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Nonstandard second-order formulation of the LWR
model

Wen-Long Jin∗

February 1, 2017

Abstract

The seminal LWR model (Lighthill and Whitham, 1955; Richards, 1956) has many
equivalent first-order formulations in both Eulerian and Lagrangian coordinates. In
this study, we present a second-order formulation of the LWR model based on Phillips’
model (Phillips, 1979); but the model is nonstandard with a hyperreal infinitesimal
relaxation time. Since the original Phillips model is unstable with three different
definitions of stability in both Eulerian and Lagrangian coordinates, we cannot use
traditional methods to prove the equivalence between the second-order model, which can
be considered the zero-relaxation limit of Phillips’ model, and the LWR model, which
is the equilibrium counterpart of Phillips’ model. Instead, we resort to a nonstandard
method based on the equivalence relationship between second-order continuum and car-
following models established in (Jin, 2016) and prove that the nonstandard model and
the LWR model are equivalent, since they have the same anisotropic car-following model
and stability property. We further derive conditions for the nonstandard model to be
forward-traveling and collision-free, prove that the collision-free condition is consistent
with but more general than the CFL condition (Courant et al., 1928), and demonstrate
that only anisotropic and symplectic Euler discretization methods lead to physically
meaningful solutions. We numerically solve the lead-vehicle problem and show that
the nonstandard second-order model has the same shock and rarefaction wave solutions
as the LWR model for both Greenshields and triangular fundamental diagrams; for a
non-concave fundamental diagram we show that the collision-free condition, but not
the CFL condition, yields physically meaningful results. Finally we present a correction
method to eliminate negative speeds and collisions in general second-order models, and
verify the method with a numerical example. Together with (Jin, 2016), this study
presents a new approach to address the two critiques on second-order continuum models
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in (Daganzo, 1995a) and can help to guide the development and discretization of more
physically meaningful second-order continuum and car-following models.

Keywords: The LWR model; Phillips’ model; hyperreal infinitesimal number; anisotropic
and symplectic Euler discretization methods; forward-traveling and collision-free; lead-vehicle
problem; correction of second-order models.

1 Introduction

The seminal LWR model describes the evolution of traffic density, k(t, x), speed, v(t, x), and
flow-rate, q(t, x) in a time-space domain (Lighthill and Whitham, 1955; Richards, 1956) and
can be derived from the following rules (Hereafter we omit (t, x)):

R1. The fundamental law of continuum media: q = kv.

R2. The fundamental diagram (Greenshields, 1935): a speed-density relation v = V (k), and
a flow-density relation

q = φ(k) ≡ kη(k). (1)

Here R2 is determined by the static characteristics of traffic flow. Various fundamental
diagrams have been proposed. For examples, in the triangular fundamental diagram
(Munjal et al., 1971; Haberman, 1977; Newell, 1993), we have:

η(k) = min{V,W (
K

k
− 1)}, (2)

where V is the free-flow speed, −W characteristic wave speed in congested traffic, K
the jam density, and τ ≡ 1

KW
is the time gap; in the Greenshields fundamental diagram

(Greenshields, 1935), we have

η(k) = V (1− k

K
). (3)

R3. Conservation of vehicles:

∂k

∂t
+
∂kv

∂x
= 0. (4)

From R1-R3, the LWR model can be written as

∂k

∂t
+
∂kη(k)

∂x
= 0, (5)

which is a scalar hyperbolic conservation law and well-defined with the following two additional
implicit rules.
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R4. Weak solutions: discontinuous shock waves can develop from smooth initial conditions.

R5. Entropy conditions: certain physical laws are used to pick out unique weak solutions.
Traditionally the Lax or Oleinik entropy condition is used to pick out unique solutions
(Lighthill and Whitham, 1955; Ansorge, 1990).

Numerically the Godunov method has been successfully applied to solve the LWR model
and extended as the Cell Transmission Model for network traffic (Daganzo, 1995b; Lebacque,
1996). Recently, equivalent formulations of the LWR model have been derived with different
state variables and coordinate systems. For example, with the cumulative flow as the state
variable in Eulerian coordinates, the LWR model is equivalent to a Hamilton-Jacobi equation,
which can be solved with the minimum principle in (Newell, 1993) or the variational principle
in (Daganzo, 2005). In (Daganzo, 2006), the LWR model was shown to be equivalent
to various car-following and cellular automaton models. In (Leclercq et al., 2007), both
Hamilton-Jacobi and hyperbolic conservation law formulations of the LWR model were
derived and solved in Lagrangian coordinates. In (Laval and Leclercq, 2013), three equivalent
Hamilton-Jacobi equations were derived and solved with the Hopf-Lax formula.

It is well known that the LWR model cannot capture scatter and hysteresis in speed-
and flow-density relations, spontaneous stop-and-go traffic caused by instability, or bounded
acceleration. These limitations have motivated many extensions of the LWR model, including
second-order models (e.g. Payne, 1971; Whitham, 1974; Zhang, 1998; Aw and Rascle, 2000;
Zhang, 2002; Lebacque, 2003). In these models, the conservation equation, (4), is comple-
mented by an additional equation for the acceleration process. For examples, the acceleration
equation in Zhang’s model (Del Castillo et al., 1994; Zhang, 1998) can be written as

vt + vvx =
η(k)− v

T
− (η′(k))2kkx, (6)

where T is the relaxation time. Such a second-order model reduces to the LWR model,
(5), in equilibrium (or steady) states and is traditionally studied as a system of hyperbolic
conservation laws with relaxation. It was shown in (Li, 2000) that Zhang’s model is stable
and converges to the LWR model, when the relaxation time T converges to zero (Liu, 1987).
That is, the LWR model is the zero-relaxation limit of Zhang’s model.

In this study, we present a nonstandard second-order formulation of the LWR model
based on Phillips’ model (Phillips, 1979), in which the acceleration equation without the
anticipation term is simpler than Zhang’s model:

vt + vvx =
η(k)− v

T
. (7)

In particular, we replace the relaxation time by an infinitesimal number, which equals the
time step-size in numerical solutions. The formulation is nonstandard, since the infinitesimal
relaxation time is a hyperreal number in the nonstandard analysis (Robinson, 1996). The
second-order formulation offers a number of advantages over the LWR model: non-equilibrium
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initial data can be incorporated, and the acceleration rate can be explicitly calculated, even
though it can be a hyperreal number. The second advantage is especially helpful if one
introduces bounded acceleration rates into the model.

Furthermore, the method that we employ to analyze and solve the nonstandard second-
order model is also nonstandard. In particular, we resort to the equivalence relationship
between second-order continuum and car-following models established in (Jin, 2016): we first
convert a second-order continuum model into a time- and vehicle-continuous car-following
model in Lagrangian coordinates, and then apply the anisotropic method to discretize
derivatives in vehicles, and a symplectic Euler method to discretize the acceleration rate and
speed in time. Then with their equivalent car-following models, we establish the equivalence
between the nonstandard second-order model and the LWR model. We also analytically and
numerically solve various lead-vehicle problems, in which the leading vehicle travels at a
constant speed, to examine other properties of the model; in particular, we are interested in
whether the model is stable, forward-traveling, or collision-free.

The choice of the nonstandard method is prompted by the failure of standard methods
for analyzing and solving second-order models.

• First, even though the nonstandard second-order formulation can be considered a zero-
relaxation limit of Phillips’ model, the traditional approach to proving the equivalence
between the zero-relaxation limit (the nonstandard second-order formulation) and the
equilibrium model (the LWR model) fails to apply, since Phillips’ model is always
unstable, as will be proved in Section 2.2. In contrast, with the nonstandard method,
we can demonstrate that the nonstandard second-order model and the LWR model
have the same car-following model and, therefore, are equivalent.

