
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Understanding and Exploring Serverless Cloud Computing

Permalink
https://escholarship.org/uc/item/6pq1w1m6

Author
Schleier-Smith, Johann Markus

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pq1w1m6
https://escholarship.org
http://www.cdlib.org/

Understanding and Exploring Serverless Cloud Computing

by

Johann Markus Schleier-Smith

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph M. Hellerstein, Chair
Professor Natacha Crooks
Professor Heather Gray

Fall 2022

Understanding and Exploring Serverless Cloud Computing

Copyright 2022
by

Johann Markus Schleier-Smith

1

Abstract

Understanding and Exploring Serverless Cloud Computing

by

Johann Markus Schleier-Smith

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

The past few years have seen a wave of enthusiasm for serverless computing, and we begin
this work by analyzing the marketplace trends and underlying technical factors that have
shaped the movement. We �nd that serverless computing addresses programming challenges
in the same class as those that high-level programming languages address, suggesting that
serverless computing may be viewed as high-level programming for distributed systems.

We next turn our attention to one of the key shortcomings of serverless: the lack of integration
between compute and state. We develop FaaSFS, a distributed �le system that is compatible
with POSIX applications but uses a novel consistency model with relaxed real-time ordering
constraints. We call this model externally consistent sequential consistency (ECSC) and use
it to scale a pre-existing single-server application to 10,000 serverless processes. We also
show that under reasonable assumptions ECSC is indistinguishable from linearizability, a
widely accepted strong form of consistency.

Lastly, we explore whether serverless computing might lead to the demise of server hardware.
By applying Amdahl's law and scaling rules for interconnect costs, we show that applications
that rely on coordination protocols are particularly dependent on large servers for scalability.
In contrast, those implemented with coordination-free protocols can run well on collections of
small, low-cost servers or on disaggregated hardware. These approaches will likely continue to
coexist, suggesting that a need for underlying server hardware will remain even as serverless
abstractions thrive.

i

To My Mother

You gave so much yet expected so little.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 The Challenges of Scale . 1
1.2 Higher Expectations . 3
1.3 Social Networking Case Study . 4
1.4 The Path to Serverless Computing . 6

2 Understanding Serverless Cloud Computing 9
2.1 Introduction . 9
2.2 Function as a Service . 10
2.3 About the �Serverless� Name . 13
2.4 Essential characteristics of serverless computing 16
2.5 The Serverless Menagerie . 19
2.6 Limitations of Serverless Computing . 33
2.7 Serverless Computing Research . 36
2.8 Simpli�ed Cloud Programming . 43
2.9 Additional Topics . 55

3 A FaaS File System for Serverless Computing 67
3.1 Introduction . 67
3.2 Background . 69
3.3 Externally Consistent Sequential Consistency 73
3.4 Implementation of FaaSFS . 80
3.5 Evaluation . 92
3.6 Related Work . 104
3.7 Future Work . 108
3.8 Conclusion . 110

iii

4 Externally Consistent Sequential Consistency 111
4.1 Introduction . 111
4.2 Preliminaries . 112
4.3 ECSC Guarantee . 117
4.4 Implementing ECSC Using Transactions . 122
4.5 Implementing ECSC Using Local Caches with Hybrid Clock Leases 139

5 Servers Are Here to Stay 159
5.1 Introduction . 159
5.2 Background . 160
5.3 Measuring Interconnects . 167
5.4 Amdahl's Law and Communication . 170
5.5 Consistency and Communication . 182
5.6 Simulation Experiments . 183
5.7 Future Work . 187
5.8 Conclusion . 189

Bibliography 191

iv

List of Figures

1.1 Intertwined concerns create higher expectations 3

2.1 Hello world using Python and AWS Lambda . 12
2.2 Installing a FaaS function . 12
2.3 Invoking a FaaS function from the command line 13
2.4 Invoking a FaaS function from a Python program. 13
2.5 Components of a FaaS system . 14
2.6 Life cycle of a FaaS execution instance . 15
2.7 Serverless abstraction . 18
2.8 Container orchestration vs. serverless FaaS . 25
2.9 Comparing essential and accidental properties 44
2.10 Cache simulation: Cost breakdown . 61
2.11 Cache simulation: Latency vs cost . 61
2.12 Cache simulation: Cost-optimal size by query rate 62
2.13 Cache simulation: Latency at cost-optimal size 62
2.14 Trends compared: Google App Engine and AWS Lambda 65

3.1 Combining FaaS with stateful services . 68
3.2 Diagram for H3. 75
3.3 ECSC example setup . 78
3.4 ECSC example scenarios . 79
3.5 ECSC example whiskers . 80
3.6 ECSC simulation . 81
3.7 Overview of FaaSFS . 82
3.8 Replication in the block storage service . 87
3.9 Sequence diagram for failure-free transaction commit. 90
3.10 Microbenchmark results . 93
3.11 FaaSFS backend throughput scaling . 97
3.12 Update-intensive benchmark . 98
3.13 Filebench workload . 100
3.14 Blog application scaling . 102
3.15 TPC-C benchmark . 106

v

4.1 Base model . 113
4.2 Transition relation for the controller . 120
4.3 Automata for atomic transactions . 124
4.4 Transactional model. 130
4.5 Transition relation for T0 and T ′0. 134
4.6 Transition relation for process-fragment transactions. 136
4.8 ECSC model with timestamp-based coherence protocol. 142
4.9 Transition relation for process wrapper with local cache. 151
4.10 Transition relation for storage wrapper. 155

5.1 Server-based data center vs disaggregated hardware 162
5.2 Hierarchical vs fat-tree networks . 164
5.3 Single-stage vs. multistage interconnect topology 165
5.4 Intra-server and inter-server message latency . 169
5.5 Scaling model: Amdahl's law without communication 175
5.6 Scaling model: Limited by sequential communication 176
5.7 Scaling model: Large servers can cost more . 177
5.8 Scaling model: Greater bene�ts for larger servers 178
5.9 Scaling model: Sequential communication bottleneck 179
5.10 Large server vs small servers . 182
5.11 Write data�ow example . 187
5.12 Read data�ow example . 188
5.13 When does YCSB distribute? . 189

vi

List of Tables

1.1 Challenges of scale . 2
1.2 Open source back-end software at Twitter . 5

2.1 Serverless characteristics of cloud services . 21

3.1 Precedence relationships that de�ne various consistency models 77
3.2 Block storage service API . 86
3.3 Block storage service durability . 86
3.4 POSIX support . 91
3.5 Microbenchmark results . 95
3.6 Filebench workload . 99
3.7 File system consistency models compared. 105

4.1 Actions of the model . 114
4.2 Operation sequences of the model . 115
4.3 Actions of transaction automata . 125
4.4 Timestamp operator de�nition . 148

5.1 Interconnect scaling . 165
5.2 MPI latency . 168
5.3 YCSB simulation . 188

vii

Acknowledgments

Science, like so many things, is a collaborative pursuit. I am grateful to my collaborators,
whom I thoroughly enjoyed working with on both projects described here and related ones.
Nathan Pemberton has been my ally from day one, Leonhard Holz helped write much of
the system implementation described in Chapter 3, Vikram Sreekanti and Chenggang Wu
invited me to participate in the Cloudburst project, which turned out to be a lot of fun.
Alexey Tumanov and Jose Faleiro are both sharp thinkers who shared their wisdom with me.
My views on serverless computing were heavily shaped by conversations with a group that
additionally included Eric Jonas, Neeraja Yadwadkar, Anurag Khandelwal, Joao Menezes
Carreira, Chia-Che Tsai, Qifan Pu, Vaishaal Shankar, Karl Krauth, Joseph E. Gonzalez,
Raluca Ada Popa, Ion Stoica, and David A. Patterson. I am also grateful for the dissertation
editing support that I received from Charles Kozierok and Ingeborg Schleier.

I owe a special thanks to Joseph Hellerstein, my advisor and collaborator, for steady guid-
ance and supportive challenges. I also thank my dissertation committee members Heather
Gray and Natacha Crooks for their enthusiastic support, careful reading, and thoughtful
suggestions.

Life, too, is a collaborative pursuit. I am grateful to my wife, Ina, for her encouragement,
and to my entire family for their support, understanding, and patience.

1

Chapter 1

Introduction

1.1 The Challenges of Scale

A simple question captures the motivation for this work quite concisely:

Why is creating software that works at large scale so much harder than creating
software that uses only small amounts of resources?

As an example, consider the scaling saga of Twitter, a popular social network. As we
describe in Section 1.3, a small team built the �rst version of the product in just two weeks,
but this implementation stopped working reliably as usage of the product increased. Keeping
up with demand turned out to be surprisingly di�cult�while it is natural to expect that
supporting 100 million tweets per day would require more programmer e�ort than supporting
100,000, the e�ort required in this case was orders of magnitude greater. Why?

The question of what makes scale hard has puzzled us for well over a decade. It is
also a question that many industry practitioners might jump to answer with conviction and
authority. Ask one of them what makes scale hard and they will likely tell you about all
the factors that they consider when designing a program to run at scale. Their response
might start something like this: �You'll need a lot of servers because of the data volume
and because you'll need to keep up with a high rate of incoming requests. You'll need to
think carefully about how you split up the data and the di�erent functions of the application
to achieve performance, reliability, and security. Lots of things that could go wrong�for
example, a server could crash, you might lose a network link, or a bug in one part of the
system could knock everything down in a cascading fashion.� The individual might continue
on, sharing advice for writing an application as a collection of microservices, each resilient
to service interruptions or changes in the behavior of components that it interacts with. The
person might tell you about tools to use for monitoring or talk about how technologies such
as container orchestration now make it easier to run lightweight virtual servers in the cloud.
Table 1.1 shows several of the well known challenges of scale.

CHAPTER 1. INTRODUCTION 2

Table 1.1: Challenges of scale, adapted from Jonas et al. [216].

• Providing local redundancy to limit the impact of failures of indi-
vidual compute, storage, or network components.

• Providing global redundancy to o�er low latency in multiple geogra-
phies and to maintain service continuity in case of regional disasters.

• Implementing request routing or load balancing to ensure timely
service responsiveness and e�cient resource utilization.

• Monitoring to alert operators to any problems or potential problems
with the service.

• Logging to support debugging and performance tuning.

• Upgrading system software, including keeping up with security
patches.

• Migrating to improved hardware as new options become available.

It is abundantly clear that creating software that works at large scale is challenging
today�the experts tell us so. However, those experienced in building scalable systems may
be so familiar with the di�culties of their craft that they have come to take them for granted.
We thus ask, are the challenges of scale fundamental and inescapable, or is it possible to
create a platform that makes writing software for large-scale systems just as easy as writing
software for small ones?

We want to be clear that when we talk about scale, we are referring to the amount of
physical resources required to run the software�resources like CPUs, GPUs, and domain-
speci�c accelerators as well as memory, storage, and network resources. We are not referring
to the complexity or scope of functionality that the program provides�naturally, more
complex software functionality requires more complex programs, and often larger ones as
well. What we �nd surprising, however, is that simple applications such as social networks
become vastly more di�cult to implement at large scale than at small scale even when doing
so adds no other features or functionality.

An industry trend known as �serverless computing,� has greatly simpli�ed writing some
types of scalable applications. It provides abstractions that hide the underlying servers,
allowing small and straightforward programs to run across thousands of servers. We found
this intriguing, and set out to study it in hopes of understanding whether these promising
developments might be generalized.

CHAPTER 1. INTRODUCTION 3

1.2 Higher Expectations

The need for something like serverless computing�a way of simplifying cloud programming,
has been growing more acute over the past years. The underlying reason for this is an
insidious trend towards higher expectations that can cause simple applications to demand
distributed systems programming skills. Figure 1.1 illustrates an interlinked set of concerns
that come to bear upon modern cloud application development. Scale and fault tolerance
go hand-in-hand with cloud computing, meaning that the minimum expectations for appli-
cations are now greater than they were in the past.

Scale High
Availability

Cloud

Has more failure modes

Requires redundancy

Low server uptim
e guarantees

Requires geographic diversity

W
an

ts
ela

sti
cit

y
Co

re
 p

ro
m

ise

Figure 1.1: Intertwined concerns create higher expectations: scale, fault tolerance, and cloud
computing are di�cult to separate.

Scale and availability are intertwined because larger systems have both more potential
failure modes and because maintaining service during failures requires redundancy, and so
increases system scale. Scale also often brings a greater robustness requirement simply
because failures can become more costly.

Cloud computing and scale are also obviously connected. Easy access to scale is a core
promise of cloud computing [37], and the cloud is today the most practical way to access
large amounts of computing resources.

Fault tolerance and cloud computing are intertwined as well. Cloud infrastructure tradi-
tionally used low-cost servers that were less reliable than those in enterprise data centers [59].
This is probably less true in today's public cloud, but the service level agreements (SLAs)

CHAPTER 1. INTRODUCTION 4

published by major cloud providers all promise only 99.5% availability for any single in-
stance [22, 108, 375]. This equates to up to 3.6 hours of downtime per month, and means
that most applications require redundant servers to ensure acceptable reliability. Luckily,
cloud computing can provide resources on demand in multiple geographies, exactly what is
needed to achieve high availability.

Scale, fault tolerance, and cloud computing are intertwined concepts. The rise of cloud
computing thus creates elevated expectations that software is still struggling to catch up
with. We provide further support for this view in Section 2.8.2.

1.3 Social Networking Case Study

The early years of social networking put the challenges of scale into stark relief. Twitter
wasn't originally a particularly complicated product, consisting of just the core functionality
of today's product. Twitter allowed users to post short 140-character �tweets� on a time-
ordered personal �feed.� It also allowed users to view a consolidated feed that combined the
posts from all of the users to whom they subscribed or �followed.� This, along with generic
account management features such as password management, comprised the functionality.
As is reasonable for such a simple product, the initial implementation of Twitter was built
by a small team in just two weeks [397].

The ease with which engineers �rst built Twitter contrasts with the di�culties they
encountered in scaling it. As the product gained popularity, availability su�ered [358] despite
signi�cant e�orts to improve the platform [111]. Twitter eventually succeeded in scaling to
support hundreds of millions of users, but it had to hire hundreds of engineers to do so. And
while the product gained functionality (e.g., photos and videos, advertising, search), the
company described requiring signi�cant investments not just for these new features but also
just to keep up with growing demand. When Twitter �led for its initial public o�ering, it
disclosed both the size of these investments and the ongoing risk that scalability posed to the
business, saying: �Managing our growth will require signi�cant expenditures� and �Our ...
results may be harmed by a disruption in our service, or by our failure to timely and e�ectively
scale and adapt our existing technology and infrastructure� [412]. A review of Twitter's open
source projects reveals over one million lines of code in platform-related projects, giving some
sense for the magnitude of the investment in scalability (see Table 1.2). Several of these
projects represented notable research contributions, e.g., to stream processing [238, 407].

Over time, a large team built an implementation that worked for 100 million users, but
we can surmise that this application had perhaps 100× the amount of code as the version
that supported 100,000 users. To a rough approximation, we guess that an increase in scale
of three orders of magnitude required two orders of magnitude more code. It seems unlikely
that this trend would apply in the other direction, that a version of Twitter supporting only
100 users would require two orders of magnitude less code.

Twitter's evolution re�ects a middle path for social networks when it comes to scaling: a
critical struggle that ultimately succeeded. Examples on either extreme are also instructive.

CHAPTER 1. INTRODUCTION 5

Friendster was the �rst social network to attract signi�cant investment, yet it su�ered a pre-
mature demise largely attributable to technical challenges posed by scale [155]. Instagram's
story also o�ers a marked contrast: At the time it was acquired by Facebook, it had scaled
to 30 million users and 150 million photos, all with only three engineers [197].

Instagram launched almost a decade after Friendster and bene�ted from the availability
of cloud computing [37]. Instagram's engineers could rent servers on a minute's notice,
upgrade to more powerful machines as needed, and take advantage of cloud services, e.g.,
saving photos using object storage. They also bene�ted from building on the experiences
of the social networks that came before them; perhaps even bene�ting from open source
software projects that their predecessors had developed.

Despite Instagram's success, we believe that many companies still face challenges like
those Twitter faced. In particular, those building pioneering products may be unable to
take advantage of o�-the-shelf solutions. It is clear that cloud computing vastly simpli�ed
access to scale, making it easier for talented small teams to do big things. While Friendster-
like failures remain rare�or, at least, we don't hear about them�Instagram-like success
stories appear to remain the exception rather than the rule. We have drawn these examples
from social networking, however we believe that the parallels apply quite broadly to cloud
software, especially because business applications have now commonly adopted design and
technology approaches �rst established in the consumer sector.

Table 1.2: We reviewed Twitter's listing of open source software projects [413] and identi�ed
those related to back-end and infrastructure. The projects listed here contain over 1.2 million
lines of code, and presumably represent only a portion of the systems needed to deliver the
Twitter service at scale.

Project Languages Lines of Code Description
�nagle Scala 163,084 Fault tolerant RPC system
pex Python 127,243 Python executable generation
pants Python, Rust 113,794 Build system
vireo Bourne Shell 89,729 Video processing
util Scala 70,389 Assorted utilities
scalding Scala 67,230 Data API
pelikan C, Rust 60,835 Uni�ed cache backend
�natra Scala 59,223 Services framework
rsc Scala 57,461 Scala compiler
scoot Go 47,412 Distributed task runner
scrooge Scala, Java 40,795 Thrift RPC parser/generator
algebird Scala 37,062 Abstract algebra
elephant-bird Java 23,010 Compression and serialization
GraphJet Java 18,997 Real-time graph processing
twemproxy C 17,333 Cache and object storage proxy

CHAPTER 1. INTRODUCTION 6

hraven Java 17,099 MapReduce job statistics
ccommon C 16,197 Cache commons
twemcache C 14,446 Caching and object storage
summingbird Scala 13,266 Streaming MapReduce
rustcommon Rust 11,072 Libraries
twitter-server Scala 9,634 Services framework
bijection Scala 9,555 Reversible computations
rezolus Rust 9,315 Performance telemetry
cassovary Scala 8,842 Graph processing
chill Scala, Java 8,789 Serialization
torch-autograd Lua 7,857 Auto-di�erentiation for ML
storehaus Scala 7,648 Library for key-value stores
fatcache C 7,392 SSD-based cache
torch-ipc C, Lua 6,220 Parallel ML
sbf Java 5,986 Graph processing
bazel-multiversion Scala 5,802 Build system
netty-http2 Java 5,560 HTTP protocol implementation
rpc-perf Rust 5,200 Benchmarking tool
iago2 Scala 5,128 Load generator
caladrius Python 5,057 Performance modeling
libwatchman C 4,580 File change monitoring
Serial Java 4,321 Serialization
torch-decisiontree Lua, C 4,087 ML algorithms
zktra�c Python 3,923 Consensus algorithm analysis
torch-dataset Lua 3,704 ML data loading
nodes Java 3,625 Dependency graphs for services
joauth Java, Scala 3,064 Authentication
groupcache Go 3,011 Caching
hpack Java 2,302 HTTP header compression
go-bindata Go 2,231 Go build tool

1.4 The Path to Serverless Computing

The di�culties of programming for scale become even more puzzling in light of how inte-
grated modern data centers are. It has become common to refer to the massive data centers
that support the cloud and major online services as �warehouse-scale computers� [60]. This
terminology re�ects the idea that these systems, containing tens or hundreds of thousands of
individual servers, are designed as a unit and have the potential to function as one machine.
In practice, however, most programmers continue to focus on individual servers or server-like
virtual machines while writing software, for this is what their tools are built to do.

Serverless computing represents an evolution of the programming model for the cloud

CHAPTER 1. INTRODUCTION 7

toward abstractions more suitable for warehouse-scale computers [216]. The best known
form of serverless computing is Function-as-a-Service (FaaS) [92], though as we will see in
Section 2.5, serverless computing encompasses much more than FaaS alone.

FaaS provides a �stateless� computing model in which time-bounded tasks run in re-
sponse to events such as web requests or the availability of items on queues. To deploy a
FaaS program, the cloud customer provides code�often source �les written in a high-level
language such as Python or JavaScript�and speci�es what triggers should cause that code
to run. After that, the cloud provider takes care of everything else, including provisioning the
necessary resources. The provider then bills the customer based on consumption, metering
CPU and memory usage in intervals as small as 1 ms. By contrast, renting a cloud server
requires paying for 1 minute of usage at a minimum.

For certain workloads, programmers using serverless computing and FaaS can access scale
much more readily than they can with servers. Ideally they simply write the code, save it to
the cloud, and let it run. In the often-referenced canonical example [421], a social network
could write a simple FaaS function for resizing images to thumbnail size and con�gure it
to run whenever new uploads appear in object storage. Doing this is much simpler than
con�guring a �eet of servers to scale up and down to meet the demand while also planning
for various possible failure and workload scenarios.

That said, while FaaS works well in tasks like the image resizing example, there are
many workloads for which it is currently unsuitable. For example, if we wanted to index
and search the text captions of a large number of images, FaaS would do little to simplify a
scalable implementation. Building the index would require coordinating a large number of
functions, then piecing together their work. One experiment has shown that training and
serving simple machine learning models can be 21× slower and 7.3× more expensive than
a comparable implementation using servers [189]. Serving search results from a large index
also would require partitioning, for which FaaS has no built-in support [355].

In addition to a lack of universal applicability, other shortcomings of serverless computing
with FaaS have been documented [189]. It has limited, though con�gurable, execution time
that must be con�gured when you create a function, o�ers weak performance guarantees, has
restricted networking, and provides no support at all for persistent state. Still, the possibility
of extending the bene�ts of serverless computing to more use cases remains tantalizing, as
does the promise of general-purpose serverless computing.

We adopt a broad view of serverless computing that includes any cloud programming
model that hides the servers behind an abstraction, scales automatically, and bills on a pay-
as-you go model (see Section 2.4). For example, under this de�nition, object storage is a
form of serverless computing, i.e., AWS S3, Azure Blob Storage, and Google Cloud Object
Storage are all serverless. This perspective suggests that the success of Instagram relied in
part on an early form of serverless computing.

Serverless computing solves the challenges of scale in limited settings and for limited
applications. We set out to study it because it seemed to o�er a glimpse into what might
be possible, and because it had achieved a level of industrial adoption that we hoped would
ensure a practical signi�cance to any �ndings.

CHAPTER 1. INTRODUCTION 8

1.4.1 Overview of this work

At the risk of disappointing the reader, we acknowledge that this work will not present a
solution that makes software scalability e�ortless. Our aim was more modest: to collect
insights and lessons that might lead in that direction.

We begin with a study of serverless computing as it exists in industry today. As described
in Chapter 2, we identify the essential characteristics of serverless computing, then survey
how various cloud product o�erings align with this de�nition. In our view the most important
advance that serverless computing represents is a simpli�ed programming model for the
cloud. We explain how programming with servers really is what makes cloud programming
complicated, and how programming models failed to keep up with the raised expectations
of cloud computing described in Section 1.2. We also note how today's serverless computing
has signi�cant limitations, setting the stage for the narrower studies that follow.

The principal software artifact developed in this work is the FaaS File System (FaaSFS)
described in Chapter 3. FaaSFS provides a serverless implementation of the Portable Oper-
ating System Interface (POSIX) �le system interface in hopes of allowing existing software
to run with serverless operating bene�ts. Integrating computation and storage in one service
allows for interesting optimizations, and in some cases big wins. For example, we show that
FaaSFS can scale to run an existing single-server web application well on 10,000 instances.
However FaaSFS is not suitable for all applications, and demonstrates the limitations of
sticking with the POSIX �le system abstraction.

One of the enabling innovations for FaaSFS is a new form of strong consistency. In
Chapter 4 we develop a formal theory of externally consistent sequential consistency (ECSC),
a hybrid consistency model that ensures that programs produce the same outputs as they
would when using linearizable storage, even though they violate linearizability in ways that
allow them to run faster.

We close with a study that looks ahead to the possible implications of widespread server-
less computing, considering whether removing servers from the programming model for the
cloud might ultimately lead to alternative physical infrastructure, that is to �serverless hard-
ware.� In Chapter 5, we use a simple model of interconnect cost scaling together with
Amdahl's law to show that the need for server hardware will likely continue even if software
adopts serverless abstractions. The model shows that large server hardware, despite its high
per-processor cost, is critical for scaling applications that rely heavily upon coordination,
though less so for those that make greater use of coordination-free approaches.

It has been gratifying to see an explosion of research interest in serverless computing in
the years since we started this work. Our hope is that the research we describe here proves
to be a useful contribution to this now vast enterprise.

9

Chapter 2

Understanding Serverless Cloud

Computing

2.1 Introduction

Modern computer systems can empower people by providing access to unprecedented amounts
of computing power in convenient ways. The most visible proof of this is in the ubiquitous
pocket supercomputers (mobile phones) that everyone carries with them. Invisible, yet
equally important, are the millions of hidden computers that reside in commercial data
centers. Since the advent of cloud computing, anyone has been able to rent these comput-
ers [37], which makes it quite a�ordable to obtain them even in large numbers. Renting
1,000 computers for one hour costs the same as renting one computer for 1,000 hours. Un-
fortunately, having many computers is of little use if they cannot be harnessed to work
together e�ectively, and accomplishing that goal can be a serious challenge for programmers
(see Chapter 1). As a result, despite the enormous success of cloud computing, much of its
potential remains untapped.

We will show how serverless computing promises to make it easier to program the cloud
by abstracting away those complicated and awkward details�the servers�that do not cor-
respond to anything in problems that programmers are working to solve. Put one way, it
can remove servers from the programming and operating model of the cloud. One might also
say that it can make a collection of computers work more like one big computer.

A big caveat, as of now, is that serverless computing only delivers such bene�ts to a
relatively narrow set of applications. The development that led to serverless computing was
the introduction of Function as a Service (FaaS). It provides a simple cloud deployment
model, but only for stateless programs with limited execution time. Furthermore, there are
reasonable ways to argue that FaaS is a mundane development with ample precedent, that
its commercial launch changes little. In this context, the idea of serverless computing having
a revolutionary e�ect, like making it possible to use the cloud like a single massive computer,
seems far-fetched. We adopt a broader view of serverless computing, from which its potential

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 10

becomes apparent.
This chapter aims to clarify the gap between the conceptual promise of serverless com-

puting and the reality of today's serverless computing o�erings. It is important to realize
that serverless computing encompasses more than just FaaS. FaaS was a tremendously ex-
citing development because it brought a simpli�ed programming and deployment model to
programs written in a variety of popular programming languages. �Serverless� seems to have
arisen as a catchy way to describe FaaS, and the name has stuck. However the idea of
abstracting away the cloud's servers behind scalable services precedes FaaS. For example,
cloud messaging or pub/sub services are abstractions that hide servers; the same is true of
cloud object storage. These were some of the �rst o�erings of Amazon Web Services (AWS),
a cloud computing pioneer, and arrived years before AWS o�ered servers for rent outside of
a beta program.

We also observe that the challenges of scale (see Chapter 1) result directly from the need
to work with many servers. In Section 2.8 we make this case by drawing upon a celebrated
result from the study of software engineering: the distinction between essential complexity
and accidental complexity identi�ed by Fred Brooks [79]. Essential complexity is that which
is inherent in the functionality that the software provides, whereas accidental complexity
results from the nuances and limitations of the machine that it runs on or perhaps the
programming environment used to create it. In the case of cloud programming, programmers
are funneled toward writing software for distributed systems. In many cases, they encounter
complex challenges not because the problems they are solving are complicated, but because
working with lots of servers introduces its own di�culties.

This perspective makes clear the role that serverless computing plays in the develop-
ment of cloud computing�it directly addresses the problem that makes cloud programming
hard. Furthermore, it allows us to draw straightforward connections to previous techno-
logical developments that also helped hide complexity in underlying machines, notably the
development of high-level programming languages.

This chapter seeks to distill learnings from the emergence of serverless computing. We
focus in some detail on FaaS, seeking to explain what made it successful. Even though the
term serverless computing emerged to describe FaaS, it embodies a broader concept that
now encompasses many cloud services that share a number of essential characteristics. We
survey serverless cloud services, seeking to document their capabilities and limitations. We
then explain why we see simpli�ed cloud programming as the most useful interpretation of
serverless computing�that which best tells us where the movement is headed. In closing,
we touch on assorted topics that we found interesting and that helped us understand the
emergence and implications of serverless computing.

2.2 Function as a Service

Function as a Service (FaaS) �rst appeared in AWS Lambda, which was announced in 2014
and reached general availability in 2015. The core idea was a simple one, easily described

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 11

by the typical steps customers take to use it:

1. Write a small program, also known as a function, that takes some input, runs for a
limited duration to complete some task, and optionally returns some output.

2. Save the function to the cloud, con�guring it to run in response to speci�c events such
as web service invocations or messages published on queues.

3. Pay for execution time, metered at a sub-second level, whenever the function runs.

With FaaS, the cloud provider assumes responsibility for provisioning the underlying servers
and the secure execution environments in which the code runs. This includes making sure
that there are enough instances available to meet execution demand and assigning resources
to customers only when they are in use. A sample FaaS program appears in Figure 2.1,
code for saving it to the cloud appears in Figure 2.2, and code for invoking it appears in
Figure 2.3 and Figure 2.4.

Responsive scaling is one of the hallmarks of FaaS. When faced with sustained requests,
AWS Lambda takes just a few minutes to create thousands of execution instances to run a
function.

In addition to providing scalability, FaaS shifts other operational responsibilities to the
cloud provider. A level of fault tolerance comes from automated retries, which protect
against failures of various types; these range from hardware failures to intermittent bugs
in the function code itself. The provider also deals with many security concerns, includ-
ing the patching of operating systems, runtime environments, standard libraries, and other
underlying technologies. Cloud providers can roll out �xes to serious vulnerabilities within
hours�much faster than most customers are able to respond.

To the function code, the typical FaaS runtime environment looks much like the inside
of a little server. There is a CPU with one or more cores and a popular instruction set
such as x86 or Arm. A familiar operating system interface, such as Linux, is present as
well. However, the environment has some important restrictions. One notable limitation
is the timeout, which limits how long a function can run (typically up to several minutes).
The operating system is also locked down signi�cantly, so only unprivileged operations are
permitted. The network allows outbound connections, but it has �rewall rules intended to
prevent inbound network requests [432].

FaaS has severe limitations regarding state management. It is often called stateless, but
this label misses important nuances; it might be more precise to say that FaaS supports
ephemeral state only. We identify two types of ephemeral state. The �rst one is the working
memory used during function execution. This state expires when the function terminates,
typically because it goes out of scope or becomes unreachable. The second is cached state that
remains in the execution environment and thus continues to be available whenever the cloud
provider reuses this environment to handle subsequent function invocations. In many cases,
cached state is essential to performance. For example, a function that makes predictions
using machine learning might load a model's weights at initialization time, then use them

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 12

AWS Lambda "He l l o World" in Python
def say_hel lo (event , context) :

return ' He l l o ' + event ['name '] + ' ! '

Figure 2.1: Hello World using Python and AWS Lambda. FaaS helps keep programming
simple, even in the cloud and at scale.

Copy the code to c loud ob j e c t s t o rage
aws s3 cp h e l l o . py s3 :// code_bucket_path/ h e l l o . py

Create the func t i on
aws lambda create−f unc t i on \

−−funct ion−name=he l l o−world \
−−r o l e=arn : aws : iam : : . . . \
−−runtime=python3 . 9 \
−−handler=h e l l o . say−h e l l o \
−−memory−s i z e =128 \
−−t imeout=3 \
−−code=s3 :// code_bucket_path/ h e l l o . py

Figure 2.2: Installing Hello World function using the AWS command line interface. First we
copy the code to object storage. Then we install it by specifying the name by which it will
be called, the IAM role for security privileges, the Python environment required, the name
of entry point within the Python program, the memory size (a proxy for all resources), an
execution time limit, and the location of the code in object storage.

in many subsequent function invocations. Cached state also helps amortize runtime-speci�c
overheads, such as library loading for Python [296], or JIT compilation for Java or JavaScript.

What FaaS lacks is any form of persistent state. Only the /tmp path of the local �le
system is writeable, and this is a repository for ephemeral state only. Its contents, along
with all contents of the instance memory, may be lost when the function �nishes executing.
For example, the cloud provider may destroy an execution instance to reassign resources to
another function, reoptimize placement, or perform upgrades.

Even when state still exists within a function instance, there may be no way to access
it. When a function is invoked, the cloud provider may always choose to create a new
instance to run it rather than to reuse an existing one. Also, there is no way to direct a
function invocation at a particular instance, as the model assumes that they are unnamed
and interchangeable.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 13

Invoke the func t i on
aws lambda invoke \

−−funct ion−name=he l l o−world \
−−payload='{"name" : " A l i c e "} '

Figure 2.3: Invoking a FaaS function from the command line. The arguments are passed as
a JSON object.

import boto3 , j son

c l i e n t = boto3 . c l i e n t (' lambda ')
c l i e n t . invoke (
FunctionName=' he l l o−world ' ,
InvocationType=' Event ' ,
Payload=json . dumps({ 'name ' : 'Bob ' }) ,

)

Figure 2.4: Invoking a FaaS function from a Python program.

FaaS functions may be invoked either synchronously or asynchronously. For synchronous
invocations, the client makes a web service call to the cloud provider that blocks until the
function has �nished executing. At that point, the call completes, sending a response that
includes any return value produced by the function. For asynchronous invocations, the FaaS
service responds as soon as the invocation request has been stored on a queue. This allows
the calling program to continue, con�dent that the invoked function will run at some time
in the future.

2.3 About the �Serverless� Name

Prior to its use in the context of cloud computing, the term serverless appears in the literature
with a distinctly di�erent meaning. For example, the xFS �le system was presented as a
�serverless network �le system� since it had no centralized entity and instead distributed all
functionality across participating workstations [31, 430]. This use of the term, in an era where
the client-server computing paradigm [373] dominated, was one way to indicate operation
without computers dedicated to the server role, but this paradigm was very di�erent from
serverless computing as it exists in the cloud today.

Other serverless �le systems included Farsite [7, 70, 71], an attempt to provide distributed
�le system on networks of Microsoft Windows PCs. Additional examples of �serverless� de-

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 14

f1 | R f1 | I

Server Pool

…f1 | R f1 | I f2 | R f2 | Cf3 | R

f1 | C

FaaS API Endpoint

Reliable Queue

Provisioning

Networking

Security

Logging

Monitoring

Billing

Code Storage

f2 | Cf1 | R f3 | R

Figure 2.5: Components of a FaaS system. The application programming interface (API)
Endpoint receives function invocation requests and con�guration requests. A reliable queue
holds invocations until execution resources become available and can ensure at-least-once exe-
cution. The server pool is a multi-tenant resource shared across customers and virtualization
divides each server into a number of Virtual Machines (VMs). Lightweight virtualization al-
lows one VM per function, though some serverless environments also may also pack several
functions belonging to the same customer into a single VM instance. Each function is con-
�gured to run on an instance of a certain size, and receives a corresponding fraction of the
compute, memory, and network resources in the machine. Supporting services include provi-
sioning, networking, security, logging, monitoring, billing and code storage. In this example,
f1 and f2 have small resource footprints, whereas f3 has a larger resource footprint. Function
instances also may have several states: (I) Initializing, (R) Running, and (C) Cached and
idle.

centralization include applications in Voice over IP (VoIP) [80], Radio-Frequency Identi�ca-
tion (RFID) [393], and mobile social networking [422]. All of these approaches fall under the
umbrella of peer-to-peer (P2P) computing [279], and it is probably fair to say that serverless
was once a synonym for P2P, which failed to stick.

Interestingly, the modern cloud traces its roots to the same network of workstations [30]
used for the early experiments in serverless (in the P2P sense) �le systems. To meet the
computing needs of the internet boom, companies built networks of these relatively inex-
pensive �client� machines [59], reversing their role so that they functioned as servers to the
millions of internet-connected devices [150]. As the approach matured, companies started to
design data centers full of such machines, con�gured to operate as an integrated unit [60].

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 15

Unallocated Initializing Cached Idle Active
1 2 3

4

5

Figure 2.6: Life cycle of a FaaS execution instance. 1) a VM instance is created from
unallocated server resources and the VM enters the Initializing state, 2) at the completion
of initialization the function instance is ready to process requests, entering a Cached Idle

state, 3) the function instance enters the Active state when it receives a request, 4) at
request completion the instance returns to the Cached Idle state, 5) after a prolonged idle
time the cloud provider reclaims function instance resources. The customer typically pays
for Initializing time and Active time, but not Cached Idle time.

They also began to allow the public to rent these resources, which is now known as cloud
computing [37].

When AWS Lambda �rst launched, the company did not call it FaaS or serverless: It was
described simply as �event-driven compute.� The other names came later, emerging from
the ecosystem rather than the company.

FaaS �ts neatly into the vocabulary of X as a Service, a categorization of cloud service
o�erings [37]. Services can be just about anything, just so long as that thing is provided
over the network, and so long as the API hides the details of the implementation. Popu-
lar forms of cloud computing include Infrastructure as a Service (IaaS) for renting virtual
servers, storage, and network resources; Platform as a Service (PaaS) for hosted software
development frameworks; and Software as a Service (SaaS) for hosted application software.
Another relevant category is Backend as a service (BaaS), which describes collections of
service o�erings that complement the frontend of an application, which might be a mobile
app or code running in a web browser. BaaS typically includes some form of database for
persistent state management, as well as services for authentication and messaging, e.g., via
SMS or push noti�cations.

In a similar vein, FaaS accurately describes what AWS Lambda and similar products
such as Azure Functions and Google Cloud Functions do: They provide an interface that
allows users to de�ne functions and then run them, all without worrying about what it takes
to provide or manage the underlying infrastructure that makes this possible. Aside from this

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 16

name being a bit dry, what prompted the need for another one?
To answer this, we draw upon a historical perspective assembled by Roberts [337]. The

modern notion of serverless cloud computing predates FaaS by several years. In the 2012
article, �Why the Future of Software and Apps is Serverless,� Fromm describes a vision of
elastic computing services and industrial-scale compute power [156]. He notes:

Developers working in a distributed world are hard pressed to translate the things
they're doing into sets of servers. Their worldview is increasingly around tasks
and process �ows, not applications and servers�and their units of measures for
compute cycles is in seconds and minutes, not hours. In short, their thinking is
becoming serverless.

When AWS Lambda arrived in 2014, some developers were already craving a form of cloud
computing that would free them from thinking about servers. Tapping into this thread of
enthusiasm, cloud providers and other ecosystem participants adopted the name serverless
computing, �rst for FaaS and later for other services.

There has been some controversy about whether serverless computing is a good name for
the developments it represents. We believe it is and touch upon this in Section 2.8.5.

We emphasize that the notion of serverless computing in the cloud is conceptually dis-
tinct from its use to describe P2P technology. We can �nd some precedent for the idea of
serverless cloud computing, however, by looking further into the past. Visions in the 1960s of
�utility computing� imagined massive concentrations of computing power, drawing parallels
to centralized electricity generation [57, 307]. It took decades of technological progress and
market developments to get there, but with serverless computing, the cloud now appears
poised to ful�ll this vision.

Because the idea of serverless computing gained popularity due to the rise of FaaS,
the distinction between the two sometimes gets lost; even authoritative works commonly
make little distinction between the two (e.g. [92, 190]). Part of the reason for this is that
FaaS is �exible and popular. Functions can be written in arbitrary programming languages,
and despite some signi�cant limitations [189], they work well in a reasonable variety of use
cases [356]. Furthermore, FaaS is a concrete product that is straightforward to describe.
Serverless, exciting as it may be, is a more abstract notion. We next distill the essential
characteristics of serverless computing, which serve to cast its de�nition in greater relief.

2.4 Essential characteristics of serverless computing

A central tenet of serverless computing is that developers prefer not to think about servers:
Other abstractions o�er better targets for expressing program functionality. This point
of view has a number of natural consequences, with both operational and business model
implications. Taken together, they help outline a coherent and reasonably concrete de�nition
of serverless computing.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 17

We will review non-FaaS forms of serverless computing in more detail later in this section.
For the time being, we focus on FaaS and also cloud object storage, as exempli�ed by AWS
S3, Google Cloud Storage, or Azure Blob storage. Cloud object storage is backed by large
pools of servers but provides a simple API allowing users to store and retrieve immutable
objects. In some respects, it is like a simpli�ed �le system, o�ering a two-level naming
scheme. Objects can be replaced in full but cannot be modi�ed or extended. Users never
provision capacity for cloud storage: They pay for reads and writes on a per-request basis
and for storage based on the amount of data stored and the duration of that storage.

Hiding servers implies hiding certain details that are related to operating them. Cloud
servers, which are actually virtual machines [377], already hide the details of how to pro-
vision servers, power them, and integrate them into networks. The serverless cloud goes a
step further by introducing a layer of software that bridges individual servers, implements
secure multiplexing of customer workloads, and provides an alternate computing abstraction.
Figure 2.7 shows how serverless comprises a layer between applications and the underlying
server-based cloud. The serverless cloud provider thus assumes a certain level of additional
responsibility, including monitoring the availability of the underlying systems and ensuring
that the workload is properly distributed over them.

This is where autoscaling comes in. When using servers, the developer typically con�gures
a feedback mechanism that measures CPU utilization, the length of a queue, or some other
application-de�ned metric, then adds or removes servers to maintain balance as the workload
changes. In serverless computing, there are no servers to add or remove. The dominant
pattern for serverless scaling is thus implicit scaling, where the cloud provider allocates
resources in response to program execution rather than in response to an explicit request.

To make this more concrete, consider the following example: a customer could install
open source FaaS software on a �xed number of servers; various alternatives exist [34, 190,
231, 236, 300]. This deployment o�ers programmers an abstraction without servers, but
servers are still part of the operating model. If too few are provisioned, they will be unable
to keep up with the workload; if too many, then idle resources will lead to unnecessary
costs. This is FaaS, but is it serverless computing? To the programmer it may be serverless,
assuming someone else in the organization is looking after the scaling. However to the
administrator�who continues to manage servers�it is not.

We view cloud-provider-managed autoscaling as an essential feature of serverless com-
puting. Not only does it eliminate one of the considerations that makes working with servers
di�cult, but the provider can be in a much better position to manage scaling than the cus-
tomer. For one, the provider is better able to take advantage of statistical multiplexing. By
drawing resources from a large pool shared across customers, it can achieve higher resource
utilization than any one of them could alone. Furthermore, the time required to start up
a server can be measured in minutes, whereas the virtualized environments used for FaaS
can boot in under 100 ms [9, 180]. Faster start times mean resources can be more rapidly
shifted between customers, making it possible to respond to load spikes more quickly or,
alternatively, maintain a smaller amount of idle capacity.

The provider-managed autoscaling seen in serverless computing is unlike anything that

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 18

Applications

CPU Network Storage Accelerators

Se
rv

er
-B

as
ed

Cl
ou

d
Se

rv
er

les
s

La
ye

r

FaaS Object
Storage Database

Virtual Machines VPC Network

…

Figure 2.7: Serverless computing provides an abstraction over the underlying servers, net-
works, and other infrastructure that make up the cloud.

was possible with servers. At the high end, it allows scaling up to thousands of FaaS instances
within just a few minutes [217]. At the low end, when no code is running, the customer pays
nothing, or at most, just a small fee for storing the program code. This ability to scale down
to zero while remaining ready to scale up again as needed is an important and distinctive
feature of serverless computing�by contrast, a server-based service scaled to zero servers
goes o�ine. In the context of cloud object storage, implicit autoscaling allows customers to
upload petabytes of data without ever worrying about whether there will be enough capacity
and without worrying about maintaining a comfortable bu�er of free storage capacity. We
view such high-quality autoscaling as an important characteristic, and key innovation, of
serverless computing.

Pricing also plays a de�ning role in serverless computing. Its utility-style pay-as-you-go
model �ts naturally with provider-managed autoscaling. In the example of self-hosted FaaS,
the customer pays for the servers rented from the cloud regardless of whether they are needed
to satisfy the workload. Once the provider assumes responsibility for scaling, and with it
the responsibility for managing idle capacity, it follows that the customer should never pay
for this idle capacity. In the case of FaaS, this means paying when a function is executing,

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 19

not otherwise. For object storage, it means paying from the time an object is stored to the
time it is removed.

These considerations lead us to the three essential characteristics of serverless computing.
These are the product of our work and are re�ected in industry consensus as well [92, 216,
356]:

• Abstraction: Hiding the servers and the complexity of programming and operating
them.

• Autoscaling: Automatic, rapid, and unlimited scaling of resources up and down to
match demand closely, from zero to practically in�nite.

• Pay-as-you-go: Eliminating the need for resource reservations and charges for idle
resources.

In our view, the second and third go hand in hand and follow quite naturally from the �rst.
When servers are abstracted away, so is the standard unit of provisioning and deployment.
Serverless computing instead introduces a model where resource allocations and costs both
follow from application behavior. There are also probably other characteristics that could be
added to this list. For example, Roberts lists high availability as a de�ning characteristic of
serverless computing [336]. In addition to accessing scale, availability and robustness are key
reasons for linking together many servers, and some level of redundancy or fault tolerance is
now expected in cloud computing (see Section 1.2 and Section 2.8.2).

When programmers seek an abstraction without servers, they also seek an abstraction
without the myriad complex independent failure modes that server-based systems have.
These need not hide all failures, but they must make recovery simple. For example, cloud
object storage may use erasure coding and other techniques to hide problems with individual
servers. However it may still return transient errors, e.g., the HTTP response code 500,
meaning an internal error, to indicate that clients should retry a request later. The cloud
provider is responsible for healing errors quickly, but it is not presently responsible for
completely masking all failures.

When we review various serverless services in the next section, we will see that not
everything marketed as serverless has all three of the characteristics of serverless computing
identi�ed above. That does not mean that cloud providers are wrong to call them serverless;
after all, they do have some of these characteristics. What it does tell us is that serverless
may not be a simple binary classi�cation�that services can be serverless to varying degrees.

2.5 The Serverless Menagerie

Table 2.1 lists the services that cloud providers market as serverless at the time of this writing.
We have also included a few products that are not marketed as serverless but that are similar
to products from other cloud providers that are. This analysis has multiple purposes. First, it
allows us to test how well the essential characteristics of serverless computing (see Section 2.4)

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 20

match up with how the market uses the �serverless� term. Second, by comparing products
across cloud providers and looking into how certain products have evolved over time, we can
develop a sense for which aspects are important or have staying power. Third, examples let
us test the boundaries of what it makes sense to label as serverless computing. Finally, by
studying what forms serverless computing take today, we gain background understanding to
inform future research.

This process allows us to con�rm that serverless computing is about much more than
FaaS. There is no doubt that serverless computing owes its fame to FaaS, but serverless object
storage, messaging systems, key-value store databases, and big data query engines are also
proven and popular serverless technologies. As these products have matured, they have come
to align more and more closely with the essential characteristics of serverless computing.
Improvements in scalability and �ne-grained pricing are the most common enhancements.
We also continue to see new serverless services emerge. These range from reimplementations
of long-established APIs, like distributed �le systems, to emergent technologies, like those
for synchronizing data for mobile applications.

We divide our review by type of service. We touch, in turn, upon FaaS, managed compute,
container services, application platforms, event services, work�ow services, API management,
object storage and �le systems, database services and key-value stores, big data services, and
machine learning services.

Service Description S
er
ve
rl
es
s

m
ar
ke
ti
n
g

A
b
st
ra
ct
io
n

A
u
to
sc
al
in
g

P
ay
-a
s-
yo
u
-g
o

AWS
Lambda FaaS 4 4 4 4/IP
Fargate Container service 4 8 >0 IP
Elastic Beanstalk Managed application environments 8 8 >0 IP
EventBridge Event-driven architecture 4 4 4 4

Step Functions Low-code service orchestration 4 4 4 4

SQS Message queues 4 4 4 4

SNS Pub-sub, SMS, email 4 4 4 4

API Gateway Web service endpoints 4 4 4 4

AppSync GraphQL APIs 4 4 4 4

S3 Object storage 4 4 4 4

EFS Distributed �le system 4 4 4 4

DynamoDB Key-value database 4 4 4 4/IP
Aurora Serverless Relational database 4 N/A <1 IP
Glue Data integration 4 4 4 IP
Athena Big data query service 4 4 4 4

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 21

Redshift Big data query service 4 4 4 4

Azure
Functions FaaS 4 4 4 4/IP
Kubernetes Service Container service 4 8 >0 IP
App Service Managed application environments 4 4∗ 4 IP
Logic Apps Low-code business work�ows 4 4 4 4/IP
API Management API Gateways 4 4 4 4

Event Grid Event routing and management 4 4 4 4

Service Bus Messaging service 4 4 4 4/IP
Cognitive Services Natural language processing 4 4 4 4

Bot Services Build intelligent bots 4 4 4 4

Machine Learning Machine learning models 4 4 4 IP
SQL Database Serverless Managed database service 4 N/A <1 IP
Cosmos DB Globally distributed database 4 4 4 4/IP
Blob Storage Object storage 4 4 4 4

Files Distributed �le system 4 4 4 4

Stream Analytics Real-time analytics 4 4 4 IP
Data Lake Analytics Big data query service 4 4 4 IP

Google Cloud
Cloud Functions FaaS 4 4 4 4

Cloud Run Managed compute platform 4 4∗ 4 4/IP
API Gateway Web service endpoints 4 4 4 4

App Engine Application Platform 4 4∗ 4 IP
Firebase Application Platform 4∗ 4 4 4

Kubernetes Engine Container services 8 8 >0 IP
Work�ows Work�ow orchestration 4 4 4 4

Cloud Datastore NoSQL database 8 4 4 4

Cloud Storage Object storage 8 4 4 4

Cloud Pub/Sub Messaging service 8 4 4 4

Cloud Data�ow Stream processing analytics 4 4 4 4

BigQuery Big data query service 4 4 4 4

Dataprep by Trifacta Intelligent data preparation 4 4 4 4

Table 2.1: Serverless characteristics of cloud services. We included all services described as
serverless on cloud provider web sites (as of September 2021), as well as other services with
serverless characteristics. For abstraction, 4∗ indicates weak serverless abstraction, e.g., on
account of con�gurable per-server concurrency limits. Autoscaling �>0� indicates the service
does not scale down to zero and �<1� indicates that autoscaling adjusts the size of a single
server. �IP� indicates instance-based pricing where customer may pay for idle resources.
4/IP indicates that the cloud provider o�ers customers a choice of pricing models.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 22

2.5.1 FaaS Services

FaaS was the �rst to be called serverless computing and draws the green check mark (4)
across the board in Table 2.1. AWS Lambda, Azure Functions, and Google Cloud Functions
all provide the abstraction of code running in response to events, with provider-managed
autoscaling and a �ne-grained pay-as-you-go pricing model. Despite these marks, FaaS is
not a perfect �t for the essential characteristics of serverless computing.

We note that AWS Lambda and Azure Functions also o�er alternate billing models.
Lambda o�ers �provisioned concurrency,� a model introduced in 2019 [46], in which the
customer pays a base rate on an ongoing basis to keep instances of a function running, even
if they are not used. This means that when invocations do arrive, they can be processed
without any initialization, which is helpful for ensuring consistent low latency and eliminating
the problem of �cold starts� (see, e.g., [14, 190, 296, 362]). However, this model breaks
pay-as-you-go pricing and also introduces a knob that might need manual con�guration to
ensure consistent low latency as a service scales. Azure Functions allows �App Service�
deployment, which basically runs the FaaS software on a set of servers (described further in
Section 2.5.2). The customer pays for the number of servers provisioned, and uses server
autoscaling techniques. App Service deployment may be cheaper for some workloads, but it
sacri�ces some serverless bene�ts.

While FaaS can o�er a clean abstraction that fully removes servers, users who dig down
start to see what looks like a little server. Everything is there, including multiple CPUs, OS
processes, network devices, etc., which is what makes compatibility with existing software
possible. However, for programmers working in high-level languages such as JavaScript
or Python, this is usually hidden, becoming visible only to those who dive into system
programming.

We note that there are some server-like con�guration knobs in all FaaS o�erings. Mem-
ory con�guration has been there from the beginning, allowing the FaaS execution instance
to be sized in increments of 128 MB; scaling the memory also scales CPU performance pro-
portionately. Over time, Lambda has o�ered ever larger memory con�gurations, and with
the larger memory con�gurations, compute now scales to multiple CPU cores. This means
that selecting a memory size seems quite a lot like selecting a server size. Miscon�guration
can lead to idle resources, and this is another way that one can argue that FaaS provides a
�awed serverless abstraction.

2.5.2 Managed Compute

A number of services aim to make it easier to run existing (server-based) applications in
the cloud by standardizing and automating many operational matters. We call this class of
products managed compute.

Azure App Service is one example of a managed compute service. Its unit of deployment
is an application service, a program that listens on a port and responds to web requests. Users
can con�gure the App Service with autoscaling, so that it adds more servers as it receives

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 23

more requests. The App Service includes load balancing functionality, so that to the outside,
a pool of servers appears as a single endpoint. By sitting on the path of incoming requests,
the App Service gains insight into the responsiveness of each server. At present, this appears
to be used to remove or restart unresponsive or failed servers, though in principle it could
be used for autoscaling.

AWS Elastic Beanstalk o�ers functionality similar to Azure App Service. However,
whereas Azure describes App Service as serverless, AWS does not describe Elastic Beanstalk
as serverless. Is one cloud provider right and the other wrong? In our view both are
justi�ed�these managed compute services are both very much like server automation, but
for some applications, they also work much like FaaS, so they can provide a serverless solu-
tion.

For example, consider a stateless web service that executes many short tasks, receives
enough load to require a large pool of servers, and sees relatively slow load �uctuations. It
will run similarly in a managed compute setting as in a FaaS setting. There are some minor
di�erences in how one writes a function in a web framework and a serverless framework, but
the programming model is similar: You write a snippet of code that runs for a short period
of time somewhere in some big pool of compute. Also, operationally, the managed service
can sometimes do basically the same thing as the FaaS service, even though it may be a
little more complex to con�gure.

Operational di�erences start to appear when there are signi�cant load �uctuations, as
may be the case when a service receives sudden bursts of activity or tasks that are long-
running or resource intensive, e.g., for heavy data processing. Here, the technology un-
derlying FaaS can do a much better job of matching resources to the load than a server
provisioning approach. FaaS is also much more suitable for services that run only intermit-
tently, since it scales to zero whereas managed servers must run at least one instance to
maintain availability.

One advantage that managed compute platforms presently have over FaaS is that costs
can be lower when server utilization is high. We imagine that this could be corrected by
innovations in the FaaS business model, e.g., by o�ering discounts to services that maintain
a consistent or otherwise predictable level of usage.

We have classi�ed Google Cloud Run as a managed service along with AWS Elastic
Beanstalk and Azure App Service even though it has some characteristics that give it stronger
serverless characteristics. Cloud Run was introduced after FaaS became popular, and the
in�uence shows. We believe it was designed from the start to embody the features that make
FaaS compelling, like scaling to zero and �ne-grained pay-as-you-go billing. The underlying
infrastructure of Cloud Run likely looks much like that of FaaS services, but instead of
writing applications for a custom FaaS framework, users write applications using standard
web service frameworks (e.g., Django for Python, Spring for Java, etc.). Compared to FaaS,
Cloud Run o�ers improved compatibility with existing software ecosystems as traditional
web applications can sometimes drop right in. Unlike other managed application services
that require the customer to con�gure autoscaling by setting CPU utilization targets and
selecting scaling intervals and strategies, Cloud Run removes the knobs, presumably replacing

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 24

them with improved automation. Cloud Run also charges according to execution time, like
FaaS, rather than by the number of instances provisioned. (Like AWS Lambda, it also allows
customers to provision a minimum number of instances.)

Cloud Run exhibits all of the essential characteristics of serverless computing. However,
we have placed an asterisk on abstraction (4∗) for it because Cloud Run instances may be
processing multiple requests at the same time, and such requests may interact when they are
handled by the same server. In some cases, the user may also need to con�gure a concurrency
limit specifying how many such concurrent requests should be allowed on each instance.

Managed compute predates FaaS but has evolved to adopt its pricing and autoscaling
characteristics. In the case of Cloud Run, it can be operationally indistinguishable. Azure
App Service has adopted the serverless label, though it is not clear to us that it has evolved
much to incorporate serverless characteristics. It remains similar to AWS Elastic Beanstalk,
which is not presently marketed as serverless.

2.5.3 Container Services (Hosted Kubernetes)

A container is a form of lightweight virtual server. The concept gained popularity through
OS-based virtualization, which allows an operating system to host multiple isolated execu-
tion environments, each of which looks much like an independent operating system to the
application running on top of it. In contrast to traditional VMs, which can take minutes to
boot, such containers can often start in under a second.

Container orchestration techniques help manage the process of running large numbers of
such virtual servers on an underlying server pool. Google developed container orchestration
technology for internal use for many years before launching Kubernetes, an open-source
derivative [83]. Due to advances in system-level virtualization, container services can now also
be provided with traditional VM isolation, which can provide both security and performance
bene�ts over OS-based virtualization [9, 222, 265]. This is particularly valuable in the public
cloud setting.

Both AWS Fargate and Azure Kubernetes Service are container orchestration platforms
that present themselves as serverless. Meanwhile, Google Kubernetes Engine o�ers a similar
service without calling it serverless. This is the sort of discrepancy that can make one wonder
whether serverless is a meaningful technical concept or simply a marketing term.

Evaluated against our essential characteristics of serverless computing, container orches-
tration does not measure up particularly well. First of all, the abstraction of servers de�-
nitely remains. Autoscaling is provided, but not down to zero�a service must run at least
one instance to remain available, and multiple instances are often necessary to meet high-
availability needs. Autoscaling also requires con�guration, similar to that required to scale
servers in managed application environments (see Section 2.5.2). Billing is based on the num-
ber of instances provisioned. It is possible to provision fractional resources, e.g., a fractional
CPU share, but the minimum billable increment period is one minute.

So what is serverless about container orchestration hosted by a cloud provider? Con-
�guring servers to provide container orchestration can be an involved project. Not only is

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 25

the software complex to con�gure, particularly with regard to networking, but scaling also
requires managing resources in the underlying server pool. Hosted container orchestration
thus relieves operators of signi�cant administrative burdens, among them maintaining an up-
to-date operating system kernel with the latest security patches. It also can allow statistical
multiplexing across customers, which can improve utilization in ways similar to FaaS. AWS
uses the same underlying Firecracker [9] virtualization platform for its Lambda FaaS service
and Fargate Kubernetes services, suggesting a certain fundamental similarity between the
two.

Kubernetes o�ers two ways to run containers: as applications and as jobs. Applications
are instances of inde�nite lifetime and thus closely mirror a traditional server. Jobs are
instances that run for a period of time and then terminate. They can work, in e�ect, like a
coarse-grained version of FaaS for workloads where startup costs comprise a small portion
of the overall task execution time. This is common, e.g., in analytics.

2008 2010 2012 2014 2016 2018 2020 2022

Worldwide Search Interest

Kubernetes AWS Lambda

Figure 2.8: Google Trends data comparing the market-leading container orchestration and
serverless FaaS technologies. Both Kubernetes and AWS Lambda started at around the
same time, but Kubernetes shows higher sustained growth in search interest. We apply 150%
scaling starting in October 2020 to account for a discontinuity in the data that appears to
be an artifact.

Container usage has seen tremendous growth in the past few years. Figure 2.8 compares
search interest in Kubernetes to AWS Lambda, showing that while both have grown, con-
tainers have gained in popularity more quickly. One reason may be that containers provide
an easy migration path for existing server-based applications. These can be redeployed by

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 26

an operations team, often with no code changes. FaaS, on the other hand, usually works
best with new applications.

We also note that container orchestration can be complementary to serverless because
it solves a somewhat di�erent problem. While serverless technologies like FaaS provide an
abstraction that hides servers, containers provide �exible, lightweight virtual servers that can
make implementing serverless easier. This approach has been taken by many open source
FaaS platforms (e.g., [34, 231, 236, 300]).

AWS and Azure call their hosted Kubernetes solutions serverless, whereas Google does
not. Do these o�erings di�er from one another in some substantive way? In our view, the
technologies are the same, and it is the marketing that di�ers.

Using our de�nitions, �Serverless Kubernetes� basically translates to �abstracting away
servers with lightweight virtual servers,� which is exactly what container services are doing.
Traditional server management goes away, and applications may gain access to autoscaling
bene�ts similar to those provided by FaaS, albeit with a programming model that involves
servers. To those in operations roles, describing hosted container orchestration as serverless
is useful for understanding it. The label is probably less meaningful to software developers,
who stand to bene�t more from an abstraction that removes servers and server-like concepts
from the programming model, which container orchestration de�nitely does not.

