. Since we often use
canonically conjugated coordinates,

{
(pj, ϕj)

}dS
j=1, we introduce vector notation ( p⃗, ϕ⃗), with

p⃗ ∈ ∆dS−1 and ϕ⃗ ∈ TdS−1, where ∆dS−1 is the (dS − 1)-dimensional probability simplex and

TdS−1 is the (dS − 1)-dimensional torus. Analogously, we introduce the Dirac measures δ
p⃗
x⃗

and δ
ϕ⃗
φ⃗ with support on x⃗ ∈ ∆dS and φ⃗ ∈ TdS , respectively.

4.1. Finite Environments: D = 0

If D = 0, then the support of the ensemble is made by a number of points, which
is a natural number. That is, there exists N ∈ N such that µD=0

ME = ∑N
α=1 pαδχα , with

h0 = −∑N
α=1 pα log pα. Note how this is the HJW theorem’s domain of applicability, and

this allows us to give a constructive solution.
We start by noting that N also foliates ED=0 into non-overlapping sets in which

the ensemble consists of exactly N elements. We call this set E0,N(ρ) and it is such that
E0,N(ρ) ∩ E0,N′ (ρ) = δN,N′ E0,N(ρ), with ED=0(ρ) = ∪N≥dSE0,N(ρ). Within E0,N(ρ), we can
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use the HJW theorem with the interpretation in which the ensemble is the conditional
ensemble. Here, pα and χα are generated by creating a purification of dimension N, in
which the first dS elements of the basis

{∣∣SPj
〉}dS

j=1 are fixed and the remaining N − dS are
free. We denote the entire basis of this type with the same symbol but a different label:
{|SPα⟩}N

α=1. The ensemble we obtain if we measure it is the eigenensemble L(ρ).
However, measuring in a different basis yields a general ensemble, with probabilities

pα = ⟨ψ(ρ)|IS ⊗ |vα⟩⟨vα|ψ(ρ)⟩ = ∑dS
j=1 λj

∣∣〈SPj
∣∣vα

〉∣∣2 and states |χα⟩ = ∑dS
j=1

√
λj
⟨vα|SPj⟩√

pα

∣∣λj
〉
.

With h0 = −∑α pα log pα, the absolute maximum is attained at pα = 1/N. We now show,
constructively, that this is always achievable while still satisfying the constraints C1 = C

ρ
ij = 0,

thus solving the maximization problem.
This is achieved by measuring the environment in a basis that is unbiased with respect

to the Schmidt partner basis:

|vα⟩ :
〈
vα

∣∣SPβ

〉
=

eiθαβ

√
N

∀α, β = 1, . . . , N. (2)

One such basis can always be built starting from {|SPα⟩}α by exploiting the properties
of the Weyl–Heisenberg matrices via the clock-and-shift construction [37]. This is true
for all N ∈ N. When N = ∏k nNk

k with nk primes and Nk some integers, the finite-field
algorithm [38,39] can be used to build a whole suite of N bases that are unbiased with
respect to the Schmidt partner basis. This leads to |χα⟩ = ∑dS

j=1

√
λje

iθαj
∣∣λj
〉

and to:

µD=0
ME = δ

p⃗
λ⃗

1
N

N

∑
α=1

δ
ϕ⃗

θ⃗α
, h0 = log N ,

with λ⃗ = (λ1, . . . , λdS) and θ⃗α = (θα0, . . . , θαdS).
To conclude this subsection, we simply have to show that this ensemble satisfies the

constraints: C1 = 0 and that the density matrix given by µD=0
ME is ρ, giving C

ρ
jk = 0:

[σME]jk := EµD=0
ME

[(
Zj
)∗

Zk
]
=

√
λjλk

N

N

∑
α=1

ei(θαj−θαk)

=
√

λjλkδjk = λkδjk = ρjk .

Here, the key property used is that 1
N ∑N

α=1 ei(θαγ−θαβ) =
〈
SPβ

∣∣∑N
α=1|vα⟩⟨vα||SPγ⟩ =

δβγ, which comes from Equation (2) and the fact that {|vα⟩}α is a basis.

4.2. Full Support: D = 2(dS − 1)

The second case of interest is the one in which the quantum information dimension
takes the maximum value possible, namely D = 2(dS − 1). Then, the GQS’s support has
the same dimension as the full quantum state space and the optimization problem is also
tractable. This is indeed the case solved by Brody and Hughston [27]. We do not reproduce
the treatment here, which is almost identical in the language of GQM. Rather, we discuss
some of its physical aspects from the perspective of conditional ensembles.

If D = 2(dS − 1) and there are no other constraints aside from C1 and Cjk, the measure

µ
2(dS−1)
ME can be expressed as an integral with a density qME with respect to the uniform,

normalized, Fubini–Study measure dVFS:

µ
2(dS−1)
ME [A] =

∫
A
dVFS qME(Z) .

