
UC San Diego
UC San Diego Previously Published Works

Title
Indirector: High-Precision Branch Target Injection Attacks Exploiting the Indirect Branch
Predictor.

Permalink
https://escholarship.org/uc/item/6pp6577n

Authors
Li, Luyi
Yavarzadeh, Hosein
Tullsen, Dean M

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pp6577n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Indirector: High-Precision Branch Target Injection Attacks
Exploiting the Indirect Branch Predictor

Luyi Li* Hosein Yavarzadeh* Dean Tullsen

University of California San Diego
* Equal contribution joint first authors

Abstract

This paper introduces novel high-precision Branch Target
Injection (BTI) attacks, leveraging the intricate structures of
the Indirect Branch Predictor (IBP) and the Branch Target
Buffer (BTB) in high-end Intel CPUs. It presents, for the
first time, a comprehensive picture of the IBP and the BTB
within the most recent Intel processors, revealing their size,
structure, and the precise functions governing index and tag
hashing. Additionally, this study reveals new details into the
inner workings of Intel’s hardware defenses, such as IBPB,
IBRS, and STIBP, including previously unknown holes in
their coverage. Leveraging insights from reverse engineering
efforts, this research develops highly precise Branch Target
Injection (BTI) attacks to breach security boundaries across
diverse scenarios, including cross-process and cross-privilege
scenarios and uses the IBP and the BTB to break Address
Space Layout Randomization (ASLR).

1 Introduction

Modern processors include extensive support for predicting
the outcome of control flow operations. As the potential for
transient execution attacks [14, 19, 24, 29, 31, 32, 37, 52, 60,
69] has become apparent, these structures have become a
favored target for direction poisoning [24, 29, 31, 52, 69] and
target injection attacks [14, 31, 32]. Most of those attacks
have been launched with limited knowledge of the actual
structure of those predictors, and were thus forced to rely on
heavyweight brute force algorithms to discover and create the
type of aliasing necessary to launch an attack.

Of particular concern are Branch Target Injection (BTI)
attacks, which dramatically open up the potential gadgets that
can be employed to exploit a vulnerable branch instruction.
These attacks exploit the structures responsible for predicting
the target address of taken branches. In modern processors,
those structures are the Branch Target Buffer (BTB), the In-
direct Branch Predictor (IBP), and the Return Stack Buffer
(RSB). This paper examines the first two (BTB and IBP), with

particular focus on the IBP because it is the least documented
and least understood of all the branch prediction structures.

Indirect branches are branches whose address is computed
at runtime, with the address loaded from a register or memory.
They can be used for switch and case statements, for calling
functions passed as arguments, for object-oriented languages
that can overload function calls, etc. While direct branches
always have the same target (and are easily predicted with
simple structures), accurate prediction of indirect branches
requires capture of past history patterns [14, 31, 44, 49, 59,
69, 70], much like conditional branch predictors, and requires
more complex structures.

For the first time in the literature, this work reveals exactly
how the BTB and the IBP cooperate to make a prediction
of indirect branches on Intel processors. It also reveals the
precise structure of the IBP, including how history is captured,
how that history is used to index the several tables of the
IBP, how the tags are formed from the history and the branch
address, how many bits of the target are stored and how many
are assumed, and lastly, the size, associativity and structure
of each table in the IBP.

This information enables several new, high precision at-
tacks on the table itself – these include two new target in-
jection attacks and a new technique to break ASLR. While
these machines can capture nearly 400 bits of branch history
(representing a huge search space), precise understanding of
how that history is folded down to index one of the actual
tables allows us to instead systematically probe only 512 sets,
incurring no wasted computation – even in the cases where
we must use brute force methods, for example in aliasing a
branch of unknown address or history. Being able to launch
these attacks with orders of magnitude greater efficiency has
immense implications. Current mitigations against these at-
tacks are heavyweight and costly. Ultimately, the frequency
at which such mitigations need to be deployed is directly
connected to the minimum runtime of a successful attack.
Reducing the runtime of these attacks by orders of magnitude
means that the perceived performance cost of these mitiga-
tions to the user can go from slightly noticeable to unpalatable,

and for all practical purposes render these solutions no longer
viable for any but the most protected code.

Intel has provided several mitigation mechanisms aimed
at protecting the BTB and IBP from different types of tar-
get injection attacks, which vary in goals, actual operation,
and performance implications. These include Indirect Branch
Restricted Speculation (IBRS) [8], Single Thread Indirect
Branch Predictors (STIBP) [3], and Indirect Branch Predictor
Barrier (IBPB) [7]. This work carefully deconstructs each of
these mitigations on both pre-Spectre and post-Spectre In-
tel processors, and reveals for the first time in the literature
the precise actions employed by each. Those actions vary by
machine, and do not always correspond closely to their adver-
tised goals. We also describe some surprising attack surfaces
that remain uncovered by these mitigations.

Contributions. The contributions of this work are:

• It presents the first comprehensive analysis of the Indi-
rect Branch Predictor and its interaction with the Branch
Target Buffer in the recent Intel processor families, detail-
ing the size, structure, and precise indexing and tagging
hash functions of each table.

• It carefully analyzes mitigation mechanisms (IBRS,
STIBP, and IBPB) designed to protect against BTB and
IBP target injection attacks on both pre-Spectre and post-
Spectre Intel processors, revealing for the first time in the
literature the specific actions employed by each mecha-
nism.

• It proposes iBranch Locator, an efficient and high-
resolution tool capable of locating any indirect branch
within the IBP without requiring prior history informa-
tion about the branch. Using this tool, it introduces high-
precision target injection attacks and successfully breaks
address space layout randomization.

Outline. Section 2 provides background and related work.
Section 3 delves into the analysis of the BTB and IBP struc-
tures. Section 4 deconstructs the Intel hardware defenses
against BTI attacks. Section 5 introduces our attack primitive
to extract the index and tag of any victim indirect branch.
Section 6 describes our new target injection attacks. Section 7
discusses potential mitigations, and Section 8 concludes the
paper.

Responsible Disclosure. We disclosed our findings to Intel
before submitting to USENIX Security 2024.

2 Background and Related Work

This section provides relevant background information
about the branch prediction mechanism in modern high-
performance processors, focusing on Indirect Branch Pre-
dictors (IBP) and their role in providing target addresses for

Branch Target Buffer
(BTB)

Conditional Branch Predictor (CBP)

Indirect Branch Predictor (IBP)

Return Stack Buffer (RSB)

Path History Register (PHR)

Branch Information Predicted Target

Figure 1: Branch Prediction Unit Internals in Modern CPUs.

Tag Target

Branch Address (PC)
BTB

=? Predicted Target

…

. . .
…

…

Tag Index Offset

Figure 2: Overall Structure of the Set-Associative BTB.

indirect branch instructions. We review state-of-the-art IBP
structures, followed by a discussion of the most relevant re-
search on branch-based side-channel attacks and mitigations.

2.1 Branch Prediction

The Branch Prediction Unit (BPU) plays a crucial role in
modern high-performance processors by steering the proces-
sor front-end pipeline through the identification of branch
instructions, their directions, and target addresses. To provide
predictions for the variety of control flow mechanisms, the
BPU incorporates various dedicated structures, as Figure 1 il-
lustrates [2,14,24,29,31,38,70]. Among these are the Branch
Target Buffer (BTB) [28], which predicts whether an instruc-
tion is a branch instruction and, if so, predicts the target ad-
dress. Additionally, the Indirect Branch Predictor (IBP) [44]
serves as a dedicated unit for predicting the target addresses
of indirect (computing) branches—those whose targets reside
in registers or memory. Furthermore, a Conditional Branch
Predictor (CBP) [50, 70] is employed to determine whether
conditional branch instructions will be taken or not-taken.

Branch Target Buffer (BTB): The BTB keeps track of the
recently executed target addresses of branch instructions and
predicts the occurrence of future branch instructions along
with their targets. Earlier research [2,5,23,27,41,58,59,74] re-
verse engineered the BTB structures of several modern CPUs,
revealing that they each exhibit an almost identical cache-
like set-associative structure (shown in Figure 2), albeit with
varying sizes. In Section 3, we delve into a more detailed ex-
amination of the BTB’s structure in high-end Intel processors.

Indirect Branch Predictor (IBP): In addition to the BTB,
there is a dedicated unit specifically designed for predicting
the target addresses of indirect branch instructions, known as
the Indirect Branch Predictor (IBP) [44]. Indirect branches,
also known as computed branches, differ from direct branches

PHRold << 2 : Pn-2 … … P2 P1 P0 0 0

P’n P’n-1 P’n-2 … … P’2 P’1 P’0

Branch Source Branch TargetFunc

PHRnew :

Figure 3: PHR Update Process: (1) PHR is first left-shifted by
2 bits and then (2) combined with branch and target addresses
via a Function, detailed in Appendix A.

in how they determine the next instruction to execute. Instead
of specifying the target address directly, indirect branches rely
on a value stored in a register or memory location, which is
calculated at runtime. This approach enables dynamic control
flow patterns, such as switch-case statements in high-level
languages. Predicting the target address of these branches
is challenging because they may have multiple targets, and
cannot be simply predicted by the BTB (which captures a
single address). Consequently, a dedicated unit, such as the
IBP, is necessary to accurately predict their target addresses.

The state-of-the-art IBP design in the literature is known
as Indirect Target Tagged GEometric length (ITTAGE) [49]
predictor, which uses history-based structures [39, 48, 50] to
predict the targets of indirect branches. This prediction is
made based on the global history which captures the record of
executed branch instructions within the processor. There exist
two forms of global history: the first is the Global History
Register, or GHR - inserting 1 when a branch is taken and 0
when it is not. The second form is the Path History Register, or
PHR, where updates are influenced by one or more bits in the
branch source and/or target address. The ITTAGE predictor
comprises a tagless base predictor responsible for delivering a
default prediction along with a set of (partially) tagged predic-
tor components, each indexed through independent functions
of the global history and the branch address.

Path History Register (PHR): In 2018, Spectre attacks [31]
revealed the potential for exploiting CBP or BTB/IBP mispre-
dictions, coupled with speculative execution, for malicious
purposes. Fundamentally, Spectre attacks capitalize on branch
mispredictions to execute code that can lead to the leakage
of sensitive data. Specifically, they reverse-engineered some
structures of the IBP designed for Haswell architecture includ-
ing the global history (PHR). They found that the PHR tracks
taken branches and gets updated using the corresponding
branch and target addresses, as Figure 3 illustrates. We sum-
marize the latest findings (based on [69, 70]) about the PHR
update policy in Appendix A, and verify that these findings
still hold true for more recent Intel processors not covered in
earlier studies.