2.5.4 Application Platforms

Application platforms can claim to have o�ered serverless computing before it became pop-
ular by that name. Rather than supporting arbitrary use cases, they are designed to make it
easy to build and operate speci�c classes of them. Programmers write code using an appli-
cation framework, e.g., a web application framework or a mobile backend framework. Such
frameworks typically provide standard components for common needs, such as user authen-
tication, mobile push noti�cations, or validating web form input. An application platform is,
in essence, a hosted application framework. This type of o�ering is also known as Platform
as a Service (PaaS).

Google Cloud stands alone among major cloud providers in o�ering application platforms.
Other cloud providers o�er similar pieces of functionality but do not package them in the
same way. Firebase was started in 2011 and acquired by Google in 2014; it originally focused
on supporting backends for mobile applications. Google App Engine launched in 2008 and
o�ered a simpli�ed way to build scalable web applications in the cloud.

Firebase meets all of the essential characteristics of serverless computing. However, it
merely describes two of its components as serverless: its database and its FaaS implemen-
tation. It doesn't label the entire platform that way, even though all the included services
abstract away servers, provide autoscaling, and have pay-as-you-go pricing. These include
authentication, messaging, a content delivery network, machine learning, and storage.

App Engine has always had excellent autoscaling at the high end but added the ability to
scale down to zero only later, likely based on the success of FaaS. This legacy is still visible in
the pricing model, which is based on provisioned instance count. When instance utilization is

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 27

high, which is typically the case at large scale, then provisioned instance count and execution
time are closely proportional; at small scale, there can be signi�cant discrepancies. In this
way, App Engine seems to scale up better than it scales down. It seems that App Engine
might have had the potential to spark the serverless movement, having launched well before
AWS Lambda and with broadly similar aims. In Section 2.9.5, we discuss why this did not
happen, and use the comparison to help support our characterization of serverless computing.

2.5.5 Event Services

FaaS is closely identi�ed with event-driven programming, a well-established integration pat-
tern [275]. Event-driven programming can be �exible, making software easy to extend with
new functionality. It can also help achieve desirable execution characteristics, including
robustness in the face of load �uctuations, high throughput, and good utilization. These
practical observations are supported by various research works, including Click [233] and
SEDA [434].

Distributed systems typically move events around using messaging infrastructure; the
basic patterns include shared queues and publish/subscribe. Each cloud provider has one
or more o�erings, such as Azure Services Bus, Google Cloud Pub/Sub, or AWS SQS. All
these have the essential characteristics of serverless computing: They o�er a data-oriented
abstraction, have excellent scaling characteristics, and are charged based on units transferred.

Additional event management services include Azure Event Grid and AWS EventBridge.
These connect external event sources to cloud message services and can work with third-
party services or a customer's own applications. Event Grid and Event Bridge both satisfy
the essential characteristics of serverless computing.

2.5.6 Work�ow Services

Work�ow services are a complement to FaaS which all the major cloud providers have
adopted. AWS Step Functions, Azure Logic Apps, and Google Work�ows all o�er �low-
code� programming that allows users to specify a business process by drawing a graph of
interconnected steps, each of which might be implemented by a FaaS function or some other
cloud service. Under the hood of work�ow services, one �nds an interesting and general-
purpose technology: state machines that are reliable, serverless, and fully programmable [25,
353, 392].

Even though their de�nitive forms have textual representations, the programming lan-
guages used to de�ne work�ows appear to be targets for visual tools rather than something
that one would write directly as one does the code of a FaaS function. The underlying sys-
tem interfaces for work�ow languages are web services and cloud provider APIs. Unlike in
FaaS, there is no underlying x86/Linux or other architecture and operating system interface.
Work�ow services are also autoscaling and charge for each state transition or step. Thus,
they meet all of our criteria for serverless computing. Though their languages are quite
general, their cost and performance characteristics probably limit them to linking together

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 28

functionality written in other languages. Still, they show that FaaS is not the only model for
writing serverless programs, and they o�er a proof point illustrating that serverless programs
need not be stateless.

2.5.7 API Management

Once created, a FaaS function can be invoked from anywhere using the cloud provider APIs.
Many applications, however, also want to expose a web service of their own de�nition, apply
their own security policies, or monitor usage and API health. This is where API management
comes in. Google API Gateway, AWS API Gateway, and Azure API Management all provide
these capabilities. They have all of the essential serverless characteristics and are often used
with FaaS. However, they can equally well be interposed in front of server-based services.

An interesting emerging class of APIs is based on GraphQL [168]. GraphQL emerged as
a response to the proliferation of APIs as well as their increasing richness and complexity.
It provides a uniform abstraction that allows clients to bundle queries to multiple services
in a single request and to perform �ltering and certain kinds of join operations. GraphQL
also supports subscriptions, allowing clients to receive incremental updates to query results
in near real time as system state changes. As of this writing, AWS AppSync is the only
GraphQL service o�ered by a major cloud provider. Its core functionality has the essential
characteristics of serverless computing, but it also features a cache, which is priced in a
non-serverless way based on instance size. We touch on the challenge of serverless memory
in Section 2.9.3.

2.5.8 Object Storage and File Systems

Cloud object storage is one of the cloud's original product o�erings. It is also a foundational
building block, with variants o�ered by all major cloud providers: Azure Blob Store, Google
Cloud Storage, and AWS S3. Even at its launch in 2006, S3 �t the essential characteristics
of serverless computing perfectly. Other products, by imitation, do so as well.

The design requirements for AWS S3 were scalability, reliability, speed, low cost, and
simplicity [26]. The �rst and last of these lead directly to serverless computing, whereas the
others are generally aligned with it. Abstracting away servers is most directly connected
to simplicity�a cloud storage API need know nothing about the underlying server infras-
tructure. Such abstraction also supports scalability, which is also supported by serverless
autoscaling. Reliability, or robustness, is something we have referred to as a potential fourth
essential characteristic of serverless computing (see Section 2.4).

Cloud object storage di�ers from �le systems in a number of ways. It does not o�er a
hierarchical naming scheme but rather a simple two-level one. Objects are also immutable:
Once written, they cannot be modi�ed or appended to, only replaced in full. In addition,
the standard interface for cloud object storage is via web services.

Another class of cloud storage, developed earlier and for Google's internal use, looks more
like a traditional �le system. The Google File System (GFS) [164] and its successor Colos-

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 29

sus [195] were developed by Google for internal use. Colossus has a hierarchical name space,
a client library interface, and a data model that allows mutations and �le appends, including
concurrent mutations and appends from multiple clients. The abstraction is in�uenced by
the details of the implementation, speci�cally, replication across servers. Colossus �les may
contain blank records, duplicates, and unde�ned regions. The Colossus abstraction also leaks
details about the data layout laid out on servers; for example, it allows clients to specify
the replication factor used for redundancy. Colossus underlies Google Cloud o�erings [195],
but it is not o�ered as a cloud service itself. If it were, we would classify it as missing some
elements of serverless abstraction while meeting its scalability promise.

AWS Elastic File System (EFS) and Azure Files are serverless implementations of dis-
tributed �le systems that implement standards such as the Network File System (NFS) [185,
348] protocol and the Common Internet File System (CIFS) [107] protocol, which are broadly
similar. Client support comes standard in major operating systems, and FaaS platforms such
as Azure Functions and AWS Lambda now provide direct connectivity with these �le system
implementations. When we started this work, both EFS and Azure �les exhibited signi�cant
deviations from the essential characteristics of serverless computing: Most notably, autoscal-
ing was slow. Performance was also tied to space utilization or required purchasing a �xed
amount of capacity. It appears that both platforms have evolved to remove limitations
that made scaling awkward and have provided �ne-grained billing models that distinguish
between data storage and data retention. They have also both adopted the serverless label.

Chapter 3 details our studies of �le systems in a serverless setting. This work shows
that integrating a �le system with a FaaS platform can provide performance greater than
previous distributed �le systems. This is possible while maintaining full compatibility with
standard POSIX, which allows some existing server-based applications to run with all of the
scalability of FaaS.

2.5.9 Database Services and Key-Value Stores

Serverless computing is closely associated with stateless computing, but serverless state
management has a history in the cloud that precedes the emergence of FaaS. We focus this
section on online transaction processing (OLTP) databases, leaving the discussion of data
processing for analytics to Section 2.5.10.

AWS DynamoDB [132, 374] is a key-value database that launched in 2012 and today has
all the essential characteristics of serverless computing. It was derived from Dynamo [122],
a technology developed previously for Amazon's internal use, which featured scalability and
robustness as key design criteria. Dynamo and DynamoDB were star examples for the
NoSQL movement [389], which prioritized these operational imperatives over rich function-
ality. Autoscaling and pricing in DynamoDB have evolved over time. In 2018, as FaaS
gained in popularity, DynamoDB added pay-as-you-go pricing based on the number and
type of requests.

Google Cloud Datastore is a NoSQL database released in 2008 as a part of App Engine.
It was later positioned as a separate product. Cloud Datastore meets all the essential char-

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 30

acteristics of serverless computing, though its autoscaling can be slow. At the time of this
writing, Google describes Cloud Datastore as a legacy product and directs interested users
to instead try Firestore, a component of Firebase.

Azure CosmosDB is presented as a NoSQL database that o�ers multiple data models
(confusingly, these include a dialect of SQL). Users see an autoscaling, provider-managed,
globally-distributed database. CosmosDB meets most of essential characteristics of serverless
computing: It o�ers various pricing models, including a �serverless� model with �ne-grained
pay-as-you-go billing. Azure CosmosDB launched in 2017.

These examples seem to show that NoSQL and �noservers� go hand-in-hand. These pre-
existing stateful serverless services have proven to be an important complement to FaaS,
and some of them have evolved to incorporate some elements from it. This includes more
�ne-grained pay-as-you-go pricing and likely also under-the-hood scalability improvements.

What about traditional SQL databases? All cloud providers now o�er managed versions
of the most popular open source databases: PostgreSQL and MySQL. These databases are
designed to run on a single server and to scale �up� rather than �out� by migrating to
larger machines rather than adding more machines. AWS and Azure have automated the
process of scaling a database server up and down and describe the products that do so
as serverless�Azure SQL Database Serverless and AWS Aurora Serverless eliminate server
management for customers. However, they do not meet many of the essential characteristics
of serverless computing. For example, autoscaling is available, but only up to the scale of
the largest server instance. Pricing is also based on the size of the instance provisioned,
rather than on, say, the time spent executing queries against it. This may make sense since
users are paying for bu�er cache, but it doesn't meet our criteria for serverless computing
(see Section 2.9.3 for further discussion of serverless memory). It's hard to say whether
these databases abstract away servers. Programmers interact with them via SQL, which
has no concept for servers or anything similar. However, because these services are limited
by the size of the largest server, programmers writing scalable software may need to reason
about this limitation, potentially splitting their databases among multiple instances. We
have categorized serverless abstraction as �N/A� for these databases.

Scalable OLTP SQL databases represent a notable gap in the cloud database o�erings.
While Azure CosmosDB supports a SQL API, its capabilities do not approach those of a
relational database. Notably, joins are scoped to a single JSON document [215]. Google
Cloud Spanner o�ers global scale in a relational SQL database [50, 113]. At the time of
this writing, Cloud Spanner requires users to provision capacity directly, though Google also
provides an open source autoscaling tool that customers can use to adjust this con�guration
automatically. We do not see a fundamental reason why SQL databases could not be o�ered
as serverless products. As Stonebraker has opined [387], it has been easier to achieve scala-
bility with NoSQL databases since they are simpler, but we can expect relational databases
to catch up. However, as we discuss in Chapter 5, such databases will need to confront the
reality that distributed databases have fundamentally di�erent performance characteristics
than those provided by large servers.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 31

2.5.10 Big Data Services

Dremel [273], an internal tool that preceded Google BigQuery, provides another example of
serverless computing from before FaaS arrived. The aim of Dremel was to provide interactive
analytics on large �web-scale� data sets. By taking advantage of the extensive parallelism
available in the data center, large volumes of data could be processed much faster than was
possible on a single machine or even a traditional cluster. From the analyst's perspective,
this looks like scaling up capacity instantly whenever a query needs to run, then scaling
it back down again as soon as the query �nishes. BigQuery includes its own storage and
can also process �les stored in object storage, such as Google Cloud Storage and even AWS
S3. Query cost is proportional to the amount of data scanned, though capacity provisioning
is also possible and available at a discount with committed spending. BigQuery hides the
underlying servers behind a SQL-like interface, which completes the serverless abstraction.

Azure o�ers Data Lake Analytics, which is similar to BigQuery. It abstracts away servers
and scales automatically. Its pricing model is based on Analytics Units (AU), which are server
slices: as of this writing, an AU is 2 CPU cores and 6 GB of RAM. Since big data processing
can often involve a great number of servers, the costs are probably similar in practice to
other more clearly serverless models, such as pricing based on the amount of data scanned.

AWS o�ers three serverless analytics environments. AWS Athena uses the Presto dis-
tributed SQL query engine [325] to run queries over data sets stored in S3, charging according
to the amount of data scanned. Athena appears to be targeted at interactive users, much
like BigQuery. AWS Redshift started as a traditional column-oriented data warehouse and
gradually added serverless features [85, 176, 302]. AWS Glue lets users spin up Apache
Spark [457] in a serverless way. Glue is targeted at ETL (Extract, Transform, Load) uses
but appears capable of running any Spark program.

Stream processing products round out the big data o�erings. These allow data to be
processed as it comes in, making it possible to update analytics over large data sets quickly:
often within seconds. Google Cloud Data�ow and Azure Stream Analytics are examples of
these services. While both provide SQL-like interfaces, Cloud Data�ow is interesting because
it allows users to write data processing code implementations, such as transformations or
custom aggregations, that are then embedded into a larger data processing pipeline. This
is similar to the use of functional �map� and �reduce� transformations in MapReduce [121].
From this viewpoint, we can view big data stream processing and FaaS as two alternate
embeddings of serverless functions.

This discussion has focused on services o�ered by cloud providers. In the big data space,
it is noteworthy that third parties have also built successful services that layer on top of
the public cloud: Examples include Snow�ake [115], which provides an elastic data ware-
house, and Databricks, which is based on Apache Spark [457] and has continued to develop
innovative analytics products [38]. Both of these companies o�er some of their products
with serverless pricing and scaling [33, 378]. Dataprep by Trifacta [117] is a serverless tool
used to explore, clean, and prepare data for analysis and machine learning. It is integrated
with Google Cloud, and shows how serverless computing can encompass a variety of business

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 32

models.
One interesting aspect of serverless big data processing is that it o�ers both latency-

sensitive �interactive� workloads and less sensitive �batch� workloads. The two are com-
plementary: Interactive workloads bene�t from getting access to many resources for short
periods of time, but keeping a cluster busy by statistical multiplexing of such workloads can
be di�cult; when the resource pool is shared with batch workloads, then these can be placed
on hold, or preempted, to help accelerate the interactive workload. The batch workload can
bene�t in this scenario since it uses capacity that would otherwise be left idle in anticipation
of spikes of interactive work. This principle can probably be extended to other areas, such
as FaaS. Today's serverless platforms are siloed, i.e., to our knowledge, analytics services
do not share underlying servers with FaaS. The Lambada [285] and Starling [317] research
projects have already shown that FaaS can serve as a platform for analytics, suggesting that
FaaS could perhaps evolve to support an optimized combination of interactive and batch
processing.

2.5.11 Machine Learning Services

Azure markets several of its machine learning products as serverless. These include Azure
Cognitive Services for natural language processing, and Azure Bot Services, which is used
to power chat bots. Azure Machine Learning is a collection of hosted tools that is less
explicitly described as serverless, though it is listed among Azure's serverless o�erings. With
the exception of Azure Machine Learning, which charges based on running instances, Azure's
machine learning services all meet the essential characteristics of serverless computing.

Cognitive Services and Bot Services are examples of specialized software o�ered with
consumption-based billing. They are also a form of SaaS aimed at developers. Google
also o�ers many similar AI services for natural language processing and vision, including
specialized variants targeting speci�c use cases, such as invoice parsing, or industry verticals,
such healthcare or lending. Google does not describe these as serverless, instead simply
presenting them as APIs with unit-based pricing. They all meet the essential characteristics
of serverless computing, and they are so numerous that we have opted not to include them
in Table 2.1.

These machine learning services provide the sort of high-level functionality that raises
the question of where serverless computing ends and SaaS begins. Does a hosted cloud
spreadsheet such as Google Sheets or Microsoft 365 Excel provide serverless computing? We
do not think it is helpful to classify them as such. The serverless concept is more useful when
scoped to those technologies that software developers use to build and deploy applications.
We will elaborate on this perspective in Section 2.8. We view machine learning APIs as
building blocks rather than end-user applications; to us, it seems reasonable and useful to
call them serverless.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 33

2.6 Limitations of Serverless Computing

Even though serverless computing is proliferating, many applications are still better suited to
servers [189, 216, 356]. Commenting on the limitations of a rapidly advancing technology is a
fraught endeavor, but we have attempted to do so here since it informs our research activities.
We start out by reviewing the limitations of selected classes of serverless technologies.

2.6.1 Limitations of FaaS

FaaS is a restrictive model with a number of obvious limitations. Execution time is limited,
though seemingly not in a very fundamental way. Functions initially could run for a max-
imum of one minute on AWS Lambda; this limit has increased to 15 minutes, and Google
Cloud Run now supports FaaS functions with a timeout of up to one hour. We imagine that
if customers want this limit to be still higher, cloud providers will comply.

Limitations on code size, memory size, and CPU power have all similarly been relaxed.
For example, AWS Lambda was originally limited to a 250 MB zip �le, but now supports
10 GB Docker images. Maximum memory started out at 1.5 GB and now is 10 GB; CPU
cores were limited to two, and now can go to six. AVX2 instruction support, only sporadically
present in the past, is now standard. For years, Lambda supported only the x86 instruction
set, though it supports ARM now as well. GPU support remains missing and faces challenges
because GPU virtualization is not yet well established. However, these limits may too be
overcome.

Several more fundamental limitations of FaaS follow from the abstraction it provides.
Functions have ephemeral state only and do not accept incoming network connections.
Though workarounds for both these limitations exist [423, 426, 432, 463], in our view, they
remain de�ning aspects of FaaS (though not of serverless computing). Adding networking to
FaaS turns it into an on-demand server service, i.e., a container service (see Section 2.5.3). Es-
pecially since some of the underlying systems technologies have converged [9], it is ephemeral
state and limited networking that sets FaaS apart.

The statelessness of FaaS represents two distinct limitations: FaaS itself has no durable
storage, and cached state is not addressable from outside the function instance. Even when
state exists, there is no way to access it on demand.

A lack of durable storage means that any state that needs to survive past when the
function returns must be sent out of the FaaS system. In�nicache [426] replicates data
across function instances and even uses erasure coding to reconstruct state if some of the
instances are removed. Even so, data retention is not guaranteed. A cloud provider may
remove any, or all, of a function's instances at any time, so it is impossible for FaaS alone
to o�er a reliable solution for long-term storage. Instead, FaaS can be used in combination
with object storage, �le systems, or databases, all of which can provide state to complement
the stateless computation in FaaS. A cost arises, of course, from transferring data across the
network to these other services.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 34

The ephemeral state in FaaS functions is also trapped, in the sense that there is no way
to �nd it should one ever desire to read or update it. This is because a new FaaS invocation
may be routed to any available function instance and can also be served by a newly created
one; state in FaaS is not only ephemeral but also unnamed and unaddressable. One way
to remedy this situation would be through some form of session a�nity. This could be an
a�nity to session state, where the platform attempts to route multiple requests from the
same client to the same function instance. The a�nity could also be based on function
arguments, as we have previously proposed [355].

Another class of FaaS limitations relates to the overhead of invoking a function. There
are two cases here: cold starts, where a new execution instance needs to be provisioned, and
warm starts, where a cached execution instance can be reused.

Cold starts are required whenever the FaaS system creates new instances. After pro-
visioning the execution environment, it must be loaded with the code, con�gured on the
network, and con�gured with security privileges. The language runtime must be started,
libraries loaded, and then user-provided initialization code may need to run. All of this
consumes resources and takes time: Depending on the cloud provider and runtime environ-
ment, it requires between 100 ms and several seconds [429] before user code begins to run.
Both cloud providers [9] and academic researchers [14, 296, 368] have made strides toward
reducing these overheads, which allows higher utilization and lower response times.

Warm starts can still involve signi�cant overheads, and function invocation on commercial
FaaS platforms is still much slower than calling a web service running on a single server.
For example, AWS Lambda invocations take about 25 ms [429], whereas a web service can
often respond in under 1 ms. We believe that the queuing mechanisms are responsible for
these overheads, though there could be other factors as well, e.g., whatever mechanisms are
used to route work in a multi-tenant environment. Since the details of these mechanisms
are proprietary, we have not been able to analyze them. It does appear, however, that warm
start overheads translate directly to customer costs, which can make FaaS uncompetitive for
short-running functions. To see this, consider that AWS Lambda bills at $0.2 per million
invocations plus $0.0000166667 for every GB-second of runtime. Since the smallest unit of
runtime is one millisecond, and the smallest unit of memory is 128 MB, the smallest billable
increment of execution is $2.13 × 10−9. This is $0.0021 per million units. For any request
taking less than 93 units (e.g., anything less than 93 ms with a 128 MB function), Lambda
will charge more for the invocation than for the execution time. While FaaS looks very
�ne-grained in comparison to VMs, each function invocation still incurs a cost equivalent
to hundreds of millions of CPU cycles. From this perspective, FaaS still incurs a huge cost
overhead. Researchers have proposed a number of solutions [14, 383], but it is not clear to
what extent they meet the needs of commercial deployments.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 35

2.6.2 Limitations for Object Storage, Key-Value Storage, OLTP
Databases, and File Systems

The stateful serverless o�erings each have distinct strengths and weaknesses. Object storage,
key-value storage, and �le systems all have limited ability to perform logical operations on
the data they store, which means they must be used in combination with some compute
service, such as FaaS or some server-based service.

Object storage o�ers low costs for long-term data retention as well as low-cost throughput.
However, access costs for storing and retrieving objects are high, and the data model is
relatively simple. Some key-value stores support richer data models through structured
values such as maps, but they have a relatively high cost for both data access and retention.
The same is true, in broad terms, of �le systems.

OLTP databases have a richer set of capabilities but more limited scalability. Serverless
implementations of PostgreSQL and MySQL are o�ered as part of AWS Aurora [200], but
scale for these products is measured in fractions of a server�there is no way to scale to
multiple servers. The recently released CockroachDB Serverless [385] product appears to
overcome this limitation with its distributed SQL implementation.

The landscape of serverless state management solutions has clear gaps�some functional-
ity is simply missing, while other functionality is just much cheaper to provide using servers.
We have already seen key-value stores and �le systems improve in recent years, quite pos-
sibly in response to the needs of FaaS workloads. While this category includes some of the
earliest and most ubiquitous products, such as object storage, it seems that it also o�ers
ample opportunities for innovation.

2.6.3 Limitations for Big Data Analytics Systems

Serverless big data processing systems are competitive with their server-based variants, and
in this sense, they have no serious limitations. One potential architectural downside is that
serverless systems may physically separate compute and storage; for example, data in object
storage may need to be copied over the network before being analyzed. Server-based solutions
may be better equipped to analyze data near to where it is stored. Some serverless systems,
like Big Query, also have integrated storage. Another alternative is for storage to support
code execution; ZeroVM [330] does this and also allows operator push-down.

In multi-tenant settings, guaranteeing resource availability can also be a problem. Google
Big Query allows customers to reserve capacity, ensuring that it will be available any time
they need it. While paying for idle capacity is at odds with a key characteristic of serverless
computing, it seems to be a feature that ful�lls a business need.

2.6.4 Implications

Serverless computing works well today for certain sorts of applications [309], but is still
beset by numerous limitations. For example, it suits needs like event-driven processing or

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 36

glue code between services well. It also works for general-purpose web services as long as
they have modest demands for performance or e�ciency. Applications need not be stateless,
but state management needs must �t the pro�le for object storage or key-value storage.
Those hoping to obtain high-frequency and low-cost access to in-memory data are out of
luck. Similarly, those hoping for a mature and full-featured OLTP database may need to
turn to a server-based product.

An area where serverless shines is analytics and big data processing. Here it bene�ts from
an ecosystem of competing solutions that have evolved over the years to meet the needs of
demanding users.

2.7 Serverless Computing Research

Our approach to understanding serverless computing has focused on analyzing the industry
trend. Industry developments have also inspired a great deal of academic research, and in
this section, we provide an overview of some it. We divide our research survey into several
topic areas and highlight selected work within each.

As we have stressed, the industry serverless trend is about much more than FaaS (see
Section 2.5). However, serverless computing research remains closely associated with FaaS,
and so FaaS is the main theme of the survey that follows. Time will tell whether other
serverless cloud products attract as much attention as FaaS has.

2.7.1 Analysis and Surveys

A number of authors have analyzed the emergence of serverless computing, seeking to ex-
plain the trend, as we have done here. Baldini et al. [55] and Lynn et al. [259] provide
early surveys, van Eyk et al. [416] place serverless in a historical context, and Castro et
al. [92] provide a more recent survey that includes a comprehensive analysis of FaaS. Jonas
et al. describe serverless in terms of a new programming model for the cloud [216], and
Schleier-Smith et al. emphasize the role of serverless computing as the next phase of cloud
computing [356]. Hellerstein et al. [189] focus on the limitations of FaaS, thus highlighting
targets for innovation.

2.7.2 Economics

Several of the high-level articles discussed in Section 2.7.1 touch on the economics of serverless
computing. Adzic et al. [8] use a customer case study to look at the costs of serverless
computing. Eivy et al. [136] warn of hidden costs of serverless computing. There is also
nascent work on building economic models of provider and customer incentives [254] as well
as utility-based pricing [178].

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 37

2.7.3 System Improvements for FaaS

A large category of serverless research involves system improvements to FaaS. There is a
tension between providing isolation, e�cient multiplexing, and low-latency performance.
OpenLambda [190] and McGrath et al. [268] both developed early prototype FaaS systems
that mirrored the inner workings of FaaS platforms and helped illustrate this research chal-
lenge.

One manifestation of the tension is in cold starts. SOCK [296] uses various systems
techniques to reduce these, particularly for FaaS applications that use libraries with high
initialization costs. Catalyzer [131] takes on the same challenge, using checkpoints to start
functions instead of executing their initialization code. Xanadu [119] provides techniques for
mitigating cascading cold starts, and Mohan et al. [281] discuss techniques for preallocating
resources such as network interfaces to reduce cold start times.

FaaS also incurs cold start latencies and other overheads from the underlying operating
system and hypervisor. Firecracker [9] is a lightweight microVM technology developed by
AWS that reduces the startup times and memory requirements of VM isolation. Koller and
Williams [234] have suggested using unikernels with FaaS instead of traditional operating
systems in a further bid to improve e�ciency. There are also alternatives to using VMs for
isolation. Faasm [368] provides lightweight isolation based on WebAssembly [181]. Alto [245]
generalizes lightweight virtualization to other managed runtime environments.

Isolation not only creates startup costs but ongoing runtime costs as well. Young et
al. [449] study the performance overheads of gVisor [180], which is used by Google's server-
less products. Anjali et al. [32] compare serverless isolation mechanisms, including Linux
containers, gVisor, and Firecracker microVMs.

Even when no cold starts are involved, the latency of FaaS function invocation can be too
high for some applications. Contributing factors include overheads of passing data, queuing
overheads, and scheduling overheads or delays. Sonic [262], SAND [14], SEUSS [84], and
Cloudburst [384] all address various aspects of these slowdowns.

Work on scheduling includes that by Ka�es et al. [220], which uses a centralized scheduler
with a global view to mitigate imbalances. FnSched [391] o�ers another scheduler that aims to
improve latency and utilization, and Caerus [460] provides scheduling for serverless analytics.
Work by Mahmoudi et al. [263] describes an algorithm for adaptive function placement.

A diverse assortment set of other work seeks to improve FaaS. Shredder [462] embeds
FaaS computations with object storage. Faa$T [338] provides a provider-managed cache for
serverless applications. Particle is a network overlay suited to the burstiness of serverless
computing [402]. Gupta [177] et al. demonstrate straggler mitigation using error-correcting
codes. Kappa [463] provides fault tolerance and extended execution times by checkpointing
and restarting FaaS applications. In�niCache [426] shows how to use erasure coding to build
a cache from idle FaaS instances. Harvest VMs [464] allows FaaS to run using resources
momentarily left idle by traditional server VMs.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 38

2.7.4 Stateful Serverless

Augmenting FaaS with state has been the subject of considerable research. This includes
Chapter 3 of this work, which describes the FaaSFS distributed �le system.

One application with speci�c state management requirements is analytics, which requires
ephemeral storage to pass intermediate results between functions [230]. Pocket [229] provides
a solution to challenges in this area. Though managing state for analytics can be challenging
on account of the volume and transient nature of the data, its simple and well-de�ned usage
patterns lend themselves to optimized solutions.

A more general challenge arises in managing changing application state, which is often
subject to certain consistency requirements. Serverless computing gives coordination-free
techniques an opportunity to shine because they have provable advantages at scale [187].
Cloudburst [384] is a stateful FaaS system that integrates with the scalable Anna [443]
key-value store. It provides local caches in function instances and transactional causal con-
sistency [442]. FaaSTCC [256] is another system that provides similar guarantees.

An alternative approach is to use an underlying logging infrastructure to represent state.
Logging involves coordination, but it can provide strong consistency and better throughput
scaling than distributed protocols such as two-phase commit [2]. Beldi [459] and work by de
Heus et al. [193] both provide transaction mechanisms that integrate FaaS and underlying
storage. Boki [212] and Retro-λ [271] also make use of an underlying log to manage state.

Azure Functions [48] includes �durable functions� in its production o�ering. Durable
functions use a checkpoint mechanism to allow long-running execution on top of a FaaS
runtime. In this programming model, state can be maintained reliably and for long periods
of time within the functions themselves. Burckhardt et al. [82] provide a formal model of
durable functions and show that various implementations are possible.

Stateful serverless must reckon with faults. AFT [383] provides a fault tolerance shim that
can be interposed between a FaaS environment and underlying storage, providing atomicity
guarantees. Ray [284] is not derived from FaaS but o�ers similar scalability and �ts under
the broader de�nition of serverless. The platform has served as a proving ground for various
novel fault tolerance approaches [431, 465]. Other work on stateful serverless computing
includes SFL [76], a compiler for generating stateful serverless applications.

2.7.5 Autoscaling, Optimization, and Quality of Service

Autoscaling is a de�ning characteristic of serverless computing, so a great deal of research
touches on it in some way. Autoscaling must balance quality of service and cost, and the
work we highlight here relates directly to this tradeo�. Even with FaaS, customers are still
required to con�gure some resources, notably the �memory size,� which serves as a proxy for
instance execution resources. Sizeless [134] and COSE [11] analyze functions as they run,
attempting to �nd optimal resource con�gurations. Winzinger and Wirtz [439] also provide a
model for FaaS execution. There are multiple approaches to quality of service: Sequoia [396]
targets policy goals, whereas Atoll [371] focuses on latency objectivs.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 39

An eclectic mix of work rounds out the early autoscaling-focused e�orts. Yussupov et
al. [456] study how to reengineer existing applications for scalability, introducing the notion
of �serverless parachutes� that are used only under exceptional load conditions. Spock [175]
uses both server VMs and serverless functions to meet elasticity and cost goals. Anna [441]
provides autoscaling tiered storage, seeking to optimize for both cost and performance goals.

2.7.6 System Abstractions

Even popular serverless abstractions such as FaaS are not standardized across cloud providers.
SPEC-RG seeks to address this and proposes a reference architecture for FaaS [417]. Adopt-
ing a broad view of serverless computing also invites proposals for standardized abstractions
of storage and communication, which round out the core features of an operating system.
Pemberton et al. [316] outline this need, whereas ServerlessOS [16] o�ers a concrete proposal.
LegoOS [363] provides operating system abstractions for hardware disaggregation. Though
not positioned as serverless, it addresses the same core concerns.

2.7.7 Monitoring and Debugging

Many of the tools traditionally used for debugging and monitoring applications do not carry
over to FaaS, which creates a need for new solutions. Watchtower [18] monitors runtime
invariants for FaaS applications. Borges et al. [72] design and evaluate multiple approaches
to distributed tracing. Manner et al. [266] provide a combined monitoring and debugging
solution for FaaS.

2.7.8 Formal Methods

Several authors have proposed formal models of FaaS. Jangda et al. [211] and Obetz et
al. [297] both introduce formal models of FaaS and event-driven computation. Gabrielli et
al. [157] propose the Serverless Kernel Calculus, which is similar and includes a stateful
extension. Burckhardt et al. [82] analyze durable functions in the context of a formal model,
providing one demonstration of the value of these techniques.

2.7.9 Security

The transition to a serverless model has many implications for security (see [251] and Sec-
tion 2.9.2). Established techniques such as secure enclaves can be used with FaaS, but doing
so requires overcoming various obstacles [167, 329, 409].

Fine-grained isolation in FaaS o�ers potential security bene�ts, but it will be di�cult for
programmers to take advantage of this without supporting tools and techniques. Information
�ow control [343] provides the basis for some approaches, including Valve [118] and work
by Alpernas et al. [19]. Will.iam [349] produces more robust permission boundaries through

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 40

work�ow integration, and Hong et al. [198] suggest a collection of design patterns that can
help develop secure serverless applications.

Researchers have found that serverless computing is susceptible to novel forms of attack.
For example, Kelly et al. [69] describe �denial of wallet� attacks that exploit the scalability
of serverless computing to exhaust the victim's budget. The Warmonger attack [444] is a
type of denial of service attack that exploits multi-tenant infrastructure to introduce abusive
activity on a victim's IPs, leading other services to block them.

Work has also focused on analyzing the security of speci�c applications, e.g., the Omni-
Ballot online voting system [380].

2.7.10 Analytics

There have been several e�orts to apply FaaS to analytics workloads. We touch upon a few
examples here and refer the reader to Werner et al. [435] for an overview and comparison of
serverless data processing frameworks.

PyWren [217] demonstrated the bene�ts of simpli�ed cloud programming with a simple
FaaS-based framework geared at analytics tasks. Subsequent work by IBM [346] extends it
with additional constructs, and Locus [326] showed how to implement shu�ing, an important
analytics primitive, in a FaaS environment.

Wukong [90, 91] focuses on optimizing analytics tasks, enhancing locality by minimizing
data movement across tasks. In a similar vein, HASTE [35] focuses on optimizing serverless
DAG execution.

In the database literature, Lambda [285] and Starling [317] both use FaaS to operate on
data stored in S3. Flint [227] tackles the same problem using Apache Spark [457].

2.7.11 Benchmarks and Data Sets

Serverless computing stands to bene�t from broadly accepted benchmarks. A number of
these have been proposed, though a leader has not yet emerged. Contenders include Func-
tionBench [226], FaaSdom [264], and Serverlessbench [451]. DeathStarBench [159] is targeted
at microservices as well as FaaS applications. Work by Martins et al. [267] also proposes a
benchmark and uses it to compare cloud providers. Scheuner and Leitner [354] provide a
literature review of various FaaS performance evaluations.

The need for new benchmarks is especially evident because serverless computing em-
phasizes autoscaling. The quality of this autoscaling is often referred to as �elasticity,� a
metaphor that suggests it might be described by a simple number or perhaps a relationship
between two variables, as is the case in physics or engineering. So far no such metric has
emerged, though work by Kuhlenkamp et al. [237] moves in this direction.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 41

2.7.12 Serverless in Practice

Understanding how serverless FaaS platforms work is challenging because the leading prod-
ucts are either partially or entirely proprietary. Early e�orts to innovate on FaaS devoted
signi�cant e�ort to understanding how FaaS platforms might be implemented [190, 217].
More recent work by Wang et al. [429] has thoroughly analyzed the major FaaS platforms,
documenting their isolation mechanisms, elasticity, coldstart latencies, and container recy-
cling policies. Lee et al. [248] provide another evaluation of FaaS providers.

Other reports and analyses of real-world experiences are valuable as well. Shahrad et
al. [362] describe the production workload of Azure Functions as well as policy optimizations
that improve e�ciency and quality of service. The Wonderless Dataset [140] contains open
source serverless applications extracted from GitHub. Eismann et al. [135] review various
serverless applications and attempt to explain why and when they are successful. Mohanty
et al. [282] evaluate open source serverless computing frameworks.

2.7.13 Machine Learning

FaaS can support machine learning in both training and inference applications. Projects that
focus on training include MLLess [347] and LambdaML [213]. Cirrus [89] and Stratum [67]
address end-to-end machine learning work�ows, which include both training and inference.
Inference-focused projects demonstrate serving deep learning models [209] and automatic
model partitioning for cost optimality and SLO compliance [450].

GPUs and other accelerators [219] are commonplace in machine learning but are not
presently supported by commercial FaaS o�erings. Research that addresses this shortcoming
includes work on e�cient GPU sharing for serverless work�ows [350]. Another project,
PyPlover [447], is a serverless framework that allows the deployment of GPU code directly
to a FaaS environment.

2.7.14 Interactive Work

PyWren [217] popularized the notion that serverless computing could empower end-users
by simplifying access to cloud computing resources. Whereas PyWren focused on analytics
tasks, gg [149] demonstrated how to o�oad heavy software build jobs. It also provided a
framework for scaling interactive tasks in the cloud. Another example of using FaaS for
interactive work is sshell [261], which makes it possible to run shell scripts in the cloud in
much the same way as one runs them on a local computer.

2.7.15 Edge and IoT

Serverless computing has generated enthusiasm [42] in the areas of edge computing [366] and
the Internet of Things (IoT) [44]. IoT envisions embedded computing and communication in
sensors, actuators, and everyday electronic items. IoT devices are often resource-constrained,

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 42

so they may bene�t from o�oading computation over the network. Edge computing makes
it possible to do this while maintaining low latency: It augments the cloud resources in
centralized data centers with compute, storage, or other resources placed at the �edge� of
the network, i.e., near devices. Combining edge computing and IoT presents challenges
since devices may move and because the resources available at a particular edge location
can become oversubscribed. These are the sorts of challenges that serverless computing is
equipped for.

This is an active area of research that includes numerous works. Hall et al. [182] sug-
gest an execution model for FaaS at the edge. Gand et al. [160] describe a containerized
management solution for deploying serverless code. Pinto et al. [321] propose dynamically
moving functions between an IoT device and the edge. Apollo [376] provides a system for
runtime function composition and �exible placement, whereas Costless [138] describes an
approach to optimization that includes function fusion. LaSS [427] focuses on meeting the
needs of latency-sensitive edge applications. Aske and Zhao describe work on supporting
multi-provider serverless computing at the edge [41]. In addition to processing data gener-
ated at the edge, serverless models can be applied to disseminating information sourced from
centralized data centers, as Facebook does with Bladerunner [58].

2.7.16 Network Function Virtualization

Network function virtualization (NFV) [277] decouples network functionality from its phys-
ical embodiment in hardware. In some ways, it is the equivalent of VMs for network equip-
ment. There have been multiple proposals for serverless NFV [5, 372], which can be viewed
as a logical evolution of NFV. Potential applications for serverless NFV include improved
quality of service for 5G networks [96]. Work also suggests that it may be practical to
combine serverless NFV and edge FaaS deployments [461].

2.7.17 Other Applications

Serverless computing, like cloud computing, is a general-purpose technology that can be de-
ployed in many contexts. Use cases that attracted attention early on included chatbots [446]
and video encoding [148]. Serverless autoscaling also makes sense for disaster response, and
several such applications have been studied [154, 272, 312].

Serverless robotics involves motion planning and could occur in the cloud or at the
edge [29, 272]. There are applications in the oil and gas industry [204] and in geospatial
computing [62]. Virtual environments, including games, are another application area [129].
DevOps, which involves things like software testing, is a bursty workload that stands to
bene�t from serverless computing [210]. There have also been proposals to use FaaS to
enable blockchain applications [99] and to execute FaaS on blockchain infrastructure [163].

Various scienti�c applications may bene�t from serverless computing. In the high-
performance computing space, high invocation rates and short deadlines could challenge
existing technologies, but FaaS might provide useful bene�ts [289, 381]. Other examples

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 43

of scienti�c applications of FaaS include federated function serving [95], serverless linear
algebra [364], and a distributed parallel analysis engine for high-energy physics [239].

2.8 Simpli�ed Cloud Programming

In describing the challenges of scale, we explained how creating software that uses many
computers is much more complicated than writing software for a single computer (see Chap-
ter 1). This observation leads us to conclude that simpli�ed cloud programming is the most
compelling bene�t of serverless computing [216]. Serverless hides the complexity of cloud
programming by abstracting away, to varying degrees, the underlying servers, thus promising
improved programming productivity.

In this section, we delve deeper into this claim. We �nd that serverless computing attacks
a class of problems that previous improvements in programmer productivity also tackled.
This parallel suggests a path toward realizing its full potential.

2.8.1 No Silver Bullet

Among the seminal works of Fred P. Brooks is his 1986 essay �No Silver Bullet� [79]. Writing
at a time when programmer productivity had seen tremendous improvements in recent years,
Brooks made a point that many people didn't want to hear: future improvements would likely
be harder to come by.

To build this argument, Brooks �rst distinguished between two forms of complexity
in programming: essential complexity and accidental complexity. Essential complexity is
that which is inherent to the functionality that the program provides, whereas accidental
complexity results largely from the complexity and limitations of the underlying machine or
programming abstraction.

The idea of distinguishing essence from accident goes back to Aristotle. He described
as essential those attributes without which one type of thing would become another type of
thing. Accidental attributes, in contrast, could be changed without changing what the type
of thing an object is. For example, Figure 2.9 shows four di�erent stools. These come in
various shapes and colors; have four legs, three legs, or just one leg; their heights vary, and
while many of them have a bar where one might rest a foot, not all do. These attributes
are all accidental, however: Altering them does not change the stool into something else. In
contrast, if we were to squash one of these stools to two inches tall, compromise its ability to
support a person's weight, or remove the horizontal surface for sitting on, then that object
would cease to be a stool�it would then be something else.

In programming, essential complexity arises when a program does something complicated.
For example, operating systems are generally complex because they have large interfaces
and o�er many features. A program used by a large insurance company may be complicated
because of the various types of policies o�ered, the variety of alternative terms that may

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 44

Figure 2.9: Comparing essential and accidental properties. These stools all share the same
essential attributes, but di�er in their accidental attributes.

apply to individual policies, and the disparate regulatory regimes that the company must
comply with.

Software may involve a lot of essential complexity even when its ultimate functionality
a�ords a simple description. For example, a medical imaging machine like a CT scanner
produces pictures of a person's insides. This is easy to say, but complex mathematics govern
the reconstruction of images from its sensors, and its software thus is inevitably complex as
well.

At the time Brooks wrote his essay, he could claim, fairly in our view, that much of
the accidental complexity in programming had been eliminated through a combination of
advances. He listed high-level languages as �rst among these, saying that �[s]urely the most
powerful stroke for software productivity, reliability, and simplicity has been the progressive
use of high-level languages for programming. Most observers credit that development with
at least a factor of �ve in productivity, and with concomitant gains in reliability, simplicity,
and comprehensibility.� High-level languages allow the programmer to express functionality
using abstract data types and operations on them, without thinking about details such as
registers or how values are encoded in memory.

Brooks identi�ed several other sources of accidental complexity that had been mitigated
recently. He pointed to hardware limitations, including processing speed and memory ca-
pacity, noting that programmers had been investing a great amount of energy and e�ort into
writing highly e�cient programs to make the most of limited hardware resources, and that
this became less necessary as the cost of computing rapidly declined. Brooks also gave credit
to time-sharing for creating an immediate feedback loop, removing the cognitive burden that
arises when returning to a programming task after waiting many hours for a batch job to
run. Finally, he credited Unix and Interlisp with improving program interoperability, which
again eliminated a burden having nothing to do with the functionality the software needed
to provide.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 45

Brooks built his core argument on the observation that while accidental complexity might
have accounted for over 90% of program complexity in 1966, so that reducing it could have
created the 10× gains the industry had experienced, no single cause could account for so
large a fraction of programming complexity in 1986. The rest of his essay thus focuses on
ways to make essential complexity easier to manage, and in the intervening years, we have
seen the bene�ts of some of the approaches that he advocated come to pass.

2.8.2 The Return of Accidental Complexity

In the decades since Brooks wrote, accidental complexity has been creeping back into pro-
gramming practice. This might seem surprising since computers keep getting faster and
programming languages keep getting better, but as we discussed in Section 1.2, we simply
expect more from our programs today. Moreover, we often expect more in ways that are
easy to specify but hard to implement. There are numerous examples of this phenomenon.
We expect social networks to scale to support millions of members (see Section 1.3). We
also expect cloud software to be highly available and accessible at any time (see Section 1.2).
We expect to be able to answer simple business questions quickly even when they involve
massive data sets. Web search engines, which remain feats of engineering, have conditioned
us to think that it is normal to �nd whatever we are looking for among tens of billions of
pages in just a fraction of a second. We expect mobile app software to work on the go
and to synchronize itself across our devices and with the devices of others. Some of these
expectations involve additional essential complexity, but many do not: We ask for the same
functionality, just bigger and better.

Is scale ever a matter of essential complexity? Brooks makes it clear that he views
the limited processing speed and memory size of early computers as accidental complexity.
We agree with this view and believe that the same logic applies when needs exceed the
capabilities of today's computers. If a problem goes from hard to easy once an improved
computer becomes available, then the di�culty was never inherent to the problem and is
better attributed to the limited capabilities of the computing system.

While scale is generally a matter of accidental complexity, there are exceptions. In some
situations, physical realities independent of the computer system govern the functionality
of the product. For example, if globally distributed users participate in a single �nancial
marketplace, then rules must govern how to prioritize orders that arrive with various delays.
Some degree of delay is inescapable on account of the �nite speed of light, which is a feature
of the world the software runs in. If all users were located close together, such concerns
might not be relevant, so we see that in this case scale, or more accurately distance, has
introduced essential complexity to the problem.

We outline some drivers of the new accidental complexity during the past 35 years as
follows:

• Larger N : Computers have been getting faster but data production is growing even
more quickly.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 46

• Higher Availability: In 1986, many services could run 9 am - 5 pm, Monday through
Friday. Today's users generally expect always-on service and availability is measured
in �nines,� e.g., 99.99%.

• Faster Response Times: We often want products used by people to respond �instantly,�
i.e., faster than the threshold of human perception. Sometimes delays of a few seconds
are acceptable, but we live in a competitive environment where faster is better. Other
uses of data have varying timeliness requirements, ranging from seconds to days, but
in general, the trend is toward speed.

• Low and Proportionate Costs: The cost of computing has continued to fall, as it has
for many years. The cloud has also created the expectation that you should pay only
for what you use, even if it does not fully make good on that promise.

What tools do we have available for handling the new accidental complexity? Setting
aside for the moment developments in serverless computing, there has been progress in a
number of other areas.

Traditional cloud computing o�ers infrastructure innovations that remove a great deal
of complexity related to provisioning servers. It also o�ers the cost bene�ts that come from
renting infrastructure in a multi-tenant environment.

Hardware also continues to advance. Servers are now available with TB-scale memories.
Despite the slowing of Moore's Law [400], this is roughly 10× larger than was possible a
decade ago. Network speeds are racing past 100 Gbps, representing an even faster rate of
improvement.

On the software side, microservices architectures have gained in popularity. Though
microservices were introduced primarily to improve the e�ectiveness of software development
organizations, splitting applications into independent services can make scalability easier.
It means that scaling challenges can be addressed one service at a time and that some
services may never need scaling attention at all. Innovation in microservices also includes
management tools such as container orchestration (discussed in Section 2.5.3) and service
meshes (e.g., Istio, Consul, and Linkerd).

These developments all represent progress, but, in our view, they are not enough. In
Section 1.2, we described how scalability, fault tolerance, and cloud computing represent
interlinked concerns. Taken together, they embody the higher expectations we have of
software. They also present di�culties that fall almost entirely into the accidental complexity
bucket.

It is true that as hardware gets more powerful, some problems get easier. A server
with 1 TB of memory can manage much or all of the operational data for many businesses.
However, geographic redundancy might still be required, as might cost proportionality. As
a result, the problem gets easier, but only so much.

A serverless system like BigQuery, in contrast, o�ers a SQL-like interface and can scale
out to thousands of nodes. This is possible in part because it uses a programming abstraction
(SQL) that e�ectively hides the servers and an execution model that expands resources to

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 47

meet the need. It also hides hardware failures to provide reliability, as pioneered by other
big data processing techniques like MapReduce [121] and Spark [457]. Chapter 5 explains
how serverless computing still bene�ts from powerful servers, but powerful servers are alone
not the solution to the new accidental complexity.

Our view is that keeping servers in the programming model for the cloud is like keeping
registers in the programming model for servers. Named variables and abstract data types
provide a much more natural way of expressing program functionality than registers do. In
a similar way, the problems programmers are solving are not represented readily in terms
of servers. This is fundamentally what makes programming with servers complicated. Any
time we see a server, or something that looks like a server, we should �ag that as accidental
complexity that will hinder programmers, practically regardless of what problem they are
working to solve.

Put another way, we see a direct and literal parallel between the challenges that cloud
computing faces today and the di�culties that high-level programming languages had re-
cently overcome when Brooks wrote �No Silver Bullet.� In both cases, accidental complexity
demands that developers direct a lot of time and energy toward mapping application func-
tionality to the structure and behavior of some underlying machine. In the past, these details
revolved around making good use of registers, designing memory layouts, or picking optimal
instruction sequences. Today, they have to do with inferring when to add more servers to
a subsystem, how to design interfaces between microservices for optimal e�ciency, or how
to structure data in caches and storage. How to keep the system working if anything goes
wrong is another ever-present cross-cutting concern. We can say that serverless computing,
at its core, aims to simplify distributed systems programming.

2.8.3 Anticipated Objections

We imagine that some readers may be inclined to raise objections to our characterization
of serverless computing. Some might question whether simpli�ed distributed systems pro-
gramming is an achievable aim. They might also question whether it is desirable, perhaps
fearing that simpli�cation might obscure important details, or they might point to previous
attempts that ended in failure. We will outline some of these concerns before reviewing
developments that enhance our con�dence in Section 2.8.4.

2.8.3.1 We Have Failed Before

One prominent e�ort to simplify distributed systems programming was distributed shared
memory [292]. In distributed shared memory, there is no distinction between access to data
structures stored on the local computer vs. those stored on remote computers. Waldo and
collaborators break down the problems with this approach [425]. Remote objects look the
same as local objects to the programmer, but their access latency is much higher and this
causes performance problems. Shared memory also o�ers inadequate solutions for mitigating
partial failure and for managing concurrency. In the high-performance computing space,

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 48

where much of the work on shared memory took place, message-passing systems came to
dominate. In contrast to shared memory, message passing provides only a thin abstraction
over the underlying resources. It provides a simple and uniform API for communication
between processes as well as some basic building blocks for coordination. However, it is
�rmly rooted in the model of a collection of servers, whereas distributed shared memory,
which failed in the marketplace, looks much more like what we would now call serverless
computing. Successful attempts to generalize serverless computing will need to avoid the
pitfalls that distributed shared memory encountered.

Another technology for simpli�ed distributed systems programming that has a reputation
for disappointing impact is automatic parallelization. While the �eld has chalked up robust
technical accomplishments [276], automatic parallelization has not become a mainstream
programming technique. We believe this is because automatic parallelization worked well
only for certain algorithms�it generalized less well than other compiler techniques. As a
result, it could be outperformed by specialized domain-speci�c tools such as ATLAS [436]
or Halide [331].

2.8.3.2 Fundamental Trade-O�s

The CAP theorem [166] is a famous result that reinforces the notion that distributed systems
programming is fundamentally more complicated than programming a single machine. The
interpretation of CAP has changed over the years [77], and its implications are perhaps most
clearly outlined by Abadi [1] under the less memorable PACELC mnemonic. PACELC makes
it clear that system designers can choose one set of trade-o�s during normal operation and
another during failures. It asks two questions. First, during a network partition, does the
system favor availability or consistency? Second, during regular operation, does the system
favor latency or consistency? The trade-o�s posed by these two questions arise from the
same basic theorem, as distance can be viewed as a form of temporary partition that lasts
only for the duration of the latency [77]. However applications may still want to navigate the
trade-o� di�erently during rare network failures than they do during routine operation. For
example, an application may favor low latency over consistency during routine operation,
knowing that this represents bounded staleness [53], but favor consistency over availability
during rare network events, to prevent state from diverging too far. Applications may also
navigate the trade-o� di�erently depending on the type of operation. For example, they may
allow stale reads but force consistent updates or ensure certain consistency guarantees, e.g.,
causal consistency when security privileges are involved [303].

Could serverless computing adopt a �safe� default that makes programming easy? This
would imply starting with strong consistency, favoring simplicity over availability and la-
tency, and allowing programmers to override this when necessary. Such an approach may
be possible, but we have to be careful�a correct program that cannot keep up with work-
load still fails to meet the need. As we explore in Section 2.8.4.1 and Chapter 5, strong
consistency is fundamentally less scalable than weak consistency. This is because strong
consistency usually creates contention [152], which in general gets worse, not better, as we

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 49

add resources to a system. Serverless computing is thus stuck with a certain inescapable
tension: the simple programs sometimes simply do not scale.

2.8.3.3 End-to-End Considerations

The end-to-end argument states that it is often redundant to implement robustness func-
tionality at low levels of a system [345]. There are multiple prominent examples in com-
munication systems, including data integrity checks, duplicate suppression, and encryption.
Similar end-to-end considerations can also apply to crash recovery [87].

The end-to-end argument is stated not as an absolute rule but as an important design
consideration. In some cases, low-level robustness can improve application performance, but
in some cases, it may simply contribute unnecessary overhead because such functionality
needs to be implemented at the application layer anyhow. Redundancy can even work
against the aims of an application, such as when retry attempts introduce delays or jitter
into real-time communications.

In the context of serverless computing, end-to-end arguments imply that low-level plat-
form infrastructure should not force high availability or strong consistency on applications.
Some of them will simply not need it, some will be served better by weaker guarantees, and
some will want to implement variants of these properties that are speci�cally geared to their
needs.

Still, serverless computing needs to o�er solutions to robustness. After all, the details of
providing it are precisely the sort of accidental complexity it should eliminate from the pro-
gramming model. Also, end-to-end arguments often arise in communication between servers,
whereas serverless aims to remove servers from the programming abstraction. Perhaps some
end-to-end arguments will vanish along with their endpoints.

Sometimes end-to-end considerations tell us that accidental complexity inside the system
corresponds to essential complexity outside it. For example, in a two-person chat application,
it is possible that two messages are physically concurrent. This occurs when their senders are
separated by a greater spatial distance than light travels in the time that elapses between
when messages are sent. Specifying how the software handles concurrent messages is a
requirement that is independent of the implementation technology. In cases like this, it may
make sense for programmers to reason about communication between servers. Abstracting
them away might have little bene�t and could even make it more di�cult for programmers
to construct a mapping from the problem to the implementation.

2.8.4 Reasons for Hope

Research on simpli�ed distributed systems programming predates both serverless computing
and cloud computing. There are a number of advances that give us reason to believe that
much of the accidental complexity of cloud computing will be hidden from the programmer,
just as the registers, low-level memory layouts, and other details in a single computer have
been hidden.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 50

2.8.4.1 CALM Theorem

Hellerstein's Consistency and Logical Monotonicity (CALM) Theorem [187] is a fundamental
possibility result. In contrast to CAP and other results that tell us what we cannot do, it
describes classes of programs that will always lend themselves to no-compromise distributed
implementations: These are the programs that can achieve both consistency and low latency
at the same time. A program with these properties, or any composition of such programs,
will scale inde�nitely. Interestingly, CALM also has a converse, which states that if a scalable
solution to a problem exists, then it necessarily satis�es certain properties. This also means
that if an implementation does not satisfy CALM, then it will fail to scale at some point.

CALM is based on the idea of �logical monotonicity,� which describes programs that
can derive new facts as they make progress but never take them back. To take some ex-
amples from relational algebra, �lter, join, and projection are all monotonic operators. In
contrast, aggregation (say, to produce a sum) is non-monotonic because its output would,
in general, be invalidated by additional input. Monotonic programs are also known as be-
ing �coordination-free,� which basically means that they avoid certain distributed systems
protocols, particularly those that create contention.

Software requirements do not generally lend themselves to implementations that are
purely monotonic, but developers can be encouraged to write programs that are largely
monotonic. When using logic languages such as Bloom [20] or Daedalus [21], it is also possible
to pinpoint those parts of a program that are not monotonic. In some cases, programmers
can do this by inspection; in other cases, automated tools can help.

For serverless computing, logical monotonicity can probably be used in a couple of ways.
For one, we know that logically monotonic programs provide both consistency and low
latency, so we know they will scale. In addition, the implementations are actually rather
simple because we do not need to worry about order when sending messages between parts
of the program�we just need to provide reliable delivery. Those parts of the program that
are non-monotonic need to be implemented using coordination protocols. That will result
in scalability bottlenecks, but at least we will know precisely where to look for them, so we
can focus on making them run as fast as possible.

The use of logical monotonicity can give programs structure. There are portions that
are scalable and portions that are not. For those portions that are scalable, the serverless
implementations should be sure to allow for elastic scalability and distributed processing.
For those that are not, it should do just the opposite, maximizing scale by concentrating
these bits, ideally on a single server or even a single CPU core. Mixt [278] is one system that
shows how to combine weak and strong consistency in a uni�ed programming abstraction.
While Mixt is not serverless, Cloudburst [384] has demonstrated the bene�ts of integrating
monotonic data structures with serverless FaaS and has overcome some of the challenges of
doing so.

Programmer focus on extracting monotonicity can drive changes to the speci�cation.
Sometimes one can improve program performance and scalability without changing function-
ality, i.e., without changing the allowed behaviors. In general, however, improving scalability

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 51

means adding new behaviors that would not have been allowable under the requirements orig-
inally speci�ed. For example, if we allow remote replicas to return slightly stale data, this
opens up many valid executions that would not have been possible otherwise.

While using CALM involves abstraction, its bene�t goes beyond hiding accidental com-
plexity. CALM analysis can help steer the features of an application to avoid certain limi-
tations of the underlying infrastructure�i.e., to avoid accidental complexity. To appreciate
this, we must view the programmer's responsibility as not merely to implement a speci�ca-
tion but also to help the team decide how the software should function. Such decisions are
quite naturally informed by a combination of business needs and available technology. In
the words of Brooks, �the most important function that software builders do for their clients
is the iterative extraction and re�nement of the product requirements. For the truth is, the
clients do not know what they want. They usually do not know what questions must be
answered, and they almost never have thought of the problem in the detail that must be
speci�ed.� [79]. By using CALM, programmers can help teams de�ne requirements so that
software can scale.

2.8.4.2 Actors, CRDTs, and Other Distributed Programming Models

FaaS has seen commercial success, but its limitations mean that it works well only in speci�c
applications (see Section 2.6). Most notably, it is a poor �t for programs that manipulate
state in demanding ways. We believe that there are established programming paradigms that
could be implemented as serverless services, providing an alternative to FaaS for applications
with di�erent needs.

In the actor model of computation [10, 194], a number of stateful entities, the actors, in-
teract via message passing. Each actor maintains its own state internally, and such state can
only be accessed by the actor code, which runs in response to messages. This encapsulation
is very similar to that o�ered by object-oriented programming languages.1

Modern actor implementations include Orleans [65], Akka [12], and Erlang [39]. Erlang
matured in the 1990s and showed that actors could be a practical way of building distributed
systems with very good availability and scalability characteristics. Akka brought actors
to the Java and Scala ecosystems and introduced a simpli�ed approach to providing high
availability. Orleans innovated by introducing the virtual actor concept. Actors in Orleans
do not need to be memory-resident at all times: Their internal state can be serialized to
secondary storage with the framework instantiating them on demand. Orleans innovates in
other areas as well, for example, by simplifying the messaging model to a request-response
pattern. Orleans is available as open source software, but it is not o�ered as a serverless
product, so users cannot bene�t from provider management. Its scalability is proven�
Microsoft has used Orleans as the backend for several popular games, and other companies
have adopted it as well [301]. We imagine that cloud providers could o�er �actors as a
service� as a complement to FaaS, and brie�y look at how that might work.