And its geometric entropy h2(dS−1) is the continuous counterpart of Shannon’s func-
tional on the quantum state space:
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h2(dS−1) = −
∫
P(HS)

dVFS q(Z) log q(Z) .

This was proven in Ref. [34]. Hereafter, with a slight abuse of language, we refer to
both µ

2(dS−1)
ME and the density qME(Z) as an ensemble or the GQS.

The maximization problem leads to:

qME(Z) =
1

Q2(dS−1)(ρ)
e−∑jk γjk(Zj)∗Zk

,

Q2(dS−1)(ρ)
∫
P(HS)

dVFS e−∑jk γjk(Zj)∗Zk

and Lagrange multipliers
{

γjk

}
are the solution of the nonlinear equations − ∂ log Q

∂γjk
= ρjk.

We note how using as reference basis the eigenbasis
{∣∣λj

〉}dS
j=1 of ρ and Z ↔ ( p⃗, ϕ⃗) as

coordinate system reveals that ∂ log Q
∂γjk

= 0 when j ̸= k and − ∂ log Q
∂γjj

= λj. Thus, in this

coordinate system the dependence of µ
2(dS−1)
ME on the off-diagonal Lagrange multipliers

disappears and we retain only the diagonal ones γjj.
Moving to a single label γjj → γj and using a vector notation:

q2(dS−1)
ME ( p⃗, ϕ⃗) =

1
Q2(dS−1) (⃗τ)

eτ⃗· p⃗ ,

Q2(dS−1) (⃗τ)
∫

∆dS−1

dp⃗ eτ⃗· p⃗

τ⃗
(
γdS − γ1, γdS − γ2, . . . , γdS − γdS−1

)
Here, Q(⃗τ) is the normalization function (a partition function). Its exact expression

can be derived analytically and it is given in Appendix A.
We can see how µ

2(dS−1)
ME is the product of an exponential measure on the probability

simplex ∆dS−1 and the uniform measure on the high-dimensional torus of the phases TdS−1.
This leads to the following geometric entropy h2(dS−1):

h2(dS−1) (⃗τ) = log Q2(dS−1) (⃗τ)− τ⃗ · λ⃗ . (3)

In this case the explicit expression of the Lagrange multipliers τ⃗ satisfying the con-
straints, which was previously unknown, can be found analytically. This is reported in
Appendix B.

We note that this exponential distribution on the probability simplex was recently
proposed within the context of statistics and data analysis in Ref. [40]. Moreover, the
exponential form associated to the maximum entropy principle is reminiscent of ther-
mal behavior. Indeed, the shape of this distribution is closely related to the geometric
canonical ensemble; see Refs. [7,14,27]. However, the value of the Lagrange multipliers
is set by a different constraint, in which we fix the average energy rather than the whole
density matrix.

4.3. Integer, but Otherwise Arbitrary, D

While one expects D to be an integer, there are GQSs that have fractal support, thus
exhibiting a noninteger D. This was shown in Ref. [34]. This section discusses the generic
case in which D ̸= 0, 2(dS − 1), but it is still an integer. Within ED(ρ), our ensemble µD

ME
has support on a D-dimensional submanifold of the full 2(dS − 1)-dimensional quantum
state space, where it has a density. Reference [34] discusses, in detail, the case in which
D = 1 and dS = 2. Here, we generalize the procedure to arbitrary D and dS.

If the support of µD
ME is contained in a submanifold of dimension D < 2(dS − 1), which

we call SD, we can project the Fubini–Study metric gFS down to P(HS) to get gFS
S . Let us

call X j : ξa ∈ SD → X j(ξa) ∈ P(HS) the functions which embed SD into the full quantum
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state space P(HS). Then, the metric induced on SD is gSab = ∑j,k ∂aX j∂bXkgFS
jk , where

∂a := ∂/∂ξa. Note that here we are using the “real index” notation even for coordinates
X j on P(HS). While P(HS) is a complex manifold, admitting complex homogeneous
coordinates, we can always use real coordinates on it. Then, gS induces a volume form
dω

ξ
S = ωS (dξ) =

√
det gSdξ, where dξ is the Lebesgue measure on the RD which coordi-

natizes SD. Then, µD
ME can be written as:

µD
ME[A ∈ SD] =

∫
A
dω

ξ
S f (ξ) .

Eventually, this leads to:

hD = −
∫
SD

dω
ξ
S f (ξ) log f (ξ) .

This allows rewriting the constraints explicitly in a form that involves only probability
densities on SD:

C1 = µD
ME[SD]− 1 =

∫
SD

dω
ξ
S f (ξ)− 1 ,

Cjk = EµD
ME

[(Zj)∗Zk]− ρjk

=
∫
SD

dω
ξ
S f (ξ)(Zj)∗(ξ)Zk(ξ)− ρjk ,

where Z(ξ) : ξ ∈ SD → Z(ξ) ∈ P(HS) are the homogeneous coordinate representation of
the embedding functions Xa of SD onto P(HS).