It is important to highlight that some earlier studies [14]
claimed the existence of only one BTB with different indexing
schemes. Nonetheless, our reverse engineering work unveils
that the IBP incorporates a distinct and separate structure, a
topic we will delve into in Section 3.

2.2 Branch-based Side Channel Attacks
We categorize branch-based side-channel attacks into two
main types based on the specific BPU structure they target:

Direction based attacks: These attacks [19,22,24,31,52,69]
aim to extract or manipulate the control flow of a victim pro-
cess by analyzing or influencing the CBP state. The most
representative attack is Spectre v1 [31]. This can reveal con-
fidential information or steer the victim’s execution towards
unintended paths.

Target based attacks: These attacks attempt to directly
hijack and/or extract the victim’s control flow by poisoning
entries in the BTB and/or IBP. Early research on branch-based
vulnerabilities primarily targeted the BTB [9–11]. These at-
tacks demonstrate a timing side channel based on BTB capac-
ity. Following the initial BTB-focused research, Evtyushkin
et al. [23] leveraged BTB collisions to bypass Kernel Address
Space Layout Randomization (KASLR) by colliding entries
between an unprivileged user process and privileged kernel
code. Similarly, Lee et al. [34] exploited BTB collisions to
infer the control flow of victims.

More recently, in Spectre v2 [31], also called Branch Target
Injection (BTI), the attacker trains the target predictors (BTB
and/or IBP) so that the victim program speculatively jumps
to a chosen disclosure gadget. Through speculative execution
of the instructions within the gadget, the attacker gains access
to the victim’s confidential data, subsequently transferring it
via the data cache [26,56,68] or other covert channels [17,22,
45, 47, 65, 76].

Similar to Spectre v2, Barberis et al. [14] introduce Branch
History Injection (BHI), a cross-privilege BTI attack. Since
the branch target entries are isolated between kernel and user,
Spectre v2 is difficult to directly apply in a cross-privilege
scenario, targeting a kernel branch. This work finds that the
branch history state (PHR) is still shared across privilege
levels. Therefore, the attacker manipulates the branch history
in user space and further misleads a kernel indirect branch
to a prepared malicious kernel gadget during speculation. In
a concurrent study, InSpectre Gadget [64] demonstrates a
native Spectre-v2 exploit targeting the Linux kernel on recent-
generation Intel CPUs, leveraging the latest BHI variant [14].

2.3 Defenses Against Branch-based Attacks
The broadest defense against contention-based side-channel
attacks involves partitioning the targeted unit across various
processes or domains [35, 54, 71]. This principle also extends
to general defenses against other BPU attacks [25, 42, 62,
70, 75, 78]. Another approach is to simply flush the target
predictor state when context switching [7, 53, 62]. An alterna-
tive defense utilized by sensitive code, such as cryptographic
libraries, is constant-time programming [15, 21]. This strat-
egy removes secret-dependent branches. However, it’s rarely
adopted in general-purpose code due to its high overhead.

To mitigate Spectre-style attacks targeting either the direc-
tion predictor (CBP) or the target predictors (BTB and IBP),
several defense strategies have been proposed [3,4,6–8,19,70].
These include inserting fences in programs [30, 40, 51, 61],
speculative load hardening [20], or artificial data dependen-
cies [43] near branches, measures to restrict the impact of
speculation on structures such as the cache [12, 46, 66, 67],
limitations on speculative execution when handling sensitive
data [55], and even alterations to CPU design to enable safe
speculation [13,36,63,72,73]. Retpoline [4,6] is a mitigation
technique designed by Google to counter Spectre v2 attacks.
It works by altering how indirect branches are handled in
code, introducing a trampoline code sequence that traps any
potential mis-speculation into an infinite loop until the actual
address is resolved and popped from the return stack buffer
(RSB). Intel has proposed several hardware defenses against
target injection attacks, including IBRS [8], STIBP [3] and
IBPB [7]. We will elaborate on them in Section 4.

3 Analysis of Indirect Branch Prediction

In this section, we present a detailed analysis of our reverse
engineering efforts on branch target prediction mechanisms
in modern Intel processors. This includes reverse engineering
the detailed structures of the Branch Target Buffer (BTB) and
the Indirect Branch Predictor (IBP) in multiple high-end Intel
CPUs. For brevity, we focus on Raptor Cove microarchitec-
ture in the text, and only summarize the important information
for other microarchitectures.

3.1 Branch Target Buffer (BTB)

The Branch Target Buffer (BTB) plays a crucial role in steer-
ing modern CPUs’ front-end by not only identifying the
branch instructions but also predicting their target addresses.
Earlier research [2, 23, 27, 31, 34, 58, 59, 74, 76] reverse engi-
neered the BTB structures of several modern CPUs. Zhang
et al. [74] revealed the mapping policy and the associativ-
ity of the BTB, showing that the instruction address of the
branch is divided into tag, index, and offset fields to lookup
the BTB. Numerous studies [23, 28, 31, 74, 76] confirmed that
the BTB only stores lower bits of the target address, rather
than the entire 48-bit virtual address. The predicted target
address is subsequently formed by concatenating these lower
bits with the higher bits of the branch address. We replicate
these experiments on the recent Raptor Cove and Gracemont
microarchitectures and find consistent results with previous
studies, which is summarized in Table 1. In modern CPUs,
the BTB not only stores the target address but also records
various metadata pertaining to branch instructions, such as
branch type and core ID. In the subsequent discussion, we
delve into our new observations regarding this information
stored within the BTB entries.

Model i7-6770HQ
i9-12900 (P-core)
i7-13700K (P-core)

i9-12900 (E-core)
i7-13700K (E-core)

µArch Skylake Raptor (Golden) Cove Gracemont
Address Type Virtual Virtual Virtual
Index PC [13:5] PC [14:5] PC [14:5]
Tag PC [29:22] ⊕ PC [21:14] PC [23:15] PC [24:15]
Associativity 8 12 5
Capacity (Entry) 4K 12K 5K
Target Length (Bit) 32 (Long) / 10 (Short) 32 32 (Long) / 10 (Short)
Predicted Target {PC, BTB}

Table 1: Fundamental BTB Details Across Various CPUs.

3.1.1 Branch Type in BTB

In x86 architecture, there are various types of branching in-
structions including: conditional branch, direct unconditional
branch, indirect branch, call, and ret. The BTB needs to record
the branch type for each branch instruction since different
branch prediction mechanisms (CBP, IBP, or RSB) are used
for different branch instruction types. To verify this in Raptor
Cove microarchitecture, we create a scenario comprising two
branch instructions of different types but sharing the same
lower 24 bits of the branch address (thus exhibiting aliasing
in the BTB). Subsequently, we measure the branch mispre-
diction rate for both instructions. Our findings reveal that
when two branches of different types have distinct target ad-
dresses, a misprediction rate of 100% occurs. This suggests
that these branches are utilizing the same BTB entry, resulting
in inaccurate predictions. However, when they share identical
target addresses (lower 32 bits), as expected, no misprediction
arises.

Based on this result, we explore whether a direct branch
can inject a malicious target into the BTB entry and mislead
an aliased indirect branch to speculatively execute it, because
the correct target of the indirect branch will not be resolved
until the Execution stage. As Listing 1 shows, the indirect
branch has only one target. Single-target indirect branches
only use the BTB for prediction, which will be explained in
Section 3.3. During normal execution, the malicious target is
never reached. In order to measure whether the instructions in
the malicious target are executed, we introduce a load instruc-
tion within it. Before this, we flush the data associated with
this instruction out of the cache. After the victim execution,
we reload the data to determine if it has been cached. We also
flush the correct target of the indirect branch to create a large-
enough speculation window. We find that the data associated
with the load instruction never gets cached, indicating that
the load instruction is never speculatively executed. However,
we observe that both the malicious target and the subsequent
instruction are cached in the instruction cache. This suggests
that these instructions are speculatively fetched and maybe
decoded, but are somehow being prevented from executing
speculatively. We also tested other types of branches (e.g.
conditional branches) to see if they could inject a malicious
target into the BTB entry and mislead the aliased indirect
branch, and we confirmed that they cannot. Conversely, if
both branches are indirect ones, we see cached data (specu-

 [Target_addr] = T1
 JMP [Target_addr]
 …
T1: …
T_malicious:
 LOAD RCX, [Data_addr]

 …
 JMP T0
 …
 …
T0:
 …

[23:0]

[31:0]

Direct Branch Indirect Branch (iBranch)

Listing 1: Microbenchmark Pseudo-Code for Injecting Tar-
gets with Different Branch Types. The dashed frame means
these are multiple branches in the same thread. The arrow
represents specific bits of their virtual addresses are identical.
In a single test, they are executed in order from left to right.

lative execution). Thus, there is at least one bit in the BTB
metadata that differentiates indirect branches from other types
of branches. We believe that in the former scenario (different
branch types), speculative execution does not occur due to
the presence of the Branch Address Calculator (BAC) unit
in the decode stage, along with the BTB bit identify branch
type. This unit ensures that the BTB prediction aligns with
the actual decoded branch type. This unit empowers modern
CPUs to detect potential branch mismatches earlier in the
pipeline, well before the target is resolved in the execution
stage.

Observation 1. The BTB features a ‘Branch Type’ bit
to aid branch prediction. Since different branch types
may alias in the BTB, this check serves to verify that the
indirect branch prediction from the BTB aligns with the
actual type.

3.1.2 Core-ID in BTB

Modern Intel CPUs support simultaneous multi-threading
(SMT) [57], which virtualizes a single physical core into
two logical (SMT) cores. Since there is only one BPU per
physical core, we aim to determine whether the BTB is shared
or statically partitioned between SMT cores. To do that, we
create two SMT threads: T hread0 with M direct branches
and T hread1 with N direct branches. All branches share the
same BTB index but have different tags. Subsequently, we
measure the number of BTB entries that can be allocated to
each SMT thread. We observe that when M+N ≤ 12 (where
M,N ∈ 0,1,2, . . . ,12), no branch mispredictions occur. This
suggests that there are no constraints on the number of entries
per set available to each SMT thread and there is no SMT-
based static partitioning in place.

