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Lipid bilayers are formed from the self-assembly of two layers of amphiphilic lipid

molecules. They are excellent model systems for studying the behavior of cellular membranes.

The mechanics of lipid bilayers fascinates physicists and engineers because of their in-plane

flow and out-of-plane bending. In cellular membranes, lipid bilayers contain a heterogeneous

composition of integral and peripheral proteins that perform specific biophysical processes. These

proteins are known to generate curvature on the membrane, and they also sense the curvature.

Additionally, proteins undergo diffusion and aggregation in the membrane. Experiments have

shown that the in-plane viscous flow of lipid influences the dynamics of protein distribution
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through advection. Therefore, the ability of the protein to deform the membrane, combined

with the ability of the membrane curvature and flow to influence protein distribution, leads to

a closed coupled problem. In the first part of the thesis, I present a comprehensive theory of

the coupled problem of elastic bending of lipid bilayers, diffusion and aggregation of proteins,

and in-plane viscous flow of lipids. The curvature generation of the proteins on the membranes

is modeled with the help of a spontaneous curvature that emulates the asymmetry in the lipid

leaflets. We formulate a Helfrich-like free energy of the membrane, which is modified to include

the entropic contribution that leads to diffusion of the protein and the aggregation potential

that mimics the forces of protein-protein interaction. The free energy is minimized to get the

conservation equation of proteins and the equation of motion for the membrane shape. The mass

conservation relation is further extended to account for the binding of proteins from the bulk

volume. We perform a stability analysis to find the necessary condition to form an aggregate and

compare our system with the Cahn-Hilliard-like formalism. We demonstrate the utility of the

model by presenting numerical simulations in the limit of small deformation of the membrane

and large deformation axisymmetric geometry. We rigorously investigate the effect of bending

and curvature-induced feedback in protein distribution and related energy landscape.

In the second part of the thesis, we model the formation and the shape transition in

the membrane tubes generated by aggregated domains BAR-proteins that induce anisotropic

curvatures. BAR-proteins are 1-dimensional rod-like proteins that bend the membrane because

of their intrinsic shape and binding orientation. We first formulate a continuum bending energy

due to anisotropic spontaneous curvatures. Then we include the effect of orientation by the

values of spontaneous curvatures. The resultant shape equations that minimize the free energy are

solved numerically in an axisymmetric geometry. We observe that the membrane undergoes a

snap-through transition of its shape from a tent to a tube, and the transition is observed for all

parameters. We further analyze the nature of the transition and report a hysteresis-like behavior

that is commonly observed across snap-through transitions in elastic structures.
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Chapter 1

Introduction

This thesis presents problems of transport phenomena in deforming lipid bilayers in the

presence of a myriad of proteins. Lipid bilayers are the fundamental components of biological

membranes in cells, and intracellular organelles [2]. These membranes are extremely heteroge-

neous [3] in composition, consisting of many different types of lipids and transmembrane and

peripheral proteins, and ion channels [4]. While the membrane-bound proteins carry out specific

cellular functions [5], the lipid-protein interaction that attracted significant focus because of their

emerging mechanics [6]. In many cases, the lipid-protein interaction results in out-of-plane defor-

mation in the membrane, and this has been studied both theoretically and experimentally over the

past five decades [7, 8, 9, 10, 11]. These curvature-generating phenomena [12] governs various

shapes of membranes, including cylindrical tubulation [13], tubular unduloid [14], spherical

vesicle [15], and membrane trafficking channel [16, 17]. Apart from curvature generation [12],

this interaction leads to curvature-sensing behavior [18] of proteins in the membrane plane. Over

the last five decades, curvature generation in the membrane has been theoretically modeled with

internal parameters such as protein density, lipid tilt angle, the local composition of lipids and

proteins [19], and interleaflet asymmetry [20]. In-plane transport of proteins due to diffusion [21]

and advection caused by viscous flow of the lipids regulates the temporal dynamics of protein
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distribution [22, 23]. Moreover, particle interactions among proteins [24] or interaction through

membrane curvature [25] influences the protein distribution. Interactions between proteins can

also lead to the formation of protein aggregates depending on the strength of interaction forces

[26, 25]. Experimental observations in reconstituted or synthetic lipid vesicles show that the

coupling of lipid flow, protein diffusion, and membrane bending can give rise to emergent phe-

nomena [27, 28, 29]. These dynamics of cellular membranes are critical to cellular function, lipid

rafts, and even in governing cell death [30]. Some theoretical models have explicitly studied the

coupling between the density of curvature-inducing proteins and membrane bending [31, 32, 33]

and the coupling between viscous flow and bending [34]. However, the coupling between flow,

bending, diffusion, and aggregation has not been commonly considered, except in a few phase

transition models [35].

Most of the protein-induced curvature generation model considers the spontaneous cur-

vature in a Helfrich Hamiltonian [36], and demonstrate geometries with isotropic curvatures

such as buds and dome. However, this study cannot explain geometries with non-equal principal

curvatures, such as membrane tubes. Moreover, proteins like the BAR-domain that have intrinsic

asymmetry due to their rod-like structure induce curvature deviators in the membrane plane.

The formation of membrane tubes is crucial for biophysical processes such as the formation of

t-tubules, mitochondria cristae, ER-Golgi complex, and drosophila cellularization. The shape

transition in tubular structure in cell membranes govern physiological functions and have been

the focus of theoretical and experimental studies. This transition is also observed in during the

in-vitro experiments. For example, the di-differentiation of t-tubule in the cardiac myocyte is

observed in a culture [37], and the changes in the shape of cristae in mitochondria [38] resembles

such transitions. In both cases, the transition in shapes observed resembles the snap-through

transition of elastic object [39, 40]. The modeling approaches taken lately with the extension of

Helfrich Hamiltonian account for the anisotropic curvature [41]. Furthermore, the orientation

of such anisotropic proteins played a crucial role in curvature generation and was studied in
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detail through discrete protein models. The anisotropy in the induced-curvature by these proteins

energetically favors a tubular structure [42]. However, there is a need for a comprehensive model

for the demonstration of tubular protrusion and to understand the shape dynamics.

Figure 1.1: Selected mechanisms of membrane protein interactions. (I) Actin-driven filopodial
protrusion, (II) binding and unbinding of curvature-inducing proteins to the membrane, (III)
exocytosis of a vesicle to the membrane and followed by diffusion of proteins in the membrane,
(IV) tubular shape transformation of the membrane due to steric effect of crowded proteins,
(V) clustering of curvature inducing proteins at the endocytic pits and subsequent formation of
endocytic vesicle, (VI) tubulation due to anchored motor protein or peptides, and (VII) tubular
transport carrier (TC) during membrane trafficking in the ER-Golgi intermediate compartment
(ERGIC).
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1.1 Membrane-protein interaction and curvature generation

The integral and peripheral proteins in the plane of the membrane interact with lipids and

the outcome leads to membrane bending that are crucial for many cellular functions (Figure 1.1).

Membrane-protein interaction often generates curvature in the plane of the membrane through

these three key mechanics, namely, hydrophobic helix insertion [43], membrane scaffolding [44],

and curvature generation due to steric pressure of crowded domain of proteins [13]. Experiments

on synthetic system provide insights into such mechanisms of curvature generation [4]. Curved

membranes are broadly classified as spherical buds, cylindrical tubes, and pearled structured tubes

[45, 46], and often the structure is associated with the localized density of proteins. Studies have

reported the functional relationships between protein density, applied force, and the curvature

generated [47, 48, 49, 50]. The curvature generation caused by localized proteins can be isotropic

and anisotropic [45] in nature.

1.2 Elastic bending of the membrane

Lipid bilayers contain lipid molecules that organize orthogonal to the surface of the lipid

membranes. The direction field and the cost of energy to tilt them emphasize the study of liquid

crystal theory in this domain [51]. However, in the higher density of lipids and the lipid organizes

fairly normal to the surface; and mechanics of lipid membranes can be understood from the surface

deformation mechanics, considering the membrane as an elastic surface. The Canham-Helfrich

[52, 53] type of model described such elastic behavior of the surface with the quadratic invariants

of curvatures of the surface. This energy resembles the linear force-displacement relation, and the

slope is depicted by the bending rigidity of the membrane, which is a material property of the

lipid bilayers. Therefore, the elastic behavior of lipid membranes finds similarities with a thin

elastic sheet [54, 55] except for its in-plane fluid property. The lipid membrane can deform due

to external forces or due to intrinsic curvature generation by any membrane-bound proteins.
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1.3 Protein dynamics in a deforming membrane

In the plane of the membrane, many of these proteins are known to diffuse [56], induce

curvature in the bilayer [57], and aggregate either through protein-specific interactions [24] or

due to membrane curvature [25]. Interactions between proteins can also lead to the formation

of protein microdomains depending on the strength of interaction forces [26, 25]. The ability of

these proteins to induce curvature, coupled with the ability of curvature to influence the lateral

diffusion-aggregation dynamics, can result in a feedback loop between membrane curvature and

protein density on the surface [58, 59, 60]. In addition to protein aggregation, in-plane viscous

flow of the lipid molecules has been found to dominate some of the phase-transition kinetics of

vesicle shapes [61].

1.4 Viscosity of the membrane

The elastic bending of the membrane has been studied predominantly with the help of the

continuum model where the membrane is considered inviscid. In the past decade, many groups

have proposed the addition of viscous effects in addition to membrane bending [62, 63, 64, 65]

building on the ideas presented by [66]. More recently, it has been shown that the effect of intra-

surface viscosity, in addition to membrane bending, allows for the calculation of local membrane

tension in the presence of protein-induced spontaneous curvature [67] and for the analysis of flow

fields on minimal surfaces [68]. Separately, the interaction between in-plane protein diffusion

and membrane bending has been modeled [69, 70, 71, 72, 73, 15]. Specifically, [74] proposed

a framework that included the chemical potential energy of membrane-protein interactions and

membrane bending, and demonstrated the interaction between bending and diffusion. A series of

studies by Arroyo and coworkers also developed a comprehensive framework for incorporating

membrane-protein interactions using Onsager’s variational principles [75, 65, 76]
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1.5 Binding of proteins

Binding and unbinding of proteins from membranes are often associated with mechanical

and chemical aspects of membrane biophysics. For example, scaffolding proteins like clathrin

[77, 78] or BAR domain proteins [79, 80] bind to the membrane and induce curvature. However,

the binding and unbinding of these proteins are often regulated by a chemical reaction controlled

by several reaction kinetics [81]. The physical binding process is a complex phenomenon that

depends on the shape of the particle, hydrophobic mismatch, local curvature, and excluded surface

for binding [80]. However, a chemical potential-based approach can model the binding energy as

a function of all the driving factors in a theoretical model [82, 83]. Binding or multiple species

in a reaction-diffusion framework causes different instabilities, ranging from pattern formation,

traveling and stationary waves to chemical turbulence [84, 85]. Additionally, the binding affinity

is found to be curvature-dependent [86]. As a result, curvature-driven feedback can influence the

energy landscape of binding and adhesion of proteins [83].

1.6 Transition of membrane shapes

The shape of the membrane due to curvature generation of proteins is governed by non-

linear interaction of intrinsic curvature and elastic bending of the membrane. The nonlinearity

leads to sudden transition of shapes in various cell biology applications such as cristae formation

in mitochondria [38], t-tubule formation in myocytes [37], and transition from a hemispherical

dome to a spherical bud during endocytosis [11] . Much of this transitions is regulated by a

saddle-node bifurcation, and there are resemblances with the snap-through transition seen in the

elastic structures. [39, 40] Snap-through instabilities mediated by forces are studied rigorously in

elastic objects like beams, truss, and spherical caps [39].
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1.7 Overview of the present work

Building on these efforts, we present a coupled theory for membrane mechanics that

accounts for in-plane viscous flows and diffusion and aggregation of curvature-inducing trans-

membrane proteins in addition to membrane bending. We formulate a free energy functional that

includes bending energy, the chemical potential energy of membrane-protein interactions, and

protein binding. Chapter 2 presents the free energy and its individual components in detail. We

obtain the governing equations of motion using a force balance, where the component of elastic

stresses are obtained by minimizing the free energy and the viscous stress is estimated from

the constitutive relation of flow on manifold. We derive the transport equation of proteins from

the constitutive relation of protein flux with chemical potential. In Chapter 3, we described the

methods of numerical simulation in detail for a few specific cases used in the subsequent chapters.

In Chapter 4, we analyze the diffusion-driven system in the absence of protein aggregation for

small deformations from the flat plane and large deformation of the membrane within the limit of

axisymmetry. In Chapter 5, we include the effect of protein aggregation exclusively and analyze

how the curvature-driven feedback can influence the dynamics of protein distribution for a small-

deformation membrane. Chapter 6 analyze such a coupled system where curvature-inducing

proteins undergo binding and unbinding from the cytoplasm in axisymmetric membranes under

large deformation. All these chapters focus mainly on the dynamics of membrane deformation

due to isotropic curvature-inducing proteins. However, in Chapter 7, we demonstrate the bending

of the membrane to a tubular structure due to protein-induced anisotropic curvature and related

transition in shape. We finish our thesis with concluding remarks and prospects suggestions for

future work in Chapter 8.
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Chapter 2

Mechanics and thermodynamics of

biological membranes

2.1 Continuum modeling of mechanics and thermodynamics

of membranes

Our system consists of the lipids that comprise the membrane and transmembrane proteins

that are embedded in the plane of the membrane and are capable of inducing curvature. Our

model includes the binding or unbinding of proteins from the bulk, but does not include the

interactions of the bulk fluid with the membrane. The lipid bilayer is modeled as a thin elastic

shell with negligible thickness that can bend out of the plane and is fluid in-plane. Importantly,

we assume that the membrane is areally incompressible and this constraint is imposed on the

membrane using a Lagrange multiplier. We describe the different energy contributions to the total

energy of the system in detail below.
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2.1.1 Bending of the membrane

Spontaneous curvature model

When a curvature-inducing protein binds to the membrane, the leaflets become non-

symmetric. The seminal work of Helfrich [36], proposed the modeling of asymmetry in the

membrane with the help of a spontaneous curvature. It is the preferred curvature of the membrane

in a free condition, and the membrane offers minimum energy at that curvature. For an elastic

membrane, the free energy will depend as a quadratic function of the curvature deviation from

its spontaneous curvature. For protein-induced membrane curvature generation, there can be

a functional relationship between the spontaneous curvature and density of the proteins [74].

Note that, the spontaneous curvature is generally predicted as a scalar, and generally refers to the

isotropic curvature generation of the membrane.

Bending energy of the membrane

We model the curvature elastic free energy density of the membrane using the Helfrich

Hamiltonian [36] given by

Wbending = κ[H−C(σ)]2 + κ̄K. (2.1)

Here, H and K are mean and Gaussian curvatures of the membrane, κ and κ̄ are the bending and

Gaussian rigidities, and C is the spontaneous curvature induced by the proteins. The spontaneous

curvature is assumed to depend linearly on protein density σ [87, 88] as

C(σ) = `σ, (2.2)

where the proportionality constant, `, has units of length.
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Spontaneous deviatoric curvature and modified bending energy

When the curvature induction is anisotropic in nature, the spontaneous curvature models

are unable to demonstrate the mechanics. BAR-domain proteins are one of those proteins that

induces anisotropic curvature. These proteins are flexible rod-like curved proteins. When they

bind to the membrane, they induce curvature in one direction. In such cases, the Helfrich free

energy of elastic deformation are modified to include the effect of anisotropy [41] . The curvature

difference between membrane and curvature-inducing proteins will govern the strain energy. Such

curvature difference reads as

MMM = RRRCpRRR−1−bbb, (2.3)

where Cp is the curvature of the protein rod. b is the curvature tensor of the membrane, which is

elaborate in detail in sec 2.2. RRR is the rotation tensor, which can be found as a function of the

orientation angle θ, as shown in Figure 2.1, and reads as

RRR =

 cosθ −sinθ

sinθ cosθ

 . (2.4)

The strain energy can be written as a summation of all the quadratic invarients of the curvature

Figure 2.1: Orientation of BAR-domain proteins
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difference tensor MMM as

W =
K1

2
(TrMMM)2 +K2 DetMMM. (2.5)

This simplifies to

W = κ(H−C0)
2 +κd (D−D0)

2 . (2.6)

The first term describes the isotropic component of the strain energy, and the second term describes

the anisotropic component. D0 is the spontaneous anisotropic curvature, sometimes know as

spontaneous deviatoric curvature. D = C1−C2
2 is the curvature deviator of the membrane, where

C1 and C2 are the principal curvatures of the membrane. κ and κd are the corresponding bending

rigidities of the membrane.

2.1.2 Protein diffusion

The diffusion of proteins on the membrane surface is modeled using the principle of

entropy maximization [89]. The entropy S of q proteins on n binding sites can be found from the

number of combinations, Ω = nCq, and is given by

S = kB logΩ, (2.7)

where kB is the Boltzmann constant [90]. For sufficiently large values of q and n, the entropic

component of the free energy per binding site can be represented as a function of area fraction

φ = q/n as [89],
Wentropy

n
=−T S

n
= kBT [φ logφ+(1−φ) log(1−φ)], (2.8)

where T is the temperature of system. Note that the area fraction φ can also be represented as

the ratio of the local protein density, σ, and the saturation density of proteins on the surface, σs.

The free energy density per unit area of the membrane is obtained by multiplying the free energy
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density per binding site (Wentropy/n) with the saturation density of the proteins (σs). Note that the

entropic component of the free energy Wentropy is minimized when the entropy S is maximum,

which corresponds to a uniform distribution of proteins in the domain.

2.1.3 Viscous drag and effective diffusivity in the membrane

Diffusivity of a particle in is a highly viscous media can be found from the mobility of

the particle motion. The diffusivity of a spherical particle in an unbounded fluid is given by

Stokes-Einstein relation [91] as

D =
kBT

f
, (2.9)

where where D is the diffusivity, kB is the Boltzmann constant, T is the temperature of the

medium, and f is the hydrodynamic resistance, which is the inverse of mobility m of the particle

and is given by

f =
1
m

= 6πµa. (2.10)

Here µ is the viscosity of the fluid medium, and a is the radius of the sphere. For a particle

suspending in an unbounded two-dimensional viscous media, the mobility tensor does not exist

due to the Stokes paradox. However, in our case the membrane is surrounded by viscous

cytoplasmic media. Saffman and Delbruk [92] shown that in such a case, the mobility exists and

they provided a mathematical expression as

1
f
=

1
4πµh

(
log

µh
µ′a
−0.5772

)
. (2.11)

Here h is the height of the membrane, µ and µ′ are the viscosities of the membrane and surrounding

fluid, and the 0.5772 is the Euler constant. The advantage of this approach is that the effect of

bulk fluid drag is incorporated as a modified viscosity in 2-dimensional medium. Diffusion on

the membrane can be studied without solving the hydrodynamics in bulk-fluid.
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2.1.4 Protein aggregation

Aggregation of proteins can be modeled using the interaction enthalpy of particles in a

binary system. With the help of mean-field theory, a continuum representation of the aggregation

free energy per binding site can be derived as [89, 93, 94]

Waggregation

n
=

γ

2
φ(1−φ)+

γ

4σs
|∇φ|2, (2.12)

where γ is the net effective interaction energy of the proteins. This term captures protein-protein

attraction when γ > 0 and protein-protein repulsion when γ < 0.

2.1.5 Protein binding

The release of free energy associated with protein binding can be considered as a linear

function of protein density. The free energy can be given by

Ebinding =−µbσ, (2.13)

where µb represents the chemical potential for binding of the proteins from the cytoplasm. From

a thermodynamics point of view, the binding of molecules from solvent without any chemical

binding affinity can be estimated as [95]

µb = µ0 +RT log
σ

σbulk
. (2.14)

For proteins with binding affinity Γ, the chemical potential of binding becomes as [96]

µb = µmem−µsol = µsur f
0 +RT logσ+RT logΓ−µsol

0 −RT logcbulk. (2.15)
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The binding affinity Γ can be estimated from the equilibrium reaction constant of binding Keq as

Γ =
σbulkKeq

σ
. (2.16)

The chemical potential of binding can further be modified for the cases where proteins on the

membrane oligomerize. In this study the chemical potential is estimated from the distribution of

protein density that corresponds to energy minima for a spherical membrane. This method gives

a binding energy as a function of membrane curvature.

2.1.6 Thermal fluctuation of membranes

The bending energy of lipid bilayers is not large compared to the Boltzmann energy (kBT )

at physiological temperatures. As a result, lipid bilayers undergo shape undulations due to the

thermal movement of the fluid molecules in the surrounding domain. Experimental observations

have reported membrane fluctuations in vesicles [97, 98, 99]; these undulations cause mechanical

softening of the membrane [100] and can influence shape instabilities in the bilayer [101]. A

series of theoretical studies [102, 103, 104] and Monte-Carlo simulations [105] have reported

that thermal fluctuations soften the membrane a significant amount and also reduce local tension

of the membrane. The effective bending rigidity in the presence of thermal fluctuations can be

written as [103]

κ(T,λ,a) = κ0−
3

4π
kBT ln

qmax

qmin
, (2.17)

and the effective tension is given by [103, 106]

σ(T,a)'−3kBT
8

(q2
max−q2

min), (2.18)

where κ0 is the bending rigidity of the membrane in the absence of fluctuation, qmin and qmax

are the magnitude of maximum and minimum wave numbers of the undulations respectively, λ
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is the wavelength of the undulation, and a is the diameter of lipid molecules. The equipartition

of energy limits the energy of each undulation mode. Thus, the magnitude of the deflection

correlates inversely with the square of the wavenumber of that particular mode of undulation.

Further, the ratio of these wavenumbers correlates with the maximum and minimum size of the

wavelengths (λ) of the undulations as

qmax

qmin
=

λmin

λmax
. (2.19)

The highest value of the wavelength (λmax) is of the order of the length of the membrane (L),

whereas the least value of it scales with the diameter of the lipid molecules (a).

Considering Equation 2.17 and the fact that thermal softening is directly correlated with

the size of the domain, the role of fluctuations can become prominent on a larger length scale.

In contrast, for a smaller length scale, the effect of thermal fluctuation will be negligible. The

persistent length ξ below which the membrane behaves as a rigid surface depends on [104, 107]

ξ ∝

(
4πκ0

3T

)
. (2.20)

2.1.7 Equilibrium description of the free energy

We obtain the total free energy density of the membrane, in terms of protein area fraction

φ, by combining Equations (2.1), (2.8) and (2.12) as

W = kBT σs [φ logφ+(1−φ) log(1−φ)]︸ ︷︷ ︸
entropic

+
γσs

2
φ(1−φ)+

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

+κ(H− `σ)2 + κ̄K.︸ ︷︷ ︸
bending

(2.21)
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Figure 2.2: Membrane parameterization

2.2 Membrane geometry, kinematics and incompressibility

The lipid membrane is idealized as a two-dimensional manifold Ω in three-dimensional

space. Material points on Ω are parametrized by a position field rrr(θα, t), where θα are surface

coordinates and play a role analogous to that of a fixed coordinate system used to parametrize

a control volume in the Eulerian description of classical fluid mechanics. Here and henceforth,

Greek indices range over {1,2} and, if repeated, are summed over that range. The local tangent

basis on the surface is naturally obtained as aaaα = rrr,α where commas identify partial derivatives

with respect to θα. The unit normal field is then given by nnn = aaa1×aaa2/ |aaa1×aaa2|. The tangent

basis also defines the surface metric aαβ = aaaα ·aaaβ (or coefficients of the first fundamental form),

a positive definite matrix, which is one of the two basic variables in surface theory. The other is

the curvature bαβ (or coefficients of the second fundamental form) defined as bαβ = nnn · rrr,αβ. Of

special interest are the mean and Gaussian curvatures, which will enter the Helfrich energy of the

membrane and are defined, respectively, as

H =
1
2

aαβbαβ, K =
1
2

ε
αβ

ε
µηbαµbβη . (2.22)
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Here, aαβ = (aαβ)
−1 is the dual metric, and εαβ is the permutation tensor defined as ε12 =−ε21 =

1/
√

a, ε11 = ε22 = 0.