1In fact, many object-oriented languages use a messaging metaphor to describe object method invocation.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 52

Actors and FaaS have interesting similarities as well as di�erences. One way to compare
them is by analogy to object-oriented programming languages. Object methods are often
implemented as functions that simply take a reference to some data, �the object,� as an
argument. Actors are an implementation of distributed objects, and we can think of each
actor method as a function that always takes a stateful object as one argument. Could that
function be implemented as a FaaS function? Perhaps. Suppose we wanted to build virtual
actors, like those in Orleans, on top of a commercial FaaS platform. Virtual actor state
is cached state, so keeping it in FaaS is �ne (durable state lives elsewhere, e.g., serialized
transparently to key-value storage). We would have to add a routing mechanism of some
sort to ensure that each actor invocation goes to the execution instance at which it is cached.
This routing layer needs to be reliable and strongly consistent (linearizable). Orleans uses
a distributed hash table for this purpose [386], and presumably the same mechanism could
be added to a FaaS system. Note that, in this vision, groups of objects would be mapped to
each execution instance, just as in other actor systems. It would not be e�cient to create a
distinct runtime instance for each individual actor, at least not without a more lightweight
isolation technology.

The Ray [284] system incorporates an actor model, distributed remote functions, and
distributed object storage. Remote functions are similar to FaaS but accept arguments in
the form of either values or references to data in object storage. These references may be
futures, that is, they may reference the results of calls that remain pending. Ray programs
can build up graphs of futures, which allows construction of a directed acyclic graph (DAG)
of the computation. Ray is o�ered both as open source software and as a commercial service.
While it is not positioned as a serverless service, it o�ers a programming model that abstracts
away the servers and could presumably be hosted as a serverless service.

Akka Serverless [13] is a hosted platform that o�ers a number of state models on top of
an underlying actor and stream processing framework. Since its state models are durable,
its creators say it allows �database-less� applications, i.e., no separate state tier is required.
This sort of uni�cation of state and computation seems to be a hallmark of stateful serverless
systems. Akka Serverless o�ers three di�erent state models: value entities, event sourced
entities, and replicated entities. Each value entity is a strongly consistent (linearizable) ob-
ject. Event source entities have an underlying log of updates [66]. Replicated entities provide
Con�ict-Free Replicated Data Types (CRDTs) [365], which allow for eventual consistency
via monotonicity [187].

Cloudburst [384, 442] o�ers another approach to stateful FaaS. It integrates a high-
performance key-value store with the FaaS execution engine and o�ers the ability to execute
DAGs representing compositions of functions. Cloudburst uses lattice types [110] (providing
CRDTs) to enforce coordination-free consistency guarantees (see Section 2.8.4.1). One con-
sequence is that each function instance can cache key-value store state locally. In place of
traditional cache coherence protocols, it substitutes causal consistency, which is the strongest
form of coordination-free consistency [260]. This means that if some state update is seen by
a program, then all downstream computation will see it as well. This is true whether such
access occurs later on in the same function or downstream of it in a computation DAG.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 53

There are clearly movements afoot to bring alternate programming models to the cloud.
These include proven programming models like actors or event sourcing, as well as more
nascent approaches like Ray's remote functions or CRDTs. These models all o�er abstraction
layers over the underlying servers, and a cloud provider might o�er any one of them as a
serverless service.

2.8.4.3 Deterministic Databases

Strong consistency is easy to reason about both for programmers and, perhaps more impor-
tantly, for the whole team involved in designing an application. However, strong consistency
can be problematic in distributed systems because the coordination algorithms typically used
to implement it introduce contention (i.e., waiting). For example, two-phase commit ensures
that separate partitions agree on whether a transaction commits or rolls back, but it means
that locks are held while instances communicate over the network.

Deterministic database systems [2] improve the scalability of strong consistency, partic-
ularly with regard to throughput. In traditional (non-deterministic) databases, transaction
order emerges from the concurrency control mechanism and is subject to various unpre-
dictable system behaviors, such as operating system thread scheduling, network delays, and
I/O timing. Deterministic databases, on the other hand, establish a transaction order up-
front, before any transactions start executing. Various timing delays still occur during exe-
cution, but they no longer in�uence what state the database reaches, what results it returns,
or whether a transaction succeeds or aborts. Deterministic databases have shown bene�ts at
various scales, ranging from a multi-core server [142, 143], to the scale of a data center [404],
to cross-region scale [335]. The result is strong consistency, and the simpli�ed programming
it allows, without the throughput limitations that contention otherwise induces. Determinis-
tic databases have some limitations: The entire transaction must be provided up-front, and
implementations may rely on pre-declared read and write sets [404].

2.8.4.4 Language Techniques

Cheung et al. describe a research agenda that brings together techniques from program-
ming languages, databases, and distributed systems to improve the cloud programming
experience [100]. They present a four-component model, termed PACT, that emphasizes
declarative programming and separates multiple concerns:

• Program Semantics: Programmers should specify the correct behavior of their code.
By doing so declaratively, they avoid reasoning about the complex interleavings of
sequential code, as required today.

• Availability Speci�cation: Rather than reasoning about failure domains or redundancy
mechanisms, an availability speci�cation allows programmers to describe the require-
ments in terms of metrics that matter such as percentile response times.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 54

• Consistency Guarantees: Programmers usually build up application consistency using
the features of an underlying database, programming language, and perhaps their
own protocols. In this vision, consistency guarantees, speci�ed as invariants, would
describe the desired common-case semantics as well as the allowable deviations from
those semantics.

• Targets for Dynamic Optimization: There are trade-o�s between cost, availability, and
latency. Programmers should specify how the underlying system prioritizes each factor.

This vision is akin to high-level programming languages for distributed systems. It also
includes a proposed implementation that translates between a broad range of established
programming models and a common declarative intermediate representation that can be
analyzed and optimized. It also envisions an underlying runtime that might sit on top
of FaaS, serverless storage, or other cloud services. The vision is both comprehensive and
encouraging. It makes it clear that e�orts to tackle the new accidental complexity are already
underway and that an important part of the solution, this time as in the past, will come
from advances in programming languages.

2.8.5 Servers Really Represent the Problem

Even though the technology of serverless computing would be the same under any name, the
focus on abstracting away servers is appropriate because it focuses on a prominent aspect
of distributed systems that makes cloud programming di�cult. Some have criticized the
name [183, 214, 286], pointing out, for example, that the existence of underlying servers
has caused some confusion. We respect these arguments but counter that �serverless� still
describes what is happening better than any other single word would.

Consider alternative descriptions for the developments now underway. Instead of using
the term �serverless,� we could describe the developments now underway as the �ops-free
cloud� or ��ne-grained pay-as-you-go� or emphasize the �focus on your own business logic.�
We could talk simply in terms of X as a service, where X includes functions, storage,
databases, queues, platforms, or backends. All these descriptions are meaningful but none
of them captures the movement toward simpli�ed cloud programming and its implications
the way that �serverless� does.

�Simpli�ed cloud programming� [216], �new directions in cloud programming� [100], or
�removing the accidental complexity from distributed systems programming� all capture the
important shift that is going on. All of these names implicitly recognize the new accidental
complexity described in Section 2.8.2, and servers are the most obvious manifestation of
it. Hiding the servers is precisely what leads to the bene�ts in FaaS, cloud object storage,
and other services that we call serverless. It is what will lead to the bene�ts of new, more
general, approaches to cloud programming. Would �registerless computing� have been a good
name for high-level programming languages? Probably not, and perhaps we will talk about
serverless computing in other terms in the future. For today, the term suits the need quite
nicely.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 55

2.9 Additional Topics

We close our review and analysis of serverless computing with a series of assorted topics that
have helped us hone our understanding. Since serverless implies an absence of servers, it
makes sense to begin by checking that we understand precisely what a server is. We then
touch on security, the puzzle of missing serverless memory, and the comparison between
microservices and serverless computing. Finally we look at why Google App Engine did not
spark a serverless movement even though it could do much of what FaaS o�ers years earlier.

2.9.1 What Is a Server?

We are not aware of any substantial debate about what a server is, but since we are studying
serverless computing, thoroughness demands that we de�ne clearly the inverse that its name
implies. We caution that the goal here is not to �nd a de�nition of serverless computing by
analyzing its name. As a concept, it must have a meaningful technical basis independent of
what we choose to call it. In other words, the essential characteristics of serverless computing,
introduced in Section 2.4, de�ne serverless computing regardless of its name. Just the same,
we know that serverless is a reaction to some things about servers, and we want to make
sure to explore all the possibilities for what those might be.

Early in the computing literature, the term �server� �rst appears as a modi�er to describe
a host attached to the network [361]. RFC-5 distinguishes between the �user-host� and the
�server-host� [341]. In this context, hosts are computers or other devices connected to the
network [199].

Other early literature uses the term �server� to describe networked programs, not neces-
sarily the computers that they run upon. For example, an early ARPANET article de�nes
users as �programs desiring service� and servers as �programs providing service� [401].

Use of the term �server� exploded with the rise in popularity of client-server computing.
In a prominent review article, Sinha writes: �A Server provides a service to the Client� [373].
This leaves open the question of whether the server is a computer or perhaps just a program
running on a computer. Luckily, this distinction is inconsequential�computers must run
programs to provide a service, and with virtualization, programs routinely emulate com-
puters. In either case, servers are long-lived stateful entities on a network, which is what
matters. Given the prevalent modern usage, we prefer to think of servers as either com-
puters or virtual computers. Furthermore, when we think of servers, we do not think of
distributed systems�those are collections of servers.2 Sinha makes it clear that servers can
cooperate and communicate behind the scenes. He says: �It is advisable, and desirable, that
in a multiserver environment, the Servers communicate with one another to provide a ser-
vice to the Client without its knowledge of the existence of multiple Servers or intra-server
communication.�

2We do sometimes think of the components inside a powerful computer as a distributed system.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 56

So, if servers are computers that provide services, what is a service? Despite the widespread
use of the term in computing, we have been unable to identify a universal authoritative de�ni-
tion. However, there seems to be a consensus that a service is some well-de�ned functionality
that is available on demand, accessed via a network, and abstracted behind an interface. This
last feature, abstraction, ensures that any number of implementations can be developed to
provide the service.

We conclude that servers are what everyone thinks they are: computers, or their virtual
embodiments, attached to the network, providing some useful functionality, �a service,� be-
hind an abstract interface. While a service can be provided by a collection of computers
working in concert, that collection is not a server but something larger.

If servers are what you get when you have both computers and services, then �serverless�
could describe removing the computers or removing the services. Computers without servers
are everywhere, in all sorts of electronics and devices, but in the data center they are not very
useful. In this context, serverless can only mean removing the computer, not the service.

Keeping in mind that serverless computing is a metaphor, we believe that the �-less� can
mean removing anything that we do not like about servers, i.e., any of those things that
make it awkward to build services with computers. In the case of abstractions that mirror
and maintain compatibility with the architectural and system interfaces, e.g., container
orchestration, it means removing the startup time, complexity, and monitoring burdens
traditionally required to run VMs. In the case of FaaS, there is also robust autoscaling
and �ne-grained pricing. In the case of data�ow computing, everything having to do with
piping information in and out of the computation gets taken care of. SQL systems provide
a programming paradigm that allows developers to operate on large data sets with simple
expressions, even ones much larger than any computer could store. With storage and other
stateful serverless services, developers do not need to worry about how to create a reliable
service from a collection of unreliable computers. These are a few examples, and the reader
can doubtless suggest many more.

2.9.2 Serverless and Security

Is serverless computing more or less secure than traditional forms of cloud computing? This
is a natural question to ask, but it is not the best way to understand how serverless computing
impacts security.

We believe there is a strong case that serverless computing can make it easier for pro-
grammers to secure their applications. However, this does not derive from any inherent
property of serverless computing; in fact, serverless applications may be more exposed to
certain kinds of attacks than traditional cloud applications.

We �rst consider the ways that serverless computing could make an application more
vulnerable to security threats. Several potential concerns arise from increased sharing of
hardware, which can expose applications to bugs in isolation mechanisms as well as side-
channel attacks. While traditional cloud VMs may coexist within a shared server, CPU and
memory resources are often partitioned. This means that separate VMs largely use separate

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 57

parts of the machine even though they reside in the same enclosure. Multiplexing is primarily
spatial, and resources are reassigned from one customer to another only on long timescales.
Customers can also specify that VMs must be provisioned on machines dedicated to their
organization and not shared by others.

With serverless computing, hardware resources can rotate among customers much more
quickly, i.e., there is more temporal multiplexing. This is how FaaS achieves improvements
in utilization and e�ciency. It also creates greater exposure to any vulnerabilities involving
shared hardware or a shared hypervisor. These could include privilege escalation bugs, or
side-channel attacks such as those involving speculative execution [232] or Microarchitectural
Data Sampling (MDS) [88, 352]. The potential for vulnerability exists in other serverless
services, even those such as object or key-value storage that run little customer code. These
threats are real and hard to eliminate [269].

There are several other security vulnerabilities that are speci�c to FaaS. For example,
since functions have an internal cache that persists from one invocation to the next, there
is the potential for information leakage if user code has bugs. FaaS is stateless, in the sense
that it has only ephemeral state, but it does not guarantee a clean slate at every function
invocation. Also, FaaS applications may expose a larger service interface due to �ne-grained
application decomposition. Properly securing a large interface could be burdensome, and
some users may not take the time to do it properly. There are also hidden risks that come
with making software easy to run. Some software that would have better been retired may
be left up and running even when it is no longer needed. Extra e�ort may be required to
cull unused or unnecessary FaaS functions that increase an application's attack surface.

We also stress that whenever there is a new model, risks arise out of the transition.
For example, an infamous attack against Capital One exposed a tremendous amount of
data stored in AWS S3. In this case, the actual source of the vulnerability was server
miscon�guration, which allowed attackers to gain access tokens granting them privileges
on the serverless object storage infrastructure [235]. Once in possession of these tokens,
serverless scalability allowed the attackers to download a large amount of sensitive data very
quickly. This is a vulnerability that does not apply to serverless any more than it does to
servers�the core problem is that administrators failed to understand a new security model.

To appreciate just how di�erent the serverless mindset can be for a security professional,
consider that so many security tools and techniques focus on controlling, locking down,
and monitoring servers. With serverless, all of this vanishes. While the cloud provider
continues to secure the machine, other access control mechanisms become purely logical. In
principle, this creates the opportunity for better security controls that are designed around
the application and the business model rather than the deployment on servers. However,
there is a learning curve, and therein lies risk.

The transfer of low-level security responsibilities to the cloud provider is a clear bene�t
of serverless computing. A lot of work is needed to ensure that operating systems, language
runtimes, and standard libraries always have the latest security patches. With serverless,
the cloud provider takes on responsibility at the operating system level, and possibly above
it.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 58

The scalability of serverless computing can also provide protection against certain types
of denial-of-service (DoS) attacks. An attacker generating a large volume of requests to
overwhelm installed server capacity can be stymied by an implementation with serverless
autoscaling. Of course, the attacker may be targeting a company's budget, so other defenses
are still required, but it is more di�cult for the attacker to compromise the availability of a
service.

We expect the most compelling security bene�t of serverless computing to come from
the abstraction it provides. Replacing privileges on physical resources with privileges on
logical resources allows �ne-grained controls that can be designed to meet the needs of
the application irrespective of its physical deployment. This is already evident in today's
emphasis on IAM con�guration for FaaS, object storage, key-value databases, and other
serverless services. We expect that it will become easier for organizations to secure their
serverless applications and that they will do a better job of it.

2.9.3 The Missing Serverless Memory

An essential characteristic of serverless computing is utility-style pay-as-you-go pricing with
no charge for idle resources. Another is autoscaling. When it comes to memory resources,
serverless sometimes falls short on both accounts. For example, the FaaS billing model is
based on (time × memory). While time is the measured execution time, memory is the
con�gured amount, not the amount actually used by the program. AWS AppSync prices
queries, modi�cations, and real-time updates in cost per million operations. In order to have
caching, however, users con�gure and pay for a �xed amount of memory. Stateful serverless
services such as object storage and key-value stores all use memory for caching, but none has
a pricing model that re�ects the underlying costs. Serverless memory is a missing concept
and an open challenge; we now explore why that is.

2.9.3.1 The Cost Disconnect

When AWS Lambda returns after a function invocation, it logs not only the execution time
but also the maximum memory consumption. However, the billed cost is not the reported
amount of memory used but rather the con�gured amount. Why not bill on actual usage? A
complicating factor is that con�gured memory is a proxy for the share of machine resources
allocated to a function. Allocating more memory also provides more CPU time and network
bandwidth. Billing for actual memory usage would require metering all of these resources,
and so far, no FaaS platform provides such a model. As a further wrinkle, some applications
may bene�t from more memory for the operating system page cache, which is not accounted
for in the memory used by application processes.

Another potential mismatch occurs with FaaS because customers pay for memory only
while the function is running, but the cloud provider incurs resource costs for cached function
instances even when they are idle. Say a function runs only intermittently�for 1 s every
100 s. The instance likely stays cached, but since the customer pays only when the function

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 59

is running, the cloud provider ends up billing for only 1% of the memory used. This might
not be a problem if memory were a small part of the machine cost, but it is not. By analyzing
Google Compute Engine custom instance prices,3 and by comparing AWS instance prices,4

we conclude that memory accounts for between 32% and 48% of the cost of a server.
This sort of disconnect is problematic and may be causing market distortions. It means

that the cloud provider may be charging disproportionately more for applications that run
frequently relative to those that run intermittently. Exploiting this fact to obtain memory
at a discount is an explicit aim of In�nicache [426].

Another example of a pricing model that fails to align the costs and bene�ts of cache
memory is object storage. Object storage bills have two components: a cost for retaining the
object (billed according to size and duration) and a cost for accessing the object (billed for
every PUT or GET request). For retention, this model re�ects cloud provider costs well, but
for access, it can diverge. Objects that are accessed frequently can be retained in memory,
which can dramatically lower the cost of delivering them. Yet the business model does not
pass the cost savings on to customers.

Cloud providers o�er a number of caching products, but none that autoscale memory. For
example, in the AWS ecosystem, there is ElastiCache, which o�ers the Redis and Memcached
APIs but only with a �xed cache size. AWS also o�ers DAX, a caching accelerator for
DyanmoDB, a serverless key-value store. Somewhat surprisingly, DAX requires customers
to con�gure a �xed amount of memory. It appears to be a server-based accelerator for a
serverless database. The Anna key-value database is a research system that addresses these
limitations, providing autoscaling and storage tiering [441, 443].

The previous examples all suggest that something is hard about serverless memory. They
also point to the root of the problem: Applications provide clear indicators of their need for
compute, storage, or network resources, but not always for memory, much of which is used
for caching. We know that a program needs the CPU from the time it starts running to the
time it �nishes. We know that disk space is needed from the time an object is created to
the time it is deleted. Whenever a program sends or receives data over the network we can
count the bytes, then allocate resources and costs accordingly.

With cache memory, the situation is less clear. Providing more cache memory often lets
applications run faster and more e�ciently, and it reduces the utilization of other system re-
sources. However, it is di�cult to determine automatically how much cache memory should
be provided to meet the application's needs. In FaaS, for example, the cloud provider typi-
cally caches function instances to reduce cold starts, but this behavior appears unpredictable
and varies from one provider to another [429]. While this solution seems to deliver reason-
ably good results, it is hard to imagine billing a customer based on the amount of memory
held by opaque caching mechanisms.

3The on-demand price of Google Compute Engine custom instances is $0.02289 per vCPU hour and
$0.003067 per GB hour. A large standard instance has 32 vCPUs and 128 GB memory, suggesting that
memory corresponds to 35% of the cost of a server.

4See Section 2.9.3.2

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 60

2.9.3.2 Cache Memory Simulation

We conducted simulations to assess the potential bene�ts of cache autoscaling. The input
for our simulation is a workload trace collected while running a TPC-C database benchmark
on a SQLite database. We simulate an LRU cache interposed between the database and its
storage, then measure the impact of cache size on performance and cost. Our test database
is 800 MB in size and has a 1 kB block size.

We extrapolate per-unit compute, memory, and I/O costs based on published AWS prices.
The general-purpose m5.24xlarge instance costs $4.608 per hour and provides 384 GB mem-
ory, whereas the high-memory r5.24xlarge instance costs $6.048 per hour and provides
768 GB of memory. Both machines have 96 cores, so we calculate the unit cost of memory
as $1.042 × 10−6 per GB-sec and the unit cost of compute as $9.167 × 10−6 per core-sec.
AWS sells provisioned IOPS on EBS for $0.065 per month per IOPS. Based on this rate, if
a cache miss results in one I/O operation, the per-miss I/O cost is $2.508× 10−8.

Figure 2.10 shows how the per-transaction cost varies with cache size for a constant 1/s
transaction rate. In this model, the minimum cost is achieved with a 64 MB cache. For
smaller caches, adding memory reduces both CPU and Read I/O costs because we reclaim
time spent waiting on I/O. There is no impact on Write I/O, and we assume that writes
are bu�ered and do not consume CPU time.

In Figure 2.11 we again hold the transaction rate steady at 1/s and now plot transaction
latency against transaction cost as the cache size varies. We include three latency percentiles:
the 50th, 90th, and 99th. Below the cost-optimal cache size, increasing memory both improves
performance and cuts costs. After reaching the lowest-cost point, there may still be value in
increasing cache memory if an application bene�ts from faster performance.

Figure 2.12 shows how the cost-optimal cache size varies with the transaction rate. At
the low end, for transactions that arrive once every 3 s to 10 s, 32 MB of cache memory is
optimal. As the query rate rises, the cost-optimal memory size increases, reaching 512 MB
for rates in the hundreds of queries per second. We conclude that this workload would bene�t
from an autoscaling cache if the transaction rate is variable.

A key consideration when providing an autoscaling cache is that scaling down the cache
when optimizing for cost can result in latency increases. Figure 2.13 illustrates this, showing
comparatively high latency at low transaction rates.

2.9.3.3 Possible Solutions

Automatic cache sizing does not exist in the cloud today, likely because of the complexities
discussed in Section 2.9.3.1 and Section 2.9.3.2. Some research has begun to address this
challenge in the serverless context [339]. Also relevant is classic work such as Gray's ��ve-
minute rule� [171] for database caches. The �ve-minute rule reproduces the cost-optimal
policy that we explored in Section 2.9.3.2, but it does not address latency targets.

Providing a solution is beyond the scope of our work, but we brie�y consider possible
policies that might be considered in addition to cost optimization when sizing a cache:

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 61

1MB 4 MB 16 MB 64 MB 256 MB 1 GB

Cache Size

0.0

0.5

1.0

1.5

2.0

T
ra

n
sa

ct
io

n
C

os
t

($
/m

ill
io

n
)

Memory CPU Read I/O Write I/O

Figure 2.10: TPC-C cache simulation: Breakdown of transaction cost at various cache sizes.
Transaction rate is held constant at 1/s.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Transaction Cost ($/million)

10−3

10−2

10−1

100

T
ra

n
sa

ct
io

n
L

at
en

cy
(s

)

99th % 90th % 50th %

Figure 2.11: TPC-C cache simulation: Query latency vs. query cost shown for cache sizes
varying from 1 kB to 1 MB. 50th, 90th, and 99th latency percentiles are shown. Transaction
rate is held constant at 1/s.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 62

10−1 100 101 102 103

Transaction Rate (1/s)

16 MB

64 MB

256 MB

1 GB

C
os

t
O

p
ti

m
al

C
ac

h
e

S
iz

e

Figure 2.12: TPC-C cache simulation: The cost-optimal cache size varies according to the
transaction rate.

10−1 100 101 102 103

Transaction Rate (1/s)

10−3

10−2

10−1

T
ra

n
sa

ct
io

n
L

at
en

cy
(s

)

99th % 90th % 50th %

Figure 2.13: TPC-C cache simulation: The latency at the cost-optimal cache size varies
according to the transaction rate.

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 63

• Target latency : The cache size adjusts automatically to ensure that the application
latency remains under target latency bounds. This approach is appealing because it is
a direct measure of application performance.

• Maximum idle time: An object will be kept in the cache until it has not been accessed
for longer than the maximum idle time. Customers can set this time based on how they
expect the application to be used, e.g., if customers who return once a week should
have a fast experience, then the maximum idle time should be longer than one week.

A problem with both of these approaches is that systems often have many caches [63].
Appealing as it may be to connect their con�guration to externally visible consequences, this
may not always be practical. Other internal goals, like a target miss rate, are possible but
also problematic. Cache auto-sizing is the key missing ingredient for serverless memory; we
expect it to present a fruitful avenue for research.

2.9.4 Serverless vs. Microservices

Serverless computing with FaaS is sometimes likened to microservices or posited to be an
evolution of them. This is perhaps because both involve breaking up programs into smaller
units of functionality. However, though there is a super�cial similarity, the technologies solve
di�erent problems.

The microservices architectural pattern aims to ensure loose coupling between compo-
nents so that they can evolve independently [288]. It places a particular emphasis on deploy-
ment, helping to ensure that one team can upgrade part of a running system, usually without
requiring changes, collaboration, or support from teams responsible for other components.
This operational lens goes a step beyond traditional software modularity [308], requiring,
for example, that a service protect itself from availability problems, transient errors, or
unexpected responses from other services.

Microservices stand in contrast to �monolithic� application design patterns where the
entire application functions as one piece of code and is typically deployed as a unit. Such
software monoliths can still comprise collections of services. For example, in traditional
service-oriented architecture (SOA), applications are split into services, but they are tightly
coupled and so typically need to be upgraded all at once, i.e., the collection of services may
be monolithic even though it runs on many servers. This can slow down and complicate the
development process because it means that problems in one team can hold up other teams.

Even though FaaS and microservices are independent concepts, FaaS can still be a
good way to implement a microservice. Proliferating microservices can lead to operational
headaches, say if each requires custom autoscaling policy con�guration or custom monitor-
ing. This is just the sort of problem that serverless computing is designed to solve. However,
serverless computing is also set up to support software monoliths. Platforms such as AWS
Lambda allow function invocations to request speci�c versions, which makes it possible to
ensure compatibility when upgrading many related functions. Other forms of serverless

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 64

computing, such key-value databases, provide value for both microservice and monolithic
applications.

In summary, microservices and serverless computing with FaaS represent compatible but
independent innovations. There is a super�cial similarity because FaaS and microservices
both involve cutting up a code base into pieces, but the aims are di�erent. In FaaS, a
function represents a unit of program functionality. With microservices, the units (services)
are also governed by the organizational structure of the team. Serverless computing can
make it easier to adopt a microservices approach because it reduces the e�ort required to
build and deploy a large number of services. Yet serverless computing also provides bene�ts
for monolithic applications.

2.9.5 Comparing Google App Engine and AWS Lambda

Why did serverless computing take o� with the introduction of AWS Lambda in 2014 rather
than with Google App Engine in 2008? Both technologies possess all of our characteristics
of serverless computing, so comparing the two could provide insight into key features of
serverless computing.

The di�erence in industry impact between the two products is signi�cant. The search
trend data shown in Figure 2.14 indicates that App Engine initially received a strong level
of developer interest, but it waned over time. AWS Lambda, in comparison, shows more
sustained growth in developer interest over time. Furthermore, no major cloud provider
launched a direct App Engine competitor, whereas all of them launched FaaS products
inspired by AWS Lambda.

App Engine and Lambda are similar in many ways. Both abstract away the underlying
servers, scale automatically, and allow users to deploy code written in high-level languages.
App Engine users write stateless web services that are quite similar to FaaS functions.
Stateless web services have ephemeral state only and must generally complete within a
bounded period of time. Both also support event-driven programming. Even though Lambda
is more closely associated with this style, App Engine has always supported event-driven
programming through its integration with Google Pub/Sub.

App Engine di�ers from Lambda in several technical considerations, and the di�erences
become particularly notable when comparing the products as they were originally released.
While it now supports autoscaling down to zero, each App Engine deployment originally
required a minimum of one or two instances at all times, depending on availability require-
ments. This di�erence has now been closed, but it seems that as launched, both were good
at scaling up, but Lambda was better at scaling down. The pricing models also still re�ect
this di�erence. App Engine continues to charge according to the number of instances that
the autoscaling mechanism provisions, with a minimum billing increment of 15 minutes.
Lambda, on the other hand, launched with a minimum billing increment of 100 ms (this is
now 1 ms, but for small instances, a per-invocation request fee makes the minimum cost sim-
ilar). At large scale, when many instances are needed, the di�erence between these models
may be small. Instances will generally be well utilized, and single-instance steps in scaling

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 65

2008 2010 2012 2014 2016 2018 2020 2022

Worldwide Search Interest

Google App Engine AWS Lambda

Figure 2.14: Trends compared: Google App Engine and AWS Lambda. Global search tra�c
reported by Google Trends. We apply 150% scaling starting October 2020 to account for a
discontinuity in the data that appears to be an artifact.

make little di�erence in a large pool. At small scale, however, and when demand is highly
variable, the Lambda model matches costs to usage much better. This reinforces the notion
that autoscaling down (including down to zero) and �ne-grained pay-as-you-go pricing were
important to the popularity of serverless computing.

App Engine takes a more prescriptive approach than Lambda, which is consistent with
its positioning as an application framework. Frameworks strive to include a broad range of
functionality, and developers hoping make the most of their bene�ts generally expect to sculpt
their applications to �t the mold. In the case of App Engine, this means that developers
write their web applications in a particular way, e.g., following App Engine conventions for
binding a URL to corresponding code. Early versions also restricted developers to using a
speci�c version of Python and a speci�c set of libraries. App Engine also provides several
related services, such as object storage, caching, and search. These components are designed
to work together and appear to be intended to o�er web developers everything that they
need from a cloud provider.

In contrast, Lambda has taken a more open approach from the start. At launch, its
creators emphasized that an important design consideration was allowing developers to bring
their own libraries, including native-code libraries [424]. They also positioned Lambda as a
sort of connective tissue or �glue� between the many services that AWS already o�ered in
2014 [421]. App Engine launched much earlier, in 2008, and the positioning that Lambda
used might not have been successful at the time because cloud provider ecosystems had fewer

CHAPTER 2. UNDERSTANDING SERVERLESS CLOUD COMPUTING 66

o�erings.
A perceived lack of openness may have led App Engine to face a greater fear of lock-in.

Such fears have always been a problem for cloud computing [37]. Lambda is not immune to
concerns over lock-in [356], but since all cloud providers support FaaS in some form, it can
be more acceptable than using a cloud provider's proprietary web application framework.

In summary, a few key di�erences help explain why AWS Lambda led to the serverless
movement, while Google App Engine did not. Foremost, Lambda embodied a simple and
seemingly general-purpose concept, a function in the cloud, whereas App Engine was more
explicitly tied to a particular use case, web development. Lambda's positioning surely aligned
with a more inspiring vision and perhaps also stoked fewer lock-in fears. While neither
technology allowed users to run existing applications, Lambda launched with good support
for arbitrary libraries, allowing developers to embed more or less any code that they wanted
to. App Engine only added such capabilities later on. App Engine also seems to have added
the ability to scale down to zero only after FaaS introduced it. Its pay-as-you-go model
remains tied to a coarse-grained measure of instance provisioning, meaning it is still better
at scaling up than it is at scaling down. Lastly, Lambda launched into a rich ecosystem of
cloud services and was designed to be complementary to them. We conclude that general-
purpose positioning, integration with the cloud ecosystem, support for existing code in the
form of libraries, and autoscaling�particularly, scaling down well�all contributed to the
success of FaaS and the subsequent emergence of serverless computing.

67

Chapter 3

A FaaS File System for Serverless

Computing

3.1 Introduction

In this chapter, we describe our e�orts to make serverless computing practical for more
applications. In Section 2.9.5, we noted that ensuring compatibility between FaaS and
existing software ecosystems was a deliberate design decision, and that this likely contributed
to its success. One of the most obvious limitations of FaaS is its �statelessness,� and we
decided to investigate whether one could address this limitation in a similar way, i.e., by
using standard system interfaces.

FaaS functions have ephemeral state only, meaning that they must externally save any
state that requires preservation past the point of function return (see Section 2.2). There are
some advantages to this solution, which are illustrated in Figure 3.1�notably, it allows the
compute tier to scale independently of the storage tier, helping ensure cost proportionality
and supporting pay-as-you-go. There are drawbacks, however. For one, accessing remote
storage services incurs a performance penalty [189]. Programmers also must conform to
object storage and key-value storage APIs that are proprietary to each cloud provider.1

The �le system abstraction o�ers an enticing alternative. POSIX [218] provides a stan-
dard API, which helps make software that uses �le systems pervasive. File systems also
o�er attractive performance characteristics. Most implementations bene�t from operating
system caching and bu�ering, allowing them to hide the latency of storage access from ap-
plications [394].

Unfortunately, in a distributed setting, �le systems lose some of the bene�ts we have
described. While they maintain the same interface as local POSIX �le systems, they have
di�erent behaviors. Due to network overheads, all of them can exhibit degraded performance
when accessing shared data. A number of implementations attempt to improve performance

1Examples include S3 and DynamoDB on AWS, Storage and CosmosDB on Azure, and Cloud Object
Storage and Firestore on Google Cloud.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 68

Stateless
FaaS λ λ λ

Object
Storage

Key-value
Storage

File
System

Stateful
services

Figure 3.1: Serverless applications often use stateless FaaS together with stateful services
such as object storage or key-value storage. FaaSFS is a distributed �le system designed to
o�er full POSIX compatibility and scalability to match that of FaaS.

by providing weakened consistency guarantees, but this means that they do not preserve
the functionality described by POSIX. Distributed �le systems thus implement the API of
a local �le system, but all of them work di�erently to varying degrees.

FaaSFS integrates a POSIX �le system with a serverless FaaS environment. We �nd
that doing so allows us to overcome some of the performance challenges that impact other
distributed �le systems. We show that this allows us to scale existing applications to 10,000
processors, far beyond what even a large server can handle.

Key to this result is a new consistency model: Externally Consistent Sequential Consis-
tency (ECSC). POSIX provides a linearizable [192] consistency guarantee, which is di�cult
to reconcile with scale and performance. Linearizability establishes a correspondence be-
tween the real-time2 order of operations and a global logical order of operations. This is
a useful property but one that is not always necessary to guarantee program correctness.
ECSC provides a weaker guarantee, one closer to sequential consistency [241]. Sequential
consistency also ensures that all operations correspond to a global order, but it describes
this correspondence in terms of program order, rather than in terms of real time. We show
that ECSC produces results that are almost indistinguishable from those obtained using
linearizability�the only di�erence is the timing of operations. ECSC makes it possible to
rearrange the real-time order of certain operations, without relying on commutativity, by
maintaining logical precedence relationships instead.

ECSC is particularly e�ective when combined with speculative execution, a technique
best known for its role in processor architecture [191]. Speculative execution has also been
used to speed up distributed �le systems in Speculator [290], and we build upon that ap-
proach.

2Linearizability is de�ned in terms of a precedence relationship and not in reference to wall clock time.
However, the de�nition uses a global time model, and so this precedence relationship is an ordinal measure
of real (i.e., physical) time.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 69

Serverless computing creates obstacles to implementing the techniques traditionally used
to improve the performance of distributed �le systems. Scale itself poses challenges, and the
FaaS environment also creates a number of speci�c di�culties (see Section 3.2.3). Luckily,
FaaS has some useful characteristics as well: It provides an isolated execution environment
and a built-in restart mechanism, both of which make it easier to implement ECSC with
speculative execution.

The rest of this chapter is organized as follows. We describe background context on
distributed �le systems in Section 3.2. We motivate and de�ne ECSC in Section 3.3. In
Section 3.4, we describe the implementation of FaaSFS, then evaluate it in Section 3.5. We
outline next steps in Section 3.7 and then summarize in Section 3.8.

3.2 Background

3.2.1 POSIX File System Behavior

The POSIX speci�cation [218] is widely recognized as an authoritative description of how a
�le system should behave. It is not, however, a formally precise speci�cation but rather a
plain English one. This means that when it comes to details, POSIX is de�ned as much by
its implementations as by the language in the speci�cation. Developing new implementation
approaches, as we seek to do here, can be challenging as a result.

An example of the non-formal language in the POSIX speci�cation is the description of
the write command, which includes the language, �Writes can be serialized with respect to
other reads and writes� and �If a read() of �le data can be proven (by any means) to occur
after a write() of the data, it must re�ect that write()...A similar requirement applies to
multiple write operations to the same �le position.� Clearly, this text speci�es an important
consistency guarantee, but we wonder, is it one that we are familiar with? Does it have a
name? And what exactly does �after...by any means� include?

Luckily, a number of authors have developed formal models of �le system behavior [36,
98, 283]. The work of Ntzik et al. is recent and thorough [294, 295], re�ecting careful study
of both the text of the speci�cation and the behavior of actual �le system implementations.
Though it does not cover distributed �le systems, the work provides a reference point for
how a �le system should behave.

It is clear from Ntzik et al. and other works that linearizability works well for modeling
POSIX �le systems. Linearizable operations are atomic, i.e. indivisible, and must correspond
to a global total order that is consistent with the real-time precedence relationship among
operations. This helps us understand what �after...by any means� actually means. We say
that a linearizable operation V occurs after U if U ends before V begins. For more detail on
this de�nition, see Section 3.3.1.

Additional complexity arises because some POSIX operations are implemented as a se-
quence of atomic operations and are not atomic as a whole. For example, name resolution
can involve multiple sub-operations, one for each directory along a path. As a result, oper-

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 70

ations like rename, which is widely understood to be atomic, can still produce unexpected
behavior when concurrent operations manipulate the directory hierarchy [294]. Behaviors
resulting from interleaving the atomic sub-operations in POSIX, while permissible, are gen-
erally undesirable; Programmers do not write code that relies on race conditions, and would
almost certainly prefer an implementation providing larger units of atomicity, say one that
executes each API call atomically.

Many of the intricacies of POSIX relate to directories and metadata, whereas our work
focuses on �le operations. In this context, the key operations are open, close, read, write,
seek, sync, truncate, and flock. We assume that the reader is generally familiar with
POSIX but describe its �ner points here.

open operates only on metadata but serves as a herald of data access to come. It veri�es
access permissions and translates a name to an object identi�er, or inode. The inode is an
internal �le system identi�er, and the calling process receives a reference to it called a �le
descriptor. close releases this �le descriptor and destroys the reference. Flags passed to open
can specify what sort of access is possible through a �le descriptor, e.g., whether the process
holding it may write anywhere, merely append, or only read. A number of performance
optimizations may be taken based on �le descriptor state. For example, if only one program
has an open descriptor for a �le then it can be granted exclusive access�linearizability is
guaranteed even when it operates on a local copy. Similarly, if there are multiple open �le
descriptors but they are all read-only then clients can safely cache �le content locally.

The read and write operations are fairly intuitive, but there are some details that are
interesting. While these operations are guaranteed to be atomic, the implementation gets
to choose the size of the transfer: A read may return fewer bytes than requested and a
write may store fewer bytes than o�ered. This behavior probably originates in a desire to
break up operations when encountering a delay in accessing storage, such as one encountered
performing a disk seek.

Other subtleties arise from how the �le length the �le length interacts with reads and
writes. It is tempting to imagine that reads or writes are independent and commutative
when they operate on non-overlapping byte ranges within a �le, but this is not the case. A
write automatically extends the length of the �le; If the write position is beyond the end
of the �le then the gap is �lled with zeros. A read beyond the end of the �le returns a
zero-length result (indicating EOF), but a write that comes before it can change this to a
zero-�lled result even when the bytes written do not overlap with those read. A single-byte
write can thus potentially impact reads on a broad range of o�sets, limited only by maximum
�le size. The truncate operation can have similarly global e�ects, and it may produce both
increases and decreases in the �le length.

Work on improving �le system performance on multiprocessor systems has shown that
non-POSIX interfaces with greater commutativity also can scale better [139]. Clements et
al. [103] introduce the scalable commutativity rule to describe such behavior and provide a
toolkit for state-dependent interface commutativity analysis. In FaaSFS, we prioritize com-
patibility with existing applications. Instead of achieving scalability by using commutative
operations, we instead relax the real-time correspondence imposed by linearizability.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 71

Most of the POSIX speci�cation describes failure-free operation. It does provide the sync
operation, which �ushes data and metadata to disk, so they will survive system crashes or
power failures. For crashes that occur prior to �ush completion, there are no guarantees,
and the atomicity provided during failure-free operation can even be violated [73, 320].

3.2.2 Distributed File Systems

There are several �le systems that aim to provide shared storage to multiple machines while
adhering to POSIX, or something close to it. All of them are faced with the same chal-
lenge: Processes on the same machine all have access to the same physical memory, which
allows them to use a shared cache and makes low-latency coordination possible; however,
in a distributed setting, local caches are independent, and all coordination involves network
communication. There are several approaches that distributed �le systems have taken in
response to this di�erence.

3.2.2.1 Weakened Consistency

The original Network File System (NFS) [348] made few guarantees about consistency.
Writes could be bu�ered at the client, then propagated to the server at some time in the
future. Reads could be served from cached data. Applications had no way of obtaining the
latest data and no way to in�uence which version would prevail in case of write con�icts.
The term �eventual consistency� would not be de�ned until later [398], but it describes this
situation well.

The Andrew �le system introduced close-to-open consistency [224], which was later in-
corporated into NFS Version 3 [313]. Close-to-open consistency ensures that if process A

closes a �le before process B opens the �le, then any updates made by A will be visible to B.
While this guarantee can be a useful building block, applications generally must coordinate
access to the �le in order to achieve well-de�ned behavior. If multiple �le descriptors are
open concurrently, and one or more of them is used for writing, then the results are just as
unpredictable as in early versions of NFS. Applications can coordinate by communicating
with one another directly over the network. They may also coordinate using �le system
locks, which can be provided by via a dedicated lock manager (e.g. [68]) or integrated into
the distributed �le system protocol, as in NFS Version 4 [185].

These forms of weakened consistency introduce behaviors that local POSIX �le systems
do not allow. They can be confusing for users and developers because they present the same
POSIX-interface, yet behave di�erently.

3.2.2.2 Coordinated Local Processing

The simplest way to fully conform to POSIX is to process all requests at a centralized server,
but this adds latency and creates a scalability bottleneck. Lustre [75, 359] is a scalable and

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 72

fully POSIX-compliant distributed �le system that uses several techniques to improve on
this performance. It is representative of the state of the art.

Lustre uses separate servers to manage metadata (directories) and data (�le content).
Clients communicate directly with these servers, e.g., �rst communicating with a metadata
server while opening a �le, then with an object storage server while accessing its content.

Lustre uses an internal locking mechanism to coordinate client access to �le and directory
data, guaranteeing what it describes as �cache coherent� behavior. Such locks are distinct
from the �le locks exposed through the POSIX API (via the flock and fcntl calls). Their
purpose is to allow client-side caching to coexist with atomic and linearizable execution.
However, they work in basically the same way, with shared and exclusive states.

Lustre also supports intents, which are an extension to the locking mechanism. Intents
contain operations that the server may choose to execute instead of granting a lock [428],
which can o�er greater performance in cases of heavy contention.

Lustre's locks have a parallel to the delegation technique available in NFS Version 4 [185].
Delegations are also an internal locking protocol of the �le system implementation. When
used in NFS, they can allow the client to process open, close, lock, and unlock operations
locally.

We note that any lock-based concurrency control technique will encounter problematic
scenarios such as deadlock and unresponsive clients. Distributed deadlock detection [94] and
leases [169] can help, but these problems may be exacerbated by scale.

3.2.3 The FaaS Environment

Chapter 2 provides a broad overview of serverless computing, including descriptions of FaaS
(Section 2.2 and Section 2.5.1) and its limitations (Section 2.6.1). In this section, we focus
on speci�c aspects of FaaS that are relevant for the design of FaaSFS.

In designing FaaSFS, we needed to account for a number of ways that FaaS di�ers from
a traditional server environment. We focus on AWS Lambda but note that these restrictions
are broadly similar across major cloud providers.

FaaS characteristics relevant to the design of FaaSFS include:

• Ephemeral function state. Cloud providers create execution environments when func-
tions start running and can destroy them when not in use. In general, cloud providers
keep instances cached because it is costly to create and initialize them [296, 429], and
this allows applications to cache state inside them as well. However, any cached state
will be lost if the cloud provider chooses to reclaim the instance resources.
• Limited system privileges. Lambda o�ers a controlled environment that prohibits oper-
ations such as loading kernel modules or mounting NFS shares (except via the EFS [24]
integration; See Section 3.5). Thus, in our FaaSFS implementation processes commu-
nicate directly with a user space �le server, rather than using the established FUSE
user space �le system interface [147]

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 73

• Function instances freeze between invocations. Lambda instances run only when they
are processing a request invoked through the API. In the frozen state, no processing
occurs, even if data arrives on the network or a timer is scheduled to raise a signal.
Function instances can retain cached state while frozen, but there is no way to update
that state until the instance begins processing a new request. This also makes it
impractical to use delegations [201] or leases [169], which are proven distributed �le
system optimizations, because we may be unable to process revocations on demand.
• No inbound network connections. Cloud functions live behind a NAT layer that pro-
hibits inbound network connections. While some workarounds have been demon-
strated [423, 432], direct communication between functions is not part of the pro-
gramming model. This is helpful for our approach because functions instead interact
through shared state, where FaaSFS can mediate those interactions.
• No names for function instances. While Lambda may create many instances of a cloud
function, as dictated by load, there is no way to route an invocation to a particular
instance (see Section 2.6.1); each invocation could go to any function instance. Parti-
tioning a cache is possible by de�ning one copy of the function for each partition. This
is straightforward, though not scalable or elegant.
• Limited execution time. In many practical applications, cloud functions run for as little
as a fraction of a second. Run times of minutes are supported, but there is always
some bound on their execution time. Short function duration is helpful for speculative
execution because it limits the amount of work that might need to be repeated when
speculation fails.
• Function-grained fault tolerance. FaaS usually provides an at-least-once execution
model. Functions must be safe to retry, a requirement that usually leads programmers
to write idempotent code. Transactions can make it easier to provide idempotence, as
previous work on serverless computing has shown [383, 459].

3.3 Externally Consistent Sequential Consistency

This section provides a relatively informal introduction to externally consistent sequential
consistency (ECSC), the consistency model implemented in FaaSFS. A more formal de�nition
and proofs of its properties are found in Chapter 4.

ECSC sits between two well known strong consistency guarantees: linearizability [192]
and sequential consistency [241]. All results produced by ECSC are consistent with lineariz-
able execution, which allows it to serve as a drop-in replacement where linearizability is
required. As we will see in Section 3.3.3 and in the evaluation of Section 3.5, ECSC permits
implementations that have better performance than is possible with linearizability.

ECSC relies on one key insight: We can relax linearizability's real-time correspondence
requirements. During intervals where programs run in isolation and communicate only with
storage but not otherwise with the outside world, the real-time order of operations becomes
irrelevant. In its place, we can substitute a precedence rule based on program order, just as

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 74

sequential consistency does. Sequential consistency allows programs to �read from the past�
or �write to the future,� which allows distributed systems to achieve improved performance
at scale by using caching and bu�ering.

3.3.1 Linearizability and Sequential Consistency

Linearizability [192] and sequential consistency [241] are similar since they both require all
operations to behave as if they were executed in sequence. However, they make di�erent
assumptions and enforce di�erent properties.

Sequential consistency merely assumes that we can determine the order of operations at
each program and requires that these orders be respected by some global order. In contrast,
linearizability models separate invocation and response events for all operations. It assumes
that these events exist within a well-de�ned global order that induces a global precedence
relationship (a partial order) across all operations.

Linearizability is described using a global time assumption [4]. Time is de�ned in an ordi-
nal sense, and while the model makes no reference to clocks, it de�nes a real-time precedence
order that is what one would measure using clocks.

Sequential consistency is described using a local sense of order only�it considers the order
of operations at each processor and ensures that it is possible to construct some corresponding
global order. For example, let HA

1 and HB
1 denote the history of operations at two processors,

A and B. Consider the following pair of histories:

HA
1 :WA(X; 1)WA(Y; 1)

HB
1 :RB(X; 0)RB(Y; 1)

In this notation, WA(X; 1) denotes a write of the value 1 by process A to the variable X.
Similarly, RB(X; 0) denotes a read by process B of the variable X, resulting in the value 0.

These histories satisfy sequential consistency because it is possible to construct a global
history in which all of the operations appear in the same order as they do at each processor:

RB(X; 0)WA(X; 1)WA(Y; 1)RB(Y; 1)

Consider, on the other hand

HA
2 :WA(X; 1)WA(Y; 1)

HB
2 :RB(Y; 1)RB(X; 0)

There is no way to construct a global history consistent with these processor histories, so
HA

2 and HB
2 do not satisfy sequential consistency.

To de�ne linearizability, we need to extend our notation to denote the beginning and end
of each operation, which we de�ne in terms of invocation and response events. For example,
we can break down the operation WA(X; 1) into the sequence In(WA(X; 1)) Re(WA(X)). We also
must de�ne a global history, which we will consider instead of per-processor histories. The

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 75

implicit assumption in doing this is that each invocation or response represents an event that
occurs at a unique moment and that all such events can be placed in a total order. This is
not precisely the same thing as a measure of time, e.g., there is no measure of the duration
between events, but it takes for granted an underlying reality where everything happens in
order. This is known as a global time model [4].

For example, consider the history

H3 : In(WA(X; 1))In(RB(X))Re(WA(X))In(WA(Y; 1))Re(WA(Y))Re(RB(X; 0))In(RB(Y))Re(RB(Y; 1))

Figure 3.2 illustrates a set of intervals that correspond to these events.

├────────┤WA(X;1)

├─────────────────┤RB(X;0)

├────────┤WA(Y;1)

├───────────┤RB(Y;1)

Figure 3.2: Diagram for H3.

An operation U is said to precede an operation V inH, written U ≺H V , if Re(U) appears
before In(V), written Re(U) <H In(V). A history is linearizable if it can be rearranged to
a valid sequential history while respecting ≺H. In such a sequential history each invocation
must be followed immediately by its corresponding response and the values returned must
respect the behavior of the storage object (a read returns the value most recently written).

The precedence relationships in H3 are

WA(X; 1) <H3 WA(Y; 1)

WA(X; 1) <H3 RB(Y; 1)

WA(Y; 1) <H3 RB(Y; 1)

RB(X; 0) <H3 RB(Y; 1)

A sequential history equivalent to H3 is

In(WA(X; 1))Re(WA(X))In(WA(Y; 1))Re(WA(Y))In(RB(X))Re(RB(X; 0))In(RB(Y))Re(RB(Y; 1))

Another is

In(RB(X))Re(RB(X; 0))In(WA(X; 1))Re(WA(X))In(WA(Y; 1))Re(WA(Y))In(RB(Y))Re(RB(Y; 1))

In contrast, the history H4 is not linearizable, even though it is sequentially consistent,
because it contains the precedence relationship WA(X; 1) ≺H RB(X; 0), which cannot be recon-
ciled with a valid state transition history for X:

H4 : In(WA(X; 1))Re(WA(X))In(RB(X))In(WA(Y; 1))Re(WA(Y))Re(RB(X; 0))In(RB(Y))Re(RB(Y; 1))

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 76

Past work has compared the theoretical performance of linearizability and sequential con-
sistency [43]. In situations that are either write-heavy or read-heavy, sequential consistency
can be provided at much lower latency.

One nice property of linearizability is its composability�if two storage systems or objects
each satisfy linearizability, then when combined, they produce a system that also satis�es
linearizability. This is a nice property for building large systems because it allows compo-
nents to be designed and implemented independently. In contrast, maintaining a sequential
consistency guarantee while composing systems requires some form of shared implementa-
tion, e.g., a cross-component logical clock or other mechanism to allow components to agree
on a common sense of order.

3.3.2 De�ning Externally Consistent Sequential Consistency

Figure 3.3 shows the example that we will use to explain ECSC. We consider a system with
three end-users: Alice, Bob, and Charlie. We assume that Alice and Bob are sitting in the
same room, where they are able to talk to one another, while Charlie is in a remote location.
Each individual interacts with a cloud-based computing system using their own personal
devices.

In this example, Alice executes a FaaS program f1, and after it returns, tells Bob to go
ahead and execute f2. Concurrently with these two operations, Charlie executes f3. The
functions operate on three variables (X, Y, Z). f1 increments X, f2 increments Y, and f3 sets Z
to 2×Y+X, evaluating the expression from left to right. We assume all variables are initially
zero.

Figure 3.4 shows several scenarios for how these functions might execute. Time runs
from left to right, and we show the interval corresponding to each underlying read and
write operation, denoting the invocation event with �`� and the response event with �a�.
Figure 3.4 (a) shows an example linearizable execution, whereas (b) shows a very similar
execution that is not linearizable. The two are equivalent to all outside observers as well as
to the functions themselves. The di�erence is that in (a) WB(Y; 1) is concurrent with RC(Y; 0),
whereas in (b) WB(Y; 1) ≺H RC(Y; 0), which is not compatible with linearizability.

Why would a system allow the execution of Figure 3.4 (a) but not that of Figure 3.4
(b)? Linearizability knows nothing about f1, f2, or f3�it is de�ned purely in terms of
the invocations and responses of individual read and write operations. ECSC incorporates
information about the communication between processes, and takes advantage of sequences
of operations that occur in isolation.

In Table 3.1, we present a simpli�ed de�nition of ECSC that assumes that all programs
represent function invocations and that each function executes in isolation. Communication
comprises only 1) storage invocations, 2) storage responses, 3) input at the beginning of the
function invocation, and 4) output at function return. ECSC respects the order of operations
at each program, like sequential consistency. However, instead of relying on the real-time
order between operations, as linearizability does, it uses the real-time order de�ned by their

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 77

enclosing functions (see Figure 3.5). We give a more complete and formal de�nition of ECSC
in Chapter 4.

U ≺H V when

Linearizability Re(U) <H In(V)

Sequential consistency Re(U) <H In(V) ∧ Func(U) = Func(V)

ECSC (isolated FaaS) Re(U) <H In(V) ∧ Func(U) = Func(V)

∨Re(Func(U)) <H In(Func(V))

Table 3.1: Precedence relationships that de�ne various consistency models. U and V denote
operations such as reads and writes to storage. In(U) andRe(U) denote events corresponding
to the invocation and response for operation U . Func(U) denotes the function invocation
(i.e., execution instance) that issued operation U . In(Func(U)) and Re(Func(U)) are the
corresponding invocation and response events for that function execution instance; i.e., the
delivery of a message containing the input and the sending of a message containing the
output.

Figure 3.4 (c) shows an example that is sequentially consistent but does not satisfy ECSC.
We note that there is no linearizable execution that results in z = 2.

3.3.3 Simulating ECSC

To demonstrate the bene�ts of ECSC, we developed a simulation derived from the contention
microbenchmark described in Section 3.5.3. Each client reads 10 blocks at random from a
�le containing 100 blocks, then writes one block. At this point, it communicates with the
outside world, as FaaS instances do between function invocations.

We simulated clients with local caches large enough to hold the entire working set. We
evaluated both linearizability and ECSC, and we simulated each consistency guarantee with
and without speculative execution.

In the absence of speculative execution, we implemented caching for linearizability with a
standard cache coherence protocol [306]. This models the behavior of distributed �le systems
such as NFS [185], which can provide shared or exclusive client delegations on �le regions.
For ECSC, we use an adaptation of the Tardis [452] cache coherence protocol, which ensures
sequential consistency using logical leases (see Section 4.5).

With speculative execution, clients proceed using locally cached state but validate their
assumptions before producing output. For linearizability, we compare read versions to the

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 78

A

C

B

Figure 3.3: ECSC example: Alice, Bob, and Charlie run FaaS functions f1, f2, and f3. Alice
and Bob communicate, creating an external dependency and the precedence relationship
f1≺Hf2. Charlie accesses the system from a remote location, which adds some latency.
Perhaps as a result, f3 appears to run concurrently with f1 and f2. Time runs from left to
right.

latest versions at a central server, which is similar to Speculator [290]. For ECSC, we specu-
latively extend the logical leases, as Sundial [455] does, then validate these lease extensions
at the central server. If we fail to validate, we reset the cache and retry.

As shown in Figure 3.6, without speculative execution, both ECSC and linearizability
provide similar performance. For this workload, that can be worse than an implementation
where each operation is handled individually at a central server (denoted �No cache�). With
speculative execution, ECSC provides signi�cantly improved scalability over linearizability.
In this model, the one-way network delays are drawn from a uniform distribution representing
the range of 100,000 to 150,000 µs, a range we chose to be roughly representative of the
delays within a commercial data center. In this example, the writes are all at the end of the
transaction, which means that ECSC experiences no aborts. Applications that can bu�er
their writes can generally achieve this e�ect.

3.3.4 External Consistency and Other Transactional Guarantees

We have borrowed the term external consistency from the language of transaction systems.
Originally de�ned in Gi�ord's doctoral dissertation [165], external consistency was later
popularized by Spanner [113], Google's globally distributed database.

External consistency is similar to strict serializability [192], which is equivalent to lineariz-
ability when each operation is a serializable database transaction (see Section 4.4). What
sets external consistency and strict serializability apart from other transactional guarantees
is that they enforce real-time correspondence at the transaction boundaries.

The situation is similar with ECSC. Communication with the outside world leads to the
enforcement of real-time precedence relationships. Between episodes of communication with

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 79

├────────┤├────────┤RA(X;0) WA(X;1)

├───────┤RC(X;1) ├────────┤├─────────┤ WC(Z;1)RC(Y;0)

├───────┤RB(Y;0) ├──────────┤WB(Y;1)

(a) Linearizable.

├────────┤├────────┤RA(X;0) WA(X;1)

├───────┤RC(X;1) ├────────┤├───────┤ WC(Z;1)RC(Y;0)

├───────┤RB(Y;0) ├───────┤WB(Y;1)

(b) ECSC but not linearizable.

├────────┤├────────┤RA(X;0) WA(X;1)

├───────┤RC(X;0) ├────────┤├───────┤ WC(Z;2)RC(Y;1)

├───────┤RB(Y;0) ├───────┤WB(Y;1)

(c) Sequentially consistent but not ECSC or linearizable.

Figure 3.4: ECSC example scenarios. (a) WB(Y; 1) is concurrent with RC(Y; 0), as is permissible
under linearizability; (b) WB(Y; 1) ≺H RC(Y; 0), violating linearizability but not ECSC because
f2 and f3 are concurrent; (c) f3 contains RC(Y; 1) ≺H RC(X; 0), which is permitted by sequential
consistency but not ECSC, which must maintain WA(X; 1) ≺H WB(Y; 1). We assume all values
are initially 0.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 80

├────────────────────┤RA(X;0) WA(X;1)

├───┤RC(X;1) WC(Z;1)RC(Y;0)

├────────────────────────┤RB(Y;0) WB(Y;1)

Figure 3.5: Whereas linearizability enforces real-time correspondence on the basis of individ-
ual operations (see Figure 3.4), ECSC enforces real-time correspondence at times of external
communication.

the outside world, logical consistency (logical rather than real-time precedence) su�ces to
ensure correct behavior.

3.4 Implementation of FaaSFS

3.4.1 Overview

In a departure from the general approach to ECSC presented in Section 3.3, our implemen-
tation uses a multiversion transaction mechanism. Section 4.4 shows that doing so provides
a valid implementation of ECSC when all communication occurs at the end and beginning of
the function. We adopted this approach mainly because it allows us to use proven techniques
for implementing distributed databases.

Transactions in ECSC are created transparently by the FaaS environment and execute
with strict serializability [192]. They begin when a function starts executing and commit
when it completes. We deploy this mechanism as a custom runtime layer in AWS Lambda,
so no changes to application code are needed. Should a transaction abort because some
speculative assumption fails, we re-execute the function.

Transactions also make it easier to write programs that maintain correctness, including
for security, under concurrency. They can also be added to the �le system speci�cation with
a simple extension [323, 357], and they could allow the FaaSFS approach to be used outside
FaaS.

We chose to implement FaaSFS from scratch rather than by modifying an existing �le
system or building on top of an existing database. We hoped that this would help us achieve
our aims because it allows integration of the caching mechanism and the concurrency control
mechanism. Prior work, such as Sundial, shows that this is valuable [455]. Also, applications
expect �le systems to provide latency and throughput performance that database systems

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 81

0.5

1.0

1.5

2.0

C
om

pl
et

io
n

R
at

e
(a

.u
.)

1e6

0.5

1.0

1.5

2.0

C
om

pl
et

io
n

R
at

e
(a

.u
.)