The solution of the optimization problem leads to the Gaussian form, in homogeneous
coordinates, with support on SD:

qDME(ξ) =
1

QD
e−∑

dS
j,k=1 γjk(Zj)∗(ξ)Zk(ξ)

QD =
∫
SD

dω
ξ
S e−∑

dS
j,k=1 γjk(Zj)∗(ξ)Zk(ξ) .

Again, we can move from a homogeneous representation to a symplectic one Z(ξ) ↔(
p⃗(ξ), ϕ⃗(ξ)

)
in which the reference basis is the eigenbasis of ρ. This gives ρjk = λjδjk. This,

in turn, means we only need the diagonal Lagrange’s multipliers γjj. As for the previous
case, we move to a single label notation γjj → γj:

qDME(ξ) =
1

QD (⃗τ)
eτ⃗· p⃗(ξ) ,

QD (⃗τ) =
∫
SD

dω
ξ
S eτ⃗· p⃗(ξ)

τ⃗
(
γdS − γ1, γdS − γ2, . . . , γdS − γdS−1

)
with an analytical expression for the entropy:

hD (⃗τ) = log QD (⃗τ)− τ⃗ · λ⃗ .

While this solution appears to have much in common with the D = 2(dS − 1) case,
there are profound differences. Indeed, the functions p⃗(ξ) can be highly degenerate, since
we are embedding a low-dimensional manifold, SD, into a higher one, P(HS). Indeed, the
coordinates ξ emerge from coordinatizing a submanifold of dimension D within one of
dimension 2(dS − 1). This means that for SD there are 2(dS − 1)−D independent equations
of the type {Kn(Z) = 0}2(dS−1)−D

n=1 . In general, we expect them to be highly nonlinear
functions of their arguments. While choosing an appropriate coordinate system allows
simplifying, this choice has to be made on a case-by-case basis. In specific cases, discussed
in the next section, several exact solutions can be found analytically.
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4.4. Noninteger D: Fractal Ensembles

As Ref. [34] showed, even measuring the environment in a local basis can lead to
GQSs with noninteger D. For example, if we explicitly break the translational invariance
of the spin-1/2 Heisenberg model in 1D by changing the local magnetic field of one spin,
the GQS of one of its spin-1/2 is described by a fractal resembling Cantor’s set in the
thermodynamic limit of an infinite environment. Its quantum information dimension
and geometric entropy have been estimated numerically to be D ≈ 0.83 ± 0.02 and h0.83
grows linearly with NE, the size of the environment: h0.83 ∝ 0.66NE. Their existence gives
physical meaning to the question of finding the maximum geometric entropy ensemble
with noninteger D.

Providing concrete solutions to this problem is quite complex, as it requires having a
generic parametrization for an ensemble with an arbitrary fractional D. As far as we know,
this is currently not possible. While we do know that certain ensembles have a noninteger
D, there is no guarantee that fixing the value of the information dimension, e.g., D = N/M
with N, M ∈ N relative primes, turns into an explicit way of parametrizing the ensemble.
We leave this problem open for future work.

5. How Does µME Emerge?

While the previous section gave the technical details regarding ensembles resulting
from the proposed maximum geometric quantum entropy principle, the following identifies
the mechanisms for their emergence in a number of cases of physical interest.

5.1. Emergence of µ0
ME

As partly discussed in the previous section, µ0
ME can emerge naturally as a conditional

ensemble, when our system of interest interacts with a finite-dimensional environment
(dimension N). If the environment is probed with projective measurements in a basis that
is unbiased with respect to the Schmidt-partner basis {|SPα⟩}N

α=1, we reach the absolute

maximum of the geometric entropy, log N. The resulting GQS is µ0
ME = δ

p⃗
λ⃗

1
N ∑N

α=1 δ
ϕ⃗

θ⃗α
, with

members of the ensemble being |χα⟩ = ∑dS
j=1

√
λje

iθαj
∣∣λj
〉

and pα = 1/N.
As argued in Ref. [41], the notion of unbiasedness is typical. Physically, this is

interpreted as follows. Imagine someone gives up |ψ(ρ)⟩, a purification of ρ, without
telling us anything about the way the purification is performed. This means we know
nothing about the way ρ has been encoded into |ψ(ρ)⟩. Equivalently, we do not know what
the

{∣∣SPj
〉}dS

j=1 are. If we now choose a basis of the environment to study the conditional

ensemble, {|vα⟩}N
α=1, this will have very little information about the

{∣∣SPj
〉}dS

j=1—there is a
very high chance that we will end up very close to the unbiasedness condition.

The mathematically rigorous version of “very high chance” and “very close” is given
in Ref. [41] and it is not relevant here. The only thing we need is that this behavior is usually
exponential in the size of the environment ∼ 2N . Somewhat more accurately, the fraction
of bases which are

∣∣〈vα

∣∣SPj
〉∣∣2 ≈ 1/N are ∼ 1 − 2−N . Therefore, statistically speaking, it is

extremely likely that, in absence of meaningful information about what the
{∣∣SPj

〉}dS
j=1 are,

the conditional ensemble we will see is µ0
ME.