Building upon this, we repeat the experiment in Listing 1
but this time the aliased branches run on different SMT
cores and have the same branch type. We find that these two
branches do not alias in the BTB and no mispredictions occur.
This suggests that the BTB stores some information about

the core-ID or thread-ID or process-ID. Through exhaustive
testing across various scenarios—cross-SMT context, cross-
process, and cross-thread—we ascertain that aliasing is pos-
sible only if two branches are in the same SMT virtual core,
implying that only the core-ID is recorded for each branch
instruction in the BTB. This finding also explains why BTB
mistraining disappears in cross-SMT scenarios mentioned in
BunnyHop [76].

Observation 2. Core-ID is recorded and used as part of
the tag in the BTB. When two aliased branches reside on
the same SMT virtual core, they can share the same BTB
entry, even in a cross-thread or cross-process scenario.

3.1.3 Privilege Level in BTB

In addition to our new findings, we also confirm prior findings,
including the fact that there is a Privilege Level field in each
BTB entry so that the kernel and the user cannot share entries
in the BTB [14, 76]. The “Privilege Level” field behaves
similarly to the “Branch Type” field. Aliased branches in
different privilege levels lead to speculative fetch but not
execution.

3.2 Indirect Branch Predictor (IBP)
The Indirect Branch Predictor (IBP) is a dedicated unit de-
signed to predict the target addresses of indirect branches as
they can jump to various places within the program. Many
recent studies [14, 27, 31, 58, 59, 74] have revealed that in-
direct branch prediction in modern CPUs relies not only on
the branch address but also on the global history, dubbed
as Path History Register (PHR) or Branch History Buffer
(BHB). Some studies [14, 74] argue that the indirect branch
prediction mechanism lacks a distinct structure and is instead
implemented through multiple indexing functions to the BTB.
Other studies, such as an Intel patent [44] and Uzelac’s re-
verse engineering of the Intel Pentium M processor [58], pro-
vide evidence supporting the existence of a separate structure
dedicated to predicting indirect branches. Furthermore, the
ITTAGE predictor proposed by Seznec et al. [49] in 2011 also
features its own distinct structure separate from the BTB, as
discussed in Section 2. Since the structure of the IBP within
Intel CPUs is completely undocumented, we begin with a
small set of assumptions. Specifically, we assume that the IBP
adopts a TAGE-like structure, consisting of multiple tagged
tables indexed by varying lengths of the global history (PHR).
These tables are utilized to store the target addresses of indi-
rect branches.

Prior works [14, 27, 31, 58, 59, 74] show that the IBP is
indexed by the global history (PHR). Additionally, recent
works [69, 70] have shown complete details of the structure
and update policy of the PHR used for the CBP.

 RBX = rand()%2
 RAX = (RBX==0)?T1_0:T1_1
 PHR = (RBX==0)?PHR0:PHR1
 NOP (1 Byte) × (1 << k)
 JMP RAX //PC[22:0]=00…1…00
T1_0: …
T1_1: …

 RBX = rand()%2
 RAX = (RBX==0)?T0_0:T0_1
 PHR = (RBX==0)?PHR0:PHR1
 JMP RAX
T0_0: …
T0_1: …

PC[22:0]=00…00

PC[k]

iBranch #0 iBranch #1 (Same PHR, Different PC)

Listing 2: Microbenchmark Pseudo-code for Recovering the
Number of PC Bits Involved in the IBP.

5 6 15 16
Location of the Flipped PC Bit

0

50

100

M
is

s
R

at
e

(%
)

Figure 4: Misprediction Rate of when the Position of Flipped
PC bit Varies.

To study the structure, size, and the update policy of the
PHR in the IBP, we run a set of similar experiments to those
discussed in Half&Half [70]. Our results show that the PHR
used in the IBP has the same update policy as the CBP. On
Raptor Cove, the PHR records the global history of the last
194 taken branches, which means its size is 194× 2 = 388
bits in total because each update shifts it to the left by 2 bits.
Building on this, we can set the PHR to any arbitrary value
through a carefully aligned series of 194 direct branches, as
demonstrated in a recent study [69].

3.2.1 Index and Tag Inputs

First, we explore how many bits of the branch address (PC)
are used in the IBP lookup (in addition to the PHR). As
shown in Listing 2, there are two indirect branches, each
with two targets. The branch targets are determined by a
random binary input, each correlated with a specific PHR
value. We keep all lower bits of branch addresses identical
except for one bit, which we systematically brute force to
determine when these two branches collide within the IBP. We
measure the misprediction rate for these cases to identify the
collision point. Figure 4 illustrates that the miss-rate remains
consistently near 0% when the flipped bit pertains to PC[15:6].
However, it increases at other locations. This finding suggests
that when PC addresses of the branches differ in PC[15:6], the
IBP can effectively distinguish between them and accurately
predict their target addresses.

Observation 3. PC[15:6] is used as input (index and/or
tag) to the IBP, which differs from the BTB that uses
PC[23:0].

1 6 7 10
Number of the Indirect Branches

0
20
40
60

M
is

s
R

at
e

(%
)

Figure 5: Misprediction Rate when the Number of Indirect
Branches with the Same PHR Value Varies.

0 68 132 388
Location of the Flipped PHR Bit

0
2
4
6

As
so

ci
at

iv
ity

Figure 6: Associativity of the IBP when the Position of Effec-
tive PHR bit Varies.

3.2.2 Associativity

As introduced earlier, the ITTAGE predictor has multiple set-
associative tables, each table indexed with a different length
of global history. We investigate if the IBP in Intel processors
has a similar structure. First, we seek to determine how the
PC is used in IBP lookup and hence determine if it is used in
tag and/or index. To do that, we create a scenario where there
are N indirect branches with the same PHR but different PCs
(bits[15:6]). We increase the number of branches and measure
the miss-rate for them.

For a K-way associative structure, once the number of
branches exceeds K, the miss rate shows a steep rise, as a
single set lacks empty entries to capture the (K +1)th branch
and must replace an old branch, leading to a misprediction.

We exhaustively test all the combinations of PC[15:6] val-
ues and our results (See Figure 5) show that the IBP can
predict up to only 6 branches even as we change PC[15:6]
values. This suggests that the PC bits are not used in the index
but used as tag and the IBP has a set-associative structure
with a maximum associativity of 6, indexed by the PHR.

Next, we want to find whether the associativity varies with
the effective PHR length. In Listing 3, all N indirect branches
have the same PHR setup: PHR0 is set to 0 while PHR1 is
modified during each test by incrementally shifting a single
bit from LSb to MSb. Each branch has a unique PC[15:6]
(tag) to avoid entry sharing. We test enough permutations of
PC [15:6] (giving us same index, different tags) to exhaust the
associativity of that set and start seeing mispredicts. We find
the associativity does vary, depending on where in the PHR
the one-bit difference exists between the PHR0 and PHR1.
When the difference is in a lower bit, there are six entries
available to record a branch target. When it is in the middle
of the PHR, there are four; when the difference is in a high
bit (distant correlation), there are only two.

These results, then, shown in Figure 6, indicate that the IBP
consists of three tables, each a 2-way set associative structure.

 RBX = rand()%2
 RAX = (RBX==0)?Ti_0:Ti_1
 PHR = (RBX==0)?PHR0:PHR1
 NOP64 (64 Bytes) × i
 JMP RAX
Ti_0: …
Ti_1: …

 PHR0[387:0] = 00…0…00
 PHR1[387:0] = 00…1…00

PHR[k]

 N iBranches (Same PHR, Different PC[15:6]) (i=0~N-1)

× N

Listing 3: Microbenchmark Pseudo-Code for Recovering the
IBP Associativity.

387 369 351 333 315 9274563...
Location of the Flipped PHR Bit

L

H

M
is

s
R

at
e

Figure 7: Position of Odd PHR Bits Folded with PHR[387]
in the Index Hash Function.

The first table is indexed by the global history of the last 34
branches, i.e. the lowest 68 bits of the PHR. The second table
uses the last 66 branches’ history (PHR[131:0]). And the last
table uses the entire global history (PHR[387:0]).

Observation 4. The IBP on Raptor Cove, like ITTAGE,
features a set-associative structure with three tables, each
being 2-way set associative indexed with different global
history lengths.

3.2.3 Index Hash Function

Next, we find the index hash function for each table in the
IBP, using the last table as an example. We use two groups of
indirect branches. The first group consists of a single branch
with the highest bit in the PHR, i.e. PHR[387], set to 1, while
the remaining bits are 0. The second group contains N(N =
2,4,6) indirect branches, each using a cleared PHR with a
single bit set to 1. Inspired by prior studies [69, 70] on the
CBP, the PHR odd and even bits might be folded separately.
Therefore, we start by focusing initially on just the odd bits
in the PHR. During the test, the location of the set bit of the
second group shifts from PHR[387] to PHR[1] with a step of
2. N starts at 2, then changes to 4 when the flipped bit is in
PHR[131:68] — this range is within the history span of the
second table but not the first. Finally, N increases to 6 when
the flipped bit falls within the range of all three tables.

When the bit in the second PHR is not folded with bit 387,
we expect a low misprediction rate as the first branch will map
to a different set than the second group of branches. When
the bits are folded together in the index function, they map
to the same index and there will be an eviction, causing a
branch misprediction. Figure 7 shows a noticeable spike at
some locations. This identifies bits folded with PHR[387].
Moreover, they are spaced uniformly, with an interval of 18

P386 P384 … P370 P368 … P352 … P26 … P16

P387 P385 … P371 P369 … P353 … P27 … P17

E8 E7 E6 E5 E4 E3 E2 E1 E0

O8 O7 O6 O5 O4 O3 O2 O1 O0
O3 O2 O1 O0 O8 O7 O6 O5 O4

Index
[8:0]

99 69

PHR Even Bits

PHR Odd Bits

Figure 8: 9-bit Index Hash Function for the Last IBP Table.

bits. Changing the flipped bit in the first branch maintains
this folding pattern, with a fixed distance of 18 bits. However,
none of the lowest 8 odd bits are folded with any higher bits.
No matter what these 8 bits are, when their higher PHR bits
match or differ by an interval of 18∗ i(i= 0,1,2, . . .), they map
to the same set. This indicates the lowest 8 odd bits are not
used in the index. However, the IBP is still able to distinguish
the PHR states with just these lowest bits set, because they
are used as tag, which will be discussed in Section 3.2.4.
Similarly, the even bits also exhibit this folding function with
each other.

Finally, we aim to understand how the odd and even bits
are combined to form the final index. We conduct similar
experiments to investigate this, with one branch group only
setting odd bits and another group only setting even bits. The
final index hash function is illustrated in Figure 8. First, all
odd and even bits are folded into two 9-bit values respectively.
Next, the 9-bit value generated by the odd bits is rotated 5
bits to the left and then folded with another 9-bit value to
generate the final index. The remaining two tables in the IBP
also employ the same index hash function (but on fewer PHR
bits).