• Second, traditionally second-order continuum models have been analyzed and solved as
systems of hyperbolic conservation laws with relaxation (Liu, 1987). But this approach
has led to much confusion regarding the validity of second-order continuum models.
For example, in many second-order continuum models, the characteristic wave speeds
can be higher than vehicles’ speeds; this has led to the conclusion that such models
are not anisotropic, as information can travel faster than vehicles (Daganzo, 1995a).
However, it was shown in (LeVeque, 2001) that, in the LWR model for night traffic,
the characteristic wave speed can also be larger than vehicles’ speeds, but anisotropic
solutions still exist if one converts the LWR model into a car-following model, except
that such anisotropic solutions are different from those obtained with the traditional
Oleinik entropy condition for hyperbolic conservation laws. Therefore, we cannot
simply conclude that the LWR model with a non-concave fundamental diagram is
not anisotropic; rather, when the fundamental diagram is non-concave, we cannot
apply the traditional methods to analyze and solve the LWR model as a hyperbolic
conservation law. That is, whether characteristic wave speeds are larger than vehicles’
speeds is irrelevant to the anisotropy of the LWR model, and the traditional Oleinik
and Lax entropy conditions cannot be used to pick out unique, physical solutions.
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Since higher-order models have non-equilibrium solutions and much more complicated
flow-density relations, we expect that the traditional methods are even less applicable.
In contrast, with the nonstandard method, we convert the nonstandard second-order
model into a car-following model, as in (LeVeque, 2001), and solve the latter to obtain
anisotropic solutions for the former. 1

• Third, in (Daganzo, 1995a), another issue was raised for second-order models: In an
extreme lead-vehicle problem when the leading vehicle is stopped, the following vehicles
could travel backwards, and solutions of speeds could be negative. To the best of our
knowledge, there is no systematic method to address this critique. In contrast, with the
nonstandard method, we will be able to derive conditions to guarantee forward-traveling
and collision-free solutions in the car-following model for a second-order continuum
model.

The remainder of the paper is organized as follows. In Section 2, we present the nonstan-
dard second-order model and prove that Phillips’ model is unstable. In Section 3, we show
that the nonstandard second-order model and the LWR model have the same car-following
formulation and stability property. In Section 4, we discuss conditions for the nonstandard
second-order model to be forward-traveling and collision-free and demonstrate that the
anisotropic and symplectic Euler methods are the only physically meaningful discretization
methods. In Section 5, we numerically solve the lead-vehicle problem with various funda-
mental diagrams to verify analytical results. In Section 6, we present a method to correct
existing second-order models to eliminate negative speeds and collisions. In Section 7, we
conclude the study with further discussions.

2 A nonstandard second-order model

In this section, we first present a nonstandard Phillips’ model and then demonstrate that
Phillips’ model is unstable, both in Eulerian and Lagrangian coordinates. The instability
of Phillips’ model rules out the traditional method for proving the equivalence between the
nonstandard model and the LWR model.

1Many efforts have been devoted to addressing Daganzo’s first critique regarding anisotropy by developing
new models with the characteristic wave speeds not greater than vehicles’ speeds (e.g. Aw and Rascle, 2000;
Zhang, 2002; Jiang et al., 2002). But we can see that the critique and the ensuing efforts to address it are
largely misplaced, since we can obtain anisotropic solutions for all second-order continuum models through
their equivalent car-following models, regardless whether their characteristic wave speeds are greater than
vehicles’ speeds or not.
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2.1 Nonstandard Phillips’ model

We replace the relaxation time in Phillips’ model by an infinitesimal number, ε, and obtain
the following model:

vt + vvx =
η(k)− v

ε
, (8)

where 1
ε

is an infinite number. Thus the acceleration rates can be infinite in this model.
Even though infinitesimal and infinite numbers have been used ever since Archimedes’ time,

especially since Leibniz used infinitesimal numbers in calculus, a rigorous treatment of such
numbers was only established after the introduction of hyperreal numbers and nonstandard
analysis in 1960’s by Robinson (1996). The set of hyperreal numbers is an extension of the
set of real numbers by including infinite and infinitesimal numbers. That is, there exists
a hyperreal (infinite) number Ω, which is larger than any real number; correspondingly,
ε = 1

Ω
is a hyperreal (infinitesimal) number and smaller than any positive real number, but

greater than 0; and hyperreal numbers can be ordered and satisfy the same addition and
multiplication rules for real numbers. For examples, Ω and ε can be defined as sequences
(Goldblatt, 1998): Ω = 〈1, 2, 3, · · ·〉 = 〈n : n ∈ N〉, and ε = 〈1, 1

2
, 1

3
, · · ·〉 = 〈 1

n
: n ∈ N〉

where N is the set of natural numbers. Hyperreal numbers still form an ordered field as real
numbers.

It has been shown that all mathematical arguments in nonstandard analysis can be
established in standard analysis. Thus nonstandard analysis is relatively new and not widely
studied in the mathematics area. However, infinitesimal/infinite numbers and nonstandard
analysis can be very useful for modeling purposes and have been widely used in physics
and other areas. For examples, hyperreal numbers have led to simple representations of
discontinuous functions, including the Dirac delta function. More importantly they enable
the development of nonstandard analysis through intuitive and rigorous interpretations of
derivatives and integrals with infinitesimals, which were initiated by Leibniz (Davis, 2005).
In (Hanqiao et al., 1986; van den Berg, 1998), nonstandard analysis was applied to solve
the heat equation under initial conditions given by a Dirac delta function. In these studies,
ε is defined as the limit of the time-step size, ∆t, and it was shown that ε can be simply
replaced by ∆t in the discrete version of a differential equation and the continuous and
discrete equations are equivalent for an infinitesimal ∆t.

In this study, we also choose ε such that it equals the time-step size, ∆t, in the discrete
version. In a sense, ε is a limit:

ε = lim
∆t→0+

∆t, (9)

which is an indefinitely small number smaller than any fixed small positive number. In (Jin,
2015a), an indicator function H(y) for y ≥ 0 was defined as

H(y) = lim
∆t→0+

y

∆t
=

{
0, y = 0
+∞, y > 0
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and used in defining both demand and supply functions for the link transmission model. Such
an indicator function was also used in formulating the point queue models (Jin, 2015b) and
defining a Dirac delta function in (Jin et al., 2016). Thus, H(y) can be represented by the
hyperreal number ε as

H(y) =
y

ε
,

or (8) can be re-written with the indicator function

vt + vvx = H(η(k)− v).

2.2 Instability of Phillips’ model

Phillips’ model, (4) and (7), is a system of hyperbolic conservation laws with relaxation, and
the LWR model is its equilibrium counterpart. For the system of hyperbolic conservation laws,
the two characteristic wave speeds are always identical: λ1(k, v) = λ2(k, v) = v. Therefore,
it is non-strictly hyperbolic. We denote the characteristic wave speed of the LWR model by
λ∗(k) = φ′(k) = η(k) + kη′(k).

Since nonstandard Phillips’ model can be considered as the zero-relaxation limit of Phillips’
model, if Phillips’ model is stable, then the equivalence between its zero-relaxation limit and
the LWR model can be established by following the traditional methods (Liu, 1987; Li, 2000).
But in this subsection we demonstrate that Phillips’ model is unstable with three different
definitions of stability in both Eulerian and Lagrangian coordinates.

Theorem 2.1 For Phillips’ model, its approximate viscous LWR model can be written as

kt + (kη(k))x ≈ −T ∂

∂x

(
(λ∗(k)− η(k))2kx

)
, (10)

which is diffusively unstable near an equilibrium state.

Proof. Following (Liu, 1987), we apply the Chapman-Enskog expansion for a small pertur-
bation around an equilibrium state: v = η(k) + v1. Here we assume that both v1 and its

derivatives are small; i.e., v1 >>
∂v1

∂x
>> ∂2v1

∂x2 holds for diffusive waves as t→∞.
Thus (7) can be re-written as

∂

∂t
(η(k) + v1) +

∂

∂x

(
1

2
(η(k) + v1)2

)
= −v1

T
,

which can be approximated by

v1 ≈ −T
[
∂

∂t
η(k) +

∂

∂x

1

2
(η(k))2

]
= −Tη′(k)(kt + η(k)kx),
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by omitting the derivatives of v1.
Along the characteristic wave direction, we have ∂

∂t
+ φ′(k) ∂

∂x
≈ 0, which leads to

kt ≈ −(η(k) + kη′(k))kx. Thus we have

v1 ≈ T [η′(k)]2kkx,

Substituting this into (4), we have

kt + (kη(k))x ≈ −T ∂

∂x
((kη′(k))2kx),

which is equivalent to (10). Since the coefficient of the viscous term is negative, the diffusion
process is unstable. �

Theorem 2.2 Phillips’ model is linearly unstable.