We assume that the surface Ω is moving with time, and the velocity of a material point in

the membrane is given by uuu(θα, t) = ṙrr = ∂r/∂t. It can be expressed in components on the natural

basis introduced above:

uuu === vαaaaα +wnnn , (2.23)

where the components vα capture the tangential lipid flow and w is the normal surface velocity.

The membrane is assumed to be incompressible, which prescribes a relationship between the

in-plane velocity field and the curvature as [62, 64]

vα
;α = 2Hw, (2.24)

where the semi-colon refers to covariant differentiation with respect to the metric aαβ.

2.3 Governing differential equation

2.3.1 Force balance and equations of motion

The lipid bilayer is modeled as a two-dimensional surface, ω, in a three-dimensional

space (Figure 7.1b). We refer the reader to [108, 109, 88] for details of the derivation and briefly

summarize the key steps here. The surface is parametrized by a position vector rrr(θα, t), where

θα are the surface coordinates, α ∈ {1,2}. In what follows, (·),α refers to the partial derivative

of the quantity in parenthesis with respect to θα and (·);α refers to the covariant derivative

[110]. The tangent basis vectors are given by aaaα = rrr,α. The unit surface normal nnn is given by

nnn = (aaa1×aaa2)/ |aaa1×aaa2|. The metric tensor is given by aαβ = aaaα·aaaβ and the curvature tensor is

defined as bαβ = nnn·aaaα,β. aαβ is the dual metric and the inverse of aαβ. bαβ is defined as aαδaµβbδµ.

The equations of motions are obtained from a local stress balance on the interface, which
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can be compactly stated as

ΣΣΣ
α
;α + pnnn = 0, (2.25)

where ΣΣΣ is the stress tensor and ΣΣΣ
α
:α is the divergence of stress. The stress vectors ΣΣΣ

α can be

written in terms of their tangential and normal components as

ΣΣΣ
α = Nβαaaaβ +Sαnnn. (2.26)

As a result, the local equilibrium of forces, in the tangential and normal directions, is given by

[108]

Nβα

;α −Sαbβ

α = 0, (2.27)

Sα
;α +Nβabβα + p = 0, (2.28)

with

Nβα = ζ
βα +π

βα +bβ
µMµα and Sα =−Mαβ

;β . (2.29)

Here, p is the normal pressure acting on the surface, ζβα and Mαβ are the elastic stress and

moment tensors, and πβα is the viscous stress tensor. The elastic contribution of the surface stress

and the moment tensor are derived from a free energy and are expressed as [55]

ζ
βα = ρ

(
∂F

∂aαβ

+
∂F

∂aβα

)
, Mαβ =

ρ

2

(
∂F

∂bαβ

+
∂F

∂bβα

)
. (2.30)

Here, F is the energy Lagrangian per unit mass defined as [55]

F(H,K,ρ) = F̄(H,K)−ξ/ρ, (2.31)

where ξ is a Lagrange multiplier imposing the constraint of incompressibility, and ρ is the
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membrane density which is assumed to be constant. It is customary to formulate the mechanics

in terms of the free energy per unit area [111]

W = ρF̄ . (2.32)

The incompressibility constraint on the surface results the continuity equation [108] as

given by Section 3.4.2. %endequation The viscous stresses obey the constitutive relation [109]

π
αβ = 2ν

[
aαµaβηdµη−wbαβ

]
. (2.33)

Here, dµη =
(
vµ;η + vη;µ

)
/2 is the rate-of-strain tensor expressed in terms of the covariant velocity

field vµ = aαµvα, and w is the normal surface velocity (see [109, 112, 88] for details).

2.3.2 Conservation principle and transport equations

Conservation of mass for the protein density σ is given by

∂σ

∂t
+mα

;α = q, (2.34)

where the flux is

mα =

(
vα

σ− 1
f

φaαβµ,β

)
. (2.35)

This flux has contributions from advection due to the in-plane velocity field vvv and from gradients

in the protein chemical potential µ. The constant f denotes the thermodynamic drag coefficient

of a protein and is related to its diffusivity D by the Stokes-Einstein relation: D = kBT/ f . q

denotes the net rate of protein addition to the membrane from the bulk, which might occur from

binding-unbinding or exo-endosytosis of proteins. The chemical potential, µ, is obtained as the
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variational derivative

µ =
δF
δφ

, (2.36)

where F is the total energy of the system of area A:

F =
∫

ω

W (φ,φ,α)dA. (2.37)

Note that the energy density is a function of both the protein area fraction φ and its gradient φ,α.

Using the definition of the variational derivative, we get the expression of the chemical potential

as:

µ =
δF
δφ

=
∂W
∂φ
− ∂

∂θα
· ∂W
∂φ,α

. (2.38)

Using Equation (2.21) for W , this yields

µ = kBT σs[logφ− log(1−φ)]−2κ`σs(H− `σsφ)−
γσs

2
(2φ−1)− γ

2
aαβ

φ,αφ,β. (2.39)

q in Equation (2.34) denotes the net rate of protein addition to the membrane from the bulk, which

might occur from binding-unbinding or exo-endosytosis of proteins. Using Equation (2.39) in

Equation (2.34) will result in the evolution equation for σ.

2.4 Instabilities in shape and protein transport

The shape of the membrane and the distribution of the protein in the membrane plane

undergo instability, which is associated with the localization of proteins in membranes and

local deformation. Such instabilities in the protein transport arise depending on the interaction

forces among the proteins, where curvature-induced feedback plays a crucial role. We analyze

such instabilities with the help of linear stability analysis, where we consider a linearized set

of governing equations of the perturbation quantities from their homogeneous steady-state
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condition. We consider normal mode for the perturbation variable ζ with the growth rate of α and

wavenumber k as given by

ζ = ζ̂eαt+i2πkkk·xxx. (2.40)

This gives a dispersion relation for marginal stability of the system, which dictates the specific

mode that can become unstable in the parameter regime. Note that the coupled systems of the

linearized equations include the effect of shape on the instability of protein distribution and

vice versa. The instability differs from diffusion-driven instability, which happens during a

multi-component reaction-diffusion system that governs Turing patterns. Instead, the competition

between aggregation and diffusion governs the dynamics of protein aggregation. Additionally, the

binding and unbinding of proteins to the membrane from the cytoplasm may lead to an unstable

spatial distribution of proteins leading to the formation of localized patches. On the other hand, the

nonlinearity involved in the shape of the membrane causes numerous instabilities in the dynamics

of the shape, such as neck formation in a spherical bud during endocytosis and the transition

from a tent-like shape to a long tube. Such instabilities and resultant bifurcation resemble to

the dynamics of the elastic bodies. Mathematical stability analysis becomes very complex due

to its nonlinear base state; therefore, numerical approaches are considered to investigate such

instabilities.

2.5 Numerical simulation

We solved the dimensionless governing equations of the equation of motion and the mass

conservation of proteins in the linear Monge regime numerically inside a square domain and

for axisymmetric geometry for large deformation. We have considered the no-flux boundary

for proteins and clamped boundary for the membrane deformation in Chapter 4 and Chapter 6.

However, we adopted periodic boundary conditions for both proteins and membrane deforma-

tion for Chapter 5 to study protein aggregation. Chapter 7 solved an equilibrium problem in
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axisymmetric geometry, and we used clamped boundary conditions for deformation. Numerical

simulations were performed on a spatially uniform grid in the Monge regime, and nonuniform

grids are considered for axisymmetric geometry with a denser grid towards the center. We used

a finite difference scheme to solve the transport equation for the protein density, membrane

shape, and velocity for Chapter 4, Chapter 6 for the no-flux boundary for proteins, and clamped

boundary for membrane shape. The velocity and the shape equation subjected to the periodic

boundary in Chapter 5 were solved using a Fourier spectral method [113, 114]. In all cases, a

semi-implicit scheme was used for the time marching for the protein density φ with a time step

∆t, where the nonlinear terms involving velocity and curvature were treated explicitly. In contrast,

the nonlinear aggregation-diffusion terms were treated with linear implicit terms. The iterations

were performed within a time step until convergence was achieved. For the convergence within a

time step, we used a tolerance limit to check the convergence. The equilibrium shape equation

in Chapter 7 of membrane is solved with the help of the finite difference based solver bvp4c in

MATLAB. The methods of numerical simulations are described in Chapter 3 in detail.
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Chapter 3

Numerical simulation

3.1 Introduction

In this section, we will discuss the numerical schemes adopted to solve the governing

equations. The system of equations is solved for two idealized geometries: a square Monge patch

with small deformation of the membrane from its projected plane and axisymmetric geometries

with large deformations. For the Monge patch, the governing equations are parameterized with

respect to their cartesian coordinates (x,y) in the projected plane. However, in axisymmetric

geometries governing equations are parameterized with the arclength (s). Note that the assumption

of the axisymmetry diminishes the variation in the azimuthal (θ) direction. The equation of motion

coupled with the continuity gives the shape equation and the velocity field. Mass conservation

equations of proteins are solved to get the local protein distribution.
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3.2 Flat membranes

3.2.1 Cahn-Hilliard equation

The mass conservation of proteins in the absence of flow and membrane bending depicts

the aggregation-diffusion dynamics of the proteins and is known as the Cahn-Hilliard equation.

φt = ∇
2
φ

[
1

1−φ
− Âφ

]
+ |∇φ|2

[
1

(1−φ)2 − Â
]
−φ

[
Â
2Ŝ

∇
4
φ

]
, (3.1)

where ∇ =
(

∂

∂x ,
∂

∂y

)
are the surface derivative, and Â and Ŝ are two dimensionless numbers which

are described in Table 5.1.

3.2.2 Solution algorithm

Equation (3.1) is solved for a periodic boundary with the help of finite difference technique

with implicit time marching with time step ∆t. The domain is discretized with spacially uniform

grid points with the internal of ∆x and ∆y in x and y direction. The time derivative is discretized

as first order backward differentiation as

φt =
φn−φn−1

∆t
, (3.2)

where ∆t = tn− tn−1, is the time step. A central difference second order scheme is used to

discretize derivatives in space as given by:

∇φ = (∇xφ,∇yφ) =

(
φ(x+∆x,y)−φ(x−∆x,y)

2∆x
,
φ(x,y+∆y)−φ(x,y−∆y)

2∆y

)
, (3.3)
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and

∇
2
φ =

φ(x+∆x,y)−2φ(x,y)+φ(x−∆x,y)
∆x2 +

φ(x,y+∆y)−2φ(x,y)+φ(x,y−δy)
∆y2 . (3.4)

Note that the biharmonic term is splitted in two Laplacians as

∇
4
φ = ∇

2
η, where η = ∇

2
φ. (3.5)

Equation (3.1) is then represented in the linear system as

an
E φ(x+∆x,y)n +an

W φ(x−∆x,y)n +an
Nφ(x,y+∆y)n

+an
Eφ(x,y+∆y)n +aPφ(x,y)n =−φn−1

∆t
,

(3.6)

where,

aE =
1

∆x2

[
1

1−φ
− Âφ

]
+

∇xφ

2∆x

[
1

(1−φ)2 − Â
]
, (3.7)

aW =
1

∆x2

[
1

1−φ
− Âφ

]
− ∇xφ

2∆x

[
1

(1−φ)2 − Â
]
, (3.8)

aN =
1

∆y2

[
1

1−φ
− Âφ

]
+

∇yφ

2∆y

[
1

(1−φ)2 − Â
]
, (3.9)

aS =
1

∆y2

[
1

1−φ
− Âφ

]
−

∇yφ

2∆y

[
1

(1−φ)2 − Â
]
, (3.10)

and

aP =−
(

2
∆y2 +

2
∆y2

)[
1

1−φ
− Âφ

]
−
[

Â
2Ŝ

∇
4
φ

]
− 1

∆t
. (3.11)

To solve numerically Equation (3.1) in the solution domain we performed the following steps.

1. Initial condition is taken as the solution for the time step n = 1 (t = 0).
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2. For next time step (n = 2), the values of φ is updated from Equation (3.6) by inverting the

matrix with the help of Gauss-Seidel method

φ(x,y)n =
1
ap

[
− φn−1

∆t
−
(

an
E φ(x+∆x,y)n +an

W φ(x−∆x,y)n +an
Nφ(x,y+∆y)n

+an
Eφ(x,y+∆y)n

)]
.

(3.12)

Note that the all the coefficient of the linear system aE ,aW ,aN ,aS and aP uses values of φ

at current time step n = 2. To calculate them available values of φ are used.

3. Boundary conditions are updated using the periodic condition

φ(x,1+∆y) = φ(x,0) and φ(1+∆x,y) = φ(0,y). (3.13)

4. With the update values of φ we updated the coefficients aE ,aW ,aN ,aS and aP and step 2

and 3 and repeat until convergence with in the time step n = 2.

5. Finally we move to next time step and follow the steps from step 2 to 4.

3.3 Small deformatons from the flat plane: Linear Monge

In this section we will discuss the solution schemes for the Monge patch. Note that both

the shape (z), velocities (uuu), and the density of proteins (σ) are function of space (x,y) and time

(t),

z = z(x,y, t),uuu = uuu(x,y, t),and,σ = σ(x,y, t). (3.14)

3.3.1 Coupled system of equations

The coupled system of equations for protein diffusion is presented in Chapter 4 and

for aggregation are presented in Chapter 5 in detail. Here we present a system of equation for
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aggregation-diffusion of proteins as an example for demonstrating the numerical methods. The

tangential Equation (2.27) and normal stress balance Equation (2.28) relation expands to the

following equations after using the free energy Equation (2.21) and the constitutive relation of

stresses, as given in Equation (2.30).

∇λ+∇
2vvv+∇(∇ · vvv)−4w∇H−2∇w : ∇∇z =

−∇φ

[
2B̂Ŝ
T̂

log
φ

1−φ
− 4L̂Ŝ

T̂
(H− L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ−1)− ÂB̂

T̂
∇

2
φ

]
,

(3.15)

and

∇
4z−2L̂Ŝ∇

2
φ−2B̂Ŝ∇

2z
[
{φ logφ+(1−φ) log(1−φ)}+ Â

2
φ(1−φ)+

Â
4Ŝ
|∇φ|2 + L̂2Ŝ

B̂
φ

2
]

− T̂ (∇vvv+∇vvvT ) : ∇∇z = p+ T̂ λ∇
2z.

(3.16)

Here L̂, B̂, and T̂ are the dimensionless numbers described in Table 5.1. ∇ =
(

∂

∂x ,
∂

∂y

)
are

the surface derivative with respect to the projected plane (x,y), λ is the membrane tension

that was introduced as the Lagrange multiplier for incompressibility of the membrane. The

incompressibility relation is described by the continuity equation as

∇ · vvv = 2wH, . (3.17)

Finally, the mass conservation of the protein (Equation (2.34)) is given by the equation density

field as:

φt +Pe ∇ · (vvvφ) = ∇
2
φ

[
1

1−φ
+

2L̂2Ŝ
B̂

φ− Âφ

]
−φ

[
2L̂
B̂

∇
2H +

Â
2Ŝ

∇
4
φ

]
+∇φ ·

[
∇φ

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∇H− Â

2Ŝ
∇(∇2

φ)

]
.

(3.18)
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3.3.2 Solution algorithm

Note that our governing equation has time dependence only in the transport equation for

proteins. All other equations equilibrium equation depends on the value of φ as current time.

Our solution algorithm is second order in space and first order in time. We first discretized the

governing equation with the help of finite difference technique as presented in Section 3.2.2. The

biharmoic term in the shape equation is spilled into two Poisson’s equation as given by

∇
4z = ∇

2
ζ (3.19)

where

ζ = ∇
2z. (3.20)

The transport equation for protein is discretized in the same manner as described in Equation (3.6).

The shape equation (Equation (3.16)) and tangential force balance equation (Equation (3.15)) are

solved in two different ways depending on boundary conditions.

Clamped and no-flux boundary conditions

For clamped boundary condition, z = 0 and τττ ·∇∇∇z = 0, where τττ is the outward normal at

the boundary. No-flux bounday is considered for proteins that satisfies τττ ·mmm = 0. A open boundary

for velocity and the tension is considered, which is described in detail in the tension boundary

condition paragraph. The equation for protein density in Equation (3.18) is discretized by

an
E φ(x+∆x,y)n +an

W φ(x−∆x,y)n +an
Nφ(x,y+∆y)n

+an
Eφ(x,y+∆y)n +aPφ(x,y)n =−φn−1

∆t
.

(3.21)

29



The shape equation (Equation (3.16)) is discretized as a Poisson’s equation of ζ

hn
E ζ(x+∆x,y)n +hn

W ζ(x−∆x,y)n +hn
N ζ(x,y+∆y)n

+hn
S ζ(x,y+∆y)n +hPζ(x,y)n = Hn(x,y),

(3.22)

where H is the non-homogeneous part of the Poisson’s equation and the coefficients are given by

hE =
1

∆x2 , hW =
1

∆x2 , hN =
1

∆y2 , hS =
1

∆x2 , and hP =− 2
∆x2 −

2
∆y2 . (3.23)

The Poisson’s equation of z in the discretized form is given by

hn
E z(x+∆x,y)n +hn

W z(x−∆x,y)n +hn
N z(x,y+∆y)n

+hn
S z(x,y+∆y)n +hPz(x,y)n = ζ

n(x,y),
(3.24)

A Poisson’s equation for pressure is derived from Equation (3.15), is shown in Equation (4.25) in

detail, and is dicretized as

hn
E λ(x+∆x,y)n +hn

W λ(x−∆x,y)n +hn
N λ(x,y+∆y)n

+hn
S λ(x,y+∆y)n +hPλ(x,y)n = Qn(x,y),

(3.25)

The algebric equation for the velocity field is given by

hn
E vvv(x+∆x,y)n +hn

W vvv(x−∆x,y)n +hn
N vvv(x,y+∆y)n

+hn
S vvv(x,y+∆y)n +hPvvv(x,y)n =−∇∇∇λ+Bn(x,y),

(3.26)

Tension at boundary An open boundary for velocity and tension is considered. The

tension at the boundary is calculated with the help of 2-D Stokeslet as shown in Equation (4.27)

in detail. The solution steps in the clamped and no-flux boundary condition is given here:

1. Initial condition is taken as the solution for the time step n = 1(t = 0), solve for shape
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corresponds to the initial protein density.

2. For next time step (n = 2), the values of φ is updated from Equation (3.21) by inverting the

matrix with the help of Gauss-Seidel method

φ(x,y)n =
1
ap

[
− φn−1

∆t
−
(

an
E φ(x+∆x,y)n +an

W φ(x−∆x,y)n +an
Nφ(x,y+∆y)n

+an
Eφ(x,y+∆y)n

)]
.

(3.27)

Note that the all the coefficient of the linear system aE ,aW ,aN ,aS and aP uses values of φ

at current time step n = 2. To calculate them use the current available values of φ.

3. Shape of the membrane is updated (Equation (3.16)) is updated using the the discretized

shape equation (Equation (3.22) and Equation (3.24) )with the current values of φ.

4. Normal velocity is calculated as the backward derivative of shape

wn =
1
Pe

zn− zn−1

∆t
. (3.28)

5. Assign boundary conditions for λ from the technique given in Equation (4.27) in detail.

6. Membrane tension λ is updated using the the discretized Poisson’s equation (Equation (3.25))

with the current values of φ.

7. With the calculated value of λ velocity field vvv is calculated from discretized Poisson’s

equation for velocity in Equation (3.26).

8. With the updated values of φ all the coefficients of discretized equations are updated and

the process is repeated from step 2 until convergence with in the time step n = 2.

9. Next we move to next time step and follow the steps from step 2.
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Periodic boundary condition

In chapter 5, the governing equation is solved for a periodic boundary conditions for

velocity tension and

Fourier Spectral Technique The tangential force balance relation in Equation (3.15)

along with continuity Equation (3.17) can be simplified in the following form of a 2D Stokes

equation with a dilation component s as given by

−∇
2v+∇p = f ,

∇ · v = s.
(3.29)

The velocity and the surface pressure can be represented in terms of the Fourier series as [113]

VVV = ∑
k

VVV ke−2πi(kkk·rrr)

−∇∇∇p = ∑
k

PPPkkke−2πi(kkk·rrr)
(3.30)

We get the expression of velocity and pressure from Equation (3.29) at Fourier space given by

VVV k =
1

4π2k2

(
FFFk−

(kkk ·FFFk)kkk
k2 +2πSkkkki

)
Pk = Sk +

kkk ·FFFk

2πk2 i.
(3.31)

Here Sk and FFFk Fourier coefficients of s and fff . In the similar way the shape equation (Equa-

tion (3.16)) can be solved with the help of spectral technique by splitting the biharmonic term

into two Laplacian as shown in Equation (3.19) and Equation (3.20), and we obtain two Poisson’s

equation in the form of

∇
2
ϕ = β. (3.32)

32



and further ϕ can be written with the help of Fourier series as

ϕ = ∑
k

Φke−2πi(kkk·rrr). (3.33)

and we obtain the Fourier coefficient as

Φk =−
Bk

4π2k2 , (3.34)

where Bk is the Fourier transform of inhomogeneous part of the Poisson’s equation β.

1. Initial condition is taken as the solution for the time step n = 1(t = 0).

2. For next time step (n = 2), the values of φ is updated from Equation (3.21) by inverting the

matrix with the help of Gauss-Seidel method

φ(x,y)n =
1
ap

[
− φn−1

∆t
−
(

an
E φ(x+∆x,y)n +an

W φ(x−∆x,y)n +an
Nφ(x,y+∆y)n

+an
Eφ(x,y+∆y)n

)]
.

(3.35)

aE ,aW ,aN ,aS and aP uses available values of φ at current time step n = 2.

3. Shape equation is updated using the spectral solution of the two consecutive Poisson’s

equation as given in Equation (3.34).

4. Normal velocity is calculated as the backward derivative of shape

wn =
1
Pe

zn− zn−1

∆t
. (3.36)

5. Velocity and tension is updated using spectral technique given in Equation (3.31) with the

current values of φ.
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6. With the updated values of φ we updated the coefficients aE ,aW ,aN ,aS and aP for φ

equation and the process is repeated from step 2 until convergence with in the time step

n = 2.

7. Next we move to next time step and follow the steps from step 2.

3.4 Axisymmetric membranes

3.4.1 Parameterization

In the case of axisymmetry we used the arc-length (s) patameterization in Chapter 4 and

Chapter 6 where the domain area is kept constant. The value of arclength varied to maintain

the total area. The strategy is presented in Section 4.4.3. However, in Chapter 7 we used

area parameterization to solve the equilibrium shape of the membrane for a prescribed protein

distribution.

3.4.2 Coupled system of equations

The tangential force balance relation (Equation (2.27)) reduces to

∂λ

∂s
−4w

∂H
∂s

+2(2
∂wH

∂s
+Kvs−

∂w
∂s

∂ψ

∂s
) =−∂φ

∂s

[
2B̂Ŝ
T̂

log
φ

1−φ

− 4L̂Ŝ
T̂

(H̃− L̂Ŝφ)− ÂB̂Ŝ
T̂

(2φ−1)− ÂB̂
T̂

∆φ− 2M̂B̂Ŝ
T̂

] (3.37)

where ∆(·) = 1
r

∂

∂s

(
r ∂(·)

∂s

)
, is the Laplacian operator of a scalar field. The continuity ( ) is denoted

here as
1
r

∂(rvs)

∂s
= 2wH. (3.38)
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The shape equation ( Equation (2.28)) is presented here in a series of two first order ODEs as

given by

1
r

∂L
∂s

+2(H− `σ0Lσ)(2H2−K)−2B̂Ŝ H̃
[

φ logφ+(1−φ) log(1−φ)+
Â
2

φ(1−φ)

+
Â
4Ŝ

∣∣∣∣∂φ

∂s

∣∣∣∣2− M̂φ

]
+

γ

2kBT
φ(1−φ)+

γ

4KBT σsL2

∣∣∣∣∂φ

∂s

∣∣∣∣2− µb

kBT
φ

]
− T̂

[
ψs

∂(rvs)

∂s
+

sinψcosψvs

r2 −w(4H2−2K)
]
= p+ T̂ λH

(3.39)

with,

L
r
=

[
∂H
∂s
− L̂Ŝ

∂σ

∂s

]
(3.40)

The aggregation diffusion equation of protein (Equation (2.21)) with a source of protein density

Q takes the following form

φ,t +Pe
∂(ṽsφ)

∂s
= ∆φ

[
1

1−φ
+

2L̂2Ŝ
B̂

φ− Âφ

]
−φ

[
2L̂
B̂

∆H +
Â
2Ŝ

∆
2
φ

]
+

∂φ

∂s

[
∂φ

∂s

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∂H̃
∂s
− Â

2Ŝ
∂(∆φ)

∂s

]
+Q(φ,Φ).