Observation 5. Each IBP table is indexed with a 9-bit
index, generated from a dedicated hash function folding
together the odd and even bits in the PHR.

3.2.4 Tag Hash Function

Because the IBP tables are all set associative, we know they
must be tagged structures. We first investigate if, and how,
the PHR factors into the tag formation. Take two indirect
branches with the same PC[15:6] as an example. Their PHRs
are set to all zeroes except PHR[k] and PHR[k+18∗ i] respec-
tively. k is an odd number here. Based on the index hash func-
tion both branches use the same IBP set. From Section 3.2.2
we already know that PC[15:6] impacts the tag for the IBP.
If the PHR is not used as tag, we will observe misprediction
because it is a IBP hit scenario for both branches and leads to
entry aliasing. However, the result shows that misprediction
only occurs when i = 0 or 11, indicating the PHR is used
as tag but with a different folding distance than the index.

P386 P384 … P366 P364 … P344 … P34 … P16
1111 1011

P387 P385 … P367 P365 … P345 ... P35 … P17

E8 E7 E6 E5 E4 E3 E2 E1 E0

O8 O7 O6 O5O4 O3 O2 O1 O0

E9E10

O9O10

PC15PC7 PC13 PC11 PC9 PC8 PC6 PC14 PC12 PC10
0 0 P14 P12 P2 P0 P8 P6 P4P100

P9 P7 P5 P3 P13 P11 0 0 P15P10
0 Tag

[10:0]

PHR Even Bits

PHR Odd Bits

Figure 9: 11-bit Tag Hash Function for the Last IBP Table.

Mispredictions only happen when the PHRs are equivalent
under a 198-bit distance folding. Further, a 198-bit tag seems
unlikely.

Prior works [39] on the predictor tag design offer us some
insights. There are indications that the tag hash function uses
a different folding distance of 22. The least common multiple
of 18 and 22 is 198, in line with the observed folding pat-
tern. We verify this assumption by setting bits PHR[k] and
PHR[k+22∗ j] for the first branch and PHR[k+18∗ i] and
PHR[k+18∗ i+22∗ j] (k = 2n+1,n = 8,9,10, . . .) for the
second. A high misprediction rate occurs again under this
PHR configuration because the two branches share the same
IBP index under a 18-bit distance folding and the same tag
under another 22-bit distance folding, causing them to share
the same IBP entry. We run similar experiments on the even
bits and find the same folding pattern.

It remains possible that PC[15:6] is also folded with the
PHR to generate the final tag. Consider two branches with
their PHR states set at PHR[k] and PHR[k+18] (k = 2n+1).
These two branches map to the same IBP set but differ in
their PHR tag folding pattern. During testing, PC[15:6] of
one branch is kept fixed at 0. In the other branch, it is placed
at an address where a single bit is set (and that bit is varied in
subsequent experiments). The misprediction rate spikes in a
specific case, indicating both branches have the same IBP tag.
This confirms that PC[15:6] is folded with the PHR, rather
than concatenated to the PHR tag to form the final tag. PHR
even bits are also folded with PC[15:6]. By comparing the
patterns of how odd and even bits are folded with PC[15:6]
respectively, through exhaustive search, it can be inferred that
there is also a rotation-shift between the odd and even bits.

The final tag hash function is shown in Figure 9. The other
two tables also utilize this same folding algorithm. Thus, for
the lower 16 PHR bits that are not used in the IBP index, we
find that they are used in the IBP tag but not involved in the
22-bit distance folding with the higher PHR bits. There is a
different folding pattern for them as shown in the figure.

Observation 6. PHR is used to calculate the tag for IBP
entries, using a different folding distance with the index
hash function. For generating the final tag, PC[15:6] is
also involved (See Figure 9).

3.2.5 Target Address in IBP

The final step is to recover how the target address is stored
in the IBP. To do that, we create a scenario with two indirect
branches with identical PC[15:6] and PHR state, plus aliased
targets in lower bits. The first branch, i.e. the attacker branch,
has a load after each of its targets.

We begin by executing the attacker indirect branch multiple
times to ensure that the poisoned target addresses are stored
in the related IBP entries. Before the victim indirect branch,
we flush its target address from the cache to create a large
speculation window. The measurement shows that the victim
branch has a near 100% misprediction rate and the target
data of the loads are cached, indicating that it speculatively
jumps to the attacker branch’s target. This result persists even
when the number of identical bits in their targets increase to
47. This observation suggests that the IBP stores absolute
48-bit target addresses (because the poisoned branch target
matches all 48 bits of the aliased branch). This is in contrast
to the BTB which constructs full addresses from 32-bit partial
stored addresses.

Observation 7. Unlike the BTB, the IBP stores the full
48-bit absolute target address.

3.2.6 Core-ID in IBP

From Section 3.1.2, we already know that the BTB records
Core-ID on both Skylake and Raptor Cove architectures. We
conduct a series of similar experiments, employing indirect
branches to ascertain the presence or absence of a Core-ID
field in IBP entries. In the Skylake architecture, we find that
indirect branches across SMT cores can share the same entry
in the IBP, which suggests that there is no Core-ID field in IBP
entries. In contrast, in the Raptor Cove architecture, akin to the
BTB, all entries in the IBP are tagged with the SMT core-ID.
Our findings indicate that there is not a distinct partitioning
between the cores (each can fill a set or be fully evicted from
a set). Hence, contention-based side channel attacks (on IBP)
remain feasible across SMT cores, whereas direct injection
attacks are not viable within the IBP between two SMT cores
(except on Skylake). However, all threads that run on the same
logical (SMT) core have the same core-ID. As long as the
attacker and the victim share the same SMT core, the attacker
can still inject malicious targets into the victim’s IBP entries
and mislead its indirect branches to a disclosure gadget.

3.2.7 Privilege Level in IBP

In order to study the indirect branch prediction in higher
privilege levels, e.g. kernel code, we create a custom system
call (syscall), which includes a single indirect branch. In the
user space, we create an aliased indirect branch with identical
PC[15:6] and PHR states as the one in the kernel. In the

Test_ibranch:
 [Target_addr] = (RBX==0)?T0:T1
 PHR = (RBX==0)?PHR0:PHR1
 JMP [Target_addr]
 LOAD RCX, [Data0_addr]
 …
T0:
 LOAD RCX, [Data1_addr]
 …
 RET
T1:
 LOAD RCX, [Data2_addr]
 …
 RET

Step1_Train_IBP:
 While k<N:
 RBX = rand()%2
 JMP Test_ibranch
 k++
Step2_Flush_IBP:
 PHR = PHR0 / PHR1
 NOP64 (64 Bytes) × i
 JMP RAX
 Flush_Ti_0: …
 Flush_Ti_1: …
Step3_Measure:
 …//Flush Data
 RBX = rand()%2
 JMP Test_ibranch
 …//Measure Data Access Time

× 6+

Test iBranch GadgetMain Test Procedure (i=0~5)

Listing 4: Microbenchmark Pseudo-code for Testing Predic-
tion under BTB Hit + IBP Miss. The test iBranch gadget is
called at step 1 and step 3 in the main test.

Skylake architecture, we observe that there is no Privilege
Level field in IBP entries, enabling the potential for user-level
target injection attacks into the kernel. In contrast, in the
Raptor Cove microarchitecture, we observe that these two
indirect branches cannot occupy the same entry in the IBP,
even if they have identical PC and PHR values. This suggests
the presence of a Privilege Level field in IBP entries, which
prevents aliasing across different privilege levels. However,
there remains a potential attack surface when both the attacker
and the victim run on the same SMT core and share the same
privilege level.

3.3 IBP and BTB Interactions
As discussed above, both BTB and IBP record information
about indirect branches. The question arises: which makes
the final prediction for an indirect branch? Intel’s patent on
indirect branch prediction [44] offers us some hints. As listed
in the following, there are four combinations of BTB and IBP
outcomes in total. We will disclose the prediction under each
scenario.

BTB Hit + IBP Hit: To investigate whether the target pre-
diction originates from the BTB or IBP, we deliberately poi-
son both structures for a specific victim indirect branch and
observe side effects for the potential misdirected paths. As ex-
pected, our findings indicate that the prediction indeed comes
from the IBP for multi-target indirect branches in this case.
For single-target indirect branches, the prediction originates
from the BTB.

BTB Hit + IBP Miss: We explore this situation with one
indirect branch, as shown in Listing 4. After training the IBP
to record its targets, we issue more than 6 indirect branches
in the same set to evict it from the IBP, creating an IBP miss
upon next execution. Finally, we execute the test branch again
and measure its misprediction rate. With random binary input,
we observe a 50% miss rate instead of 100%, indicating the
BPU still makes predictions despite the IBP miss. Moreover,
for each misprediction, both Data1 and Data2 are cached, but

BTB State IBP State BPU Prediction Predicted Target Speculation?
Hit Hit IBP (MT) / BTB (ST) IBP[47:0] / {PC, BTB} Y
Hit Miss BTB {PC, BTB} Y
Miss Hit None Next Instruction N (Only Fetching)
Miss Miss None Next Instruction N (Only Fetching)

Table 2: Indirect Branch Prediction Policy under Differ-
ent BTB/IBP States (MT: Multi-Target indirect branch; ST:
Single-Target indirect branch).

Data0 is not. Therefore, we infer that the prediction comes
from the BTB. Since the BTB entry is only able to hold one
target, we observe an overall 50% miss rate when the correct
target alternates between T0 and T1 under a random input.

BTB Miss + IBP Hit: To test this scenario, step 2 is re-
placed with 12+ direct branches in the same BTB set to evict
the test branch, resulting in a BTB miss upon next execution.
The misprediction rate is always 100% in step 3, indicating
instructions at some other locations might be speculatively
fetched or even executed. The Intel developer manual [1] sug-
gests that the next instruction right after the branch might be
speculatively executed if the BTB lacks information about
the branch. However, measurement shows that Data0 is never
cached, but the first load instruction is always brought into
I-Cache. This indicates that instructions after the branch enter
the front-end, but likely are flushed when the decoder recog-
nizes a branch not in the BTB. There is no indication that the
IBP is accessed in this case.

BTB Miss + IBP Miss: In this case, the result is the same
as above. The execution of the indirect branch will be stalled
until the target is resolved. These results confirm that the CPU
only identifies the existence of branch instructions based on
their BTB states.