Proof. We follow (Whitham, 1974, Section 3.1) to prove the linear instability of Phillips’
model. We first linearize Phillips’ model about an equilibrium state at k0 and v0, which
satisfy v0 = η(k0), by assuming k = k0 + κ and v = v0 + ν, where κ(t, x) and ν(t, x) are small
perturbations. Omitting higher-order terms, we have

κt + v0κx + k0νx = 0,

νt + v0νx =
η′(k0)κ− ν

T
.

Then we take partial derivatives of the second equation with respect to x and substitute νx
from the first equation to obtain

T

(
∂

∂t
+ v0

∂

∂x

)2

κ = −k0η
′(k0)

∂κ

∂x
−
(
∂

∂t
+ v0

∂

∂x

)
κ.

We consider the exponential solution κ = ei(mx−ωt), where m is a real number. The
exponential solutions are stable if and only if the imaginary part of ω is negative. Then the
above linearized system is equivalent to

− T (ω +mv0)2 = −ik0η
′(k0)m+ i(ω +mv0). (11)

The above equation can be rewritten as ω2 + (2b1 + i2b2)ω + (d1 + id2) = 0 with

2b1 = 2mv0, 2b2 =
1

T
,

d1 = m2v2
0, d2 =

v0 − k0η
′(k0)

T
m.
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According to (Abeyaratne, 2014), both roots of the equation have negative imaginary parts if
and only if b2 > 0 and 4b1b2d2 − 4d1b

2
2 > d2

2, or equivalently

T > 0,

(k0η
′(k0))2 < 0,

which is impossible. Therefore Phillips’ model is linearly unstable. �
As shown in (Makigami et al., 1971), the evolution of a traffic stream can be captured by

a surface in a three-dimensional space of time t, location x, and vehicle number N . Here the
positive direction of x is the same as the traffic direction, and N is the cumulative number
of vehicles passing location x at t after a reference vehicle (Moskowitz, 1965). Therefore, N
increases in t but decreases in x; i.e., a leader’s number is smaller than the follower’s. Among
these primary three variables, two of them are independent and the other dependent. That
is, there exist the following functions:

N = n(t, x), (12)

x = X(t, N). (13)

Here (t, x) forms the Eulerian coordinates, and (t, N) the Lagrangian coordinates.
In Eulerian coordinates, k = −nx, and v = −nt/nx. Transforming all the variables from

the Eulerian coordinates into the Lagrangian coordinates, we then have v = Xt, vt+vvx = Xtt,
and k = − 1

XN
. Thus Phillips’ model can be rewritten as a time- and vehicle-continuous

car-following model in the Lagrangian coordinates as

Xtt =
θ(−XN)−Xt

T
, (14)

where

θ(S) = η

(
1

S

)
(15)

is the speed-spacing relation. For (14), the time-continuous and vehicle-discrete car-following
model can be written as

Xtt(t, N) =
1

T

(
θ

(
X(t, N −∆N)−X(t, N)

∆N

)
−Xt(t, N)

)
, (16)

which is the optimal velocity model with an arbitrary ∆N (Bando et al., 1995). Note that,
since traffic flow is usually anisotropic and information propagates from the leading vehicle
N −∆N to the following ∆N , we approximate −XN(t, N) by X(t,N−∆N)−X(t,N)

∆N
(LeVeque,

2001; Jin, 2016).

Theorem 2.3 Phillips’ model in the Lagrangian coordinates, (14) or (16), is string unstable.
That is, a small disturbance in a leading vehicle’s speed gets amplified along a traffic stream.
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Proof. We assume that there are small monochromatic disturbances to vehicles’ speeds near
an equilibrium state with a spacing of s0 and a speed of v0, where s0 = θ(s0). Here we denote
Xt(t, N − j∆N) = v0 + νN−j∆Ne

iωt for j = 0, 1, · · · , 1
∆N

. Then Xtt(t, N) = iωνNe
iωt, and

X(t, N − j∆N) = v0t +
νN−j∆N

iω
eiωt + X(0, N − j∆N). Thus, X(t, N − ∆N) − X(t, N) =

s0∆N + νN−∆N−νN
iω

eiωt, where s0 = X(0, N − 1)−X(0, N) is the initial equilibrium spacing.
From (16), we have

iωνNe
iωt =

1

T

(
θ

(
s0 +

νN−∆N − νN
iω∆N

eiωt
)
− v0 − νNeiωt

)
.

With the Taylor series expansion of the right-hand side, we obtain

iωνNe
iωt ≈ 1

T

(
θ′(s0)

νN−∆N − νN
iω∆N

eiωt − νNeiωt
)
,

which leads to

iωνN ≈ 1

T

(
θ′(s0)

νN−∆N − νN
iω∆N

− νN
)
.

Thus we have for small ∆N

νN
νN−∆N

≈ θ′(s0)

θ′(s0)− Tω2∆N + iω∆N
≈ 1− 1

θ′(s0)
(iω − Tω2)∆N,

which leads to by omitting the terms with ∆N2∣∣∣∣ νN
νN−∆N

∣∣∣∣2 ≈ 1 +
2Tω2∆N

θ′(s0)
.

Thus we have ∣∣∣∣ νNνN−1

∣∣∣∣ = lim
∆N→0

∣∣∣∣ νN
νN−∆N

∣∣∣∣ 1
∆N

≈ e
Tω2

θ′(s0) .

Since generally speed increases in spacing; i.e., θ′(s0) > 0, |νN | > |νN−1|. That is, the
following vehicle’s speed oscillation magnitude is always larger than the leader’s. Therefore
a small disturbance in a leading vehicle’s speed gets amplified along a traffic stream, and
Phillips’ model in the Lagrangian coordinates, (14), is string unstable. �

3 Equivalence and stability

In steady states when the acceleration rate is zero, v = η(k) for (4) and (8), and the
nonstandard second-order model is equivalent to the LWR model. In this section we prove
the equivalence between the nonstandard second-order model and the LWR model under
general conditions. We also discuss its stability property.
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3.1 Equivalence between the nonstandard second-order model and
the LWR model

Here we apply the conversion method developed in (Jin, 2016): we first convert the nonstan-
dard model into equivalent time- and vehicle-continuous car-following model in Lagrangian
coordinates, and then discretize the latter into time- and/or vehicle-discrete car-following
models.