1e6

0 20 40 60 80 100
Number of Clients

0%

50%

100%

Sp
ec

ul
at

io
n

Su
cc

es
s

0 10 20 30
Skew Factor

0%

50%

100%

Sp
ec

ul
at

io
n

Su
cc

es
s

ECSC
ECSC + speculative
Linearizable

Linearizable + speculative
No cache

Figure 3.6: ECSC simulation on a read-intensive workload. On the left blocks are selected
from a uniform distribution while the number of clients varies. On the right the number of
clients is �xed at 50 and the skewness of the access distribution is varied. Here a skew factor
of n means that 1/(2 + n) of the blocks receive (1 + n)/(2 + n) of the requests. Speculative
execution scales better when used with ECSC than with linearizability because ECSC is
more permissive about the real-time ordering of storage operations.

often cannot match. FaaSFS comprises roughly 4,000 lines of C and 40,000 lines of Go.
Table 3.4 lists the POSIX operations that we implemented and their completeness.

3.4.2 FaaSFS Client Components

Figure 3.7 shows the components of FaaSFS alongside an application. In the discussion that
follows, we work our way down the stack from the application level to the FaaSFS backend
and the underlying object storage.

3.4.2.1 System Call Intercept

Operating in the AWS Lambda environment, we have no ability to modify or con�gure the
kernel (see Section 3.2.3). The ptrace system call is also blocked, so we resort to binary

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 82

FaaS Environment

Application ProcessApplication Process

Application Code

C Standard Library

System Call Intercepting Library

Routing Library

Linux Kernel

User Space Local Server

Shared Memory

Cache & Write Buffer

Cloud Object Storage

Block Storage
Service

Backend Protocol Endpoint

Metadata Service

Timestamper

FaaSFS components

FaaS process boundary

Other system components

Figure 3.7: Overview of FaaSFS. Yellow indicates FaaSFS components (software that we
wrote). Dashed lines delineate the interfaces between clients, the backend services, and
cloud object storage. The Metadata Service, Block Storage Service, and Timestamper are
all replicated stateful services. The Block Storage Service and Metadata Service scale by par-
titioning, whereas the Backend Protocol Endpoint and FaaS Environment scale as stateless
services.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 83

modi�cation via hot patching to intercept system calls. We do this using the System Call
Intercepting Library [399] provided as part of the Persistent Memory Development Kit [351].
We use LD_PRELOAD [327] in an AWS Lambda custom runtime [114] to install this intercept
routine before the Python interpreter starts up. In our workloads, all system calls originate in
a limited set of shared libraries�the C standard library, the pthread library, or the dynamic
linker library�so these are the only binaries that require patching.

3.4.2.2 Routing

The FaaSFS Routing Library runs in the address space of the application and registers a
handler with the System Call Intercepting Library. This handler gets invoked ahead of all
system calls and can either let them pass unchanged or substitute an alternative implemen-
tation (just like ptrace). For those calls corresponding to the POSIX �le system, we must
perform a routing decision using arguments such as the path name or the �le descriptor to
determine whether the operation should go to FaaSFS or the underlying operating system
for local �le system access. For paths, we test the pre�xes, e.g., /mnt/faasfs, normalizing
them to account for relative paths. Some delicate bookkeeping is required. If a FaaS func-
tion forks child processes, we pass this critical bookkeeping information along in environment
variables. The routing library is written in C.

3.4.2.3 Shared memory IPC

The Routing Library and the Local Server communicate using a shared memory area. We
maintain a set of bu�ers, con�gurable in number and size, to allow for concurrent requests.
By default, we provide 10 bu�ers, each 2 MB in size. A client, which may correspond to
either a thread or a process, �rst checks out a bu�er (it attempts to reclaim the last-assigned
bu�er using an atomic compare and swap operation to verify ownership and set a busy bit,
but if the bu�er has been reassigned this operation fails and the client falls back to IPC with
the server). It then writes the request data and marks it as ready for processing by the server.
The server will busy-wait, spinning for up to 16 µs before falling back to wait on a semaphore.
The response works the same way, with the client �rst spinning in hopes of receiving a low-
latency response before turning to operating system support for coordination. We adapted
elements of this technique from the Intel Thread Building Blocks [319]. We evaluate the
e�ciency of the IPC mechanism in Section 3.5.1.

3.4.2.4 User Space Local Server

The FaaSFS User Space Local Server (LS) runs in a separate process from the application,
and each instance of a cloud function runs one such process. The LS serves as a shared cache
for all processes in the function and bu�ers their writes as well. It intermediates all network
communication with the FaaSFS Backend Service. Both the LS and all backend services are
written in Go, and we use gRPC [173] for communication between them.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 84

FaaSFS supports several cache update policies. LS may check for updates on all cached
objects when a function begins executing, it may check each object on �rst use, or it may
rely solely on the optimistic concurrency control's commit mechanism to identify outdated
local state. In our evaluation we use only the �rst approach, as we found that checking all
versions when the function begins executing works best for our workloads.

3.4.3 FaaSFS Backend

The FaaSFS backend is designed with scalability in mind and comprises a number of separate
components. A key design principle is to keep to a minimum the amount of work that gets
done in an ordered sequential context. Our prototype is a single-tenant implementation,
but we imagine that a cloud provider deploying FaaSFS to its customers would develop a
multi-tenant implementation.

State management is divided between two components: a Block Storage Service (BSS)
and a Metadata Service (MDS). BSS is responsible for handling the bulk of the bytes stored
in the �le system and for moving them in and out of object storage with low overhead.
Unlike cloud object storage, where the client provides a name for the key by which it may
be retrieved, BSS generates keys and provides them to the client. MDS is responsible for
recording directory information, and for tracking which stored blocks comprise each version
of a �le. At a high level, this design is similar to the pattern used in other scalable �le
systems [86, 195, 359, 369, 403]. However, the FaaSFS backend is targeted speci�cally to
the cloud environment, as is especially evident in the design of BSS (see Section 3.4.3.4).

3.4.3.1 Backend Protocol Endpoint

The Backend Protocol Endpoint (BPE) provides a uni�ed access point for clients and coor-
dinates the tasks of the underlying services. As illustrated in Figure 3.9, assembling an API
response can require interacting with multiple services and their partitions, and BPE hides
this from the client.

BPE is stateless in the same sense as FaaS functions are, i.e., it has ephemeral state
only (see Section 2.6.1). This makes it easily scalable. Clients maintain a persistent TCP
connection to amortize connection overheads and allow request pipelining. The BPE and its
associated client are fate-sharing: If a BPE instance fails, the associated FaaS client fails as
well.

3.4.3.2 Metadata Service

The Metadata Service (MDS) maintains a current and historical record of �le content, rep-
resented by references to data stored in BSS. The history allows reads of the �le at past
timestamps (the retention policy is con�gurable, with 10 versions retained by default). MDS
also maintains the content of directories. State in MDS is partitioned among several Raft
logs [299], each of which serves as the transition history of a replicated state machine re-

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 85

sponsible for a subset of inodes. We use the Dragonboat library [130], which provides a
high-performance pipelined implementation of Raft that amortizes the overheads of leader
election and replication across many individual logs. In practice, we set the number of logs
to 12× the number of cores. MDS is partitioned and uses two-phase commit for distributed
transactions.

3.4.3.3 Timestamp Service

In its present implementation, FaaSFS relies on a centralized timestamp mechanism provided
by the Timestamp Service (TSS). This is a single Raft state machine that merely implements
a counter. We have found that the throughput of TSS is limited to roughly 500,000 requests
per second. This is presently the only global resource for which we have not provided a
scalable solution. We imagine that this could be replaced with a more scalable replicated
state machine, such as Compartmentalized MultiPaxos [437], or perhaps by wall clocks as
in Spanner [113].

3.4.3.4 Block Storage Service

The Block Storage Service (BSS) is designed to provide an e�cient and scalable mechanism
for storing and retrieving data from underlying cloud object storage. Our implementation
works with AWS S3, preserving its advantages and layering on the versatility needed to
support FaaSFS. We view BSS as a new general-purpose component that could be used to
implement other stateful serverless systems, and so we describe its design in some detail.

Cloud object storage provides low-cost, long-term, highly durable data storage (see the
comparison of cloud storage alternatives by Jonas et al. [216]). It provides high-throughput
for large transfers, but small operations are particularly costly in terms of both price and
performance; whereas a single large operation can saturate the client's network interface,
latency, which ranges from 10 ms to 20 ms, is much higher than the network latency. Access
is also billed on a per-request basis, regardless of the amount of data transferred, which makes
small transfers expensive. In addition, cloud object storage o�ers a restrictive interface:
objects are stored as sets of immutable versions, and any update to an object requires
uploading a new version.

BSS forms a caching and bu�ering layer that enables low latency and high throughput,
even for small-block operations, while preserving the durability and cost-e�ective long-term
retention of the underlying cloud object storage. BSS is not without trade-o�s, however. Its
interface is even more restrictive than that of cloud object storage, which makes possible
strong performance along all these measures.

The BSS API, shown in Table 3.2, is similar to key-value storage�however, it uses
object references (keys) that are generated by the system, rather than ones provided by the
client. By generating references using a scalable UUID mechanism, BSS achieves write-once
semantics without using coordination protocols. For each block B provided via put, BSS
creates an access reference R that can be used to retrieve it via get. These references are

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 86

Table 3.2: Block storage service API.

put([]B): []R

get([]R): []Option〈B | Unknown | Dropped〉

drop(Rseg)

only partially opaque, as they comprise two parts R = (Rseg,Rindex). BSS combines many
blocks into a single segment, which corresponds to an object in the underlying storage. Rseg

is a reference to this object whereas Rindex is an o�set within it. Data can only be removed
one segment at a time, via drop.

Whereas put provides strong consistency for subsequent get operations, drop operates
with eventual consistency. We summarize the BSS consistency guarantees as follows:

1. Before BSS returns R, get(R) must return Unknown.
2. After put(B) returns R, get(R) must return B, unless drop(Rseg) was issued.
3. After drop(Rseg) succeeds, get(R) may return Dropped.

Figure 3.8 illustrates the internal architecture of BSS and illustrates how it achieves
durability. Each BSS server accumulates writes independently, constructing a segment and
replicating it up to n times for fault-tolerance. Once the primary receives m replies, it
acknowledges put completion to the client. Once a segment reaches either the size limit or
age limit, BSS stops adding blocks to it, at which point we say the segment is �nalized. BSS
then proceeds to save it to cloud object storage. If a replica fails to receive a heartbeat
or segment updates from the primary, it will independently �nalize the segment (rejecting
future updates) and write it to cloud object storage. It is thus possible for multiple versions
of a segment to exist in cloud object storage, but once acknowledged, a block written to BSS
has at least m paths to cloud object storage.

Table 3.3: Time window to save to cloud object storage, as given by Tstore in Equation 3.3.

m In-Memory Replication On-Disk Replication

2 3.1 µs 31 ms
3 5.6 s 5,600 s
4 680 s 316,447 s

We aim to ensure that BSS provides durability no worse than that of cloud object storage.
AWS S3, Azure Blob Storage, and Google Cloud Storage all presently advertise an �11 nines�
durability design aim [49, 116, 293]. This means that there is a 99.999999999% likelihood that
a stored object survives any one-year period. For short intervals T , the survival probability

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 87

(2
) A

PP
EN

D
Ac

tiv
e

Lo
g

Vo
la

til
e

Lo
g

Ca
ch

ed
 L

og
Re

pl
ica

 A
ct

iv
e

Lo
g

Re
pl

ica
 V

ol
at

ile
 L

og

(1) PUT_REQUEST

(4) PUT_RESPONSE

(3
) A

PP
EN

D_
AC

K

(3
) A

PP
EN

D_
AC

K

(2
) A

PP
EN

D

(9
) H

EA
RT

BE
AT

Re
pl

ica
 A

ct
iv

e
Lo

g

(10) STORE
(fallback)

(9
) H

EA
RT

BE
AT

P
R
IM

A
R
Y

R
EP

LI
C
A

 1
R
EP

LI
C
A

 2

(11) GET_REQUEST

(13) GET_RESPONSE

(12) LOAD

(7) STORE

(8
) S

to
re

d
(6

)
Fi

na
liz

ed
(6

)
Fi

na
liz

ed

Re
pl

ica
 V

ol
at

ile
 L

og

(10) STORE
(fallback)

(6
)

Fi
na

liz
ed

(5
) R

et
ry

 U
po

n
Ti

m
eo

ut
 o

r F
ai

lu
re

C
LI

EN
T

 (
B

P
E)

C
LO

U
D

 O
B

JE
C
T

 S
T

O
R
A

G
E

F
ig
u
re
3.
8:

R
ep
li
ca
ti
on

in
B
S
S
.
R
ep
li
ca
ti
on

of
w
ri
te
s
to

an
ac
ti
ve

lo
g,
(1
)-
(4
)
ar
e
sh
ow

n
in
re
d
.
A
re
tr
y
lo
op

at
th
e
cl
ie
n
t

(5
)
re
-i
n
it
ia
te
s
th
e
st
or
ag
e
re
q
u
es
t,
w
h
ic
h
m
ay

b
e
d
ir
ec
te
d
to

th
e
ac
ti
ve

lo
g
on

an
ot
h
er

se
rv
er

d
u
e
to

lo
ad

b
al
an
ci
n
g.

(6
)-
(8
)
in
d
ic
at
e
th
e
fa
il
u
re
-f
re
e
st
or
ag
e
p
at
h
w
h
er
eb
y
ac
ti
ve

lo
gs

ar
e
sa
ve
d
to

cl
ou
d
ob

je
ct

st
or
ag
e
on
ce

th
ey

b
ec
om

e
fu
ll
.
If
re
p
li
ca
s
fa
il
to

re
ce
iv
e
m
es
sa
ge
s
or

a
h
ea
rt
b
ea
t
(9
)
to

in
d
ic
at
e
th
at

p
ri
m
ar
y
is
op
er
at
io
n
al
an
d
su
cc
es
sf
u
ll
y
sa
v
in
g

lo
gs

to
st
or
ag
e,

th
en

th
ey

w
il
l
in
d
ep
en
d
en
tl
y
�
n
al
iz
e
th
ei
r
co
p
y
of

th
e
lo
g
an
d
sa
ve

it
to

cl
ou
d
ob

je
ct

st
or
ag
e
(1
0)
.

(1
1)
-(
13
)
sh
ow

th
e
p
ro
ce
ss

of
re
tr
ie
v
in
g
d
at
a
fr
om

B
S
S
,
w
h
ic
h
m
ay

in
vo
lv
e
lo
ad
in
g
an
d
ca
ch
in
g
d
at
a
st
or
ed

in
cl
ou
d

ob
je
ct

st
or
ag
e.

W
e
d
is
cu
ss

th
is
d
es
ig
n
an
d
it
s
fa
u
lt
-t
ol
er
an
ce

ch
ar
ac
te
ri
st
ic
s
in

S
ec
ti
on

3.
4.
3.
4.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 88

is approximately

1− 10−12 T

1 year
(3.1)

Studies of warehouse-scale computers suggest that servers fail 2-3× per year [60]. We thus
conservatively estimate that BSS servers fail at a rate Rf = 10−7 per second, erasing any
state in process memory when they do. The same studies also report that 99% of failures
are recoverable, resulting in loss of volatile state but allowing state on local disk, or instance
storage, to be recovered. An implementation of BSS that writes blocks to local nonvolatile
storage before acknowledging them would lose state at a rate of Rf = 10−9 per second.
Assuming uncorrelated failures, if T is the interval between when a block is acknowledged
and when it is stored in the cloud, the survival probability in BSS is approximately

1− (RfT)m (3.2)

Taken together, Equation 3.1 and Equation 3.2 suggest that BSS o�ers durability greater
than or equal to that of cloud object storage when

Tstore ≤
(

10−12

Rf
m

1

1 year

) 1
m−1

(3.3)

where Tstore is the mean time required to save a block to cloud object storage.
Table 3.3 lists Tstore for various values of m, and for both in-memory and on-disk storage.

Maintaining three in-memory copies allows up to 5.6 s, on average, to save a block to cloud
object storage, which we achieve by saving a 1 MB block every 10 s.

We now summarize the architectural features and assumptions that informed our design
of BSS. In FaaSFS, consistency and durability are separate concerns. BSS is focused on the
latter, making possible a narrow API with write-once semantics and system-generated access
references. BSS provides a bu�ering and caching layer on top of cloud object storage that
provides low latency and high throughput for both reads and writes so long as the cache can
hold the working set [126]. The working set can be cached e�ciently when it contains blocks
that were written together, providing a form of locality [125]. BSS always preserves the
low-cost and high-durability for long-term data retention, just like the underlying storage.
Our calculation shows that BSS can bu�er writes for 10 s while still matching the durability
of cloud object storage, so long as it replicates blocks 3× before acknowledging write success.
The calculation assumes that failures are uncorrelated, which is a reasonable assumption for
servers located in distinct availability zones. It also assumes that the BSS application is itself
stable, i.e., that it does not fail unless the underlying system fails. While this has been true
in our experience, maintaining such reliability for an actively-developed commercial product
may be di�cult, and in such environments disk-backed replication may be advisable.

3.4.4 Transactional Implementation

As we noted in Section 3.4.1, FaaSFS implements ECSC using transactions. This approach
has allowed us to bene�t from a variety of well established techniques for ensuring consistency

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 89

and scalability. FaaSFS provides strict serializability, which requires that a transaction be
able to see the results of any transaction that committed before it started. We enforce strict
serializability using timestamps. We choose not to rely on the availability of synchronized
clocks (as systems like Spanner [113] do), and instead rely upon a centralized timestamp
service: TSS. At the beginning of each transaction, the client communicates with TSS to
obtain a read timestamp TR, which corresponds to the most recently committed version
across the �le system. Each �le is represented as a collection of blocks, each of which has
an associated timestamp T re�ecting the commit time of its last change. By maintaining a
history of versions, we can reconstruct the �le system state at any given timestamp TR.

Throughout the course of a transaction, LS maintains a read set R and a write set W.
Each read occurring during the course of a transaction adds a record of the form (blocknum,
T) to R, where T ≤ TR represents the last modi�cation time of the actual version read.
Similarly, write records of the form (blocknum, changed data) are added toW, where changed
data is of the form (o�set, byte[]) and can represent a partial update to the state of the block.
Any end-of-�le encounters during read operations are also recorded.

Read-only transactions do not require any backend processing at commit time. For trans-
actions involving writes, LS sends R and W to the BPE. Figure 3.9 details the interactions
that occur next. Blocks are �rst written to BSS, where they are replicated three times. Once
replication is complete, BPE contacts a Transaction Manager (TM) in the MDS. The TM
is responsible for coordinating a two-phase commit protocol across the multiple metadata
partitions. Each of these partitions is itself a replicated state machine that runs the Raft
protocol [299]. During the �rst phase of the transaction commit, MDS validates reads. It
goes through the entire read set and acquires a read lock on every block in R and a write
lock on every block in W. It then checks to see that the read version of every block in R
is still the current version. If any reads encountered the end of the �le, it also checks that
the �le length has not changed since TR. We use a centralized deadlock detector that runs
periodically and aborts transactions in the prepare phase whenever it encounters a waits-for
cycle.

After validating the transaction at all partitions, TM contacts TSS to obtain a commit
timestamp. It then enters the second commit phase, where MDS records the new BSS
reference and commit timestamp at each block in W. It then releases locks.

We note that our commit protocol does not take full advantage of the available multiver-
sioning. Our validation technique is well established for optimistic concurrency control [64],
but it is conservative in this context. It would be interesting to try to attempt more aggressive
validation approaches, perhaps by extending Sundial [455] to support strict serializability.
The commit protocol is also conservative when it comes to changes in the length of a �le
and changes to directories.

FaaSFS implements a form of speculative lock elision [332], an optimization previously
demonstrated in the processor architecture context. We implement the POSIX fcntl lock
and unlock operations as no-ops, which is safe since the entire function is wrapped in a
transactional context, ensuring that no interleaving of read and write operations of di�erent
function invocations occurs.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 90
Fa

aS
FS

Cl
ie

nt

Fa
aS

FS
Cl

ie
nt

Ba
ck

en
d

Pr
ot

oc
ol

 E
nd

po
in

t

Ba
ck

en
d

Pr
ot

oc
ol

 E
nd

po
in

t

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

1

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

1

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

2

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

2

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

3

Bl
oc

k
St

or
ag

e
Se

rv
ic

e
N

od
e

3

Tr
an

sa
ct

io
n

M
an

ag
er

Tr
an

sa
ct

io
n

M
an

ag
er

M
et

ad
at

a
Se

rv
ic

e
Pa

rt
iti

on
 1

M
et

ad
at

a
Se

rv
ic

e
Pa

rt
iti

on
 1

M
et

ad
at

a
Se

rv
ic

e
Pa

rt
iti

on
 2

M
et

ad
at

a
Se

rv
ic

e
Pa

rt
iti

on
 2

Ti
m

es
ta

m
pe

r

Ti
m

es
ta

m
pe

r

Cl
ou

d
O

bj
ec

t S
to

ra
ge

Cl
ou

d
O

bj
ec

t S
to

ra
ge

Co
m

m
it

W
rit

e
bl

oc
ks

Re
pl

ic
at

e
bl

oc
ks

Re
pl

ic
at

e
bo

ck
s

Co
nf

irm
 re

pl
ic

at
ed

Co
nf

irm
 re

pl
ic

at
ed

W
rit

e
bl

oc
ks

 re
sp

on
se

Co
m

m
it

Ph
as

e
I

Ac
qu

ire
 lo

ck
s

Va
lid

at
e

pr
ev

io
us

 v
er

si
on

s

Ph
as

e
I

Ac
qu

ire
 lo

ck
s

Va
lid

at
e

pr
ev

io
us

 v
er

si
on

s

Ph
as

e
I s

uc
ce

ss

Ph
as

e
I s

uc
ce

ss

M
ak

e
co

m
m

it
de

ci
si

on
 d

ur
ab

le

Co
m

m
it

su
cc

es
s

Co
m

m
it

su
cc

es
s

Re
qu

es
t t

im
es

ta
m

p

Re
ce

iv
e

tim
es

ta
m

p

Ph
as

e
II

In
st

al
l n

ew
 v

er
si

on
s

Re
le

as
e

lo
ck

s

Ph
as

e
II

In
st

al
l n

ew
 v

er
si

on
s

Re
le

as
e

lo
ck

s

Ph
as

e
II

su
cc

es
s

Ph
as

e
II

su
cc

es
s

So
m

e
tim

e
la

te
r

St
or

e
lo

g

St
or

e
lo

g
su

cc
es

s

F
ig
u
re

3.
9:

S
eq
u
en
ce

d
ia
gr
am

fo
r
fa
il
u
re
-f
re
e
tr
an
sa
ct
io
n
co
m
m
it
.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 91

Table 3.4: Listing of POSIX operations and status of implementation in FaaSFS. With the
exception of mmap, for which we support a read snapshot only, there is straightforward path
to a fully POSIX compliant implementation of all of the below operations.

Status Operation Description

Complete or
Nearly
Complete

open Get new descriptor for �le system object
close Close descriptor
write / pwrite Write / positioned write
read / pread Read / positioned read
stat Get size, permissions, last modi�ed, etc.
getdents Read directory
sync Ensure updates are durable
seek Set descriptor position
dup / dup2 Copy descriptor
truncate Set �le size
flock Byte range lock and unlock
mkdir Create directory
rename Rename �le system object
unlink Delete �le system object
chmod Set access permissions
chown Set ownership
utimes Update modi�ed / accessed timestamps
clock_gettime Get current time
chdir Set working directory
getcwd Get working directory
exec Load and run a program

Partially
Implemented

mmap / munmap Map �le to memory
access Check access rights
mknod Create a special or ordinary �le

Extensions
begin Start transaction
commit / abort End transaction

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 92

3.5 Evaluation

Our evaluation of FaaSFS consists of several parts. We begin with a basic performance
characterization that uses three benchmarks: one that measures the latency of various com-
mon operations, one that focuses on throughput, and one that evaluates performance un-
der contention. We then describe experiments with a synthetic �le system benchmark,
Filebench [395], which demonstrates the potential for gains across a variety of workloads
patterns. Finally, we run a real-world blog application on FaaSFS, demonstrating the ability
to run traditional server-based software at serverless scale.

We chose AWS EFS [24] as the primary point of comparison for FaaSFS. EFS imple-
ments NFS version 4 [185], which is the latest version of one of the most widely deployed
distributed �le system protocols. EFS lacks some NFS features, notably delegation, but it
appears to be one of the most scalable NFS implementations available. EFS is also the only
distributed �le system supported by AWS Lambda. Since Lambda is a controlled environ-
ment (see Section 3.2.3), it is not possible to access the widely available Linux kernel NFS
client or install kernel modules for Lustre [359] or Ceph [433] clients. Previous research has
documented the performance of EFS with AWS Lambda under a variety of workloads and
client con�gurations [101].

When creating a new EFS �le system, the user can select between two modes: a Max I/O

mode that o�ers greatest scalability and a General Purpose mode that provides the lowest
latency but is limited to 35,000 operations per second. We chose to compare FaaSFS against
the EFS Max I/O mode since it appears to be internally partitioned, as FaaSFS is. We note
that even in Max I/O mode, EFS also has various undocumented limits, e.g., on per-�le and
per-directory operations per second. We designed our experiments to avoid them.

Both FaaSFS and EFS replicate �le system state synchronously for redundancy. EFS
replicates state to multiple Availability Zones (AZs) within a region. According to AWS,
�AZs are physically separated by a meaningful distance, many kilometers, from any other
AZ, although all are within 100 km (60 miles) of each other� [3]. To match EFS, we con�gured
FaaSFS to replicate data to three separate AZs.

3.5.1 Latency Microbenchmark

To assess the quality of our implementation, we designed a microbenchmark to measure the
latency of some of the most common �le system operations. The test program uses one client
FaaS function to repeatedly execute a sequence of operations on a single �le. It opens, reads
at a random location, writes at a random location, syncs, and closes the �le. The block size
used is 4 KB and the �le is 1 MB, which is small enough to be fully cached.

In the case of FaaSFS, these operations are wrapped in a transaction using begin and
commit operations. The backend consists of three m5dn.2xlarge instances. Figure 3.10 plots
the resulting median latency and Table 3.5 shows a more detailed breakdown that includes
distribution percentiles.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 93

open close stat sync begin commit
0

5,000
10,000
15,000
20,000

La
te

nc
y

(
s)

(b)

/tmp
EFS
FaaSFS

seek read write
0

10

20

30

La
te

nc
y

(
s)

(a)

Figure 3.10: Microbenchmark results showing median latency for di�erent operations. (a)
the scale of 0-30 µs mainly highlights the performance of the FaaSFS IPC implementation
(b) the scale of 0-20 ms shows the performance of network requests. Please refer to Table 3.5
for further detail on these measurements; It includes p95, p99, and maximum latencies and
lists values that are too close to zero to show up on the scale of (b).

The fastest operation is seek, which has a median latency of about 0.55 µs for a local /tmp
�le system, 0.61 µs for an EFS target, and 7.67 µs for FaaSFS. Seek is a trivial operation, and
its latency is a dominated by system call overhead. In our case, it tells us that the FaaSFS
IPC implementation is about 10× slower than a system call. We have found the performance
of this mechanism to be architecture-dependent, i.e., the cost varies between machine types
and between EC2 instances and AWS Lambda. Furthermore, the performance on AWS
Lambda changed over time�getting signi�cantly worse�presumably due to some changes
in the underlying platform (hardware, hypervisor, or operating system). AWS is known to
be innovating in these areas [9], and we imagine that e�orts to optimize the environment
for multi-tenancy may run counter to the needs of fast IPC. The main takeaway from this
measurement is that our implementation incurs a cost of 5-10 µs on each operation relative
to what an in-kernel implementation would achieve. We accept this penalty as the price of
integration with a production serverless FaaS service. We imagine that a future version of
FaaSFS could be deployed as a kernel module to bring this overhead in line with that of EFS
and other kernel-based �le system implementations.

Both EFS and FaaSFS show signi�cantly higher read and write latency than /tmp. We
focus on the median latencies (shown in Figure 3.10 (a)). These are all much less than the
network round-trip time and so re�ect the overheads of accessing data cached at the client.
Our implementation has an IPC overhead similar to that of seek and also needs to copy
the payload in and out of a bu�er area. Additionally, we can encounter overheads resulting
from the language runtime environment. For example, Go must allocate memory and may
encounter garbage collection pauses. In FaaSFS, writes are slightly faster than reads because
writing merely involves appending to a log, whereas reading requires constructing the latest
version of the data from that log.

Figure 3.10 (b) is scaled to show the latency of operations that communicate with the
backend. Since it is an implementation of NFS, EFS provides close-to-open consistency

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 94

semantics [224, 313]. This means that each open operation contacts the server to learn
latest version of the �le. The close operation sends a noti�cation that informs the server
that any subsequent open operations must now re�ect modi�cations made to the �le. The
sync operation requests that data be stored durably. We do not know how EFS guaran-
tees durability, but we presume that durable data must be replicated to multiple AZs and
perhaps also �ushed to stable storage such as SSD. The stat command returns �le meta-
data, which includes not only the size but also access and modi�cation times. Since network
communication dominates the latencies in Figure 3.10 (b), we infer that EFS communicates
with multiple AZs during open and sync operations but only with the local AZ for close
and stat operations. EFS does not support transactions and skips the begin and commit

operations. FaaSFS executes open, close, sync, and stat operations speculatively, and
it incurs no network latency in doing so. Instead, it incurs latency during the begin and
commit operations. The begin operation obtains a timestamp, which involves reading from
a replicated state machine. The commit operation involves sending both read and write sets
to the server, validating the transaction, and replicating the state. We note that the median
commit latency in FaaSFS is 15.8 ms, compared to a median sync latency of 8.52 ms for
EFS. We believe that our implementation may be at a further disadvantage because it treats
all commits as distributed transactions.

3.5.2 Throughput Microbenchmark

We performed a measurement to assess the throughput of the FaaSFS backend. Since AWS
Lambda performance can be unpredictable, in this experiment we used clients on EC2 and
perform reads and writes using a test program integrated with BPE that communicates
with BSS and MDS directly. Our cluster uses 12 m5dn.2xlarge instances and provides 3×
replication.

We looked for a benchmark that would exercise the transactional capabilities of our
system, and one that would highlight the performance for basic read-write operations. We
thus chose to model this experiment on YCSB+T [127], which is a transactional variant of
the popular YCSB benchmark [112]. For simplicity, we used the CoreWorkload generator,
which is shared with the original YCSB. We considered block sizes of 1 KB and 1 MB and
transactions ranging in size from 1 to 1,000 blocks per commit. Blocks are accessed according
to a Zip�an distribution, and we maintained a 50-50 balance between reads and writes. We
used one �le per worker. As a result, there were no con�icting transactions and speculative
execution always succeeded.

Figure 3.11 shows that throughput scales past 6.4 GB/sec using 1 MB blocks and
10 blocks per transaction. We achieve over 24,000 transactions per second using 1 KB
blocks and 10 blocks per transaction. When grouping 1,000 1 KB blocks in each transaction,
we achieve over 2,400,000 blocks per second. For comparison, AWS EFS by default imposes
throughput limits of 5 GB/s or less and promises operation rates of 500,000 per second for
reads and 100,000 per second for writes [23].

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 95

FS Op min p50 p95 p99 max

/
t
m
p

seek 0.52 0.55 0.57 0.62 12.43
read 0.93 1.38 1.88 4.17 24.48
write 1.56 2.27 2.95 4.22 168
open 1.29 1.45 1.68 2.05 133
close 1.00 1.20 1.39 2.39 120
stat 1.06 1.22 1.44 2.32 18.85
sync 63.08 72.28 121 245 1,190

E
F
S

seek 0.56 0.61 0.64 0.67 9.64
read 3.88 5.33 6.17 10.63 87.19
write 6.27 8.73 10.64 16.26 207
open 6,220 7,250 8,240 9,940 15,900
close 8.66 1,230 1,560 1,880 9,260
stat 941 1,140 1,440 1,760 11,000
sync 5,450 7,430 9,190 12,500 91,800

F
aa
S
F
S

seek 1.17 7.67 21.64 40.26 2,340
read 10.73 20.57 55.46 168 1,550
write 5.08 14.31 36.29 77.71 2,290
open 6.27 17.47 90.47 221 4,030
close 2.32 9.12 20.89 39.95 3,810
stat 16.36 50.68 182 260 2,970
sync 1.82 8.52 25.95 46.65 1,110
begin 2,140 2,860 3,600 4,660 29,300
commit 13,800 15,800 20,200 23,700 38,800

Table 3.5: Comparison of latency distributions for the microbenchmark workload of Sec-
tion 3.5.1. All times in µs.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 96

BSS thus demonstrates the �exibility to perform well on several measures of performance.
We view this as a key requirement of a �le system implementation and attribute it to the
separation we maintain between the linearizable MDS and the immutable BSS. The metadata
store, which is partitioned by �le, is the bottleneck for the smaller block sizes. At the
largest block sizes, we saturate the capacity of the block storage. While the TSS, which is a
single global resource, would become a bottleneck in larger clusters, its capacity exceeds the
transaction rates seen in these experiments by more than an order of magnitude.

3.5.3 Contention Microbenchmark

We developed this experiment to understand the performance of FaaSFS under concurrent
access. We use a 1 MB �le comprising blocks of 1 kB each. Clients run in a loop in which
they select a block, read that block, occasionally update that block (5% of the time), then
move on to another block. We protect these operations using �le system range locks (fcntl),
setting a read lock before reading, upgrading it to a write lock if updating, and then releasing
it when �nished with the block. The client operates on 10 blocks in quick succession (as
a transaction in FaaSFS), then sleeps for 5 ms before repeating the cycle. We use a non-
uniform block selection policy that places 20 of the blocks into a �hot set� that receives
20% of the accesses (12.55× the rate of access that other blocks receive). Our FaaSFS server
con�guration is three m5ad.xlarge instances, each in a separate AZ. The clients are on AWS
Lambda.

Figure 3.12 shows the results from two experiments. In (a), we show strong scaling, where
all clients share one �le. In (b) we show weak scaling, where we create additional �les as we
add clients so that each client operates on a separate �le. The di�erence between these lets
us see the impact of contention. We use up to 1,024 clients, equal to the number of blocks
in the �le. Signi�cant contention is evident in this workload even for many fewer clients, as
evidenced by the abort rate under strong scaling (see Figure 3.12 (a)).

FaaSFS has an advantage even with only one client because lock elision (see Section 3.4.4)
reduces the time spent waiting on network communication. For the strong scaling case, it
scales well up to 128 clients, at which point internal contention in the FaaSFS backend limits
capacity. For weak scaling, both EFS and FaaSFS scale well up to 1,024 clients, but FaaSFS
demonstrates the bene�t of lock elision and the lower latency it provides.

3.5.4 Filebench

To demonstrate the ability of FaaSFS to execute a variety of simulated applications, we
used the Filebench [395] test suite. We ran six of the standard �personalities�: �le server,
network �le server, mail server, video server, web proxy, and web server. These classic
workloads represent a variety of I/O patterns and thus provide a �avor for the diversity of
applications that FaaSFS can support. In adapting Filebench to the FaaSFS setting, we
wrap each iteration of the workload in a transaction. This modi�cation seems reasonable

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 97

0

2

4

6

Th
ro

ug
hp

ut
 (G

B
/s

)

10 blocks of size 1 KB
100 blocks of size 1 KB
1000 blocks of size 1 KB
1 blocks of size 1 MB
10 blocks of size 1 MB

0

1

2

Tr
an

sa
ct

io
ns

 (1
/s

)

1e4

2 8 32 128 512
Workers

0

1

2

B
lo

ck
 O

pe
ra

tio
ns

 (1
/s

) 1e6

Figure 3.11: FaaSFS backend throughput scaling. We test multiple block sizes and transac-
tion sizes in a 50-50 read-write workload based on YCSB+T [127].

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 98

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (1

/s
)

FaaSFS
EFS

10 2

10 1

100

101

102

La
te

nc
y

(s
)

1 4 16 64 256 1024
Clients

0.00
0.25
0.50
0.75
1.00

Ab
or

t R
at

e

(a)

100

101

102

103

104

105

Th
ro

ug
hp

ut
 (1

/s
)

FaaSFS
EFS

10 2

10 1

100

101

102
La

te
nc

y
(s

)

1 4 16 64 256 1024
Clients

0.00
0.25
0.50
0.75
1.00

Ab
or

t R
at

e

(b)

Figure 3.12: Update-intensive contention benchmark: (a) strong scaling, (b) weak scaling.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 99

T
ab
le
3.
6:

A
ve
ra
ge

d
u
ra
ti
on

in
µ
s
of

in
d
iv
id
u
al

op
er
at
io
n
s
in

th
e
F
il
eb
en
ch

w
or
k
lo
ad

of
F
ig
u
re

3.
13
.

S
y
st
em

W
or
k
lo
ad

O
f

C
f

R
W

O
d

C
d

S
Z

B
C

FaaSFS

F
il
e
S
er
ve
r

13
.2
5

3.
67

4,
17
0

77
3

7,
18
0

8.
50

-
-

1,
58
0

50
,5
00

N
et
w
or
k
F
il
e
S
er
ve
r

11
.1
0

2.
03

6,
43
0

18
.7
3

5,
52
0

10
.0
6

-
13
4

1,
57
0

28
,4
00

M
ai
l
S
er
ve
r

25
.3
9

2.
74

3,
15
0

87
8

8,
11
0

19
.2
8

5.
10

-
1,
89
0

34
,5
00

V
id
eo

S
er
ve
r

-
-

88
.6
9

-
2,
77
0

2.
75

-
68
7

1,
35
0

4.
00

W
eb

P
ro
x
y

24
.5
6

2.
46

1,
86
0

99
7

9,
07
0

18
.9
2

-
-

2,
17
0

30
,5
00

W
eb

S
er
ve
r

13
.0
2

2.
15

99
0

1,
84
0

7,
16
0

8.
50

-
-

1,
53
0

35
,4
00

EFS

F
il
e
S
er
ve
r

8,
01
0

8,
47
0

6,
16
0

4,
37
0

3,
29
0

4.
73

-
-

0.
99

3.
49

N
et
w
or
k
F
il
e
S
er
ve
r

7,
48
0

4,
69
0

25
,5
00

3,
25
0

3,
32
0

3.
77

-
1.
00

0.
99

2.
77

M
ai
l
S
er
ve
r

8,
03
0

1,
19
0

5,
90
0

4,
50
0

1,
26
0

3.
00

8,
58
0

-
0.
75

3.
00

V
id
eo

S
er
ve
r

-
-

51
.9
4

-
3,
51
0

3.
50

-
1,
18
0

0.
88

1.
00

W
eb

P
ro
x
y

7,
99
0

3,
53
0

5,
52
0

6,
06
0

1,
28
0

3.
00

-
-

0.
87

3.
75

W
eb

S
er
ve
r

8,
03
0

1,
16
0

4,
67
0

17
1

2,
75
0

3.
00

-
-

1.
25

2.
00

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 100

Of Cf R W Od Cd S Z B C T

50%
0%

50%

File Server

Of Cf R W Od Cd S Z B C T

Network File Server

Of Cf R W Od Cd S Z B C T

Mail Server

Of Cf R W Od Cd S Z B C T

50%
0%

50%

Video Server

Of Cf R W Od Cd S Z B C T

Web Proxy

Of Cf R W Od Cd S Z B C T

Web Server

Fa
aS

FS
 v

s.
EF

S
(re

la
tiv

e
du

ra
tio

n)

Figure 3.13: Filebench workload. Di�erence in average time elapsed between FaaSFS and
EFS. Lower means FaaSFS performs better and higher means EFS performs better. Columns
are (Of) open �le, (Cf) close �le, (R) read �le, (W) write �le, (Od) open directory, (Cd) close
directory, (S) fsync, (Z) rate limit, (B) begin, (C) commit, and (T) total overall. Table 3.6
lists the corresponding values.

since the outer loop of the benchmark workloads appears to describe iteration over a logical
unit of work.

Figure 3.13 compares FaaSFS to EFS with four concurrent Filebench clients. To under-
stand performance di�erence for each type of operation, we calculate a fractional contribution
to the overall benchmark performance; i.e., we calculate the di�erence in time spent on the
operation, then divide by the total time spent:

∆T =
FaaSFS op time − EFS op time

EFS all ops time

Put another way, we de�ne ∆T , the fractional di�erence in performance attributable to
operations of type T , as

∆T =

∑
π∈HFaaSFS|type(π)=T

duration(π)−
∑

π∈HEFS|type(π)=T

duration(π)∑
π∈HEFS

duration(π)

Where HFaaSFS and HEFS are sets of the operations from each experiment, and where each
experiment has the same number of operations. For each operation π, type(π) indicates
the type of the operation and duration(π) indicates how long it took to complete. This
value indicates how changes in the performance of each operation impact overall benchmark
performance. In the last column, in orange, we also show this overall performance di�erence,

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 101

which is just the sum of the di�erences indicated by each of the blue bars. It can also be
expressed as

∆ =

∑
π∈HFaaSFS

duration(π)−
∑

π∈HEFS
duration(π)∑

π∈HEFS
duration(π)

Our implementation of FaaSFS outperforms EFS on some workloads. When it falls
short, it does so by a small amount. For example, in the �le server workload, FaaSFS gains
signi�cant advantages from faster �le open and close operations (Of and Cf) but pays a
small penalty when opening directories (Od) and beginning transactions (B) while incurring
a signi�cant cost during commit (C). Overall, it is 2.5% slower. In contrast, the web server
workload has wins and losses on the same operations, but runs about 2.4× faster overall.

The discrepancy highlighted above is driven in part by the number of operations executed
in each transaction, which is 3× greater for the web server than it is for the �le server. The
network �le server gains a signi�cant advantage for read operations (R), �le opens and closes
(Of and Cf), and writes (W), leading to an overall 4.6× gain in performance. We attribute
this to more e�ective caching in FaaSFS.

With the web proxy, FaaSFS sees the greatest advantage when opening �les (Of) but
also has an advantage across a range of other operations. FaaSFS performs 1.8× faster.

For the mail server, we note the reduction in time spent in sync operations (S), though
this does not outweigh the added cost of time spent in begin (B) and commit (C) by much.
FaaSFS performs 1.1× faster.

In the video server, Filebench implements a per-client rate limit. In this read-mostly
workload, the cache update time added in begin (B) gets absorbed by the rate limit (Z).
FaaSFS is slower than EFS by a small amount: less than 2%. Table 3.6 shows a breakdown
of the time spent in each operation for the Filebench workloads tested.

FaaSFS makes more e�ective use of caching than EFS, even though it provides a stronger
consistency guarantee. Since it uses cache state speculatively, it can sometimes contact the
server only at the beginning and end of each transaction. In contrast, EFS requires server
communication on every �le open (Of) and close (Cf). FaaSFS also may require less server
communication during reads (R) and writes (W) because it supports �ne-grained cache up-
dates and uses aggressive write bu�ering. The reduction in network tra�c leads to signi�cant
improvements in performance for three of the six Filebench workloads: Network File Server,
Web Proxy, and Web Server. On the remaining three, File Server, Mail Server, and Video
Server, the increased time spent in commit (C) and begin (B) balance out these other im-
provements, leading to performance that is similar to that of EFS. We see no fundamental
reason why FaaSFS cannot outperform EFS in all these scenarios. As described in Sec-
tion 3.5.1, our implementation has various overheads that a more mature implementation
could eliminate.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 102

0

1,000

2,000

3,000

4,000

5,000

Pa
ge

 S
er

vi
ng

 R
at

e
(1

/s
) SQLite on FaaSFS

Aurora PostgreSQL

0 2,000 4,000 6,000 8,000 10,000
Concurrent Clients

100

101

La
te

nc
y

(s
)

Figure 3.14: Mezzanine Blog Scaling: An open source application running on FaaSFS and
SQLite scales linearly to support 10,000 concurrent clients. By comparison, when backed
with a PostgreSQL database using comparable hardware, a much lower rate is achievable.
This workload consists mostly of reads, with one new blog comment added every 10 s. When
running EFS in place of FaaSFS this workload allows less than one page per second (not
shown).

3.5.5 Full-Stack Application

To understand how FaaSFS performs in a full-stack application, we evaluated it using Mez-
zanine [274], a popular open source blogging platform written in Python. Mezzanine is a
web application adhering to Python's WSGI standard, and we were able to deploy it to AWS
Lambda using Zappa [458], an open source project that packages traditional WSGI appli-
cations as FaaS. Zappa can use AWS Elastic Load Balancer (ELB) to make cloud functions
accessible over the internet. The resulting application, including libraries, is approximately
100 MB uncompressed or 30 MB compressed. We run Mezzanine in its default storage
con�guration, which uses a SQLite [382] database.

While SQLite does not crash when running on EFS, its ability to run the Mezzanine
application is extremely limited; it achieves less than one request per second. SQLite uses
locking to ensure that writers have exclusive access to the database �le. This is suitable
on a local �le system, where communication latency is low. However, when SQLite runs on
EFS, even read-only transactions incur several communication round-trips as they acquire

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 103

and release locks. The problem is exacerbated because NFS clears the entire database �le
from cache when any part of it changes. By contrast, FaaSFS elides locks and relies instead
on the underlying optimistic transaction mechanism. It also tracks changes to �les at �ne
granularity and uses this capability when updating client caches.

We also observed that the �le system locks implemented by EFS can be brittle. As with
NFS, a client failing while holding a lock can block the entire system until the associated
lease expires (a default time of 90 s for the Linux NFS server).

Since EFS performs so poorly for this workload, we chose to instead compare Mezzanine
on SQLite and FaaSFS to a deployment backed by a database server. We used Amazon Au-
rora PostgreSQL, which replaces the standard �le system backed storage with a distributed
storage layer that replicates state to multiple AZs [419]. In this experiment, we con�gured
FaaSFS with three nodes (m5dn.2xlarge instances), each in a separate AZ, and directed
client tra�c to a single instance node of FaaSFS while allowing the other two to serve as
passive backup replicas. We believe this is the most comparable con�guration, since Aurora
uses only one database instance but replicates data in the storage layer.

We generated synthetic blog content to create a SQLite database �le containing approx-
imately 500 MB of data. Figure 3.14 shows a workload with varying numbers of concurrent
clients that read content from the blog. A separate process updates the blog, adding one
comment every 10 seconds. The impact of modifying the database is not visible in the la-
tency numbers, though we con�rmed that it has an impact on network throughput as the
caches update.

With Aurora, the maximum serving rate is 167 pages/s, and the latency quickly becomes
dominated by queuing delays. Using SQLite and FaaSFS, the latency remains consistent at
2.1 s, while the serving rate scales up to 4,900 pages/s as the number of concurrent clients
reaches 10,000.

Key to improved scaling with FaaSFS is that the FaaS layer helps scale up the database,
not only the Python application code. We are running not only thousands of Python in-
stances but also thousands of SQLite database instances. Furthermore, since we support
snapshot reads and many of the requests are read-only, speculative execution is often guar-
anteed to succeed.

This experiment demonstrates that FaaSFS can run unmodi�ed real-world state-intensive
applications. Whereas traditional distributed �le systems fail to support any concurrency in
this scenario, FaaSFS scales linearly and quickly surpasses the level of scale possible with a
single database instance.

3.5.6 TPC-C Database Benchmark

We used the TPC-C [408] database benchmark to further evaluate the performance of FaaSFS
on a complex workload. TPC-C simulates business activity, modeling a number of regional
warehouses, each of which holds items in inventory. Transactions correspond to customer
orders, deliveries, and payments as well as order status and stock level checks. Overall,
it is a write-heavy workload with various points of potential contention. Partitioning is

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 104

useful for TPC-C, but some transactions still involve multiple partitions; ∼90% of orders
can be ful�lled from the customer's home warehouse, whereas ∼10% contain items from
other warehouses as well.

We con�gured the benchmark with 256 warehouses. We partitioned the schema, separat-
ing each warehouse and its associated customers into a separate SQLite database. The result-
ing set of 256 databases amounts to 2.7 GB. Even though SQLite uses database-granularity
locking, this con�guration allows multiple transactions to run concurrently when they are
accessing separate partitions. For those transactions that access multiple partitions, SQLite
implements a two-phase commit protocol.

We con�gured FaaSFS using three m5ad.xlarge instances in separate AZs. We used
c5.large server instances as clients, providing an environment that is somewhat more well-
controlled than AWS Lambda is.

Figure 3.15 compares the performance of FaaSFS to that of EFS. FaaSFS achieves
280 txn/s with one client compared to 19 txn/s with EFS. E�ective client caching is possible
in both cases, but FaaSFS gains an advantage because it elides locks (see Section 3.4.4),
whereas EFS does not. For 2-4 clients, the FaaSFS performance actually drops�the cache is
always at the latest version with a single client, but to support multiple clients, it must ship
changed blocks from one to another. For EFS, the bottleneck is waiting on lock operations
(not lock contention, just network latency). This is ameliorated by added parallelism; with
4 clients, it reaches 52 txn/s. However, EFS performance saturates after that point. FaaSFS
sees continued scalability up to 734 txn/s at 32 clients.

Though FaaSFS is somewhat scalable, increasing client count 32× only increases capacity
2.6×. While the capacity is still over 10× that of EFS, we conclude that this is not the best
way to scale a coordination-intensive database application. Even though partitioning reduces
the impact of database-granularity locking, it is still too coarse to allow good scalability in
a distributed setting.

3.6 Related Work

We covered much of the background that informs the design of FaaSFS in Section 3.2. Here
we add historical context and discuss various related areas.

3.6.1 Shared File Systems

Shared �le systems originated with NFS [348] and have subsequently been subject to ex-
tensive research. A consistent theme in such work has been achieving both consistency and
performance, with notable work including Coda [201], Sprite [287], and V [169]. Ideas from
this work have found their way into contemporary protocols such as NFSv4 [185], SMB [360],
and Lustre [359]. These are discussed in Section 3.2.2. Table 3.7 compares FaaSFS to a se-
lection of other �le systems.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 105

T
ab
le
3.
7:

F
il
e
sy
st
em

co
n
si
st
en
cy

m
o
d
el
s
co
m
p
ar
ed
.

M
at
u
ri
ty

C
on
si
st
en
cy

G
u
ar
an
te
e

C
om

m
en
ts

P
O
S
IX

(l
o
ca
l)

D
ep
lo
ye
d

L
in
ea
ri
za
b
le

S
tr
on
g
co
n
si
st
en
cy

an
d
�
n
e-
gr
ai
n
ed

at
om

ic
it
y
�
p
ro
b
ab
ly

m
or
e
�
n
e-
gr
ai
n
ed

th
an

p
ro
gr
am

m
er
s
w
ou
ld

p
re
fe
r.

N
F
S
/E

F
S
[1
85
]

D
ep
lo
ye
d

C
lo
se
-t
o-
op
en
,
li
n
ea
ri
za
b
le

�
le
lo
ck
s

W
ea
ke
r
co
n
si
st
en
cy

th
an

P
O
S
IX

.
L
o
ck
s
al
-

lo
w
ap
p
li
ca
ti
on
s
to

cl
aw

b
ac
k
li
n
ea
ri
za
b
il
it
y.

L
u
st
re

[3
59
]

D
ep
lo
ye
d

as
P
O
S
IX

P
ro
v
id
es

fo
r
fu
ll
P
O
S
IX

co
m
p
li
an
ce

in
a

d
is
tr
ib
u
te
d
�
le
sy
st
em

.

S
p
ec
u
la
to
r
[2
90
]

P
ro
to
ty
p
e

as
N
F
S

N
F
S
cl
ie
n
t
p
re
d
ic
ts

re
sp
on
se
s
an
d
p
ro
gr
am

p
ro
ce
ed
s
w
it
h
sp
ec
u
la
ti
ve

ex
ec
u
ti
on

Q
u
ic
k
S
il
ve
r
[3
57
]

P
ro
to
ty
p
e

T
ra
n
sa
ct
io
n
al

h
y
b
ri
d
of

R
E
A
D
_
U
N
C
O
M
M
IT
T
E
D
&

R
E
A
D
_
C
O
M
M
IT
T
E
D

T
ra
n
sa
ct
io
n
s
em

p
lo
ye
d
as

d
is
tr
ib
u
te
d
sy
st
em

in
te
gr
at
io
n
p
ar
ad
ig
m

S
ca
le
F
S
[1
03
,
13
9]

P
ro
to
ty
p
e

L
in
ea
ri
za
b
le

N
on
-P
O
S
IX

�
le
sy
st
em

d
es
ig
n
ed

w
it
h
op
er
a-

ti
on
s
th
at

co
m
m
u
te

b
et
te
r.

E
C
S
C

M
o
d
el

L
in
ea
ri
za
b
le
-e
q
u
iv
al
en
t

E
n
fo
rc
es

li
n
ea
ri
za
b
il
it
y
's
re
al
-t
im

e
co
rr
e-

sp
on
d
en
ce

u
p
on

ex
te
rn
al

co
m
m
u
n
ic
at
io
n
,

ot
h
er
w
is
e
m
ai
n
ta
in
s
se
q
u
en
ti
al

co
n
si
st
en
cy
,

w
h
ic
h
p
er
m
it
s
lo
os
er

co
u
p
li
n
g.

F
aa
S
F
S

P
ro
to
ty
p
e

S
tr
ic
t
se
ri
al
iz
ab
il
it
y

P
ro
v
id
es

E
C
S
C
w
it
h
an

ex
p
an
d
ed

u
n
it
of

at
om

ic
it
y.

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 106

1 2 4 8 16 32
Clients

101

102

103

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

) FaaSFS EFS

Figure 3.15: TPC-C benchmark on SQLite. See Section 3.5.6.

Another category of shared �le systems includes cluster �le systems like GFS [324] and
OCFS2 [146]. These �le systems assume that all participants have access to shared block
storage, but this makes them vulnerable to misbehaving clients, and they are thus not
candidates for cloud storage.

In the cloud context, shared �le system research has focused on backend scalability rather
than POSIX compatibility or low latency. Examples include the Google File System [164],
its successor Colossus [195], and HDFS [369]. Ceph [433] is also known for enabling metadata
scalability. Delta Lake [123] is a recent transactional shared �le system designed speci�cally
for analytics workloads. However, it does not o�er POSIX semantics.

3.6.2 Transactional File Systems

Our implementation of ECSC is based on transactions, so it is likely to draw comparisons
to transactional �le systems. QuickSilver [184, 357] provides operating system support for
distributed transactions. It creates a per-process default transaction if none was speci�ed
explicitly, which is similar to our use of FaaS functions to create transactions implicitly.
QuickSilver makes weaker consistency guarantees, however. It uses various locking protocols
for di�erent types of operations, and the result is a hybrid of READ_UNCOMMITTED and
READ_COMMITTED isolation levels. QuickSilver does not provide any client-side caching
of remote �les and does not use speculative execution or optimistic concurrency control as
FaaSFS does.

The Inversion �le system [298] is built on top of POSTGRES [388] and stores directory
data and �le block content in relational tables. It inherits the transactional isolation guaran-
tees of the underlying database and extends the �le system API to support them. Its POSIX
compatibility is limited, however, because it implements only a basic subset of operations
and because clients access it using a non-standard �le system library. Inversion bene�ts from

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 107

caching at the backend database server (via the bu�er pool), but it does not incorporate any
client-side caching.

Various other e�orts have sought to combine �le systems and databases. Informix
patented the idea of providing a �le system API atop a database backend [54], and since 2006,
Microsoft has shipped Windows with TxF, a non-shared and now deprecated [410] transac-
tional �le system. Transactional �le system APIs designed to make crash recovery simpler
have been provided in AvdFS [420], CFS [280], TxFS [203], and TxOS [323]. However, these
systems are not intended for the distributed setting.

3.6.3 Local Caching in Transaction Systems

E�ective client-side caching is an important feature of FaaSFS, but it is challenging to pro-
vide. The database community has studied this topic, especially in the context of object
databases. Franklin et al. [153] survey this work, comparing and categorizing various tech-
niques. There are also middle-tier caching accelerators such as Ganymed [322], which routes
read transactions to replicas, and MTCache [246], an extension to SQL Server that provides
semantics equivalent to executing transactions at the database server but with the twin ben-
e�ts of o�oading work from the centralized system and lowering latency. MTCache relies
on materialized views, which is similar to the approach used by TimesTen [240]. We have
experimented with caching heuristics that correspond to some of those described in the lit-
erature, but we have not explored this area exhaustively. Future iterations of FaaSFS may
bene�t from some of these previous approaches.

One notable recent system is Sundial [455], which is particularly close in spirit to our
implementation since it uses optimistic concurrency control and integrates this concurrency
control mechanism with its caching mechanism, as we do. Sundial promises improved con-
currency, but it implements serializability, rather than strict serializability, so more work is
needed to determine whether its approach can be reconciled with ECSC and the consistency
needs of POSIX workloads.

3.6.4 Stateful Serverless Computing

Several other systems have attempted to extend FaaS to overcome the limitations of state-
lessness. Cloudburst [384] provides a FaaS execution environment with integrated caching
of remote storage. Cloudburst is architecturally similar to FaaSFS but uses a lattice-based
eventual consistency model with a key-value store as opposed to our POSIX-compliant �le
system that admits only behaviors consistent with linearizability. Pocket [229] provides
ephemeral storage for serverless analytics, focusing on e�cient resource allocation for short
time durations. Locus [326] studies the same challenge. AFT [383] provides an atomicity
shim that sits between cloud functions and cloud storage, which makes it easier to achieve
the idempotence that cloud functions require. Beldi [459] takes this a step further, integrat-
ing function invocations with the transaction mechanism. Kappa [463] shows how to use
snapshots to provide stateful and long-lived execution within a FaaS context. We see this

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 108

technique as largely complementary, since it can mitigate one of the downsides of speculative
execution: the need to sometimes restart a function from the beginning.

3.7 Future Work

3.7.1 ECSC Implementation

We implemented FaaSFS using transactions, which provide stronger guarantees and greater
isolation than ECSC requires. This can pose a problem for certain sorts of programs. Con-
sider an application that polls the �le system looking for some state to appear�such polling
will never complete under all but the lowest levels of transactional isolation; we have imple-
mented one of the highest ones. We emphasize that such non-termination does not produce
output that a POSIX implementation would not. Our implementation violates liveness but
not safety. In Section 4.5, we describe an implementation of ECSC that allows these pro-
grams to complete.

FaaSFS also imposes restrictions beyond those required by ECSC because it only supports
programs that communicate at the beginning and end of the FaaS function execution (unless
that communication is through the �le system). This could be �xed by committing the
active transaction whenever a program encounters I/O. However, recovery from speculative
execution failures, or any other source of system-induced aborts, requires the ability to restart
from a snapshot. This might be possible using the techniques described in Kappa [463].

3.7.2 Additional Evaluation

We compared FaaSFS to AWS EFS in Section 3.5 because that �le system is both scalable
and integrated with AWS Lambda. However, EFS lacks support for some NFS features,
notably delegation, that might address its performance shortcomings for some of our work-
loads. It would also be interesting to compare FaaSFS to Lustre, which has seen signi�cant
investment in recent years and o�ers the standard POSIX consistency guarantees. Con-
ducting these experiments in AWS Lambda is challenging because of the limitations of the
provider-managed environment (see Section 3.2.3). Options for working around this di�culty
include using server-based clients, using an open source FaaS implementation, or applying
techniques for running kernel code in user space [128, 221, 328]. See Section 3.2.2.2 for a
discussion of both Lustre and NFS delegation.

3.7.3 Database Techniques

FaaSFS relies on database techniques but has not exhausted the ideas that might apply to
�le systems. Quite a few di�erent policies for updating local caches in distributed databases
have been proposed and evaluated [153], and we imagine revisiting these. Since the success

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 109

of any policy is workload-dependent, it is likely that a modern implementation would rely
heavily on machine learning for policy optimization [120, 311].

We always use communication to enforce precedence relationships in FaaSFS, relying on
a centralized timestamp service and the fact that a message can only be received after it was
sent. One alternative that eliminates reliance on the centralized timestamp mechanism is
using loosely synchronized clocks for transaction ordering [6]. In this approach, the commit
mechanism guarantees serializability and external consistency. Like FaaSFS, it is an opti-
mistic technique. Poor clock synchronization may lead to excess aborts but not consistency
violations. These techniques might be applied in future implementations of FaaSFS.

The Spanner [113] database is famous for using highly accurate atomic clocks to help
provide external consistency. Because timestamps are assigned carefully to all modi�cations,
read-only transactions can run without locks, or the communication involved in acquiring
them, using timestamps alone. Spanner carefully keeps track of clock uncertainty and waits
when necessary to ensure external consistency. CockroachDB [106] uses a similar approach
but makes do without atomic clocks [228]. These examples o�er further possibilities for
incorporating clocks with FaaSFS.