3.4 IBP Overall Structure
So far, we have successfully reverse-engineered most of the
structural details of the IBP in Intel’s recent processors, as
well as the prediction mechanism for indirect branches. Fig-
ure 10 depicts the ITTAGE structure of the IBP. The indirect
branch prediction policy is summarized in Table 2. We be-
lieve these analyses will aid the security community in better
understanding how and why prior injection attacks work, at
the microarchitectural level.

4 Analyzing Intel Hardware Security Mea-
sures Against BTI Attacks

Intel has introduced various defense mechanisms aimed at
safeguarding processors against malicious exploitation of
BPU structures, particularly speculative execution attacks.
Although official websites and documentation sources such
as [3, 7, 8] outline the usage and applicable scenarios of these
defenses, they offer limited insight into their implementation

48

Mux

4848

Mux

2 Ways

512 Sets

Tag

PHR[387:0]

Index
[387:16]

Tag

PHR[131:0]

Index
[131:16]

Tag

PHR[67:0]

Index
[67:16]

=? =? =?

Table 0 Table 1 Table 2BTB
…
…
…
…

…
12

1024

PC[23:0]

[15:6]

Mux Prediction

32
PC[47:32]<<32

Figure 10: Overall IBP Structure in Raptor Cove.

and the specific microarchitectural states affected by them. In
this section, our goal is to delve into the inner workings of
these defense mechanisms, focusing particularly on Indirect
Branch Restricted Speculation (IBRS), Single Thread Indi-
rect Branch Predictors (STIBP), and Indirect Branch Predictor
Barrier (IBPB). Previous studies [16, 19] have analyzed the
overall performance overhead of these defenses. However,
none have revealed the specific changes that occur in the BTB
and IBP states upon activating these defenses. We examine
these defenses in two microarchitectures: Skylake (2015) and
Raptor Cove (2022). Comparing these two architectures can
also illustrate the evolution of Intel processors in terms of
hardware security, as the former was launched before the
Spectre attack, whereas the latter was introduced well after.

To uncover the changes to the BTB and IBP for each de-
fense mechanism, we carefully design microbenchmarks that
allow us to track the presence and absence of particular BTB
and/or IBP entries across a series of events.

IBRS: We first start with IBRS, which protects against
branch injection by lower-privileged attackers. On Raptor
Cove, our tests show that IBRS is a singular event, in which
indirect branch entries are flushed from the BTB. Direct and
conditional branches are not flushed. The IBP microbench-
mark further shows that the IBP is not cleared and retains
all branch targets. Interestingly, then, IBRS has no special
function which addresses cross-privilege sharing. This is con-
sistent with Section 3.2.7 that shows that the privilege-level
identifier has already prevented cross-privilege IBP injection
in the general case, without any special mitigation. Intel seems
to describe this as the “Enhanced IBRS mode (eIBRS)” [8],
which is an "always on" mitigation.

On the Skylake architecture, our experiments yield simi-
lar results for direct and conditional branches, which are not
flushed. However, for indirect branches, the outcomes differ
significantly. Upon issuing the IBRS, every indirect branch in-
curs both BTB and IBP misses, even upon repeated execution.
This suggests that, on Skylake, the IBRS behaves more like a
“mode” than an “event” – once activated, both the BTB and
the IBP are entirely disabled, providing no target prediction
for indirect branches. After IBRS is disabled, we are able to
continue to successfully access prior IBP entries, indicating
neither the BTB or IBP are flushed when IBRS is invoked.

µArch
Defense IBRS STIBP IBPB

Skylake

BTB Disable iBranch None Flush All Types
IBP Disable Disable Flush
Behavior Mode Mode Event
Granularity Physical Core Physical Core Physical Core

Raptor
(Golden)
Cove

BTB Flush iBranch Flush iBranch Flush iBranch
IBP None None Flush
Behavior Event Event Event
Granularity SMT Core SMT Core SMT Core

Table 3: Impacts of Intel Hardware Defenses on BTB/IBP.

STIBP: STIBP was introduced with a goal of preventing
victim poisoning by attackers on a co-located SMT logical
core. On Raptor Cove, the results are identical to the IBRS:
only BTB entries for indirect branches are flushed, without
flushing the IBP. This also aligns with Section 3.2.6 showing
that cross-SMT protections are in place by default.

On Skylake, STIBP does not flush the BTB entries at all.
For indirect branches, we find some unexpected behavior. We
can successfully predict single-target indirect branches, but
not multiple-target branches. This indicates that the IBP is
disabled, but the BTB indirect branch entries are not flushed
and the BTB is used to generate indirect branch predictions.
Thus, STIBP operates as a special mode of operation (that
gets turned on and off) and not a distinct flush event – and in
fact the IBP is not flushed.

IBPB: IBPB is intended to prevent attackers from poisoning
indirect branches on the same logical core. On Raptor Cove,
we find that the IBPB flushes all the BTB entries of indirect
branches, similar to the IBRS and STIBP. However, IBPB
also flushes the IBP entries. On Skylake, we find that IBPB
flushes the entire BTB and the entire IBP. In summary, IBPB
is a stricter and more thorough defense than the other two, and
can be applied in a wider range of attack scenarios. However,
this comes at the cost of the highest performance overhead
(of the Raptor Cove mitigations).

Furthermore, we find that Raptor Cove allows each of these
defenses to be applied per SMT core. When defenses are
activated on one SMT context, the branch prediction for the
other context remains unchanged. However, on Skylake, both
SMT contexts are affected. All our discoveries regarding Intel
hardware defenses are summarized in Table 3.

5 iBranch Locator

Previous branch target injection (BTI) attacks require exten-
sive efforts to create branch history aliasing between the at-
tacker and the victim branch. For instance, Spectre v2 requires
the attacker to execute multiple aliased branches alongside the
victim to replicate identical history patterns [31]. BHI uses a
few branches to brute-force the history, requiring thousands
of attempts to achieve aliasing [14]. Consequently, in this
section, building upon our new, much deeper understanding

Victim_branch:
 Input = k
 RAX = Target_v_k
 PHR = PHRv_k
 JMP RAX
Target_v_0: …
Target_v_1: …
Target_v_(N-1): …

iBranch_index_locator:
 RBX = rand()%2
 RAX = (RBX==0)?Ti_0:Ti_1
 PHR = (RBX==0)?PHRa_0:PHRa_1
 NOP64 (64 Bytes) × i
 JMP RAX
Ti_0: …
Ti_1: …

× 6

iBranch Index Locator (i=0~5) Victim

Listing 5: Pseudo-code of iBranch Index Locator for Extract-
ing the IBP Index of the Victim Indirect Branch. The solid
frame means the branches are in separate processes. They are
launched simultaneously.

of the IBP structure, we propose iBranch Locator, an efficient
and high-resolution tool to locate any indirect branch within
the IBP, without the need to know any prior history informa-
tion before the branch. In this tool, the locating process is
divided into two steps: first finding the IBP index and then
searching for tag aliasing. Utilizing this tool, two injection
attacks can be easily mounted with precision, which will be
presented in Section 6.

5.1 iBranch Index Locator

The first step is to find the IBP set where the victim’s indirect
branch is located. Namely, we need to extract the index of the
victim entry. To distinguish which set the victim branch uses,
iBranch Index Locator conducts an associativity test during
the victim’s execution, using an eviction-based contention
technique.

As Listing 5 shows, it has 6 indirect branches with the same
PHR setup and different PC[15:6] to fully use an IBP set. The
victim contains an indirect branch with multiple targets, each
correlated to a PHR state, meaning that each target is stored in
a different IBP entry. iBranch Index Locator runs on a different
SMT core so the real associativity can be measured more
accurately without the possibility of entry sharing with the
victim; however this can be easily adapted to other sharing
scenarios. PHRa_0 is fixed to 0 while PHRa_1 is changed
during each trial. Since the PHR is folded into a 9-bit index,
512 attempts are needed at most. The misprediction rate of
the 6 locator branches is measured. If the victim branch uses a
specific IBP entry, an increase in the misprediction rate under
a certain PHRa_1 will be observed. On some older machines
like Skylake, the IBP is indexed by an 8-bit value, so we only
need 256 attempts.

As the example in Figure 11 illustrates, during the 512
trials, the misprediction rate rises at 184 and 384. This result
indicates that the victim indirect branch is recorded in two
different IBP sets, each corresponding to a target. In this exam-
ple, Target_v_0 is stored in the 184th set, and Target_v_1
is in the 384th set.

0 184 384 511
The IBP Index

25

30

35

40

M
is

s
R

at
e

(%
)

Victim Set #0 Victim Set #1

Figure 11: Misprediction Rate of the Indirect Branches in
iBranch Index Locator. Spikes corresponds to the victim sets.

5.2 iBranch Tag Locator

iBranch Index Locator does not extract the entire PHR, only
the index (the 9-bit value derived from the 388-bit PHR).
Locating the victim entry requires not only the index but also
the tag, making it more challenging, particularly since we
have shown the tag hash function differs from the index hash.

So the second step of iBranch Locator is to search for tag
aliasing. We can again do a brute force search for the 11 bits
by only controlling the PHR, but it requires a large effort
to create index and tag aliasing at the same time. Based on
the tag hash function revealed in Section 3.2.4, it can be
largely simplified by the fact that 10 of the 11 bits are xored
with PC bits to create the tag. Thus, iBranch Tag Locator can
permute the relevant PC bits (with 1024 branches) and need
only toggle two PHR bits (which create the same index but
a different Tag[10]) to complete the search of all 2048 tag
permutations. For instance, to toggle Tag[10], PHR[34] can
be toggled. To maintain the same IBP index as the victim,
PHR[34+18 = 52] should also be flipped. On Skylake, we
find the IBP tag is 7 bits, requiring much fewer attempts to
successfully find the tag.

Different from iBranch Index Locator, iBranch Tag Locator
needs to run on the same SMT core with the victim, because
entry sharing will only occur when they share core-ID. Fig-
ure 12, shows a related experiment, where we seek to create
IBP entry collision between the victim and locator branches.
It only succeeds when we permute the PC bits to replicate the
tag of the victim. We again see two hits, at two PC values,
indicating the victim branch has two targets and occupies two
IBP entries.