First, the nonstandard second-order model, (4) and (8), is equivalent to the following
time- and vehicle-continuous car-following model in Lagrangian coordinates:

Xtt =
θ(−XN)−Xt

ε
. (17)

Then we discretize XN in a backward fashion:

XN(t, N) =
X(t, N)−X(t, N −∆N)

∆N
. (18)

We refer to (18) as an anisotropic method, since, with such a discretization in vehicles, the
above model is automatically anisotropic; i.e., the acceleration rate of vehicle N is only
impacted by its leading vehicle N −∆N , but not its following vehicle N + ∆N . Thus the
time-continuous and vehicle-discrete car-following model of (17) is

Xtt(t, N) =
1

ε

(
θ

(
X(t, N −∆N)−X(t, N)

∆N

)
−Xt(t, N)

)
. (19)

Furthermore, for a discrete time axis with a time step-size of ∆t, bothXtt(t, N) andX(t, N)
are defined at t, but the speed Xt(t, N) is actually defined at t− 1

2
∆t, since it approximates

the average speed between t and t − ∆t. Therefore we apply the following explicit and
implicit Euler discretization methods for the acceleration rate and speed, respectively, as
follows (Jin, 2016):

Xtt(t, N) =
Xt(t+ ∆t, N)−Xt(t, N)

∆t
, (20a)

Xt(t+ ∆t, N) =
X(t+ ∆t, N)−X(t, N)

∆t
. (20b)

Note that (20) is a symplectic Euler method, if we re-write the time-continuous and vehicle-
discrete car-following model, (19), as two Hamiltonian equations for X(t, N) and Xt(t, N)
(Hairer et al., 2006, Chapter 6). Setting ε = ∆t, we then obtain the time- and vehicle-discrete
car-following model from (19):

Xt(t+ ∆t, N) = θ

(
X(t, N −∆N)−X(t, N)

∆N

)
, (21a)

X(t+ ∆t, N) = X(t, N) + ∆t · θ
(
X(t, N −∆N)−X(t, N)

∆N

)
. (21b)
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We can see that (21b) is the same as Equation (12) in (Leclercq et al., 2007), derived
from the Godunov scheme of the LWR model. Therefore, the nonstandard second-order
model, (4) and (8), is equivalent to the LWR model, (5). It is essentially a first-order model
but with hyperreal acceleration rates.

3.2 Stability

Theorem 3.1 The time-continuous and vehicle-discrete car-following model, (19), is linearly
stable. That is, a small disturbance in a leading vehicle’s speed is not amplified along a
traffic stream.

Proof. Following the proof of Theorem 2.3, we have for small ∆N and ε

νN
νN−∆N

=
θ′(s0)

θ′(s0)− εω2∆N + iω∆N
≈ 1− 1

θ′(s0)
iω∆N,

since ε is the same order of ∆N . Thus we have∣∣∣∣ νN
νN−∆N

∣∣∣∣2 ≈ 1− ω2∆N2

(θ′(s0))2
< 1,

and ∣∣∣∣ νNνN−1

∣∣∣∣ = lim
∆N→0

∣∣∣∣ νN
νN−∆N

∣∣∣∣ 1
∆N

= 1.

Therefore a small disturbance in a leading vehicle’s speed is not amplified along a traffic
stream, and the nonstandard car-following model, (19), is stable. �

The stability property of the car-following model is the same as that of the original LWR
model.

4 Forward-traveling and collision-free properties

In the preceding section, we demonstrated that, for the nonstandard second-order model,
(4) and (8), there exists a unique speed-density relation, its equivalent car-following models,
(19), (21a), and (21b), admit anisotropic solutions, and it is stable.

In this section, we discuss two additional properties of the model: forward-traveling and
collision-free. We call a model forward-traveling, if vehicles’ speeds are always non-negative.
We call a model collision-free, if vehicles’ spacings are not smaller than the jam spacing,
S ≡ 1

K
; i.e., traffic densities are not greater than the jam density. The forward-traveling

property was initially introduce in (Daganzo, 1995a) as a criterion to determine the validity
of a second-order continuum model. In this study we extend this criterion for car-following
models.
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4.1 Conditions for forward-traveling and collision-free

In this subsection, we derive conditions for the time- and vehicle-discrete car-following models,
(21a) and (21b), to be forward-traveling and collision-free.

Theorem 4.1 The speed in (21a) is non-negative, if the spacing is not smaller than the
jam spacing; i.e., if X(t, N −∆N) −X(t, N) ≥ S∆N . That is, both (21a) and (21b) are
forward-traveling if they are collision-free.

Proof. For a valid speed-spacing relation, v = θ(s), the speed is non-negative, if the spacing is
not smaller than the jam spacing. Therefore, if X(t, N −∆N)−X(t, N) ≥ S∆N , the speed
is non-negative. That is, both (21a) and (21b) are forward-traveling if they are collision-free.
�

Note that, for other car-following models, forward-traveling and collision-free properties
may be independent of each other. In the following theorem, we derive the sufficient and
necessary condition for (21a) and (21b) to be collision-free.

Theorem 4.2 (21b) is collision-free, if and only if ∆t and ∆N satisfy the following condition:

∆N

∆t
≥ max

k∈[0,K]

φ(k)

1− k
K

. (22)

Proof. Assuming that the model is collision-free at t; i.e., X(t, N −∆N)−X(t, N) ≥ S∆N .
At t+ ∆t, we have

X(t+ ∆t, N −∆N)−X(t+ ∆t, N) ≥ X(t, N −∆N)−X(t+ ∆t, N),

where the equal sign holds when the leader, vehicle N −∆N , suddenly stops. From (21b),
we have

X(t, N −∆N)−X(t+ ∆t, N) = X(t, N −∆N)−X(t, N)

−∆t · θ
(
X(t, N −∆N)−X(t, N)

∆N

)
.

Denoting k = ∆N
X(t,N−∆N)−X(t,N)

, we have

X(t, N −∆N)−X(t+ ∆t, N) =
∆N

k
−∆tη(k).

Thus the model is always collision-free, if and only if for any k ∈ [0, K]

∆N

k
−∆tη(k) ≥ S∆N =

∆N

K
,

which is equivalent to (22). �
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In (Leclercq et al., 2007), it was shown that (21b) is a Godunov finite difference equation
for a hyperbolic conservation formulation of the LWR model in Lagrangian coordinates. For
(21b) to be stable, consistent, and, therefore, convergent, the traditional CFL condition
(Courant et al., 1928) was derived as

∆N

∆t
≥ max

k∈[0,K]
| − η′(k)k2|. (23)

Clearly the collision-free condition, (22), is not the same as the CFL condition, (23). But we
demonstrate that they are equivalent, when the speed-density relation is non-increasing, and
the flow-density relation is concave.

Theorem 4.3 The collision-free condition, (22), is equivalent to the CFL condition, (23),
when (i) the speed-density relation is non-increasing; i.e., η′(k) ≤ 0; and (ii) for k < K

kη′′(k) + 2η′(k) ≤ 0, (24)

which is equivalent to the concavity condition for the flow-density relation:

φ′′(k) ≤ 0. (25)

In particular, the two conditions are equivalent for the Greenshields and triangular funda-
mental diagrams.

Proof. We first assume that the speed-density relation is non-increasing; i.e., η′(k) ≤ 0. This
is generally true for many traffic systems, but not for the night traffic system considered in
(LeVeque, 2001).

We then assume that (24) is satisfied for k < K. It is straightforward to show that (24) is
equivalent to (25). From (24) we have (K − k)(kη′′(k) + 2η′(k)) ≤ 0. Thus (K − k)kη′(k) +
Kη(k) is a non-increasing function in k, since its derivative is (K−k)(kη′′(k) + 2η′(k)). Thus

(K − k)kη′(k) + Kη(k) ≥ (K −K)Kη′(K) + Kη(K) = 0. Further we can see that φ(k)

1− k
K

is

non-decreasing function, since its derivative is

φ′(k)(1− k
K

) + φ(k) 1
K

(1− k
K

)2
=

(K − k)kη′(k) +Kη(k)

K(1− k
K

)2
≥ 0.

Thus (22) is equivalent to ∆N
∆t
≥ φ(k)

1− k
K

|k=K = −η′(K)K2.

The CFL condition, (23), is equivalent to

∆N

∆t
≥ max

k∈[0,K]
−η′(k)k2.

When (24) is satisfied for k < K, then−η′(k)k2 is non-decreasing in k, and maxk∈[0,K]−η′(k)k2 =
−η′(K)K2. Thus (23) is equivalent to ∆N

∆t
≥ −η′(K)K2.

14



Therefore, (22) and (23) are equivalent when the speed-density relation is non-increasing,
and the flow-density relation is concave.

Then we can show that the Greenshields and triangular fundamental diagrams satisfy the
two conditions.

1. For the Greenshields fundamental diagram, (3), we have (i) η′(k) = − V
K
< 0, and (ii)

for k < K

kη′′(k) + 2η′(k) = −2V

K
< 0.