5.2. Emergence of µ
2(dS−1)
ME

For µ
2(dS−1)
ME to emerge as a conditional ensemble, our dS-dimensional quantum sys-

tem must interact with an environment that is being probed with measurements whose
outcomes are parametrized by 2(dS − 1) continuous variables, each with the cardinality of
the reals. This is because we have to guarantee that D = 2(dS − 1). Therefore, conditioning
on projective measurements on a finite environment is insufficient. One possibility is to
have a finite environment that we measure on an overcomplete basis, like coherent states.
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A second possibility is to have a genuinely infinite-dimensional environment, on which
we perform projective measurements. For example, we could have 2(dS − 1)/3 quantum
particles in 3D that we measure on the position basis

{
⊗2(dS−1)/3

n=1 |xn, yn, zn⟩
}

. All the
needed details were given in Ref. [6], where we studied the properties of a GQS emerging
from a finite-dimensional quantum system interacting with one with continuous variables.

We stress here that this is only a necessary condition, not a sufficient one. Indeed, we
can have an infinite environment that is probed with projective measurements on variables
with the right properties but still obtain an ensemble that is not µ

2(dS−1)
ME . An interesting

example of this is given by the continuous generalization of the notion of unbiased basis.
We illustrate this in a simple example of a purification obtained with a set of 2(dS − 1) real
continuous variables, realized by 2(dS − 1) non-interacting particles in a 1D box [0, L].

In this, the notion of an unbiased basis is satisfied by position and momentum

eigenstates:
〈

x⃗|⃗k
〉

= ei⃗k·⃗x
√

V
. Thus, if our Schmidt partners are momentum eigenstates{∣∣SPj

〉
=
∣∣∣⃗k j

〉}dS

j=1
, and we measure the environment in the position basis, we do not

obtain a GQS with the required D = 2(dS − 1). Indeed, while we do obtain q(x⃗) =

⟨ψ(ρ)|IS ⊗ |⃗x⟩⟨x⃗|ψ(ρ)⟩ = 1
V , the members of the ensemble |χ(x⃗)⟩ = ∑dS

j=1

√
λje

i⃗kj ·⃗x
∣∣λj
〉

are
not distributed in the appropriate way.

This leads to the ensemble δ
p⃗
λ⃗

1
(2π)dS−1 , which has the wrong information dimension:

D = dS − 1, not D = 2(dS − 1). This clarifies why, in order to have D = 2(dS − 1),
using an environmental basis that is unbiased with respect to the Schmidt partners is not
enough. Specifically, the probabilities pj(x⃗) =

∣∣〈λj
∣∣χ(x⃗)

〉∣∣2 = λj do not depend on x⃗. They
do not obtain redistributed by the unbiasedness condition and are always equal to the
eigenvalues of ρ.

If we measure on a different basis
{∣∣∣⃗l〉 :=

∫
V dx⃗ u∗

l⃗
(x⃗)
}

, we obtain a different GQS

since
〈⃗

l
∣∣∣SPj

〉
=
∫

V dx⃗u⃗l(x⃗)ei⃗kj ·⃗x = F⃗l (⃗k j) is essentially the Fourier transform of u⃗l :

q(⃗l) =
dS

∑
j=1

λj

∣∣∣F⃗l (⃗k j)
∣∣∣2 (4)

∣∣∣χ(⃗l)〉 =
dS

∑
j=1

√
λj

F⃗l (⃗k j)√
q(⃗l)

∣∣λj
〉

. (5)

Equation (5) gives the functions
{

pj (⃗l), ϕj (⃗l)
}dS−1

j=1
:

pj (⃗l) =
λj

∣∣∣F⃗l (⃗k j)
∣∣∣2

∑dS
n=1 λn

∣∣∣F⃗l (⃗kn)
∣∣∣2 , (6)

ϕj (⃗l) = Arg
(
F⃗l (⃗k j)

)
. (7)

This, together with the density q(⃗l) specifies the ensemble via µ =
∫

d⃗lq(⃗l)δ p⃗
p⃗(⃗l)

δ
ϕ⃗

ϕ⃗(⃗l)
.

Finding the exact conditions that lead to µ = µ
2(dS−1)
ME involves solving a complex

inverse problem. However, what we have accomplished so far allows us to understand the
real mechanism behind its emergence. First, the ϕj (⃗l) must be uniformly distributed: they
must be random phases. Second, the distribution of p⃗ must be of exponential form. The
first condition can always be ensured by choosing some

〈⃗
l
∣∣∣⃗x〉 = u⃗l(x⃗) and then multiply-

ing it by pseudo-random phases, generated in a way that is completely independent on p⃗.
This can always be achieved without breaking the unitarity of

〈⃗
l
∣∣∣⃗x〉 via u⃗l(x⃗) → u⃗l(x⃗)eiθ⃗l .
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This guarantees that the marginal distribution over the phases is uniform and that the
density q( p⃗, ϕ⃗) becomes a product of its marginals, since the distribution of the ϕ⃗ has been
built to be independent of everything else: q( p⃗, ϕ⃗) = f ( p⃗) · unif(ϕ⃗). Then, in order for
q( p⃗, ϕ⃗) to be the maximum entropy one we need f ( p⃗) = 1

Q(⃗τ)
eτ⃗· p⃗.