Therefore, iBranch Locator empowers us to successfully
uncover the IBP entry of the victim branch, with at most
512+2048 trials on Raptor Cove and 256+128 trials on Sky-
lake. It can also disclose other exploitable information about
the victim branch, such as the number of targets it may jump
to. Moreover, it is immune to address randomization tech-
niques, such as ASLR and KASLR. iBranch Locator is still
capable of extracting the location when the victim is running
with a randomized branch address and targets. Last but not
least, it supports cross-privilege detection starting from user
space: iBranch Index Locator can be launched in user space
to extract a kernel indirect branch’s IBP index, then iBranch
Tag Locator might run in an unprivileged eBPF program to

0H 218H 357H 3FFH
PC[15:6] of the Locator Branch (Hex)

50

60

70

80

M
is

s
R

at
e

(%
)

Victim Entry #0 Victim Entry #1

Figure 12: Misprediction Rate of the Locator Branch under
Different PC[15:6]. Spikes indicate that tag aliasing is found.

recover the tag.
Despite the advantages offered by iBranch Locator, it has

limitations. In this form, it cannot distinguish a target indirect
branch from other indirect branches in the victim; however,
indirect branches are far less common in many executables
and identifying a few (or even many) false positives is still far
better than prior brute force methods.

6 High-Precision Target Injection Attack

Using iBranch Locator, we introduce two distinct types of
high-precision branch target injection attacks directed at indi-
rect branches. The first type of attack poisons the victim’s IBP
entry. This attack offers a very wide range of attack possibili-
ties due to the full-length target being stored within the IBP.
The second type of attack directly injects malicious targets
into the victim’s BTB entry, which can be done more quickly
once iBranch Index Locator has successfully recovered the
IBP index, without the need for tag searching. In contrast
to previous target injection attacks [14], our attacks do not
require any prior history information of the victim. Addition-
ally, it is efficient in identifying aliasing, which is a common
challenge in this domain. Moreover, even with ASLR enabled,
we propose a new method to break the randomized bits of
the victim branch address. This makes injection attacks still
feasible in the cross-process scenario.

Attack Model: The attacker and the victim are two pro-
cesses on the same SMT (logical) core. The victim contains
an indirect branch with multiple targets, each correlated to a
specific PHR state. We assume that there is a secret-dependent
malicious load which is never reached by the victim during
normal execution, similar to the gadget exploited by Spectre
v1 [31]. The main goal of the attacker is to leverage iBranch
Locator to inject malicious targets and mislead the victim
to speculatively leak confidential information in microarchi-
tectural states, e.g. cache. The attacker uses methods like
Flush+Reload [68] to extract the cache state. Therefore, we
assume that the attacker and the victim use a shared memory.

Experimental Setup: All the experiments described in this
section are conducted on an Intel i7-13700K performance core
(Raptor Cove) with IBRS and STIBP enabled. The operating
system used is Ubuntu 20.04.6 LTS, running an unmodified
Linux kernel version 5.15.89.

 LOAD RDX, Secret(4)
 [Target_addr] = Target_v_k
 PHR = PHRv_k
 JMP [Target_addr]
 …
Target_v_0: …
Target_v_1: …
Target_v_(N-1):…
Target_malicious:
 LOAD RCX, [2048+RDX*128]

IBP Injection Attacker (i=0~N-1) Victim

[47:0]

 In=rand()%2
 RAX=(In==0)?Dum_T:Inject_T
 PHR=(In==0)?PHRdum:PHRlocator_i
 …
 // PC[15:6] = PClocator_i
 JMP RAX
 …
Dum_T: …
Inject_T: …

× N

Listing 6: Proof-of-concept Pseudo-code of the IBP Injection
Attack. Two processes run on the same SMT core.

6.1 IBP Injection Attack

Equipped with iBranch Locator, the attacker is able to locate
any victim IBP entry and inject an arbitrary target address.
Our attack requires the following steps.

Step 1. Locate victim entries by iBranch Locator: The at-
tacker first launches iBranch Locator to extract both the IBP in-
dex and tag of the victim entries, detailed in Section 5. For an
N-target victim, iBranch Locator extracts PHRlocator_i as index
and PClocator_i as the corresponding tag (i = 0,1, ...,N −1).

Step 2. Inject IBP with multi-target indirect branch:
Listing 6 shows the attacker process, including N indirect
branches and 2 targets in total. For each branch, the first tar-
get is the Dum_T correlated with a dummy PHR state, which
generates a different index from the victim. The second is
Inject_T which is identical with the malicious target in the
virtual address, correlated with PHRlocator_i. The PC[15:6] of
the i-th branch is also set to PClocator_i, causing entry sharing
with the victim’s i-th target. The multi-target branches (even
if the first target is only seen once) ensure the attacker uses
IBP prediction and records targets into the related IBP entries.
As a result, the attacker successfully injects the malicious
target into all N victim entries.

Result analysis: We use Flush+Reload [68] to detect load
execution and thereby extract the secret value. The result
shows shared data at address 2560 has a noticeably higher hit
rate than other locations in the Reload stage, indicating the
secret is (2560−2048)/128 = 4. The injection success rate
achieves 97.4% on our Raptor Cove machine.

Comparison to Prior Works: In summary, the IBP injection
can mislead an indirect branch to any address in the address
space. Compared to Spectre v2 [27, 31], our attack bypasses
the need for prior knowledge of victim branch history. Com-
pared to Branch History Injection (BHI) [14], our injection,
equipped with better knowledge of the IBP implementation,
is more precise as it can locate the victim branch’s entries
accurately at a microarchitectural level. So while we also use
brute force methods, we are precisely searching the exact
structures rather than the entire possible branch history; thus
requiring, in many cases, orders of magnitude fewer trials.

Victim_branch:
 LOAD RDX, Secret(4)
 [Target_addr] = Target_v_k
 PHR = PHRv_k
 JMP [Target_addr]
 …
Target_v_0:
 …
Target_v_1:
 …
Target_v_(N-1):
 …
Target_malicious:
 LOAD RCX, [2048+RDX*128]

Step1_Evict:
 While k < N:
 RAX = Evict_i_k
 PHR = PHRlocator_k
 NOP64 × i
 JMP RAX
 Evict_i_0: …
 Evict_i_1: …
 Evict_i_(N-1): …
 k++
Step2_Inject_BTB:
 RAX = Inject_T
 JMP RAX
Inject_T:

× 6

[23:0]

BTB Injection Attacker(i=0~5) Victim
[31:0]

Listing 7: Proof-of-concept Pseudo-code of the BTB Injection
Attack. Two processes run on the same SMT core.

6.2 BTB Injection Attack

Next, we introduce a more efficient target injection attack,
with only iBranch Index Locator needed. In this attack, the
attacker indirect branch can inject malicious targets into the
victim’s BTB entry and mislead it via BTB prediction. List-
ing 7 and the following description demonstrate the attack
steps.

Step 1. Evict the victim from IBP: First, the attacker uses
6 or more indirect branches to evict the victim branch from
the IBP. This can be easily achieved by setting the eviction
branches’ PHR states to PHRlocator, as extracted from iBranch
Index Locator. This creates a BTB Hit + IBP Miss scenario
for the victim, ensuring the BTB will source its next target
prediction.

Step 2. Inject BTB with single-target indirect branch: As
observed in Section 3.1.1, branches with the same PC[23:0]
share the same BTB entry. Further, if they have identical
branch types, speculative fetching and execution will occur.
Therefore, our attacker leverages this feature to inject and
mislead the victim branch. As step 2 in Listing 7 shows, the
aliased attacker branch has only one target, aliased (low 32
bits) with the malicious load. Therefore, after IBP eviction,
the attacker injects the malicious target into the victim’s BTB
entry. A single-target indirect branch gets the BTB prediction
and records its target in the BTB, so it is used here to ensure
the victim’s BTB entry gets overwritten each time.

Result analysis: Figure 13 shows the average cache hit rate
of all shared memory locations in the Reload stage for each of
three scenarios. With both IBP eviction and BTB injection, the
secret ‘4’ can be successfully extracted. However, with only
IBP eviction, the cached data disappears, indicating the BTB
entry has not been injected by the attacker. BTB injection
alone also fails, because the victim’s prediction comes from
the IBP rather than the BTB. The injection success rate is
97.2% on our Raptor Cove machine.

Comparison to Prior Works: This BTB injection attack
against the IBP is more efficient than previous injection at-

2048 2176 2304 2432 2560 2688 2816 2944 3072 3200
Data Address

0

10

20

C
ac

he
 H

it
(%

)

Leak Secret! Only IBP Eviction
Only BTB Injection
Eviction+Injection

Figure 13: Cache Hit Rate of All the Shared Memory Loca-
tions in the Reload Stage.

tacks [31], requiring at most 512 trials in iBranch Index Loca-
tor. The injection can be carried out instantly after the attacker
gets the IBP index of the victim. Moreover, this attack can
also be applied in a cross-privilege scenario: iBranch Index
Locator and IBP eviction can be launched in user space, and
then an unprivileged eBPF program that includes an aliased
indirect branch can inject the malicious target into the BTB,
similar to the method described in Branch History Injection
(BHI) [14].

6.3 Breaking ASLR and Enabling Injection

Most target injection attacks are ineffective under a cross-
process scenario with ASLR enabled, as address randomiza-
tion makes it challenging for attackers to create aliasing with
malicious gadgets in the victim process, especially for IBP in-
jection that requires full 48-bit target aliasing with the gadget.
Several prior works [18, 23, 76] proposed methods to break
ASLR. In this section, we develop a new method to break it
inside the BTB, enabling BTB injection in the presence of
ASLR, with relatively few attempts.

Step 1. Recover PC[23:12] from BTB associativity: In the
first step, we aim to break PC[14:12] of the victim indirect
branch. We use a similar idea to iBranch Index Locator, which
extracts information from associativity tests. We prepare 12
direct branches with the same BTB index, i.e. PC[14:5], to
measure BTB associativity. Because the ASLR only random-
izes bits higher than the 12th, we need at most 8 trials to locate
which BTB set the victim is in. This successfully uncovers
PC[14:12], which is all we need to create index aliasing.

To create the BTB injection attack, we also need to establish
tag aliasing. To break the BTB tag (PC[23:15]), we use a test
direct branch with the same PC[14:0] as the victim, then
brute-force the tag. We measure the misprediction of another
11 eviction direct branches mapping to the same set. Based
on Observation 1, when the test direct branch has the same
PC[23:0] as the victim, they share a BTB entry and thus the
misprediction of the 11 eviction branches is low. Otherwise,
the test branch uses a different entry from the victim, causing
evictions and thus mispredictions within the 11 branches. In
our experiments, we have managed to locate the BTB entry
of the victim consistently and recover PC[23:12].

Step 2. Recover PC[31:24] from BTB injection: BTB

injection attacks require aliasing in the lower 32 bits of targets.
As the offset between the malicious gadget and victim is fixed,
the lower 23 bits of the gadget are known. We only need
to brute-force bits 31-24, requiring 256 total trials. iBranch
Index Locator is immune to ASLR as mentioned before, so
IBP eviction remains effective. Successful BTB injection will
occur for a certain Target[31:24], breaking partial ASLR (bits
31-12) and enabling effective target injection against indirect
branches at the same time.