3.7.4 Beyond FaaS

The techniques we developed for FaaSFS are a good �t for the FaaS environment, but they
might apply to other environments as well. For example, cloud applications running in
container services (see Section 2.5.3) might also bene�t from the scale and elasticity that
FaaSFS and ECSC provide. However, FaaS provides a controlled execution environment and
a built-in restart mechanism, and other non-FaaS clients would need to provide substitutes
for these. One possibility is operating system transactions [291, 323], but implementing them
involves cross-cutting changes which may be di�cult to justify in the mainline kernel, hard
to maintain in a fork, and impossible to contain to a module.

3.7.5 Production Readiness

We imagine that a production implementation of FaaSFS would be o�ered by a cloud provider
as a serverless service. We believe that algorithms developed in our implementation can apply
in a provider-managed setting, but building a secure, e�cient, reliable, and metered multi-
tenant service will require additional engineering. It will also require addressing concerns
such as garbage collection that are not addressed in our prototype.

3.7.6 POSIX Compliance

It would be interesting to extend FaaSFS to the full range of POSIX objects. Our current
implementation provides directories, regular �les, and symbolic links, but it does not provide
FIFOs, sockets, or device �les. FIFOs and sockets are interprocess communication mech-
anisms that are not traditionally supported on distributed �le systems. Adding them to

CHAPTER 3. A FAAS FILE SYSTEM FOR SERVERLESS COMPUTING 110

FaaSFS could be valuable since experience has shown that direct function-to-function com-
munication is useful and presently not well supported [148, 189, 432]. It is also interesting
because communication routed through the �le system remains internal from the ECSC per-
spective. That means it does not induce global precedence relationships and the performance
costs that can result from them.

We are also interested in running FaaSFS with a broader range of workloads. As we
have explored various applications, we have sometimes discovered features of POSIX that
we had failed to implement properly. These problems have usually been easy to �x once we
identi�ed them, which we generally have done by comparing system call traces.

3.8 Conclusion

FaaSFS enables some applications that maintain and share state in a �le system to scale
just as well as stateless FaaS applications do. This was challenging to accomplish because
the POSIX standard demands a real-time correspondence, linearizability, which is subject
to fundamental latency-inducing trade-o�s in a distributed environment [1, 43, 77, 166].
Other distributed �le systems seek to overcome such latency by providing weaker consistency
guarantees, such as close-to-open consistency [224, 313], or by using techniques such as
speculative execution [290] or intent locks [359] to reduce the communication overhead of
ensuring linearizability. File systems designers have also experimented with non-POSIX
APIs where operations are more often commutative, but these still rely on linearizability.
No �le system implementation that we know of breaks real-time correspondence without
potentially changing application behavior. We introduce ECSC, a consistency guarantee that
allows individual POSIX operations to execute out of order while ensuring that applications
exhibit only those externally visible behaviors consistent with execution on an underlying
POSIX �le system.

Our implementation of ECSC in FaaSFS provides transactions, strengthening the model
while retaining a relaxed real-time correspondence. We use optimistic concurrency control,
client-side caching, and multiversion concurrency control, techniques that are well under-
stood, though not commonly combined. Our evaluation demonstrates that FaaSFS can turn
an existing full-stack database-backed application into a serverless application that is scal-
able to 10,000 instances. While the evaluation also makes clear that FaaSFS encounters
limitations on update-intensive workloads, we believe that it can scale well on a broad class
of read-mostly workloads.

While we have developed FaaSFS in the serverless context, its principles and mechanisms
are not tied to FaaS or serverless computing and could be used in other contexts where strong
consistency and scalability are both required. The underlying ECSC technique is also not
tied to �le systems and similarly could be used with key-value storage or other databases to
provide performance, scalability, and consistency.

111

Chapter 4

Externally Consistent Sequential

Consistency

4.1 Introduction

Externally consistent sequential consistency (ECSC) is an outgrowth of our e�orts to improve
the scalability of existing applications that rely on linearizable consistency guarantees. Its
motivating use case is FaaSFS, the scalable distributed POSIX �le system that we describe
in Chapter 3. ECSC is guided by the observation that linearizability can impose extraneous
real-time ordering constraints. These introduce a need for coordination, but can be relaxed
without detriment to meaningful notions of program correctness. We refer the reader to
Section 3.3 for an introduction to ECSC and additional motivating context.

In this chapter we develop a formal theory of ECSC and show how it relates to lin-
earizability. The key result, developed in Section 4.3, tells us that ECSC always produces
behavior equivalent to a behavior of the corresponding linearizable system. Showing this
requires a model not just of storage, but also of computation�modeled as processes�and
the environment. We choose to adopt the I/O automaton model, which is well established
in the theory of distributed systems [257]. We also lean heavily on the theory of atomic
transactions [258] to inform the structure of our model.

We review the I/O automaton formalism and set up the model in Section 4.2. Section 4.3
is devoted to showing the equivalence of ECSC and linearizability. In Section 4.4 we show
how ECSC can be implemented using transactions, an approach that can take advantage of
o�-the-shelf databases and database techniques. In Section 4.5, we show how ECSC can be
implemented using a timestamp-based cache coherence algorithm, yielding an implementa-
tion that allows some executions that the transactional implementation does not.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 112

4.2 Preliminaries

4.2.1 I/O Automata Formalism

Input/output automaton models [257] represent distributed systems using a network of con-
nected state machines. Such models are naturally asynchronous, meaning that their compo-
nents take steps at arbitrary speeds. The actions of an automaton correspond to transitions
between its states and fall into three categories: input actions, which occur in response to
communication from outside, output actions, which generate external communication, and
internal actions, which pertain to the automaton alone and are not visible externally. I/O
automata are input enabled, meaning they must always accept any of their input actions,
regardless of their present state.

De�nition 1. An I/O automaton A has the following components:

• An action signature S = sig(A) consisting of three disjoint sets of actions: input actions
in(S), output actions out(S), and internal actions int(S). The actions collectively are
de�ned as acts(S) = in(S) ∪ out(S) ∪ int(S), and the external actions as ext(S) =
in(S) ∪ out(S).
• A set of states states(A).
• A set of starting states start(A) ⊆ states(A).
• A transition relation steps(A) ⊆ states(A)× acts(sig(A))× states(A).

An execution of an automaton is an alternating sequence of states and actions, s0π1s1π2...,
where (si, πi+1, si+1) ∈ steps(A) and s0 ∈ start(A). A behavior β ∈ behs(A) is the subse-
quence of an execution comprising its external actions, i.e., π1π2...|ext(sig(A)), where �|�
denotes projection. An action sequence de�nes an order on its elements: We write X <β Y
when X appears before Y in β. As an abbreviation, we will sometimes write ext(A) in place
of ext(sig(A)), or similarly int(A) in place of int(sig(A)), etc.

De�nition 2. Composition creates one automaton from a collection of automata {Ai}i.
Subject to compatibility conditions [257], a composition A has the following components:

• sig(A) =
∏

i sig(Ai).
• states(A) =

∏
i states(Ai).

• start(A) =
∏

i start(Ai).
• steps(A) = (s′, π, s) | ∀i, if π ∈ acts(Ai) then (s′[i], π, s[i]) ∈ steps(Ai), otherwise
s[i] = s′[i].

Here
∏

i denotes the product over the collection of automata indexed by i. s[i] denotes the
ith component of the composite state vector. We will use composition to model collections
of interacting automata.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 113

ST
O
R_
RE
Q
_
P

CONTROLLER

STORAGEENVIRONMENT

ST
O
R_
RE
P_
P

M
SG
_
RC
V_
P

M
SG
_
SN
D
_
P

ST
O
R_
RE
Q
_
S

ST
O
R_
RE
P_
S

M
SG
_
RC
V_
E

M
SG
_
SN
D
_
E

PROCESS

Figure 4.1: Base model for processes, storage, and the environment in the I/O automaton
formalism. The controller models asynchronous transport and can interleave the actions
from di�erent operations. See the transition relation in Figure 4.2.

4.2.2 Base Model

We introduce the base model as a canonical way of representing the programs and their
interactions with storage and the environment. It comprises the following automata:

• Multiple process automata, Pi. In the FaaS context, we use one process automaton to
model each possible function invocation.
• A storage automaton, S, representing the storage system, e.g., a �le system or key-value
store.
• An environment automaton E representing the external environment. The environment
represents everything not modeled as processes and storage; it includes all relevant
aspects of the outside world.
• A controller automaton, C, that intermediates between the others, decoupling them
and modeling asynchronous transport in a distributed system.

Figure 4.1 shows the components of the model and illustrates the external actions that
connect these automata. Table 4.1 describes these actions and provides a set of abbreviations

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 114

Table 4.1: Actions of the model. Input and output denote the corresponding automaton
type: (P) process, (C) controller, (E) environment, (S) storage.

Action Abbrev. Output Input Description

MSG_RCV_P (x) MRCV
P C P Deliver message x

STOR_REP_P (x,v) SREPP C P Deliver response to storage
request x with value v

MSG_SND_P (x) MSND
P P C Initiate message x

STOR_REQ_P (x) SREQP P C Initiate storage request x

STOR_REQ_S (x) SREQS C S Receive storage request x
STOR_REP_S (x,v) SREPS S C Initiate reply to storage re-

quest x with value v

MSG_RCV_E (x) MRCV
E C E Deliver message x to the en-

vironment
MSG_SND_E (x) MSND

E E C Initiate message x from the
environment

that we will often use throughout this chapter.

De�nition 3. The base model is the composition automaton A = E ×
∏

i Pi × S × C.

The base model A encompasses our entire model: the environment, all processes, the
storage, and the controller. We will write proje(s), projpi(S), projs, and projc(s) to denote
projection to the components representing E, Pi, S, and C, respectively. We will sometimes
also write projps(s) to denote projection onto the process and storage automata:

∏
i Pi× S.

4.2.3 Additional De�nitions

Models of messaging and storage may feature several actions that together form an operation;
for example, a message operation involves one action to send the message and another to
receive it. We denote each action by a type and one or more parameters, e.g., MRCV

P (x)
has type MRCV

P parametrized by x, whereas SREPP (x, v) has type SREPP and parameters x
and v. By convention, the �rst parameter is the operation parameter, and serves to identify
those actions that correspond to the higher-level concept of an operation. Each operation
must consist of a sequence of actions, all sharing the same operation parameter, whose types
align with the operation type sequences of the model. We denote operation type sequences
de�ned for the model as Γ, and list them in Table 4.2.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 115

Table 4.2: The operation sequences Γ of the model are the set of the sequences below.

Operation Action type sequence

Storage access (SREQP , SREQS , SREPS , SREPP)

Environment-to-process messaging (MSND
E , MRCV

P)

Process-to-environment messaging (MSND
P , MRCV

E)

De�nition 4. An operation x has a corresponding sequence of actions (γ1(x, ...), ..., γn(x, ...))
whose types, γ1, ..., γn, conform to one of the operation sequences of the model Γ, i.e.,
(γ1, ..., γn) ∈ Γ.

We de�ne the start and end of each operation as the �rst and last actions in the opera-
tion's corresponding action sequence.

De�nition 5. For operation x corresponding to (γ1(x, ...), ..., γn(x, ...)), we de�ne start(x) =
γ1(x, ...) and end(x) = γn(x, ...).

We de�ne the operation operator to give the corresponding operation for an action.

De�nition 6. For an action X, we say x = operation(X) when ∃γi such that X = γi(x, ...)
with 1 ≤ i ≤ n and (γ1(x, ...), ..., γn(x, ...)) ∈ Γ.

We can then extend the order on the actions of a behavior <β to a partial order de�ned
through the corresponding operations of those actions.

De�nition 7. We de�ne a partial order on the actions of β via the operation sequences Γ
by writing X <op

β Y when end(operation(X)) <β start(operation(Y)).

We also will sometimes use the notion of well-formedness, which describes action se-
quences that do not contain fragmentary or malformed operations.

De�nition 8. We say that an action sequence β is well-formed with respect to the operation
sequences Γ if whenever γj(x, ...) appears in β and γ = (γ1, ..., γn) ∈ Γ, 1 ≤ j ≤ n, for some
operation x, then

• ∀i ∈ {1, ..., n}, γi(x, ...) appears in β exactly once
• γ1(x, ...) <β ... <β γn(x, ...)

In our model, whenever an action X appears in a well-formed action sequence β, then
for x = operation(X) exactly one of the following must hold:

• SREQP (x) <β S
REQ
S (x) <β S

REP
S (x, v) <β S

REP
P (x, v)

• MSND
E (x) <β M

RCV
P (x)

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 116

• MSND
P (x) <β M

RCV
E (x)

Action sequences in which only one operation occurs at a time are sequential. Behaviors
comprising such action sequences play a central role in de�ning correct system behavior, and
we call them sequential behaviors.

De�nition 9. An action sequence β is sequential with respect to the operation sequences Γ
if it is well-formed with respect to Γ and if the actions of each operation appear consecutively.
Whenever γj(x, ...) appears in β for some operation type sequence (γ1, ..., γn) ∈ Γ, 1 ≤ j ≤ n,
and operation x, then for some k, β[k], ..., β[k+n−1] = γ1(x, ...), ..., γn(x, ...). We say that a
behavior β is a sequential behavior of A and Γ, i.e., β ∈ seqbehs(A,Γ) when β is a behavior
of A and is sequential with respect to the operation sequences Γ.

Finally, we de�ne a notion of equivalence appropriate to our model�equivalence means
that behaviors are indistinguishable from the perspective of any process and from the per-
spective of the external environment.

De�nition 10. We say that behaviors β1 ∼ β2 are equivalent if, for each process Pi, β1|Pi =
β2|Pi and also β1|E = β2|E, where E represents the environment automaton.

4.2.4 Sequential Consistency and Linearizability

We now express the established sequential consistency [241] and linearizability [192] consis-
tency criteria using I/O automata. These are both guarantees that can be de�ned from the
viewpoint of the process and solely in terms of the process-storage interaction. Thus, we
�nd it useful to project onto the storage-related actions of processes, PS = {SREQP , SREPP }.

Sequential consistency and linearizability are often formulated as properties of histories�
these histories are similar to behaviors but lack an underlying automaton model. We choose
to use a straightforward translation of such de�nitions [192] in our formalism, and refer to
them as sequential consistency of storage (SCS) and linearizable consistency of storage (LCS)
to denote that they o�er guarantees speci�c to interactions with S.

As an aid to these de�nitions we introduce a mapping, φp(π), between the actions of

an operation at the storage and the corresponding actions at the process: φp(S
REQ
S (x)) =

SREQP (x) and φp(S
REP
S (x, v)) = SREPP (x, v). We also use the notation φp(β) to describe

mapping over the elements of an action sequence. Recalling the de�nition of PS, the storage-
related actions of processes de�ned above, we now de�ne sequential consistency in the base
model.

De�nition 11. We say that a behavior β satis�es sequential consistency for storage (SCS)
if there exists β′ ∈ seqbehs(S,Γ|acts(S)) such that β|PS ∼ φp(β

′).

The notion of equivalence in De�nition 10 considers the order of operations at each
processor, and when restricted to PS gives us just what sequential consistency requires: �the
result of any execution is the same as if the operations of all the processors were executed

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 117

in some sequential order, and the operations of each individual processor appear in this
sequence in the order speci�ed by its program� [241].

To describe linearizability in the base model, we combine the notion of equivalence to a
sequential behavior with the notion of precedence of operations <op

β given in De�nition 5�the
partial order <op

β|PS must also be re�ected in <op
φp(β′).

De�nition 12. We say that a behavior β satis�es linearizable consistency for storage (LCS)
if:

• There exists β′ ∈ seqbehs(S,Γ|acts(S)) such that β|PS ∼ φp(β
′) (the SCS condition),

and
• <op

β|PS ⊆ <op
φp(β′)

LCS is stricter than SCS and requires preserving the precedence relationship on opera-
tions. Note also that while the I/O automaton model is asynchronous�it has no clocks�
modeling the system as a composition of state machines introduces a global sense of order.
This type of model is known as a global time model [4].

4.3 ECSC Guarantee

Our design of ECSC is based on the observation that the base model (see Section 4.2.2) has
executions that cannot be distinguished from linearizable (LCS) ones from the perspective
of the environment or any process. While linearizability is de�ned exclusively in terms of
storage operations, whereas ECSC takes communication into account as well. ECSC thus
bene�ts from a richer model, which allows it to ensure equivalent program behavior while
enforcing weaker constraints on the processing of storage operations.

We begin by de�ning the ECSC precedence <ECSC
β . This precedence relationship is

de�ned when actions X and Y both occur at the same automaton, and any time X is a
message send at a process that occurs before Y , a message receive at a process.

De�nition 13. We say that X <ECSC
β Y if:

• X <β|Pi Y for some Pi
• or X <β Y and X is MSND

P and Y is MRCV
P

By preserving this precedence relationship, we can ensure that any dependency between
X and Y that might be mediated through the environment can also be preserved. ECSC
combines the sequential consistency (SCS) requirement on storage operations with the re-
quirement to maintain the global precedence of message sends relative to message receives.

De�nition 14. We say that a behavior β satis�es externally consistent sequential consis-
tency (ECSC) when:

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 118

• There exists β′ ∈ behs(A) with β′|PS ∈ seqbehs(A,Γ|PS) such that β|PS ∼ β′|PS,
and
• <ECSC

β ⊆ <ECSC
β′

We say a system provides ECSC when all of its behaviors satisfy De�nition 14.

In Theorem 1 we show that all ECSC behaviors are equivalent to some behavior satisfying
LCS, i.e., whenever β is ECSC there exists LCS β′ with β ∼ β′. Recall from De�nition 10
(for �∼�) that this implies that β and β′ are indistinguishable from the perspective of the
environment or any process.

Our path to proving Theorem 1 starts with the construction shown in Algorithm 4.1.
Given a behavior β of the ECSC system, it builds an equivalent behavior β′ that we can
show is LCS. ECSC guarantees the existence of a behavior, named β′′ in Algorithm 4.1,
that has sequential storage operations and that is equivalent to β at each process. ECSC,
however, says nothing about the actions of the environment in β′′. Thus our challenge is
to construct a behavior that has both the sequential storage operations of β′′ and is also
equivalent to the original behavior β at the environment. Algorithm 4.1 weaves together β
and β′′ to achieve this result.

In Lemma 1 we show Algorithm 4.1 produces valid executions of the model A. In Lemma 2
we show that it also produces behaviors that have sequential storage operations. These
results prepare us for the proof of Theorem 1, which shows that the output of Algorithm 4.1
is both LCS and equivalent to the ECSC behavior β from the perspective of all processes as
well as the environment.

Lemma 1. When β is ECSC and �nite then α′ as constructed by Algorithm 4.1 is an
execution of A.

Proof sketch. A is a composition (see De�nition 2) of the environment, all of the processes,
the storage, and the controller. To produce α′, Algorithm 4.1 weaves together α, the provided
behavior, and α′′ the sequential behavior derived from the ECSC condition. It takes the
actions of the environment from α, the actions of the processes and the storage from α′′,
and synthesizes the actions of the controller. The most interesting part of the proof involves
showing that messages are always sent before they are received, even though Algorithm 4.1
may take the send action of a message from α and the receive action from α′′, or vice-versa.
The ECSC ordering guarantee, <ECSC

β ⊆ <ECSC
β′ , allows us to ensure that this always the

case.
Proof. We will show that s′0 is a starting state of A, and that each step of α′ is a step of

A. As prelude, we claim that Algorithm 4.1 terminates: every iteration of the loop of line 7
increments either i or i′′, ensuring termination after n+ n′′ iterations.

We now review the satis�ability of several key assignments. Satis�ability of line 1, �nding
an execution α whose behavior is β, follows since β is a �nite behavior of A, and all behaviors
are subsequences of executions. Satis�ability of line 2 is guaranteed since β is ECSC, so a
behavior having the condition speci�ed here is guaranteed to exist along with a corresponding

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 119

Algorithm 4.1 Construction of the execution α′ = s′0π
′
1s
′
1...π

′
n′s
′
n′ for the behavior β in

context of model A and operation type sequences Γ.

1: α = s0π1s1...πnsn ← α | α ∈ execs(A) ∧ beh(α) = β . Execution from behavior
2: β′′ ← β′′ ∈ behs(A) | β′′|PS ∈ seqbehs(A,Γ|PS) ∧ β|PS ∼ β′′|PS∧ <ECSC

β ⊆<ECSC
β′′

3: α′′ = s′′0π
′′
1s
′′
1...π

′′
ns
′′
n ← α′′ | α′′ ∈ execs(A)∧ beh(α′′) = β′′ . Derived via ECSC de�nition

4: i, i′, i′′ ← 0
5: sc0 ← s | s ∈ start(C)
6: s′0 ← proje(s0)× projps(s′′0)× sc0 . Composition starting state
7: while i < n ∨ i′′ < n′′ do
8: if i′′ < n′′ ∧ ¬(π′′i′′+1 = MRCV

P (X)
∧X /∈ projc(s′i′).msg_sent) then . Use α′′

9: if π′′i′′+1 ∈ acts(sig(E)) then
10: i′′ ← i′′ + 1 . Skip environment step
11: else
12: π′i′+1 ← π′′i′′+1 . Assign action from α′′

13: if π′′i′′+1 ∈
⋃
i int(sig(Pi)) ∪ int(sig(S)) then

14: sci′+1 ← projc(si′) . Internal step
15: else
16: sci′+1 ← s | (projc(s′i′), π′′i′′+1, s) ∈ steps(C) . Compute controller step
17: end if
18: s′i′+1 ← proje(s

′
i′)× projps(s′′i′′+1)× sci′+1 . Assign from composition

19: i′′ ← i′′ + 1, i′ ← i′ + 1
20: end if
21: else . Use α
22: if πi+1 ∈ acts(sig(E)) then
23: π′i′+1 ← πi+1 . Assign action from α
24: if πi+1 ∈ int(sig(E)) then
25: sci′+1 ← projc(si′) . Internal step
26: else
27: sci′+1 ← s | (projc(s′i′), πi+1, s) ∈ steps(C) . Compute controller step
28: end if
29: s′i′+1 ← proje(si+1)× projps(s′i′)× sci′+1 . Assign from composition
30: i← i+ 1, i′ ← i′ + 1
31: else
32: i← i+ 1 . Skip non-environment step
33: end if
34: end if
35: end while

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 120

MSG_SND_P (x)
E�ect:
s.msg_sent = s′.msg_sent ∪ x

MSG_SND_E (x)
E�ect:
s.msg_sent = s′.msg_sent ∪ x

MSG_RCV_E (x)
Precondition:
x ∈ s′.msg_sent
destination(x) = E

E�ect:
s.msg_sent = s′.msg_sent− x

MSG_RCV_P (x)
Precondition:
x ∈ s′.msg_sent
destination(x) = Pi, some Pi

E�ect:
s.msg_sent = s′.msg_sent− x

STOR_REQ_P (x)
E�ect:
s.stor_req = s′.stor_req ∪ x

STOR_REQ_S (x)
Precondition:
x ∈ s′.stor_req

E�ect:
s.stor_req = s′.stor_req − x

STOR_REP_S (x,v)
E�ect:
s.stor_resp = s′.stor_resp ∪ (x, v)

STOR_REP_P (x,v)
Precondition:
x ∈ s′.stor_resp

E�ect:
s.stor_resp = s′.stor_resp− (x, v)

Figure 4.2: Transition relation for the controller describing steps (s′, π, s)∈steps(C).

execution, α′′, which is given on line 3. Line 6 constructs a starting state s′0, which is a
starting state of A since it is a product of starting states of the automata for the environment,
processes, and storage.

Line 16 and line 27 both advance the controller. Figure 4.2 shows the transition relation
for the controller and lists preconditions that need to be met for each action. Consider �rst
line 16, sci′+1 ← s | (projc(s′i′), π′′i′′+1, s) ∈ steps(C). If π′′i′′+1 is a messaging action then it must
beMSND

P orMRCV
P since π′′i′′+1 /∈ ACT_ENV on line 9 and since π′′i′′+1 is an external action

because of line 13. MSND
P has no preconditions. MRCV

P (x) requires x ∈ projc(s′i′).msg_sent,
and this is true on account of line 8. If π′′i′′+1 is a storage action then it can be any one of

SREQP , SREQS , SREPP , or SREPS . Note, however, that these actions are always assigned from
β′′, and they are the only actions that change stor_req or stor_resp in states(C). Thus
projc(s

′
i′).stor_req = projc(s

′′
i′′).stor_req and projc(s

′
i′).stor_resp = projc(s

′′
i′′).stor_resp.

Furthermore, these actions are independent of msg_sent in states(C). π′′i′′+1 ∈ ext(sig(C))
by line 13 (projc(s

′′
i′′), π

′′
i′′+1, projc(s

′′
i′′+1)) ∈ steps(C), thus (projc(s

′
i′), π

′′
i′′+1, projc(s

′′
i′′+1)) ∈

steps(C).
Now consider sci′+1 ← s | (projc(s

′
i′), πi+1, s) ∈ steps(C) on line 27. Note that if πi+1 is

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 121

a messaging action then it must be MSND
E or MRCV

E since πi+1 ∈ acts(sig(E)) on line 22.
MSND

E has no preconditions. MRCV
E (x) requires x ∈ projc(s′i′).msg_sent. Note that from

line 8, either i′′ ≥ n′′ or π′′i′′ = MRCV
P (y). If i′′ ≥ n′′ then Algorithm 4.1 has fully traversed

α′′ so ∃j′ ≤ i′ | π′j′ = MSND
P (x). If i′′ < n′′, then π′′i′′ = MRCV

P (y). Line 2 constructs β′′ in
accordance with the ECSC condition <ECSC

β ⊆<ECSC
β′′ and thus MSND

P (x) <β M
RCV
P (y) =⇒

MSND
P (x) <β′′ M

RCV
P (y). Since π′′i′′ = MRCV

P (x), ∃j′′ < i′′ | π′′j′′ = MSND
P (x). In either case

∃j′ ≤ i′ | π′j′ = MSND
P (x). Since β is well formed, and since any MRCV

E (x) is incorporated

from α (at line 23), @j ≤ i′ | π′j = MRCV
E (x). Thus x ∈ projc(s′i′).msg_sent.

We now show that the compositions s′i′+1 produced by Algorithm 4.1 on line 18 and line 29
are steps of A. We �rst consider proje(s

′
i′) and show that it is assigned in accordance with

the rules for composition. On line 18, π′i′+1 /∈ steps(E) and proje(s
′
i′+1) = proje(s

′
i′). On

line 29, π′i′+1 ∈ steps(E) and proje(s
′
i′+1) = proje(s

′′
i′′+1). Furthermore, proje(s

′
i′) = proje(si)

since only line 29 updates proje(s
′) on successive steps of α′. Since π′i′+1 = πi+1, (proje(s

′
i′),

pi′i′+1, proje(s
′
i′+1)) = (proje(si), πi+1, proje(si+1)) ∈ steps(E), as required for composition.

The explanation for projps(s
′
i′) is similar. On line 29, π′i′+1 /∈ steps(PS) and projps(s

′
i′+1) =

projps(s
′
i′). On line 18, π′i′+1 ∈ steps(PS) and projps(s

′
i′+1) = projps(s

′′
i′′+1). Furthermore,

projps(s
′
i′) = projps(s

′′
i′′) since only line 18 updates projps(s

′) on successive steps of α′. Since
π′i′+1 = π′′i′′+1, (projps(s

′
i′), pi

′
i′+1, projps(s

′
i′+1)) = (proje(s

′′
i′′),

pi′′i′′+1, projps(s
′′
i′′+1)) ∈ steps(E), as required for composition. The controller projection

projc(s
′
i′+1) also satis�es composition by its construction. When π′i′+1 is an internal step of

E on line 29 or PS on line 18 and so π′i′+1 /∈ steps(C) then projc(s
′
i′+1) = projc(s

′
i′). For all

other steps, we have shown the satis�ability of its construction, so that when π′i′+1 ∈ steps(C)
then (projc(s

′), π′i′+1, projc(s
′+1)) ∈ steps(C). Since α′ starts with a starting state of A and

every step of α′ is a step of A, we conclude that α′ is an execution of A.

Lemma 2. Suppose β is ECSC and �nite, α′ is constructed by Algorithm 4.1, and β′ =
beh(α). Then β′|PS ∈ seqbehs(A,Γ|PS).

Proof sketch. Algorithm 4.1 constructs α′ using storage operations derived from β′′, the
sequential behavior derived from β as a consequence of the ECSC guarantee. We inspect
the construction to verify that it preserves sequential ordering for storage operations.

Proof. We note that α′′ as de�ned in line 3 of Algorithm 4.1 satis�es β′′ = beh(α′′) and so is
sequential with respect to Γ|PS. We will show that β′|PS = β′′|PS. It is straightforward to
see that β′|PS is a subsequence of β′′|PS. For πj ∈ β′|PS, πj ∈ PS = {SREQP , SREPP } =⇒
πj /∈ acts(sig(E)), thus πj is assigned in line 12, so πj appears in β′′. It also appears
in β′′|PS since πj ∈ PS. Now suppose πj ∈ β′′|PS. Then πj /∈ acts(sig(E)) and so
Algorithm 4.1 assigns πj to α

′ by line 12 and we conclude that β′′|PS is a subsequence of
β′|PS. Since β′|PS and β′′|PS are subsequences of one another, β′|PS = β′′|PS. Since
β′′|PS ∈ seqbehs(A,Γ|PS), β′|PS is also sequential with respect to Γ|PS.

Theorem 1. For all ECSC β there exists LCS β′ ∈ behs(A) with β ∼ β′.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 122

Proof sketch. We previously introduced Algorithm 4.1, which constructs a behavior β′

that takes the environment through the same states as β does while also taking the storage
and processes through the states of a corresponding sequential behavior, β′′, guaranteed to
exist by ECSC. β′ is trivially LCS, largely as a consequence of Lemma 2.

To show that β ∼ β′, we review some details of, Algorithm 4.1 to show that it preserves
the order of actions at each process and the order of actions at the environment.

Proof. Let β be ECSC and let β′ be constructed by Algorithm 4.1. By Lemma 1, β′ ∈
behs(A). To show that β′ is LCS, we begin by restating the LCS condition in De�nition 12,
replacing β′ with θ and β with β′: β′ is LCS if there exists θ ∈ seqbehs(S,Γ|acts(S)) such that
β′|PS ∼ φp(θ), and <

op
β′|PS ⊆ <op

φp(θ). Let θ = β′. By Lemma 2, θ|PS ∈ seqbehs(A,Γ|PS).

Also, trivially, β′|PS ∼ θ|PS and <op
β|PS ⊆ <op

θ|PS. So β
′ as constructed by Algorithm 4.1 is

LCS.
Now we show that β ∼ β′. By De�nition 10, this means that we need to show that

∀Pi,β|Pi = β′|Pi and that β|E = β′|E. Suppose X appears in β|Pi. Thus X must be
one of MRCV

P , MSND
P , SREQP , or SREPP . In any case, X /∈ acts(sig(E)), thus it must be

assigned to β′ from β′′ in line 12. Thus β′|Pi = β′′|Pi. From line 2, β|PS = β′′|PS, so
∀Pi, β|PS|Pi = β′′|PS|Pi. Since γ|PS|Pi = γ|Pi for any action sequence γ, and process Pi
we can say ∀Pi,β|Pi = β′′|Pi. So ∀Pi,β|Pi = β′|Pi. To show that β|E = β′|E, we observe
that if X appears in β′|E, then it must be assigned on line 23. Algorithm 4.1 steps through
β in sequence, and so β|E = β′|E.

4.4 Implementing ECSC Using Transactions

In Chapter 3 we described FaaSFS and claimed that by using transactions it implements
ECSC. In this section, we describe in more detail how to implement ECSC using transactions,
an approach that makes it possible to provide ECSC using existing systems and system
implementation techniques.

The basic idea is to bundle together consecutive storage operations that occur during
a period when a process executes in isolation, i.e., a period during which it does not send
messages and does not process any messages it may receive. We then rely upon a transaction
mechanism providing strict serializability to enforce real-time correspondence around these
bundles of operations�if transaction A ends before transaction B begins then every oper-
ation in A precedes all operations B. Communication occurs outside of transactions, and
storage access occurs inside transactions. The resulting system satis�es ECSC, enforcing
a real-time constraint when communication is involved, and a logical form of precedence
otherwise.

Strict serializability provides atomic transactions which not only maintain a correspon-
dence to real-time order, but are also indivisible. As a result, transactional implementations
of ECSC are stronger than the consistency guarantee requires because they prevent the in-
terleaving of operations from separate transactions. Still, they are generally weaker than

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 123

linearizability, which is equivalent to running each storage operation as an independent
transaction with strict serializability [192].

In Section 4.5 we describe a di�erent implementation of ECSC which is weaker, and
akin to providing periods of sequential consistency, which is a purely logical consistency
guarantee, punctuated by real-time correspondence during times of communication.

4.4.1 Background: Atomic Transactions

4.4.1.1 The Serial System

We give a brief overview of the theory of atomic transactions [258]. This theory uses a
transaction nesting model in which transactions form a tree. The approach simpli�es certain
proofs, allowing an �everything is a transaction� modeling approach, where the environment
as well as individual operations on state are modeled as transactions. The height of the
transaction tree is in principle arbitrary, but a three-level tree su�ces for our purposes.
The top-level transaction automaton models the environment outside of the transaction
system, and is known as the root transaction, or T0. At the bottom, the leaves of the
tree are individual storage operations, which we refer to as access transactions. Between
these are the mid-level application-de�ned transactions�each represented by an automaton.
Reference behavior is de�ned by interposing a serial scheduler between all transactions, and
by specifying a serial object behavior for the access transactions. This serial scheduler runs
transactions according to a depth-�rst traversal of the transaction tree, which ensures, among
other things, that we may assume that only one access transaction is active at any time.

Figure 4.3 illustrates the actions of (a) a non-access transaction automaton, (b) the se-
rial scheduler, and (c) an access transaction. Table 4.3 provides descriptions of their actions.
The model contains a transaction automaton for every possible transaction that might be
executed. There can be in�nitely many transaction automata, one corresponding to each
possible set of parameters. In applications that retry aborted transactions, each invocation
attempt is represented by a separate transaction automaton. Transaction automata do not
run until they receive a CREATE action. Once running, they use the REQUEST_CREATE
action to launch child transactions. They learn about the outcome of child transaction execu-
tions through the REPORT_COMMIT and REPORT_ABORT actions. Upon completion
of a transaction, the automaton executes the REQUEST_COMMIT action. An access trans-
action (i.e., an I/O operation, the lowest level of the transaction tree), supports a subset
of the transaction actions because it is a leaf node in the tree. CREATE(T) indicates the
beginning of a single storage operation. REQUEST_COMMIT(T,v) marks its completion
and returns the value v.

The serial system is a composition of automata:

S = SS ×
∏
X

S(X)×
∏
T

AT (4.1)

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 124

A(T)

CR
EA
TE
(T
)

RE
Q
UE
ST
_
CO
M
M
IT
(T
,v
)

RE
Q
UE
ST
_
CR
EA
TE
(T
')

RE
PO
RT
_
AB
O
RT
(T
')

RE
PO
RT
_
CO
M
M
IT
(T
')

(a) Non-access Transaction (c) Access Transaction / Serial Object

CR
EA
TE
(T
)

RE
Q
UE
ST
_
CO
M
M
IT
(T
,v
)

(b) Serial Scheduler

CR
EA
TE
(T
)

RE
Q
UE
ST
_
CO
M
M
IT
(T
,v
)

RE
Q
UE
ST
_
CR
EA
TE
(T
')

RE
PO
RT
_
AB
O
RT
(T
')

RE
PO
RT
_
CO
M
M
IT
(T
')

S(X)

SS

Figure 4.3: Automata of the serial system. Adopted from [258].

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 125

Here SS is the serial scheduler automaton. X ranges over all object names, and S(X) is the
serial object automaton corresponding to X. T ranges over all transaction names and AT is
the transaction automaton corresponding to T .

Table 4.3: Actions of transaction automata. Input and output denote the corresponding
automaton type: (AT) automaton for transaction T , (SS) serial scheduler.

Action Output Input Description

CREATE(T) SS AT Begin running a transaction
REQUEST_COMMIT(T,v) AT SS Complete transaction execution
REQUEST_CREATE(T′) AT SS Initiate T′ a child of transaction T
REPORT_COMMIT(T′,v′) SS AT Report commit of T′ to parent trans-

action T
REPORT_ABORT(T′) SS AT Report abort of T′ to parent transac-

tion T

4.4.1.2 Atomic Behaviors

The theory of atomic transactions de�nes atomic behavior in terms of behaviors of the serial
system (described in Section 4.4.1.1):

De�nition 15. A behavior β is atomic for transaction T if there exists γ ∈ behs(S) such
that β|T = γ|T .

When a system produces atomic behaviors, it is also called atomic:

De�nition 16. A system T is atomic for transaction name T if all of its �nite behaviors
are atomic for T .

In this work we will sometimes say that a system T is atomic for T and S to be explicit
about the serial system referenced. Note that De�nition 16 is quite general and does not
require T to contain T or any other transaction automaton in S. In the work that follows
we maintain this generality where possible, but will also sometimes restrict ourselves to
implementations that follow the simple system model.

Simple systems are composed of the same transaction automata {AT} as the serial system
S, but they replace the serial scheduler and the serial object automata with other automata.
They are a foundation for transaction system implementations ranging from locking, to
timestamp order, to optimistic execution.

Proofs about simple systems are facilitated by a central theorem, the atomicity theo-
rem [258], which is based around establishing a relationship between the apparent order of
operations at each object X, as observed by transaction T , and a sibling order, a partial

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 126

order among transactions. If β is a behavior of the simple system and if there is a sibling
order for which β|X is a serial object behavior for all objects X, then the atomicity theorem
tells us that β is atomic for T .

Also evident from the proof of the atomicity theorem is a corollary, described by Lynch
et al. [258] on page 196, at the conclusion of their proof of the atomicity theorem:

Lemma 3. If T0 is atomic with γ|T0 = β|T0 then γ|T = β|T for all T that commit to the
top level.

Lemma 3 is an important condition because it tells us that if behavior β is shown to
be atomic for T0 using the atomicity theorem, then γ can be used to show atomicity for
all transactions that commit to top level. This is di�erent from proving atomicity for each
transaction separately, which does not guarantee that all transactions can agree on the same
serial system behavior. Since we will rely on this guarantee, we give it a name.

De�nition 17. We call a behavior β all-atomic if there exists γ ∈ behs(S) such that
γ|T = β|T for all T that commit to top-level.

4.4.1.3 Comparison to the Classical Theory

The theory of atomic transactions [258] is more general than classical serializability the-
ory [304]. Most proofs in the classical theory focus on the properties of serialization graphs,
using con�ict serializability [304, 448] as the correctness criterion, even though it can be
stronger than necessary. By contrast, in the theory of atomic transactions atomicity for T0

provides view serializability [304, 448], which is a weaker condition.
The beauty of the classical theory is its simplicity, yet the theory of atomic transac-

tions is appealing in other ways, e.g., it uses one de�nition of correctness for single-version,
multi-version, and replicated transaction systems, whereas the classical theory must de�ne
correctness separately for each.

The theory of atomic transactions also allows for transaction nesting, storage operations
other than reads and writes, and a model of transaction aborts.1 It also implicitly includes
a real-time precedence relationship, i.e., strict serializability because the automaton model
is a global time model [4, 258].

Classical serializability theory also lacks a model of computation, which is indispensable in
our application. By applying the theory of atomic transaction we have at our disposal a state
machine formalism that allows us to model and reason about processes, the environment,
and the interactions between them.

1Aborts occur only as a result of scheduler actions; there are no application-initiated aborts.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 127

4.4.2 Modeling the ECSC Transactional Implementation

4.4.2.1 Augmented Automic Systems

The theory of atomic transactions uses a speci�c automaton signature, shown in Figure 4.3
(a). For our purposes, it is too restrictive because it allows only a limited set of external
actions. To reason about ECSC, we will want to model systems that have behaviors including
messaging, but we will not want to express messaging actions as part of the transactional
model.

We will now show that we can turn arbitrary internal actions int(AT) of one transaction
automaton into external actions ext(AT ′) of a related automation while maintaining a prop-
erty similar to atomicity. This property is not the same as atomicity, however, because it
applies to a di�erent system. We call it augmented atomicity.

De�nition 18. If AT is the automaton for transaction T then AT ′ is an augmented trans-
action automaton for T if:

• states(AT ′) = states(AT)
• start(AT ′) = start(AT)
• steps(AT ′) = steps(AT)
• acts(AT ′) = acts(AT)
• in(AT ′) = in(AT)
• out(AT ′) ⊃ out(AT)
• int(AT ′) ⊂ int(AT)

Recalling that ext(A) = out(A)∪int(A), we note that it also follows that ext(AT ′) ⊃ ext(AT).

De�nition 19. We de�ne the augmented serial system as

S ′ = SS ×
∏
X

S(X)×
∏
U 6=T

AU × AT ′

That is, S ′ is the same as S de�ned in Equation 4.1, but it substitutes AT ′ for AT .

De�nition 20. We say that a system T ′ is augmented atomic for T ′, if S ′ is an augmented
serial system derived from S by replacing AT with the augmented automaton AT ′ and if for
any �nite behavior β ∈ behs(T ′) there exists γ ∈ behs(S ′) such that β|T ′ = γ|T ′.

When a transaction system T contains the transaction automaton that will be augmented,
we can show that replacing AT with AT ′ in T produces T ′, which is augmented atomic for
T ′.

Lemma 4. Suppose a transaction system T is atomic for transaction T with the serial
system S, and suppose that T is a composition containing the automaton AT . Suppose also
that T ′ is an augmented transaction for T and that S ′ is the corresponding augmented serial
system. Then T ′ is augmented atomic for T ′ and the augmented serial system S ′.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 128

Proof sketch. We proceed to construct action sequence γ and show that γ ∈ behs(S ′)
and that β|T ′ = γ|T ′. We do this by using Algorithm 4.2, which builds up γ by combining
β, which is a given behavior of T ′, and γ′, which is a behavior of the serial system S that is
guaranteed to exist because S is atomic for T . We can think of this as replacing the external
actions of AT with the external actions of AT ′ . AT and AT ′ share a common interface with
the rest of the serial system, be that S or S ′, i.e., ext(AT) ⊆ ext(AT ′), which ensures that
the construction is possible. Since we have required that T contains AT , we can construct
T ′ by replacing this transaction automaton with AT ′ . It is then straightforward to see that
the required conditions on γ are met.

Algorithm 4.2 Construction of γ = πγ1π
γ
2 . . . π

γ
k for Lemma 4.

1: β ← β | β ∈ behs(T ′), β �nite
2: γ′ ← γ′ | γ′ ∈ behs(S) ∧ β|T = γ′|T
3: πx1π

x
2 . . . π

x
n ← β|ext(AT ′)

4: πy1π
y
2 · πym ← γ′

5: i← j ← k ← 1
6: while i ≤ n ∨ j ≤ m do
7: if i ≤ n ∧ πxi /∈ ext(AT) then
8: πγk ← πxi
9: i← i+ 1
10: else if j ≤ m ∧ πyj /∈ ext(AT) then
11: πγk ← πyj
12: j ← j + 1
13: else . Here πxi = πyj
14: πγk ← πxi
15: i← i+ 1
16: j ← j + 1
17: end if
18: k ← k + 1
19: end while

Proof. We begin by reviewing Algorithm 4.2, which constructs an action sequence γ.
We �rst show that the algorithm completes, then show that γ is a behavior of S ′ and that
β|T ′ = γ|T ′. On line 1, we select any �nite behavior β ∈ behsT ′. We know that β|ext(T) is
a behavior of T since acts(T ′) = acts(T)�the augmented transaction system has the same
actions as the unaugmented one, only some of the internal actions of the unaugmented system
are external in the augmented system owing to the di�erence between external actions of the
augmented transaction automaton AT ′ and the transaction automaton AT . Since we have
assumed that T is atomic for T , we know that there exists a behavior of the serial system
γ′ ∈ behs(S) with β|ext(T)|T = γ′|T . Since ext(AT) ⊆ ext(T) we conclude that β|T = γ′|T ,
as required on line 2. We construct γ by weaving together two action sequences: β|ext(AT ′)
and γ′. We note that since β|T = γ′|T , these sequences share the subsequence β|T . The idea

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 129

is to construct γ such that we maintain this shared subsequence, i.e., γ|T = β|T as well. The
while loop beginning on line 6 constructs γ one element at a time. The if statements inside
distinguish between three cases: on line 7 we draw actions from β|ext(AT ′) that are not in
ext(AT), on line 10 we draw actions from γ′ that are not in ext(AT ′), whereas on line 13
we encounter the overlapping elements of β|ext(AT) and γ′. We claim that the algorithm
terminates since at each step in increments either i or j or both.

We construct T ′ by replacing AT with AT ′ in T . Thus β|AT ′ = β|ext(AT ′), which is
extracted on line 3 and is the part of β that we use in constructing γ, is a behavior of AT ′ .
We can see that γ is a behavior of S ′ by noting that S ′ is a composition identical to S with
the automaton AT replaced with AT ′ , and by observing that γ is constructed from the serial
behavior γ′ by replacing a behavior of AT with a behavior of AT ′ . We conclude that γ is a
behavior of S ′ and that T ′ is augmented atomic for T ′.

4.4.3 Model for Implementing ECSC with Transactions

Figure 4.4 shows the automaton model that we use to implement ECSC using transactions.
The root transaction T0 models both the environment of the base model (see Figure 4.1) as
well as parts of the processes. Whenever a process needs to operate on storage it opens a mid-
level transaction to do so, running a �process fragment� within it. This mid-level transaction
must terminate before the process again communicates with its environment. The messaging
actions MSG_SND_P , MSG_RCV_P , MSG_SND_E, and MSG_RCV_E are all
internal to T0.

Figure 4.5 shows the transition relation for T0, Figure 4.6 shows the transition relation for
the mid-level transactions, and Figure 4.7 gives that for the access transactions, or storage.
Note that we have provided redundant labels for some actions, which may be interpreted in
both the context of the serial transaction system and in the context of the base model (see
Section 4.2.2).

As we will show in Theorem 2, we can achieve ECSC using transaction processing im-
plementations that are all-atomic for T0. As we mentioned in Section 4.4.1.2, these include
standard locking and timestamp-order algorithms, proofs for which are derived using the
simple database and the Atomicity Theorem. The implementation of FaaSFS that we de-
scribed in Chapter 3 is modeled well by optimistic hybrid atomicity (see [258], Section 10.2),
which also is all-atomic for T0.

In the proof of Theorem 2, we rely on augmented atomicity to �peek inside� of T0, exposing
behaviors that incorporate both messaging operations and storage operations. Figure 4.5
de�nes an augmented transaction system where T0 is replaced by T ′0, which substitutes
external messaging actions for internal ones. It is these behaviors augmented behaviors that
satisfy ECSC.

We also must show that our serial system model produces behaviors of the base model.
This is the content of Lemma 5, which we address next.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 130

SERIAL SCHEDULER

ENVIRONMENT WRAPPED PROCESS

RE
PO
RT
_
CO
M
M
IT

RE
PO
RT
_
AB
O
RT

RE
Q
UE
ST
_
CR
EA
TE

ACCESS

CR
EA
TE

(S
TO
R_
RE
Q
_
S)

RE
Q
UE
ST
_
CO
M
M
IT

(S
TO
R_
RE
P_
S)

CR
EA
TE

RE
Q
UE
ST
_
CO
M
M
IT

T0

NON-ACCESS TRANSACTION

RE
PO
RT
_
AB
O
RT

RE
PO
RT
_
CO
M
M
IT

(S
TO
R_
RE
P_
P)

RE
Q
UE
ST
_
CR
EA
TE

(S
TO
R_
RE
Q
_
P)

MSG_SND_P

MSG_RCV_P

MSG_RCV_E

MSG_SND_E

PROCESS
FRAGMENT

S

Figure 4.4: Transactional model.

Lemma 5. Suppose β is a behavior of the augmented serial system S ′ de�ned in Figure 4.5,
Figure 4.6, and Figure 4.7. Then γ = β|A is a behavior of the base model A.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 131

Proof sketch. The base model A is a composition of the environment, all of the processes,
and the storage. The transition relation for a composition is given in De�nition 2, which
says that at each step of the composition corresponds to a transition at precisely one of the
component state machines. We verify this for T ′ by inspection of the transition relations in
Figure 4.5, Figure 4.6, and Figure 4.7. In these �gures, we have highlighted transitions for
E in blue, Pj in red, and S in purple.

Proof. We �rst review the transitions corresponding to E. These occur in MSG_SND_E
(line 4 and line 6) and MSG_RCV_E (line 27), both in Figure 4.5. In both cases the state
corresponding to E is maintained within T0 as s.underlying[env].

The transitions for the processes Pj are distributed between T0 and the various mid-
level transactions. Figure 4.5 shows the transitions for T0. There are messaging transi-
tions MSG_RCV_P (line 13) and MSG_SND_P (line 18 and line 20). Internal process
state transitions are possible (line 47 and line 49). Storage actions are possible only from
within mid-level transactions, and state passes to them from T0 in REQUEST_CREATE
(line 33), then returns through REPORT_COMMIT (line 40). In a mid-level transaction,
described in Figure 4.6, state �rst enters CREATE (line 53). Storage operations occur
in REQUEST_CREATE, which maps to STOR_REQ_P, (line 67 and line 69) and RE-
PORT_COMMIT, which maps to STOR_REP_P, (line 73). Internal transitions of process
state are also possible in the mid-level transaction (line 84 and line 86). All of these transi-
tions are an allowed transition of the state machine of one process.

The transitions for storage S are governed by the internal transitions of access trans-
action state. Storage requests are described by STOR_REQ_S (line 94), and responses
STOR_REP_S (line 101). The storage may also make internal transitions at any time
(line 111 and line 113).

The base model also has a controller, that acts as an intermediary for messaging and
storage access. The potential reordering for messaging is captured in Figure 4.5 since in-�ight
messages are represented as sets. Storage operation ordering is restricted by the transaction
scheduler, and these transitions form a subset of those possible with the base model controller.

We have identi�ed transitions of T ′ corresponding to transitions of the base model A.
Each transition corresponds to a step of one component automaton, which makes the com-
position valid (see De�nition 2). Thus if β is a behavior of the transactional storage T ′, then
γ = β|A is a behavior of A, the base model.

Theorem 2. Suppose T is a composition containing T0, described in Figure 4.5, and suppose
that T is all-atomic for T0 and the serial system S, as de�ned in Figure 4.5, Figure 4.6, and
Figure 4.7. Let T ′ be the augmented system obtained by replacing T0 with T ′0, as de�ned in
Figure 4.5. Then all behaviors β ∈ behs(T ′) satisfy ECSC, i.e., there exists β′ ∈ behs(A)
with β′|PS ∈ seqbehs(A,Γ|PS) such that β|PS ∼ β′|PS and <ECSC

β ⊆ <ECSC
β′ .

Proof sketch. Lemma 4 tells us that T ′ is augmented atomic for T ′0. Thus for any
β ∈ behs(T ′) there exists γ ∈ behs(S ′) such that β|T ′0 = γ|T ′0. Furthermore, γ|U = β|U for
all transactions U 6= T ′0 since T is all-atomic for T0, and because for U 6= T ′0 the construction

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 132

of γ in Algorithm 4.2 maintains γ|U = γ′|U , where γ′ ∈ behs(S) is a serial behavior. This
means that γ is a behavior of S ′, a sequential system. This, together with Lemma 5, tells
us that β′ = γ|A is a behavior of A. To see that β′ satis�es ECSC we proceed to show
that β|Pj = β′|Pj for all processes Pj. Atomicity guarantees that equivalence in a piecewise
manner, but since the execution of each process is split across multiple transactions we
need to reason about order across them. We now know that β|PS ∼ β′|PS. To see that
<ECSC
β ⊆ <ECSC

β′ we rely on the fact that β|Pj = β′|Pj and that messaging actions MSND
P

and MRCV
P are both external actions of T ′0, and so their order is preserved under augmented

atomicity.
Proof. T contains the automaton T0 and is atomic for T0 since it is all-atomic for T0, thus

Lemma 4 implies that T ′, obtained by replacing AT with AT ′ in T is augmented atomic for
T ′0. Thus for any β ∈ behs(T ′) there exists γ ∈ behs(S ′) such that β|T ′0 = γ|T ′0. Let β′ = γ|A.
By Lemma 5, β′ is a behavior of A. Also, β′ ∈ seqbehs(A,Γ|PS) since γ ∈ behs(S ′), which
employs the serial scheduler.

We now want to show that β|Pj = β′|Pj for all processes Pj. Since T ′ is augmented
atomic for T ′0 we have β|T ′0 = γ|T ′0, and so also β|T ′0|Pj = β′|T ′0|Pj. Since T is all-atomic
for T0 we have β|U = γ′|U for any transaction U 6= T0 that commits to top-level, with
γ′ ∈ behs(S). Algorithm 4.2, used to construct γ in Lemma 4, maintains γ′|U = γ|U .
Thus we have β|U = γ|U , and by extension β|Pj|U = β′|Pj|U . We now have equiva-
lences for the various pieces of β|Pj, those that are part of the same mid-level transaction,
as well as those that are part of T ′0. We also note that since every action is part of a
transaction, β|Pj and β′|Pj have the same actions, and it remains to show that these ac-
tions occur in the same order, i.e., we want to show that <β′|Pj=<β|Pj . Suppose X and
Y are actions in β|Pj and X <β Y . If X and Y both appear in mid-level transaction
U it is clear that X <β′ Y . If X appears in mid-level transaction U and Y appears in
mid-level transaction V then we must have REPORT_COMMIT (U, v) <β CREATE(V)
since T0 and T ′0 de�ned in Figure 4.5 run only one mid-level transaction at a time on
behalf of each process. Now since β|T ′0 = γ|T ′0, by augmented atomicity for T ′0, X <γ

REPORT_COMMIT (U, v) <γ CREATE(V) <γ Y , and so X <β′ Y . If X appears in
T ′0 and Y appears in a mid-level transaction V , i.e., X <β CREATE(V), we similarly
have X <γ CREATE(V) <γ Y and thus X <β′ Y . On the other hand if X appears in
a mid-level transaction U and Y appears in T ′0, i.e., REPORT_COMMIT (U, v) <β Y ,
then we have X <γ REPORT_COMMIT (U, v) <γ Y and again X <β′ Y . If both X
and Y appear in T ′0 augmented atomicity assures that their order is preserved in γ and so
also β′. These cases demonstrate that <β|Pj⊆<β′|Pj . Next now consider cases for X ≮β Y .
If both X and Y appear in the same transaction, be it a mid-level transaction or T ′0, it
is clear that X ≮β′ Y . If X appears in mid-level transaction U and Y appears in mid-
level transaction V then we have CREATE(U) ≮β REPORT_COMMIT (V, p) and also
X ≮γ CREATE(U) ≮γ REPORT_COMMIT (V, p) ≮ γY and thus X ≮β′ Y . If X ap-
pears in T ′0 and Y appears in mid-level transaction V then X ≮β REPORTCOMMIT (V, v)
and so X ≮γ REPORTCOMMIT (V, v) ≮γ Y , thus X ≮β′ Y . If X appears in mid-level

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 133

transaction U and Y appears T ′0 then CREATE(U) ≮β Y and soX ≮γ CREATE(U) ≮γ Y ,
thus X ≮β′ Y . These cases demonstrate that ≮β|Pj⊆≮β′|Pj , or equivalently, <β|Pj⊇<β′|Pj .
Since we previously showed <β|Pj⊆<β′|Pj we conclude that <β′|Pj=<β|Pj . Thus β|Pj and
β′|Pj have the same actions and these actions occur in the same order, and we conclude that
β|Pj = β′|Pj.

It follows immediately that β|PS ∼ β′|PS. To see that <ECSC
β ⊆ <ECSC

β′ we need to show

that <β|Pi⊆<β′|Pi and that if X <β Y where X is MSND
P and Y is MRCV

P , then X <β′ Y .
The former is clear since <β′|Pj=<β|Pj . The latter is also evident since β|T ′0 = γ|T ′0 and
MSND

P and MRCV
P are both external actions of T ′0.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 134

MSG_SND_E (x) - (INTERNAL for T0, EXTERNAL for T ′0)
Precondition:

dst(x) = p
(s′.underlying[env],MSND

E (x), s′′) ∈ steps(U [env])
E�ect:

s.underlying[env] = s′′

s.msg_in[p] = s′.msg_in[p] ∪ x

1

2

3

4

5

6

7

MSG_RCV_P (x) - (INTERNAL for T0, EXTERNAL for T ′0)
Precondition:

s′.txn_active[p] = false
x ∈ s′.msg_in[p]

E�ect:
s.underlying[p] = s′′ | (s′.underlying[p],MRCV

P (x), s′′) ∈ steps(U [p])
s.msg_in[p] = s′.msg_in[p]− x

8

9

10

11

12

13

14

MSG_SND_P (x) - (INTERNAL for T0, EXTERNAL for T ′0)
Precondition:

s′.txn_active[p] = false
(s′.underlying[p],MSND

P (x), s′′) ∈ steps(U [p])
E�ect:

s.underlying[p] = s′′

s.msg_in[env] = s′.msg_in[env] ∪ x

15

16

17

18

19

20

21

MSG_RCV_E (x) - (INTERNAL for T0, EXTERNAL for T ′0)
Precondition:

x ∈ s′.msg_in[env]
E�ect:

s.msg_in[env] = s′.msg_in[env]− x
s.underlying[env] = s′′ | (s′.underlying[env],MRCV

E (x), s′′) ∈ steps(U [env])

22

23

24

25

26

27

REQUEST_CREATE((p,y,attempt_ct))
Precondition:

s′.txn_active[p] = false
∃s′′ | (s′.underlying[p], SREQP (y), s′′) ∈ steps(U [p])
s′.attempts[y] + 1 = attempt_ct
y = s.uncerlying[p]′

E�ect:
s.txn_active[p] = true
s.attempts[y] = attempt_ct

28

29

30

31

32

33

34

35

36

Figure 4.5: Transition relation for T0 and T ′0.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 135

REPORT_COMMIT((p,y,attempt_ct),v)
E�ect:

s.txn_active[p] = false

s.underlying[p] =

{
v.state if v.success

s′.underlying[p] otherwise

37

38

39

40

REPORT_ABORT((p,y,attempt_ct))
E�ect:

s.txn_active[p] = false

41

42

43

INTERNAL
Precondition:

s′.txn_active[p] = false
∃s′′, π | (s′.underlying[p], π, s′′) ∈ steps(U [p]) and π ∈ int(sig(U [p]))

E�ect:
s.underlying[p] = s′′

44

45

46

47

48

49

Figure 4.5: Continued: Transition Relation for T0 and T
′
0.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 136

CREATE((p,y,attempt_ct))
E�ect:

s.is_created = true
s.underlying = y

50

51

52

53

REQUEST_COMMIT((p,y,attempt_ct),v)
Precondition:

s′.created = true
s′.f inalized = false
s′.access_outstanding = ∅
v.state = s′.underlying
v.success = ¬s′.aborted

E�ect:
s.finalized = true

54

55

56

57

58

59

60

61

62

REQUEST_CREATE((p,x,attempt_ct)) - maps to STOR_REQ_P (x)
Precondition:

s′.created = true
s′.aborted = false
(s′.underlying, SREQP (x), s′′) ∈ steps(U [p])

E�ect:
s.underlying = s′′

s.access_outstanding = s′.access_outstanding ∪ x

63

64

65

66

67

68

69

70

REPORT_COMMIT((p,x,attempt_ct),v) - maps to STOR_REP_P (x)
E�ect:

s.underlying = s′′ | (s′.underlying, SREPP (x), s′′) ∈ steps(U [p])
s.access_outstanding = s′.access_outstanding − x

71

72

73

74

REPORT_ABORT((p,x,attempt_ct))
E�ect:

s.aborted = true
s.access_outstanding = s′.access_outstanding − x

75

76

77

78

Figure 4.6: Transition relation for process-fragment transactions.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 137

INTERNAL ((p,y,attempt_ct))
Precondition:

s′.created = true
s′.aborted = false
s′.f inalized = false
∃s′′, π | (s′.underlying, π, s′′) ∈ steps(U [p]) ∧ π ∈ int(sig(U [p]))

E�ect:
s.underlying = s′′

79

80

81

82

83

84

85

86

Figure 4.6: Continued: Transition relation for process-fragment transactions.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 138

CREATE((p,x,attempt_ct)) - maps to STOR_REQ_S (x)
E�ect:

s.created = s.created ∪ (p, x, attempt_ct)

87

88

89

INTERNAL
Precondition:

(p, x, attempt_ct) ∈ s′.created
E�ect:

s.underlying = s′′ | (s′.underlying, SREQS (x), s′′) ∈ steps(S)
s.executing = s.executing ∪ (p, x, attempt_ct)
s.created = s′.created− (p, x, attempt_ct)

90

91

92

93

94

95

96

INTERNAL
Precondition:

(p, x, attempt_ct) ∈ s′.executing
E�ect:

s.underlying = s′′ | (s′.underlying, SREPS (x, v), s′′) ∈ steps(S)
s.executing = s′.executing − (p, x, attempt_ct)
s.results = s′.results ∪ ((p, x, attempt_ct), v)

97

98

99

100

101

102

103

REQUEST_COMMIT((p,x,attempt_ct),v) - maps to STOR_REP_S (x)
Precondition:

((p, x, attempt_ct), v) ∈ s′.results
E�ect:

s′.results = s′.results− ((p, x, attempt_ct), v)

104

105

106

107

108

INTERNAL
Precondition:
∃s′′ | (s′.underlying, π, s′′) ∈ steps(S) ∧ π ∈ int(sig(S))

E�ect:
s.underlying = s′′

109

110

111

112

113

Figure 4.7: Transition relation for access transactions.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 139

4.5 Implementing ECSC Using Local Caches with

Hybrid Clock Leases

In this section we describe an implementation of ECSC that allows weaker consistency than
the transactional implementation described in Section 4.4. The approach, which we call
local caches with hybrid clock leases (LCHCL), is derived from Tardis [452], a scalable cache
coherence protocol for many-core microprocessors. In Tardis each core has a local cache, and
the protocol achieves sequential consistency across cores using logical clocks and a timestamp
reservation mechanism. In contrast to directory-based cache coherence mechanisms [191],
which require O(N) bits of state per cache line in a N -core system, Tardis requires only
O(log(N)) bits of state. This scalability makes Tardis a suitable starting point for providing
consistency in a serverless environment.