(3.41)

The above system of equations involves several dimensionless groups as given in Table 6.1.

3.4.3 Solution algorithm

The solution arclength domain is discretized in finite grid points. The distance between

the grid points are varied. The space ∆si−1 = si− si−1 changes and the ratio α = ∆si/∆si−1 is

kept constant throughout the domain. We used a numerical scheme which is first order in time

and second order in space. The discrete time derivative remains same as before. However, the

space derivatives are modified as
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(
∂ϕ

∂s

)
i
=

ϕi+1− (1−α2)ϕi−α2ϕi−1

∆si−1α(1+α)
, (3.42)

and (
∂2ϕ

∂s2

)
i
=

2(ϕi+1− (1+α)ϕi +αϕi−1)

∆s2
i−1α(1+α)

. (3.43)

The transport equation for proteins (Equation (3.41)) is discretized as

an
E φ

n
i+1 +an

W φ
n
i−1 +an

Pφ
n
i =

[
−Q− φn−1

∆t

]
. (3.44)

1. Initial condition is taken as the solution for the time step n = 1(t = 0), solve for shape

corresponds to the initial protein density.

2. For next time step (n = 2), the values of φ is updated from Equation (3.21) by inverting the

matrix with the help of Gauss-Seidel method

φ
n
i =

1
ap

[
−Q− φn−1

∆t
−
(

an
E φ

n
i+1 +an

W φ
n
i−1

)]
. (3.45)

Note that the all the coefficient of the linear system aE ,aW and aP uses values of φ at current

time step n = 2. To calculate them use the current available values of φ.

3. Shape of the membrane is updated from the updated values of L that is obtained by

integrating Equation (3.37) with the boundary condition of L at the center. The strategy of

fining shape (r,z) for each grid points is discussed in Section 4.4.3.

4. Normal velocity is calculated as the backward derivative of shape

wn =
1
Pe

nnn ·
[

rrrn− rrrn−1

∆t

]
. (3.46)

5. Tangential velocity is calculated by integrating continuity in Equation (3.38).
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6. Membrane tension λ is updated by integrating tangential force balance relation (Equa-

tion (3.37)) backward in the arclength from the boundary condition of λ0.

7. With the updated values of φ all the coefficients of discretized equations are updated and

the process is repeated from step 2 until convergence with in the time step n = 2.

8. Next we move to next time step and follow the steps from step 2.

3.4.4 Equilibrium solution

The equilibrium solution for membrane shape and tension for prescribed protein density

(and therefore spontaneous curvature) is presented in Chapter 7. We use a local area a for

parameterizing the membrane, that relates to the local arclength as da = 2πrds. The derivatives

with respect to arclength is changed as

∂(·)
∂s

= 2πr
∂(·)
∂a

. (3.47)

The solution method is exactly same with the arclength parameterization. Steps 3-6 is performed

to obtain an equilibrium shape.
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Chapter 4

Diffusion of curvature-inducing proteins

coupled with membrane bending and

in-plane lipid flow

4.1 Introduction

In this chapter we focus on the interplay of protein-diffusion, lipid flow, and membrane

bending with the help a comprehensive theoretical model and subsequent numerical simulation.

The seminal work of Helfrich [36], Canham[52], and Jenkins [54] established the framework for

using variational principles and thin shell mechanics for modeling membrane bending. Later,

[55] established the correspondence between Koiter’s shell theory and developed a complete

theoretical framework of membrane mechanics. These early models assumed the membrane to be

inviscid and focused primarily on elastic effects. In the past decade, many groups have proposed

the addition of viscous effects in addition to membrane bending [62, 63, 64, 65] building on the

ideas proposed by [66]. We also showed recently that including intrasurface viscosity in addition

to membrane bending allows for the calculation of local membrane tension in the presence of
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protein-induced spontaneous curvature [67] and for the calculation of flow fields on minimal

surfaces [68]. Separately, the interaction between in-plane protein diffusion and membrane

bending has been modeled [69, 70, 71, 72, 73, 15]. Specifically, [74] proposed a framework that

included the chemical potential energy of membrane-protein interactions and membrane bending

and demonstrated the interaction between bending and diffusion. A series of studies by Arroyo

and coworkers also developed a comprehensive framework for incorporating membrane-protein

interactions using Onsager’s variational principles [75, 65, 76].

We present here a coupled theory for membrane mechanics that accounts for in-plane vis-

cous flows and diffusion of curvature-inducing transmembrane proteins in addition to membrane

bending. We note that a version of this model was presented by [115]. Using a free energy func-

tional that includes bending energy, chemical potential energy of membrane-protein interactions,

and by including the viscous stresses in the force balance, we derive the governing equations of

motion in § 4.2. In § 4.3.1, we analyze this system of equations assuming small deformations from

the flat plane and identify the role of different dimensionless groups in governing the regimes of

operation. We then perform numerical simulations in a one-dimensional model in § 4.3.2 and in a

two-dimensional Monge parametrization in § 4.3.3. The case of large deformations is addressed

in § 4.4 where we investigate the flattening of a membrane bud in axisymmetric coordinates.

4.2 Membranes with intra-surface viscosity and protein dif-

fusion

We formulate the governing equations for the dynamics of an elastic lipid membrane with

surface flow, coupled to the transport of membrane-embedded proteins that induce spontaneous

mean curvature. The notations used in the model are summarized in Table 4.1. We assume

familiarity with tensor analysis and curvilinear coordinate systems [116, 117, 118].
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4.2.1 Free energy of an elastic membrane with curvature-inducing pro-

teins

For an elastic membrane with a dilute density σ of curvature-inducing proteins, the free

energy presented in Equation (2.34) as the sum of elastic and chemical energies reduces to

[71, 74, 119]

W (H,K,σ) = κ[H−C(σ)]2 + κ̄K + kBT σ

[
log
(

σ

σs

)
−1
]
. (4.1)

The first two terms correspond to the classical Helfrich free energy and involve the two bending

moduli k and k̄. While these could in general depend on σ, we take them to be constant as is

appropriate in the dilute limit. C(σ) is the protein-induced spontaneous curvature and is assumed

to depend linearly on protein density [71, 74, 120]:

C = `σ , (4.2)

where the constant ` is a characteristic length scale associated with the embedded protein. The

last term in Equation (4.1) is the entropic contribution due to thermal diffusion of proteins

[120], where kBT is the thermal energy and σs denotes the saturation density of proteins on the

membrane.

Inserting Equation (4.1) for the free energy into Equation (2.30) provides expressions for

the elastic stress and moment tensors as

ζ
αβ =−2κ(H− `σ)bαβ−2κ̄Kaαβ−ξaαβ, (4.3)

Mαβ = κ(H− `σ)aαβ + κ̄(2Haαβ−bαβ). (4.4)
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4.2.2 Summary of the governing equations

We summarize the governing equations for the membrane and protein dynamics. The

tangential momentum balance, obtained by inserting equations (4.3), (4.4) and (2.33) for the

stresses into the equation (2.27), is expressed as

λ,α−4νwH,α +2ν(aβµdαµ;β−w,βbβ

α) =−σ,α

[
kBT log

(
σ

σs

)
−2κ`(H− `σ)

]
, (4.5)

where we have introduced the membrane tension λ =−(W + γ). Along with the surface incom-

pressibility condition

vα
;α−2wH = 0, (4.6)

Equation (4.5) constitutes the governing equation for the intra-membrane flow. We note the

similarity with the Stokes equations, where the tension λ plays a role analogous to the pressure

in classical incompressible flow [68]. The right-hand side captures the forcing by the protein

distribution on the flow. Similarly, the normal force balance in Equation (2.28) provides the

so-called shape equation, written after simplifications as

k∆(H− `σ)+2k(H− `σ)(2H2−K)−2H
[
kBT σ

(
log
(

σ

σs

)
−1
)
+κ(H− `σ)2

]
−2ν

[
bαβdαβ−w(4H2−2K)

]
= p+2λH, (4.7)

where ∆(·) = (·);αβaαβ is the surface Laplacian. Equation (4.7) can be interpreted as the governing

equation for the position field rrr. Finally, the model is completed by the advection-diffusion

equation for the protein density, which is written

∂σ

∂t
+(vα

σ);α = Daαβ
σ,αβ−

2k`
f

[
aαβ(H− `σ),ασ,β +σaαβ(H− `σ),αβ

]
. (4.8)
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Table 4.1: Summary of the notations used in the model of protein diffusion

Notation Description Units
γ Lagrange multiplier for incompressibility pN ·nm−1

p Pressure difference across the membrane pN ·nm−2

C Protein-induced spontaneous curvature nm−1

θα Surface coordinates
W Local free energy per unit area pN ·nm−1

λ Membrane tension, λ =−(W + γ) pN ·nm−1

λ0 Membrane tension at infinity pN ·nm−1

ζαβ Elastic stress tensor pN ·nm−1

παβ Viscous deviatoric stress pN ·nm−1

H Mean curvature of the membrane nm−1

K Gaussian curvature of the membrane nm−2

κ Bending modulus (rigidity) pN ·nm
κ̄ Gaussian modulus pN ·nm
σ Protein density per unit area nm−2

σs Saturation protein density per unit area nm−2

` Proportionality constant of C – σ relation nm
D Protein diffusion coefficient, D = kBT/ f nm2·s−1

f Hydrodynamic drag coefficient of a protein pN·s·nm −1

L Size of the domain nm
kB Boltzmann constant pN·nm·K−1

T Temperature K

The first term on the right-hand side captures Fickian diffusion of proteins, with diffusivity D

given by the Stokes-Einstein relation: D = kBT/ f . The second term captures the interaction of

the curvature and protein gradients. The third term captures the effect of membrane shape on

protein transport: mismatch between the mean curvature and the protein-induced spontaneous

curvature serves as a source term for the transport of protein on the membrane surface.
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4.3 Small deformations from the flat plane

4.3.1 Linearization and dimensional analysis

In this section, we specialize the governing equations presented in § 4.2.2 in a Monge

parametrization assuming small deflections from the flat plane.

Governing equations in the linear deformation regime

The surface parametrization for a Monge patch is given by

rrr(x,y, t) = xiii+ y jjj+ z(x,y, t)kkk, (4.9)

where unit vectors (iii, jjj,kkk) form a fixed Cartesian orthonormal basis, and z(x,y, t) is the deflection

from the (x,y) plane. The tangent and normal vectors are given by

aaa1 = iii+ z,xkkk, aaa2 = jjj+ z,ykkk, nnn =
1

(1+ z2
,x + z2

,y)
1/2 (−z,xiii− z,y jjj+ kkk). (4.10)

The surface metric (aαβ) and curvature metric (bαβ) take the following forms

aαβ =

 1+ z2
,x z,xz,y

z,yz,x 1+ z2
,y

 , bαβ =
1

(1+ z2
,x + z2

,y)
1/2

 z,xx z,xy

z,yx z,yy

 . (4.11)

We further assume that deflections of the membrane from the flat configuration are small

and simplify the governing equations in the limit of weak surface gradients |∇∇∇z|� 1 by neglecting

quadratic terms in |∇∇∇z| [121]. In this limit, differential operators in the space of the membrane

reduce to the Cartesian gradient, divergence and Laplacian in the (x,y) plane. The linearized
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governing equations for the intra-membrane flow become:

∇∇∇ · vvv = 2wH, (4.12)

∇∇∇λ+ν∇
2vvv+ν∇∇∇(∇∇∇ · vvv)−4νw∇∇∇H−2ν∇∇∇w ::: ∇∇∇∇∇∇z

= κ
(
∇

2z−2`σ
)
`∇∇∇σ− kBT log

(
σ

σs

)
∇∇∇σ,

(4.13)

whereas the shape equation expressing the normal momentum balance is

κ
(1

2∇
4z− `∇2

σ
)
−∇

2z
[
kBT σ

(
log
(

σ

σs

)
−1
)
+κ`2

σ
2
]

−ν
(
∇∇∇vvv+∇∇∇vvvT) ::: ∇∇∇∇∇∇z = p+λ∇

2z.
(4.14)

The transport equation for the protein density simplifies to

∂σ

∂t
+∇∇∇ · (σvvv) = D∇

2
σ− κ`

f
∇∇∇
(
∇

2z−2`σ
)
·∇∇∇σ− κ`σ

f

(
∇

4z−2`∇2
σ
)
. (4.15)

We also note the linearized kinematic relation for the normal velocity:

w =
∂z
∂t
. (4.16)

Non-dimensionalization

We scale this system of equations using the following reference values. Length is non-

dimensionalized by the size L of the domain, protein density by its reference value σ0, and

membrane tension by its far-field value λ0. We also use the characteristic velocity scale vc = λ0L/ν

and time scale tc = L2/D. Denoting dimensionless variables with a tilde, the scaled governing
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equations are:

∇̃∇∇ · ṽvv = 2w̃H̃, (4.17)

∇̃∇∇λ̃+ ∇̃
2ṽvv+ ∇̃∇∇(∇̃∇∇ · ṽvv)−4w̃∇̃∇∇H̃−2∇̃∇∇w̃ ::: ∇̃∇∇∇̃∇∇z̃ =

∇̃∇∇σ̃

[
2ĈB̂

T̂
∇̃

2z̃− 4Ĉ2B̂2

T̂
σ̃− 2Ĉ

T̂
log
(

σ̃

σ̃s

)]
,

(4.18)

∇̃
4z̃−2ĈB̂ ∇̃

2
σ̃−Ĉ∇̃

2z̃
[

2σ̃

(
log
(

σ̃

σ̃s

)
−1
)
+2ĈB̂2

σ̃
2
]

− T̂ (∇̃∇∇ṽvv+ ∇̃∇∇ṽvvT ) ::: ∇̃∇∇∇̃∇∇z̃ = P̂+ T̂ λ̃ ∇̃
2z̃,

(4.19)

∂σ̃

∂t̃
+Pe

(
ṽvv · ∇̃∇∇σ̃+ σ̃ ∇̃∇∇ · ṽvv

)
=
(
1+2ĈB̂2

σ̃
)
∇̃

2
σ̃

+2ĈB̂2|∇̃∇∇σ̃|2− B̂
(
σ̃∇̃

4z̃+ ∇̃∇∇∇̃
2z̃ ··· ∇̃∇∇σ̃

)
.

(4.20)

The expression for the normal velocity also becomes:

w̃ =
1
Pe

∂z̃
∂t̃
. (4.21)

The dynamics are governed by five dimensionless parameters defined as follows. The ratio of the

chemical potential to the bending rigidity of the membrane is denoted by Ĉ = L2kBT σ0/κ. The

ratio of the length scale induced by the proteins and the membrane domain is given by L̂ = `Lσ0.

The ratio of the intrinsic length scale of the membrane to the domain size is given by T̂ = 2L2λ0/κ.

The ratio between the bulk pressure and bending rigidity is denoted by P̂ = 2L3 p/κ. Finally, the

Péclet number Pe = λ0L2/νD compares the advective transport rate to the diffusive transport rate.

We define B̂ = L̂/Ĉ for convenience of simulations and cast the equations in terms of L̂, B̂, T̂ , and

Pe. Further, we assume that there is no pressure difference across the membrane (P̂ = 0).
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4.3.2 One-dimensional simulations

We first explore the interplay between membrane bending and protein diffusion in the

special case of a membrane that deforms as a string in one dimension, with a shape parameterized

as z̃(x̃, t̃). The flow of lipids does not play a role in this scenario, and as a result in-plane velocity-

dependent terms vanish in equations (4.17)–(4.20). The system of governing equations reduces

to

∂λ̃

∂x̃
=

∂σ̃

∂x̃

[
2ĈB̂

T̂
∂2z̃
∂x̃2 −

4Ĉ2B̂2

T̂
σ̃− 2Ĉ

T̂
log
(

σ̃

σ̃s

)]
, (4.22)

∂σ̃

∂t̃
= (1+2ĈB̂2

σ̃)
∂2σ̃

∂x̃2 +2ĈB̂2
(

∂σ̃

∂x̃

)2
− B̂

[
σ̃

∂4z̃

∂x̃4 +
∂σ̃

∂x̃
∂

∂x̃

(
∂2z̃
∂x̃2

)]
, (4.23)

∂4z̃

∂x̃4 −2ĈB̂
∂2σ̃

∂x̃2 −Ĉ
∂2z̃

∂x̃2

[
2σ̃

(
log
(

σ̃

σ̃s

)
−1
)
+2ĈB̂2

σ̃
2
]
= P̂+ T̂ λ̃

∂2z̃

∂x̃2 . (4.24)

Equations (4.22)–(4.24) are solved numerically using a finite-difference scheme coded in Fortran

90. The tangential momentum balance (4.22), which can be viewed as an equation for the

tension λ̃, is solved subject to the condition λ̃(x̃ = 1) = 1, whereas the shape equation (4.24) is

solved subject to clamped boundary conditions z̃ = 0 and ∂z̃/∂x̃ = 0 at both ends of the domain

x̃ =−0.5,0.5.

We first analyzed the evolution of a symmetric patch of protein defined as σ̃(x̃, t̃ = 0) =

1/2[tanh(20(x̃+0.1))− tanh(20(x̃−0.1))], subject to no-flux boundary conditions on σ̃ at the

ends of the domain. Results from these simulations are shown in figure 4.1. In response to this

protein distribution, the initial configuration of the membrane is bent (see figure 4.1(a) at t = 0).

Over time, σ̃ homogenizes as a result of diffusion, and therefore the deflection z̃ decreases. At

steady state, the distribution of protein is uniform on the membrane and z̃ is everywhere zero. The

time evolution of z̃ at the center of the string, corresponding to the maximum deflection, is shown

in figure 4.1(b).

As a second example, we discuss the case where the protein density is initially zero and
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Figure 4.1: Protein density and membrane deformation in one dimension as functions of
time, when an initial protein distribution and no-flux boundary conditions are prescribed. (a)
Distribution of protein density plotted on the deformed one-dimensional membrane. (b) Time
evolution of the maximum membrane deflection z̃c(t̃) = z̃(1/2, t̃).

a time-dependent protein flux is prescribed at both boundaries as shown in figure 4.2(a). In

response to the influx at the boundaries, the membrane deforms out of plane as the protein density

increases; see figure 4.2(b). Once the flux returns to zero, diffusion homogenizes the protein, and

the membrane height begins to decrease again. This effect is observed clearly by looking at the

deformation at the center of the string as a function of time in figure 4.2(c), which closely follows

the dynamics of the boundary flux show in figure 4.2(a).

In both examples of figures 4.1 and 4.2, we note that the protein distribution becomes

uniform at long times (in the absence of any boundary flux), and as a result the membrane returns

to its flat reference shape. At first glance, this result seems counter-intuitive since there is a non-

zero density of curvature-inducing proteins on the membrane. But as Chabanon and Rangamani

showed previously, for a uniform distribution of proteins with no-flux boundary conditions on the

membranes, minimal surfaces are admissible solutions for the membrane geometry [122, 123].

In the case of closed geometries on vesicle, constant mean curvature surfaces are admissible

solutions [20, 124, 125, 126]. In the case of interest here, a flat membrane is the admissible

solution for the boundary conditions associated with z̃, and a proof of this result is given in

Appendix A.1.
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Figure 4.2: Evolution of membrane deformation and protein distribution when an influx of
protein is prescribed at both boundaries. (a) Dimensionless boundary protein flux as a function of
time. (b) Distribution of protein density plotted on the deformed membrane for Ĉ = 2.48×10−1.
(c) Time evolution of the maximum membrane deflection z̃c for Ĉ = 2.48×10−1. Symbols in
panels (a) and (c) correspond to the times shown in (b).

4.3.3 Two-dimensional simulations

Numerical implementation

We solved the set of governing equations (4.17)–(4.20) in two dimensions inside a square

domain using a finite-difference technique that we outline here. Our numerical scheme is second

order in space and first order in time. We note that time only appears explicitly in the advection-

diffusion equation (4.20) for the protein density: we solve it using a semi-implicit scheme

wherein the linear diffusion term is treated implicitly while the nonlinear advective terms and

curvature-induced transport terms are treated explicitly. The remaining governing equations are

all elliptic in nature and can be recast as a series of Poisson problems as we explain. First, we

note that the shape equation (4.19) is biharmonic and can thus be recast into two nested Poisson

problems providing the shape z̃ at a particular time step. To solve for the surface tension λ̃, we

take the divergence of the tangential momentum balance (4.18) and combine it with the continuity

equation (4.17) to obtain the Poisson equation

∇̃
2
λ̃+ f = 0, (4.25)
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where

f = 4H̃∇̃
2w̃−2∇̃∇∇∇̃∇∇z̃ ::: ∇̃∇∇∇̃∇∇w̃−8∇̃∇∇H̃ ··· ∇̃∇∇w̃

− 2ĈB̂
T̂

∇̃∇∇∇̃
2z̃ ··· ∇̃∇∇σ̃−

[
2ĈB̂

T̂
∇̃

2z̃− 2Ĉ
T̂

log
(

σ̃

σ̃s

)]
∇̃

2
σ̃

+
2Ĉ
T̂

∇̃∇∇(log σ̃) ··· ∇̃∇∇σ̃+ĈB̂∇̃
2
σ̃

2.

(4.26)

Note that there is no natural boundary condition on λ̃ at the edges of the domain. To approximate

an infinite membrane, we first estimate the tension along the four edges using the integral

representation

λ̃(r̃rr) = 1+
∫

Ω

G(r̃rr− r̃rr0) f (r̃rr0)dA(r̃rr0), (4.27)

where G(rrr) =− logr/2π is the 2D Green’s function for Poisson’s equation in an infinite domain.

The calculated tension along the edges is then used as the boundary condition for equation (4.25),

where the normal velocity component at the current time step k is calculated as

w̃k =
1
Pe

z̃k− z̃k−1

∆t̃
. (4.28)

With knowledge of the membrane tension, the tangential momentum balance (4.18) then provides

two modified Poisson problems for the in-plane velocity components. Note that the equations for

z̃, λ̃ and ṽvv are nonlinearly coupled through the various forcing terms in their respective Poisson

problems. To remedy this problem, we iterate their solution until every variable converges with

a tolerance limit of 5×10−7 before proceeding to the next time step. All the results presented

below were obtained on a spatial uniform grid of size 201× 201 and with a dimensionless

time step of ∆t̃ = 10−4. We used Fortran 90 for compiling and running the algorithm. As we

show in Appendix A.2, the numerical method was successfully validated by comparison with a

Stokes-Neumann formulation [1].
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Figure 4.3: System set up and initial condition used in 2D simulations. All 2D simulations are
performed for a linearized Monge patch. We simulate the dynamics for three different initial
distributions of proteins as shown. The total area fraction of protein is same for the three cases,
with proteins covering 10% of the total area. (a) Single patch of protein placed at the center
(0,0). (b) Two patches of protein placed at diametrically opposite positions with center locations
(−0.25,−0.25) and (0.25,0.25). (c) Four patches of proteins placed at four diagonal positions:
(−0.25,−0.25), (−0.25,0.25),(0.25,−0.25) and (0.25,0.25). The following abbreviations are
used in subsequent figures to track the system behavior: COM: center of the membrane, COP:
center of the patch, CRM: corner of the membrane, and PFM: protein-free membrane.