The results show that we can achieve a 96.5% success
rate of breaking ASLR on Raptor Cove. To sum up, we need
8+512+256=776 attempts at most to break partial ASLR. Pre-
vious works inject targets into the IBP, which stores the entire
48-bit target and this makes injection difficult with ASLR en-
abled, because breaking all the randomized bits (from the 13th
to 48th bit) needs tremendous effort (over 10M brute-forcing
attempts). However, with our method and BTB injection, the
attack is still practical with ASLR enabled.

7 Mitigation Strategies

In this section, we discuss the potential mitigation strategies
for Branch Target Injection (BTI) attacks.

Mitigations from CPU Vendors: As discussed in Section 4,
the Indirect Branch Prediction Barrier (IBPB) is the most
strict defense available on the newest CPUs and mitigates
any out-of-place target injection attack if used properly. To
the best of our understanding, Linux opts to automatically
activate the IBPB during context switches between different
users. The default policy in the latest Linux version, termed
“IBPB: conditional,” only activates IBPB during transitions
to SECCOMP mode or tasks with restricted indirect branches
in the kernel. Consequently, IBPB activation is infrequent in
both user and kernel spaces due to the significant performance
overhead (up to 50% [19]). It is not a viable mitigation for
frequent domain crossings (browsers, sandboxes, and even
kernel/user) – plus the fact that the OS does not use it in the
most frequent domain transitions by default.

However, even with this measure in place, when an attacker
exploits intra-process poisoning, injection opportunities per-
sist. Therefore, a potential mitigation strategy could involve
triggering the IBPB during context switches between all pro-
cesses – actually in all transitions between different security
domains, where it is anticipated that those security domains
may influence and/or leak information to another. This could
represent a very high overhead for systems with low-level
management of short threads, such as microservices or FaaS,
if they even had the opportunity to employ IBPB (since they
carefully avoid kernel calls between user-level switches). In
general, relying on this mitigation would indeed necessitate
the operating system triggering frequent IBPBs, resulting in
significant overhead.

Secure BPU Design: Section 3 highlights that Intel has al-

ready integrated new fields such as Core-ID and Privilege
Level into their recent Indirect Branch Predictor (IBP) de-
sign. This inclusion aims to prevent aliasing between indirect
branches originating from different SMT cores and differ-
ent privilege levels, respectively. However, this still leaves
potential attack surfaces within the same-core and/or same-
privilege scenarios. For future BPU designs, a more compli-
cated tag should be considered to provide more fine-grained
isolation across security domains [42,62,77]. Additional mea-
sures, such as employing encryption or randomization in entry
allocation and index generation policy [25,33,75,77,78], are
also suggested.

8 Conclusion

This paper presents the first comprehensive analysis of the
Indirect Branch Predictor (IBP) and the Branch Target Buffer
(BTB) structures in high-end Intel CPUs. This work also ana-
lyzes the inner workings of Intel hardware defenses against
Branch Target Injection (BTI) attacks, including IBPB, IBRS,
and STIBP, shedding light on their mechanisms and the af-
fected structures upon activation. Expanding on these findings,
it demonstrates precise Branch Target Injection (BTI) attacks,
showing the continued feasibility of BTI attacks in specific
scenarios such as cross-process situations. Leveraging this, it
also exploits the IBP and BTB to break Address Space Layout
Randomization (ASLR).

Acknowledgments

The authors would like to thank the anonymous reviewers for
their helpful suggestions.

References

[1] Intel® 64 and ia-32 architectures optimization reference
manual volume 1. https://www.intel.com/conten
t/www/us/en/content-details/671488/intel-6
4-and-ia-32-architectures-optimization-ref
erence-manual-volume-1.html.

[2] Agner Fog. “the microarchitecture of intel, amd and via
cpus”. http://www.agner.org/optimize/microar
chitecture.pdf, 2017.

[3] Intel® single thread indirect branch predictors (stibp).
https://www.intel.com/content/www/us/en/de
veloper/articles/technical/software-secur
ity-guidance/technical-documentation/singl
e-thread-indirect-branch-predictors.html,
2018.

[4] Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faq
s/answer/7625886, 2018.

https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual-volume-1.html
http: //www.agner.org/optimize/microarchitecture.pdf
http: //www.agner.org/optimize/microarchitecture.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

[5] Open Source Security Inc. the amd branch
(mis)predictor: Just set it and forget it!
https://grsecurity.net/amd_branch_misp
redictor_just_set_it_and_forget_it, 2022.

[6] Retpoline: A branch target injection mitigation. https:
//www.intel.com/content/www/us/en/develope
r/articles/technical/software-security-g
uidance/technical-documentation/retpoline
-branch-target-injection-mitigation.html,
2022.

[7] Intel® indirect branch predictor barrier (ibpb). https:
//www.intel.com/content/www/us/en/develope
r/articles/technical/software-security-gui
dance/technical-documentation/indirect-bra
nch-predictor-barrier.html, 2023.

[8] Intel® indirect branch restricted speculation (ibrs). ht
tps://www.intel.com/content/www/us/en/deve
loper/articles/technical/software-securit
y-guidance/technical-documentation/indirec
t-branch-restricted-speculation.html, 2023.

[9] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert.
New branch prediction vulnerabilities in openssl and
necessary software countermeasures. In Cryptography
and Coding, 2007.

[10] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis. In
Computer and Communications Security (CCS), 2007.

[11] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
Predicting secret keys via branch prediction. In RSA
Conference, 2007.

[12] Sam Ainsworth and Timothy M Jones. Muontrap: Pre-
venting cross-domain spectre-like attacks by capturing
speculative state. In International Symposium on Com-
puter Architecture (ISCA), 2020.

[13] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang,
and Radu Teodorescu. Specshield: Shielding speculative
data from microarchitectural covert channels. In Paral-
lel Architectures and Compilation Techniques (PACT),
2019.

[14] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
{Cross-Privilege} spectre-v2 attacks. In USENIX Secu-
rity Symposium (USENIX Security), 2022.

[15] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Pre-
venting timing leaks through transactional branching
instructions. Electronic Notes in Theoretical Computer
Science, 2006.

[16] Jonathan Behrens, Adam Belay, and M Frans Kaashoek.
Performance evolution of mitigating transient execution
attacks. In European Conference on Computer Systems,
2022.

[17] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. Smotherspectre: ex-
ploiting speculative execution through port contention.
In Computer and Communications Security (CCS),
2019.

[18] Claudio Canella, Michael Schwarz, Martin Haubenwall-
ner, Martin Schwarzl, and Daniel Gruss. Kaslr: Break
it, fix it, repeat. In Asia Conference on Computer and
Communications Security, 2020.

[19] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In USENIX Security Symposium (USENIX
Security), 2019.

[20] Chandler Carruth. RFC: Speculative load hardening (a
Spectre variant #1 mitigation). https://lists.llvm
.org/pipermail/llvm-dev/2018-March/122085.
html, 2018.

[21] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Jo-
hannesmeyer, Yunlu Huang, Ranjit Jhala, and Deian Ste-
fan. Fact: A flexible, constant-time programming lan-
guage. In Cybersecurity Development (SecDev), 2017.

[22] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan
Yao. Branchspec: Information leakage attacks exploit-
ing speculative branch instruction executions. In In-
ternational Conference on Computer Design (ICCD).
IEEE, 2020.

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over aslr: Attacking branch predictors
to bypass aslr. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[24] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. Branchscope:
A new side-channel attack on directional branch pre-
dictor. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[25] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski,
Eric Quinnell, Daniel A Jiménez, Tarun Nakra, Paul
Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas
Sinha, et al. Evolution of the samsung exynos cpu mi-
croarchitecture. In International Symposium on Com-
puter Architecture (ISCA). IEEE, 2020.

https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html

[26] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+ flush: a fast and stealthy cache
attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2016.

[27] Jann Horn et al. Reading privileged memory with a
side-channel. Project Zero, 2018.

[28] Bradley D. Hoyt, Glenn J. Hinton, David B. Papworth,
Ashwani K. Gupta, Michael A. Fetterman, Subramanian
Natarajan, Sunil Shenoy, and Reynold V. D’Sa. Method
and apparatus for implementing a set-associative branch
target buffer, U.S. Patent US5574871A, Nov. 1996.

[29] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethunder:
A 2-level directional predictor based side-channel at-
tack against sgx. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020.

[30] Intel® C++ Compiler 19.1 Developer Guide and Refer-
ence, 2020.

[31] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spec-
tre attacks: Exploiting speculative execution. In IEEE
Symposium on Security and Privacy (SP). IEEE, 2019.

[32] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre
returns! speculation attacks using the return stack
buffer. In USENIX Workshop on Offensive Technologies
(WOOT 18), 2018.

[33] Jaekyu Lee, Yasuo Ishii, and Dam Sunwoo. Secur-
ing branch predictors with two-level encryption. ACM
Transactions on Architecture and Code Optimization
(TACO), 2020.

[34] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside {SGX} enclaves with branch
shadowing. In USENIX Security Symposium (USENIX
Security), 2017.

[35] Haifeng Li, Tianyue Lu, Yuhang Liu, and Mingyu Chen.
Make page coloring more efficient on slice-based three-
level cache. In International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 2019.

[36] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan
Meng. Conditional speculation: An effective approach
to safeguard out-of-order execution against spectre at-
tacks. In International Symposium on High Performance
Computer Architecture (HPCA), 2019.

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down. arXiv preprint arXiv:1801.01207, 2018.

[38] Nick Mahling. Reverse engineering of Intel’s branch
prediction. https://www.its.uni-luebeck.de/
fileadmin/files/theses/BA_NickMahling_Reve
rseEngineeringIntelsBranchPrediction.pdf,
2023.

[39] Pierre Michaud. A ppm-like, tag-based branch predictor.
JILP-Championship Branch Prediction, 2005.

[40] Microsoft. More Spectre mitigations in MSVC. https:
//devblogs.microsoft.com/cppblog/more-spect
re-mitigations-in-msvc/, 2020.

[41] Milena Milenkovic, Aleksandar Milenkovic, and Jeffrey
Kulick. Demystifying intel branch predictors. In Work-
shop on Duplicating, Deconstructing and Debunking,
2002.