Given a nondegenerate p⃗(⃗l), this can be ensured by a specific form of q(⃗l) since
f ( p⃗) =

∫
d⃗lq(⃗l)δ p⃗

p⃗(⃗l)
:

q(⃗l) = (detJ)(⃗l)
eτ⃗· p⃗(⃗l)

Q(τ)
⇒ f ( p⃗) =

eτ⃗· p⃗

Q(τ)
,

where J is the Jacobian matrix of the coordinate change l⃗ → p⃗(⃗l). Checking that this form
leads to the right distribution is simply a matter of coordinate changes. Alternatively, it can
be seen by repeated use of the Laplace transform on the simplex, together with the result

1
Q(⃗τ)

∫
∆dS−1

dp⃗e−⃗a· p⃗eτ⃗· p⃗ = Q(⃗τ − a⃗)/Q(⃗τ). We now see the mechanism at play in a concrete

way and how it leads to the maximum entropy GQS µ
2(dS−1)
ME .

First, let us take the label l⃗ = (l1, . . . , l2(dS−1)) and split it in two l⃗ = (⃗a, b⃗) with

a⃗ = (a1, . . . , adS−1) and b⃗ = (b1, . . . , bdS−1). Then, d⃗l = d⃗ad⃗b. At this stage, the choice

of l⃗, the splitting, and
∣∣SPj

〉
are arbitrary. Then, we make the choice that

〈⃗
a, b⃗
∣∣∣SPj

〉
=
√

Aj (⃗a)eiBj (⃗b). The only property we need to check is that
{∣∣∣⃗a, b⃗

〉}
a⃗,⃗b

can be a com-

plete set: ∫
d⃗a
√

Aj (⃗a)Ak (⃗a)
∫

d⃗bei(Bj (⃗b)−Bk (⃗b)) = δjk .

We can choose Bj (⃗b) such that
∫

d⃗bei(Bj (⃗b)−Bk (⃗b)) = Mδjk, for example, by choosing
Bj (⃗b) to be linear functions. Then, choosing Aj (⃗a) such that

∫
d⃗aAj (⃗a) = 1

M guarantees
completeness. With this choice, we obtain:

q(⃗a, b⃗) =
dS

∑
j=1

λj Aj (⃗a) ,

pj (⃗a, b⃗) =
λj Aj (⃗a)

∑dS−1
n=1 λn An (⃗a)

→ pj (⃗a) ,

ϕj (⃗a, b⃗) = Bj (⃗b) → ϕj (⃗b) .

The probability density q(⃗a, b⃗) can be written as a product of two probability densities:
q(⃗a, b⃗) = f (⃗a) 1

M . Here, 1/M is the uniform density for b⃗ and f (⃗a) = ∑dS
j=1 λj MAj (⃗a) is a

probability density for a⃗. Then, the GQS becomes a product of two densities: one over the
probability simplex (for p⃗) and another one over the phases (for ϕ⃗):

µ =
∫

d⃗a
∫

d⃗b q(⃗a, b⃗) δ
p⃗
p⃗(⃗a,⃗b)

δ
ϕ⃗

ϕ⃗(⃗a,⃗b)
,

=
∫

d⃗a fa (⃗a)δ p⃗
p⃗(⃗a) · 1

M

∫
d⃗bδ

ϕ⃗

ϕ⃗(⃗b)
,

= fp( p⃗) fϕ(ϕ⃗) . (8)

These are the formulas for two changes of variable in integrals: a⃗ → p⃗(⃗a) and b⃗ → ϕ⃗(⃗b).
Since these are invertible, we can confirm what we understood before.
fϕ(ϕ⃗) = unif[ϕ⃗] when the phases ϕ⃗(⃗b) are uniformly distributed. Moreover, when

fp( p⃗) = eτ· p⃗

Q(⃗τ)
and p⃗(⃗a) are exponentially distributed: fa (⃗a) =

(
detJap

)
(⃗a) eτ⃗· p⃗(⃗a)

Q(⃗τ)
, with

Jap being the Jacobian matrix of the change of variables a⃗ → p⃗(⃗a).
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5.3. Stationary Distribution of Some Dynamic

A second mechanism, which can lead to the emergence of an ensemble with
D = 2(dS − 1), is time averaging. Indeed, if we are in a nonequilibrium dynamical
situation in which the system and its environment jointly evolve with a dynamical (possibly
unitary) law, its conditional ensembles µ(t) depend on time.