.

2D simulation results

Using the numerical scheme described above, we solved the linearized two-dimensional

governing equations (4.17)–(4.20) for different initial conditions. In all cases, the boundary

conditions for the membrane shape were set to z̃ = 0 and ννν ···∇∇∇z̃ = 0 where ννν is the in-plane

normal to the edge of the domain, and no-flux boundary conditions were enforced on the protein

distribution. We considered three different initial conditions for the protein density as depicted

in figure 4.3, namely: a single circular patch at the center of the domain (figure 4.3(a)), two

indentical patches placed at diametrically opposite ends of the domain (figure 4.3(b)), and four

patches centered in each quadrant of the domain (figure 4.3(c)). The total mass of protein is

the same in all three cases, only the initial spatial distribution is different. For the velocity and

tension, we maintain open boundary conditions as noted in § 4.3.3.

We tracked the dynamics of the membrane shape, protein distribution, membrane tension,

and velocity for a single patch of proteins corresponding to figure 4.3(a) in figure 4.4. The initial
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Figure 4.4: Dynamics of the evolution of membrane shape, protein distribution, membrane
tension, and tangential velocity field for a single patch of protein at three different times.
(a-c) Distributions of membrane protein density are shown at dimensionless times 1× 10−3,
5×10−3, and 2.5×10−2. (d-e) Distributions of membrane tension at the same non-dimensional
times. (g-i) Tangential velocity fields shown at the same non-dimensional times. Arrows are
scaled according to tangential velocity magnitude, with a maximum dimensionless velocity of
4.3×10−3.
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Figure 4.5: Dynamics of the evolution of membrane shape, protein distribution, membrane
tension, and tangential velocity field for two and four patches of protein at dimensionless
time t̃ = 5× 10−3. The left column shows the distribution of protein density (a), membrane
tension (c), and tangential velocity (e) for two patches of protein. The right column shows the
distribution of protein density (b), membrane tension (d), and tangential velocity (f ) for four
patches of protein. The magnitude of maximum dimensionless tangential velocity is 1.6×10−2

in the case of two patches, and 4.1×10−3 in the case of four patches.
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Figure 4.6: Temporal evolution of the membrane deflection at the various locations defined in
figure 4.3 for a single patch of protein (a), two patches (b), and four patches (c).

Figure 4.7: Temporal evolution of the protein density at the locations defined in figure 4.3 for a
single patch of protein (a), two patches (b), and four patches (c).

Figure 4.8: Temporal evolution of the membrane tension at the locations defined in figure 4.3
for a single patch of protein (a), two patches (b), and four patches (c).
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membrane configuration is bent to accommodate the initial distribution of proteins (figure 4.4(a)),

and the membrane tension for this initial distribution is heterogeneous as seen in figure 4.4(d),

consistent with our previous results [67, 11]. Over time, the proteins diffuse from the center of

the patch across the membrane, tending towards a homogeneous distribution (figure 4.4(b,c)),

and this process is accompanied by a reduction in the membrane deflection. The homogenization

of proteins results in homogenization of the membrane tension, which approaches its value at

infinity (figure 4.4(e, f )). The tangential velocity is directed outward (figure 4.4(g,h, i)), and the

dimensionless magnitude of the maximum velocity in figure 4.4(g) is 4.8×10−3. Expectedly, the

magnitude of this velocity decreases with time as seen in figure 4.4(h, i).

When the proteins are distributed in two and four patches as shown in figure 4.3(b,c),

we found that the overall behavior of the system was quite similar to a single patch with some

changes to the dynamics. First, because each patch had a lower density of proteins (half or

quarter), the initial deformation was smaller and the protein distribution homogenized faster than

in the case of a single patch (figure 4.5(a,b)). Similarly, the typical magnitude of membrane

tension variations (figure 4.5(c,d)) and of the tangential velocity field (figure 4.5(e, f )) was also

smaller to begin with and the system attained the homogeneous distribution rapidly.

To compare the effects of one, two, and four patches directly, we plotted the membrane

deformation (figure 4.6), membrane protein distribution (figure 4.7), and membrane tension

distribution (figure 4.8) at different locations for each case. The initial deformation is different

for the different cases because of the differences in the local density of proteins. For a single

patch, we observed that the maximum deformation occurs at the center of the patch (COP) and it

takes a longer time for this deformation to go to zero in the case of a single patch compared to

multiple patches (compare figure 4.6(a) to figure 4.6(b,c)). In the case of two and four patches,

we also observe a small positive deformation at the center of the membrane (COM) and in the

protein-free membrane (PFM). This can be explained by the fact that the continuity conditions of

the surface will result in a small but upward displacement in protein-free regions in response to
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the large downward displacement in the regions where the proteins are initially present.

Comparing the protein dynamics for one, two, and four patches, we observed that increas-

ing the number of patches decreases the time it takes for the protein distribution to homogenize

across the membrane domain (figure 4.7). Thus, although membrane bending and protein distri-

bution are coupled, the distribution of multiple patches weakens the coupling and promotes rapid

homogenization of the membrane proteins. While the steady state protein distribution is the same

in all cases, the dynamics with which the protein-free regions show an appreciable increase in

proteins also depends on the initial distribution of proteins. For example, in the case of a single

patch, CRM takes much longer to reach steady state compared to the case of two or four patches.

Figure 4.7 shows that for the initial conditions of a single patch and of four patches of protein,

σ̃ approaches the uniform protein density monotonically. But for the case of two patches, the

time evolution of the protein density is not monotonic, and we found the density of protein at

the corner of the membrane (CRM) exceeds the density at the center of the patch (COP) for a

brief time interval. We investigated this phenomenon further and studied the dependence on

intra-membrane flow by varying the Péclet number in § 4.3.3.

Similar dynamics are observed for the membrane tension as well. Figure 4.8 shows

that the membrane tension takes a larger time to reach its steady value for the case of one or

two patches when compared to four patches (compare figures 4.8(a,b,c)). The initial rise in the

membrane tension corresponds to the inviscid response of the membrane to the curvature-inducing

protein distribution, while from the next time step onwards tension changes primarily due to

viscous effects.

Effect of fluid advection on coupled membrane–protein dynamics

Next, we investigated the effect of fluid advection in the case of two patches by varying

the Péclet number Pe in figure 4.9. We observed that at the center of the patch (figure 4.9(a))

there was no observable effect on the temporal evolution of the protein density. However, at
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Figure 4.9: Temporal evolution of local protein density for different values of the Péclet number
in the case of two patches of protein. The protein density is measured at the four locations
defined in figure 4.3: COM (a), COP (b), PFM (c) and CRM (d).

Figure 4.10: Evolution of the separation distance between the centroids of the protein patches
in the case of two patches and for three different values of the Péclet number.
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the center of the membrane (figure 4.9(b)) and in the protein-free membrane (figure 4.9(c)), we

observed that increasing Péclet number had a small effect on the dynamics of the protein density,

particularly at long times.

The effect of increasing the Péclet number was most dramatic at the corner of the mem-

brane (figure 4.9(d)), where the initial rise in the protein density was found to be similar for all

three values of Pe, but the increase resulted in a higher value for lower Pe. Eventually, σ̃ at the

corner decreases towards the mean value of σ̃ over time. Thus, the coupling between lipid flow

and protein diffusion seems to have a larger impact on transport in the regions that are initially

protein-free.

To further investigate the role of convective transport, we tracked the separation distance

l̃sep between the centers of mass of two effective patches (lsep) as a function of time in figure 4.10.

The center of mass of a patch is formally defined as

r̃rrc =

∫
Ω

r̃rr(σ̃− σ̃m)H (σ̃− σ̃m)da∫
Ω

(σ̃− σ̃m)H (σ̃− σ̃m)da
with, σ̃m =

∫
Ω

σ̃da, (4.29)

where the effective extent of the patch is defined using the Heaviside function H as the area where

protein density exceeds its mean value. We observed that l̃sep increases with time and decreases

with increasing Péclet number (figure 4.10). This can be explained from the velocity profile for

two patches in figure 4.5(e). The direction of the velocity is towards the center of the membrane

in the area where the patch is located. Therefore, the advective transport due to the lipid tends

to weaken the separation otherwise caused by diffusion. Since the effect of flow increases with

increasing Pe, the separation of the two patches slows down for higher values Péclet number as

shown in figure 4.10. This also explains the decrease of density of the protein at the corner of the

membrane (CRM) and the increase of the protein density at the initial protein-free area (PFM)

and center of the membrane (COM) with higher value of Pe as found in figure 4.9.

We can further understand the dynamics of the separation distance between the two
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patches by considering the diffusion of a protein patch in one triangular half domain of lipid. This

triangle is bounded by two of the domain boundaries and by the diagonal of the square domain

that passes in between the two patches. The diagonal line is also a line of symmetry, and thus

behaves as an effective no-flux boundary for the triangular half of the domain. Therefore, each

triangular half-domain is subject to the no-flux condition on its three sides. In this half domain,

the semicircular half patch of protein facing the corner of the membrane (CRM) diffuses to a

smaller area compared to the other semicircle that faces the center of the membrane (COM). This

results in an effectively larger protein gradient towards CRM. Therefore, the protein density shifts

towards the protein-free corner and results in an effective shift of the patches towards the corners

of the membrane.

4.4 Axisymmetric membranes

In the previous section, we focused on small deformations from a flat plane. However,

membranes are known to undergo large deformations including bud-like shapes in the presence of

proteins [11, 127, 128]. Here, we illustrate the interaction between membrane bending and protein

diffusion for membrane buds. For these simulations, we assume that the membrane is rotationally

symmetric and recast the governing equations of §4.2.2 in an axisymmetic framework.

4.4.1 Governing equations in axisymmetric coordinates

We represent tangential velocity vector in polar coordinates as

vvv = vseees + vθeeeθ. (4.30)
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For an axisymmetric geometry as depicted in figure 4.11(a), we assume ∂()/∂θ = 0 and vθ = 0

[62]. Thus, we parametrize the geometry as

rrr(s,θ, t) = r(s, t)eeer + z(s, t)kkk, (4.31)

where the unit vectors (eeer,eeeθ,kkk) are a set of orthonormal basis vectors and s is the arclength

measured from the axis of symmetry. The tangent and normal vectors are given by

aaas = cosψeeer + sinψeeeθ, aaaθ = reeeθ, nnn =−sinψeeer + cosψeeeθ, (4.32)

where ψ is the angle made by the tangent aaas with the radial unit vector eeer. The corresponding

surface metric (aαβ) and curvature metric (bαβ) are

aαβ =

 1 0

0 r2

 , bαβ =

 ψ,s 0

0 r sinψ

 . (4.33)

Using these expressions, the incompressibility constraint becomes

1
r

∂(rvs)

∂s
= 2wH. (4.34)

The governing equation for surface pressure is

∂λ

∂s
−4νw

∂H
∂s

+2ν

(
2

∂wH
∂s

+Kvs−
∂w
∂s

∂ψ

∂s

)
=−∂σ

∂s

[
kBT log

(
σ

σs

)
−2k`(H− `σ)

]
,

(4.35)
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and the shape equation expressing the normal momentum balance is given by

k
1
r

∂

∂s

(
r

∂(H− `σ)

∂s

)
+2k(H− `σ)(2H2−K)

−2H
[

kBT σ

(
log
(

σ

σs

)
−1
)
+ k(H− `σ)2

]
−2ν

[
∂ψ

∂s
∂vs

∂s
+

sinψcosψvs

r2 −w(4H2−2K)

]
= p+2λH.

(4.36)

The transport equation for the protein density simplifies to

∂σ

∂t
+

∂(σvs)

∂s
= D

1
r

∂

∂s

(
r

∂σ

∂s

)
−2k`

[
σ

1
r

∂

∂s

(
r

∂H
∂s

)
+

(
∂H
∂s

)2]
+2k`2

[
σ

1
r

∂

∂s

(
r

∂σ

∂s

)
+

(
∂σ

∂s

)2]
.

(4.37)

Finally, the kinematic relation for the normal velocity is given by

w = nnn ··· ∂rrr
∂t
. (4.38)

4.4.2 Non-dimensionalization

We non-dimensionalize the system of equations using a reference length scale L (which

we assumed to be 20 nm) such that the radius of the domain is 20L, with all other scales remaining
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the same as in §4.3.1. The dimensionless governing equations are:

1
r̃

∂(r̃ṽs)

∂s̃
= 2w̃H̃, (4.39)

∂λ̃

∂s̃
−4w̃

∂H̃
∂s̃

+2
(

2
∂w̃H̃

∂s̃
+Kṽs−

∂w̃
∂s̃

∂ψ

∂s̃

)
=

− ∂σ̃

∂s̃

[
2Ĉ
T̂

log
(

σ̃

σ̃s

)
− 4ĈB̂

T̂
(H̃−ĈB̂σ̃)

]
,

(4.40)

1
r̃

∂

∂s̃

(
r̃

∂(H̃−ĈB̂σ̃)

∂s̃

)
+2(H̃−ĈB̂σ̃)(2H̃2−K)

−2H̃
[
Ĉσ̃

(
log
(

σ̃

σ̃s

)
−1
)
+(H̃−ĈB̂σ̃)2

]
−T̂
[

∂ψ

∂s̃
∂vs

∂s̃
+

sinψcosψṽs

r̃2 − w̃(4H̃2−2K̃)

]
=

P̂
2
+ T̂ λ̃H̃,

(4.41)

∂σ̃

∂t̃
+Pe

∂(vασ̃)

∂s̃
=

1
r̃

∂

∂s̃

(
r̃

∂σ̃

∂s̃

)
−2B̂

[
∂(H̃−ĈB̂σ̃)

∂s̃
∂σ̃

∂s̃
+ σ̃

1
r̃

∂

∂s̃

(
r̃

∂(H̃−ĈB̂σ̃)

∂s̃

)]
,

(4.42)

w̃ =
1
Pe

nnn ··· ∂r̃rr
∂t̃
. (4.43)

4.4.3 Numerical implementation

The system of dimensionless governing equations (4.40)–(4.43) was solved using finite

difference methods using the arclength parametrization [129]. In these simulations, the total area

of the domain was kept constant. This was achieved by first dividing the initial arclength into

N−1 discrete elements, which gives N grid points on which the equations were solved. We then

calculated the area of each of the N−1 discrete area elements. At each time step, the local radius

and arclength is back-calculated by keeping the area of these discrete elements constant in the

following way:

r2
i+1 = r2

i +2dAi cosψ/π, (4.44)
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and

si+1 = si +dsi = si +
ri+1− ri

cosψ
, (4.45)

with

r1 = s1 = 0. (4.46)

To solve the set of governing equations (4.40)–(4.43), we first obtained the membrane tension

λ̃ by integrating equation (4.40) backward starting from the edge of the membrane where the

boundary condition λ̃ = 1 is enforced. We then consider the shape equation (4.41) where the first

term can be written as (1/r̃)(∂L̃/∂s̃) in terms of the normal bending stress [111]

L̃
r̃
=

∂

∂s̃

[
1
2

(
ψs +

sinψ

r̃

)
−ĈB̂σ̃

]
. (4.47)

The modified shape equation is solved for L̃ with boundary condition L̃ = 0 at the center of

the domain corresponding to the case where there is no pulling force acting on the center of

the membrane. When doing do, other shape-dependent terms in the shape equation are treated

explicitly, and iterations are performed until convergence. Equation (4.47) is then integrated for

ψ at every point with the boundary condition ψ = 0 at the center of the membrane and at the

boundary. Having determined ψ, the radial r̃ and the vertical z̃ position of the membrane are

calculated. The continuity equation (4.39) is then integrated to obtain the value of tangential

velocity ṽs. Finally, the diffusion equation (4.42) is marched in time to update the protein

distribution σ̃ across the membrane as described in §4.3.3.

4.4.4 Numerical results

We solved the dimensionless governing equations (4.39)–(4.43) for the solution domain

and boundary conditions shown in figure 4.11(a). The domain is initialized with a protein

distribution as shown in figure 4.11(b) such that the initial shape of the membrane is a bud,
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Figure 4.11: Parametrization of an axisymmetric membrane and bud-shaped initial condition:
(a) Parametrization and boundary conditions for an axisymmetric membrane. (b) Solution
domain showing the initial condition, where a circular patch of curvature-inducing protein
(shown in purple) induces a bud-shaped deformation. (c) A magnified view of the domain shown
in (a).

similar to those observed in membrane fission and fusion processes [130, 131]. This initial shape

is obtained by solving equations (4.34)–(4.38) for an inviscid membrane. The black square

highlights the curved bud region shown as a zoomed-in image in figure 4.11(c), and all simulation

results are shown in this zoomed-in region.

We make no simplifying assumptions about linear deformations or curvature regimes in

the axisymmetric case, which allows us to explore the nonlinear coupling between membrane

curvature, protein diffusion, and lipid flow in full detail. We conducted the following simulations

to map this relationship: (a) Diffusion of proteins on curved surfaces with no coupling between

protein distribution and spontaneous curvature, so as to study the effect of surface curvature on

protein diffusion, and (b) coupled diffusion of proteins and induction of spontaneous curvature.

We first investigate the diffusion of proteins on curved surfaces by simulating the scenario

where there are two types of proteins on the membrane: the first protein does not induce any

curvature (C1 = 0) but can diffuse along the membrane (D1 = 0.1µm2 s−1), whereas the second

protein is curvature-inducing (with spontaneous curvature C2 = 0.02nm−1) but immobile (D2 = 0).

Figure 4.12(a-c) shows the initial shapes of the three surfaces for increasing values of the

spontaneous curvature. Figure 4.12(a) shows the case of a flat membrane (C2 = 0) and captures

diffusion of a protein with no spontaneous curvature (` = 0) similar to Fickian diffusion on a
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Figure 4.12: Dependence of surface curvature C2 on the diffusion of the protein that does not
induce curvature (`1 = 0). Initial protein distribution on: (a) a flat membrane (C2 = 0), (b)
a membrane with preexisting curvature C2 = 0.015nm−1, (c) a membrane with preexisting
curvature C2 = 0.02nm−1. (d) Temporal dynamics of protein density at the center of the
membrane for the three different configurations. The dashed lines highlight the time it takes for
σ̃c to decrease from 1 to 0.5.
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flat plane. When the membrane is moderately curved in figure 4.12(b) or heavily curved in

figure 4.12(c), diffusion from the center of the membrane takes a longer time compared to Fickian

diffusion on a flat plane (compare purple and blue lines with the black line in figure 4.12(d)). The

time required for proteins to diffuse away from the center to the flat regions of the membrane

increases with the preexisting curvature. We compared the time taken for σ̃c to decrease from 1 to

0.5 and find that it increases nonlinearly with C2, as shown by the dashed lines in figure 4.12(d).

This result clearly shows that the curvature of the surface alters the timescale of surface diffusion

in a nonlinear fashion.

Next, we simulated the full coupled system where the same protein protein induces

spontaneous curvature and is free to diffuse in the plane of the membrane. Figure 4.13 tracks the

evolution of the membrane shape and protein distribution as the initial aggregate of curvature-

inducing protein diffuses over time. At the start of the simulation, the membrane forms an

Ω-shaped bud with a narrow neck (figure 4.13(b)). The equilibrium solution of this system is

a flat plane with uniform protein distribution. Upon initiation of the simulation, the membrane

neck widens and forms a U-shaped neck. This widening of the neck is accompanied by a

brief increase in the height of the tip of the membrane and a brief accumulation of proteins

towards the bud (figure 4.13(b,c)). Once the U-shaped neck is formed, the direction of transport

reverses and proteins diffuse rapidly away from the center of the bud with a corresponding

flattening of the membrane (figure 4.13d). The value of the membrane tension, which is initially

larger at the center, eventually reduces to its boundary value as the protein density becomes

uniform (figure 4.13(e,f,g)). The flow profile follows the membrane deformation and the protein

distribution over time. Initially, the tangential velocity is directed towards the center causing

advection of the protein towards the tip (compare figure 4.13(h) and (i)). At later times, as the

protein diffuses out and the membrane begins to flatten, the flow direction reverses direction,

consistent with the continuity equation (figure 4.13( j)).

Figure 4.14 shows the change in the displacement (a), protein density (b), and membrane
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Figure 4.13: Dynamics of the evolution of membrane shape, protein distribution, membrane
tension, and tangential velocity field at three different times. (a) Superposed membrane shapes
at three different times. (b-d) Distributions of membrane protein density are shown at di-
mensionless times 0.05, 1.05, and 5.05. (e-g) Distributions of membrane tension at the same
non-dimensional times. (h- j) Tangential velocity fields shown at the same non-dimensional
times. Arrows are scaled according to tangential velocity magnitude, with a maximum dimen-
sionless velocity of 8.4×10−2.
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Figure 4.14: Temporal evolution of: (a) vertical displacement, (b) protein density and (c)
membrane tension at three different locations: center of the membrane (cen), neck of the bud
(neck) (dimensionless arclength distance from the center is 4.2), and far from the bud (far)
(dimensionless arclength distance from the center is 14.3).

tension (c) at three different locations: center of the membrane (center), neck of the bud (neck),

and a location far from the bud (far). We observe that the displacement at the center of the

membrane and at the neck first increases and then decreases consistent with the initial widening

of the neck (figure 4.14(a)). No observable change in deformation was noted far from the bud.

The protein density increases at the center before decreasing over time (figure 4.14(b)). We

enforced a maximum value of 1.25 for σ̃ in the simulations in place of introducing a surface

saturation density of proteins on the membrane; this can be interpreted as a simple model for

protein crowding. The protein density at the neck remains more or less uniform for a long time,

consistent with the diffusion of proteins away from the bud towards the flat membrane. The

membrane tension at the center initially decreases and then increases (figure 4.14(c)). Recall that

the membrane tension is simply the negative of the surface pressure [55, 64, 67]. The drop in the

membrane tension corresponds to the change in the direction of the viscous pressure drop that

results from the change in direction of the velocity field. Membrane tension increases further as

the contribution from the viscous component becomes weak over time and the elastic component

dominates. This is consistent with the nature of the membrane tension for the linear Monge case

(figure 4.8(a)).

Finally, we varied the extent of the curvature induced by the protein by varying the

characteristic protein size ` (figure 4.15). For a small value of ` = 1nm such that the initial
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Figure 4.15: Coupling of protein curvature inducing effect and diffusion. Initial distribution of
the protein for (a) `= 1nm, (b) `= 2nm, and (c) `= 2.03nm. (d) Temporal dynamics of the
density of the protein at the center of the membrane for the three different configurations. The
dashed lines highlight the time it takes for σ̃c to decrease from 1 to 0.5.
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curvature was a small deviation from the flat plane (figure 4.15(a)), protein diffusion flattens out

the membrane similar to the results observed in the Monge parametrization (figure 4.7(a)) and

for diffusion on a flat surface (figure 4.12(d)) corresponding to the case where `= 0. However,

increasing ` to 2nm and 2.03nm in figure 4.15(b,c) such that the initial shape is a well-defined

bud leads to altered temporal dynamics. We compared the time required for σ̃c to decrease from

1 to 0.5 for different values of `. Interestingly, we find that low curvatures promote slightly faster

diffusion of protein from the center of the domain as compared to flat surfaces (compare `= 0nm

to `= 1nm). For high values of `, this time scale increases but the flattening of the membrane

coupled with diffusion results in similar long-time dynamics, which is different from the case

of fixed surface curvature. Thus, we find that the coupling between membrane bending, protein

diffusion, and lipid flow reveals an intricate and a somewhat counterintuitive relationship, with

nonlinear dependencies between protein diffusion timescales and membrane curvature.