[42] Steven Myers, Jeffry Gonion, Yannick Sierra, and
Thomas Icart. Indirect branch predictor security protec-
tion, U.S. Patent 20200192673A1, Jun. 2020.

[43] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark
Silberstein, and Christof Fetzer. You shall not bypass:
Employing data dependencies to prevent bounds check
bypass. arXiv preprint arXiv:1805.08506, 2018.

[44] Lihu Rappoport, Ronny Ronen, Nicolas Kacevas, and
Oded Lempel. Method and system for branch target
prediction using path information, U.S. Patent 6 601 161
B2, Jul. 2003.

[45] Xida Ren, Logan Moody, Mohammadkazem Taram,
Matthew Jordan, Dean M. Tullsen, and Ashish Venkat.
I see dead µops: Leaking secrets via intel/amd micro-
op caches. In International Symposium on Computer
Architecture (ISCA), June 2021.

[46] Gururaj Saileshwar and Moinuddin K Qureshi. Cleanup-
spec: An" undo" approach to safe speculation. In
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2019.

[47] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. Netspectre: Read arbitrary
memory over network. In European Symposium on
Research in Computer Security. Springer, 2019.

[48] Andre Seznec. The o-gehl branch predictor. JILP-
Championship Branch Prediction, 2004.

[49] André Seznec. A 64-kbytes ittage indirect branch pre-
dictor. In JWAC-2: Championship Branch Prediction,
2011.

https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf
https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf
https://www.its.uni-luebeck.de/fileadmin/files/theses/BA_NickMahling_ReverseEngineeringIntelsBranchPrediction.pdf
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/more-spectre-mitigations-in-msvc/

[50] André Seznec and Pierre Michaud. A case for (partially)
tagged geometric history length branch prediction. JILP-
Championship Branch Prediction, 2006.

[51] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell.
Restricting control flow during speculative execution
with venkman. arXiv preprint arXiv:1903.10651, 2019.

[52] Basavesh Ammanaghatta Shivakumar, Jack Barnes,
Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsa-
tiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe,
Rui Qi Sim, and Yuval Yarom. Spectre declassified:
Reading from the right place at the wrong time. In IEEE
Symposium on Security and Privacy (SP), 2023.

[53] Spectre side channels. https://www.kernel.org/d
oc/html/latest/admin-guide/hw-vuln/spectre.
html, 2019.

[54] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and
Dean Tullsen. Secsmt: Securing SMT processors against
contention-based covert channels. In USENIX Security
Symposium (USENIX Security), 2022.

[55] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Context-sensitive fencing: Securing speculative
execution via microcode customization. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[56] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on AES, and countermeasures. Journal of
Cryptology, 2010.

[57] Dean M Tullsen, Susan J Eggers, and Henry M Levy.
Simultaneous multithreading: Maximizing on-chip par-
allelism. In International Symposium on Computer Ar-
chitecture (ISCA), 1995.

[58] Vladimir Uzelac. Microbenchmarks and mechanisms
for reverse engineering of modern branch predictor units.
A Masters Thesis submitted to the University of Al-
abama, 2008.

[59] Vladimir Uzelac and Aleksandar Milenkovic. Experi-
ment flows and microbenchmarks for reverse engineer-
ing of branch predictor structures. In International
Symposium on Performance Analysis of Systems and
Software (ISPASS), 2009.

[60] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient {Out-of-Order} execution. In
USENIX Security Symposium (USENIX Security), 2018.

[61] Marco Vassena, Craig Disselkoen, Klaus V Gleis-
senthall, Sunjay Cauilgi, Rami Gökhan Kici, Ranjit
Jhala, Dean Tullsen, and Deian Stefan. Automatically
eliminating speculative leaks from cryptographic code
with Blade. In Principles of Programming Languages
(POPL), 2021.

[62] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg,
Stephan Diestelhorst, Bashir M Al-Hashimi, and Ge-
off V Merrett. Brb: Mitigating branch predictor side-
channels. In International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2019.

[63] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F
Wenisch, and Baris Kasikci. Nda: Preventing specula-
tive execution attacks at their source. In IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
2019.

[64] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos,
and Cristiano Giuffrida. InSpectre Gadget: Inspecting
the Residual Attack Surface of Cross-privilege Spectre
v2. In USENIX Security, August 2024.

[65] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi.
Phantom: Exploiting decoder-detectable mispredictions.
In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2023.

[66] You Wu and Xuehai Qian. A case for reversible coher-
ence protocol. arXiv preprint arXiv:2006.16535, 2020.

[67] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher Fletcher, and Josep Torrellas. In-
visispec: Making speculative execution invisible in the
cache hierarchy. In IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2018.

[68] Yuval Yarom and Katrina Falkner. {FLUSH+
RELOAD}: A high resolution, low noise, l3 cache {Side-
Channel} attack. In USENIX Security Symposium
(USENIX Security), 2014.

[69] Hosein Yavarzadeh, Archit Agarwal, Max Christman,
Christina Garman, Daniel Genkin, Andrew Kwong,
Daniel Moghimi, Deian Stefan, Kazem Taram, and Dean
Tullsen. Pathfinder: High-resolution control-flow at-
tacks exploiting the conditional branch predictor. In
Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 770–784, 2024.

[70] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan
Narayan, Deian Stefan, and Dean Tullsen. Half&half:
Demystifying intel’s directional branch predictors for
fast, secure partitioned execution. In IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society,
2023.

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html

[71] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Col-
oris: a dynamic cache partitioning system using page
coloring. In International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT). IEEE,
2014.

[72] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Mor-
rison, and Christopher W Fletcher. Speculative data-
oblivious execution: Mobilizing safe prediction for safe
and efficient speculative execution. In International
Symposium on Computer Architecture (ISCA), 2020.

[73] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morri-
son, Josep Torrellas, and Christopher W Fletcher. Specu-
lative taint tracking (stt) a comprehensive protection for
speculatively accessed data. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019.

[74] Tao Zhang, Kenneth Koltermann, and Dmitry Ev-
tyushkin. Exploring branch predictors for constructing
transient execution trojans. In International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[75] Tao Zhang, Timothy Lesch, Kenneth Koltermann, and
Dmitry Evtyushkin. Stbpu: A reasonably secure branch
prediction unit. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE,
2022.

[76] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell,
Chitchanok Chuengsatiansup, Daniel Genkin, and Yu-
val Yarom. {BunnyHop}: Exploiting the instruction
prefetcher. In USENIX Security Symposium (USENIX
Security), 2023.

[77] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang,
Jiazhen Li, Lixin Zhang, Xuehai Qian, and Dan Meng.
A lightweight isolation mechanism for secure branch
predictors. In Design Automation Conference (DAC),
2021.

[78] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Xue-
hai Qian, Lixin Zhang, and Dan Meng. Hybp: Hybrid
isolation-randomization secure branch predictor. In In-
ternational Symposium on High Performance Computer
Architecture (HPCA), 2022.

Appendix

A Path History Register (PHR)

As described in Section 2.1, the Path History Register (PHR)
keeps track of past taken branches and gets updated with both
branch source and target addresses. The general PHR update
process is:

• Step 1: The old PHR value is left-shifted by 2 bits, with
the lowest bits padded with zeros.

• Step 2: The left-shifted PHR is further combined with
the latest taken branch’s source and target addresses
through a certain function (depicted in Figure 14) to
form the new PHR value.

Table 4 summarizes basic PHR information for Skylake,
Raptor (Golden) Cove and Gracemont microarchitectures. On
Skylake and Gracemont, the IBP uses the past 29 branches’
history for prediction while the CBP uses 93 branches [70].
In contrast, Raptor (Golden) Cove uses the same PHR length
for both IBP and CBP, which is 194 branches. As shown in
Figure 3, each update left-shifts the PHR by 2 bits. Therefore,
the total bit size of the PHR is the product of the number
of branches and 2. The bits of the branch source and target
addresses used for update are also summarized in Table 4.

µArch PHR size
(IBP)

PHR size
(CBP)

Source
Addr. Input

Target
Addr. Input

Skylake 29 * 2 93 * 2 [18:3] [5:0]
Raptor (Golden) Cove 194 * 2 194 * 2 [15:0] [5:0]
Gracemont 29 * 2 93 * 2 [11:0] [3:0]

Table 4: PHR size used for IBP and CBP prediction, and
branch source and target bits involved in PHR update.

Figure 14 illustrates the detailed PHR update function.
First, specific bits of the branch and target addresses are
XORed together to form a branch trace. This XOR pattern
differs based on microarchitecture. The branch trace is then
XORed with the left-shifted PHR to form the new PHR.

These results are consistent with the results shown in [70]
and [69], but extended to also include the branch history
length used for the indirect branch prediction.

Pn-2 P4 P3 P2 P1 P0 0 0P5P10 P9 P8 P7 P6P11P12P13P14…

P’n P’6 P’5 P’4 P’3 P’2 P’1 P’0P’7P’12P’11P’10 P’9 P’8P’13P’14P’15P’16…

B15 B14 B13 B12 B11 B2 B1 B0 B10 B9 B8 B7 B6 B5 B4 B3

T5 T4 T3 T2 T1 T0
Raptor (Golden) Cove

B18 B17 B16 B15 B14 B13 B10 B9 B6 B5 B12 B11 B8 B7 B4 B3

T5 T4 T3 T2 T1 T0Skylake

B4 B11 B10 B9 B8 B7 B6 B5 B3 B2 B1 B0

T3 T2 T1 T0Gracemont

PHRold << 2 :

PHRnew :

Figure 14: PHR Update Function for Skylake, Raptor (Golden)
Cove and Gracemont. Bi represents the i-th bit of the branch
source address. Ti is i-th bit of the target address.

	Introduction
	Background and Related Work
	Branch Prediction
	Branch-based Side Channel Attacks
	Defenses Against Branch-based Attacks

	Analysis of Indirect Branch Prediction
	Branch Target Buffer (BTB)
	Branch Type in BTB
	Core-ID in BTB
	Privilege Level in BTB

	Indirect Branch Predictor (IBP)
	Index and Tag Inputs
	Associativity
	Index Hash Function
	Tag Hash Function
	Target Address in IBP
	Core-ID in IBP
	Privilege Level in IBP

	IBP and BTB Interactions
	IBP Overall Structure

	Analyzing Intel Hardware Security Measures Against BTI Attacks
	iBranch Locator
	iBranch Index Locator
	iBranch Tag Locator

	High-Precision Target Injection Attack
	IBP Injection Attack
	BTB Injection Attack
	Breaking ASLR and Enabling Injection

	Mitigation Strategies
	Conclusion
	Path History Register (PHR)