In augmenting the protocol to provide ECSC, we replace logical time in Tardis with a
hybrid physical-logical time representation. Like Tardis, it ticks forward using logical updates
driven by access to shared state. However, it also adjusts to align with physical time when
external communication is involved. We assume availability of a TrueTime API [113], which
augments an underlying physical clock mechanism with bounded uncertainty.

4.5.1 Background

4.5.1.1 Cache Coherence with Tardis

We now provide a brief overview of the original Tardis protocol from which LCHCL is derived.
To align with the language used in other parts of this work, we will refer to the participating
compute units as processors, whereas the original work refers to these as cores.

Each processor maintains a monotonically increasing logical time, pts. This logical time
is not a cycle counter, but rather it is updated during operations on shared state such that
it maintains correspondence to the global memory order. Tardis also annotates cache lines
with logical timestamps and uses these to implement its cache coherence algorithm.

Each processor has a private cache, and there is also a last-level cache that processors
share. In the shared cache, each cache line has two associated timestamps: a read timestamp,
rts, and a write timestamp, wts. wts represents the logical time at which the cache line was
last written, whereas rts provides a lower bound on the timestamp of any future writes to
the same address. rts thus provides a form of reservation, or logical lease.

The private cache also maintains wts and rts for each cache line. A line in the private
cache is guaranteed to be valid for the interval wts ≤ pts ≤ rts. When a processor needs
to access a cache line but pts > rts, the processor makes a request to the shared cache to
refresh the cache line state. The response provides a new rts, extending the reservation into
the future; if the state has changed it also includes updated cache line data and a new wts.

Several additional rules govern the progression of logical time. Whenever a processor
reads from local cache, it updates its clock by setting pts ← max(pts, wts). Whenever it
writes, it sets pts← max(pts, rts+ 1) and then wts← pts. An interesting case arises when

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 140

the shared cache responds to a read request. It increases rts by an interval lease, which
is a con�gurable parameter that governs a trade-o� between local cache freshness and the
frequency of communication with the shared cache.

Logical time in Tardis is similar to a Lamport clock [241]: both increase monotoni-
cally and propagate along causal links. However, Lamport timestamps attach to messages,
whereas Tardis timestamps attach to shared memory accesses (the model does not incorpo-
rate messages). There are also di�erent update rules. Whereas a Lamport clock ticks forward
every time a message is sent, logical time in Tardis moves forward at every write operation,
as well as at some read operations. If we view storage as a means of communication, then
Tardis timestamps might be viewed as an adaptation of Lamport clocks to this context.

For operations on di�erent processors, a cache line sharing mechanism completes the
algorithm. Each line in the last-level cache may be in shared mode or exclusive mode, which
are de�ned as usual [191]. In shared mode, requests to extend read reservations are always
granted immediately. If the cache line is in exclusive mode, a request for shared access
triggers a write-back request, which must complete before reads can proceed. Before writing
a cache line, a processor must obtain exclusive access. If the line is in shared mode this can
again be granted immediately, but if another processor holds exclusive access the protocol
must �rst complete a �ush request.

Tardis is more scalable than other cache coherence mechanisms because its shared cache
tracks only processors that have exclusive access to a cache line, and not those that have
shared access. Directory protocols [191], by contrast, must track shared access on a per-
processor basis. In Tardis, there is also no need to coordinate with readers to revoke shared
access. Instead, the algorithm grants exclusive mode access immediately and jumps ahead
in logical time to a point beyond rts. Revoking exclusive access requires communication,
but only with the processor holding exclusive access.

4.5.1.2 TrueTime

Traditional clock sources represent time as a single number. For example, the UNIX time-
stamp reports nanoseconds elapsed since January 1, 1970. While some operating systems
or time sources provide additional APIs that report the clock uncertainty, TrueTime makes
it explicit on every read of the clock [113]. Rather than returning a single timestamp,
TT.now() returns a pair of timestamps that de�ne an uncertainty interval: [earliest, latest].
TrueTime also provides the TT.before(t) and TT.after(t) calls, convenience wrappers which
compare a provided interval to the current time and return true only after accounting for
the uncertainty in both the system clock and the provided argument. As described in Span-
ner [113], servers synchronize their clocks at regular intervals. Uncertainty typically follows
a sawtooth pattern: it drops sharply immediately following synchronization, then increases
gradually due to uncertainty in clock drift.

When introducing TrueTime [113] and in the years that followed [78], Google highlighted
the use of atomic clocks and other sophisticated timekeeping techniques to ensure global clock
synchronization. The technology was perceived as innovative, but also somewhat esoteric�

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 141

CockroachDB, though derived from Spanner, does not use physical clocks in its consistency
model [228].

Well accepted advice would encourage us to rely on physical clocks only for performance,
and not for correctness [6, 124]. However, this may be changing in the cloud setting, as
accurate physical time has become a common feature of cloud data centers [109, 208, 406].
Also, recent research advances such as Huygens [162] and Sundial [252] use network e�ects
and statistical techniques to align clocks within a data center to a precision of 100 ns. 5G
wireless technology brings a similar level of clock accuracy to the edge network infrastruc-
ture [249]. The algorithm that follows assumes that it may soon be practical for a broader
range of systems to employ consistency algorithms that, like Spanner, rely upon physical
clocks with bounded errors for correctness.

4.5.2 LCHCL Protocol

LCHCL augments Tardis, strengthening its guarantees to provide ECSC rather that sequen-
tial consistency. Whereas time in Tardis is purely logical, in LCHCL it assumes a hybrid
nature.

Our model of time is a two-component vector: t = (tc, tl). We call tc the clock time compo-
nent and tl the logical time component. Note that clock time corresponds to a measurement
of physical time, not to physical time itself. Also, while our protocol accounts for the mea-
surement uncertainty reported by TrueTime (see Section 4.5.1.2), a scalar representation of
the clock su�ces for stored timestamps.

If x and t are hybrid times, we say that x < y when

xc < yc ∨ xc = yc ∧ xl < yl

LCHCL adds two rules to the Tardis protocol (described in Section 4.5.1.1):

• Before executing a MSG_SND_P action to release a message to the environment, it
requires TT.after(ptsc) = true.
• When executing aMSG_RCV_P action to deliver a message to a process, it advances
pts so it is at least (TT.now().latest, 0).

LCHCL also adjusts the lease extension mechanism to support an increment of clock
time, logical time, or both in combination:

lease_extend(t, x) =

{
(tc, tl + xl) if xc = 0

(tc + xc, xl) otherwise.

With this change to the protocol, the timestamps in the original Tardis protocol take
on a hybrid physical-logical nature. As we will show, sequential consistency is preserved,
but the use of physical time leads to the enforcement of ECSC. Upon receiving a message,
pts jumps forward. It may exceed the read reservations, rts, of certain cache lines, leading

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 142

CONTROLLER

ENVIRONMENT

M
SG
_
RE
CV
_
E

M
SG
_
SE
N
D
_
E

PROCESS WRAPPER WITH LOCAL CACHE

SHARED STORAGE

SSHARED CACHE
CONTROL

M
SG
_
RE
CV
_
P

M
SG
_
SE
N
D
_
P

Pj
CACHE

CONTROL

STOR_REQ_P

STOR_REP_P

STOR_REQ_S

STOR_REP_S
S

SH
_R

EQ
_S

SH
_R

EP
_S

EX
_R

EQ
_S

EX
_R

EP
_S

W
B_

RE
Q
_S

W
B_

RE
P_
S

FL
U
SH

_R
EQ

_S

FL
U
SH

_R
EP
_S

RE
N
EW

_R
EP
_S

U
PG

RA
DE

_R
EP
_S

SH
_R

EQ
_P

SH
_R

EP
_P

EX
_R

EQ
_P

EX
_R

EP
_P

W
B_

RE
Q
_P

W
B_

RE
P_
P

FL
U
SH

_R
EQ

_P

FL
U
SH

_R
EP
_P

RE
N
EW

_R
EP
_P

U
PG

RA
DE

_R
EP
_P

Figure 4.8: ECSC model with timestamp-based coherence protocol.

them to be checked for freshness upon use. This helps ensure that the processor will see the
e�ect of any storage operations that may have occurred before the message it received was
sent. We accommodate for clock uncertainty by introducing a delay at message send time,
if necessary, in e�ect waiting out any uncertainty.

Figure 4.8 shows our automaton model of LCHCL. Each process is represented within an
automaton that also incorporates cache control mechanisms and a local model of storage. A
controller links these to the environment and to the shared storage. Cache actions include:
SH_REQ requests for shared access, EX_REQ requests for exclusive access, WB_REQ
requests for write-back, FLUSH_REQ requests for cache line �ush, and all of their various
corresponding responses. These are the same as in Tardis [452], and we refer the reader to

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 143

the original work for detailed descriptions.
Figure 4.9 shows the transition relation for the process wrapper with local cache. Only

two lines distinguish LCHCL from Tardis. We have highlighted these lines, which appear
in MSG_RECV_P and MSG_SND_P. Figure 4.10 shows the transition relation for the
storage wrapper. There are no changes here relative to Tardis.

The transition relation for the controller is straightforward and we have not included the
details here. It is similar to Figure 4.2 in the base model, however, since Tardis assumes in-
order commit, it also ensures ordered delivery for communication between the shared cache
and each processor. This can be modeled using per-processor queues.

4.5.3 Proof of ECSC for LCHCL

In order to show that behaviors of the LCHCL system are ECSC, we �rst demonstrate
that our changes to the Tardis protocol have not impacted its ability to provide sequential
consistency for storage operations (SCS). We present this result in Lemma 6, which we prove
by showing that the invariants that the Tardis proof relies upon [453] are not impacted by
our changes.

We then move on to the main result of this section, given in Theorem 3. SCS ensures that
there exists an action sequence with sequential storage operations that is consistent with the
order of storage operations at each process, but ECSC requires reasoning about behaviors
of the base model A. In order to go from a sequence of actions of the storage to a behavior
of the base model, we use Algorithm 4.3 to combine the original LCHCL behavior with the
sequential behavior. We show that the modi�cations to Tardis described in Section 4.5.2
guarantee that this is possible. We also show that the ordering constraints critical to ECSC
are preserved: that we can construct a sequential behavior that preserves the order of actions
at each process (i.e., MSND

P , MRCV
P , SREPP , and SREQP) and that never reorders an MRCV

P

ahead of an MSND
P .

Lemma 6. Suppose β is a behavior of LCHCL(E, {Pi}i, S). Then β satis�es SCS, i.e.,
there exists γ ∈ seqbehs(S,Γ|acts(S)) such that β|PS ∼ φp(γ).

Proof. LCHCL is based on Tardis, which guarantees sequential consistency, but it in-
corporates slight modi�cations. We must show that these do not undermine the sequential
consistency guarantee. As described in Section 4.5.2:

• The timestamp is replaced with a two-component vector that has a component of clock
time and a component of logical time. This is a convenience but is immaterial to the
Tardis proofs since in either case the timestamps de�ne a total order, i.e., either x < y
or y < x or x = y.
• We wait before sending messages, requiring that TT.after(ptsc) = true. This does
not impact the state variables used by Tardis, and such waiting is also irrelevant in an
asynchronous model, and thus is irrelevant to the Tardis proof.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 144

• When receiving a message we advance pts so that it is at least (TT.now().latest, 0).
This does impact the state used by Tardis, but it keeps logical time moving forward.
This satis�es an assumption implicit in the Tardis proof. Our changes may cause logical
leases may expire, but because we make no adjustments to wts or rts of any cached
item, the mechanisms Tardis uses to ensure sequential consistency are preserved.
• The lease extension mechanism is adjusted to account for the two-component time-
stamp. The lease extension mechanism is immaterial to the consistency guarantees.

A key assumption of Tardis is in-order processor commit. This means that if X and Y
are memory operations originating at the same processor, X <p Y =⇒ X ≤ts Y ∧X <pt Y .
That is, if X precedes Y in the processor's commit ordering (<p), then the timestamp of X
must be less than or equal to the timestamp of Y (≤ts) and X must also occur before Y in
physical time (<pt). Thus an algorithm that advances pts monotonically is consistent with
in-order processor commit, whereas one that may decrease pts is not.

The proof of sequential consistency in Tardis centers around a theorem with three invari-
ants [452]. We review these and con�rm that they are not impacted by our changes. In this
notation L(a) denotes a load at address a and S(a) represents a store at address a.

1. Value of L(a) = Value of Max<tsS(a)|S(a) ≤ts L(a)
2. ∀S1(a), S2(a), S1(a) 6=ts S2(a)
3. ∀S(a), L(a), S(a) =ts L(a) =⇒ S(a) <pt L(a)

Invariant 1 says that the value retrieved by a load must be that which corresponds to the
latest store that precedes it, as de�ned by the timestamp order (<ts). This is guaranteed by
the use of rts and wts timestamps and by the exclusive ownership mechanism. Invariant 2
says that no two stores to the same address have the same timestamp, unless they are the
same store. This is guaranteed by the timestamp assignment mechanism for stores. Invariant
3 says that if a store and a load occur at the same timestamp then the store precedes the
load in physical time. This again is a manifestation of the timestamp assignment mechanism
for stores. We thus conclude that the proof of sequential consistency for Tardis is also valid
for LCHCL.

Theorem 3. Suppose β is a behavior of LCHCL(E, {Pi}i, S). Then β satis�es ECSC, i.e.,
there exists β′ ∈ behs(A) with β′|PS ∈ seqbehs(A,Γ|PS) such that β|PS ∼ β′|PS, and
<ECSC
β ⊆ <ECSC

β′ .

Proof sketch. We use Algorithm 4.3 to construct a behavior β′ satisfying ECSC. This
algorithm works by aligning and weaving together a number of action sequences: actions
of the environment, actions of each process, and actions of the storage augmented by their
corresponding process actions. Some key properties of this algorithm are:

• It preserves the order of actions at each process.
• It preserves the order of actions at the environment.
• It inherits the sequentially consistent order of actions at the storage, γ, from Tardis.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 145

• It incorporatesMSND
P actions as soon as possible, andMRCV

P actions as late as possible,
which is critical to ensuring that <ECSC

β ⊆ <ECSC
β′ .

The SCS aspects of ECSC are inherited from Tardis and preserved through Algorithm 4.3,
ensuring that β′|PS ∈ seqbehs(A,Γ|PS) and β|PS ∼ β′|PS. It remains to prove that
<ECSC
β ⊆ <ECSC

β′ and that Algorithm 4.3 runs successfully and terminates. To show these
properties we �rst analyze the ordering constraints that Algorithm 4.3 places on β′. We
de�ne an incorporation dependency, Jβ′ , to re�ect how the algorithm waits for one action
to be added to β′ before adding another.

Modeling logical time and physical time using related representations turns out to be
helpful when reasoning about LCHCL. We extend the LCHCL logical time so that it applies
to the environment and storage automata and not only the processes. This allows us to
associate a timestamp TS(π) with any action π in β′. We then show that π1 Jβ′ π2 =⇒
TS(π1) ≤ TS(π2).

To show that <ECSC
β ⊆ <ECSC

β′ we need to prove that X <β Y =⇒ X <β′ Y . The
design of LCHCL, described in Section 4.5.2, creates a correspondence between physical time
and logical time:

TS(MSND
P (X)) < pt(MSND

P (X))

and

TS(MRCV
P (Y)) ≥ pt(MRCV

P (Y))

However, if MRCV
P (Y) <β′ M

SND
P (X), meaning MRCV

P (Y) Jβ′ M
SND
P (X), then this implies

that pt(MRCV
P (Y)) < pt(MSND

P (X)), i.e., MRCV
P (Y) <β M

SND
P (X), so it is not possible that

MSND
P (X) <β M

RCV
P (Y). Since Algorithm 4.3 also preserves the order of actions at each

process, we conclude that <ECSC
β ⊆ <ECSC

β′ .
To see that Algorithm 4.3 runs to completion without failing on the assertion at line 25

we need to show that the Jβ′ relation does not induce any cycles on the actions of β. To
see this we �rst show that all actions in a cycle must occur at the same logical time, i.e., if
π1 Jβ′ π2 · · · Jβ′ πn Jβ′ π1 then TS(π1) = · · · = TS(πn). We then note that any cycle that
goes through the environment advances the logical time on MRCV

P , and so the cycle must
not involve the environment. The actions of the storage are sequential and consistent with
the order of operations at each process, because Tardis guarantees sequential consistency, so
a Jβ′ cycle through storage only is not possible either. We conclude that the assertion of
line 25 always passes.

Prerequisites. Before proceeding to the detailed proof of Theorem 3 we analyze the
properties of Algorithm 4.3 and de�ne some helpful machinery.

We can infer a number of ordering constraints, or incorporation dependencies, imposed

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 146

Algorithm 4.3 Construction of β′ = πβ
′

1 π
β′
2 . . . πβ

′
n for Theorem 3.

1: β ← β | β ∈ behs(LCHCL(E, {Pi}i, S))
2: πγ1π

γ
2 . . . π

γ
nγ ← γ | γ ∈ seqbehs(S,Γ|acts(S)) such that β|PS ∼ φp(γ)

3: πe1π
e
2 . . . π

e
ne ← β|ext(E) . αe

4: ∀Pj : π
pj
1 π

pj
2 . . . π

pj
npj
← β|ext(Pj) . αpj

5: πs1π
s
1 . . . π

s
ns ← φp(π

γ
1)πγ1π

γ
2φp(π

γ
2)φp(π

γ
3)πγ3π

γ
4φp(π

γ
4) . . . φp(π

γ
nγ−1)πγnγ−1π

γ
nγφp(π

γ
nγ) . αs

6: ie ← 1, is ← 1, ipj ← 1 ∀pj, k ← 1
7: while ie ≤ ne ∨ is ≤ ns ∨ ∃pj | ipj ≤ npj do
8: if ∃pj | ipj ≤ npj ∧ π

pj
ipj

= MSND
P (X) then

9: pl ← argmin
pj

<β π
pj
ipj
| ipj ≤ npj ∧ π

pj
ipj

= MSND
P (X)

10: msg_p2e_ready ← msg_p2e_ready ∪ {X | πplipl = MSND
P (X)}

11: πβ
′

k ← πplipl
12: ipl ← ipl + 1
13: else if ie ≤ ne ∧ πeie = MRCV

E (X) ∧X ∈ msg_p2e_ready then
14: πβ

′

k ← πeie
15: ie ← ie + 1
16: else if is ≤ ns ∧ ∃pj | ipj ≤ npj ∧ π

pj
ipj

= πsis then

17: πβ
′

k ← πsis
18: ipj ← ipj + 1
19: is ← is + 1
20: else if ie ≤ ne ∧ πeie = MSND

E (X) then
21: msg_e2p_ready ← msg_e2p_ready ∪ {X | πeie = MSND

E (X)}
22: πβ

′

k ← πeie
23: ie ← ie + 1
24: else
25: Assert(∃pj | ipj ≤ npj ∧ π

pj
ipj

= MRCV
P (X) ∧X ∈ msg_e2p_ready)

26: pl ← argmin
pj

<β π
pj
ipj
| ipj ≤ npj ∧ π

pj
ipj

= MRCV
P (X) ∧X ∈ msg_e2p_ready

27: πβ
′

k ← πplipl
28: ipl ← ipl + 1
29: end if
30: k ← k + 1
31: end while

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 147

on β′ by Algorithm 4.3. The algorithm enforces πµi <β′ π
ν
j , which we write as, πµi Jβ′ π

ν
j , if:

i < j ∧ ∃A ∈ {E} ∪ {Pi}i ∪ {S} | {πµi , πνj } ⊆ ext(A)

or

πνj = MRCV
E (X) ∧ πµi = MSND

P (X)

or

πνj = MRCV
P (X) ∧ πµi = MSND

E (X)

or

πνj = SREQP (X) ∧ ∃k > i | πµk = SREQP (X)

or

πνj = SREPP (X, v) ∧ ∃k > i | πµk = SREPP (X, v)

or

πµi = πλh ∧ πλh Jβ′ π
ν
j

or

πνj = πλh ∧ π
µ
i Jβ′ π

λ
h

(4.2)

The �rst condition simply says that Algorithm 4.3 must draw in order from the actions of
each automaton of the base model. This is actually slightly weaker than what the algorithm
does, which is to draw in order from the action sequences αe, αs, and {αpi}pi . The second
condition describes the case where the environment requires a message from a process to
progress, and the third condition describes the case where a process requires a message from
the environment to progress. The fourth and �fth describe either the case where a process
cannot progress until the storage progresses, or where the storage cannot progress until a
process does. The last two conditions apply to those actions that appear in two action
sequences: SREQP and SREPP , and re�ect the fact that Algorithm 4.3 incorporates them both
at the same time.

In Table 4.4 we de�ne a timestamp operator, TS(π), that extends the notion of logical
time encoded in pts. For those actions that take place at a process Pi, TS(π) simply re�ects
the process pts after action π. For actions at storage, TS(SREQS (X)) and TS(SREPS (X)) are
both de�ned based on the logical timestamp of the reply. We will sometimes write πµi <TS π

ν
j

when TS(πµi) < TS(πνj).

Lemma 7. If πµi Jβ′ π
ν
j then πµi ≤TS πνj .

Proof. At each process pts increases monotonically, so it is clear that if πµi and π
ν
j are both

process actions then πµi ≤TS πνj whenever πµi Jβ′ π
ν
j . For the environment, the de�nition

of TS in Table 4.4 describes ets, a logical timestamp that is updated such that it increases
monotonically along αe, lagging behind physical time and never exceeding it. ets re�ects the
highest pts at the time a message was sent across all messages received by the environment.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 148

Table 4.4: Timestamp operator de�nition.

Action: π TS(π) Update rule

MSND
P (X) pts at Pi after π

MRCV
E (X) ets after π ets = max(e.ts, TS(MSND

P (X)))
MSND

E (X) ets
MRCV

P (X) pts at Pi after π

SREQP (X) pts at Pi after π

SREQS (X) pts contained in v in SREPS (X, v)
SREPS (X, v) pts contained in v
SREPP (X, v) pts at Pi after π

Monotonicity of ets ensures that whenever πei Jβ′ π
e
j then also TS(πei) ≤ TS(πej). For

operations of the storage we rely on the fact that Tardis uses logical timestamps to help
enforce sequential consistency. In Tardis, the global memory order X <m Y is de�ned as
X <ts Y ∨(X =ts Y ∧X <pt Y) [452], where <ts is logical-time order and <pt is physical-time
order.2 Since γ re�ects the global memory order, we know that when πµi and πνj are both
actions of S, then also πµi Jβ′ π

ν
j implies πµi ≤TS πνj .

We next turn our attention to the incorporation dependencies that cross between pro-
cesses, the environment, and storage. In the case ofMSND

P (X) Jβ′ M
RCV
E (X), SREQP (X) Jβ′

SREQS (X), and SREPP (X) Jβ′ S
REP
S (X), it is clear that TS(π) as de�ned in Table 4.4 ensures

that πµi Jβ′ π
ν
j implies πµi ≤TS πνj . In the case of MSND

E (X) Jβ′ M
RCV
P (X), we note that

TS(MSND
E (X)) is equal to the maximum of allMSND

P (Y) previously received at E, and that
LCHCL ensures that MSND

P (Y) only occurs once TS(MSND
P (Y)) is in the past. However

LCHCL also ensures that TS(MRCV
P (X)) is greater than or equal to the present time. Thus

again when πµi = MSND
E (X) and πνj = MRCV

P (X), πµi Jβ′ π
ν
j implies πµi ≤TS πνj .

Proof of Theorem 3. Lemma 6 tells us that β satis�es sequential consistency, so there ex-
ists γ ∈ seqbehs(S,Γ|acts(S)) such that β|PS ∼ φp(γ). We construct β′ using Algorithm 4.3.
This algorithm works by weaving together three types of action sequences:

• External actions of the environment, MSND
E and MRCV

E , drawn from β. See line 3.
• External actions of each process, MSND

P , MRCV
P , SREQP , and SREPP , drawn from β|Pj

for process Pj. See line 4.

• External actions of the storage, SREQS and SREPS , drawn from γ and augmented with
their corresponding process-mapped equivalents: SREQP and SREPP . See line 5 and also
Section 4.2.4.

Algorithm 4.3 ensures that the resulting action sequence β′ is a behavior of the composition

2Our de�nition of <TS is consistent with the original Tardis de�nition of <ts, and extends it to describe
progress of the environment and storage automata.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 149

A by incorporating an action from one of its constituent automata at each iteration of the
loop beginning on line 7. We can also see that the resulting action sequence β′ is well formed:

• We ensure that MSND
E (X) precedes MRCV

P (X) using msg_e2p_ready (line 21 and
line 26). This condition is guaranteed structurally by the algorithm, but we have
added the assertion on line 25 for clarity.
• We ensure that MSND

P (X) precedes MRCV
E (X) using msg_p2e_ready (line 9 and

line 13).
• We ensure that SREQP (X) precedes SREQS (X) and that SREQS (X) precedes SREPS (X, v)
and that SREPS (X, v) precedes SREPP (X, v) using the construction of αs on line 5. The
algorithm aligns αs with the process actions of αpj on line 16.

It is clear that β′|PS ∈ seqbehs(A,Γ|PS) since β′|PS = αs|PS and since αs is derived
from γ, which is sequential. Similarly, β|PS ∼ β′|PS. First, β′|E = αe = β|E. Second,
Algorithm 4.3 builds β′ by incorporating actions of each process in sequence, i.e., β′|Pi =
αpi |Pi = β|Pi, so we also know for each Pi that β|PS|Pi = β′|PS|Pi.

We next show that <ECSC
β ⊆ <ECSC

β′ . Let µ and ν be action sequences used in Algo-
rithm 4.3, i.e.,

µ, ν ∈ {πpj1 . . . πpjnpj }pj ∪ {π
e
1 . . . π

e
ne} ∪ {π

s
1 . . . π

s
ns}

Recall from De�nition 14 that πµi <ECSC
β πνj when πµi <β|Pi π

ν
j for some Pi, or when

πµi <β π
ν
j and πµi is MSND

P (X) and πνj is MRCV
P (Y). Since β|Pi = β′|Pi, it remains to show

that MSND
P (X) <β M

RCV
P (Y) implies MSND

P (X) <β′ M
RCV
P (Y).

Suppose now that Algorithm 4.3 incorporatesMRCV
P (Y) beforeMSND

P (X). AsMSND
P (Y)

is incorporated in the case beginning on line 8 whereasMSND
P (X) is incorporated in the case

beginning on line 24, there must exist a dependency, possibly indirectly, between MRCV
P (Y)

and MSND
P (X). That is,

MRCV
P (Y) Jβ′ · · · Jβ′ M

SND
P (X)

By Lemma 7, MRCV
P (Y) ≤TS · · · ≤TS MSND

P (X), and so TS(MRCV
P (Y)) ≤ TS(MSND

P (X)).
As described in Section 4.5.2, LCHCL enforces relationships between physical time, repre-
sented here as pt(π) and logical time: TS(MSND

P (X)) < pt(MSND
P (X)) and TS(MRCV

P (Y)) ≥
pt(MRCV

P (Y)). Thus we have

pt(MRCV
P (Y)) ≤ TS(MRCV

P (Y)) ≤ TS(MSND
P (X)) < pt(MSND

P (X))

This is a contradiction, however, for MSND
P (X) <β MRCV

P (Y). We thus conclude that
MSND

P (X) <β M
RCV
P (Y) implies MSND

P (X) <β′ M
RCV
P (Y) and that as a result <ECSC

β ⊆
<ECSC
β′ .
We next verify that Algorithm 4.3 completes successfully: that the assertion on line 25 al-

ways passes and that the algorithm terminates. If the assertion fails then either allMRCV
P (X)

have been incorporated, or all those not yet incorporated have a dependency on some other
action. In either case, this implies a cyclic dependency of the form:

π1 Jβ′ π2 · · · Jβ′ πn Jβ′ π1

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 150

By Lemma 7, this implies π1 ≤TS π2 ≤TS · · · ≤TS π1, and so all actions in the cycle occur
at the same logical time: TS(π1) = · · · = TS(πn). Receiving a message advances pts, so a
cyclic dependency through messaging is not possible. SCS ensures that storage actions occur
sequentially in γ, and that this order is consistent with the order of actions at each process.
Thus a cycle is not possible through storage alone. We conclude that the assertion on line 25
of Algorithm 4.3 always succeeds. In closing, we note that at least one of the index variables
ie, is, ipj is incremented on every iteration of the loop beginning on line 7. This ensures that
Algorithm 4.3 terminates.

4.5.4 Future Work

Additional work is required to make LCHCL practical in a real system. Tardis assumes a
single failure domain, as is reasonable for a processor cache coherence protocol. This is not an
appropriate assumption in distributed systems, but we have not provided for fault tolerance
in this work. We believe that part of the solution could come from techniques developed
for shared �le systems, such as using leases [169] to ensure that delegated access can always
be reclaimed within a bounded time interval, even in the presence of failures. Leases added
for fault tolerance should not be confused with the logical leases already used by Tardis and
LCHCL to decouple readers from writers. They would �t naturally with LCHCL, however,
since it already relies upon physical clocks.

Another area for future work involves tuning the logical lease mechanism that we have
already described. Increasing the lease extension interval can reduce cache coherence tra�c,
but also can push pts further into the future, which in LCHCL may introduce delays when
sending messages. There are also a number of related optimizations to explore: bu�ering
outgoing messages so that they do not hold up the sending process, preemptively requesting
lease extensions to avoid read delays, and dynamically choosing the lease extension interval.
It may also be interesting to explore the consequences of extending leases using clock time,
logical time, or both in combination.

One limitation of LCHCL is that it is restricted to read and write operations, whereas
ECSC can describe a more general class of stateful objects, e.g., queues. LCHCL inherits this
limitation from Tardis, and the opportunity remains to develop implementations of ECSC
for other classes of storage operations.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 151

MSG_RCV_P (x)
Precondition:
∃s′′ | (s′.underlying,MRCV

P (x), s′′) ∈ steps(Pj)
E�ect:

s.underlying = s′′

s.pts = max(s′.pts, (TT.now().latest, 0)) . LCHCL extension

MSG_SND_P (x)
Precondition:
∃s′′ | (s′.underlying,MSND

P (x), s′′) ∈ steps(Pj)
s′.working_on = None

TT.after(s′.ptsc) . LCHCL extension
E�ect:

s.underlying = s′′

STOR_REQ_P (x) (INTERNAL)
Precondition:
∃s′′ | (s′.underlying, SREQP (x), s′′) ∈ steps(Pj)
s′.working = false

E�ect:
s.underlying = s′′

s.stor_req_p = x
s.working = true

STOR_REP_P (x,v) (INTERNAL)
Precondition:

s′.stor_rep_p = (x, v)
∃s′′ | (s′.underlying, SREPP (x), s′′) ∈ steps(Pj)

E�ect:
s.underlying = s′′

s.stor_rep_p = None

s.working = false

SH_REQ_P(x,wts,pts) - cache miss on read, shared mode
Precondition:

s′.stor_req_p = x
kind(x) = Read

(wts, pts) = ((0, 0), s′.pts) ∧ s′.cc[x].mode = INV
∨(wts, pts) = ((0, 0), s′.cc[x].wts) ∧ s′.pts > s′.cc[x].rts

E�ect:
s.stor_req_p = None

Figure 4.9: Transition relation for process wrapper with local cache.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 152

INTERNAL - cache hit on read, shared mode
Precondition:

s′.stor_req_p = x
kind(x) = Read

s′.cc[x].mode = SH ∧ s′.pts ≤ s′.cc[x].rts
E�ect:

s.pts = max(s′.pts, s′.cc[x].wts)
s.stor_req_p = None

s.stor_req_s = x

INTERNAL - cache hit on read, exclusive mode
Precondition:

s′.stor_requests = x · rest
kind(x) = Read

s′.cc[x].mode = EX
E�ect:

s.pts = max(s′.pts, s′.cc[x].wts)
s.cc[x].rts = max(s′.pts, s′.cc[x].rts)
s.stor_req_p = None

s.stor_req_s = x

INTERNAL - write, in exclusive mode
Precondition:

s′.stor_req_p = x
kind(x) = Write

s.cc[x].mode = EX
E�ect:

s.pts = s.cc[x].rts = s.cc[x].rts = max(s′.pts, s′.cc[x].wts+ (0, 1))
s.stor_req_p = None

s.stor_req_s = x

Figure 4.9: Transition relation for process wrapper with local cache.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 153

EX_REQ_P(x,wts) - write, in shared mode
Precondition:

s′.stor_req_p = x
kind(x) = Write

wts = 0 ∧ s′.cc[x].mode = INV
s′.working_on = None

∨wts = s′.cc[x].wts ∧ s′.pts > s′.cc[x].rts
E�ect:

s.stor_req_p = None

STOR_REQ_S (x) (INTERNAL)
Precondition:

s′.stor_req_s = x
∃s′′ | (s′.stor, SREQS (x), s′′) ∈ steps(S)

E�ect:
s′.stor = s′′

s′.stor_req_s = none
s′.stor_rep_s = (x, v)

STOR_REP_S (x,v) (INTERNAL)
Precondition:

s′.stor_rep_s = (x, v)
E�ect:

s′.stor = s′′

s′.stor_rep_s = none
s′.stor_rep_p = (x, v)

RENEW_REP_P(x,rts)
E�ect:

s.cc[x].rts = rts
s.stor_req_s = x

SH_REP_P(x,wts,rts,value)
E�ect:

s.cc[x].mode = SH
s.cc[x].rts = rts
s.cc[x].wts = wts
s.stor = s′′′ | {(s.stor, SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)
s.stor_req_s = x

Figure 4.9: Transition relation for process wrapper with local cache.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 154

EX_REP_P(x,p,wts,value)
E�ect:

s.cc[x].mode = EX
s.cc[x].rts = rts
s.cc[x].wts = wts
s.stor = s′′′ | {(s.stor, SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)
s.stor_req_s = x

UPGRADE_REP_P(x,rts)
E�ect:

s.cc[x].mode = EX
s.cc[x].rts = rts
s.stor_req_s = x

FLUSH_REQ_P(x,p)
E�ect:

s.cc[x].mode = INV
s.flush_resp = s′.f lush_resp · (x, s′.cc[x].wts, s′.cc[x].rts, value)

where {(s.stor, SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)

FLUSH_REP_P(x,wts,rts,value)
Precondition:

s′.f lush_resp = (x,wts, rts, value) · rest
E�ect:

s.flush_resp = rest

WB_REQ_P(x,p,rts)
E�ect:

s.cc[x].mode = SH
s.cc[x].rts = max(s′.cc[x].rts, lease_extend(s′.cc[x].wts+ lease), rts)
s.wb_resp = s′.wb_resp · (x, s′.cc[x].wts, s′.cc[x].rts, value)

where {(s.stor, SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)

WB_REP_P(x,wts,rts,value)
Precondition:

s′.wb_resp = y · rest
E�ect:

s.wb_resp = rest

Figure 4.9: Transition relation for process wrapper with local cache.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 155

SH_REQ_S(x,pts,wts)
E�ect:

s.sh_req[x] = s′.sh_req[x] · (x, pts, wts)

INTERNAL - shared request, can be granted immediately
Precondition:

s′.cc[x].mode = SH
s′.sh_req[x] = (x, pts, wts) · rest
s.working_on[x] = false

E�ect:
s.sh_req[x] = rest
s.cc[x].rts = max(s′.cc[x].rts, lease_extend(max(pts, s′.cc[x].wts), lease))

s.renew_rep =

{
s′.renew_rep · (x, s.cc[x].rts) if wts = s′.cc[x].wts

s′.renew_rep otherwise

s.sh_rep =

{
s′.sh_rep if wts = s′.cc[x].wts

s′.sh_rep · (x, s.cc[x].wts, s.cc[x].wts, value) otherwise

where {(s.stor[x], SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)

INTERNAL - shared request, not granted immediately
Precondition:

s′.cc[x].mode = EX
s′.sh_req[x] = (x, pts, wts) · rest

E�ect:
s.sh_req[x] = rest
s.wb_req[x] = (x, cc[x].owner, lease_extend(pts, lease))
s.sh_rep_wait[x] = s′.sh_rep_wait[x] · x
s.working_on[x] = true

Figure 4.10: Transition relation for storage wrapper.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 156

EX_REQ_S(x,wts)
E�ect:

s.ex_req[x] = s′.ex_req[x] · (x,wts)

(INTERNAL) - exclusive request, can be granted immediately
Precondition:

s′.cc[x].mode = SH
s′.ex_req[x] = (x,wts) · rest
s.working_on[x] = false

E�ect:
s.ex_req[x] = rest
s.cc[x].mode = EX

s.upgrade_rep =

{
s′.upgrade_rep · (x, rts) if wts = s′.cc[x].wts

s′.upgrade_rep otherwise

s.ex_rep =

{
s′.ex_rep if wts = s′.cc[x].wts

s′.ex_rep · (x, s′.cc[x].wts, s′.cc[x].rts, value) otherwise

where {(s.stor[x], SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)

(INTERNAL) - exclusive request, not granted immediately
Precondition:

s′.cc[x].mode = EX
s′.ex_req[x] = (x,wts) · rest
s.working_on[x] = false

E�ect:
s.ex_req[x] = rest
s.cc[x].mode = EX
s.flush_req[x] = s′.f lush_req · (x, s′.cc[x].owner)
s.working_on[x] = true

Figure 4.10: Transition relation for storage wrapper.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 157

WB_REQ_S(x,p,rts)
Precondition:

s′.wb_req[x] = (x, p, rts)
E�ect:

s.wb_req = None

WB_REP_S(x,wts,rts,value)
E�ect:

s.cc[x].mode = SH
s.cc[x].wts = wts
s.cc[x].rts = rts
s.stor[x] = s′′′ | {(s.stor[x], SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)
s.sh_rep = s′.sh_rep · (rts, wts, s′.sh_rep_wait[x][0]) · . . .
·(rts, wts, s′.sh_rep_wait[x][n])

s.sh_rep_wait[x] = []
s.working_on[x] = false

FLUSH_REQ_S(x,p)
Precondition:

s′.f lush_req[x] = (x, p)
E�ect:

s.flush_req = None

FLUSH_REP_S(x,wts,rts,value)
E�ect:

s.cc[x].wts = wts
s.cc[x].rts = rts
s.stor[x] = s′′′ | {(s.stor[x], SREQS (x), s′′), (s′′, SREPS (x, value), s′′′)} ⊆ steps(S)
s.ex_rep = (x, rts, wts, value)
s.working_on = false

Figure 4.10: Transition relation for storage wrapper.

CHAPTER 4. EXTERNALLY CONSISTENT SEQUENTIAL CONSISTENCY 158

SH_REP_S(x,wts,rts,value)
Precondition:

s′.sh_rep = (x,wts, rts, value) · rest
E�ect:

s.sh_rep = rest

RENEW_REP_S(x,rts)
Precondition:

s′.renew_rep = (x, rts) · rest
E�ect:

s.renew_rep = rest

EX_REP_S(x,wts,rts,value)
Precondition:

s′.ex_rep = (x,wts, rts, value)
E�ect:

s.ex_rep = None

UPGRADE_REP_S(x,rts)
Precondition:

s′.upgrade_rep = (x, rts)
y.rts = rts

E�ect:
s.upgrade_rep = None

Figure 4.10: Transition relation for storage wrapper.

159

Chapter 5

Servers Are Here to Stay

5.1 Introduction

Servers are plentiful and easily accessible due to the rise of cloud computing, but their
proliferation causes problems. In Chapter 1 and Chapter 2, we explained how developing
programs for the cloud can be much more complicated than developing programs that run
on a single computer. In Section 2.8.5, we explained why servers embody this problem: Rea-
soning about them creates �accidental complexity� that has nothing to do with the problem
the programmer is trying to solve.

By hiding servers behind abstractions, serverless computing can simplify cloud program-
ming. Yet while serverless computing is about abstracting away servers, other work has
sought to reimagine how data centers are physically built. Servers are tightly coupled units
containing CPUs, memory, and storage. Hardware disaggregation explores how these might
be replaced with loosely coupled designs, say by connecting each of a server's major internal
components directly to a next-generation data center network. This would o�er the �exibil-
ity to assemble resources in whatever con�guration an application needs rather than being
limited to a con�guration �xed by server design. This might speed up data sharing and
enable higher utilization.

Could the serverless computing movement and the hardware disaggregation movement,
taken together, spell the end of server-based data centers? While we believe that there are
important synergies between these areas [315], we show in this chapter that server hard-
ware has important characteristics that guarantee it an ongoing role. Even if programming
abstractions are fully serverless, server hardware, of some form, is irreplaceable.

Instead of de�ning server hardware based on the extent of a sheet metal enclosure, we
focus on a de�ning functional aspect: a domain of low-latency communication. Preserv-
ing low latency when scaling an interconnect to encompass more endpoint nodes leads to
quadratically increasing costs, so building large servers, de�ned in this way, becomes expen-
sive. Coupling many such servers using an interconnect with more gradual cost scaling lowers
the cost of adding resources to a workload but necessarily leads to higher communication

CHAPTER 5. SERVERS ARE HERE TO STAY 160

latency.
Low-latency communication is not important for all workloads, but it is critical for some.

For these workloads, a large server, despite its high cost per processor, always gets the
job done more cheaply than a collection of smaller servers. We show this using Amdahl's
law, which was �rst used to make the case that parallel processing alone could not meet
growing demands for computing power; Amdahl suggested that faster sequential processing
would be essential as well. In our model, we incorporate communication into Amdahl's law
alongside computation. We distinguish between sequential communication, that which lies
on a workload's critical path, and the remaining parallelizable communication. We then seek
to understand what sorts of workloads are likely to run best on large servers and which will
run well on collections of small servers. Those workloads that make heavy use of coordination
protocols are most likely to produce sequential communication and require large servers to
scale, whereas those that rely on coordination-free protocols can take advantage of many
smaller servers, or disaggregated hardware.

To evaluate our model in the context of a workload, we applied a data�ow graph analy-
sis to the YCSB [112] cloud database benchmark. Coordination protocols are usually used
to enforce strong consistency, whereas coordination-free protocols enable weak consistency
models, and in this experiment we evaluated both. Our analysis con�rms that strong con-
sistency is more likely to bene�t from large servers, whereas weak consistency is better able
to take advantage of low-cost small servers. This result aligns with previous work [51, 81],
but our model is based on simple fundamental relations, including Amdahl's law and those
governing interconnect cost scaling. It also arises in a deterministic and failure-free set-
ting, which demonstrates that neither non-determinism nor faults are necessary to give this
advantage to weak consistency.

It is tempting to predict the demise of physical servers as a consequence of the rise
of serverless computing. However, while we expect serverless computing to accelerate the
adoption of new data center hardware [315, 356], we also expect server hardware to maintain
an ongoing role in the data center even as serverless abstractions remove servers from the
programming model.

5.2 Background

5.2.1 Disaggregated Hardware

Almost as soon as the concept of warehouse-scale computers [60] became widely recognized,
there arose a movement to tear them apart and reimagine them. This included hardware
vendors, academic researchers, and some owners of data centers. The proposals included
Firebox [40] from UC Berkeley, The Machine from HP [202], Facebook's Disaggregated
Rack [141], Huawei Data Center 3.0 [250], Intel's Rack Scale Architecture [206], and dReD-
Box[15, 223], a consortium project.

CHAPTER 5. SERVERS ARE HERE TO STAY 161

The case for disaggregated hardware shares some motivations with serverless computing:
resource utilization in the data center can be very low due to overprovisioning and in�exible
allocations [334], and the optimal hardware mix must evolve over time to meet changing
workloads [102, 151, 186].

The hardware disaggregation movement has been emboldened by rapid advancements in
network technologies such as In�niBand [174, 318]. For example, 400 Gb/s In�niBand is
commercially available today, and the In�niBand roadmap outlines a progression up to rates
of 4.8 Tb/s [205]. Additional encouragement comes from new memory technologies [97] and
new memory interfaces [253, 314]. For example, Gen-Z [161] provides load/store memory
semantics over a fabric, and similar technologies like CCIX [93] and CAPI [438] focus on
connecting CPUs and accelerators using a memory interface.

Somewhat paradoxically, another trend that encourages disaggregation is the tighter
integration of the components that would otherwise comprise a server. One form of this is
known as system-on-chip (SoC) design [344, 440]. SoC designs can combine a CPU, memory
controller, network interface, accelerators, and other elements on a single piece of silicon.
Memory chips might be sliced from wafers and glued directly to the SoC, connected to it
by through-silicon vias, thus yielding a single chip-like package containing all of the core
elements of a server [310].

Google has indicated that SoCs factor prominently in its cloud roadmap [414]. SoC
techniques are used extensively in mobile phones and thus bene�t from massive economies
of scale. However SoC-based server designs are not yet as powerful as traditional high-end
servers, so it takes more of them to assemble an equivalent amount of resources. The result
is a collection of smaller servers connected by a data center network, which must be even
bigger as a result.

Data center designers could also use SoCs to create modules containing a network in-
terface and just one other type of resource. This could allow them to deploy compute,
memory, and storage as independent network-addressable resources. SoCs are well suited to
such a network-centric approach because they allow the network interface to be integrated
closely with other circuitry. In the work that follows we do not distinguish between disaggre-
gated hardware built from small servers and that built from single-resource network-attached
nodes. In either case, the implication is similar: disaggregation turns communication within
a server into communication over a data center network.

Research advances in silicon photonics [379, 405] could encourage a shift toward dis-
aggregated hardware. One exciting example is a single-chip processor that communicates
using light [390]. Light can carry signals faithfully and e�ciently over longer distances than
metal wires can, and silicon photonics promises the integration of optical communication
components on logic and memory chips. The problem with doing this today is that the
semiconductor materials used to make light sources and detectors are incompatible with
the manufacturing techniques used to make silicon circuits. This means that one set of in-
dustrial processes is used to make CPUs, DRAM, SSDs, and most of the other chips that
computers are made of, whereas another set of processes is used to make optical signaling
chips. The ability to build optical connectivity directly into standard silicon chips could be

CHAPTER 5. SERVERS ARE HERE TO STAY 162

(a) (b)

Figure 5.1: Illustration of (a) server-based data center organization and (b) disaggregated
hardware.

a breakthrough that spurs hardware disaggregation.
One of the open questions facing the hardware disaggregation movement is its choice

of programming model. The problem is that we currently have many applications that
are optimized to run on collections of servers. At several levels of the stack, a great deal
of e�ort has been invested in making these applications run well on today's data center
hardware. When ported to a disaggregated environment an application's performance may
su�er simply because it was optimized for a di�erent hardware target. Serverless computing
removes servers from the programming abstraction; as a result, serverless applications are
more likely to run well on disaggregated hardware because they are unlikely to be optimized
for today's server-based data center. Serverless computing thus may facilitate the use of
disaggregated resources in the data center, but as we will see, a need for server hardware
exists independent of the programming model.

5.2.2 Data Center Networks

Data center networks have experienced tremendous advances in recent years. In describing
its Jupiter network technology, Google claims a 100× increase in bandwidth over 10 years, an
advance achieved using new network designs relying on commodity components, centralized
control protocols, and scalable multi-level topologies [370]. Some aspects of this approach
were anticipated by the earlier academic work of Al-Fares et al. [144]. Facebook also describes

CHAPTER 5. SERVERS ARE HERE TO STAY 163

the evolution of its data center networks and the workloads they serve [145, 207, 340]. This
involved moving away from hierarchical topologies limited by the size and performance of
high-radix switches. The �fabric� architecture that replaced them uses smaller switches with a
lower cost per port. It also employs a multi-level but non-hierarchical interconnect topology.
Figure 5.2 illustrates this evolution. Like Google, Facebook also adopted a centralized, or
top-down, approach to network management.

Despite these advances, data center networks still face fundamental limitations and trade-
o�s: increasing network scale leads to increasing latency as well as increasing per-node costs.
While the speed of light poses an insigni�cant limitation in today's large-scale data center
networks, its role is non-trivial for the fastest technologies, and one can expect it to be an
increasing consideration in the future. For example, low-latency networking technologies
such as In�niBand can achieve round trip latencies of 2 µs [158], whereas light needs roughly
1 µs to make a 100 m round trip in a glass �ber. Google has suggested that such technologies
will become mainstream in future data centers [61]. Scale and increasing physical separation
increase latency simply because signals must travel further.

Data center networks that support more devices also require an increasing number of
levels. Each additional level introduces a network hop that can add switching and bu�ering
delays. We explore the trade-o� between cost, latency, and scale in Section 5.2.3.

5.2.3 Interconnection Networks

There are scaling rules and fundamental tradeo�s that apply to all network interconnects.
They apply inside a commodity server, where they govern the design of connections between
CPUs and between CPUs and memory. They also apply between servers, to connections in
the data center, and to HPC �supercomputers� that have cluster interconnects.

As networks grow, their cost and complexity increase more quickly than the number of
endpoints nodes does [191]. In a fully-connected network, where each node has a direct
connection to every other node, the total number of links is N(N − 1). Such networks can
make sense for a small number of nodes, but the wiring quickly becomes intractable with
increasing scale. A practical alternative is a crossbar switch, which requires only O(N) wires,
though the amount of circuitry still scales as O(N2).

Crossbar switches are attractive because, like fully connected networks, the delay they
introduce is constant (independent of the number of nodes) or close to it. However, quadratic
cost scaling eventually limits the number of nodes that can be connected with such low
latency. Multistage interconnects combine several crossbar switches to link more nodes than
a single switch can. The result is that the number of switches, the number of wires, and
cost all scale as O(N log(N)). Figure 5.3 illustrates the di�erence between single-stage and
multistage networks schematically. Multistage interconnects can achieve throughput similar
to that of a crossbar switch, but latency increases in proportion to the number of stages.
In addition, bu�ering is usually used to ensure high throughput, and this also introduces
delays.

CHAPTER 5. SERVERS ARE HERE TO STAY 164

(a)

(b)

Figure 5.2: (a) Hierarchical networks topologies use larger and higher-capacity switches at
each level. Even though there are multiple paths at uppermost �core� level, only one path
is active at any time while the other provides redundancy in case of failure. Link capacity
increases at the higher levels, but signi�cant oversubscription is common. (b) The fat-tree
or Clos network architecture uses the same size of switch and link speed at each level and
load balances tra�c over all paths. Adapted from [144].

CHAPTER 5. SERVERS ARE HERE TO STAY 165

(a) (b)

Figure 5.3: Single-stage vs. Multistage Interconnect Topology. (a) Single-stage crossbar
switch. (b) A example multistage interconnect, the Omega network [247].

Table 5.1: Interconnect scaling

Cost Latency Throughput
Single Stage (Crossbar or Fully-Connected) O(N2) O(1) O(1)
Multistage O(N log(N)) O(log(N)) O(1)

There are many types of multistage interconnects with di�ering properties, most notably
with regard to blocking. In a non-blocking switch, tra�c between a pair of nodes is never
impacted by tra�c between other nodes, but in a blocking switch there can be interfer-
ence [191]. Crossbar switches also have various properties depending on their construction.
For example, if the fabrication technology allows only one layer of wires, so wires cannot
cross, latency increases as the switch grows larger.

For our purposes, the important distinction is between the two classes of interconnects,
rather than the di�erences within each class. As shown in Table 5.1, single-stage switches
have more desirable latency scaling, whereas multistage switches have more desirable cost
scaling.

CHAPTER 5. SERVERS ARE HERE TO STAY 166

5.2.4 Making the Most of Density

The COST metric [270] measures how large a distributed system needs to be to outperform
an implementation that uses a single thread. Sometimes this gives astonishing results. For
example, some systems require hundreds of cores to outperform a single thread. Others have
unbounded COST, meaning that regardless of size, these distributed systems never outper-
form a single thread. Our work aligns with these �ndings, though we compare distributed
systems to large servers rather than to single threads.

Researchers have also studied how to implement databases so they use large servers
e�ectively [56, 454]. This work highlights the signi�cant engineering challenges to scaling
concurrency control algorithms to make good use of machines with more than 1,000 cores,
but also indicates that it is generally possible to do so. This result suggests that databases,
along with their established consistency guarantees, can be made to scale to ever-larger
servers.

5.2.5 Cloud Server Selection

Cloud providers o�er a large selection of virtual server types, which can turn choosing the
optimal ones into a bewildering challenge for people or an expensive optimization task for
automated tools. A number of research systems, such as PARIS [445], Ernest [418], and
CherryPick [17], have tackled this challenge. They focus on analytic workloads and combine
experimentation with predictive models to avoid brute-force exploration. Google Autopi-
lot [342], a commercial technology, is used by the company internally to adjust provisioned
compute and memory resources. Its aim is to reduce costs while maintaining application
performance.

Public cloud providers also o�er a number of tools to help customers better select
instances. These include Google Cloud Recommender [333], Azure Cloud Cost Manage-
ment [47], and AWS Compute Optimizer [45]. Third-party products for cloud cost man-
agement are also available [104, 105]. Such tools can identify patterns across many cloud
customers and incorporate them into provisioning recommendations.

Clearly, instance sizing is important for traditional server-based cloud applications. It
is also relevant to serverless computing since an abstraction that hides servers must assume
responsibility for selecting them.

There are, however, many open questions regarding instance selection for serverless com-
puting. For example, do serverless platforms bene�t from the availability of many di�erent
instance types, or could a data center designed for serverless make do with fewer types�
maybe just one or two? Also, could serverless computing reduce the need for the most
expensive and powerful instances, and instead distribute the workload across many smaller
instances? The rest of this chapter speaks to these questions.

CHAPTER 5. SERVERS ARE HERE TO STAY 167

5.3 Measuring Interconnects

Before building theoretical models of workload performance, we wanted to gain a quantitative
understanding of the performance in contemporary data centers. To do so, we conducted
a few basic experiments to measure the message latency between the processors of a single
server and between servers joined by various network types.

5.3.1 Intra-Server Interconnects

To get a sense for the diversity of performance characteristics, we tested a variety of architec-
tures, including Intel, AMD, and ARM. Our test programs runs two processes, each of which
we pin to a speci�c processor. One uses an atomic compare-and-swap instruction to toggle
a 64-bit integer from 0 and 1 while the other toggles it from 1 to 0. The actions of these
processes are alternating and coordinated, and the total number of value changes in a period
of time gives the one-way communication latency between the two cores. Figures 5.4(a)-(c)
show measurements for three processor types. In each case, we show the latency between core
0 and every other core in the system, plotting a bar for each that represents the minimum
of �ve measurements.

In Figure 5.4(a), we show the performance of a server with 2.5 GHz Intel Xeon Platinum
8259CL CPUs. This is a two-socket design, and a division between two levels of latency
presumably represents the di�erence in latency between communicating between cores in
di�erent sockets and cores within the same socket; it appears to be a two-stage interconnect.
A �ner periodic structure is also visible that seems to re�ect some other hierarchy of con-
nectivity within the socket. These cores are actually hardware threads [133, 411], meaning
that pairs of logical cores share many of the same underlying microarchitectural resources.
In this case, we believe that logical cores 0 and 48 are actually the same physical core. Our
measured latencies are 3.5 ns between hardware threads on the same core, 31 ns between
separate cores on the same socket, and 72 ns between separate sockets in the same server.

In Figure 5.4(b), the AMD EPYC 7571 that we tested runs at 2.55 GHz and has 24
cores, each of which has two hardware threads. Like the Intel chip, it implements the x86
instruction set, but it displays di�erent latency characteristics. We identify four levels of
latency here: a same-core latency of 10.4 ns and three cross-core latency tiers: 6 processors
(3 cores) at 15.5 ns, 32 processors (16 cores) at 168 ns, and 24 processors (12 cores) at 186 ns.
While we are unsure of the details, we conclude that groups of 8 processors (4 cores) are
closely coupled and the server interconnect has three stages in all. Interestingly, the farther
latency tiers do not appear to correspond to socket boundaries.

The AWS Graviton2 processor (Figure 5.4(c)) runs at a 2.5 GHz clock rate, which is
similar to the speed of the other systems. It does not show any evidence of hardware threads,
and the one-way latency appears to be quite uniform at an average of 26.5 ns, meaning that
this is a single-stage interconnect. This processor provides a third point of reference, and
represents both a di�erent architecture and a di�erent instruction set.

CHAPTER 5. SERVERS ARE HERE TO STAY 168

Table 5.2: Latency of MPI communication corresponding to Figure 5.4

One-way Latency (ns)

Atomic Instructions 51
Intra-Server MPI 308
Cluster MPI 19,817
Single-AZ MPI 63,914
Cross-AZ MPI 530,190

We are not privy to the design considerations and trade-o�s used to create each of
these chips, but they lead to interesting consequences. The Intel chip has lower same-core
latency than AMD, 3.5 ns vs. 10.4 ns, but the AMD can connect separate cores with lower
latency than either the Intel chip or the ARM-based AWS chip: 15.5 ns vs. 31 ns or 25 ns,
respectively. However, it takes longer to access the more remote cores in the AMD system,
between 168 ns and 186 ns vs. 72 ns for Intel. More important than the speci�c numbers is
the overall principle: there are di�erent ways to link up the cores inside a server, and this
creates meaningful di�erences in performance characteristics. When message latency is what
matters, then for programs using 8 or fewer processes AMD o�ers the tightest integration,
and likely the best performance. AWS on ARM is best between 9 and 64 processes, and the
advantage goes to Intel between 65 and 96 processes.

5.3.2 Inter-server Interconnects

Our next set of experiments looks at the latency of communication between servers. We
adapted a simple MPI [172] �ping-pong� demo program that passes a counter back and
forth between two processes, incrementing it on each hando� [225]. We tested four di�erent
scenarios: communication between two processes on the same server; communication between
two servers linked by the AWS Elastic Fabric Adapter (EFA) [137], a high-performance
�cluster� interconnect; and communication between servers linked by the ordinary AWS
data center network, both within the same AZ and across AZs. We used AWS m5n.24xlarge

instances, which are equipped with 100 Gbps NICs and the 2.5 GHz Intel Plantinum 8259CL
processors studied in Section 5.3.1. We ran each experiment 10 times, and we report the
minimum time achieved.

The results of these experiments are shown in Figure 5.4 (d) and Table 5.2. For MPI
communication within a server, the latency is 308 ns, roughly 6× the average inter-core
latency that we reported for this server in Section 5.3.1. MPI is a more general mechanism,
and we believe that this generality is re�ected in the additional ∼250 ns delay. Within a data
center, latency is about 20 µs using EFA and about 64 µs using the standard in-AZ network.
Across availability zones within the region, the latency is signi�cantly higher, coming in at
about 530 µs.