4.5 Discussion

In this work, we have derived and analyzed the governing equations for the protein-

induced deformation of a lipid membrane coupled with protein diffusion and in-plane viscous

flow of the lipids. The coupling between diffusion and lipid flow completes the description of

the key transport phenomena involved in lipid membranes. We conducted simulations in 1D

and 2D (linearized Monge and axisymmetry) and further quantified the relationship between

membrane bending and protein diffusion. The major conclusions from our study are that lipid

flow and membrane protein diffusion, when coupled, can alter the dynamics of membrane protein

distribution at different locations. We find that as the protein diffuses from an initial locally

concentrated patch in the small deformation regime, the membrane deformation decreases and

these dynamics are also related to the diffusion coefficient of proteins on the membrane. The flow

of lipids also seems to induce a separation dynamics that depends on the Péclet number of the
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system when multiple patches are present.

In the case of buds, because of the strong coupling between protein diffusion and mem-

brane bending, certain nonlinearities are observed. First, we note that the diffusion of protein

at the center of a bud depends on the extent of curvature induced by the protein. Second, we

note that in buds, proteins first tend to move towards the center of the bud to enable widening of

the neck and then diffuse away from the center. These findings have implications for membrane

flattening after fusion in cellular processes such as exocytosis [132] and membrane repair [133].

Previously, we elaborated on the need for coupling between the viscous and elastic effects

for the calculation of the Lagrange multiplier associated with the incompressibility constraint

of the membrane [67, 64]. Here, we build on that framework to include protein diffusion.

The coupled interaction between elasticity, diffusion, and viscous flow now fully describes the

equations associated with the Lagrange multiplier λ, reinforcing its interpretation as a surface

pressure [115, 64]. We note that further efforts are needed in simulation technologies such that

complex geometries can be simulated [134, 135, 136, 137].

There have been many studies focused on modeling membrane-protein interactions [138,

13]. Here, we show that coupling the viscous flow of lipids on the membrane is important for

modulating the dynamics of the system and fully describing interfacial transport phenomena.

Future efforts will focus on adsorption of proteins from the bulk [139, 140] and phase separation

of proteins to identify the coupling between lipid flow and chemical energies associated with these

processes on an elastic membrane. Such theoretical developments not only have implications for

our understanding of biological membranes, but also have the potential to impact curvature-driven,

directed assembly in colloids and liquid crystals suspended in fluids, and particle interactions at

interfaces between immiscible fluids and soft materials, enabling directed design and engineering

of the next-generation of reconfigurable systems in soft matter [141, 142].
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Chapter 5

Protein aggregation and curvature-driven

feedback

5.1 Introduction

In Chapter 2, we developed a model that couples the in-plane flow of lipids and diffusion

of proteins with the out-of-plane bending of the membrane. Building on this work, here, we focus

on the role of explicit aggregation of proteins on the surface of the membrane in the presence

of membrane bending and diffusion. The aggregation of particles in solvents is a well-studied

theoretical problem. Flory [143] and Huggins [144] presented a theoretical formulation for a

polymer chain in solution and established the conditions that can lead to its phase separation from

the solvent. In binary alloy systems, there has been significant progress on the modeling of the

phase transition mechanisms starting from the fundamental Ginzburg-Landau energy [145] that

models the interaction energy between the phases as an algebraic expansion in the area fraction of

the binary phases around a reference value. A continuum phase-field model of binary fluids is of

interest from an engineering point of view to design complex fluids [146, 147]. Additionally, there

are a number of studies that considered the effect of surface tension in the phase separation of
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solid solutions with an elastic field as a function of concentration field of solute [148, 149, 150].

e1
e2

e3

a1

a2

n

r

(a) (b)

Figure 5.1: Schematic of protein aggregation and representation of a membrane surface. (a)
Aggregation of transmembrane proteins on the membrane can lead to domain formation and
curvature generation. Here, we develop a continuum model that captures these different interac-
tions. (b) Representation of a membrane surface and the surface coordinates. rrr is the position
vector, aaa1 and aaa2 are the tangent basis vectors, nnn is the unit surface normal.

While the classical theories were developed for three-dimensional continua, domain

formation and phase separation on two-dimensional surfaces such as lipid bilayers have been

of great interest recently. The aggregation of proteins on the membrane surface can be viewed

as an example of a binary system with lipids and proteins as two phases in a two-dimensional

curvilinear space. For example, a recent modeling study showed that in a reaction-diffusion

system, a pair of activator and inhibitor molecules can lead to an aggregation instability in

a specific parameter space, and this instability governs the pattern formation of proteins on

membranes [151]. There are many models in the literature that investigate various aspects of

phase separation on surfaces. Gera and Salac [60] numerically solved a Cahn-Hilliard system for

aggregation-diffusion on a closed torus and observed the temporal evolution of the formation of

the aggregation patches. In this case, the surface geometry was fixed. In a subsequent study, they

analyzed the effect of bulk shear flow on the dynamics of the density distribution of species on

a deformable vesicle, where the material properties are dependent on the species concentration

[152]. Nitschke et al. [58] modeled aggregation-diffusion of a two-phase mixture on a spherical

surface with in-plane viscous flow, and presented numerical results on pattern formation between
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the two phases and its strong interplay with the surface flow. The relative interactions between

the proteins on the cellular membrane can lead to phase segregation and form protein domains

depending on the strength of interaction forces compared to the entropy of mixing [26]. Such

aggregation phenomena have been modeled as a polymerization reaction with a very weak free

energy of polymerization [26].

Here, we seek to develop a comprehensive mathematical model that captures the coupled

diffusion and aggregation dynamics, where the proteins induce a curvature resulting in membrane

bending and lipids can flow in the plane of the membrane. Such a framework allows us to explore

how the different transport contributions in the plane of the membrane (protein aggregation,

protein diffusion, and lipid flow) can contribute both to the formation of protein microdomains

and to the curvature generation capability of the membrane. The chapter is organized as follows.

The full system of governing equations is presented in Section 6.2. We first analyzed the

special case in the absence of bending and reduced the model to a classic Cahn-Hilliard system

in Section 5.3. We solved the Cahn-Hilliard equation numerically on a square domain and

demonstrated the configuration of patch formations in the parameter space. Next, we simulated

the fully coupled system in the case of small deformations from a flat plane in Section 5.4 and

study the effect of bending energy on the dynamics of aggregation and diffusion of proteins.

Our results show that coupling between curvature, protein aggregation, and diffusion can lead

to a strong mechanical feedback loop stabilizing the protein microdomains in regions of high

curvature.

5.2 Model development

We first formulate the governing equations for coupled diffusion and aggregation of

curvature-inducing proteins on a deformable viscous lipid membrane with bending elasticity,

building on previous models [88, 109, 87]. We begin by formulating a free energy function for
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the membrane and apply the principle of energy minimization to derive the governing equations.

Complete details of the derivation are provided in Appendix B.1.

5.2.1 Free energy of the membrane

Our system consists of the lipids that comprise the membrane and transmembrane proteins

that are embedded in the plane of the membrane and are capable of inducing curvature (Figure 7.1).

Our model does not include the binding or unbinding of proteins from the bulk or the interactions

of the bulk fluid with the membrane. The lipid bilayer is modeled as a thin elastic shell with

negligible thickness that can bend out of the plane and be subject to in-plane viscous flow.

Importantly, we assume that the membrane is areally incompressible and this constraint is

imposed on the membrane using a Lagrange multiplier. Additionally, we use a continuum

description for the protein distribution on the membrane. We describe the different contributions

to the total free energy of the system in detail below.

We obtain the total free energy density of the membrane, in terms of protein area fraction

φ, by combining Equations (2.1), (2.8) and (2.12) as

W = kBT σs [φ logφ+(1−φ) log(1−φ)]︸ ︷︷ ︸
entropic

+
γσs

2
φ(1−φ)+

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

+κ(H− `σ)2 + κ̄K.︸ ︷︷ ︸
bending

(5.1)

5.2.2 Mass conservation of proteins

Conservation of mass for the protein density σ is given by

∂σ

∂t
+∇ ·mmm = 0, (5.2)

where the flux is

mmm = vvvσ− 1
f

φ∇µ. (5.3)
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This flux has contributions from advection due to the in-plane velocity field vvv and from gradients

in the protein chemical potential µ. The constant f denotes the thermodynamic drag coefficient

of a protein and is related to its diffusivity D by the Stokes-Einstein relation: D = kBT/ f .

The chemical potential, µ, is obtained as the variational derivative

µ =
δF
δφ

, (5.4)

where F is the total energy of the system of area A, given by,

F =
∫

ω

W (φ,∇φ)dA. (5.5)

Note that the energy density is a function of both the protein area fraction φ and its gradient ∇φ.

Using the definition of the variational derivative, we get the expression of the chemical potential

as:

µ =
δF
δφ

=
∂W
∂φ
−∇· ∂W

∂∇φ
. (5.6)

Using Equation (5.1) for W yields

µ = kBT σs[logφ− log(1−φ)]−2κ`σs(H− `σsφ)−
γσs

2
(2φ−1)− γ

2
|∇φ|2. (5.7)

Substituting Equation (5.7) in Equation (5.3) will result in the evolution equation for σ.

5.2.3 System of governing equations

Here we summarize the governing equations for the coupled dynamics of the system.

Using Equations (B.5), (B.7) and (D.10) for the stresses, the tangential force balance in Equa-
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tion (B.2) becomes [108, 109, 88]

∇λ+2ν(∇ ·ddd−∇w ·bbb)−4νw∇H︸ ︷︷ ︸
viscous

=

−∇σ

[
kBT log

φ

1−φ︸ ︷︷ ︸
entropic

−2κ`(H− `σsφ)︸ ︷︷ ︸
bending

−
(

γ

2
(2φ−1)+

γ

2σs
∆φ

)
︸ ︷︷ ︸

aggregation

]
.

(5.8)

Here, we have introduced a new variable λ, which is the Lagrange multiplier for area incom-

pressibility and physically represents the membrane tension (see Equation (B.6) in the ESI for

details), ddd is the rate-of-strain tensor (see Equation (B.8) in the ESI for the details), bbb is the

curvature tensor of the surface, and ∆(·) = ∇ ·∇(·) is the surface Laplacian. Along with the

surface incompressibility condition

∇ · vvv = 2wH, (5.9)

Equation (7.4) describes how the surface pressure gradient is balanced by the tangential contribu-

tions of lipid flow, membrane bending, and membrane-protein interactions. On the other hand,

Equation (5.9) captures surface incompressibility for a deformed membrane. Equations (5.9)

and (7.4) constitute the governing equations for the velocity field and tension on the evolving

surface of the membrane.

The shape of the surface is obtained by the normal force balance Equation (B.3), which,

after substituting in Equation (B.5), Equations (B.7) and (D.10), is given by

κ∆(H− `σsφ)+2κ(H− `σsφ)(2H2−K)−2H(κ(H− `σsφ)
2︸ ︷︷ ︸

bending

−2ν
[
bbb : ddd−w(4H2−2K)

]︸ ︷︷ ︸
viscous

−2H

[
kBT σs{φ logφ+(1−φ) log(1−φ)}︸ ︷︷ ︸

entropic

+
γσs

2
φ(1−φ)+

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

]
= p+2λH.︸ ︷︷ ︸

capillary

(5.10)

While this equation is complex and contains many terms, it can be understood intuitively by
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making the following observations. In the absence of all other stresses (bending, viscous, entropic,

and aggregation), Equation (5.10) simply reduces to the Young-Laplace law. When the viscous,

entropic, and aggregation terms are removed, we recover the so-called ‘shape equation’ that is

commonly used in membrane mechanics [108]. The additional terms capture the non-trivial

coupling between protein density, aggregation, lipid flow, and membrane bending, and are the

novel aspect of the present model. Equation (7.4) and Equation (5.10) both involve the area

fraction of proteins φ = σ/σs, which evolves according to the mass conservation equation given

by

φt +∇ · (vvvφ) =
1
f

∆φ

[
kBT
1−φ

+2κ`2
σsφ− γφ

]
− 1

f
φ

[
2κ`∆H +

γ

2σs
∆

2
φ

]
+

1
f

∇φ ·
[

∇φ

(
kBT

(1−φ)2 +2κ`2
σs− γ

)
−2κ`∇H− γ

2σs
∇(∆φ)

]
,

(5.11)

where φt denotes the time derivative ∂φ

∂t . Note that, in the absence of flow and protein-induced

spontaneous curvature, Equation (5.11) reduces to the Cahn-Hilliard equation for aggregation-

diffusion as discussed in Section 5.3. Additionally, if we eliminate protein aggregation (γ = 0), in

the limit of dilute concentration of proteins (φ� 1), we recover the classical equation for Fickian

diffusion.

5.2.4 Non-dimensionalization

We non-dimensionalize the system of Equations (7.4)–(5.11) using the following reference

scales. The characteristic length scale is taken to be the size L of the domain. The membrane

tension λ is scaled by its mean value λ0. Velocities are non-dimensionalized by vc = λ0L/ν, and

we use the diffusive time scale tc = L2/D. Note that the protein area fraction φ = σ/σs is already

dimensionless. The governing equations in dimensionless form (where tildes are used to denote

the dimensionless variables) are provided in the ESI (Equation (C.1)–Equation (C.4)).

78



Table 5.1: List of dimensionless numbers and their definitions in the model of protein aggrega-
tion

Dimensionless Number Expression Physical interpretation

B̂
kBT

κ

Thermal energy
Bending energy

L̂
`

L
Spontaneous curvature length

Domain length

Â
γ

kBT
Aggregation coefficient

Diffusion coefficient

Ŝ σsL2 Domain area
Protein footprint

T̂
2L2λ0

κ

Membrane tension energy
Bending energy

Pe
λ0L2

νD
Advection strength
Diffusion strength

The system of dimensionless equations involves seven dimensionless groups that are

defined in Table 5.1 along with their physical interpretation. In all the analyses that follow, we

assume that the trans-membrane pressure, p, is zero. From here on, we use the dimensionless

variables but omit the tildes for brevity.

5.3 Cahn-Hilliard system and stability analysis

5.3.1 Reduction to the Cahn-Hilliard system

We first consider the simplified diffusion-aggregation system in the absence of membrane

bending and in-plane lipid flow to gain insight into how diffusion and aggregation compete in the

plane of the membrane to form protein aggregates (also referred to as patterns or microdomains).

We assume that the proteins have zero spontaneous curvature (L̂ = 0) in this case. As a result

of these simplifications, the surface gradient reduces to the planar gradient ∇ = ∂

∂x iii+ ∂

∂y jjj and

the surface Laplacian ∆ becomes ∇2 = ∂2

∂x2 +
∂2

∂y2 . Neglecting the flow and bending terms in
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Figure 5.2: Marginal stability curves for the Cahn-Hilliard system in the (Â,Ŝ) plane for φ0 = 0.1
and various wavenumbers k, as predicted by Equation 5.12. We mark three points in this figure
to identify the parameter values for which we perform nonlinear numerical simulations in
Figure 5.3.

Equation (5.11), we arrive at a transport equation similar to the Cahn-Hilliard equation:

φt = ∇
2
φ

[
1

1−φ
− Âφ

]
+ |∇φ|2

[
1

(1−φ)2 − Â
]
−φ

[
Â
2Ŝ

∇
4
φ

]
. (5.12)

Equation (5.12) reduces to Fickian diffusion in the dilute limit (φ� 1) in the absence of aggrega-

tion (Â = 0). Equation (5.12) is also similar to the system presented by Givli and Bhattyacharya

[94], for which they conducted a stability analysis on a closed surface. Here, we present a stability

analysis of the equivalent Cahn-Hilliard system on a flat surface, and complement the analysis

with numerical simulations of the nonlinear system in a periodic domain.

5.3.2 Linear stability analysis

We perform a linear stability analysis of Equation (5.12) to identify the parameter regimes

that can lead to protein aggregation. The homogeneous state with uniform concentration φ0 is

perturbed by a small amount φ′ such that φ = φ0 +φ′. Linearizing Equation (5.12) results in the
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Figure 5.3: Temporal evolution of the protein distribution in simulations of the Cahn-Hilliard
model of Equation 5.12 on a flat square patch of area 1 µm2 for Â = 25 and three different
values of Ŝ. The three rows in panels (a-i) correspond to three distinct times: at an early time
tb = 3×10−3 shortly after the start of the simulation, at an intermediate time tin when protein
density variance reaches Vφ = 2×10−3, and at a late time ts = 0.3 when the system has reached
steady state. The three columns correspond to Ŝ = 200 (a-c), Ŝ = 500 (d-f ), and Ŝ = 1000 (g-i).
Also see Movies M1-M3 in the ESI for the corresponding dynamics. (j) Temporal evolution
of the variance Vφ of the protein density for the same cases shown in (a-i). The dashed lines
indicate the intermediate time tin when the variance reaches Vφ = 2×10−3.
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equation for density fluctuation φ′ as

φ
′
t = ∇

2
φ
′
[

1
1−φ0

− Âφ0

]
− Â

2Ŝ
φ0∇

4
φ
′. (5.13)

We consider normal modes of the form φ′ = eαtei2πkkk·xxx and obtain the dispersion relation

α = 4π
2
[

Âφ0−
1

1−φ0

]
k2−8π

4 Â
Ŝ

φ0k4. (5.14)

We find that the growth rate α is always real. The first term in Equation (5.14) is positive and

is destabilizing as long as the strength of aggregation exceeds a certain threshold: Â ≥ Âc =

[φ0(1−φ0)]
−1(≈ 11.1 for φ0 = 0.1),whereas the second term is always stabilizing. The marginal

stability curves α = 0 in the (Â, Ŝ) plane are plotted for various wavenumbers k in Figure 5.2. For

a given choice of Â and Ŝ, this results in a band of unstable wavenumbers 0≤ k ≤ kc, where

k2
c =

Ŝ
2π2

[
1− Âc

Â

]
, (5.15)

and the maximum growth rate occurs at wavenumber km = kc/
√

2. The corresponding wavelength

Λ = 2π/km provides a prediction for the characteristic lengthscale of aggregation patches, which

is expected to decay with increasing Ŝ but to increase with increasing Â.

5.3.3 Numerical simulations

We conducted numerical simulations of Equation (5.12) inside a square domain for

various combinations of Â and Ŝ that satisfy the necessary condition of aggregation as given in

Equation (5.15) and Figure 5.2. The initial condition was set as a homogeneous distribution

of φ0 = 0.1 with a small random spacial perturbation with magnitude |φ′| ≤ 1× 10−4. We

numerically restricted the value of φ to the interval [ε,1− ε] with ε = 1× 10−3 to ensure that

neither φ or 1−φ becomes zero during the simulations. We used periodic boundary conditions
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for the protein density and solved the equation numerically using a finite difference technique. In

Figure 5.3, we show the evolution of the protein distribution over time for three different values

of the dimensionless number Ŝ that denotes the ratio of domain area to the protein footprint, while

maintaining the aggregation strength at Â = 25. In all cases, we find that the initial perturbation

in the density field evolves towards the formation of distinct dense circular protein patches that

are distributed randomly and nearly uniformly across the domain, in agreement with standard

Cahn-Hilliard aggregation dynamics [60]. The main effect of varying Ŝ, which is more dramatic

than varying Â as we further show below, is to control the number of patches as well as their

size. Indeed, we recall that Ŝ, which is a dimensionless measure of the finite size of the proteins,

directly controls the stabilizing term in the dispersion relation Equation (5.14) and therefore the

dominant wavenumber of the instability. Consistent with the stability predictions, we find that

larger values of Ŝ produce larger numbers of patches with smaller sizes. During the transient

evolution, proteins get drawn towards the emerging patches due to aggregation, and at steady state

we find that the density inside the patches approached the saturation density (φ = 1), whereas it

approaches zero outside (Also see Movies M1-M3 in the ESI). We quantify the growth of density

fluctuations by plotting in Figure 5.3 j the time evolution of the density variance, defined as

Vφ =
∫

A
(φ−φ0)

2dA. (5.16)

We find that the growth of the variance is exponential at short times, consistent with the expected

behavior for a linear instability, before reaching a constant plateau at long times. The growth

is observed to increase with Ŝ in agreement with the linear prediction of Equation (5.14). The

steady state value, on the other hand, is found to decrease slightly with Ŝ, although the differences

are small.

A more complete exploration of pattern formation is provided in Figure 5.4a, showing the

long-time configurations of aggregated protein patches in the parameter space of Â and Ŝ. We
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Figure 5.4: (a) Configurations of protein aggregates on a flat square membrane at a late time
t = 0.3 approaching steady state for various combinations of Â and Ŝ. (b) Variation of the
number of protein patches with Â, for different values of Ŝ. (c) Variation of of the protein density
variance Vφ with Â for different values of Ŝ.
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note that the number of patches, their size, and their homogeneity vary with both parameters.

As we already observed in Figure 5.3, increasing Ŝ for a given value of Â increases the number

of patches and decreases their size. On the other hand, increasing Â for a given Ŝ tends to

increase inhomogeneity among patches, with some visibly denser patches while others tend to

be more diffuse. The dependence of the number of patches as a function of both Â and Ŝ is

shown in Figure 5.4b, while the steady-state variance is plotted in Figure 5.4c. The variance is

found to decrease with Â, as the more diffuse patches forming at large Â result in weaker spatial

fluctuations.

5.4 Coupling of aggregation with bending: analysis in the

small deformation regime

To understand how the inclusion of membrane curvature alters the aggregation-diffusion

landscape, we simulated the dynamics of the coupled system Equations (C.1) to (C.4) in the regime

of small deformations from a plane. The surface is represented using the Monge parametriza-

tion, such that the position vector is given by rrr = xαeeeα + z(x1,x2, t)eee3. In the regime of small

deformations from the plane, we consider gradients of the surface deformation to be small and

ignore the higher-order terms [88]. The surface gradient and Laplacian in the Monge parame-

terization simplify to ∇ = ∂

∂x iii+ ∂

∂y jjj and ∇2 = ∂2

∂x2 +
∂2

∂y2 . In the limit of small deformations, the

system of governing equations Equation (C.2) to Equation (C.4) reduces to Equation (B.14) to

Equation (B.17).

5.4.1 Linear stability analysis

We first perform a stability analysis of the system of equations (Equation (B.14) to

Equation (B.17)) to identify the parameter regimes similar to the analysis of Section 5.3.2 but in
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the presence of bending due to spontaneous curvature induced by the protein. In the base state, the

membrane is flat and at rest with uniform tension (z0 = 0, vvv0 = 000, λ0 = 1), and the protein density

is uniform with value φ0. We showed in an earlier study [88] that a uniform protein distribution on

a flat membrane is indeed a steady state even when the proteins induce a spontaneous curvature.

We perturb the variables by small amounts with respect to this base state:

φ = φ0 +φ
′, z = 0+ z′, vvv = 000+ vvv′, and, λ = 1+λ

′. (5.17)

Linearizing Equations (B.14) and (B.15) provides the governing equations for velocity and tension

fluctuations as

∇ · vvv′ = 0, (5.18)

and,

∇λ
′+∇

2vvv′+∇(∇ · vvv′) =−∇φ
′
[

2B̂Ŝ
T̂

log
φ0

1−φ0
+

4L̂2Ŝ2

T̂
φ0−

ÂB̂Ŝ
T̂

(2φ0−1)
]
. (5.19)

The normal force balance of Equation (B.16) reduces to

∇
4z′−2L̂Ŝ∇

2
φ
′−2B̂Ŝ∇

2z′
[
{φ0 logφ0 +(1−φ0) log(1−φ0)}+

Â
2

φ0(1−φ0)+
L̂2Ŝ
B̂

φ
2
0

]
= T̂ ∇

2z′.