To study stationary behavior from dynamics, one looks at time-averaged µ(t)
= limT→∞

1
T
∫ T

0 µ(t) ensembles that, in this case, have a certain stationary density ma-
trix ρss = ρ(t). Unless something peculiar happens, we expect the ensemble to cover large
regions of the full state space, leading to a stationary GQS with D = 2(dS − 1) and a given
density matrix ρss.

Intuitively, we expect dynamics that are chaotic in quantum state space to lead to
ensembles described by µ

2(dS−1)
ME . This is because the ensemble that emerges must be

compatible with a density matrix ρss while still exhibiting a nontrivial dynamics due to the
action of the environment. We now give a simple example of how this happens. Borrowing
from Geometric Quantum Thermodynamics, see Ref. [7], where we studied a qubit with a
Caldeira–Leggett-like environment, the resulting evolution for the qubit can be described
using the Stochastic Schrödinger equation, which, as shown in Ref. [7], leads to a maximum
entropy ensemble (see Equation (3)) of the required type.

5.4. Emergence of µ
dS−1
ME

Among all possible values of D, a third one which is particularly relevant is D = dS − 1,
which is half the maximum value. The reason why this is important comes from the
symplectic nature of the quantum state space and, ultimately, from dynamics. One physical
situation in which µ

dS−1
ME emerges naturally is the study of the dynamics of pure, isolated

quantum systems. The phenomenology we discuss here is known, being intimately related
to thermalization and equilibration studies. We discuss it here only in connection with the
maximum geometric entropy principle introduced in Section 4.

Imagine an isolated quantum system in a pure state |ψ0⟩ evolving unitarily with a dy-
namics generated by some time-independent Hamiltonian H = ∑D

n=1 En|En⟩⟨En|. Assum-
ing lack of degeneracies in the energy spectrum, the dynamics is given by

|ψt⟩ = ∑D
n=1

√
p0

nei(ϕ0
n−Ent), where

√
p0

neiϕ0
n⟨En|ψ0⟩ and we have used symplectic coor-

dinates in the energy eigenbasis. Since p⃗ ∈ ∆D−1 are conserved quantities pt
n = p0

n
and ϕ⃗ ∈ TD−1 evolve independently and linearly ϕt

n = ϕ0
n − Ent on a high-dimensional

torus, we know that a sufficient condition for the emergence of ergodicity on TD−1 is
the so-called non-resonance condition: energy gaps have to be non-degenerate: namely
En − Ek = Ea − Eb if and only if n = k and a = b or n = a and k = b.

This condition is usually true for interacting many-body quantum systems. If that is
the case, then the evolution of the phases is ergodic on TD−1. This was first proven by von

Neumann [42] in 1929. Calling ( p⃗(t), ϕ⃗(t)) the instantaneous state and with δ
p⃗
p⃗(t)δ

ϕ⃗

ϕ⃗(t)
the

corresponding Dirac measure on the quantum state space, we have:

lim
T→∞

1
T

∫ T

0
dtδ p⃗

p⃗(t)δ
ϕ⃗

ϕ⃗(t)
= δ

p⃗
p⃗(0) · unifϕ⃗(TD−1) ,

where unifϕ⃗(TD−1) is the uniform measure on TD−1 in which all ϕn are uniformly and
independently distributed on the circle. It is not too hard to see that this is the maximum
geometric entropy ensemble with D = dS − 1, compatible with the fact that the occupations
of the energy eigenstates are all conserved quantities: pt

n = p0
n.

Indeed, these dS − 1 constraints provide dS − 1 independent equations, thus reducing
the state-space dimension that the system explores to the high-dimensional torus TD−1.
On this, however, the dynamics is ergodic and the resulting stationary measure is the
uniform one. By definition, this is the measure with the highest possible value of geometric
entropy since its density is uniform and equal to qϕ

ME(ϕ⃗) = 1
Vol[TD−1]

, where Vol[TD−1]
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=
∫
TD−1

dω
ϕ
FS = (2π)D−1 is the volume of TD−1, computed with the Fubini–Study volume

element projected on TD−1, that is ∏D−1
k=1 dϕk:

hdS−1 = −
∫
TD−1

dω
ϕ
FS

1
Vol[TD−1]

log
1

Vol[TD−1]

= log Vol[TD−1] .

5.5. Comment on the Generic µD
ME

To have a GQS with generic information dimension D result from a conditional
measurement on an environment, we must condition on at least D continuous variables
with the cardinality of the reals. This can be achieved either via measurements on an
overcomplete basis, such as coherent states, or via projective measurements on an infinite
dimensional environment with at least D real coordinates. This condition is necessary,
but not sufficient, to guarantee the emergence of the corresponding maximum entropy
ensemble µD

ME. While we have seen that the notion of an unbiased basis is relevant when
D = 0, we also saw how this falls short in the generic D > 0 case. Understanding this
general condition is a nontrivial task that requires a much deeper understanding of how
systems encode quantum information in their environment and how this is extracted by
means of quantum measurements. Further work in this direction is ongoing and will be
reported elsewhere.