CHAPTER 5. SERVERS ARE HERE TO STAY 169

0 16 32 48 64 80 96

Processor ID

0

25

50

75

100

125

150

175

200

O
n
e-

W
ay

L
a
te

n
cy

(n
s)

Intel Xeon Platinum 8259CL

(a)

0 16 32 48 64 80 96

Processor ID

0

25

50

75

100

125

150

175

200

O
n
e-

W
ay

L
a
te

n
cy

(n
s)

AMD EPYC 7571

(b)

0 16 32 48 64

Processor ID

0

25

50

75

100

125

150

175

200

O
n
e-

W
ay

L
a
te

n
cy

(n
s)

AWS Graviton2 (Arm)

(c)

A
to

m
ic

In
st
ru

ct
io
ns

In
tr
a-

S
er

ve
r
M

P
I

C
lu
st
er

M
P
I

S
in
gl
e-

A
Z

M
P
I

C
ro

ss
-A

Z
M

P
I

101

102

103

104

105

106

O
n
e-

W
ay

L
a
te

n
cy

(n
s)

Network Latency Comparison
Intel 8259CL with 100 Gbps NIC

(d)

Figure 5.4: One-way message latency between logical processors within a server for (a)
2.5 GHz Intel Platinum 8259CL (AWS m5n.24xlarge), (b) 2.55 GHz AMD EPYC 7571
(AWS m5a.24xlarge, and (c) 2.5 GHz AWS Graviton2 (ARM architecture, AWS m6g). (d)
shows the latency of an MPI operation between pairs of processes linked by di�erent sorts of
interconnects, and for comparison includes the mean of (a) labeled as �Atomic Instructions.�

CHAPTER 5. SERVERS ARE HERE TO STAY 170

In these experiments, MPI communication is 64× faster within a server than is possible
between servers, even in the best of circumstances. We know of some technologies that o�er
somewhat faster communication between servers than what we measured here, however we
did not experiment with them, and we know that they too run into limitations. RDMA
technologies provide one-way latencies at or even below 1 µs [158], and the speed of light in
�ber optics puts a limit of about 490 ns on how quickly a signal can travel 100 m, which is
roughly the size of a data center. Since electronic delays also apply at both ends, we estimate
that this latency will always be at least 10× as great as the delays of messaging between
cores on a modern server such as the ARM-based AWS Graviton, and it is possible that it
could remain much higher, as it is today.

These experiments show just how much slower communication is between servers than
within servers. We have focused this analysis on latency rather than bandwidth because
bandwidth is not subject to the cost-performance trade-o�s discussed in Section 5.2.3.

5.4 Amdahl's Law and Communication

In this section, we apply classic scaling rules for multiprocessing to modern distributed
computing. We can think of sending and receiving messages as processor operations like
any others, di�erent only because they may incur substantial latency. Our approach puts
communication on equal footing with computation and extends Amdahl's law to workloads
where waiting on communication is the bottleneck. Algorithms requiring coordination are
prime examples of such workloads, as we explain in Section 5.5. We begin by presenting the
model, then explore its implications.

5.4.1 Background

Amdahl's Law is classic advice for those who design parallel algorithms and the machines
that run them. It follows from Gene Amdahl's observation [28] that even when much of a
workload can be divided among multiple processors and processed in parallel, there is usually
some portion that must be performed sequentially. We denote these portions as Wp and Ws,
respectively, and express the total amount of work as W = Ws + Wp. The completion time
T for a task can then written as the sum of Ts, the time needed for the sequential portion,
and Tp, the time needed for the parallel portion, where we assume that these portions are
non-overlapping and do not run concurrently.

If M processes are available, the completion time becomes

T = Ts + Tp =
Ws

Rs

+
Wp

MRp

(5.1)

where the sequential and parallel components are processed at rates Rs and Rp. For sim-
plicity, from here forward, we assume that serial and parallel portions are processed at the
same rate, and let R = Rs = Rp.

CHAPTER 5. SERVERS ARE HERE TO STAY 171

We de�ne as f the fraction of the workload that is parallelizable,

f =
Wp

Ws +Wp

(5.2)

We can now express the parallel speedup with m processes as

s(m) =
T |M=1

T |M=m

=
1

(1− f) + f
m

(5.3)

Note that the speedup asymptotically approaches a limiting value as the number of processors
increases. The maximum possible speedup is

lim
m→∞

s(m) =
1

1− f
(5.4)

If the workload represents interactive processing�say, all the requests that arrive at an
API during some �xed interval�then there is also a capacity limit. We can compute this
capacity limit as

lim
m→∞

W

T |M=m

=
Ws +Wp

Ws

R

=
R

1− f
(5.5)

In other words, if a portion 1− f of the workload is necessarily sequential, then it will be
impossible to keep up with a workload arrival rate greater than R

1−f , no matter how many
processesors are provided.

Amdahl's law has provoked substantial controversy over the years, even though this
was not Amdahl's original intent [27]. The most important reinterpretation was given by
Gustafson [179], who observed that the number of processors desired and the amount of
parallelizable work can be correlated. In the context of HPC and scienti�c computing, it
is often increasing problem scale that drives the need for more processors, but increasing
problem scale often results in more parallelizable work but not more sequential work.

LetW 0
p be the amount of parallelizable work provided at the one-process scale. Gustafson

observes that forM processes, the amount of parallelizable work is often Wp = MW 0
p , which

suggests the scaling

s′(m) =
T |Wp=MW 0

p

M=1

T |Wp=MW 0
p

M=m

= (1− f) + fM (5.6)

Under these assumptions, the maximum speedup is limited only by the problem size.
We note that both Amdahl and Gustafson adopt simpli�ed perspectives and ignore many

details. Shi shows that the two are not in con�ict [367] and suggests how to determine which
formulation is most appropriate for a given problem.

While Amdahl's law has, in the past, been of interest principally to the HPC community,
more recent work by Hill and Marty has explored how it applies to multi-core processor
designs [196]. Given any resource budget, say chip area or power dissipation, designers can

CHAPTER 5. SERVERS ARE HERE TO STAY 172

choose to build a smaller number of cores, each having faster sequential performance, or a
larger number of cores, each having slower sequential performance but having greater parallel
performance in aggregate. Hill and Marty show that in some cases it may be best to build
asymmetric processors that have a mix of slower and faster cores.

5.4.2 Incorporating Communication

We now propose a use of Amdahl's Law for workloads that are rich in communication, like
modern cloud workloads. For concreteness, consider W to be a batch of input, perhaps a
collection of transactions, subject to some consistency guarantees. Moreover, consider the
case where the speci�cation or implementation of these guarantees imposes dependencies
between their processing, e.g., those originating from a data�ow graph representation of the
computation. We treat the communication and computation along the longest path through
this graph, its critical path, as the sequential portion of the workload, and the rest as the
parallelizable portion. We show in Section 5.6 how such graphs can be constructed.

We now split the overall time to process W into four components, which we assume to
be non-overlapping:

T = TΣ
s + TΣ

p + TΦ
s + TΦ

p (5.7)

Here TΣ
s and TΣ

p are the compute time spent on the sequential and parallelizable com-
ponents of the workload, while TΦ

s and TΦ
p are the corresponding times spent waiting on

communication.
We let Ms and Mp represent the number of messages waited for in the sequential and

parallelizable portions of the workload, respectively, and we let τ̄ be the mean message
latency. Then we can write

T =
Ws

Rs

+
Wp

mRp

+Msτ̄s +
Mpτ̄p
m

(5.8)

The message latency τ̄ depends on the underlying transport mechanism. For messages
sent from a process to itself, we take this latency to be zero. Sending messages from one
process to another incurs nonzero latency. While there is a hierarchy of connectivity both
within a server and among servers in a data center (see measurements in Section 5.3), to
keep this model simple, we use just two latencies: one for intra-server messaging and another
for inter-server messaging.

τ̄ =

0 within a process

τs for intra-server messaging

τx for inter-server messaging

(5.9)

We also introduce parameters that describe the rate of messaging associated with both
the sequential and parallelizable portions, letting ρs = MsR

WS
and ρp = MpR

Wp
.

CHAPTER 5. SERVERS ARE HERE TO STAY 173

We can now express the speedup as

s(m) =
1

(1− f) + f
m

+ (1− f)ρsτ̄ + fρpτ̄

m

(5.10)

We estimate τ̄ assuming that messages are distributed uniformly across all source and
destination processors, and let

τ̄ =

0 if m = 1
m−1
m
τs if 1 < m ≤ N

N−1
m
τs + m−N

m
τx if m > N

(5.11)

In the sections that follow, we develop a cost model to accompany the performance model
of Equation 5.10 and use it to compare between using large servers and using many small
servers. These choices correspond to, respectively, using powerful but expensive servers and
using disaggregated hardware.

5.4.3 Cost Model

We assume that a certain high-volume commodity server has the lowest cost per processor.
We denote the number of processes supported by this �basic� server as N0 and the cost of
this processor as C0. Up to some level of scale, manufacturing and packaging e�ciencies
outweigh quadratic growth in integration costs, so any number of processors m ≤ N0 are
most cost-e�ectively provisioned as a slice of the basic server.

Let CN be the cost of a server supporting N processes. We assume that some (1− β)C0

of the basic server cost is the cost of the interconnect, whereas a part βC0 is the cost of
everything else (cores, memory, power supply, etc.). We assume that the interconnect cost
scales quadratically (see Section 5.2.3 and Table 5.1). Then, for N > N0, we may write the
cost of the server as

CN =

(
β
N

N0

+ (1− β)

(
N

N0

)2
)
C0 (5.12)

We then write the cost of m processes provided using servers of size N as

C(m,N) =

{
mC0

N0
if N ≤ N0

mC0

N0
(β + (1− β) N

N0
) if N > N0

(5.13)

Here we assume serverless pay-as-you-go to allow purchasing fractional server resources, but
we also assume that these resources are provisioned for the entire duration T required to
execute the workload. This assumption is appropriate when processor idle periods are similar
to the scheduling quantum or less than it, so the overheads of resource multiplexing outweigh
its bene�ts. This is the case when sequential and parallelizable portions of the workload are

CHAPTER 5. SERVERS ARE HERE TO STAY 174

�nely interleaved and when communication latencies are relatively small. We also assume
that the total capacity of the data center is much greater than that allocated to the workload,
so the cost per node of the data center network does not depend on the number of servers
used.

5.4.4 Large Servers vs. Disaggregation

In each of Figure 5.5 through Figure 5.9, we plot (a) speedup as a function of the number of
processes; (b) the relative cost and relative capacity for the full range of processes in (a); and
(c) a �zoomed� view of the cost-capacity relationship that focuses on the trade-o� in the range
of processors near the size of the largest server considered (1024 cores). We also show how
time spent is divided between sequential computation (Σs), parallelizable computation (Σp),
sequential communication (Φs), and parallelizable communication (Φp), for servers having
processor counts of (d) 1,024, (e) 64, and (f) 8. We �x the workload parameter f = 0.9999
and vary ρs, ρp, as well N , as the number of cores in a server. We inserted parameters based
on commercially available technology, choosing N0 = 64, representing the AWS Graviton2
processor. We set R = 1, τs = 50, and τx = 4, 000, using a dimensionless time unit that
corresponds roughly to CPU clock cycles.

There are two situations in which large servers are preferable to disaggregated collections
of smaller servers. In some cases, they achieve performance that is not possible with basic
servers, regardless of how many of them there are, as seen in Figure 5.8 and Figure 5.9. In
Figure 5.7, large servers are cheaper for certain ranges of capacity, whereas the smaller servers
are cheaper in other ranges. In other cases, such as those of Figure 5.6, small servers are
cheaper across a broad range of capacity levels, but large servers still o�er higher maximum
capacity. In models with any communication, i.e., ρs 6= 0 or ρp 6= 0, there is always a capacity
level that is achievable only with a single large server�the collection of smaller servers has
a maximum capacity

lim
m→∞

W

T |M=m

=
R

(1− f)(1 + ρsτx)
(5.14)

whereas for large servers it is

lim
m→∞

W

T |M=m,N=m

=
R

(1− f)(1 + ρsτs)
(5.15)

Which is larger since τx > τs. We thus ask, what are the workload parameters under which
it can make sense to use a disaggregated system, splitting the work across many smaller
servers to achieve lower cost than we might with one or a few large servers? To �nd these
con�gurations, we look for those points where the cost-capacity curve of a single server
intersects with that of a distributed system built from the basic server. To do this, we �x a
cost budget C and express it in terms of a scaling parameter α, writing

C = α2C0 (5.16)

CHAPTER 5. SERVERS ARE HERE TO STAY 175

Figure 5.5: f = 0.9999, ρs = 0, ρp = 0. In this case there is no communication and so our
model reduces to Amdahl's law�the speedup saturates as it approaches 1/f . Using a larger
server increases cost, but does not alter performance.

CHAPTER 5. SERVERS ARE HERE TO STAY 176

Figure 5.6: f = 0.9999, ρs = 1/1, 000, ρp = 1/100, 000. At high process counts sequential
communication accounts for the greatest fraction of time spent. For any given number of
processors, putting them in a larger server boosts performance, but the same performance
can usually be achieved by using a larger number of smaller servers, and when possible this
results in lower cost.

CHAPTER 5. SERVERS ARE HERE TO STAY 177

Figure 5.7: f = 0.9999, ρs = 1/1, 000, ρp = 1/1, 000. A large server can handle this workload
with signi�cantly fewer processor than smaller servers can, however the greater per-process
cost of larger servers can lead to a more expensive solution. In this case the 128- and 256-
core severs can be the cheapest way to meet certain capacity needs, but the 1024-core server
always costs more.

CHAPTER 5. SERVERS ARE HERE TO STAY 178

Figure 5.8: f = 0.9999, ρs = 1/1, 000, ρp = 1/100. An increasing amount of parallelizable
communication relative to Figure 5.6 creates additional bene�ts for larger servers. In this
case, 128-core and larger servers o�er the lowest-cost way to meet certain capacity demands,
but they all cease to be cost e�ective once the workload scales beyond one server.

CHAPTER 5. SERVERS ARE HERE TO STAY 179

Figure 5.9: f = 0.9999, ρs = 1/100, ρp = 1/100. In this case sequential communication
dominates and capacity is determined by the size of the server, as in Figure 5.7. Here using
more than one server again o�ers no bene�t to either cost or performance. The optimal
solution is choose the server size so that a single server provides the needed capacity.

CHAPTER 5. SERVERS ARE HERE TO STAY 180

By Equation 5.13, if we use basic servers to build the system, this cost budget constrains
the number of processes as

C(mdis, N0) =
mdisC0

N0

(5.17)

Which gives the number of processes as

mdis = N0α
2 (5.18)

If, instead, we put the budget toward a single large server, then Equation 5.13 gives

C(mbig,mbig) = mbig
C0

N0

(
β + (1− β)

mbig

N0

)
(5.19)

And solving for mbig yields:

mbig =
2α2

β +
√
β2 + 4(1− β)α2

N0 (5.20)

We now set β = 0 to allow a simpler analytical derivation, yielding

mbig = αN0 (5.21)

Later, we show that this makes little di�erence to the overall interpretation of the results
(see Figure 5.10).

The collection of small servers gives a greater speedup than a single large server when
Tbig > Tdis, i.e., when

(1− f) +
f

mbig

+ (1− f)τ̄bigρs + f
τ̄bigρp
mbig

> (1− f) +
f

mdis

+ (1− f)τ̄disρs + f
τ̄disρp
mdis

(5.22)

We approximate τ̄big and τ̄dis from Equation 5.11 by assumingm� N � 1, so that τ̄big ≈
τs and τ̄dis ≈ τx. We also assume that f is close to 1, i.e., the workload is highly parallelizable.
We then substitute mbig = αN0 and mdis = α2N0 (Equation 5.18 and Equation 5.21) to write

1

αN0

+ (1− f)τsρs + f
τsρp
αN0

>
1

α2N0

+ (1− f)τxρs +
τxρp
α2N0

(5.23)

This may be rearranged as

(N0(τx − τs)(1− ρs)f)α2 − (τxρp + 1)α + (1 + τx) < 0 (5.24)

We require all variables to be real and positive, and assume τx > τs and ρs < 1. Under
these conditions, Equation 5.24 has a solution when

(τsρp + 1)2 > 4N0(τx − τs)(1 + τxρp)(1− f)ρs (5.25)

CHAPTER 5. SERVERS ARE HERE TO STAY 181

Or, equivalently, when

(1− f)ρs <
(1 + τsρp)

2

4N0(τx − τs)(1 + τxρp)
(5.26)

Figure 5.10 plots this relationship in terms of the workload parameters ρp and (1− f)ρs.
For those combinations below the threshold curve (in red), a single server is always preferred.
For those above the threshold, a network of servers will be preferred for some capacity
amounts. Depending on the workload, routine capacity needs could be greater than or less
than the maximum capacity supported by the disaggregated system (see Equation 5.14).

We note that the line representing Equation 5.26, as shown in Figure 5.10, is con�ned to
a horizontal band. In the limit of ρp → 0, we obtain the relationship

(1− f)ρs <
1

4N0(τx − τs)
(5.27)

This is the disaggregation threshold for workloads that require little communication in their
parallelizable portions.

The right-hand side of Equation 5.26 reaches its maximum when ρp = (τx − 2τs)/(τxτs),
so disaggregation is cost-e�ective at some capacity level whenever

(1− f)ρs <
τs

N0τ 2
x

(5.28)

The quantity (1 − f)ρs appearing on the left-hand side of Equation 5.26 represents the
rate of sequential communication in the context of the overall workload. In Equation 5.27
and Equation 5.28, the dependence on ρp drops out, giving constant thresholds involving only
the amount of sequential communication. It is thus a workload's necessarily sequential com-
munication, which we can also think of as its critical-path communication, that determines
whether it can run on a disaggregated system as opposed to a single large server.

We brie�y return to the β = 0 assumption used to derive Equation 5.21 from Equa-
tion 5.20. This choice implies that server cost is driven primarily by interconnect costs,
even at the scale of a basic server. Quadratic scaling of interconnect costs means that this
assumption becomes true eventually, i.e., the cost of the largest servers is dominated by the
cost of the interconnect, but this is probably not a reasonable assumption when N is near
to N0. Dropping the β = 0 condition leads to an alternative formulation of the relationship
in Equation 5.26(

(1 + τxρp)(2− β)(τx − τs)(1− f)ρsN0 − (1 + τsρp)
2(1− β)

)2
>

((τx − τs)(1− f)ρsN0)2 (1 + τxρp)
2(1− β/2)2 − (1 + τsρp)

2β2
(5.29)

In Figure 5.10, we illustrate the di�erence between β = 0 (red line) and β = 0.5 (background
shading). The curves are similar, though shifted slightly, which suggests that the essential
features of the model are captured by the analysis for β = 0.

CHAPTER 5. SERVERS ARE HERE TO STAY 182

Figure 5.10: Under certain workload parameters, a single large server dominates a dis-
tributed system�any collection of smaller servers that meets the capacity requirement will
cost more than a large server providing equal capacity. The red line indicates the β = 0
threshold as given by Equation 5.26. The background shading shows the numerical solution
to Equation 5.29 for β = 0.5.

5.5 Consistency and Communication

Our formulation of Amdahl's law in Section 5.4 describes workloads using several parameters:
f , the fraction of the work that is parallelizable; ρs, the rate communication for the sequential
work; and ρp, the rate of communication for the parallelizable work. We observed that, for
some workload parameters, a disaggregated system comprising many small servers is a good
solution, whereas, for other workload parameters, such a collection of servers costs more than
a single large server, even though the large server may have a much higher cost per processor.
However, how can we determine the parameters that characterize any given workload?

Section 5.6, which follows, describes how to compute the parameters from workload
traces. However, it is also possible to use intuition to understand its implications for a
workload: Equations 5.26-5.29 de�ne thresholds on (1 − f)ρs, the rate of sequential com-
munication in the workload. Equation 5.27, which disregards parallelizable communication
(the case ρp = 0), gives a particularly simple formulation.

CHAPTER 5. SERVERS ARE HERE TO STAY 183

This �ts neatly with the CALM theorem [187], which tells us that coordination proto-
cols, those that require waiting on communication, have limited scalability. On the other
hand, coordination-free implementations can scale. We refer the reader to Section 2.8.4.1 for
additional context.

When an application engages in coordination, e.g., by using Paxos [242, 243], two-phase
commit [170], bulk synchronous processing with barriers [415], or simply locks [188, 244], it
may be putting communication on its critical path. This may not present a problem if done
occasionally, but if the frequency of sequential communication exceeds a certain threshold,
the workload becomes unsuitable for running on a distributed system.

Coordination protocols are generally used to provide strong consistency guarantees such
as linearizability [192] or serializability [305]. Coordination-free protocols provide consistency
guarantees such as causal consistency [52, 255, 260], bounded staleness [53], or eventual con-
sistency [398]. Application designers need to be careful when requesting strong consistency,
because putting too much of it on the critical path will produce an application that requires
expensive large servers to scale. Opting for weak consistency frees them to use coordination-
free protocols and guarantees scalability using small, low-cost servers.

5.6 Simulation Experiments

In this section, we describe how to derive model parameters from actual workloads. Using
the YCSB [112] benchmark as an example, we begin by building a data�ow graph describing
how state must �ow between transactions in order to produce the expected result. Each edge
in this graph represents potential communication, and in a system with many processors,
it represents likely communication�unless the workload partitions cleanly, these edges will
most often cross from one processor to another. The data�ow graph is directed and acyclic,
so it has a well-de�ned topological order. This allows us to compute a critical path, which
represents the necessarily sequential part of the workload.

The YCSB workload also allows us to compare strong consistency to weak consistency�
we show that applications that enforce strong consistency are more likely to best be imple-
mented on large servers, whereas applications that enforce weak consistency may be a better
�t in a disaggregated environment. Speci�cally, we compare sequential consistency [241] with
eventual consistency [398], varying the rate of convergence for eventual consistency to ex-
plore a continuum of consistency levels [53]. In our YCSB-based example, weak consistency
produces shorter critical path lengths and a lower graph degree (ratio of edges to nodes).
These factors contribute to shifting model parameters toward disaggregation and away from
the parameter regime where large servers are universally preferred.

5.6.1 YCSB Benchmark

YCSB [112] was developed to support the benchmarking of cloud database systems. Many
of these o�er non-relational models and weaker consistency guarantees than previous high-

CHAPTER 5. SERVERS ARE HERE TO STAY 184

performance systems, meaning that traditional benchmarks such as TPC-C [408] are not
suitable for measuring them. In the words of its authors, YCSB is a �cloud OLTP� bench-
mark.

YCSB includes a number of standard workloads, two of which we used in our experi-
ments. Workload A, described as �update heavy,� consists of 50% reads and 50% writes.
Workload B, described as �read heavy,� is similar but consists of 95% reads and 5% writes.
The data model for YCSB is key-indexed rows, each of which consists of several �elds. Read
and write transactions each operate on a single row that is accessed by key. For these ex-
periments, we used 1,000 clients and con�gured YCSB to distribute accesses over 1,000 keys
by drawing from a Zip�an distribution.

5.6.2 Data�ow Graph Construction

We ran the YCSB load-generating tool in logging mode, without attaching it to a database,
then used the access traces to construct data�ow graphs. For strong consistency, we use the
order of transactions in the log as the global total order. For each READ, we construct an edge
from the most recent preceding UPDATE on the same key. Similarly, each UPDATE receives an
edge from the UPDATE that precedes it on the same key. In addition, we construct an edge
from the last transaction executed by the client; Algorithm 5.1 describes this construction.

For weak consistency, we again process transactions in log order, but we construct depen-
dency edges in a di�erent way. Rather than tracking a single latest version of the row at a
key, we maintain a set of transactions, liveV ersions[key], any of which might be accessed at
di�erent parts of the system. For each UPDATE, we add to liveV ersions[key], but we do not
create any edges to previous transactions, in contrast to our algorithm for strong consistency.
Instead, we merge transactions in liveV ersions[key] on a pairwise basis at future points in
time. The rate of merging transactions, λm, is a con�gurable parameter. For higher merge
rates, the behavior approaches strong consistency, whereas a low merge rate can lead to
signi�cant state divergence. For each READ, we draw an edge from one of liveV ersions[key]
selected at random. We also simulate a client-side read cache with a FIFO retention policy.
Transactions satis�ed from the read cache e�ectively have zero-weighted edges and do not
incur any communication latencies. In this case, the zero-weighting also applies to the edge
linking a transaction to the one that the client executed previously, which we construct in
the same way as for strong consistency. Algorithm 5.2 describes data�ow graph construction
for weak consistency.

We note that the edges in our data�ow graphs put a lower bound on the dependencies and
potential communication. However, some implementations could have more communication
or dependencies. For example, enforcing real-time correspondence (linearizability rather than
sequential consistency) requires read-before-write dependencies to be respected, and this
can involve additional communication. Providing fault tolerance also introduces additional
communication, but we have not modeled this here.

Figure 5.11 illustrates the di�erence between strong consistency and weak consistency
for UPDATE transactions. Under strong consistency, these updates form a chain, resulting

CHAPTER 5. SERVERS ARE HERE TO STAY 185

in a critical path length of 4. Under weak consistency, writes are merged in a tree fashion,
leading to a critical path length of 3.

Figure 5.12 illustrates the di�erence between strong consistency and weak consistency
for READ transactions. When C1 executes READ against the cache, it takes a zero-weighted
edge dependency to the previous UPDATE. The resulting critical path length is 1 with weak
consistency, compared to 2 with strong consistency.

Algorithm 5.1 Add edges for strong consistency.

1: procedure LinkNode(txn)
2: switch txn.type do
3: case UPDATE
4: MakeEdge(lastUpdate[txn.key], txn)
5: lastUpdate[txn.key] ← txn
6: end case
7: case READ
8: MakeEdge(lastUpdate[txn.key], txn)
9: end case
10: end switch
11: AddClientEdge(txn)
12: end procedure

5.6.3 Comparison

We analyzed YCSB Workload A and Workload B using the data�ow graph construction of
Section 5.6.2, and studied both strong consistency and weak consistency. For weak consis-
tency, we used a read cache size of 500 entries per client and let the merge rate λm vary.
Table 5.3 shows the results of these computations.

We computed the fraction of the work that is parallelizable, i.e. o� the critical path, as

f = 1− critical nodes

total nodes
(5.30)

The rate of sequential communication is

ρs =
critical edges

unit work× critical nodes
(5.31)

And the rate of parallelizable communication is given by

ρp =
total edges− critical edges

unit work× (total nodes− critical nodes)
(5.32)

We used unit work = 2, 000, a number that represents the average number of CPU cycles
between communication operations (see Section 5.4.4).

CHAPTER 5. SERVERS ARE HERE TO STAY 186

Algorithm 5.2 Add edges for eventual consistency. λm is the merge rate.

1: procedure LinkNode(txn)
2: switch txn.type do
3: case UPDATE . Create a new version, merge later
4: liveV ersions[txn.key]← liveV ersions[txn.key] + txn
5: AddClientEdge(txn)
6: clientCaches[txn.clientId].Insert(txn)
7: end case
8: case READ . No edges for client cache hit
9: if ¬ clientCaches[txn.clientId].Find(txn.key) then
10: NewEdge(RandomChoice(liveV ersions[txn.key]), txn)
11: AddClientEdge(txn)
12: clientCaches[txn.clientId].Insert(txn)
13: end if
14: end case
15: end switch
16: for key, txns ← Range(Entries(liveV ersions)) do . Merge write versions
17: for i← 1 . . .Poisson(λm × Len(txns)) do
18: txns←MergeTxns(txns[n− 2], txns[n− 1]) + txns[0 : n− 2]
19: end for
20: liveV ersions[key]← txns
21: end for
22: end procedure

Algorithm 5.3 Subroutine for drawing client dependencies.

1: procedure AddClientEdge(txn) . Add the client dependencies
2: MakeEdge(lastTxn[txn.clientId])
3: lastTxn[txn.clientId]← txn
4: end procedure

CHAPTER 5. SERVERS ARE HERE TO STAY 187

C1 : W(A)

C2 : W(A)

C3 : W(A)

C4 : W(A)

C5 : W(A)

(a)

C1 : W(A)

C2 : W(A)

C3 : W(A)

C5 : W(A)

C4 : W(A)MERGE

MERGE

MERGE

(b)

Figure 5.11: Write data�ow example for (a) strong and (b) weak consistency.

Figure 5.13 shows how the scenarios we have considered map to Equation 5.26, which
indicates whether a disaggregated system would be more cost-e�ective than a single large
server. With strong consistency, both Workload A and Workload B always prefer a large
server to a disaggregated system comprised of basic servers. As we relax consistency, both
workloads ultimately cross the threshold that allows cost-e�ective disaggregated implemen-
tation.

Our model thus demonstrates an important advantage of weak consistency: It can run
on low-cost hardware. We want to emphasize that this advantage arises even though we
consider only deterministic and failure-free execution. This is in contrast to the arguments
in favor of weak consistency that emphasize its bene�ts in the face of potentially unreliable
or oversubscribed underlying resources [51, 81].

5.7 Future Work

Our model has emphasized simplicity, which we hoped would bring greater understanding,
but there are many ways that it can be extended. For example, one could study a workload

CHAPTER 5. SERVERS ARE HERE TO STAY 188

C1 : W(A)

C2 : W(A)

C1 : R(A)

(a)

C1 : W(A)

C2 : W(A)

MERGE

C1 : R(A)

(b)

Figure 5.12: Read data�ow example for (a) strong and (b) weak consistency.

Table 5.3: Simulating YCSB. λm is the update rate. ∆V is the average staleness measured
in versions. Distributes is given by Equation 5.26.

Benchmark Consistency λm f ρs ρp ∆V Distributes

YCSB-A Strong � 0.98044 0.00050 0.00101 0 No
YCSB-A Weak 0.001 0.99904 0.00050 0.00064 3.11 No
YCSB-A Weak 0.0001 0.99954 0.00050 0.00064 16.8 Yes
YCSB-A Weak 0.00001 0.99990 0.00050 0.00063 153 Yes
YCSB-B Strong � 0.99814 0.00050 0.00100 0 No
YCSB-B Weak 0.001 0.99904 0.00050 0.00045 0.157 No
YCSB-B Weak 0.0001 0.99972 0.00050 0.00045 1.17 Yes
YCSB-B Weak 0.00001 0.99990 0.00050 0.00045 12.8 Yes

running on a mixture of servers of di�erent sizes. In the same way that Hill and Marty [196]
showed that workloads might bene�t from a mixture of processor cores with di�ering se-
quential performance, we expect that an optimal interconnect mix might include some large
servers and some small servers. Whereas the present work suggests that a data center run-
ning a mixture of workloads should have a mixture of server types, the same may be true
for a single workload. However, showing this probably requires a more detailed workload
model.

A more detailed model might also distinguish between resource types, perhaps separately
modeling CPU, memory, and storage. It could account for failures and non-determinism,

CHAPTER 5. SERVERS ARE HERE TO STAY 189

10−910−710−510−310−1

ρp

10−8

10−7

10−6

10−5

(1
−
f

)ρ
s Network of servers sometimes preferred

Single server always preferred

YCSB-A/Strong

YCSB-A/Weak

YCSB-B/Strong

YCSB-B/Weak

Figure 5.13: Workload parameters for YCSB extracted through data�ow analysis. We com-
pare strong consistency to various levels of eventual consistency for both the update-heavy
YCSB-A workload and the read-heavy YCSB-B workload. Equation 5.26 describes the
regimes in which a single server o�ers the cost-optimal solution regardless of scale.

both of which we have excluded from the present model. State replication, partitioning,
pipelined execution, and detailed modeling of various consistency guarantees are all possible
as well.

We caution that any of these extensions should be approached with discretion. The
bene�t of simple models, like the one that underpins Amdahl's law, is that they can produce
quick approximate results and lead to insights in a broad variety of circumstances. More
detailed models may be less general, harder to apply, and could even be less accurate than
a simple model [74].

5.8 Conclusion

We use Amdahl's law together with a simple model of interconnect costs to show that large
server hardware provides a more cost-e�ective way to run some workloads than any collection
of smaller servers. This is true even though large servers have a well-justi�ed reputation for

CHAPTER 5. SERVERS ARE HERE TO STAY 190

being expensive. Their de�ning characteristic is a low-latency interconnect, and the cost
of such an interconnect, grows as the square of the number of nodes it links. Still, for
communication-intensive workloads, the bene�ts of large server hardware can outweigh its
costs.

These results have implications for future data center designs. Hardware disaggregation
places individual resource types, such as CPU, storage, and accelerators, directly on the data
center network, an approach that can be modeled as breaking up a server into many smaller
pieces. Such disaggregation is appropriate for some workloads but not for those with a large
amount of communication relative to computation, especially when that communication lies
on the workload's critical path, which must be executed sequentially.

We have modeled communication, along with computation, in the context of Amdahl's
law. In its original framing, Amdahl's law was used to make the case that parallel processing
alone could not meet the growing demands for more computing power; that faster sequential
processing would be essential as well. By modeling sequential and parallelizable commu-
nication within Amdahl's law, we extended the original result to suggest that low-latency
integration, the sort that servers provide, will remain important for some workloads. We
then showed how to construct the parameters of our model from a data�ow analysis of work-
load traces. We used the popular YCSB benchmark and compared both strong and weak
consistency in this context.

The workloads most sensitive to latency are those that have order-sensitive strong con-
sistency requirements, which, in practice, are enforced by coordination protocols. These
workloads may do best with server hardware under all circumstances, even if such hardware
has a high per-processor cost. In contrast, coordination-free workloads, which generally
provide weak consistency, are more readily hosted on small servers or with disaggregated
resources.

Today's serverless computing provides a programming abstraction over an underlying col-
lection of servers. For suitable workloads, it o�ers the illusion of a single large computer. It is
tempting to imagine disaggregated or �serverless� hardware that breaks down the underlying
server units and instead provides resource integration at data center scale. We have shown
some limitations of this approach. Even if disaggregated hardware makes its way into data
centers, some workloads will continue to bene�t from, or even require, the closely coupled
resources that servers provide. We believe that serverless computing, as an abstraction, is
the future of cloud computing, but also conclude that server hardware is here to stay.

191

Bibliography

[1] Daniel Abadi. �Consistency Tradeo�s in Modern Distributed Database System De-
sign: CAP Is Only Part of the Story�. In: Computer 45.2 (2012), pp. 37�42.

[2] Daniel J. Abadi and Jose M. Faleiro. �An Overview of Deterministic Database Sys-
tems�. In: Communications of the ACM 61.9 (2018), pp. 78�88.

[3] About AWS / Global Infrastructure / Regions and Availability Zones. https://aws.
amazon.com/about-aws/global-infrastructure/regions_az/.

[4] Uri Abraham, Shai Ben-David, and Menachem Magidor. �On Global-Time and Inter-
Process Communication�. In: Semantics for Concurrency. Springer, 1990, pp. 311�
323.

[5] Paarijaat Aditya et al. �Will Serverless Computing Revolutionize NFV?� In: Proceed-
ings of the IEEE 107.4 (2019), pp. 667�678.

[6] Atul Adya et al. �E�cient Optimistic Concurrency Control using Loosely Synchro-
nized Clocks�. In: ACM SIGMOD Record 24.2 (1995), pp. 23�34.

[7] Atul Adya et al. �FARSITE: Federated, Available, and Reliable Storage for an Incom-
pletely Trusted Environment�. In: ACM SIGOPS Operating Systems Review 36.SI
(2002), pp. 1�14.

[8] Gojko Adzic and Robert Chatley. �Serverless Computing: Economic and Architectural
Impact�. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 2017, pp. 884�889.

[9] Alexandru Agache et al. �Firecracker: Lightweight Virtualization for Serverless Ap-
plications�. In: 17th USENIX symposium on networked systems design and implemen-
tation (NSDI 20). 2020, pp. 419�434.

[10] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
Tech. rep. Massachusetts Inst of Tech Cambridge Arti�cial Intelligence Lab, 1985.

[11] Nabeel Akhtar et al. �COSE: Con�guring Serverless Functions Using Statistical Learn-
ing�. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE. 2020, pp. 129�138.

[12] Akka - Build Concurrent, Distributed, and Resilient Message-Driven Applications for
Java and Scala. https://akka.io.

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://akka.io

BIBLIOGRAPHY 192

[13] Akka Serverless - Stateful Serverless Architectue. https://www.lightbend.com/
akka-serverless.

[14] Istemi Ekin Akkus et al. �SAND: Towards High-Performance Serverless Computing�.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). 2018, pp. 923�
935.

[15] Nikolaos Alachiotis et al. �dReDBox: A Disaggregated Architectural Perspective for
Data Centers�. In: Hardware Accelerators in Data Centers. Springer, 2019, pp. 35�56.

[16] Zaid Al-Ali et al. �Making Serverless Computing More Serverless�. In: 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). IEEE. 2018, pp. 456�459.

[17] Omid Alipourfard et al. �Cherrypick: Adaptively Unearthing the Best Cloud Con�gu-
rations for Big Data Analytics�. In: 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 2017, pp. 469�482.

[18] Kalev Alpernas et al. �Cloud-Scale Runtime Veri�cation of Serverless Applications�.
In: Proceedings of the ACM Symposium on Cloud Computing. 2021, pp. 92�107.

[19] Kalev Alpernas et al. �Secure Serverless Computing Using Dynamic Information Flow
Control�. In: Proceedings of the ACM on Programming Languages 2.OOPSLA (2018),
pp. 1�26.

[20] Peter Alvaro et al. �Consistency Analysis in Bloom: a CALM and Collected Ap-
proach.� In: CIDR. 2011, pp. 249�260.

[21] Peter Alvaro et al. �Dedalus: Datalog in Time and Space�. In: International Datalog
2.0 Workshop. Springer. 2010, pp. 262�281.

[22] Amazon Compute Service Level Agreement. https://aws.amazon.com/compute/
sla/.

[23] Amazon EFS Performance. https://docs.aws.amazon.com/efs/latest/ug/
performance.html.

[24] Amazon Elastic File System. https://aws.amazon.com/efs/.

[25] Amazon States Language. https://states-language.net/spec.html. 2016.

[26] Amazon Web Services Launches. https : / / press . aboutamazon . com / news -

releases/news-release-details/amazon-web-services-launches-amazon-s3-

simple-storage-service.

[27] Gene M. Amdahl. �Computer Architecture and Amdahl's Law�. In: Computer 46.12
(2013), pp. 38�46.

[28] Gene M. Amdahl. �Validity of the single processor approach to achieving large scale
computing capabilities�. In: Proceedings of the April 18-20, 1967, spring joint com-
puter conference. 1967, pp. 483�485.

https://www.lightbend.com/akka-serverless
https://www.lightbend.com/akka-serverless
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://docs.aws.amazon.com/efs/latest/ug/performance.html
https://docs.aws.amazon.com/efs/latest/ug/performance.html
https://aws.amazon.com/efs/
https://states-language.net/spec.html
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service

BIBLIOGRAPHY 193

[29] Raghav Anand et al. �Serverless Multi-Query Motion Planning for Fog Robotics�.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2021, pp. 7457�7463.

[30] Thomas E. Anderson, David E. Culler, and David Patterson. �A Case for NOW
(Networks of Workstations)�. In: IEEE Micro 15.1 (1995), pp. 54�64.

[31] Thomas E. Anderson et al. �Serverless Network File Systems�. In: Proceedings of the
�fteenth ACM symposium on Operating systems principles. 1995, pp. 109�126.

[32] Anjali, Tyler Caraza-Harter, and Michael M. Swift. �Blending Containers and Virtual
Machines: A Study of Firecracker and gVisor�. In: Proceedings of the 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments. 2020,
pp. 101�113.

[33] Announcing Databricks Serverless SQL. https://databricks.com/blog/2021/08/
30/announcing-databricks-serverless-sql.html.

[34] Apache OpenWhisk - Open Source Serverless Cloud Platform. https : / / www .

openfaas.com/.

[35] Avinash Arjavalingam and Aditya Parameswaran. �HASTE: Serverless DAG Execu-
tion Optimizer�. In: (2021).

[36] Konstantine Arkoudas et al. �Verifying a File System Implementation�. In: Interna-
tional Conference on Formal Engineering Methods. Springer. 2004, pp. 373�390.

[37] Michael Armbrust et al. �A View of Cloud Computing�. In: Communications of the
ACM 53.4 (2010), pp. 50�58.

[38] Michael Armbrust et al. �Lakehouse: A New Generation of Open Platforms That
Unify Data Warehousing and Advanced Analytics�. In: CIDR. 2021.

[39] Joe Armstrong et al. �Concurrent Programming in ERLANG�. In: (1996).

[40] Krste Asanovi¢. �Firebox: A Hardware Building Block for 2020 Warehouse-Scale Com-
puters�. In: (2014).

[41] Austin Aske and Xinghui Zhao. �Supporting Multi-Provider Serverless Computing on
the Edge�. In: Proceedings of the 47th International Conference on Parallel Processing
Companion. 2018, pp. 1�6.

[42] Mohammad S. Aslanpour et al. �Serverless Edge Computing: Vision and Challenges�.
In: 2021 Australasian Computer Science Week Multiconference. 2021, pp. 1�10.

[43] Hagit Attiya and Jennifer L. Welch. �Sequential Consistency Versus Linearizability�.
In: ACM Transactions on Computer Systems (TOCS) 12.2 (1994), pp. 91�122.

[44] Luigi Atzori, Antonio Iera, and Giacomo Morabito. �The Internet of Things: A Sur-
vey�. In: Computer Networks 54.15 (2010), pp. 2787�2805.

[45] AWS Compute Optimizer. https://aws.amazon.com/compute-optimizer/.

https://databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://www.openfaas.com/
https://www.openfaas.com/
https://aws.amazon.com/compute-optimizer/

BIBLIOGRAPHY 194

[46] AWS Lambda Announces Provisioned Concurrency. https://aws.amazon.com/
about - aws / whats - new / 2019 / 12 / aws - lambda - announces - provisioned -

concurrency/. 2019.

[47] Azure Cloud Cost Management. https://azure.microsoft.com/en-us/services/
cost-management/.

[48] Azure Functions. https://docs.microsoft.com/en-us/azure/azure-functions/.

[49] Azure Storage Redundancy. https://docs.microsoft.com/en-us/azure/storage/
common/storage-redundancy.

[50] David F. Bacon et al. �Spanner: Becoming a SQL System�. In: Proceedings of the 2017
ACM International Conference on Management of Data. 2017, pp. 331�343.

[51] Peter Bailis and Ali Ghodsi. �Eventual consistency today: Limitations, extensions,
and beyond�. In: Queue 11.3 (2013), p. 20.

[52] Peter Bailis et al. �Bolt-on Causal Consistency�. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. 2013, pp. 761�772.

[53] Peter Bailis et al. �Quantifying Eventual Consistency With PBS�. In: The VLDB
Journal 23.2 (2014), pp. 279�302.

[54] Igor V. Balabine, Ramiah Kandasamy, and John A Skier. File System Interface to a
Database. US Patent 5,937,406. 1999.

[55] Ioana Baldini et al. �Serverless Computing: Current Trends and Open Problems�. In:
Research Advances in Cloud Computing. Springer, 2017, pp. 1�20.

[56] Tiemo Bang et al. �The Tale of 1000 Cores: An Evaluation of Concurrency Control
on Real(ly) Large Multi-Socket Hardware�. In: Proceedings of the 16th International
Workshop on Data Management on New Hardware. 2020, pp. 1�9.

[57] Paul Baran. �The Future Computer Utility�. In: The Public Interest 8 (1967), p. 75.

[58] Je� Barber et al. �Bladerunner: Stream Processing at Scale for a Live View of Backend
Data Mutations at the Edge�. In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 2021, pp. 708�723.

[59] Luiz André Barroso, Je�rey Dean, and Urs Holzle. �Web search for a planet: The
Google cluster architecture�. In: IEEE Micro 23.2 (2003), pp. 22�28.

[60] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. �The Datacen-
ter as a Computer: Designing Warehouse-Scale machines�. In: Synthesis Lectures on
Computer Architecture 13.3 (2018), pp. i�189.

[61] Luiz Barroso et al. �Attack of the Killer Microseconds�. In: Communications of the
ACM 60.4 (2017), pp. 48�54.

[62] Sujit Bebortta et al. �Geospatial Serverless Computing: Architectures, Tools and Fu-
ture Directions�. In: ISPRS International Journal of Geo-Information 9.5 (2020),
p. 311.

https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://aws.amazon.com/about-aws/whats-new/2019/12/aws-lambda-announces-provisioned-concurrency/
https://azure.microsoft.com/en-us/services/cost-management/
https://azure.microsoft.com/en-us/services/cost-management/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy

BIBLIOGRAPHY 195

[63] Benjamin Berg et al. �The CacheLib Caching Engine: Design and Experiences at
Scale�. In: 14th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20). 2020, pp. 753�768.

[64] Philip A. Bernstein and Nathan Goodman. �Concurrency Control in Distributed
Database Systems�. In: ACM Computing Surveys (CSUR) 13.2 (1981), pp. 185�221.

[65] Philip A. Bernstein et al. �Orleans: Distributed virtual actors for programmability
and scalability�. In: MSR-TR-2014-41 (2014).

[66] Dominic Betts et al. Exploring CQRS and Event Sourcing: A Journey Into High
Scalability, Availability, and Maintainability With Windows Azure. 2013.

[67] Anirban Bhattacharjee et al. �Stratum: A Serverless Framework for the Lifecycle
Management of Machine Learning-Based Data Analytics Tasks�. In: 2019 USENIX
Conference on Operational Machine Learning (OpML 19). 2019, pp. 59�61.

[68] Anupam Bhide and Spencer Shepler. �A Highly Available Lock Manager for HA-NFS�.
In: USENIX Summer 1992 Technical Conference (USENIX Summer 1992 Technical
Conference). 1992.

[69] Alessandro Bocci et al. �Secure FaaS Orchestration in the Fog: How Far Are We?�
In: Computing 103.5 (2021), pp. 1025�1056.

[70] William J. Bolosky, John R. Douceur, and Jon Howell. �The Farsite Project: A Ret-
rospective�. In: ACM SIGOPS Operating Systems Review 41.2 (2007), pp. 17�26.

[71] William J. Bolosky et al. �Feasibility of a Serverless Distributed File System Deployed
on an Existing Set of Desktop PCs�. In: ACM SIGMETRICS Performance Evaluation
Review 28.1 (2000), pp. 34�43.

[72] Maria C. Borges, Sebastian Werner, and Ahmet Kilic. �Faaster Troubleshooting-
Evaluating Distributed Tracing Approaches for Serverless Applications�. In: 2021
IEEE International Conference on Cloud Engineering (IC2E). IEEE. 2021, pp. 83�90.

[73] James Bornholt et al. �Specifying and Checking File System Crash-Consistency Mod-
els�. In: Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems. 2016, pp. 83�98.

[74] George E.P. Box. �Science and Statistics�. In: Journal of the American Statistical
Association 71.356 (1976), pp. 791�799.

[75] Peter Braam. �The Lustre Storage Architecture�. In: arXiv preprint arXiv:1903.01955
(2019).

[76] Lukas Brand and Markus Mock. �SFL: A Compiler for Generating Stateful AWS
Lambda Serverless Applications�. In: Proceedings of the Seventh International Work-
shop on Serverless Computing (WoSC7) 2021. 2021, pp. 29�35.

[77] Eric Brewer. �CAP Twelve Years Later: How the �Rules� Have Changed�. In: Com-
puter 45.2 (2012), pp. 23�29.

BIBLIOGRAPHY 196

[78] Eric Brewer. �Spanner, TrueTime and the CAP Theorem�. In: (2017).

[79] Frederick P. Brooks. �No silver bullet: essence and accidents of software engineering�.
In: Information Processing. IEEE. 1986.

[80] David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings. �SOSIMPLE: A Server-
less, Standards-Based, P2P SIP Communication System�. In: First International
Workshop on Advanced Architectures and Algorithms for Internet Delivery and Ap-
plications (AAA-IDEA'05). IEEE. 2005, pp. 42�49.

[81] Sebastian Burckhardt. �Principles of Eventual Consistency�. In: (2014).

[82] Sebastian Burckhardt et al. �Durable Functions: Semantics for Stateful Serverless�.
In: Proceedings of the ACM on Programming Languages 5.OOPSLA (2021), pp. 1�27.

[83] Brendan Burns et al. �Borg, Omega, and Kubernetes: Lessons learned from three
container-management systems over a decade�. In: Queue 14.1 (2016), pp. 70�93.

[84] James Cadden et al. �SEUSS: Skip Redundant Paths to Make Serverless Fast�. In:
Proceedings of the Fifteenth European Conference on Computer Systems. 2020, pp. 1�
15.

[85] Mengchu Cai et al. �Integrated Querying of SQL Database Data and S3 Data in
Amazon Redshift�. In: IEEE Data Eng. Bull. 41.2 (2018), pp. 82�90.

[86] Brad Calder et al. �Windows Azure Storage: A Highly Available Cloud Storage Service
With Strong Consistency�. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. 2011, pp. 143�157.

[87] George Candea and Armando Fox. �Crash-Only Software.� In: HotOS. Vol. 3. 2003,
pp. 67�72.

[88] Claudio Canella et al. �Fallout: Leaking Data on Meltdown-Resistant CPUs�. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM. 2019.

[89] Joao Carreira et al. �Cirrus: A Serverless Framework for End-to-End ML Work�ows�.
In: Proceedings of the ACM Symposium on Cloud Computing. 2019, pp. 13�24.

[90] Benjamin Carver et al. �In Search of a Fast and E�cient Serverless Dag Engine�. In:
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop (PDSW).
IEEE. 2019, pp. 1�10.

[91] Benjamin Carver et al. �Wukong: A Scalable and Locality-Enhanced Framework for
Serverless Parallel Computing�. In: Proceedings of the 11th ACM Symposium on Cloud
Computing. 2020, pp. 1�15.

[92] Paul Castro et al. �The Rise of Serverless Computing�. In: Communications of the
ACM 62.12 (2019), pp. 44�54.

[93] Cache Coherent Interconnect for Accelerators. https://www.ccixconsortium.com.
Accessed: 2019-04-12. 2017.

https://www.ccixconsortium.com

BIBLIOGRAPHY 197

[94] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. �Distributed Deadlock De-
tection�. In: ACM Transactions on Computer Systems (TOCS) 1.2 (1983), pp. 144�
156.

[95] Ryan Chard et al. �FuncX: A Federated Function Serving Fabric for Science�. In:
Proceedings of the 29th International Symposium on High-Performance Parallel and
Distributed Computing. 2020, pp. 65�76.

[96] Saqib Rasool Chaudhry et al. �Improved QoS at the Edge Using Serverless Computing
to Deploy Virtual Network Functions�. In: IEEE Internet of Things Journal 7.10
(2020), pp. 10673�10683.

[97] An Chen. �A Review of Emerging Non-Volatile Memory (NVM) Technologies and
Applications�. In: Solid-State Electronics 125 (2016), pp. 25�38.

[98] Haogang Chen et al. �Using Crash Hoare Logic for Certifying the FSCQ File System�.
In: Proceedings of the 25th Symposium on Operating Systems Principles. 2015, pp. 18�
37.

[99] Huan Chen and Liang-Jie Zhang. �Fbaas: Functional Blockchain as a Service�. In:
International Conference on Blockchain. Springer. 2018, pp. 243�250.

[100] Alvin Cheung et al. �New Directions in Cloud Programming�. In: CIDR (2021).

[101] Jaeghang Choi and Kyungyong Lee. �Evaluation of Network File System as a Shared
Data Storage in Serverless Computing�. In: Proceedings of the 2020 Sixth International
Workshop on Serverless Computing. 2020, pp. 25�30.

[102] Eric Chung et al. �Serving DNNs in Real Time at Datacenter Scale With Project
Brainwave�. In: IEEE Micro 38.2 (2018), pp. 8�20.

[103] Austin T. Clements et al. �The Scalable Commutativity Rule: Designing Scalable Soft-
ware for Multicore Processors�. In: ACM Transactions on Computer Systems (TOCS)
32.4 (2015), pp. 1�47.

[104] Cloud Cost Management - Apptio. https://www.apptio.com/solutions/cloud-
cost-management/.

[105] Cloud Cost Management - Harness. https://harness.io/products/cloud-cost/.

[106] CockroachDB - Architecture Overview. https://www.cockroachlabs.com/docs/
stable/architecture/overview.html.

[107] Common Internet File System (CIFS) Protocol. https://winprotocoldoc.blob.
core . windows . net / productionwindowsarchives / MS - CIFS / [MS - CIFS] .pdf.
v20201001. 2021.

[108] Compute Engine Service Level Agreement (SLA). https://cloud.google.com/
compute/sla.

[109] Con�gure NTP on a VM. https://cloud.google.com/compute/docs/instances/
configure-ntp.

https://www.apptio.com/solutions/cloud-cost-management/
https://www.apptio.com/solutions/cloud-cost-management/
https://harness.io/products/cloud-cost/
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CIFS/[MS-CIFS].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CIFS/[MS-CIFS].pdf
https://cloud.google.com/compute/sla
https://cloud.google.com/compute/sla
https://cloud.google.com/compute/docs/instances/configure-ntp
https://cloud.google.com/compute/docs/instances/configure-ntp

BIBLIOGRAPHY 198

[110] Neil Conway et al. �Logic and Lattices for Distributed Programming�. In: Proceedings
of the Third ACM Symposium on Cloud Computing. ACM. 2012, p. 1.

[111] Blaine Cook. Scaling Twitter. https://www.slideshare.net/Blaine/scaling-
twitter and https://www.youtube.com/watch?v=AEefOZPvgKs. Presentation at
SDForum Silicon Valley. Apr. 2007.

[112] Brian F. Cooper et al. �Benchmarking Cloud Serving Systems With YCSB�. In: Pro-
ceedings of the 1st ACM symposium on Cloud computing. 2010, pp. 143�154.

[113] James C. Corbett et al. �Spanner: Google's Globally Distributed Database�. In: ACM
Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

[114] Custom AWS Lambda Runtimes. https://docs.aws.amazon.com/lambda/latest/
dg/runtimes-custom.html.

[115] Benoit Dageville et al. �The Snow�ake Elastic Data Warehouse�. In: Proceedings of
the 2016 International Conference on Management of Data. 2016, pp. 215�226.

[116] Data protection in Amazon S3. https://docs.aws.amazon.com/AmazonS3/latest/
userguide/DataDurability.html.

[117] Dataprep by Trifacta. https://cloud.google.com/dataprep.

[118] Pubali Datta et al. �Valve: Securing Function Work�ows on Serverless Computing
Platforms�. In: Proceedings of The Web Conference 2020. 2020, pp. 939�950.

[119] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. �Xanadu: Mitigating Cas-
cading Cold Starts in Serverless Function Chain Deployments�. In: Proceedings of the
21st International Middleware Conference. 2020, pp. 356�370.

[120] Je� Dean. �Machine learning for systems and systems for machine learning�. In: Pre-
sentation at 2017 Conference on Neural Information Processing Systems. 2017.

[121] Je�rey Dean and Sanjay Ghemawat. �MapReduce: Simpli�ed Data Processing on
Large Clusters�. In: Communications of the ACM 51.1 (2008), pp. 107�113.

[122] Giuseppe DeCandia et al. �Dynamo: Amazon's Highly Available Key-Value Store�.
In: ACM SIGOPS operating systems review. Vol. 41. 6. ACM. 2007, pp. 205�220.

[123] Delta Lake. https://delta.io/.

[124] Murat Demirbas. �The Advent of Tightly Synchronized Clocks in Distributed Sys-
tems�. In: (2018).

[125] Peter J. Denning. �The Locality Principle�. In: Communication Networks And Com-
puter Systems: A Tribute to Professor Erol Gelenbe. World Scienti�c, 2006, pp. 43�
67.

[126] Peter J. Denning. �The Working Set Model for Program Behavior�. In: Communica-
tions of the ACM 11.5 (1968), pp. 323�333.

https://www.slideshare.net/Blaine/scaling-twitter
https://www.slideshare.net/Blaine/scaling-twitter
https://www.youtube.com/watch?v=AEefOZPvgKs
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html
https://cloud.google.com/dataprep
https://delta.io/

BIBLIOGRAPHY 199

[127] Akon Dey et al. �YCSB+T: Benchmarking Web-Scale Transactional Databases�. In:
2014 IEEE 30th International Conference on Data Engineering Workshops. IEEE.
2014, pp. 223�230.

[128] Je� Dike. �A User-Mode Port of the Linux Kernel�. In: Annual Linux Showcase &
Conference. Vol. 10. 1268379.1268386. 2000.

[129] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. �Towards Supporting Mil-
lions of Users in Modi�able Virtual Environments by Redesigning Minecraft-Like
Games as Serverless Systems�. In: 12th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 20). 2020.

[130] Dragonboat - A Multi-Group Raft Library in Go. https : / / github . com / lni /

dragonboat.

[131] Dong Du et al. �Catalyzer: Sub-Millisecond Startup for Serverless Computing With
Initialization-Less Booting�. In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems.
2020, pp. 467�481.

[132] DynamoDB. https://aws.amazon.com/dynamodb/.

[133] Susan J. Eggers et al. �Simultaneous Multithreading: A Platform for Next-Generation
Processors�. In: IEEE Micro 17.5 (1997), pp. 12�19.

[134] Simon Eismann et al. �Sizeless: Predicting the Optimal Size of Serverless Functions�.
In: Proceedings of the 22nd International Middleware Conference. 2021, pp. 248�259.

[135] Simon Eismann et al. �The State of Serverless Applications: Collection, Characteri-
zation, and Community Consensus�. In: IEEE Transactions on Software Engineering
(2021).

[136] Adam Eivy and Joe Weinman. �Be Wary of the Economics of �Serverless� Cloud
Computing�. In: IEEE Cloud Computing 4.2 (2017), pp. 6�12.

[137] Elastic Fabric Adapter - Amazon Web Services. https://aws.amazon.com/hpc/efa/.

[138] Tarek Elgamal. �Costless: Optimizing Cost of Serverless Computing Through Func-
tion Fusion and Placement�. In: 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE. 2018, pp. 300�312.

[139] Rasha Eqbal. �ScaleFS: A Multicore-Scalable File System�. MA thesis. Massachusetts
Institute of Technology, 2014.

[140] Na�se Eskandani and Guido Salvaneschi. �The Wonderless Dataset for Serverless
Computing�. In: 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE. 2021, pp. 565�569.

[141] Facebook. Disaggregated Rack. https://web.archive.org/web/20160421092139/
http://www.opencompute.org/wp/wp-content/uploads/2013/01/OCP_Summit_

IV_Disaggregation_Jason_Taylor.pdf. 2013.

https://github.com/lni/dragonboat
https://github.com/lni/dragonboat
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/hpc/efa/
https://web.archive.org/web/20160421092139/http://www.opencompute.org/wp/wp-content/uploads/2013/01/OCP_Summit_IV_Disaggregation_Jason_Taylor.pdf
https://web.archive.org/web/20160421092139/http://www.opencompute.org/wp/wp-content/uploads/2013/01/OCP_Summit_IV_Disaggregation_Jason_Taylor.pdf
https://web.archive.org/web/20160421092139/http://www.opencompute.org/wp/wp-content/uploads/2013/01/OCP_Summit_IV_Disaggregation_Jason_Taylor.pdf

BIBLIOGRAPHY 200

[142] Jose M. Faleiro and Daniel J. Abadi. �Rethinking Serializable Multiversion Concur-
rency Control�. In: Proceedings of the VLDB Endowment 8.11 (2015).

[143] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. �High Performance
Transactions via Early Write Visibility�. In: Proceedings of the VLDB Endowment
10.5 (2017).

[144] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. �A Scalable, Com-
modity Data Center Network Architecture�. In: ACM SIGCOMM Computer Com-
munication Review 38.4 (2008), pp. 63�74.

[145] Nathan Farrington and Alexey Andreyev. �Facebook's Data Center Network Archi-
tecture�. In: 2013 Optical Interconnects Conference. Citeseer. 2013, pp. 49�50.

[146] Mark Fasheh. �OCFS2: The Oracle Clustered File System, Version 2�. In: Proceedings
of the 2006 Linux Symposium. Vol. 1. Citeseer, 2006, pp. 289�302.

[147] Filesystem in Userspace. https://github.com/libfuse/libfuse.

[148] Sadjad Fouladi et al. �Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads.� In: NSDI. 2017, pp. 363�376.

[149] Sadjad Fouladi et al. �From Laptop to Lambda: Outsourcing Everyday Jobs to Thou-
sands of Transient Functional Containers�. In: 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). 2019, pp. 475�488.

[150] Armando Fox et al. �Cluster-Based Scalable Network Services�. In: Proceedings of the
sixteenth ACM symposium on Operating systems principles. 1997, pp. 78�91.

[151] E. Frachtenberg. �Holistic Datacenter Design in the Open Compute Project�. In:
Computer 45.7 (July 2012), pp. 83�85. issn: 0018-9162.

[152] Peter A. Franaszek, John T. Robinson, and Alexander Thomasian. �Concurrency Con-
trol for High Contention Environments�. In: ACM Transactions on Database Systems
(TODS) 17.2 (1992), pp. 304�345.