Thus,(22) and (23) are equivalent to

∆N

∆t
≥ V K. (26)

2. For the triangular fundamental diagram, (2), we have (i) η′(k) = 0 for k ≤ W
V+W

K and

η′(k) = −WK
k2 < 0 for k > W

V+W
K, and (ii) for k < K

kη′′(k) + 2η′(k) = 0.

Thus, (22) and (23) are equivalent to

∆N

∆t
≥ WK. (27)

�
Note that the CFL condition is derived from the numerical perspective with respect to

convergent methods, but the collision-free condition is derived from the physical perspective
with respect to safety. The consistence between the collision-free and CFL conditions for
normal fundamental diagrams suggests that the physical perspective is meaningful. Further
in Section 5, we demonstrate that the collision-free condition is more general and still applies
to non-concave fundamental diagrams.

4.2 Other discretization methods

For the time- and vehicle-continuous car-following model, (17), we apply the anisotropic and
symplectic Euler discretization methods proposed in (Jin, 2016): (18) for discretizing the
spacing in vehicles, and (20) for discretizing the acceleration rate and speed in time. In this
subsection, we examine the collision-free property with other discretization methods.

First, we apply the symplectic Euler method to discretize the acceleration and speed in
time to obtain the time-discrete and vehicle-continuous form of (17):

X(t+ ∆t, N) = X(t, N) + ∆t · θ(−XN(t, N)). (28)

But we replace the anisotropic vehicle-discretization method, (18), by one of the following
non-anisotropic discretization methods:

15



1. Forward difference method:

XN(t, N) =
X(t, N + ∆N)−X(t, N)

∆N
. (29)

2. Arithmetic central difference method:

XN(t, N) =
X(t, N + ∆N)−X(t, N −∆N)

2∆N
, (30)

which is the arithmetic average of the backward and forward differences.

3. Harmonic central difference method, which corresponds to the arithmetic central
difference method for density (LeVeque, 2001):

XN(t, N) =
2

∆N
X(t,N+∆N)−X(t,N)

+ ∆N
X(t,N)−X(t,N−∆N)

, (31)

which is the harmonic average of the backward and forward differences.

All these discretization methods are non-anisotropic, since the following vehicle’s location
would impact the leading vehicle’s decision. In the following theorem, we demonstrate that
such non-anisotropic discretization methods cannot guarantee the collision-free property of
the resulted time- and vehicle-discrete car-following models.

Theorem 4.4 The time- and vehicle-discrete car-following model of (28) with any of the
non-anisotropic discretization methods, (29), (30), or (31), is not collision-free, if the speed-
density function is greater than zero for any spacing greater than the jam spacing. In other
words, it is not safe, if a vehicle determines its speed by looking backwards.

Proof. We consider an extreme lead-vehicle problem, in which the leading vehicle N −∆N
stops at an intersection. This corresponds to a red-light scenario. We assume that at t vehicle
N−∆N is stopped, the spacing between vehicles N and N−∆N is X(t, N−∆N)−X(t, N) =
S∆N , but the spacing between vehicles N + ∆N and N is X(t, N)−X(t, N + ∆N) > S∆N .
So there is no collision at t.

But at t+ ∆t we have from (28)

X(t+ ∆t, N −∆N)−X(t+ ∆t, N) = X(t, N −∆N)−X(t, N)−∆t · θ(−XN(t, N))

= S∆N −∆t · θ(−XN(t, N)).

If we use any of the the non-anisotropic discretization methods, (29), (30), or (31), then
−XN (t, N) > S∆N , which leads to θ(−XN (t, N)) > 0 for a speed-density function, in which
the speed is greater than zero for any spacing greater than the jam spacing. Therefore,
X(t+ ∆t, N −∆N)−X(t+ ∆t, N) < S∆N , and vehicle N collides into vehicle N −∆N .
Thus the model is not collision-free.
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In addition, the model is not collision-free for other non-anisotropic discretization methods,
since −XN(t, N) would contain the upstream spacing, X(t,N+∆N)−X(t,N)

∆N
, and is greater than

the jam spacing for the red-light scenario. �
From the above theorem, we can see that the discretization method in vehicles has to

be anisotropic for a model to be collision-free. Even though there can be other anisotropic
discretization methods, which can involve multiple leaders, such multiple-leader car-following
models are not equivalent to the LWR model.

Next, we apply the anisotropic discretization method for the spacing but use the explicit
Euler method to discretize both the acceleration rate and speed in time; i.e., we replace (20)
by

Xtt(t, N) =
Xt(t+ ∆t, N)−Xt(t, N)

∆t
, (32a)

Xt(t, N) =
X(t+ ∆t, N)−X(t, N)

∆t
. (32b)

Thus the corresponding time- and vehicle-discrete car-following model of (17) can be written
as

X(t+ ∆t, N) = X(t, N) + ∆t · θ
(
X(t−∆t, N −∆N)−X(t−∆t, N)

∆N

)
. (33)

In the following theorem, we demonstrate that this model is not collision-free.

Theorem 4.5 The car-following model, (33), is not collision-free.

Proof. Again we just need to present one scenario, in which collision can occur at t + ∆t
even though there is no collision at t or t−∆t.

Consider a red-light scenario: vehicle N −∆N is stopped since t−∆t, X(t, N −∆N)−
X(t, N) = S∆N , and X(t−∆t, N −∆N)−X(t−∆t, N) > S∆N . Then at t+ ∆t, we have
from (33):

X(t+ ∆t, N −∆N)−X(t+ ∆t, N) = X(t, N −∆N)−X(t, N)

−∆t · θ
(
X(t−∆t, N −∆N)−X(t−∆t, N)

∆N

)
= S∆N

−∆t · θ
(
X(t−∆t, N −∆N)−X(t−∆t, N)

∆N

)
< S∆N.

That is, vehicle N cannot stop at the safe distance and collides into vehicle N − ∆N at
t+ ∆t. �
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We can show that the Runge-Kutta and many other discretization methods for the
acceleration and speed cannot guarantee the collision-free property of the resulted car-
following models. Therefore, the anisotropic and symplectic Euler methods proposed in (Jin,
2016), (18) and (20), appear to be the only physically meaningful methods to discretize
the time- and vehicle-continuous car-following model, (17), and (21b) the only physically
meaningful car-following model that is equivalent to the nonstandard second-order model,
(4) and (8).

5 Numerical examples

In this section, we numerically solve the car-following models of the nonstandard second-order
model, (21a) and (21b). We discretize a simulation time duration [T0, T0 + J∆t] into J
intervals and denote tj = T0 + j∆t (j = 0, · · · , J). We also divide a plotoon [0,M∆N ] into
M vehicles and denote Nm = m∆N (m = 0, · · · ,M). We further denote U j

m = Xt(t
j, Nm)

and Y j
m = X(tj, Nm). Then (21a) and (21b) can be respectively rewritten as

U j+1
m = θ

(
Y j
m−1 − Y j

m

∆N

)
, (34a)

Y j+1
m = Y j

m + ∆t · U j+1
m . (34b)

Thus the acceleration rate of vehicle m at j∆t is

Zj
m =

U j+1
m − U j

m

∆t
. (34c)

Here we consider the lead-vehicle problem under the following initial and boundary
conditions: the boundary conditions are determined by vehicle 0’s trajectory (j ≥ 0):

Y j+1
0 = Y j

0 + ∆t · U j+1
0 ,

where Y 0
0 = 0, and the leading vehicle’s speed U j+1

0 = v2 is given and constant; the initial
spacings of all following vehicles are constant at Y 0

m = −ms1∆N for m = 1, · · · ,M , where
the initial density is k1 = 1/s1, and their initial speeds are constant at U0

m = v1 = η(k1).
Thus the lead-vehicle problem corresponds to a Riemann problem with

k(0, x) =

{
k1, x < 0
k2, x > 0

where v2 = η(k2). As we know, the Riemann problem of the LWR model with a concave
fundamental diagram is solved by either a shock or a rarefaction wave (Lebacque, 1996).
In this section we will compare the numerical results of (34) with the theoretical Riemann
solutions.