For a GQS with arbitrary dimension D to emerge as a stationary distribution on a
quantum state space with dimension 2(dS − 1), it is likely that we need 2(dS − 1) −D

independent equations constraining the dynamics, that is, if D is an integer. Indeed, due to
the continuity of time and the smoothness of the time evolution in quantum state space, we
expect D ∈ N in the vast majority of cases. If these equations constraining the motion on
the quantum state space are linear, then we know that having 2(dS − 1)−D independent
equations is both necessary and sufficient to have D as quantum information dimension.
This, however, says virtually nothing about the maximization of the relevant geometric
entropy hD. Moreover, constraints on an open quantum system can take very generic forms
and the relevant equations will not always be linear.

An explicit example where such ensemble can be found constructively is given by
the case of an isolated quantum system. The conditions for the emergence of a maximum
entropy µ

dS−1
ME are then known, being equivalent to the conditions for the ergodicity of

periodic dynamics on a high-dimensional torus, which are known.

6. Conclusions

While a density matrix encodes all the statistics available from performing measure-
ments on a system, they do not give information about how the statistics were created.
And infinite possibilities are available. A natural way to select a unique ensemble behind a
given density matrix is to approach the problem from the perspective of information theory.
In this case, the issue becomes a standard inference problem, one to which we can apply
the maximum entropy principle. To properly formulate the problem in this way requires a
proper way to compute the entropy of an ensemble. While this is trivial for ensembles with
a finite number of elements, it is not for continuous ensembles. The correct answer, the
notion of Geometric Quantum Entropy hD, was given in Ref. [34]. This, however, depends
strongly on another quantity that characterizes the ensemble: the quantum information
dimension D. Consequently, we formulated the maximum geometric entropy principle at
fixed quantum information dimension. This is a one-parameter class of maximum entropy
principles, labeled by D, that can be used to explore various ways to have ensembles give
rise to a specific density matrix.

As often happens with inference principles, the generic optimization problem can be
hard to solve. However, here we solved a number of cases where the ensemble can be
found analytically. We also explored the physical mechanism responsible for the emergence
of µD

ME. Two different classes of situations were considered: (i) a conditional ensemble,
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resulting from measuring the environment of our system of interest, and (ii) stationary
distributions, in which the statistics arise from aggregating data over time. We have also
identified and discussed various instances where both mechanisms lead to a maximum
entropy ensemble.
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Appendix A. Calculating the Partition Function

Recall:

Z
(
λαβ

)
=
∫
P(H)

e−∑α,β λαβZαZβ

dVFS .

Since λαβ are the Lagrange multipliers of Cαβ, we chose them to be Hermitian as they
are not all independent. Thus, we can always diagonalize them with a unitary matrix:

∑
αβ

UγαλαβU†
βϵ = lγδγϵ .

This allows us to define auxiliary integration variables Xγ = ∑α UγαZα. Thanks
to these, we express the quadratic form in the exponent of the integrand using that
(U†U)αβ = δαβ:

ZλZ = ∑
αβ

ZαλαβZβ

= ∑
αβ

∑
α̃β̃

Zαδαα̃λα̃β̃δββ̃Zβ̃

= ∑
αβ

∑
α̃β̃

∑
ab

(
ZαU†

αa

)(
Uaα̃λα̃β̃U†

β̃b

)(
UbβZβ

)
= ∑

a
|Xa|2la .

Moreover, recalling that the Fubini–Study volume element is invariant under unitary
transformations, we can simply adapt our coordinate systems to Xa. And so we have
Xa = qaeiνa . This gives dVFS = ∏D−1

k=1
dqadνa

2 . We arrive at the following simpler functional:

Z
(
λαβ

)
=
∫
P(H)

e−∑D−1
a=0 laqa

D−1

∏
k=1

dqadνa

2

=
(2π)D−1

2D−1

∫
∆D−1

e−∑a laqa ∏
a

dqa .
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Now, we are left with an integral of an exponential function over the D − 1-simplex.
We can use Laplace transform trick to solve this kind of integral:

ID−1(r)
∫

∆D−1

D−1

∏
k=0

e−lkqk δ

(
D−1

∑
k=0

qk − r

)
dq1 . . . dqD−1

⇒ ĨD−1(z)
∫ ∞

0
e−zr ID−1(r)dr ,

Ĩn(z) =
n

∏
k=0

(−1)k

(lk + z)

= (−1)
n(n+1)

2

n

∏
k=0

1
z − zk

,

with zk = −lk ∈ R.
The function Ĩn(z) has n + 1 real and distinct poles: z = zk = −lk. Hence, we exploit

the partial fraction decomposition of Ĩn(z), which is:

(−1)
n(n+1)

2

n

∏
k=0

1
z − zk

= (−1)
n(n+1)

2

n

∑
k=0

Rk
z − zk

,

where:

Rk =
[
(z − zk) Ĩn(z)

]
z=zk

=
n

∏
j=0, j ̸=k

(−1)
n(n+1)

2

zk − zj
.