(5.20)

Finally, the transport equation for the protein density given in Equation (B.17) becomes

φ
′
t = ∇

2
φ
′
[

1
1−φ0

+
2L̂2Ŝ

B̂
φ0− Âφ0

]
−φ0

[
L̂
B̂

∇
4z′+

Â
2Ŝ

∇
4
φ
′
]
. (5.21)

We find that the linearized equations the velocity field and tension partially decouple from the

shape equation (5.20) and protein transport equation (5.21): in other words, lipid flow and tension

fluctuations do not affect the membrane shape and protein transport in the linear regime. To
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analyze the dynamics of protein aggregation, we therefore need only consider Equations (5.20)

and (5.21). Performing a normal model analysis (see ESI for details), we obtain the dispersion

relation as

α = 4π
2k2
[

Âφ0−
1

1−φ0
− 2L̂2Ŝ

B̂
φ0g(k)

]
−8π

4
φ0

Â
Ŝ

k4, (5.22)

where g(k) is given by

g(k) = 1− 16π4k4

M(k)
, (5.23)

and,

M(k)= 16π
4k4+8π

2k2B̂Ŝ
[
{φ0 logφ0+(1−φ0) log(1−φ0)}+

Â
2

φ0(1−φ0)+
L̂2Ŝ
B̂

φ
2
0

]
+4π

2k2T̂ .

(5.24)

Similar to Equation (5.14), the second term in Equation (5.22) is always stabilizing, and therefore

protein aggregation takes place only if the first term is positive. The necessary condition for

protein aggregates to form becomes

Â− 2L̂2Ŝ
B̂

g(k)≥ 1
φ0(1−φ0)

, (5.25)

or

Â≥ Âc +
2L̂2Ŝ

B̂
g(k), (5.26)

where Âc was previously defined in Section 5.3.2 in the Cahn-Hilliard case. Here again, we find

that there exists an unstable range of wave numbers 0 < k < kc, where kc satisfies the implicit

equation

k2
c =

Ŝ
4π2

[
1− Âc

A
− 2L̂2Ŝ

B̂Â
g(kc)

]
. (5.27)

The maximum growth rate occurs at wavenumber km, also given by an implicit equation:

km =
kc√

2

[
1+

1
4π2km

L̂2Ŝ2

B̂Â
g′(km)

]−1/2

. (5.28)
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Figure 5.5: Dependence of g defined in Equation (5.23) on wavenumber k for different values
of Ŝ and L̂, with Â = 25.

Figure 5.5 shows the dependence of g(k) on wave number k for Â = 25 and various combinations

of L̂ and Ŝ. When both L̂ and Ŝ increase, g(k) tends to increase for small wavenumbers and thus

stabilizes the system. This means in particular that proteins with large spontaneous curvature, as

captured by L̂, can in fact have a stabilizing effect on protein aggregation, and this counterintuitive

observation will be confirmed in numerical simulations as we discuss next.

5.4.2 Numerical simulations

We solved Equations (B.14) to (B.17) numerically on a square domain with periodic

boundary conditions for a small random density perturbation over a homogeneous steady state

density of φ = 0.1. The proteins now induce a spontaneous curvature in the membrane, and the

model also captures the viscous flow on the membrane manifold. Typical transient dynamics

are illustrated in Figure 5.6 in a simulation with L̂ = 8× 10−3, Â = 25, and Ŝ = 2000. The

initial random distribution resolves into strong patches of proteins over time with the same

number of patches as we observed in the Cahn-Hilliard system (compare Figure 5.3a-c with

Figure 5.6a-c). Because the system of equations now accounts for coupling of curvature with

protein dynamics, we observe that the formation of dense protein patches is accompanied by the
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Figure 5.6: Temporal evolution of protein distribution, membrane shape, in-plane velocity and
tension for a square membrane of size 1 µm2 with Â = 25, Ŝ = 200, and L̂ = 8×10−3. (a-c)
Height of the membrane colored with the local protein density, (d-f ) in-plane velocity field, and
(g-i) membrane tension at dimensionless times 0.003, 0.216, and 0.3.
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Figure 5.7: Effect of Ŝ and L̂ on protein aggregation and membrane dynamics. (a) Temporal
evolution of the protein density variance Vφ for two values of L̂ and the same three values of
Ŝ shown in (b). (b) Distribution of protein density on the deformed membrane at a long time
approaching steady state (t = 0.3) for various combinations of L̂ and Ŝ, with Â = 25. The
corresponding dynamics are also shown in movies M4-M6 of the ESI. (c) Distribution of the
local membrane tension for the same cases as in (b). (d) Variance of protein density Vφ and (e)
number of protein patches np at t = 0.3 as functions of L̂, for various values of Ŝ.
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localized growth of membrane deformations, in the form of nearly circular peaks surrounded by

flatter regions of oppositely-signed curvature (Figure 5.6a-c). We also observe that the formation

of protein aggregates is coupled with a tangential velocity field in the plane of the membrane,

to accommodate the deformation of the membrane (Figure 5.6 d-f ): as the protein aggregates

form and deflect the membrane in the normal direction, a source-like flow is generated locally as

dictated by the continuity relation Equation (B.14). During this process, the magnitude of the

velocity increases until the system approaches a steady state where aggregation balances diffusion.

As the steady state is approached, the flow in the membrane changes nature as the normal velocity

vanishes, with each protein patch driving a weaker flow with quadrupolar symmetry.

As we have noted in prior works [109, 112, 88], coupling of lipid flow to membrane

deformation not only completes the description of the physics underlying the viscoelastic nature

of the membrane but also allows for the accurate calculation of the membrane tension field (the

Lagrange multiplier for incompressibility). This is particularly relevant for understanding how

microdomains of proteins can alter the tension field in the membrane. The tension field on the

membrane tracks with the protein microdomains and the deformation in the coupled system

(Figure 5.6g-i). Initially, the membrane has nearly uniform tension, but as regions of high protein

aggregation and therefore high membrane curvature form, these locations are found to have lower

tension in comparison with the rest of the membrane (see [112] for a detailed discussion on this

point). Thus, the dynamics of the coupled system is able to capture key experimental observations

in the field of membrane-protein interactions: (a) regions of high curvature and aggregation are

correlated for curvature-inducing proteins suggesting a positive feedback between these two

important factors [153], (b) lipid flow is important to sustain the deformations ([154]), and (c)

membrane tension is a heterogeneous field and varies with the local membrane composition

[155].

To further quantify these behaviors, we investigated the parameter space of Ŝ and L̂, to

understand how the spontaneous-curvature induction versus protein footprint compete in a fixed
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regime of aggregation-to-diffusion (Â = 25 fixed) (see Equation (5.26)). We varied Ŝ in the

range of 200 to 2000 and L̂ from 1×10−3 to 8×10−3 and summarize these results in Figure 5.7.

We first observed that the growth rate of the variance of φ shows a strong dependence on L̂

(Figure 5.7a). For Ŝ = 200, the growth rate for the two different values of L̂ differ slightly with

the growth rate being slower for larger L̂. This effect persists and is amplified for larger Ŝ: as

both Ŝ and L̂ increase, the growth rate decreases, indicating that it takes longer time for patterns

to form on the membrane. However, when Ŝ = 2000, we see a decay in the variance of protein

density φ as opposed to the exponential growth and eventual plateau for the cases where protein

aggregrates form. This result, which is consistent with the stability analysis of Section 5.4.1

suggests that the induction of curvature on the membrane can alter significantly the dynamics of

protein aggregation.

The steady-state patterns and deformations are illustrated in Figure 5.7b (also see Movies

M4-M6, and Figures B.1 and B.2 in the ESI), where we observe that the number of protein

patches is largely unaffected by L̂ for Ŝ = 200. The number of patches increases with Ŝ for a

given L̂ (as already found in Figure 5.4). However, when Ŝ increases to 1000, the number of

patches decrease with L̂. Since the deformation is directly affected by spontaneous curvature, we

find however that L̂ has a strong effect on the magnitude of membrane deflections, with larger

protein footprints resulting in stronger deflections. Surprisingly, when Ŝ = 2000, we noticed that

protein aggregates do not form for the value of L̂ = 8×10−3 and the membrane remains flat. This

phenomenon can be explained from the critical value of Â in Equation (5.26). Since both L̂ and Ŝ

have a stabilizing effect on density fluctuations φ′ (Equation (5.26)), for higher value of Ŝ and L̂,

an aggregation coefficient of Â = 25 is not sufficient to overcome the stabilizing barrier. However,

for lower values of L̂ or lower values of Ŝ, where the stabilizing effect is relatively weak, we see

the formation of protein aggregates.

The tension profile in the membrane follows the inhomogeneity of the protein distribution

as expected (Figure 5.7c and Figure B.2). As previously noted in Figure 5.6, the patches are
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associated with tension minima. We find that the range of λ depends strongly on Ŝ and L̂, as

∇λ linearly depends on the negative of the gradient of the spontaneous curvature, which in

turn depends on both ` and σ. This is consistent with our previous results showing that λ is a

heterogeneous field on the membrane and varies with the protein-induced spontaneous curvature

[112, 88]. Figure 5.7c further highlights the coupling between curvature, flow, and aggregation

dynamics. Finally, we look at the variance and the number of patches as a function of both Ŝ and

L̂ (Figure 5.7d,e). We note that for a given value of Ŝ, the variance decreases with increasing L̂

for higher values of Ŝ and this decrease is more dramatic when compared to the Cahn-Hilliard

model (Figure 5.4b). Even though the number of patches remains more or less unaltered for

small values of Ŝ as L̂ increases, the number decreases with increasing L̂ for larger values of

Ŝ (Figure 5.7e), consistent with the stability behavior noted in Equation (5.26). These results

suggest that the landscape of protein inhomogeneity is not only governed by the Â-Ŝ space as

is the case in the Cahn-Hilliard model; rather the curvature parameters, specifically L̂ in this

case, can have a significant impact on the protein aggregation behavior. Thus, we find that

the aggregation-diffusion landscape on the surface of the membrane is altered by the protein-

induced spontaneous curvature – tuning these different effects can allow for differential control

of curvature-aggregation feedback.

5.5 Discussion

The interaction of peripheral and integral membrane proteins with the lipid bilayer of

cellular membranes is fundamental to cellular function [156, 157, 158]. In this work, we have

developed a comprehensive modeling framework that couples the multiple effects that take place

in such membrane-protein interactions: protein diffusion in the plane of the membrane, interaction

between the proteins resulting in aggregation, lipid flow in the plane of the membrane, and out-of-

plane curvature generation due to protein-induced spontaneous curvature. The resulting system of
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equations now completely describes the mechanics of a lipid membrane with a second species that

can both diffuse and aggregate in the plane of the membrane. We compared this system against a

reduced system of Cahn-Hilliard equations to show how the coupling with membrane bending

alters the system behavior using both linear stability analysis and numerical simulations. In the

absence of curvature coupling (the Cahn-Hilliard system), the dynamics of protein aggregation is

driven by the competition between two key parameters, Ŝ, representing the relative size of the

protein footprint and Â, representing the relative strength of protein aggregation over diffusion. In

the presence of curvature coupling due to protein-induced spontaneous curvature, these dynamics

are altered and depend strongly on the strength of the spontaneous curvature induced by these

proteins. These altered dynamics can be summarized as follows: for certain regimes of Ŝ and L̂,

microdomains of proteins form on the membrane and are closely tied to the membrane curvature

as is expected, generating a strong feedback between curvature and aggregation. We also found

that for certain regimes of Ŝ and L̂, the growth rate decays, preventing the formation of protein

aggregates and the membrane remains flat.

The interaction between curvature and protein aggregation in membranes has been studied

in multiple modeling [159, 160, 93, 94], simulation [25, 26, 60], and experimental contexts

[161, 162, 163, 164, 165]. Our work builds on this literature with a few key differences. Many of

the theoretical models analyze the governing equations in simplified settings. In some cases, the

geometry is fixed and the emergence of patterns is analyzed, and in other cases, the dynamics of the

protein interactions on the surface is ignored [94, 60]. Here, we have analyzed the fully coupled

system without any assumptions on the dominant regimes and demonstrated how curvature

generation can affect aggregation. Another important feature of our model is the calculation of

membrane tension. Since the lipid bilayer is assumed to be incompressible, the calculation of the

Lagrange multiplier, which is widely interpreted as membrane tension (see detailed discussion in

[112] and references therein), is an important aspect of the coupled physics. By incorporating

the viscous nature of the membrane, we ensure that the incompressibility constraint is met
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rigorously at all times and therefore obtain the tension fields on the membrane. Our calculation

of the heterogeneous tension fields are consistent with previous models as noted above and with

experimental observations [166]. Moreover, a lower tension inside the phase-separated domain

further supports the existence of line tension at the domain boundary, which has been observed

experimentally [155].

Finally, we discuss the relevance of our model in the context of biological systems. Coarse-

grained molecular dynamic simulations of N-BAR proteins on flat membranes and spherical

vesicles showed that at low protein density these proteins form linear aggregates and meshes

on the membrane surface [167]. Many proteins, especially those that belong to the coat family

of proteins including clathrin and COP, are known to aggregate on the membrane and their

aggregation results in morphologolical changes of the membrane [168]. The nucleation of these

protein aggregates and the subsequent deformation of the membrane has been studied using

simplified systems [169]. While the exact role of lipid flow, diffusion, and aggregation is often

not unraveled in these experiments, they have shown that the extent of curvature induced depends

on multiple physical parameters including the composition of the membrane and the nature of the

protein [157, 170]. From a physiological perspective, many neurodegenerative diseases such as

Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are associated with surface

aggregation of proteins in cells. Even though the precise mechanisms of such aggregation are not

fully established, the role of membrane-protein interactions, particularly aggregation, is becoming

increasingly important [171].

The formation of domains is not specific to lipid-protein systems but is also observed in

vesicles that have two different kinds of lipids. The temporal behavior of formation of disordered

lipid domains was studied in a ternary mixture of fluid membrane [154] and it was shown that

in-plane flow was critical to the formation of such domains [58] and that smaller domains can be

attracted towards larger domains following the internal flows [172].

In developing models for many of these experimental observations described above,
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aggregation of domains of protein-induced curvature is often assumed a priori or curvature is

proposed as an organizing factor to explain cellular observations and experiments in reconstituted

systems [173, 174, 175, 176, 177, 178, 179]. By developing a general theoretical framework that

accounts for the coupled effects of protein diffusion, aggregation, and curvature generation, we

have eliminated the need for such strong assumptions and more importantly, demonstrated that

the intricate interactions between these different physics can lead to different regimes of pattern

formation and membrane deformations. These regimes can be tuned and controlled by different

parameters, allowing for exquisite control of experimental design. In summary, the comprehensive

model that we have developed here allows for a broader interpretation and understanding of

membrane-protein interactions in a unifying framework.
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Chapter 6

Binding and unbinding of curvature

inducing proteins to the membrane

6.1 Introduction

Chapter 5 showed how the aggregation of proteins competes with their diffusion to initiate

phase transition of the proteins, which drives the localization of curvature-inducing proteins and

generates membrane curvature [180]. The mass of proteins are considered to be conserved in

the membrane plane. However, protein exchange happens from membrane to the cytoplasm

through binding and unbinding. The equilibrium and non-equilibrium binding of proteins to the

membrane from the cytoplasm can lead to the phase transition of proteins [83], which cause local

deformation of the membrane. The protein binding on the other hand are found to be curvature

dependent in numerous experiments [86]. This establishes a strong curvature-driven feedback in

the process of protein binding.

A series of experimental [181, 182] and numerical studies [84, 85] investigated the

kinetics of binding and unbinding of proteins, and the resulting protein dynamics mimic several

biophysical processes. The equilibrium binding of non-interacting particles in membranes
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follows the Langmuir isotherm as a function of bulk concentration and available binding sites in

membranes, which is modified to include the effect of crowding, reaction rates, and diffusion of

particles subsequently [183]. Non-equilibrium binding of proteins shows formations of hexagonal

lattices in Monte Carlo simulation [184]. However, a multicomponent reaction-diffusion system

in the presence of binding shows a wide variety of chemical instabilities in the plane of membranes

ranging from pattern formation, chemical turbulence, standing, and traveling waves [185]. The

instabilities are found in living cells, and simplified experiments carried out in lipid vesicles

and supported lipid bilayers are backed up by rigorous theories of stability analysis [182]. Such

instabilities are pertinent in the limiting cases of single component binding.

In this chapter, we will focus on how the binding and unbinding of proteins to the

membrane from the cytoplasm influence the protein’s dynamics and how bending influences

the energy landscape. We first extended the theoretical framework presented in Chapter 4 and

Chapter 5 to encounter protein binding in addition to the bending of the membrane, in-plane

flow of lipid, aggregation, and diffusion of proteins. Here we also considered the dynamics of

the density of proteins at the bulk during binding and unbinding, which gives a two-component

dynamical system. We performed a stability analysis to find the necessary condition for phase

separation in the membrane in such a system. Subsequently, we demonstrate our model with the

help of numerical simulations in axisymmetric geometries and identified some of the significant

phase-transition behavior in curved membranes.

6.2 Model development

In this section, we formulate the governing equations for coupled diffusion and aggregation

of curvature-inducing proteins on a deformable viscous lipid membrane with bending elasticity,

building on our previous model [88]. We first formulate a free energy function for the membrane

and subsequently present the governing conservation equation and equations of motion.
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Figure 6.1: Membrane representation in axisymmetry with protein distribution area and bound-
ary conditions. (a) Schematic of binding and unbinding of a curvature-inducing protein and
resultant aggregation in the plane of the membrane. (b) Solution domain with protein coat and
boundary conditions.

6.2.1 Free energy of the membrane

W = kBT σs [φ logφ+(1−φ) log(1−φ)]︸ ︷︷ ︸
entropic

+
γσs

2
φ(1−φ)+

γ

4
|∇φ|2︸ ︷︷ ︸

aggregation

+κ(H− `σ)2 + κ̄K︸ ︷︷ ︸
bending

− µbσ︸︷︷︸
binding

.

(6.1)

Here σ is the density of the proteins, σs denotes the saturation density, and φ = σ/σs represents

the area fraction of protein in the surface of the membrane. The entropic, aggregation and bending

contributions of the free energy of the membrane have been discussed in [180]. The free energy

of protein binding in Equation (5.1) linearly depends on the density of proteins; the slope µb is

defined as the chemical potential of binding.
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6.2.2 Mass conservation of proteins

Conservation of mass for the protein density σ in the plane of the membrane is expressed

as
∂σ

∂t
+∇∇∇ ·mmm = q(σ,σb). (6.2)

Here, q is the net rate of binding of the proteins, and σb is the density of the proteins in bulk. The

proteins flux in the membrane, mmm, is given by the following constitutive relation in the presence

of a tangential velocity field vvv

mmm = vvvσ− 1
f

φ∇∇∇µ, (6.3)

where f is a constant denoting the thermodynamic drag coefficient of the protein and is related to

its diffusivity D by the Stokes-Einstein relation: D = kBT/ f . The chemical potential µ is obtained

as the variational derivative of free energy given in Equation (6.1) and is given by

µ = kBT σs[logφ− log(1−φ)]−2k`σs(H− `σsφ)−
γσs

2
(2φ−1)− γ

2
aαβ |∇∇∇φ|2−µbσs, (6.4)

where σb is the density of the protein in the bulk domain Ω, which is assumed to be a well-mixed.

A well-mixed system depicts the situation when the diffusion coefficient on the membrane is

much lower than the diffusion coefficient at the bulk. The conservation equation for σb at the

bulk is given by
∂σb

∂t
=− 1

V

∫
A

q(φ,σb)dA. (6.5)

6.2.3 Binding rate

In this study we considered a non-linear binding rate of proteins as given by the following

relation [181]

q(φ,σb) = σb (k1 + k2φ)(1−φ)− k3φ− k4. (6.6)
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The binding rate resembles the binding of a Min-D in abundance of Min-E in the membrane and

the cytoplasm. Here k1 and k2 denotes the rate constant of cytoplasmic and Min-D interaction

with membrane, k3 and k4 denotes the unbinding rate constant of by which membrane Min-D

interacts with cytoplasmic components.

6.2.4 Governing equations

The tangential force balance given in Equation (2.27) becomes

λ,α−4νw∇∇∇H +2ν(∇∇∇ ·ddd−∇∇∇w ·bbb) =

−∇∇∇σ

[
kBT log

(
φ

1−φ

)
−2κ`(H− `σsφ)−

γ

2
(2φ−1)− γ

2σs
∆φ−µbσs

]
,

(6.7)

where λ is the Lagrange multiplier of area incomprehensibility representing the tension in the

membrane, bbb is the curvature tensor, and ddd = 1
2

(
∇∇∇vvv+∇∇∇vvvT) denotes the rate of strain. The surface

incomprehensibility relation is depicted by

vα
;α = 2wH. (6.8)

The shape of the surface is described by the normal force balance relation as given by Equa-

tion (2.28), and reduces to

κ∆(H− `σsφ)+2k(H− `σsφ)(2H2−K)−2H
[
kBT σs{φ logφ+(1−φ) log(1−φ)}

+κ(H− `σsφ)
2 +

γ

2
φ(1−φ)+

γ

4
|∇∇∇φ|2

]
−2ν

[
bbb : ddd−w(4H2−2K)−µbσ

]
= p+2λH,

(6.9)
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where ∆(·) = ∇∇∇ ·∇∇∇(·) denotes the surface Laplacian of a scalar variable. The mass conservation

of proteins in the membrane given by Equation (2.34) reads as

φ,t +∇∇∇ · (vvvφ) = ∆φ

[
kBT

f

(
1

1−φ

)
+

2k`2σs

f
φ− γ

f
φ

]
−φ

[
2k`

f
∆H +

γ

2 f σs
∆

2
φ

]
+∇∇∇φ ·

[
∇∇∇φ

(
kBT

f

(
1

1−φ

)2

+
2k`2σs

f
− γ

f

)
− 2k`

f
∇∇∇H− γ

2 f σs
∇∇∇(∆φ)

]
+

1
σs

q(σb,φ),

(6.10)

where σb is obtained from the mass conservation equation of protein at the bulk, as given by

∂σb

∂t
=− 1

V

∫
A

q(σb,φ)dS. (6.11)

6.2.5 Non-dimensionalization

We non-dimensionalize the system of equations (Equation (6.7)–Equation (6.10)) using the

following reference scales. The characteristic length scale is taken to be the size L of the domain.

The scale for membrane tension λ is its mean value λ0. Velocities are non-dimensionalized by

vc = λ0L/ν, and we use the diffusive time scale tc = L2/D. Note that the protein area fraction

φ = σ/σs is already dimensionless. We non-dimensionalize the bulk protein density as Φ = σs
V/A .

The net binding rate is non-dimensionalized as Q = qL2

Dσs
. The dimensionless governing equations

are given below, where the dimensionless quantities are presented with a tilde. We present

dimensionless form of the governing equations for the coupled dynamics in Appendix C.

6.3 Cahn-Hilliard system with binding

In this section we present the conservation equation of proteins on the membrane and at

the bulk in presence of binding. We get mass conservation equation of proteins in the plane of the
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Table 6.1: List of dimensionless numbers and their definitions in the model of protein binding

Dimensionless Number Expression Physical interpretation

B̂
kBT

κ

Thermal energy
Bending energy

L̂
`

L
Spontaneous curvature length

Domain length

Â
γ

kBT
Aggregation coefficient

Diffusion coefficient

Ŝ σsL2 Domain area
Protein footprint

T̂
2L2λ0

κ

Membrane tension energy
Bending energy

Pe
λ0L2

νD
Advection strength
Diffusion strength

M̂
µ

kBT
Binding potential
Thermal energy

Φ
σbV
σsA

Bulk protein density
Saturation density in membrane

membrane (Equation (6.10)) in absence of bending and flow simplifies to

φ,t = Q(Φ,φ)+∆φ

[
1

1−φ
− γ

kBT
φ

]
−φ

[
+

γ

2kBT L2σs
∆

2
φ

]
+∇∇∇φ ·

[
∇∇∇φ

(
1

(1−φ)2 −
γ

kBT

)
− γ

2kBT L2σs
∇∇∇(∆φ)

]
.