18



5.1 Greenshields fundamental diagram

In this subsection we solve the lead-vehicle problem with the Greenshields fundamental
diagram, (3), where S = 7 m, K = 1/S, and V = 20 m/s. We set ∆t = 0.35∆N , which
satisfies the CFL condition and the collision-free condition.

First we set k1 = 1
4
K, and v1 = 3

4
V . We consider two cases for the leading vehicle’s

speed: v2 = 3
8
V or 1

8
V ; in the Riemann problem, k2 = 5

8
K or 7

8
K, respectively. Therefore,

the LWR model is solved by a shock wave with a speed of 1
8
V or −1

8
V , correspondingly.

The numerical solutions of the lead-vehicle problem for (34) are shown in Figure 1, where
we show five following vehicles’ trajectories and acceleration rates along with the leader’s,
and the dotted line is the theoretical shock wave trajectory. We show trajectories of each
vehicle in figures (a) and (c) from bottom to top for ∆N = 1, 1

2
, 1

4
, 1

8
, and 1

16
; the acceleration

rates are from top to bottom with decreasing ∆N . From the figures, we have the following
observations: (i) the numerical solutions of the trajectories are smooth, compared with
theoretical piecewise linear trajectories; but the deceleration rates are very large; (ii)when
∆N decreases, all vehicles’ trajectories converge, and the deceleration rates become larger;
(iii) in the converging trajectories, vehicles decrease their speeds immediately after the
trajectories cross the shock wave, and the deceleration rates become infinite; (iv) the shock
wave speeds are 1

8
V and −1

8
V in figures (a) and (c), respectively, which are exactly the same

as the theoretical predictions; the shock waves can also be seen in the propagation of the
deceleration profiles in figures (b) and (d). These results verify that the car-following model
indeed converges to the LWR model when ∆t→ 0, and the deceleration rates are quite large
but can be explicitly calculated.

Next we set k1 = K and v2 = V . Thus k2 = 0, and there is no vehicle in front of vehicle
0. This is the queue discharge scenario, and the corresponding Riemann problem is solved by
a rarefaction wave with the characteristic wave speed spanning from V to −V . The first five
vehicles’ trajectories and acceleration rates are shown in Figure 2, where the dotted line is
for the characteristic wave with φ′(K) = −V , along which vehicles start to accelerate one
by one. We show the trajectories of each vehicle for ∆N = 1, 1

2
, 1

4
, 1

8
, and 1

16
from top to

bottom; their acceleration rates are from bottom to top. From the figures we can see that
the trajectories get closer with smaller ∆N , suggesting that the numerical solutions converge.
In addition, vehicles’ trajectories become smoother along the traffic stream: the first vehicle
has the largest acceleration rates (as large as 53.8 m/s2 for ∆N = 1

16
); and the following

vehicles’ acceleration rates keep decreasing along the vehicles.

5.2 Triangular fundamental diagram

In this subsection we solve the lead-vehicle problem with the triangular fundamental diagram,
(2), where S = 7 m, K = 1/S, V = 20 m/s, and W = 5 m/s. We set ∆t = 1.2∆N , which
satisfies the CFL condition and the collision-free condition.

First we set k1 = 1
10
K, and v1 = V . We consider two cases for the leading vehicle’s speed:

v2 = 3
8
V or 1

16
V . Hence in the Riemann problem k2 = 2

5
K or 4

5
K, respectively. In this case,

19



(a) (b)

(c) (d)

Figure 1: Trajectories and acceleration rates for a platoon of vehicles with k1 = 1
4
K: (a)

Trajectories when v2 = 3
8
V , (b) Acceleration rates when v2 = 3

8
V , (c) Trajectories when

v2 = 1
8
V , and (d) Acceleration rates when v2 = 1

8
V
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(a) (b)

Figure 2: Trajectories and acceleration rates for a platoon of vehicles with k1 = K and
v2 = V

the LWR model is solved by a shock wave with a speed of 1
6
V or − 1

14
V , correspondingly. The

numerical solutions are shown in Figure 3, where we show five following vehicles’ trajectories
and acceleration rates along with the leader’s, and the dotted lines are the theoretical shock
wave trajectories. We show trajectories of each vehicle in figures (a) and (c) from bottom
to top for ∆N = 1, 1

2
, 1

4
, 1

8
, and 1

16
; the acceleration rates are from top to bottom with

decreasing ∆N . From the figures, we have the following observations: (i) in the case of a
forward-traveling shock wave, the trajectories are almost the same as the theoretical piecewise
linear trajectories for different ∆N ; but the deceleration rates increase with smaller ∆N ; (ii)
in the case of a backward traveling shock wave, the trajectories converge to the theoretical
piecewise linear trajectories with decreasing ∆N , and the deceleration rates increase with
smaller ∆N ; (iii) the shock wave speeds are 1

6
V and − 1

14
V in figures (a) and (c), respectively,

which are exactly the same as the theoretical predictions; the shock waves can also be seen
in the propagation of the deceleration profiles in figures (b) and (d).

Next we set k1 = K and v2 = V . Thus k2 = 0, and there is no vehicle in front of vehicle 0.
This corresponds to the queue discharge scenario, and the corresponding Riemann problem is
solved by a degenerate rarefaction wave, which is the same as a shock wave with a speed of
−W . The first five vehicles’ trajectories and acceleration rates are shown in Figure 4, where
the dotted line is for the characteristic wave with φ′(K) = −W , along which vehicles start to
accelerate one by one. We show trajectories of each vehicle for ∆N = 1, 1

2
, 1

4
, 1

8
, and 1

16
; their

acceleration rates are from bottom to top. From the figures we can see that the trajectories
are almost identical to the analytical solutions with different ∆N , but the acceleration rates
keep increasing with smaller ∆N , and all vehicles’ have the same profile for acceleration
rates. Thus the numerical solutions converge to theoretical ones for the LWR model, in
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(a) (b)

(c) (d)

Figure 3: Trajectories and acceleration rates for a platoon of vehicles with the triangular
fundamental diagram and k1 = 1

10
K: (a) Trajectories when v2 = 3

8
V , (b) Acceleration rates

when v2 = 3
8
V , (c) Trajectories when v2 = 1

16
V , and (d) Acceleration rates when v2 = 1

16
V
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(a) (b)

Figure 4: Trajectories and acceleration rates for a platoon of vehicles with k1 = K and
v2 = V

which vehicles accelerate instantaneously, and the acceleration rate is infinite.

5.3 Non-concave fundamental diagram

In this subsection, we solve the lead-vehicle problem with a non-concave fundamental
diagram, in which the speed-density relation is given by (Kerner and Konhäuser, 1994):
η(k) = 5.0461[(1 + exp{[k/K − 0.25]/0.06})−1− 3.73× 10−6]l/T . Here the unit length l = 28
m, the relaxation time T = 5 s, and the jam density K = 0.18 veh/m. The speed-density
relation is decreasing, but the flow-density relation is non-concave.

From the collision-free condition, (22), we have ∆N
∆t
≥ 0.89, or ∆t ≤ 1.12∆N ; in contrast,

from the CFL condition, (23), we have ∆N
∆t
≥ 0.32, or ∆t ≤ 3.13∆N . Thus the two conditions

are not equivalent for such a non-concave fundamental diagram, and the CFL condition is
more relaxed.

In the lead-vehicle problem we set k1 = 0.002 veh/m, and v2 = 0 m/s. Hence k2 = K in
the corresponding Riemann problem. This corresponds to a scenario in which a very sparse
traffic stream with a density of 0.002 veh/m runs into a red light. We let ∆N = 1/10.

In Figure 5 we show the numerical results for ∆t = ∆N , when both the collision-free and
CFL conditions are satisfied, and ∆t = 2∆N , when the CFL condition is satisfied but the
collision-free condition is violated. In the top row with ∆t = ∆N , the following vehicles’
speeds decrease to zero as in figure (b), and the spacings of all following vehicles decrease to
the jam spacing of 1/0.18 m, and no collisions occur as in figure (a). But in the bottom row
with ∆t = 2∆N , when the collision-free condition is violated, vehicles eventually collide into
each other as their trajectories overlap in figure (c), and vehicles can develop negative speeds
as shown in figure (d). This example confirms the theoretical conclusion that the collision-free
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condition is necessary for obtaining physically meaningful solutions in the car-following model,
but the CFL condition is no longer sufficient.