Exploiting linearity of the inverse Laplace transform plus the basic result:

L−1
[

1
s + a

]
(t) = e−atΘ(t) ,

where:

Θ(t) =

{
1 t ≥ 0
0 t < 0

.

We have for:

In(r) = L−1[ Ĩn(z)](r)

= Θ(r)
n

∑
k=0

Rkezkr .

And so:

Z = ID−1(1)

=
D−1

∑
k=0

e−lk

∏D−1
j=0, j ̸=k(lk − lj)

.

Now, consider that la are linear functions of the true matrix elements:

la = fa(λαβ)

= ∑
αβ

UaαλαβU†
βa .

We arrive at:

Z(λαβ) =
e− fk(λαβ)

∏D−1
j=0, j ̸=k(lk(λαβ)− lj(λαβ))

.
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Appendix B. Calculating Lagrange Multipliers

Given the expression of the partition function, we now show that that the value of
Lagrange’s multipliers γjk can be given analytically by extending the Laplace transform
technique exploited Appendix A.

The nonlinear equation to fix γjk is:

∂ log Q
∂γjk

= − 1
Q

∫
P(HS)

dVFS(Zj)∗Zke−∑a,b γab(Za)∗Zb
= ρjk .

We now use as reference basis the eigenbasis of ρ and as coordinate system ( p⃗, ϕ⃗). This
means only the diagonals γjj enter the equation.

− ∂ log Q
∂γkk

= λk → − 1
Q

∫
∆dS−1

dS−1

∏
n=1

dpn pk e−∑a γaa pa = − 1
Q

∫
RdS
+

dS

∏
n=1

dpn pk e−∑
dS
a=1 γaa pa δ

(
∑

j
pj − 1

)
.

To compute this, we use the same Laplace transform technique we used before, with a
minor adaptation. First, we do single lable notation γjj → lj, then we define:

J(k)D−1(r)−
∫
RD
+

(
D

∏
n=1

dpn

)
pk

(
D

∏
j=1

e−lj pj

)
δ

(
D

∑
k=1

pk − r

)
Its Laplace transform is:

J̃(k)D−1(z) =
∫ ∞

0
e−zr J(k)D−1(r) = −

∫
RD
+

(
D

∏
n=1

dpn

)
pk

(
D

∏
j=1

e−(lj+z)pj

)

= ∏
n ̸=k

(∫ ∞

0
dpne−(ln+z)pn

)
×
(∫ ∞

0
dpk (−pk)e−(lk+z)pk

)

=
D

∏
n=1

(∫ ∞

0
dpne−(ln+z)pn

)
× ∂

∂lk
log
(∫ ∞

0
dpke−(lk+z)pk

)

=

(
D

∏
n=1

Gn(z)

)
∂ log Gk(z)

∂lk

where:

Gk(z)
∫ ∞

0
dpke−(lk+z)pk =

1
lk + z

∫ ∞

0
dye−y =

1
lk + z

∂ log Gk(z)
∂lk

= −Gk(z)

Therefore, we obtain:

J̃(k)D−1(z) = −
(

D

∏
n ̸=k

Gn(z)

)
× Gk(z)2 = −

(
∏
n ̸=k

1
z − zn

)
1

(z − zk)2 where zn = −ln .

This can be written again as a sum, using the partial fraction decomposition:

J̃(k)D−1(z) = −
(

∏
n ̸=k

1
z − zn

)
1

(z − zk)2 = ∑
n ̸=k

Rn

z − zn
+

R(1)
k

(z − zk)2 ,

where:

Rn =
[
(z − zn) J̃(k)D−1(z)

]
z=zn

=

(
∏

j ̸=n,k

1
zn − zj

)
1

(zn − zk)2 =

(
∏
j ̸=n

1
zn − zj

)
1

(zn − zk)

R(1)
k =

[
(z − zk)

2 J̃(k)D−1(z)
]

z=zk
= ∏

j ̸=k

1
zk − zj

.

Exploiting the basic Laplace transform result:
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L−1
[

1
(s + a)n

]
(t) =

tn−1e−at

Γ(n)
Θ(t) ,

we can the invert the relation to compute JD−1(r = 1):

JD−1(r) = L−1
[

J̃(k)D−1(z)
]
(r) = ∑

j ̸=k
Rje

zjr + rR(1)
k ezkr .

Eventually, remembering that zk = −lk = −γkk, we obtain:

J(k)D−1(1) = ∑
j ̸=k

Rje
−γjj + R(1)

k e−γkk = (−1)D ∑
j ̸=k

e−γjj[
∏a ̸=j(γjj − γaa)

]
(γjj − γkk)

− e−γkk

∏a ̸=k(γkk − γaa)
.

The Lagrange’s multipliers γj can then be fixed by solving:

J(k)D−1(1) = −λk ,

where λk are the eigenvalues of the density matrix: ρjk = δjkλk.
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