(6.12)

Here the density of protein Φ at bulk is governed by

∂Φ

∂t
=−

∫
A

Q(Φ,φ)dA. (6.13)

6.3.1 Stability analysis

The linearized equations for perturbation of protein density over a homogeneous steady

state density both at the membrane (φ0) and at the bulk (Φ0) are derived from Equation (6.12)
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andEquation (6.13), given by

φ
′
t = Q,φ(Φ0,φ0)φ

′+Q,Φ(Φ0,φ0)Φ
′+∇

2
φ
′
[

1
1−φ0

− Âφ0

]
−φ0

[
Â
2Ŝ

∇
4
φ
′
]
, (6.14)

and
∂Φ′

∂t
=−Q,Φ(Φ0,φ0)φ

′−Q,Φ(Φ0,φ0)Φ
′. (6.15)

We take normal modes of φ′ and Φ′

φ
′ = φ̂eαtei2πkkk·xxx and Φ

′ = Φ̂ eαt . (6.16)

Equation (6.14) and Equation (6.15) give the following Jacobian after applying the normal modes

given in Equation (6.16)

J =

 Q,φ +4π2k2
(

Âφ0− 1
1−φ0

)
Q,Φ

−Q,φ −Q,Φ

 . (6.17)

The stability of the system is given by the eigenvalues of the Jacobian, given by

α
± =

1
2

(
Tr±

√
Tr2−4∆

)
, (6.18)

where

Tr = Q,φ−Q,Φ +4π
2k2
(

Âφ0−
1

1−φ0

)
and ∆ = 4π

2k2(Âφ0−
1

1−φ0
)Q,Φ, (6.19)

are trace and determinant of the Jacobian. Note that the necessary condition for instability is

Q,φ > Q,Φ−4π
2k2
(

Âφ0−
1

1−φ0

)
. (6.20)
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The last part in Equation (6.20) comes from the aggregation potential which is studied in Chapter 5,

and the system can be unstable in absence of the aggregation as well.

6.3.2 Numerical simulation in axisymmetric membranes

Figure 6.2: Role of protein binding on the localization of proteins in the plane of the membrane.
(a) Equilibrium configuration of proteins in the plane of the membrane with protein binding
for Â = 25 and Ŝ = 320. (b) Configuration of proteins in the plane of the membrane at long
time without protein binding for Â = 25 and Ŝ = 320. (c) Variance Vφ

(
=

∫
(φ−φmean)

2dA
)

of
protein distribution with time.

In this section, we present a numerical simulation in an axisymmetric membrane. In

these simulations, we considered the proteins which do not have the curvature-inducing effect;

therefore, the membrane remains flat. First, we focused on how binding affects the aggregation

dynamics of the proteins in Figure 6.2. We notice that in the absence of binding, proteins form

an aggregation patch at the center and an annular patch. However, we observe the formation of

a single dense patch at the center of the membrane with binding. The most notable difference

was in the variance plot. The dynamics of proteins do not achieve a steady state in the absence of

binding; instead, the aggregation and diffusion alternate dominance as depicted by the oscillating

nature of the variance.

Next, we study the dynamics of protein distribution in the plane of the membrane with

the binding of proteins. Figure 6.3 represents the temporal evolution of the protein density in the

plane of the membrane in the presence and absence of aggregation potential. We notice here even
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without aggregation potential, proteins aggregate, and over a long time aggregate to a single big

patch at the center of the membrane. The density of the patch for a long time is higher for Â = 25.

In both cases, we notice that aggregation patch forms as an annular ring, and the ring diameter

decreases until it becomes a patch at the center. The number of annular rings increases for higher

values of Â, which is consistent with the result of Chapter 5, which suggests higher aggregation

strength leads to more patches. However, the effect of binding becomes predominant for a long

time, and multiple patches merge.

Now we study the effect of aggregation parameters on the protein binding dynamics.

In Figure 6.3 we observe the binding dominates over longer time for Â = 25 and Ŝ = 320.

Given this result, we explore this behavior in the parameter space of Â and Ŝ, and notice until

what value of Â and Ŝ the binding dominates to give an aggregation patch at the center of the

membrane. Figure 6.4a depicts the equilibrium configurations of the patches in the plane of Â

and Ŝ. We observe that, for all values of Â and Ŝ, the distribution of protein reaches a steady

state (Figure 6.4b,c), unlike the oscillation we observed in Figure 6.2 in the absence of binding.

We see that for lower values of Â and Ŝ, the binding dominates, and we see a single patch at the

center. In the absence of aggregation potential Â, the effect of Ŝ is insignificant, but for higher

values of Â, we see the effect of Ŝ dominates the equilibrium behavior. Higher values of Â and

Ŝ give significant deviation from the binding dominated distribution depicted by one big patch

at the center. In the variance plot (Figure 6.4b,c), we noticed that as long as the protein patch is

concentrated at the center, variance increases with both Â and Ŝ. However, the variance declines

when the patches split into one or more axisymmetric patches.
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Figure 6.3: Temporal evolution of protein density in the plane of the membrane with binding
of protein in absence of bending. (a) Temporal evolution of protein density in the plane of
the membrane at three different times in absence of aggregation potential with Ŝ = 320. (a)
Temporal evolution of protein density in plane of the membrane at three different times with
aggregation potential (Â = 25) with Ŝ = 320.
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Figure 6.4: Configuration of protein distribution in the plane of the membrane with binding of
proteins in the parameter space of Â and Ŝ, in the absence of membrane bending. (a) Equilibrium
protein distribution. (b) Temporal evolution of variance of protein distribution with Â for Ŝ = 320.
(c) Temporal evolution of variance of protein distribution with Ŝ for Â = 25.
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6.4 Coupling with bending and flow with aggregation poten-

tial

6.4.1 Stability analysis

In the presence of bending the density perturbation equation in the membrane becomes

φ
′
t = Q,φ(Φ0,φ0)φ

′+Q,Φ(Φ0,φ0)Φ
′+∇

2
φ
′
[

1
1−φ0

+
2L̂2Ŝ

B̂
φ0− Âφ0

]
−φ0

[
L̂
B̂

∇
4z′+

Â
2Ŝ

∇
4
φ
′
]
,

(6.21)

where ∇4z′ comes from the shape equation, given by

∇
4z′ = 2L̂Ŝ∇

2
φ
′+2B̂Ŝ∇

2z′
[
{φ0 logφ0 +(1−φ0) log(1−φ0)}+

Â
2

φ0(1−φ0)+
L̂2Ŝ
B̂

φ
2
0

]
+ T̂ ∇

2z′.

(6.22)

The modified Jacobian of the system is given by

J =

 Q,φ +4π2k2
[

Âφ0− 1
1−φ0
− 2L̂2Ŝ

B̂
φ0g(k)

]
−8π4φ0

Â
Ŝ

k4 Q,Φ

−Q,φ −Q,Φ

 . (6.23)

Note that the necessary condition for instability becomes

Q,φ > Q,Φ−4π
2k2
[

Âφ0−
1

1−φ0
− 2L̂2Ŝ

B̂
φ0g(k)

]
. (6.24)

Similar to Chapter 5, bending here also has a stabilizing effect on the phase separation.
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6.4.2 Numerical simulation in axisymmetry membranes

Governing equations in an axisymmetric membrane

In the case of axisymmetry, we reduce the dimensionless form of governing equations in

the following simplified form. For bravity, we represent all the dimensionless quantities without

tildes. The tangential force balance relation ( Equation (C.1)) simplifies to

∂λ

∂s
−4w

∂H
∂s

+2(2
∂wH

∂s
+Kvs−

∂w
∂s

∂ψ

∂s
) =−∂φ

∂s

[
2B̂Ŝ
T̂

log
φ

1−φ

− 4L̂Ŝ
T̂

(H̃− L̂Ŝφ)− ÂB̂Ŝ
T̂

(2φ−1)− ÂB̂
T̂

∆φ− 2M̂B̂Ŝ
T̂

] (6.25)

where ∆(·) = 1
r

∂

∂s

(
r ∂(·)

∂s

)
, denotes the Laplacian operator of a scalar field. The continuity

(Equation (C.2)) is represented here as

1
r

∂(rvs)

∂s
= 2wH. (6.26)

Subsequently, we present the shape equation (Equation (C.3)) as two first order ODEs

1
r

∂L
∂s

+2(H− `σ0Lσ)(2H2−K)−2B̂Ŝ H̃
[

φ logφ+(1−φ) log(1−φ)+
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2
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4Ŝ
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+

γ
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+

sinψcosψvs

r2 −w(4H2−2K)
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(6.27)

with

L
r
=

[
∂H
∂s
− L̂Ŝ

∂σ

∂s

]
. (6.28)
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The diffusion equation of protein (Equation (C.4)) reduces to the following form:

φ,t +Pe
∂(ṽsφ)

∂s
= ∆φ

[
1

1−φ
+

2L̂2Ŝ
B̂
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]
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2Ŝ

∆
2
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+

∂φ

∂s

[
∂φ
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(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∂H̃
∂s
− Â

2Ŝ
∂(∆φ)

∂s

]
+Q(φ,Φ).

(6.29)

Figure 6.5: Configuration of the protein aggregate and the membrane shape as a function of
aggregation strength Â with the binding of curvature-inducing proteins. (a) Configuration of
membrane at long time for Ŝ = 2000, L̂ = 0.002 and three different values of Â. (b) Variance of
proteins density with time.

Results

We solved the system of equations (Equation (6.25) to Equation (6.29) ) in axisymmetry

with bending and in-plane viscous flow, with the numerical methods described in the Section 3.4.3.

Here we exclusively study the membrane shapes and how the shape affects the protein distributions.

Figure 6.5 shows the membrane shape and associated distribution of the curvature-inducing

proteins at long time in presence of binding. We notice here the aggregation patterns follow
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Figure 6.6: Configuration of the protein aggregate and the membrane shape as a function of
membrane stiffness B̂ with the binding of curvature-inducing proteins. (a) Configuration of
membrane at long time for Ŝ = 2000, L̂ = 0.002 and three different values of B̂. (b) Variance of
proteins density with time.

the behavior without bending. Patches become denser at higher value of Â, but if we increase

Â further, the effect of aggregation potential dominates the binding dynamics, gives multiple

annular patches, which gives lower bending of the membrane. When there are multiple patches

across the membrane, the net effect of curvature-inducing effect is weaker compared to the case

when proteins are localized at the center. This results a lower deformation in the membrane. The

results in this figure do not show a strong curvature-driven feedback on the aggregation as we

observed in Chapter 5.

Thereafter we increased the effect of bending to study the curvature-driven feedback in

the protein dynamics. Figure 6.6 presents the effect of B̂ on the protein dynamics and resultant

shape. Recall that B̂ is the ratio of thermal energy to the bending rigidity, and aggregation and

diffusion is scaled with the thermal energy. Therefore, lower values of B̂ denotes the stiffer

membrane, and here we achieved by lowering temperature. As the linear stability suggested the

dimensionless number B̂ has a strong influence on the stability, and as in Chapter 5 we notice for a
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nearly planner membrane how the bending limits the aggregation. Panel (a) shows the distribution

of protein at long time for three different values of B̂. We noticed that if we decrease B̂ one

order of magnitude lower corresponding to room temperature, the dynamics of proteins remains

almost unchanged. However, one more order of magnitude decrease leads to a massive change in

the proteins distribution. The protein patch moves towards the boundary, and that causes lower

deformation to the membrane. In the variance plot in panel (b) we see a sudden drop for this case,

indicating diffusion of the patch after a threshold time. At long time the distribution of proteins

reaches a steady state.

6.5 Discussion

The role of protein binding in the localization of proteins and inducing local deformation to

the membrane is crucial for many biophysical processes. In this present work, we have developed

a comprehensive theory of binding of proteins along with the in-plane transport and curvature

generation. We considered a well-mixed bulk system that indicates the diffusion coefficient

in bulk as much more dominant compared to the planner diffusion. We have considered one

particular binding rate of proteins to the membrane from the cytoplasm and explored the effect of

bending and protein-protein interaction. The resulting system of equations completely describes

the dynamics of membrane deformation protein distributions. We have further presented a reduced

system in the absence of bending and flow to demonstrate how the curvature-induced interaction

can alter phase separation dynamics. We compared the systems to linear stability and numerical

simulation studies in axisymmetry. We observed that the aggregation of proteins could occur due

to binding alone, and lower values of Â and Ŝ assist the aggregation. However, more elevated

values of Â or Ŝ alter the wavenumber of the patch, resulting in a reduction in the extent of

aggregation. We further detected curvature-induced feedback in the binding dynamics. Higher

spontaneous curvature limits the formation of the patch. The results support the stability analysis
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and are consistent with our past findings.

The effect of binding and unbinding was studied in experiments [85], theory [84, 82], and

numerical simulations [83] in multiple occurrences. The majority of the theoretical models did

not consider interaction forces among proteins, and the resulting system of equations resembles

the diffusion-driven instability as seen in a Turing pattern. Additionally, this study improves

the a-priori assumption of the binding rate as a curvature-dependent binding and unbinding rate

and demonstrates curvature dependence as an outcome of strong coupling. Furthermore, the

curvature-coupling in the large deformation captures a more substantial effect as opposed to

small-deformation analysis [83], and energy landscape analysis in spherical geometries [82].

Our model mimics the experimental setup by providing conservation equations of binding of

curvature-inducing proteins, both in the membrane and at the bulk, and resultant shape of the

membrane.
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Chapter 7

Snap-through transition in membrane tube

formation

7.1 Introduction

Plasma membrane tubes are omnipresent in cellular membranes and in the membranes of

intracellular organelles, and play crucial roles in biophysical functions (Figure 7.1) like trafficking,

ion transport, and cellular motility [186]. The formation of plasma membrane tubes can be due

to forces acting on the membrane due to the cytoskeleton or motor proteins [187, 50, 188] or by

the induced curvature of membrane-bound proteins [189]. The force-mediated tubular protrusion

has been studied extensively theoretically and with experiments on giant unilamellar vesicles

(GUV) [188]. However, the mechanics of protein-induced tube formation and the corresponding

energy landscape are poorly understood. Here, we present a mathematical framework to model

tubular protrusions mediated by proteins that induce anisotropic spontaneous curvature. We use a

free energy that accounts for membrane bending due to anisotropic spontaneous curvature, and

the free energy is then minimized to get the shape of the membrane. We demonstrate our model

with numerical simulations in an axisymmetric framework to study the role of the parameters,
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such as bending rigidity, membrane tension, area of curvature inducing proteins, and spontaneous

curvature of the proteins. We observed that the membrane undergoes a shape transition from a

dome-like shape to a long tube along a specific region in the parameter space. Such a transition is

similar to a snap-through instability. We study the energy landscape across this shape transition

and identify the critical values of dimensionless numbers across the shape transition. Finally, we

perform a stability analysis for a simplified geometry to find the necessary condition of this shape

transition and predicted threshold values of dimensionless numbers.

Figure 7.1: Schematic of protein-induced tube formation on cellular membranes. a)Mechanisms
of tube formation in cellular membranes, (I) Tubes can be formed due to forces exerted on
the membrane by the cytoskeleton, e.g. filopodial protrusion by actin filaments, (II) localized
forces such as tethers and motors (III) can also lead to the formation of tubes. Tubules can
also be formed by proteins, such as, BAR-domain proteins (BDPs) (IV). BDPs are know to
form cylindrical tubules by inducing curvature on the lipid bilayer. In this work, we focus on
modeling tubule-formation due to proteins such as these. (b) Schematic depicting proteins that
have anisotropic curvatures assembled on the cylindrical portion of a membrane tube. The
structure of a typical BAR-domain protein dimer induces two different curvatures in the parallel
and perpendicular direction.
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Table 7.1: Summary of the notation used in the model protein-induced tube formation

Notation Description Unit
W Free energy density of the membrane pN/nm
κ Bending modulus of the membrane pN−nm
κd Deviatoric modulus of the membrane pN−nm
nnn Surface normal 1
ζζζ Orientation vector of proteins 1
µµµ Orientation vector of protein (µµµ = nnn)×ζζζ 1
aαβ,aαβ Metric tensor and its contravarient –
bαβ,bαβ Curvature tensor and its contravarient –
s Arclength of the membrane nm
ψ Angle made by surface tangent with the horizontal direction 1
H Mean curvature nm−1

D Deviatoric curvature nm−1

C Spontaneous mean curvature nm−1

D0 Spontaneous deviatoric curvature nm−1

TTT Surface traction pN/nm
p Normal pressure acting on the membrane pN/nm2

λ Membrane tension pN/nm

7.2 Model development

BAR-domain proteins (BDP) are one-dimensional curved proteins, as shown in Figure 1,

which induce anisotropic curvature to the membrane [69, 70, 190]. If the curvatures c1 and c2 are

induced in the two principal directions, the spontaneous mean (C0) and deviatoric (D0) can be

estimated as

C0 =
c1 + c2

2
,D0 =

c1− c2

2
. (7.1)

Note that if we consider the induced principal curvature c1 equal to the curvature of the BDP’s

(curvature c in Figure 7.2b), the other principal curvature c2 will depend on the orientation of the

proteins. In the example shown in Figure 7.2b, BDPs orient circumferentially along a tube, c2

becomes zero in this case. For a common orientation, the spontaneous mean (C0) and deviatoric

curvature (D0) can be estimated from the curvature of the proteins and their orientation angle

[191, 42].
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7.2.1 Assumptions

We first assume membrane thickness and change in thickness are negligible compared

to bending, and thus a continuum description is valid in this case. The membrane is elastic

in bending, and the bending rigidity is assumed to be constant in the region. We consider an

incompressible patch of the membrane where the force balance relation depicts equilibrium shapes

at rest. We assume that the spontaneous mean and deviatoric curvature induced by membrane-

bound BDPs are divided into two region (Figure 7.2):

i. at the tip of the coat, a spontaneous mean curvature cap C0 = c with zero spontaneous deviatoric

curvature (D0 = 0) (region 1 in Figure 7.2)

ii. the rest of the coat with equal values of spontaneous mean and deviatoric curvature C0 = D0 =

c/2 (region 2 in Figure 7.2)

Note that this type of spontaneous curvature distribution arises when BDPs axially at the tip of

the tube and circumstantially rest of the tubular area. Such a type of orientation follows from the

minimization of bending energy of the BAR proteins. However, the spontaneous curvature at the

tip of the coat might be induced by other curvature-generating proteins.

7.2.2 Free Energy of the membrane

We consider a free energy of the membrane similar to the elastic energy given by the

Helfrich hamiltonian [36] with the modification of the deviatoric components [191, 42, 190]

W = κ(H−C0)
2 +κd(D−D0)

2, (7.2)

where κ,κd are the bending rigidities, H and D are the mean and deviotoric curvature of the

membrane, C0,D0 are the spontaneous curvatures induced by proteins.
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7.2.3 Governing equations

At the equilibrium configuration, an element on the membrane follows the local stress

balance relation given by[55, 111, 64]

TTT α
;α + pnnn = 000 , (7.3)

where, p is normal pressure on the membrane and TTT is the surface stress tensor. Equation 7.3

resolves to two separate force balance relations (see section 1.2 in the supporting information)

in the tangential and normal direction of the membrane. The tangential force balance relation

reduces to [111, 64, 11, 190]

λ,α =−W,α|exp, (7.4)

where λ is the Lagrange multiplier for area constraints, physically it represents the tension in the

plane of the membrane. W,α|exp in Equation 7.4 represents the explicit dependence of coordinate

on energy [111, 64] . The normal force balance relation depicts the equilibrium shape of the

membrane as is given by [190]

1
2
[WD(ζ

α
ζ

β−µαµβ)];βα +
1
2

WD(ζ
α

ζ
β−µαµβ)bαγb

γ

β
+∆(

1
2

WH)+

(WK);βα(2Haβα−bβα)+WH(2H2−K)+2H(KWK−W )−2Hλ = p.
(7.5)

Here ζζζ is the direction of orientation of the BDP’s, µµµ = nnn×ζζζ, with nnn as the unit surface normal

[190].

7.2.4 Governing equations in axisymmetry

In polar coordinates the geometry of the membrane can be parameterized by

rrr(r,z,θ) = rrr(s,θ), (7.6)
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where s is the arclength, and θ angle in the azimuthal direction. In the limit of axisymmetry,
∂(·)
∂θ

= 0 and the membrane can be parameterized by the arclength s only, as shown in Figure 7.2.

In axisymmetry, the tangential force balance relation in Equation (7.4) reads

r

z = 0

ψ = 0

λ = λ0

m = 0

ψ

θ

s

as
n

z

ψ = 0

L = 0

vs = 0

s

s

(a) (b)

(c)

Figure 7.2: Membrane representation in axisymmetry with protein distribution area and bound-
ary conditions. (a) Solution domain with protein coat and boundary conditions. (b) Distribution
of spontaneous mean and deviatoric curvature on the membrane along the arclength. (c) The
membrane deformation configuration with protein distributions, the dashed-lines shows the
region in the r− z plane we focused to show subsequent figures.

λ
′ = 2κ(H−C0)C′0 +2κd(D−D0)D′0, (7.7)

120



where (·)′ = ∂(·)
∂s . The normal force balance in Equation (7.4) simplifies to

p =
L′

r
+2κ(H−C0)

(
2H2−K

)
−2H (W +λ−2κdD(D−D0)) (7.8)

where,

L/r = [κ(H−C0)−κd(D−D0)]
′−2κD(D−D0)

cosψ

r
, (7.9)

denoting the normal component of traction on the membrane. Note that a form of these equations

presented in [190] but the definition of L is missing the last term in equation Equation (D.32).

We explained the mistake in detail in the section 2.1 of the supporting information. The detailed

derivations are shown in Appendix D.1 and Appendix D.2.

7.2.5 Numerical schemes

We solve the system of equations (Equation (D.33) to Equation (D.35)) numerically to

get the equilibrium shape of the membrane for a coat of protein at the center of an axisymmetric

area patch. The solution domain is presented in Figure 7.2a, along with the input protein coat

and the boundary conditions. The protein coat includes both the spontaneous mean curvature

cap and a combination of mean and deviatoric spontaneous curvature in the rest annular region

(Figure 7.2b). Note that we introduce a shape variable ψ which denotes the angle made by the

tangent from its radial plane. The membrane is clamped at the domain boundary, where both the

displacement and the angle ψ vanish. The membrane tension is also prescribed at the boundary.

At the center, ψ is taken to be zero, which indicates the smoothness at the center of the membrane.

L is also taken as zero, indicating no pulling force acting at the center. To solve the system of

equations, we used MATLAB bvp4c, a finite difference-based ODE solver with fourth-order

accuracy. We used a nonuniform grid ranging from 1000 to 10000 points, with the finer grid

towards the center. We presented the numerical results in the highlighted region of Figure 7.2c

for subsequent figures.
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Figure 7.3: Membrane tension limits the tubulation of the membrane. (a,b,c) Equilibrium shape
of the membrane for 3 different spontaneous deviatoric curvatures, compared with three different
values of tension (0.001, 0.01, 0.1 pN/nm). Fixed values are taken for area of the protein coat is
taken as 25132 nm2 and bending rigidity of the membrane 42 pN ·nm. (d,e,f) Equilibrium shape
of the membrane for 3 different protein coats areas, compared with three different values of
tension (0.001, 0.01, 0.1 pN/nm). Fixed values are taken for spontaneous deviatoric curvature
as 0.015 nm−1 and bending rigidity of the membrane 42 pN ·nm.
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Figure 7.4: Bending rigidity assists in the tubulation of the membrane. (a,b,c) Equilibrium
shape of the membrane for 3 different spontaneous deviatoric curvatures, compared with three
different values of bending rigidities (21, 42, 168 pN−nm). Fixed values are taken for area of
the protein coat is taken as 25132 nm2 and membrane tension 0.01 pN/nm. (d,e,f) Equilibrium
shape of the membrane for 3 different protein coats areas, compared with three different values
of bending rigidities (21, 42, 168 pN−nm). Fixed values are taken for spontaneous deviatoric
curvature as 0.015 nm−1 and membrane tension 0.01 pN/nm.
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Figure 7.5: Snap through instability and the role of membrane tension and bending rigidity.
(a,b,c) Snap through instability caused by decreasing membrane tension membrane tension
with acoat = 3.77×104 nm2 and D0 = 0.015 nm2 with the landscape of energy and membrane
deformation. Both the length of the tubular structure (b) and the bending energy (c) experienced
discontinuities across the snap through, and are shown for 4 different values of bending rigidity
κ. The morphology of the membrane changed from a tent to a tube shape (a). (d,e,f) Snap
through instability caused by increasing bending rigidity κ with acoat = 3.77× 104 nm2 and
D0 = 0.015 nm2 with the landscape of energy and membrane deformation. The length of the
tubular structure (e) and the bending energy (f) are shown with bending rigidity for for different
values of membrane tension. Forλ0 = 0.01 pN/nm a discontinuity is observed, the morphology
of the membrane changed from a tent to a tube shape (d).
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Figure 7.6: Forward and backward transition in tube morphology. (a) Transition of tube length
in the direction of increasing and decreasing membrane tension for D0 = 0.017 nm−1 and
κ = 168 pN ·nm and two different values of coat area of proteins. (b) Transition of bending
energy in the direction of increasing and decreasing membrane tension for D0 = 0.017 nm−1

and κ = 168 pN ·nm and two different values of coat area of proteins.