6 Correction of general second-order models

In the preceding sections, we established that the time- and vehicle-discrete car-following
model, (21b), the nonstandard second-order model, (4) and (8), and the LWR model, (5),
are equivalent and have the following properties, under the collision-free condition given in
(22): (i) existence of a unique speed-density relation: v = η(k); (ii) stable; (iii) anisotropic;
(iv) forward-traveling; and (v) collision-free.

In contrast, general second-order models are more realistic than the LWR model, with
respect to the instability property and scattered speed-density relations in non-equilibrium
traffic. Even though they still admit anisotropic solutions in their equivalent car-following
models (Jin, 2016), vehicles may travel backwards, as pointed out in (Daganzo, 1995a). An
additional undesirable property is that vehicles may collide into each other in these models.
In this section, we present two correction methods to eliminate such unfavorable properties
of general second-order models, but keep their favorable ones.

Here we consider general second-order continuum models with the following acceleration
equation:

vt + vvx = Ψ

(
v,

1

k
,
vx
k

)
, (35)

in addition to the conservation equation, (4). We assume that, when in equilibrium; i.e.,
when the speed is both time- and location-independent, the second-order model has a unique
speed-density relation, v = η(k). That is, Ψ

(
η(k), 1

k
, 0
)

= 0. Even though this model doesnot
have the anticipation term kx or the viscosity term vxx, it is sufficiently general to include
continuum models in (Phillips, 1979; Greenberg, 2001; Jiang et al., 2002) as well as many
converted from car-following models by following the method in (Jin, 2016).

However, as demonstrated in the following subsection, many general second-order contin-
uum models and their corresponding car-following models may have solutions with negative
speeds and collisions.

6.1 First correction method

Inspired by the nonstandard second-order model of the LWR model, (4) and (8), we present
a correction method to adjust (35) as

vt + vvx = max

{
−v
ε
,min

{
η(k)− v

ε
,Ψ

(
v,

1

k
,
vx
k

)}}
, (36)
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(a) (b)

(c) (d)

Figure 5: Trajectories and speeds for the LWR model with a non-concave fundamental
diagram: In (a) and (b), ∆t = ∆N satisfying the collision-free condition; In (c) and (d),
∆t = 2∆N satisfying the CFL condition, but not the collision-free condition
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which is equivalent to

vt + vvx = min

{
η(k)− v

ε
,max

{
−v
ε
,Ψ

(
v,

1

k
,
vx
k

)}}
, (37)

since η(k)−v
ε
≥ −v

ε
. Here we assume that k ∈ [0, K], and η(k) ≥ 0. We have the following

remarks on the correction method:

1. Both of the correction terms, −v
ε

and η(k)−v
ε

contain the hyperreal infinitesimal number
ε. Thus the corrected model is a nonstandard second-order model, which may not be
equivalent to the LWR model.

2. For the corrected model, the speed-density relation in steady states is still v = η(k),
the same as that for the original model.

3. Among the two correction terms, −v
ε

is used to eliminate negative speeds; and η(k)−v
ε

is the hyperreal acceleration term in the nonstandard second-order formulation of the
LWR model, (8), and used to eliminate collisions.

4. In the nonstandard second-order formulation of the LWR model, (4) and (8), the

acceleration rate Ψ(v, 1
k
, vx
k

) = η(k)−v
ε

, and the corrected model is the same as (4) and

(8), since η(k)−v
ε
≥ −v

ε
. In this sense, the nonstandard second-order formulation, (4)

and (8), is already corrected.

Following the conversion method in (Jin, 2016), the corrected second-order model is
equivalent to the following second-order car-following model:

Xtt = max

{
−Xt

ε
,min

{
θ(−XN)−Xt

ε
,Ψ(Xt,−XN ,−XtN)

}}
, (38a)

or

Xtt = min

{
θ(−XN)−Xt

ε
,max

{
−Xt

ε
,Ψ(Xt,−XN ,−XtN)

}}
. (38b)

Further we discretize the model in vehicle N with the anisotropic and symplectic Euler
methods and obtain the time- and vehicle-discrete car-following model:

Xt(t+ ∆t, N) = max

{
0,min

{
θ

(
X(t, N −∆N)−X(t, N)

∆N

)
,

Xt(t, N) + ∆t · A(t, N)}} , (39a)

X(t+ ∆t, N) = max

{
X(t, N),min

{
X(t, N) + ∆t · θ

(
X(t, N −∆N)−X(t, N)

∆N

)
,

X(t, N) + ∆t ·Xt(t, N) + ∆t2 · A(t, N)
}}

. (39b)
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where A(t, N) is the acceleration rate in the original second-order model:

A(t, N) = Ψ

(
Xt(t, N),

X(t, N −∆N)−X(t, N)

∆N
,
Xt(t, N)−Xt(t, N −∆N)

∆N

)
. (40)

Note that the original acceleration rate is determined by vehicle N ’s speed, the spacing, and
the speed difference.

Theorem 6.1 When ∆t and ∆N satisfy the collision-free condition (22), the corrected
car-following models, (39a) and (39b), are forward-traveling and collision-free.

Proof. From (39a), it is straightforward that Xt(t+ ∆t, N) ≥ 0; i.e., it is forward-traveling.
From (39b), we have that

X(t+ ∆t, N −∆N)−X(t+ ∆t, N) ≥ X(t, N −∆N)−X(t+ ∆t, N)

≥ X(t, N −∆N)−X(t, N)

−∆t · θ
(
X(t, N −∆N)−X(t, N)

∆N

)
=

∆N

k
−∆tη(k),

where k = ∆N
X(t,N−∆N)−X(t,N)

.

If (22) is satisfied, then ∆N
k
−∆tη(k) ≥ S ·∆N , and X(t+∆t, N−∆N)−X(t+∆t, N) ≥

S ·∆N . Thus the model is collision-free. �

6.2 Second correction method

For (35), we present another correction method as

vt + vvx = max

{
−v
ε
,min

{
(
1

k
− 1

K
)
δ

ε2
− v

ε
,Ψ

(
v,

1

k
,
vx
k

)}}
, (41)

where δ = lim∆N→0+ ∆N is another infinitesimal number and equal to ∆N in the discrete
form.

Following (Jin, 2016), we obtain the following second-order car-following model:

Xtt = max

{
−Xt

ε
,min

{
(−XN − S)

δ

ε2
,Ψ(Xt,−XN ,−XtN)

}}
, (42)

whose discrete form is

Xt(t+ ∆t, N) = max

{
0,min

{
X(t, N −∆N)−X(t, N)− S∆N

∆t
,

Xt(t, N) + ∆t · A(t, N)}} , (43a)

X(t+ ∆t, N) = max {X(t, N),min {X(t, N −∆N)− S∆N,

X(t, N) + ∆t ·Xt(t, N) + ∆t2 · A(t, N)
}}

. (43b)
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where A(t, N) is given in (40).
We have the following observations regarding the second correction method.

1. The second correction method was used to study the optimal velocity model in (Jin,
2016).

2. (43) is forward-traveling and collision-free for any ∆t and ∆N .

3. When (22) is satisfied, the speed in the second correction method is greater than or
equal to that in the first correction method, since

X(t, N −∆N)−X(t, N)−∆t · θ
(
X(t, N −∆N)−X(t, N)

∆N

)
≥ S∆N.