[153] Michael J. Franklin, Michael J. Carey, and Miron Livny. �Transactional client-server
cache consistency: Alternatives and performance�. In: ACM Transactions on Database
Systems (TODS) 22.3 (1997), pp. 315�363.

[154] Justin Franz et al. �Reunifying Families after a Disaster via Serverless Computing and
Raspberry Pis�. In: 2018 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN). IEEE. 2018, pp. 131�132.

[155] Friendster Lost Lead Because of a Failure to Scale. http://highscalability.com/
blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.

html. Nov. 2007.

[156] Ken Fromm. Why the Future of Software and Apps Is Serverless. https : / /

readwrite.com/2012/10/15/why- the- future- of- software- and- apps- is-

serverless/. 2012.

https://github.com/libfuse/libfuse
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/

BIBLIOGRAPHY 201

[157] Maurizio Gabbrielli et al. �No More, No Less - A Formal Model for Serverless Comput-
ing�. In: International Conference on Coordination Languages and Models. Springer.
2019, pp. 148�157.

[158] Carsten Binnig Andrew Crotty Alex Galakatos and Tim Kraska Erfan Zamanian.
�The End of Slow Networks: It's Time for a Redesign�. In: Proceedings of the VLDB
Endowment 9.7 (2016).

[159] Yu Gan et al. �An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud & Edge Systems�. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. 2019, pp. 3�18.

[160] Fabian Gand et al. �Serverless Container Cluster Management for Lightweight Edge
Clouds.� In: CLOSER. 2020, pp. 302�311.

[161] Gen-Z Consortium. Gen-Z Overview. Tech. rep. Gen-Z Consortium, 2018. url:
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-

V1.pdf.

[162] Yilong Geng et al. �Exploiting a Natural Network E�ect for Scalable, Fine-Grained
Clock Synchronization�. In: 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). 2018, pp. 81�94.

[163] Sara Ghaemi, Hamzeh Khazaei, and Petr Musilek. �ChainFaaS: An Open Blockchain-
Based Serverless Platform�. In: IEEE Access 8 (2020), pp. 131760�131778.

[164] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. �The Google File System�.
In: (2003).

[165] David K. Gi�ord. �Information Storage in a Decentralized Computer System�. PhD
thesis. Stanford University, 1981.

[166] Seth Gilbert and Nancy Lynch. �Brewer's Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services�. In: Acm Sigact News 33.2 (2002), pp. 51�
59.

[167] David Goltzsche et al. �Acctee: A WebAssembly-Based Two-Way Sandbox for Trusted
Resource Accounting�. In: Proceedings of the 20th International Middleware Confer-
ence. 2019, pp. 123�135.

[168] GraphQL. http://spec.graphql.org/June2018/. 2018.

[169] Cary Gray and David Cheriton. �Leases: An E�cient Fault-Tolerant Mechanism for
Distributed File Cache Consistency�. In: ACM SIGOPS Operating Systems Review
23.5 (1989), pp. 202�210.

[170] James N. Gray. �Notes on Data Base Operating Systems�. In: Operating Systems.
Springer, 1978, pp. 393�481.

https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
http://spec.graphql.org/June2018/

BIBLIOGRAPHY 202

[171] Jim Gray and Franco Putzolu. �The 5 Minute Rule for Trading Memory for Disc
Accesses and the 10 Byte Rule for Trading Memory for CPU Time�. In: Proceedings
of the 1987 ACM SIGMOD international conference on Management of data. 1987,
pp. 395�398.

[172] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming With the Message-Passing Interface. 3rd ed. MIT press, 2014.

[173] gRPC: A High Performance, Open Source Universal RPC Framework. https://www.
grpc.io/.

[174] Paul Grun. �Introduction to In�niBand for End Users�. In: White Paper, In�niBand
Trade Association 55 (2010).

[175] Jashwant Raj Gunasekaran et al. �Spock: Exploiting Serverless Functions for Slo and
Cost Aware Resource Procurement in Public Cloud�. In: 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE. 2019, pp. 199�208.

[176] Anurag Gupta et al. �Amazon Redshift and the Case for Simpler Data Warehouses�.
In: Proceedings of the 2015 ACM SIGMOD international conference on management
of data. 2015, pp. 1917�1923.

[177] Vipul Gupta et al. �Serverless Straggler Mitigation Using Error-Correcting Codes�.
In: 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2020, pp. 135�145.

[178] Vipul Gupta et al. �Utility-Based Resource Allocation and Pricing for Serverless Com-
puting�. In: arXiv preprint arXiv:2008.07793 (2020).

[179] John L. Gustafson. �Reevaluating Amdahl's Law�. In: Communications of the ACM
31.5 (1988), pp. 532�533.

[180] gVisor. https://gvisor.dev/.

[181] Andreas Haas et al. �Bringing the Web Up to Speed With WebAssembly�. In: Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2017, pp. 185�200.

[182] Adam Hall and Umakishore Ramachandran. �An Execution Model for Serverless
Functions at the Edge�. In: Proceedings of the International Conference on Internet
of Things Design and Implementation. 2019, pp. 225�236.

[183] Paul Harrison. Serverless Computing: Terrible Name but Brilliant Service. https:
/ / medium . com / @smoothml / serverless - computing - terrible - name - but -

brilliant-service-bcf072b9c279.

[184] Rober Haskin, Yoni Malachi, and Gregory Chan. �Recovery Management in Quick-
Silver�. In: ACM Transactions on Computer Systems (TOCS) 6.1 (1988), pp. 82�
108.

[185] T. Haynes and D. Noveck. Network File System (NFS) Version 4 Protocol. RFC 7530,
March 2015, https://tools.ietf.org/html/rfc7530.

https://www.grpc.io/
https://www.grpc.io/
https://gvisor.dev/
https://medium.com/@smoothml/serverless-computing-terrible-name-but-brilliant-service-bcf072b9c279
https://medium.com/@smoothml/serverless-computing-terrible-name-but-brilliant-service-bcf072b9c279
https://medium.com/@smoothml/serverless-computing-terrible-name-but-brilliant-service-bcf072b9c279
https://tools.ietf.org/html/rfc7530

BIBLIOGRAPHY 203

[186] K. Hazelwood et al. �Applied Machine Learning at Facebook: A Datacenter Infras-
tructure Perspective�. In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Feb. 2018, pp. 620�629.

[187] Joseph M. Hellerstein and Peter Alvaro. �Keeping CALM: When Distributed Consis-
tency Is Easy�. In: Communications of the ACM 63.9 (2020), pp. 72�81.

[188] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of a
Database System. Now Publishers Inc, 2007.

[189] Joseph M. Hellerstein et al. �Serverless Computing: One Step Forward, Two Steps
Back�. In: CIDR (2019).

[190] Scott Hendrickson et al. �Serverless Computation With OpenLambda�. In: 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16) (2016).

[191] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Elsevier, 2017.

[192] Maurice P. Herlihy and Jeannette M. Wing. �Linearizability: A Correctness Condi-
tion for Concurrent Objects�. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 12.3 (1990), pp. 463�492.

[193] Martijn de Heus et al. �Distributed Transactions on Serverless Stateful Functions�.
In: Proceedings of the 15th ACM International Conference on Distributed and Event-
based Systems. 2021, pp. 31�42.

[194] Carl Hewitt, Peter Bishop, and Richard Steiger. �A universal modular actor formalism
for arti�cial intelligence�. In: Proceedings of the 3rd international joint conference on
Arti�cial intelligence. Morgan Kaufmann Publishers Inc. 1973, pp. 235�245.

[195] Dean Hildebrand and Denis Serenyi. Colossus Under the Hood: A Peek Into Google's
Scalable Storage System. https://cloud.google.com/blog/products/storage-
data-transfer/a-peek-behind-colossus-googles-file-system. 2019.

[196] Mark D. Hill and Michael R. Marty. �Amdahl's Law in the Multicore Era�. In: Com-
puter 41.7 (2008), pp. 33�38.

[197] Todd Ho�. The Instagram Architecture Facebook Bought for a Cool Billion Dollars.
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-

facebook-bought-for-a-cool-billio.html. Apr. 2012.

[198] Sanghyun Hong et al. �Go Serverless: Securing Cloud via Serverless Design Patterns�.
In: 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18). 2018.

[199] Host, n.2. In: OED Online. Oxford University Press. url: https://www.oed.com/
view/Entry/88744?result=2#eid.

[200] How Aurora Serverless V2 (Preview) Works. https://docs.aws.amazon.com/
AmazonRDS/latest/AuroraUserGuide/aurora- serverless- 2.how- it- works.

html.

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
http://highscalability.com/blog/2012/4/9/the-instagram-architecture-facebook-bought-for-a-cool-billio.html
https://www.oed.com/view/Entry/88744?result=2#eid
https://www.oed.com/view/Entry/88744?result=2#eid
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-2.how-it-works.html

BIBLIOGRAPHY 204

[201] John H. Howard et al. �Scale and Performance in a Distributed File System�. In: ACM
Transactions on Computer Systems (TOCS) 6.1 (1988), pp. 51�81.

[202] HP Labs. The Machine. https://www.hpl.hp.com/research/systems-research/
themachine/. 2017.

[203] Yige Hu et al. �TxFS: Leveraging File-system Crash Consistency to Provide ACID
Transactions�. In: ACM Trans. Storage 15.2 (May 2019), pp. 1�20.

[204] Razin Farhan Hussain, Mohsen Amini Salehi, and Omid Semiari. �Serverless Edge
Computing for Green Oil and Gas Industry�. In: 2019 IEEE Green Technologies Con-
ference (GreenTech). IEEE. 2019, pp. 1�4.

[205] In�niBand Roadmap. https://www.infinibandta.org/infiniband-roadmap/.

[206] Intel. Intel Rack Scale Design Architecture. https://www.intel.com/content/
dam / www / public / us / en / documents / white - papers / rack - scale - design -

architecture-white-paper.pdf. 2018.

[207] Introducing Data Center Fabric, the Next-Generation Facebook Data Center Net-
work. https://engineering.fb.com/2014/11/14/production-engineering/
introducing- data- center- fabric- the- next- generation- facebook- data-

center-network/. 2014.

[208] Introducing the Amazon Time Sync Service. https://aws.amazon.com/about-
aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/. 2017.

[209] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. �Serving Deep Learn-
ing Models in a Serverless Platform�. In: 2018 IEEE International Conference on
Cloud Engineering (IC2E). IEEE. 2018, pp. 257�262.

[210] Vitalii Ivanov and Kari Smolander. �Implementation of a DevOps Pipeline for Server-
less Applications�. In: International conference on product-focused software process
improvement. Springer. 2018, pp. 48�64.

[211] Abhinav Jangda et al. �Formal Foundations of Serverless Computing�. In: Proceedings
of the ACM on Programming Languages 3.OOPSLA (2019), pp. 1�26.

[212] Zhipeng Jia and Emmett Witchel. �Boki: Stateful Serverless Computing With Shared
Logs�. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 2021, pp. 691�707.

[213] Jiawei Jiang et al. �Towards Demystifying Serverless Machine Learning Training�.
In: Proceedings of the 2021 International Conference on Management of Data. 2021,
pp. 857�871.

[214] Paul Johnston. �Serverless� Is Just a Name. We Could Have Called It �Je��. https:
//serverless.zone/serverless-is-just-a-name-we-could-have-called-it-

jeff-1958dd4c63d7.

[215] Joins in Azure Cosmos DB. https://docs.microsoft.com/en-us/azure/cosmos-
db/sql/sql-query-join.

https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.infinibandta.org/infiniband-roadmap/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-the-amazon-time-sync-service/
https://serverless.zone/serverless-is-just-a-name-we-could-have-called-it-jeff-1958dd4c63d7
https://serverless.zone/serverless-is-just-a-name-we-could-have-called-it-jeff-1958dd4c63d7
https://serverless.zone/serverless-is-just-a-name-we-could-have-called-it-jeff-1958dd4c63d7
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-join
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-join

BIBLIOGRAPHY 205

[216] Eric Jonas et al. Cloud Programming Simpli�ed: a Berkeley View on Serverless Com-
puting. UC Berkeley Technical Report No. UCB/EECS-2019-3. 2019.

[217] Eric Jonas et al. �Occupy the Cloud: Distributed Computing for the 99%�. In: Pro-
ceedings of the 2017 Symposium on Cloud Computing. ACM. 2017, pp. 445�451.

[218] Andrew Josey, Eric Blake, Geo� Clare, et al. The Open Group Base Speci�cations
Issue 7. https://pubs.opengroup.org/onlinepubs/9699919799/. 2018.

[219] Norman P. Jouppi et al. �In-datacenter performance analysis of a tensor process-
ing unit�. In: Proceedings of the 44th annual international symposium on computer
architecture. 2017, pp. 1�12.

[220] Kostis Ka�es, Neeraja J. Yadwadkar, and Christos Kozyrakis. �Centralized Core-
Granular Scheduling for Serverless Functions�. In: Proceedings of the ACM Symposium
on Cloud Computing. 2019, pp. 158�164.

[221] Antti Kantee. �Rump File Systems: Kernel Code Reborn�. In: USENIX Annual Tech-
nical Conference. 2009, pp. 15�15.

[222] Kata Containers - The Speed of Containers, the Security of VMs. https : / /

katacontainers.io/.

[223] Kostas Katrinis et al. �Rack-Scale Disaggregated Cloud Data Centers: The dReD-
Box Project Vision�. In: 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2016, pp. 690�695.

[224] Michael Leon Kazar et al. Synchronization and Caching Issues in the Andrew File
System. Carnegie Mellon University, Information Technology Center, 1988.

[225] Wes Kendall. MPI Tutorial - MPI Send and Receive. https://mpitutorial.com/
tutorials/mpi-send-and-receive/.

[226] Jeongchul Kim and Kyungyong Lee. �FunctionBench: A Suite of Workloads for Server-
less Cloud Function Service�. In: 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE. 2019, pp. 502�504.

[227] Youngbin Kim and Jimmy Lin. �Serverless Data Analytics With Flint�. In: 2018 IEEE
11th International Conference on Cloud Computing (CLOUD). IEEE. 2018, pp. 451�
455.

[228] Spencer Kimball and Irfan Sharif. Living Without Atomic Clocks. https://www.
cockroachlabs.com/blog/living-without-atomic-clocks/. 2021.

[229] Ana Klimovic et al. �Pocket: Elastic ephemeral storage for serverless analytics�. In:
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 2018, pp. 427�444.

[230] Ana Klimovic et al. �Understanding Ephemeral Storage for Serverless Analytics�. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). 2018, pp. 789�794.

[231] Knative - Enterprise-Grade Serverless on Your Own Terms. https://knative.dev/.

https://pubs.opengroup.org/onlinepubs/9699919799/
https://katacontainers.io/
https://katacontainers.io/
https://mpitutorial.com/tutorials/mpi-send-and-receive/
https://mpitutorial.com/tutorials/mpi-send-and-receive/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://knative.dev/

BIBLIOGRAPHY 206

[232] Paul Kocher et al. �Spectre Attacks: Exploiting Speculative Execution�. In: arXiv
preprint arXiv:1801.01203 (2018).

[233] Eddie Kohler et al. �The Click Modular Router�. In: ACM Transactions on Computer
Systems (TOCS) 18.3 (2000), pp. 263�297.

[234] Ricardo Koller and Dan Williams. �Will serverless end the dominance of Linux in the
cloud?� In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems.
2017, pp. 169�173.

[235] Brian Krebs. What We Can Learn From the Capital One Hack. 2019.

[236] Kubeless - The Kubernetes Native Servlerss Framework. https://kubeless.io/.

[237] Jörn Kuhlenkamp et al. �Benchmarking Elasticity of FaaS Platforms as a Foundation
for Objective-Driven Design of Serverless Applications�. In: Proceedings of the 35th
Annual ACM Symposium on Applied Computing. 2020, pp. 1576�1585.

[238] Sanjeev Kulkarni et al. �Twitter Heron: Stream Processing at Scale�. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data. 2015,
pp. 239�250.

[239] Jacek Ku±nierz et al. �Distributed Parallel Analysis Engine for High Energy Physics
Using AWS Lambda�. In: Proceedings of the 1st Workshop on High Performance
Serverless Computing. 2020, pp. 13�16.

[240] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. �Oracle TimesTen: An
In-Memory Database for Enterprise Applications.� In: IEEE Data Eng. Bull. 36.2
(2013), pp. 6�13.

[241] Leslie Lamport. �How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs�. In: IEEE Transactions on Computers 9 (1979), pp. 690�691.

[242] Leslie Lamport. �The Part-Time Parliament�. In: Concurrency: the Works of Leslie
Lamport. 2019, pp. 277�317.

[243] Leslie Lamport et al. �Paxos Made Simple�. In: ACM Sigact News 32.4 (2001), pp. 18�
25.

[244] Butler W. Lampson and David D. Redell. �Experience With Processes and Monitors
in Mesa�. In: Communications of the ACM 23.2 (1980), pp. 105�117.

[245] James Larisch, James Mickens, and Eddie Kohler. �Alto: Lightweight VMs Using
Virtualization-Aware Managed Runtimes�. In: Proceedings of the 15th International
Conference on Managed Languages & Runtimes. 2018, pp. 1�7.

[246] P-A Larson, Jonathan Goldstein, and Jingren Zhou. �MTCache: Transparent mid-tier
database caching in SQL Server�. In: Proceedings. 20th International Conference on
Data Engineering. IEEE. 2004, pp. 177�188.

[247] Duncan H. Lawrie. �Access and Alignment of Data in an Array Processor�. In: IEEE
Transactions on Computers 100.12 (1975), pp. 1145�1155.

https://kubeless.io/

BIBLIOGRAPHY 207

[248] Hyungro Lee, Kumar Satyam, and Geo�rey Fox. �Evaluation of Production Serverless
Computing Environments�. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE. 2018, pp. 442�450.

[249] Han Li et al. �Analysis of the Synchronization Requirements of 5G and Corresponding
Solutions�. In: IEEE Communications Standards Magazine 1.1 (2017), pp. 52�58.

[250] Jian Li. High Throughput Computing Data Center Architecture - Thinking of Data
Center 3.0. http://acs.ict.ac.cn/asbd2014/slides/ASBD_InvitedTalk_Li.pdf.
2014.

[251] Xing Li, Xue Leng, and Yan Chen. �Securing Serverless Computing: Challenges, So-
lutions, and Opportunities�. In: arXiv preprint arXiv:2105.12581 (2021).

[252] Yuliang Li et al. �Sundial: Fault-Tolerant Clock Synchronization for Datacenters�. In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). 2020, pp. 1171�1186.

[253] Kevin Lim et al. �System-Level Implications of Disaggregated Memory�. In: IEEE In-
ternational Symposium on High-Performance Comp Architecture. IEEE. 2012, pp. 1�
12.

[254] Xiayue Charles Lin, Joseph E. Gonzalez, and Joseph M. Hellerstein. �Serverless Boom
or Bust? An Analysis of Economic Incentives�. In: 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). 2020.

[255] Wyatt Lloyd et al. �Don't settle for eventual: Scalable causal consistency for wide-
area storage with COPS�. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. 2011, pp. 401�416.

[256] Taras Lykhenko, Rafael Soares, and Luis Rodrigues. �FaaSTCC: E�cient Transac-
tional Causal Consistency for Serverless Computing�. In: Proceedings of the 22nd
International Middleware Conference. 2021, pp. 159�171.

[257] Nancy A. Lynch. Distributed Algorithms. Elsevier, 1996.

[258] Nancy A. Lynch et al. Atomic Transactions: in Concurrent and Distributed Systems.
Morgan Kaufmann Publishers Inc., 1993.

[259] Theo Lynn et al. �A Preliminary Review of Enterprise Serverless Cloud Computing
(Function-as-a-Service) Platforms�. In: 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE. 2017, pp. 162�169.

[260] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. �Consistency, Availability, and
Convergence�. In: University of Texas at Austin Tech Report 11 (2011), p. 158.

[261] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. �The Serverless Shell�. In: Proceed-
ings of the 22nd International Middleware Conference: Industrial Track. 2021, pp. 9�
15.

http://acs.ict.ac.cn/asbd2014/slides/ASBD_InvitedTalk_Li.pdf

BIBLIOGRAPHY 208

[262] Ashraf Mahgoub et al. �SONIC: Application-Aware Data Passing for Chained Server-
less Applications�. In: 2021 USENIX Annual Technical Conference (USENIX ATC
21). 2021, pp. 285�301.

[263] Nima Mahmoudi et al. �Optimizing Serverless Computing: Introducing an Adaptive
Function Placement Algorithm�. In: Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering. 2019, pp. 203�213.

[264] Pascal Maissen et al. �FaaSdom: A Benchmark Suite for Serverless Computing�. In:
Proceedings of the 14th ACM International Conference on Distributed and Event-based
Systems. 2020, pp. 73�84.

[265] Filipe Manco et al. �My VM Is Lighter (And Safer) Than Your Container�. In: Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 2017, pp. 218�233.

[266] Johannes Manner, Stefan Kolb, and Guido Wirtz. �Troubleshooting Serverless
Functions: A Combined Monitoring and Debugging Approach�. In: SICS Software-
Intensive Cyber-Physical Systems 34.2 (2019), pp. 99�104.

[267] Horácio Martins, Filipe Araujo, and Paulo Rupino da Cunha. �Benchmarking Server-
less Computing Platforms�. In: Journal of Grid Computing 18.4 (2020), pp. 691�709.

[268] Garrett McGrath and Paul R. Brenner. �Serverless Computing: Design, Implementa-
tion, and Performance�. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE. 2017, pp. 405�410.

[269] Ross Mcilroy et al. �Spectre is here to stay: An analysis of side-channels and specu-
lative execution�. In: arXiv preprint arXiv:1902.05178 (2019).

[270] Frank McSherry, Michael Isard, and Derek G. Murray. �Scalability! But at What
COST?� In: 15th Workshop on Hot Topics in Operating Systems (HotOS XV). 2015.

[271] Dominik Meissner et al. �Retro-λ: An Event-sourced Platform for Serverless Applica-
tions with Retroactive Computing Support�. In: Proceedings of the 12th ACM Inter-
national Conference on Distributed and Event-based Systems. 2018, pp. 76�87.

[272] Alexander Mejía et al. �Serverless Based Control and Monitoring for Search and
Rescue Robots�. In: 2020 15th Iberian Conference on Information Systems and Tech-
nologies (CISTI). IEEE. 2020, pp. 1�6.

[273] Sergey Melnik et al. �Dremel: Interactive Analysis of Web-Scale Datasets�. In: Pro-
ceedings of the VLDB Endowment 3.1-2 (2010), pp. 330�339.

[274] Mezzanine: An open source content management platform built using the Django
framework. http://mezzanine.jupo.org/.

[275] Brenda M. Michelson. �Event-Driven Architecture Overview�. In: Patricia Seybold
Group 2.12 (2006), pp. 10�1571.

[276] Samuel P. Midki�. �Automatic Parallelization: An Overview of Fundamental Compiler
Techniques�. In: Synthesis Lectures on Computer Architecture 7.1 (2012), pp. 1�169.

http://mezzanine.jupo.org/

BIBLIOGRAPHY 209

[277] Rashid Mijumbi et al. �Network Function Virtualization: State-of-the-Art and Re-
search Challenges�. In: IEEE Communications Surveys & Tutorials 18.1 (2015),
pp. 236�262.

[278] Mae Milano and Andrew C. Myers. �MixT: A Language for Mixing Consistency in
Geodistributed Transactions�. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2018. Philadelphia,
PA, USA: ACM, June 2018, pp. 226�241. isbn: 978-1-4503-5698-5. doi: 10.1145/
3192366.3192375.

[279] Dejan S. Milojicic et al. Peer-to-Peer Computing. 2002.

[280] Changwoo Min et al. �Lightweight Application-Level Crash Consistency on Trans-
actional Flash Storage�. In: 2015 USENIX Annual Technical Conference (USENIX
ATC 15). 2015, pp. 221�234.

[281] Anup Mohan et al. �Agile Cold Starts for Scalable Serverless�. In: 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019.

[282] Sunil Kumar Mohanty, Gopika Premsankar, Mario Di Francesco, et al. �An Evaluation
of Open Source Serverless Computing Frameworks.� In: CloudCom. 2018, pp. 115�
120.

[283] Carroll Morgan and Bernard Sufrin. �Speci�cation of the UNIX Filing System�. In:
IEEE Transactions on Software Engineering 2 (1984), pp. 128�142.

[284] Philipp Moritz et al. �Ray: A Distributed Framework for Emerging AI Applica-
tions�. In: 13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). 2018, pp. 561�577.

[285] Ingo Müller, Renato Marroquín, and Gustavo Alonso. �Lambada: Interactive Data
Analytics on Cold Data Using Serverless Cloud Infrastructure�. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 2020,
pp. 115�130.

[286] Irakli Nadareishvili. Serverless Is a Wrong Name. Fight It With FIRE. https://www.
freshblurbs.com/blog/2018/01/10/Stop-Serverless-Call-It-Fire.html.

[287] Michael N. Nelson, Brent B. Welch, and John K Ousterhout. �Caching in the Sprite
Network File System�. In: ACM Transactions on Computer Systems (TOCS) 6.1
(1988), pp. 134�154.

[288] Sam Newman. Building Microservices. " O'Reilly Media, Inc.", 2021.

[289] Hai Duc Nguyen, Zhifei Yang, and Andrew A. Chien. �Motivating High Performance
Serverless Workloads�. In: Proceedings of the 1st Workshop on High Performance
Serverless Computing. 2020, pp. 25�32.

[290] Edmund B. Nightingale, Peter M. Chen, and Jason Flinn. �Speculative Execution in a
Distributed File System�. In: ACM Transactions on Computer Systems (TOCS) 24.4
(2006), pp. 361�392.

https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/3192366.3192375
https://www.freshblurbs.com/blog/2018/01/10/Stop-Serverless-Call-It-Fire.html
https://www.freshblurbs.com/blog/2018/01/10/Stop-Serverless-Call-It-Fire.html

BIBLIOGRAPHY 210

[291] Edmund B. Nightingale et al. �Rethink the Sync�. In: ACM Transactions on Computer
Systems (TOCS) 26.3 (2008), p. 6.

[292] Bill Nitzberg and Virginia Lo. �Distributed shared memory: A survey of issues and
algorithms�. In: Computer 24.8 (1991), pp. 52�60.

[293] Geo�rey Noer and David P. Moulton. How Cloud Storage Delivers 11 Nines of
Durability�And How You Can Help. https://cloud.google.com/blog/products/
storage-data-transfer/understanding-cloud-storage-11-9s-durability-

target. 2021.

[294] Gian Ntzik. �Reasoning About POSIX File Systems�. PhD thesis. Imperial College
London, 2016.

[295] Gian Ntzik et al. �A Concurrent Speci�cation of POSIX File Systems�. In: 32nd Euro-
pean Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. 2018.

[296] Edward Oakes et al. �SOCK: Rapid task provisioning with serverless-optimized con-
tainers�. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). 2018,
pp. 57�70.

[297] Matthew Obetz et al. �Formalizing Event-Driven Behavior of Serverless Applications�.
In: European Conference on Service-Oriented and Cloud Computing. Springer. 2020,
pp. 19�29.

[298] Michael A. Olson. �The Design and Implementation of the Inversion File System.�
In: USENIX Winter. 1993, pp. 205�218.

[299] Diego Ongaro and John Ousterhout. �In Search of an Understandable Consensus Al-
gorithm�. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14). 2014,
pp. 305�319.

[300] OpenFaas - Serverless Functions, Made Simple. https://www.openfaas.com/.

[301] Orleans at Microsoft. https://www.youtube.com/watch?v=KhgYlvGLv9c.

[302] Ippokratis Pandis. �The Evolution of Amazon Redshift�. In: Proceedings of the VLDB
Endowment 14.12 (2021), pp. 3162�3174.

[303] Ruoming Pang et al. �Zanzibar: Google's Consistent, Global Authorization System�.
In: 2019 USENIX Annual Technical Conference (USENIX ATC 19). 2019, pp. 33�46.

[304] Christos Papadimitriou. The Theory of Database Concurrency Control. Computer
Science Press, Inc., 1986.

[305] Christos H. Papadimitriou. �The Serializability of Concurrent Database Updates�. In:
Journal of the ACM (JACM) 26.4 (1979), pp. 631�653.

[306] Mark S. Papamarcos and Janak H. Patel. �A Low-Overhead Coherence Solution for
Multiprocessors With Private Cache Memories�. In: Proceedings of the 11th annual
international symposium on Computer architecture. 1984, pp. 348�354.

https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://www.openfaas.com/
https://www.youtube.com/watch?v=KhgYlvGLv9c

BIBLIOGRAPHY 211

[307] Douglas F. Parkhill. �Challenge of the Computer Utility�. In: (1966).

[308] David L. Parnas. �On the Criteria to Be Used in Decomposing Systems Into Mod-
ules�. In: Pioneers and Their Contributions to Software Engineering. Springer, 1972,
pp. 479�498.

[309] Andrea Passwater. 2018 Serverless Community Survey: Huge growth in serverless
usage. https://serverless.com/blog/2018-serverless-community-survey-
huge-growth-usage/. Accessed: 2019-01-23. 2018.

[310] Robert S. Patti. �Three-Dimensional Integrated Circuits and the Future of System-
on-Chip Designs�. In: Proceedings of the IEEE 94.6 (2006), pp. 1214�1224.

[311] Andrew Pavlo et al. �Self-Driving Database Management Systems.� In: CIDR. Vol. 4.
2017, p. 1.

[312] Andrew Pawloski et al. �Improving Information and Communications in a Disaster
Scenario With AWS Snowball Edge�. In: AGU Fall Meeting Abstracts. Vol. 2019. 2019,
IN23B�09.

[313] Brian Pawlowski et al. �NFS Version 3: Design and Implementation.� In: USENIX
Summer. Boston, MA. 1994, pp. 137�152.

[314] Nathan Pemberton. �Exploring the Disaggregated Memory Interface Design Space�.
In: Workshop on Resource Disaggregation (WORD). 2019.

[315] Nathan Pemberton and Johann Schleier-Smith. �The Serverless Data Center: Hard-
ware Disaggregation Meets Serverless Computing�. In: The First Workshop on Re-
source Disaggregation. Vol. 4. 2019.

[316] Nathan Pemberton, Johann Schleier-Smith, and Joseph E. Gonzalez. �The RESTless
Cloud�. In: Proceedings of the Workshop on Hot Topics in Operating Systems. 2021,
pp. 49�57.

[317] Matthew Perron et al. �Starling: A Scalable Query Engine on Cloud Functions�. In:
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 2020, pp. 131�141.

[318] Gregory F. P�ster. �An Introduction to the In�niBand Architecture�. In: High Per-
formance Mass Storage and Parallel I/O 42.617-632 (2001), p. 10.

[319] Chuck Pheatt. �Intel R© Threading Building Blocks�. In: Journal of Computing Sci-
ences in Colleges 23.4 (2008), pp. 298�298.

[320] Thanumalayan Sankaranarayana Pillai et al. �All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications�. In: 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
2014, pp. 433�448.

[321] Duarte Pinto, João Pedro Dias, and Hugo Sereno Ferreira. �Dynamic Allocation of
Serverless Functions in IoT Environments�. In: 2018 IEEE 16th international confer-
ence on embedded and ubiquitous computing (EUC). IEEE. 2018, pp. 1�8.

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/
https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/

BIBLIOGRAPHY 212

[322] Christian Plattner and Gustavo Alonso. �Ganymed: Scalable replication for transac-
tional web applications�. In: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware. Springer-Verlag. 2004, pp. 155�174.

[323] Donald E. Porter et al. �Operating System Transactions�. In: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. SOSP '09. Big Sky, Mon-
tana, USA: Association for Computing Machinery, Oct. 2009, pp. 161�176.

[324] Kenneth W. Preslan et al. �A 64-Bit, Shared Disk File System for Linux�. In: 16th
IEEE Symposium on Mass Storage Systems in cooperation with the 7th NASA God-
dard Conference on Mass Storage Systems and Technologies (Cat. No. 99CB37098).
IEEE. 1999, pp. 22�41.

[325] Presto - Distributed SQL Query Engine for Big Data. https://prestodb.io/.

[326] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. �Shu�ing, Fast and Slow: Scalable
Analytics on Serverless Infrastructure�. In: 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 2019, pp. 193�206.

[327] Kevin Pulo. �Fun With LD_PRELOAD�. In: linux. conf. au. Vol. 153. 2009, p. 103.

[328] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. �LKL: The Linux Ker-
nel Library�. In: 9th RoEduNet IEEE International Conference. IEEE. 2010, pp. 328�
333.

[329] Weizhong Qiang, Zezhao Dong, and Hai Jin. �Se-Lambda: Securing Privacy-Sensitive
Serverless Applications Using SGX Enclave�. In: International Conference on Security
and Privacy in Communication Systems. Springer. 2018, pp. 451�470.

[330] Paul Rad et al. �ZeroVM: Secure Distributed Processing for Big Data Analytics�. In:
2014 World Automation Congress (WAC). IEEE. 2014, pp. 1�6.

[331] Jonathan Ragan-Kelley et al. �Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines�. In: Acm
Sigplan Notices 48.6 (2013), pp. 519�530.

[332] Ravi Rajwar and James R. Goodman. �Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution�. In: Proceedings. 34th ACM/IEEE Interna-
tional Symposium on Microarchitecture. MICRO-34. IEEE. 2001, pp. 294�305.

[333] Recommender - Google Cloud. https://cloud.google.com/recommender/docs/
overview.

[334] Charles Reiss et al. �Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis�. In: Proceedings of the third ACM symposium on cloud computing. 2012,
pp. 1�13.

[335] Kun Ren, Dennis Li, and Daniel J. Abadi. �Slog: Serializable, Low-Latency, Geo-
Replicated Transactions�. In: Proceedings of the VLDB Endowment 12.11 (2019),
pp. 1747�1761.

https://prestodb.io/
https://cloud.google.com/recommender/docs/overview
https://cloud.google.com/recommender/docs/overview

BIBLIOGRAPHY 213

[336] Mike Roberts. De�ning Serverless�Part 1. https://blog.symphonia.io/posts/
2017-06-22_defining-serverless-part-1. 2017.

[337] Mike Roberts. Serverelss Architectures. https://martinfowler.com/articles/
serverless.html#origin. See `Origin of Serverless' sidebar. 2018.

[338] Francisco Romero. �Faa$T: A Transparent Auto-Scaling Cache for Serverless Appli-
cations�. In: (2021).

[339] Francisco Romero et al. �Faa$T: A Transparent Auto-Scaling Cache for Serverless
Applications�. In: arXiv preprint arXiv:2104.13869 (2021).

[340] Arjun Roy et al. �Inside the Social Network's (Datacenter) Network�. In: Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication.
2015, pp. 123�137.

[341] Je� Rulifson. RFC 5: Decode Encode Language (DEL). https://datatracker.ietf.
org/doc/html/rfc5. 1969.

[342] Krzysztof Rzadca et al. �Autopilot: Workload Autoscaling at Google�. In: Proceedings
of the Fifteenth European Conference on Computer Systems. 2020, pp. 1�16.

[343] Andrei Sabelfeld and Andrew C. Myers. �Language-Based Information-Flow Secu-
rity�. In: IEEE Journal on Selected Areas in Communications 21.1 (2003), pp. 5�
19.

[344] Resve Saleh et al. �System-on-Chip: Reuse and Integration�. In: Proceedings of the
IEEE 94.6 (2006), pp. 1050�1069.

[345] Jerome H. Saltzer, David P. Reed, and David D. Clark. �End-to-End Arguments in
System Design�. In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984),
pp. 277�288.

[346] Josep Sampé et al. �Serverless Data Analytics in the IBM Cloud�. In: Proceedings of
the 19th International Middleware Conference Industry. 2018, pp. 1�8.

[347] Marc Sánchez-Artigas and Pablo Gimeno Sarroca. �Experience Paper: Towards En-
hancing Cost E�ciency in Serverless Machine Learning Training�. In: Proceedings of
the 22nd International Middleware Conference. 2021, pp. 210�222.

[348] Russel Sandberg et al. �Design and implementation of the Sun network �lesystem�.
In: Proceedings of the Summer USENIX conference. 1985, pp. 119�130.

[349] Arnav Sankaran, Pubali Datta, and Adam Bates. �Work�ow Integration Alleviates
Identity and Access Management in Serverless Computing�. In: Annual Computer
Security Applications Conference. 2020, pp. 496�509.

[350] Klaus Satzke et al. �E�cient GPU Sharing for Serverless Work�ows�. In: Proceedings
of the 1st Workshop on High Performance Serverless Computing. 2020, pp. 17�24.

[351] Steve Scargall. �Introducing the Persistent Memory Development Kit�. In: Program-
ming Persistent Memory: A Comprehensive Guide for Developers. Berkeley, CA:
Apress, 2020, pp. 63�72. doi: 10.1007/978-1-4842-4932-1_5.

https://blog.symphonia.io/posts/2017-06-22_defining-serverless-part-1
https://blog.symphonia.io/posts/2017-06-22_defining-serverless-part-1
https://martinfowler.com/articles/serverless.html#origin
https://martinfowler.com/articles/serverless.html#origin
https://datatracker.ietf.org/doc/html/rfc5
https://datatracker.ietf.org/doc/html/rfc5
https://doi.org/10.1007/978-1-4842-4932-1_5

BIBLIOGRAPHY 214

[352] Stephan van Schaik et al. �RIDL: Rogue In-Flight Data Load�. In: S&P (May 2019)
(2019).

[353] Schema Reference Guide for the Work�ow De�nition Language in Azure Logic Apps.
https : / / docs . microsoft . com / en - us / azure / logic - apps / logic - apps -

workflow-definition-language.

[354] Joel Scheuner and Philipp Leitner. �Function-as-a-Service Performance Evaluation:
A Multivocal Literature Review�. In: Journal of Systems and Software 170 (2020),
p. 110708.

[355] Johann Schleier-Smith. �Serverless Foundations for Elastic Database Systems�. In:
CIDR (2019).

[356] Johann Schleier-Smith et al. �What Serverless Computing Is and Should Become:
The Next Phase of Cloud Computing�. In: Communications of the ACM 64.5 (2021),
pp. 55�63.

[357] Frank Schmuck and Jim Wylie. �Experience With Transactions in QuickSilver�. In:
ACM SIGOPS Operating Systems Review. Vol. 25. 5. ACM. 1991, pp. 239�253.

[358] Erick Schonfeld. Twitter Downtime on the Upswing. https://techcrunch.com/
2007/12/20/twitter-downtime-on-the-upswing/. Dec. 2007.

[359] Philip Schwan et al. �Lustre: Building a File System for 1000-Node Clusters�. In:
Proceedings of the 2003 Linux symposium. Vol. 2003. 2003, pp. 380�386.

[360] Server Message Block SMB Protocol. https : / / winprotocoldoc . blob . core .

windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf. v20180912.
2018.

[361] Server, n. In: OED Online. Oxford University Press. url: https://www.oed.com/
view/Entry/176669#eid.

[362] Mohammad Shahrad et al. �Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider�. In: 2020 USENIX Annual Technical
Conference (USENIX 20). 2020, pp. 205�218.

[363] Yizhou Shan et al. �LegoOS: A disseminated, distributed OS for hardware resource
disaggregation�. In: 13th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 18). 2018, pp. 69�87.

[364] Vaishaal Shankar et al. �Serverless Linear Algebra�. In: Proceedings of the 11th ACM
Symposium on Cloud Computing. 2020, pp. 281�295.

[365] Marc Shapiro et al. �Con�ict-Free Replicated Data Types�. In: Symposium on Self-
Stabilizing Systems. Springer. 2011, pp. 386�400.

[366] Weisong Shi et al. �Edge Computing: Vision and Challenges�. In: IEEE Internet of
Things Journal 3.5 (2016), pp. 637�646.

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-workflow-definition-language
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-workflow-definition-language
https://techcrunch.com/2007/12/20/twitter-downtime-on-the-upswing/
https://techcrunch.com/2007/12/20/twitter-downtime-on-the-upswing/
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-SMB/[MS-SMB].pdf
https://www.oed.com/view/Entry/176669#eid
https://www.oed.com/view/Entry/176669#eid

BIBLIOGRAPHY 215

[367] Yuan Shi. �Reevaluating Amdahl's Law and Gustafson's Law�. In: Computer Sciences
Department, Temple University (MS: 38-24) (1996).

[368] Simon Shillaker and Peter Pietzuch. �Faasm: lightweight isolation for e�cient state-
ful serverless computing�. In: 2020 USENIX Annual Technical Conference (USENIX
ATC 20). 2020, pp. 419�433.

[369] Konstantin Shvachko et al. �The Hadoop Distributed File System�. In: 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST). Vol. 10. 2010,
pp. 1�10.

[370] Arjun Singh et al. �Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google's Datacenter Network�. In: ACM SIGCOMM Computer Commu-
nication Review 45.4 (2015), pp. 183�197.

[371] Arjun Singhvi et al. �Atoll: A Scalable Low-Latency Serverless Platform�. In: Pro-
ceedings of the ACM Symposium on Cloud Computing. 2021, pp. 138�152.

[372] Arjun Singhvi et al. �SNF: Serverless Network Functions�. In: Proceedings of the 11th
ACM Symposium on Cloud Computing. 2020, pp. 296�310.

[373] Alok Sinha. �Client-Server Computing�. In: Communications of the ACM 35.7 (1992),
pp. 77�98.

[374] Swaminathan Sivasubramanian. �Amazon dynamoDB: a seamlessly scalable non-
relational database service�. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 2012, pp. 729�730.

[375] SLA for Virtual Machines. https://azure.microsoft.com/en- us/support/
legal/sla/virtual-machines/v1_9/.

[376] Fedor Smirnov, Behnaz Pourmohseni, and Thomas Fahringer. �Apollo: Modular and
Distributed Runtime System for Serverless Function Compositions on Cloud, Edge,
and Iot Resources�. In: Proceedings of the 1st Workshop on High Performance Server-
less Computing. 2020, pp. 5�8.

[377] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Elsevier, 2005.

[378] Snow�ake: Understanding Billing for Serverless Features. https://docs.snowflake.
com/en/user-guide/admin-serverless-billing.html.

[379] Richard Soref. �The Past, Present, and Future of Silicon Photonics�. In: IEEE Journal
of Selected Topics in Quantum Electronics 12.6 (2006), pp. 1678�1687.

[380] Michael Specter and J. Alex Halderman. �Security Analysis of the Democracy Live
Online Voting System�. In: 30th USENIX Security Symposium (USENIX Security
21). 2021.

[381] Josef Spillner, Cristian Mateos, and David A. Monge. �Faaster, Better, Cheaper:
The Prospect of Serverless Scienti�c Computing and HPC�. In: Latin American High
Performance Computing Conference. Springer. 2017, pp. 154�168.

https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_9/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_9/
https://docs.snowflake.com/en/user-guide/admin-serverless-billing.html
https://docs.snowflake.com/en/user-guide/admin-serverless-billing.html

BIBLIOGRAPHY 216

[382] SQLite. https://sqlite.org/.

[383] Vikram Sreekanti et al. �A Fault-Tolerance Shim for Serverless Computing�. In: Pro-
ceedings of the Fifteenth European Conference on Computer Systems. 2020, pp. 1�
15.

[384] Vikram Sreekanti et al. �Cloudburst: Stateful Functions-as-a-Service�. In: VLDB 13.11
(2020), pp. 2438�2452.

[385] Nate Stewart. CockroachDB Serverless: Build What You Dream, Never Worry About
Your Database Again. https : / / www . cockroachlabs . com / blog / announcing -
cockroachdb-serverless/. 2021.

[386] Ion Stoica et al. �Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions�. In: ACM SIGCOMM Computer Communication Review 31.4 (2001), pp. 149�
160.

[387] Michael Stonebraker. �SQL Databases v. NoSQL Databases�. In: Communications of
the ACM 53.4 (2010), pp. 10�11.

[388] Michael Stonebraker and Lawrence A. Rowe. The Design of POSTGRES. Vol. 15. 2.
ACM, 1986.

[389] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. �NoSQL Databases�. In:
Lecture Notes, Stuttgart Media University 20 (2011), p. 24.

[390] Chen Sun et al. �Single-Chip Microprocessor That Communicates Directly Using
Light�. In: Nature 528.7583 (Dec. 2015), pp. 534�538. issn: 0028-0836. url: http://
dx.doi.org/10.1038/nature16454%20http://www.nature.com/nature/journal/

v528/n7583/abs/nature16454.html%7B%5C#%7Dsupplementary-information.

[391] Amoghvarsha Suresh and Anshul Gandhi. �FnSched: An E�cient Scheduler for Server-
less Functions�. In: Proceedings of the 5th International Workshop on Serverless Com-
puting. 2019, pp. 19�24.

[392] Syntax Overview - Work�ows - Google Cloud. https : / / cloud . google . com /

workflows/docs/reference/syntax.

[393] Chiu C. Tan, Bo Sheng, and Qun Li. �Secure and Serverless RFID Authentication and
Search Protocols�. In: IEEE Transactions on Wireless Communications 7.4 (2008),
pp. 1400�1407.

[394] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Pearson, 2015.

[395] Vasily Tarasov, Erez Zadok, and Spencer Shepler. �Filebench: A �exible framework
for �le system benchmarking�. In: Login: The USENIX Magazine 41.1 (2016), pp. 6�
12.

[396] Ali Tariq et al. �Sequoia: Enabling Quality-of-Service in Serverless Computing�. In:
Proceedings of the 11th ACM Symposium on Cloud Computing. 2020, pp. 311�327.

https://sqlite.org/
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
https://www.cockroachlabs.com/blog/announcing-cockroachdb-serverless/
http://dx.doi.org/10.1038/nature16454%20http://www.nature.com/nature/journal/v528/n7583/abs/nature16454.html%7B%5C#%7Dsupplementary-information
http://dx.doi.org/10.1038/nature16454%20http://www.nature.com/nature/journal/v528/n7583/abs/nature16454.html%7B%5C#%7Dsupplementary-information
http://dx.doi.org/10.1038/nature16454%20http://www.nature.com/nature/journal/v528/n7583/abs/nature16454.html%7B%5C#%7Dsupplementary-information
https://cloud.google.com/workflows/docs/reference/syntax
https://cloud.google.com/workflows/docs/reference/syntax

BIBLIOGRAPHY 217

[397] Daniel Terdiman. Jack Dorsey: Twitter Was Built in Two Weeks. https://www.
cnet.com/news/jack-dorsey-twitter-was-built-in-two-weeks/. Nov. 2012.

[398] Douglas B. Terry et al. �Managing update con�icts in Bayou, a weakly connected
replicated storage system�. In: ACM SIGOPS Operating Systems Review 29.5 (1995),
pp. 172�182.

[399] The System Call Intercepting Library. https : / / github . com / pmem / syscall _

intercept.

[400] Thomas N. Theis and H-S Philip Wong. �The End of Moore's Law: A New Beginning
for Information Technology�. In: Computing in Science & Engineering 19.2 (2017),
pp. 41�50.

[401] Robert H. Thomas. �A Resource Sharing Executive for the ARPANET�. In: Pro-
ceedings of the June 4-8, 1973, national computer conference and exposition. 1973,
pp. 155�163.

[402] Shelby Thomas et al. �Particle: Ephemeral Endpoints for Serverless Networking�. In:
Proceedings of the 11th ACM Symposium on Cloud Computing. 2020, pp. 16�29.

[403] Alexander Thomson and Daniel J. Abadi. �CalvinFS: Consistent WAN Replication
and Scalable Metadata Management for Distributed File Systems�. In: 13th USENIX
Conference on File and Storage Technologies (FAST 15). 2015, pp. 1�14.

[404] Alexander Thomson et al. �Calvin: Fast Distributed Transactions for Partitioned
Database Systems�. In: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data. 2012, pp. 1�12.

[405] David Thomson et al. �Roadmap on Silicon Photonics�. In: Journal of Optics 18.7
(2016), p. 073003.

[406] Time sync for Linux VMs in Azure. https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/time-sync. 2022.

[407] Ankit Toshniwal et al. �Storm @Twitter�. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. 2014, pp. 147�156.

[408] TPC-C. http://www.tpc.org/tpcc/.

[409] Bohdan Trach et al. �Clemmys: Towards Secure Remote Execution in FaaS�. In:
Proceedings of the 12th ACM International Conference on Systems and Storage. 2019,
pp. 44�54.

[410] Transactional NTFS (TxF). https://docs.microsoft.com/en- us/windows/
win32/fileio/transactional-ntfs-portal.

[411] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. �Simultaneous Multithreading:
Maximizing On-Chip Parallelism�. In: Proceedings of the 22nd annual international
symposium on Computer architecture. 1995, pp. 392�403.

https://www.cnet.com/news/jack-dorsey-twitter-was-built-in-two-weeks/
https://www.cnet.com/news/jack-dorsey-twitter-was-built-in-two-weeks/
https://github.com/pmem/syscall_intercept
https://github.com/pmem/syscall_intercept
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/time-sync
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/time-sync
http://www.tpc.org/tpcc/
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal

BIBLIOGRAPHY 218

[412] Twitter Form S-1. https : / / www . sec . gov / Archives / edgar / data / 1418091 /
000119312513390321/d564001ds1.htm. Oct. 2013.

[413] Twitter Open Source. https://twitter.github.io/projects/.

[414] Amin Vahdat. The Past, Present and Future of Custom Compute at Google. https:
//cloud.google.com/blog/topics/systems/the-past-present-and-future-

of-custom-compute-at-google.

[415] Leslie G. Valiant. �A Bridging Model for Parallel Computation�. In: Communications
of the ACM 33.8 (1990), pp. 103�111.

[416] Erwin Van Eyk et al. �Serverless Is More: From PaaS to Present Cloud Computing�.
In: IEEE Internet Computing 22.5 (2018), pp. 8�17.

[417] Erwin Van Eyk et al. �The SPEC-RG Reference Architecture for FaaS: From Mi-
croservices and Containers to Serverless Platforms�. In: IEEE Internet Computing
23.6 (2019), pp. 7�18.

[418] Shivaram Venkataraman et al. �Ernest: E�cient Performance Prediction for Large-
Scale Advanced Analytics�. In: 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16). 2016, pp. 363�378.

[419] Alexandre Verbitski et al. �Amazon Aurora: Design Considerations for High Through-
put Cloud-Native Relational Databases�. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. 2017, pp. 1041�1052.

[420] Rajat Verma et al. �Failure-atomic updates of application data in a Linux �le system�.
In: 13th USENIX Conference on File and Storage Technologies (FAST 15). 2015,
pp. 203�211.

[421] Werner Vogels. Announcing AWS Lambda. https://www.youtube.com/watch?v=
9eHoyUVo-yg. 2014.

[422] Marco Von Arb et al. �Veneta: Serverless Friend-of-Friend Detection in Mobile So-
cial Networking�. In: 2008 IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications. IEEE. 2008, pp. 184�189.

[423] Tim A. Wagner. Serverless Networking is the next step in the evolution of serverless.
https : / / read . acloud . guru / https - medium - com - timawagner - serverless -

networking-the-next-step-in-serverless-evolution-95bc8adaa904. 2019.

[424] Timothy A. Wagner. Getting Started With AWS Lambda. https://www.youtube.
com/watch?v=UFj27laTWQA. 2014.

[425] Jim Waldo et al. �A Note on Distributed Computing�. In: International Workshop on
Mobile Object Systems. Springer. 1996, pp. 49�64.

[426] Ao Wang et al. �In�niCache: Exploiting ephemeral serverless functions to build a
cost-e�ective memory cache�. In: 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20). 2020, pp. 267�281.

https://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm
https://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/d564001ds1.htm
https://twitter.github.io/projects/
https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://cloud.google.com/blog/topics/systems/the-past-present-and-future-of-custom-compute-at-google
https://www.youtube.com/watch?v=9eHoyUVo-yg
https://www.youtube.com/watch?v=9eHoyUVo-yg
https://read.acloud.guru/https-medium-com-timawagner-serverless-networking-the-next-step-in-serverless-evolution-95bc8adaa904
https://read.acloud.guru/https-medium-com-timawagner-serverless-networking-the-next-step-in-serverless-evolution-95bc8adaa904
https://www.youtube.com/watch?v=UFj27laTWQA
https://www.youtube.com/watch?v=UFj27laTWQA

BIBLIOGRAPHY 219

[427] Bin Wang, Ahmed Ali-Eldin, and Prashant Shenoy. �LaSS: Running Latency Sensi-
tive Serverless Computations at the Edge�. In: Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing. 2020, pp. 239�
251.

[428] Feiyi Wang et al. �Understanding Lustre Filesystem Internals�. In: Oak Ridge National
Laboratory, National Center for Computational Sciences, Tech. Rep (2009).

[429] Liang Wang et al. �Peeking Behind the Curtains of Serverless Platforms�. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). 2018, pp. 133�146.

[430] Randolph Y. Wang and Thomas E. Anderson. �xFS: A Wide Area Mass Storage File
System�. In: Proceedings of IEEE 4th Workshop on Workstation Operating Systems.
WWOS-III. IEEE. 1993, pp. 71�78.

[431] Stephanie Wang et al. �Lineage Stash: Fault Tolerance O� the Critical Path�. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles. 2019,
pp. 338�352.

[432] Mike Wawrzoniak et al. �Boxer: Data Analytics on Network-enabled Serverless Plat-
forms�. In: 11th Annual Conference on Innovative Data Systems Research (CIDR'21).
2021.

[433] Sage A. Weil et al. �Ceph: A scalable, high-performance distributed �le system�. In:
Proceedings of the 7th symposium on Operating systems design and implementation.
USENIX Association. 2006, pp. 307�320.

[434] Matt Welsh, David Culler, and Eric Brewer. �SEDA: An architecture for well-
conditioned, scalable internet services�. In: ACM SIGOPS Operating Systems Review
35.5 (2001), pp. 230�243.

[435] Sebastian Werner, Richard Girke, and Jörn Kuhlenkamp. �An Evaluation of Server-
less Data Processing Frameworks�. In: Proceedings of the 2020 Sixth International
Workshop on Serverless Computing. 2020, pp. 19�24.

[436] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. �Automated Empirical Opti-
mizations of Software and the ATLAS Project�. In: Parallel Computing 27.1-2 (2001),
pp. 3�35.

[437] Michael Whittaker et al. �Scaling Replicated State Machines With Compartmental-
ization�. In: Proceedings of the VLDB Endowment 14.11 (2021), pp. 2203�2215.

[438] Bruce Wile. Coherent Accelerator Processor Interface (CAPI) for POWER8 Systems.
Tech. rep. IBM Systems and Technology Group, Sept. 2014.

[439] Stefan Winzinger and Guido Wirtz. �Model-Based Analysis of Serverless Applica-
tions�. In: 2019 IEEE/ACM 11th International Workshop on Modelling in Software
Engineering (MiSE). IEEE. 2019, pp. 82�88.

BIBLIOGRAPHY 220

[440] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. �Multiprocessor System-on-
Chip (MPSoC) Technology�. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27.10 (2008), pp. 1701�1713.

[441] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. �Autoscaling Tiered
Cloud Storage in Anna�. In: Proceedings of the VLDB Endowment 12 (2019).

[442] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. �Transactional Causal
Consistency for Serverless Computing�. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020, pp. 83�97.

[443] Chenggang Wu et al. �Anna: A KVS for Any Scale�. In: IEEE Transactions on Knowl-
edge and Data Engineering (2019).

[444] Junjie Xiong et al. �Warmonger: In�icting Denial-of-Service via Serverless Functions
in the Cloud�. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2021, pp. 955�969.

[445] Neeraja J. Yadwadkar et al. �Selecting the Best VM Across Multiple Public Clouds:
A Data-Driven Performance Modeling Approach�. In: Proceedings of the 2017 Sym-
posium on Cloud Computing. 2017, pp. 452�465.

[446] Mengting Yan et al. �Building a Chatbot With Serverless Computing�. In: Proceedings
of the 1st International Workshop on Mashups of Things and APIs. 2016, pp. 1�4.

[447] Ryan Yang et al. PyPlover: A System for GPU-Enabled Serverless Instances. Tech.
rep. Technical report, University of California, Berkeley, 2020.

[448] Mihalis Yannakakis. �Serializability by Locking�. In: Journal of the ACM (JACM)
31.2 (1984), pp. 227�244.

[449] Ethan G. Young et al. �The True Cost of Containing: A gVisor Case Study�. In: 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019.

[450] Minchen Yu et al. �Gillis: Serving Large Neural Networks in Serverless Functions
With Automatic Model Partitioning�. In: 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS). IEEE. 2021, pp. 138�148.

[451] Tianyi Yu et al. �Characterizing Serverless Platforms With Serverlessbench�. In: Pro-
ceedings of the 11th ACM Symposium on Cloud Computing. 2020, pp. 30�44.

[452] Xiangyao Yu and Srinivas Devadas. �Tardis: Time Traveling Coherence Algorithm for
Distributed Shared Memory�. In: 2015 International Conference on Parallel Archi-
tecture and Compilation (PACT). IEEE. 2015, pp. 227�240.

[453] Xiangyao Yu, Muralidaran Vijayaraghavan, and Srinivas Devadas. �A Proof of Cor-
rectness for the Tardis Cache Coherence Protocol�. In: arXiv preprint arXiv:1505.06459
(2015).

[454] Xiangyao Yu et al. �Staring Into the Abyss: An Evaluation of Concurrency Control
With One Thousand Cores�. In: (2014).

BIBLIOGRAPHY 221

[455] Xiangyao Yu et al. �Sundial: harmonizing concurrency control and caching in a dis-
tributed OLTP database management system�. In: Proceedings of the VLDB Endow-
ment 11.10 (2018), pp. 1289�1302.

[456] Vladimir Yussupov et al. �Serverless Parachutes: Preparing Chosen Functionalities
for Exceptional Workloads�. In: 2019 IEEE 23rd International Enterprise Distributed
Object Computing Conference (EDOC). IEEE. 2019, pp. 226�235.

[457] Matei Zaharia et al. �Apache Spark: A Uni�ed Engine for Big Data Processing�. In:
Communications of the ACM 59.11 (2016), pp. 56�65.

[458] Zappa: Serverless Python. https://github.com/Miserlou/Zappa.

[459] Haoran Zhang et al. �Fault-tolerant and transactional stateful serverless work�ows�.
In: 14th USENIX Symposium on Operating Systems Design and Implementation (
OSDI 20). 2020, pp. 1187�1204.

[460] Hong Zhang et al. �Caerus: NIMBLE Task Scheduling for Serverless Analytics.� In:
NSDI. 2021, pp. 653�669.

[461] Lu Zhang et al. �Tapping Into NFV Environment for Opportunistic Serverless Edge
Function Deployment�. In: IEEE Transactions on Computers (2021).

[462] Tian Zhang et al. �Narrowing the Gap Between Serverless and Its State With Storage
Functions�. In: Proceedings of the ACM Symposium on Cloud Computing. 2019, pp. 1�
12.

[463] Wen Zhang et al. �Kappa: A Programming Framework for Serverless Computing�. In:
Proceedings of the 11th ACM Symposium on Cloud Computing. 2020, pp. 328�343.

[464] Yanqi Zhang et al. �Faster and Cheaper Serverless Computing on Harvested Re-
sources�. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 2021, pp. 724�739.

[465] Siyuan Zhuang et al. �Hoplite: E�cient and Fault-Tolerant Collective Communication
for Task-Based Distributed Systems�. In: Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 2021, pp. 641�656.

https://github.com/Miserlou/Zappa

	Contents
	List of Figures
	List of Tables
	Introduction
	The Challenges of Scale
	Higher Expectations
	Social Networking Case Study
	The Path to Serverless Computing

	Understanding Serverless Cloud Computing
	Introduction
	Function as a Service
	About the ``Serverless'' Name
	Essential characteristics of serverless computing
	The Serverless Menagerie
	Limitations of Serverless Computing
	Serverless Computing Research
	Simplified Cloud Programming
	Additional Topics

	A FaaS File System for Serverless Computing
	Introduction
	Background
	Externally Consistent Sequential Consistency
	Implementation of FaaSFS
	Evaluation
	Related Work
	Future Work
	Conclusion

	Externally Consistent Sequential Consistency
	Introduction
	Preliminaries
	ECSC Guarantee
	Implementing ECSC Using Transactions
	Implementing ECSC Using Local Caches with Hybrid Clock Leases

	Servers Are Here to Stay
	Introduction
	Background
	Measuring Interconnects
	Amdahl's Law and Communication
	Consistency and Communication
	Simulation Experiments
	Future Work
	Conclusion

	Bibliography