6.3 An example

In this subsection, we consider the Jiang-Wu-Zhu (JWZ) second-order model (Jiang et al.,
2002), in which the original acceleration equation is given by

vt + vvx =
η(k)− v

T
+ c0vx. (44)

Thus its two characteristic wave speeds are λ1(k, v) = v and λ2(k, v) = v − c0. If c0 ≤ 0,
it can be shown that the model is always unstable with the three definitions of stability in
Section 2; if c0 > 0, the condition for it to be stable is −c0 ≤ kη′(k) ≤ 0. The corresponding
anisotropic car-following model is

Xt(t+ ∆t, N) = Xt(t, N) + ∆t · A(t, N),

X(t+ ∆t, N) = X(t, N) + ∆t ·Xt(t, N) + ∆t2 · A(t, N),

where the acceleration rate is given by

A(t, N) =
θ
(
X(t,N−∆N)−X(t,N)

∆N

)
−Xt(t, N)

T
+ c0

Xt(t, N −∆N)−Xt(t, N)

X(t, N −∆N)−X(t, N))
.

Following the first correction method, we obtain the following corrected, nonstandard
second-order continuum model:

vt + vvx = max

{
−v
ε
,min

{
η(k)− v

ε
,
η(k)− v

T
+ c0vx

}}
, (45)

whose car-following formulation is

Xt(t+ ∆t, N) = max

{
0,min

{
θ

(
X(t, N −∆N)−X(t, N)

∆N

)
, Xt(t, N) + ∆t · A(t, N)

}}
,

X(t+ ∆t, N) = max

{
X(t, N),min

{
X(t, N) + ∆t · θ

(
X(t, N −∆N)−X(t, N)

∆N

)
,

X(t, N) + ∆t ·Xt(t, N) + ∆t2 · A(t, N)
}}

.
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We numerically solve the JWZ model and its corrected version for the following Riemann
problem studied in (Daganzo, 1995a):

(k(0, x), v(0, x)) =

{
(k1, 0), x < 0
(K, 0), x ≥ 0

where k1 is the upstream initial density. In Lagrangian coordinates, this is the same the
red light scenario studied in Section 5.3. In (Daganzo, 1995a), k1 = 0; but to numerically
solve the time- and vehicle-discrete version of the JWZ model, we set k1 to be very small,
e.g., 1/100K, to have vehicles on the upstream part of the road. In Lagrangian coordinates,
this corresponds to the following lead vehicle problem: U0

m = 0 for m = 0, · · · ,M , and
Y 0
m = −ms1∆N for m = 0, · · · ,M , where s1 = 1/k1 is the upstream initial spacing. We use

the same triangular fundamental diagram as in Section 5.2. In addition, we set c0 = 2 m/s
and T = 5 s in the JWZ model. In simulations we set ∆t = ∆N = 1, which satisfies the CFL
condition and, equivalently, the absolute collision-free condition.

The trajectories and speeds of the first five vehicles are shown in Figure 6, in which the
results in the top row are for the original JWZ model, and those in the bottom row for the
corrected JWZ model. In the original model, vehicles first accelerate and eventually stop
at a jam spacing; but during the process, vehicles can have negative speeds (see figure (b))
and collide into each other (see figure (a)). Thus the original JWZ model is not always
forward-traveling or collision-free, even though it was proved in (Jiang et al., 2002) that
there is no negative speeds in a special case when k1 = 0. But both undesirable properties are
eliminated in the corrected model (see figures (c) and (d)). Similar results can be observed
when we choose other values for c0, including negative ones. These results validates the
proposed correction method.

7 Conclusion

In this study, we present a nonstandard second-order model by replacing the relaxation time
in Phillips’ model by a hyperreal infinitesimal number. Since Phillips’ model is unstable with
three different definitions of stability in both Eulerian and Lagrangian coordinates, we cannot
use traditional methods based on the assumption of stability to prove the equivalence between
the nonstandard model, which can be considered the zero-relaxation limit of Phillips’ model,
and the LWR model, which is the equilibrium counterpart of Phillips’ model. Therefore we
resorted to a nonstandard method based on the equivalence relationship between second-order
continuum and car-following models in (Jin, 2016) and proved that the nonstandard model
and the LWR model are equivalent since they have the same anisotropic car-following model
and stability property. We further derived conditions for the car-following model to be
forward-traveling and collision-free, proved that the collision-free condition is consistent with
the CFL condition for fundamental diagrams with non-increasing speed-density relations and
concave flow-density relations, and demonstrated that other discretization methods, including
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(a) (b)

(c) (d)

Figure 6: Trajectories and speeds for the JWZ model: (a) & (b) before correction; (c) & (d)
after correction method 1
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non-anisotropic discretization methods and the explicit Euler method for both the acceleration
and speed, will lead to collisions. With numerical solutions to the lead-vehicle problem we
showed that the nonstandard second-order model has the same shock and rarefaction wave
solutions as the LWR model for both Greenshields and triangular fundamental diagrams;
for a non-concave fundamental diagram we showed that the collision-free condition, but not
the CFL condition, yields physically meaningful results. Finally we presented a nonstandard
method to correct general second-order models so that their solutions are forward-traveling
and collision-free, and verified the method with a numerical example.

Theoretical and numerical results in this study further validates the equivalence relation-
ship between higher-order continuum and car-following models established in (Jin, 2016).
For hyperbolic conservation laws with non-convex fluxes, non-classical shock wave theories
have been developed (Hayes and LeFloch, 1997; LeFloch, 2002). In the same spirit, Oleinik
and Lax’s entropy conditions should also be revised for the LWR model with non-concave
fundamental diagrams or second-order continuum models. In particular, physically mean-
ingful solutions of a continuum model should be consistent with those of the equivalent
car-following model. In a sense, the car-following model can serve as an entropy condition to
pick out unique and physical solutions for the corresponding continuum model.

In (Jin, 2016), we demonstrated that all second-order continuum models admit anisotropic
solutions, through their equivalent car-following models. Therefore, anisotropy is not an
intrinsic property of a continuum model, rather it is determined by the discretization method.
In this study, we verified that Daganzo’s second critique regarding the existence of negative
speeds is valid for second-order continuum and car-following models. Moreover, some second-
order models are not collision-free. Both undesirable properties were demonstrated for a
second-order continuum model and the corresponding car-following model in Section 6.2.
However, we showed that all second-order continuum and car-following models can be
corrected with the method developed in Section 6.1, so as to eliminate negative speeds and
collisions. Therefore, (Jin, 2016) and this study present a new approach to address the
two critiques on second-order continuum models in (Daganzo, 1995a): we can follow the
correction method and convert them into car-following models to obtain anisotropic solutions
that are forward-traveling and collision-free.

In this study, we demonstrated that the nonstandard second-order formulation of the
LWR model and, equivalently, the car-following model, have a unique speed-density relation
in steady states, is stable, and has anisotropic, forward-traveling, and collision-free solutions.
This set of physical properties can serve as conceptual guidelines for analyzing, discretizing,
and developing higher-order continuum and car-following models. For example, physically
meaningful models and discretization methods should lead to a unique speed-density relation
in steady states as well as forward-traveling and collision-free solutions. In particular, the
collision-free condition is critical for choosing different discretization methods as well as the
time- and vehicle-step sizes; we also demonstrated that it is more general than the CFL
condition, which was necessary for converging numerical methods for hyperbolic conservation
laws. In particular, such a collision-free condition is critical for developing car-following
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algorithms to control connected and automated vehicles. However, the list of physical
properties is not complete. In the future we will be interested in introducing upper and lower
bounds of the acceleration rate based on the nonstandard second-order formulation of the
LWR model as well as the equivalence relationship between continuum and car-following
models.

References

Abeyaratne, R. (2014). Macroscopic limits of microscopic models. International Journal of
Mechanical Engineering Education, 42(3):185--198.

Ansorge, R. (1990). What does the entropy condition mean in traffic flow theory? Trans-
portation Research Part B, 24(2):133--143.

Aw, A. and Rascle, M. (2000). Resurrection of ‘‘second order” models of traffic flow. SIAM
Journal on Applied Mathematics, 60(3):916--938.

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. (1995). Dynamical
model of traffic congestion and numerical simulation. Physical Review E, 51(2):1035--1042.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengleichungen
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