7.3 Results

We conducted numerical simulations across the parameter space of bending rigidity κ,

membrane tension λ, spontaneous curvatures C0,D0 and the coat areas of proteins acoat. Note that

C0 and D0 are not independent in our case. We show the variation with D0 for the subsequent

results; C0 relates to D0 as described in the section. Note that the value of D0 is constant in the

cylindrical region of the protein coat (region 2 in Figure 7.2a). We use this constant value as a

parameter and refer to D0 moving forward. Figure 7.3 represents the shape of the membranes

as a function of membrane tension λ0 for different values of spontaneous curvatures (a-c) and

coat areas (d-f). We notice that for higher values of coat areas and spontaneous curvatures,

membranes shapes are found in long rigid tubes for membrane tension of 0.01 and 0.001 pN/nm.

However, for higher values of membrane tension (0.1 pN/nm), the membrane remains almost

flat for all the values of protein coat area and spontaneous curvature. We see a similar behavior

for bending rigidity κ on shape. The higher values of κ favor the tubular shape, whereas for

lower κ membrane remains almost flat. The deformation behavior with κ is counterintuitive as
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Figure 7.7: Snap through instability and the role of spontaneous deviatoric curvature and the
coat area. (a,b,c) Snap through instability caused by increasing spontaneous deviatoric curvature
with κ = κd = 42 pN/nm and λ0 = 0.01 pN/nm2 with the landscape of energy and membrane
deformation. Both the length of the tubular structure (b) and the bending energy (c) experienced
discontinuities across the snap through, and are shown for 4 different values of bending rigidity
κ. The morphology of the membrane changed from a tent to a tube shape (a). (d,e,f) Snap
through instability caused by increasing coat area of protein with κ = κd = 42 pN/nm and
λ0 = 0.01 pN/nm2 with the landscape of energy and membrane deformation. The length of the
tubular structure (e) and the bending energy (f) are shown with bending rigidity for for different
values of membrane tension. For λ0 = 0.01 pN/nm a discontinuity is observed, the morphology
of the membrane changed from a tent to a tube shape (d).
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Figure 7.8: Phase-space diagram of protein-induced tube formation. Variation of length in the
parameter space of λ0 and κ (a), acoat and D0 (b), and λ0 and D0 (c). Variation of tube radius in
the plane of λ0 and κ (d, acoat and D0 (e), and λ0 and D0 (f). Landscape of bending energy in
the parameter space of λ0 and κ (g), acoat and D0 (h), and λ0 and D0 (i).
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Figure 7.9: Variation of tube length as a function of dimensionless numbers. (a) Variation of
length with dimensionless number λ0

κD2
0

for protein coat area of 3.77×104 nm2. (b) Variation
of length with the dimensionless number

√
acoatD0 for bending rigidity κ of 42 pN ·nm and

tension λ0 of 0.01 pN/nm.

more bending rigidity implies a stiffer membrane, which undergoes lower deformation. However,

in the case of deformation with spontaneous curvatures, the intrinsic shape of the membrane

is the tension-free membrane, the curvature of which follows the local spontaneous curvature.

Therefore, a membrane with lower tension will give the shape close to a tube, and with increasing

tension, the shape will deviate from the tube shape and becomes flatter. In such circumstances,

the membrane with more bending rigidity will offer more resistance to deviate from the tubular

configuration, and thus we see a long tube for higher κ and vice versa.

Next, we studied the role of each four parameters on the shape, and we varied each

separately, keeping the other parameter constant. In Figure 7.5 we varied membrane tension and

bending rigidity and focused on the transition of shape from a tent to a tube. We noticed that the

transition from a tent is similar to a snap-through transition. We observed the shape transition

with decreasing membrane tension (a-c) and increasing bending rigidity. Panel (a) represents

the shape of the membrane before and after the transition for decreasing membrane tension with

bending rigidity of 168 pN/nm. Panel (b) shows the length of the tube as a function of λ0 for

different values of κ, and panel (c) shows the corresponding bending energy. We see a sudden

change in the transition from a tent to a tube shape in both cases. Panel (d)-(f) shows the plots for
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transition shapes, tube length, bending energy, and increasing bending rigidity. In panel (e) and

(f), we noticed for some values of λ0 the variations of tube length and the bending energy are

smooth. There is no shape transition in this range of κ: a tube remains a tube, and a tent stays as

a tent in this range.

The sudden transition of membrane shape resembles many of the snap-through behaviors

for elastic deformations. Many of those transitions are demonstrated by saddle-node bifurcations.

However, the stability analysis became immensely complex since the equilibrium shape is curved

in our present problem. Furthermore, a closed-form solution of the equilibrium deformation is

also not available close to the transition. Instead, we have taken an alternative approach. In this

snap-through transition, we expect a pair of saddle-node bifurcations. Therefore we expect a

pair of stable equilibrium solutions in the neighborhood of the transition. We have solved the

system of equations for a parameter with an increasing and decreasing direction to find that. We

gave our solver a sense of direction by providing an initial guess of the solution corresponding to

the last value of the parameter. We showed a similar study for the membrane tension, and the

corresponding tube length and the energy are shown in Figure 7.6. Close to transition, we see two

different solutions of shape, and there is a lag in the tube length and bending energy when we

change λ0 in forward and backward directions. Note that the numerical solution is not smooth

near the transition region, and for some points, the solution does not converge to a stable solution.

Next we explore the snap-through transition with parameters of spontaneous curvature D0

and acoat. Panel (a)-(c) shows the transition for increasing spontaneous curvature D0 with different

coat areas. We see a sharp increase in tube length in panel (b) and corresponding bending energy

drops at the transition, as shown in panel (c). Figure (a) shows the shapes across the transition

for acoat = 5.02×104. Panel (d)-(f) shows the similar snap-through transition with the coat area

of proteins for four different values of spontaneous curvatures D0. We see a sharper transition

only for D0 = 0.017nm−1, for which the energy declines along with the transition. However, the

rest of D0 do not show any transition, a tube remains as a tube as a tent remains as a tent in these
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cases. The corresponding energies are also monotonic.

Next, we show a phase diagram for tube length, tube radius, and bending energy in the

parameter space of λ0−κ, acoat−D0, and λ0−D0. We notice a sharper transition of tube length

in the parameter space. For example, we see a linear transition boundary in the parameter space

of λ0−κ. However the transition boundary becomes parabolic in acoat−D0, and λ0−D0. The

tube radius follows a similar behavior of length, and the longer tube corresponds to the tube of

smaller radius. We scaled the energy with the bending rigidity κ to show the energy landscape.

We see that there is a downhill bending energy across the transition line. The bending energy

corresponding to the long tubes is less compared to the shorter tubes. This comes from the fact

that the long tubes are less deformed than their base state.

We seek dimensionless numbers from these numerical simulations that could describe

the solution in reduced parameter space. We present such an analysis in Figure 7.9. Panel (a)

shows that the tube length collapse to a line for the dimensionless number λ0
κD0

. These simulations

are performed for different values of λ0, κ, and D0, keeping coat area acoat constant. We further

see that close to the length of 200 nm there, the points are less denser. This corresponds to the

transition region. In panel (b) we present the tube length for different values of acoat and D0, and

see that the length merges to a line when we plot them with dimensionless number
√

acoatD0.

Here also, we see the transition region along 150−200 nm, depicted by less dense points.

7.4 Discussion

In the paper, we have presented a theoretical formulations of tube formation due to

protein-induced anisotropic curvature. In the theoretical formulation we considered a continuum

the free energy of membrane bending, where we included the effect of orientation of proteins

by giving the specified values of spontaneous curvature. We derived a system of equations by

minimizing the free energy in an axisymmtric geometry. The derivation did exist in the literature
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with an error which led to the introduction of a numerical force term, and that was included in the

subsequent studies. Here, we have redefiend the quantity L so that it gives normal bending stress,

gives a natural boundary condition for the boundary-value problem. We solved the system of

equations in wide range of parameters and observed a snap-through transition, which corresponds

to the change in shape from a tent to a tube. The snap-through transition is omnipresent across

all the parameters, and that led us to the finding of a dimensionless number with which the

shape variables collapse. Furthermore, we observed a downhill of energy across this transition,

suggesting how the bending energy landscape favors the transition of shape.

The idea that deviatoric curvature favors tubular protrusion is proposed in a series of

studies [190, 192, 193], where a cylindrical membrane is coated with proteins that induce

deviatoric curvature. However, formation of a tube from a flat membrane due to anisotropic

curvature alone, has not been studied, except the study by Perutkova et al. [193] that showed

tubular shapes in such cases are energetically favorable. Secondly, the snap-through transition was

observed via systematic numerical simulations, and a hysteresis-like behavior was also reported.

In the study of the snap-through in formation of a bud and force pulled tube, the role of tension

was investigated in detail. In addition to finding the role of tension we have extended the study to

find the role of bending rigidity as well, which finds its implication in the biophysical processes

where changes of composition and saturation leads to changes in bending rigidity.

This model has numerous implication in the biophysical problems related to tubular

structures generated by proteins, such as formation of t-tubule in cardiac myocytes, cristae

formation in mitochondria, and Drosophila cellularization. Transition of shapes from a tent to

a tube and the dissolve of tube to a tent has been observed in biological systems. For example

t-tubules in cardiac myocytes disintegrated in a culture, and disappearance of cristae is also

observed under certain conditions. Furthermore, these disintegration is noticed in many disease

states. The snap-through transition across parameter space could demonstate this transition in a

qualitative way.
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Chapter 8

Concluding remarks and future directions

In this thesis, we presented a comprehensive theory of the coupled transport phenomena

that occurs in membrane-protein interaction: out of plane bending of the membrane, in-plane lipid

flow and resulting advection-diffusion transport of protein, and interaction among proteins leading

to the formation of aggregates. The system of equations we obtained gives the equation of motion

of the membrane shape and spatio-temporal distribution of the proteins. Moreover, this study

considers the viscous flow of lipid, which offers completeness in the expression of membrane

tension as opposed to the inviscid study. We presented a linear stability analysis to predict the

parameter space that favors the formation of protein aggregates from homogeneously distributed

proteins. Subsequently, we demonstrated numerical simulations in the small deformation in

a square domain and large deformation in the limit of axisymmetry. We observed the role of

curvature-driven feedback and in-plane velocity field in the dynamics of protein distribution in a

diffusion-dominated regime in Chapter 4. The aggregation strength Â and the relative size number

Ŝ have critical roles in forming aggregates, while the influence of curvature-driven feedback

depicted by dimensionless spontaneous curvature L̂ inhibits the aggregation of proteins as shown

in Chapter 5. Our linear stability analysis could also verify the role of bending in limiting the

formation of protein aggregates. However, in the case of protein binding, aggregates can form in
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the absence of aggregation potential, where the aggregation landscape changes in the influence of

protein-protein interaction as depicted by Â and Ŝ as shown in Chapter 6. However, the effect of

curvature-driven feedback limiting the aggregation is consistent among the studies.

The problem we discussed in Chapter 7 demonstrates the snap-through transition of the

membrane shape caused by localized anisotropic curvature-inducing proteins. We formulate free

energy of bending from a Helfrich-like Hamiltonian with the modification of the anisotropic term.

We corrected the derivation of the system of equations over the existing model in the literature and

introduced a modified expression of normal bending stress that uses natural boundary conditions.

The resultant equations for shape are solved in an axisymmetric geometry at equilibrium. The

parametric analysis shows that the snap-through transition of shape is always present across all

the parameters. Furthermore, we noticed a hysteresis-like behavior that resembles the saddle-node

and subcritical pitchfork bifurcation in elastic structures. We identified two dimensionless groups

with which the shape behaviors collapse in lines and dictate the snap-through transition.

This study serves the need for a comprehensive coupled model of transport phenomena

that bridges the gap between the study of dynamics of shape in an inviscid membrane and viscous

flow in a fixed membrane. Furthermore, we mitigated the assumption of localized proteins

in generating membrane shape providing a detailed mechanism of protein aggregation. The

dynamics presented in the study break the limitation of equilibrium study and show the role of

coupling clearly. This kind of approach has the potential to understand fast processes compared

to relaxation time, such as ultrafast endocytosis. Our numerical implementations are focused on a

simplified geometry, which offers an understanding of the role of individual physical processes in

the coupled system. The stability analysis we provided across the chapters helps us interpret the

numerical simulation even with better clarity.

This study can further be generalized and extended in many directions. The interaction

with the bulk flow and transport of species at bulk can be included in this model with the help

of boundary integral techniques. Next, the restrictions of idealized geometry can be overcome
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by considering realistic geometry obtained from the microscopic data, and discrete differential

geometry can be used to model such non-idealized membranes. Further, the thermal fluctuation

of the membrane can also be included to study the more realistic dynamics. In such a case, a

discrete model of protein-lipid interaction would be helpful in understanding the dynamics of

protein aggregation more accurately. Finally, the transport of proteins on the membrane can be

extended to a multi-component reaction-diffusion system, which we see in signaling pathways.
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Appendix A

Analytical justification and validations of

numerical simulation

A.1 Analytical justification for the flat plane as the equilib-

rium solution

Our 1D simulations in §4.3.2 show that at steady state the protein distribution reaches a

uniform distribution while the string approaches the flat configuration. Here, we rationalize this

result and prove theoretically that the flat configuration with uniform protein density is indeed

an exact solution. To this end, we consider the arc-length parametrization and write the energy

Lagrangian as

L =
∫
[k(H−C)2 +λ]ds =

∫
[k(ψs−C)2 +λ]ds. (A.1)

In the above relation, ψ is the angle made by the string with the horizontal direction and s is the

arc-length. The curvature, in this case, is given by ψs. The tangential force balance reads

2k[ψs−C(s)]C′(s) = λs, (A.2)
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which provides an equation for the string tension λ for a given shape and spontaneous curvature.

For a uniform protein density, the spontaneous curvature is also uniform: C(s) =C0, and equation

(A.2) then implies a uniform tension λ(s) = λ0 everywhere in the domain. The Lagrangian then

simplifies to

L =
∫ L/2

−L/2

[
(ψs−C0)

2 +Λ0
]

ds, with Λ0 =
λ0

k
. (A.3)

Here, we have taken the domain to be −L/2≤ s≤ L/2, and we assume the following boundary

conditions at both ends:

y(−L/2) = y(L/2) = 0, ψ(−L/2) = ψ(L/2) = 0. (A.4)

Without loss of generality, we can consider symmetric deformations with respect to s = 0, and

seek the solution for ψs as a Fourier cosine series of the form

ψs = a0 +
∞

∑
n=1

an cos
2nπs

L
. (A.5)

Substituting this series into equation (A.3) yields

L =
∫ L/2

−L/2

[
k
(

a0 +
∞

∑
n=1

an cos
2nπs

L
−C0

)2

+λ0

]
ds

=
L
2

∞

∑
n=1

ka2
n +L(kC2

0 +λ0).

(A.6)

We find that L is independent of a0. Minimizing L with respect to the Fourier coefficients leads

to ai = 0 for i 6= 0. We therefore find that ψs = a0, which integrates to ψ = a0s+b. Using the

boundary conditions (A.4), we obtain

ψ(s) = 0, (A.7)

which indicates that the flat configuration is the equilibrium solution in this case.
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A.2 Validation of algorithm for pressure-Poisson equation

In §4.3, we solved the coupled membrane tension and velocity for the case of linear

Monge by solving the pressure-Poisson equation with the help of the integral representation of

equation (4.27). Here, we present a validation of this method and compare the result with the

Stokes-Neumann system [1]. Recall the governing equations for the fluid flow in the present case:

∇̃∇∇ ··· ṽvv = 2w̃H̃, (A.8)

∇̃∇∇λ̃+ ∇̃
2ṽvv+ ∇̃∇∇(∇̃∇∇ ··· ṽvv)−4w̃∇̃∇∇H̃−2∇̃∇∇w̃ ::: ∇̃∇∇∇̃∇∇z̃ =

∇̃∇∇σ̃

[
2ĈB̂

T̂
∇̃

2z̃− 4Ĉ2B̂2

T̂
σ̃− 2Ĉ

T̂
log
(

σ̃

σ̃s

)]
.

(A.9)

The velocity field vvv can be written as a Helmholtz decomposition:

ṽvv = ∇̃∇∇φ+ ∇̃∇∇× ζ̃ζζ = ṽvvd + ũuu, (A.10)

where ṽvvd is the curl-free and ũuu is divergence-free. In particular, the continuity equation (A.8)

becomes ∇̃∇∇ ··· ṽvvd = 2w̃H̃. Now, substituting ṽvv = ũuu+ ṽvvd into the governing equations (A.8)–(A.9)

for the fluid flow yields the modified system of equations:

∇̃∇∇ ··· ũuu = 0, (A.11)

∇̃∇∇λ̃+ ∇̃
2ũuu+ f̃ff = 0, (A.12)

where,

f̃ff = 2∇̃∇∇(2w̃H̃)−4w̃∇̃∇∇H̃−2∇̃∇∇w̃ ::: ∇̃∇∇∇̃∇∇z̃

−∇̃∇∇σ̃

[
2ĈB̂

T̂
∇̃

2z̃− 4Ĉ2B̂2

T̂
σ̃− 2Ĉ

T̂
log
(

σ̃

σ̃s

)]
.

(A.13)

138



Equations (A.12)–(A.11) constitute a inhomogeneneous Stokes problem with body force f̃ff . We

solve it here with boundary conditions ũuu∞→ 000 and λ̃∞→ 1 at infinity. In that case, the velocity

and pressure are simply obtained using the boundary integral equations [194]

ũuu(x̃xx) =
∫

Ω

G(x̃xx− x̃xx0) ··· fff (xxx0)dA(x̃xx0), (A.14)

λ̃(x̃xx) = 1+
∫

Ω

Π(x̃xx− x̃xx0) ··· fff (xxx0)dA(x̃xx0), (A.15)

where G and ΠΠΠ are the velocity and pressure Green’s functions for two-dimensional Stokes flow

and are given by:

G(x̃xx) =
1

4π

(
x̃xxx̃xx
|x̃xx|2
− III log |x̃xx|

)
,

ΠΠΠ(x̃xx) =− 1
2π

x̃xx
|x̃xx|2

.

(A.16)

Figure A.1 compares the membrane tension profile λ̃ obtained in figure 4.3(a) for a single patch

with the solution obtained using the Stokes-Neumann formalism. We find that the relative error is

well below 4% everywhere in the domain (a). The two membrane tension profiles overlap over

most of the domain except for a small deviation near the center (b).
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BA

Figure A.1: Comparison between membrane tension calculated using the present model and a
Stokes-Neumann formulation [1]. (a) Relative error ε = (λ−λSN)/λSN in the membrane tension
for the case of single patch of protein (figure 4.3(a)) at time t̃ = 5×10−3, (b) Membrane tension
distribution along line AB shown in (a) for the present model and Stokes-Neumann solution.
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Appendix B

Details of mathematical modeling and

numerical simulations of protein

aggregation

B.1 Model development

Here we present the governing equation derived from Section 2.3 specific to Chapter 5 that

focuses on the transport of curvature-inducing proteins and curvature-driven feedback. Further,

we used Gibbs notations to describe the governing equations.

B.1.1 Stress tensor on a surface

The stress tensor ΣΣΣ represents the state of stress at any location of the membrane and

includes both the in-plane normal and shear stresses as well as out-of-plane shear stress due to

bending. Each column of the stress tensor ΣΣΣ constitutes the traction vector on the curve drawn on
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the membrane, known as the stress vector, and is represented as

ΣΣΣ
α = Nαβaaaβ +Sαnnn, (B.1)

where NNN is the surface stress tensor, SSS represents the shearing force due to bending, and aβ (for

β = 1,2) represents the surface tangent vector normal to the curve. The local equilibrium of

forces, in the tangential and normal directions, is given by [108]

∇ ·NNN−SSS ·bbb = 0, (B.2)

∇ ·SSS+NNN : bbb+ p = 0, (B.3)

with

NNN = ζζζ+πππ+bbb ·MMM and SSS =−∇ ·MMM. (B.4)

Here, ζζζ and MMM are the elastic stress and moment tensors, bbb is the curvature tensor, and πππ is the

viscous stress tensor. The elastic stress and moment tensors can be obtained from the energy

density for an incompressible membrane as [108, 88]

ζζζ =−2κ(H− `σ)bbb−2κ̄Kaaa−ξaaa,

MMM = κ(H− `σ)aaa+ κ̄(2Haaa−bbb) ,
(B.5)

where ξ is the Lagrange multiplier that imposes the incompressibility constraint and aaa is the

metric tensor of the surface. The surface tension λ is related to ξ with the following expression

[108]

λ =−(ξ+W ). (B.6)
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The viscous stresses obey the constitutive relation [109]

πππ = 2ν [ddd−wbbb] . (B.7)

Here,

ddd =
(
∇vvv+∇vvvT)/2, (B.8)

is the rate-of-strain tensor expressed in terms of the velocity field vvv (see [109, 112, 88] for details).

w is the normal velocity of the surface, given by

w = nnn · rrrt , (B.9)

where rrr is the position vector of a material point on the surface.

B.1.2 Dimensionless governing equations

Here we summarize the governing equations for the coupled dynamics of the system in

the dimensionaless form. The tangential force balance equation becomes

∇λ̃−4w̃∇H̃ +2(∇ · d̃dd−∇w̃ · b̃bb)

=−∇φ

[
2B̂Ŝ
T̂

log
φ

1−φ
− 4L̂Ŝ

T̂
(H̃− L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ−1)− ÂB̂

T̂
∆φ

]
,

(B.10)

along with the surface incompressibility relation,

∇ · ṽvv = 2w̃H̃. (B.11)
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The normal force balance relation takes the following form

∆(H̃− L̂Ŝφ)+2(H̃− `Lσsφ)(2H̃2− K̃)−2B̂Ŝ H̃
[
{φ logφ+(1−φ) log(1−φ)}+ Â

2
φ(1−φ)

+
Â
4Ŝ
|∇φ|2

]
−2H̃

[
(H̃− `σsLφ)2]− T̂

[
b̃bb : d̃dd−w(4H̃2−2K̃)

]
= p̃+ T̂ λ̃H̃.

(B.12)

The mass conservation of proteins is given by

φt +Pe ∇ · (ṽvvφ) = ∆φ

[
1

1−φ
+

2L̂2Ŝ
B̂

φ− Âφ

]
−φ

[
2L̂
B̂

∆H +
Â
2Ŝ

∆
2
φ

]
+∇φ ·

[
∇φ

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∇H̃− Â

2Ŝ
∇(∆φ)

]
.

(B.13)

B.1.3 Governing equations in the linear Monge regime

The continuity condition and tangential force balance simplify as

∇ · vvv = 2wH, (B.14)

and,

∇λ+∇
2vvv+∇(∇ · vvv)−4w∇H−2∇w : ∇∇z =

−∇φ

[
2B̂Ŝ
T̂

log
φ

1−φ
− 4L̂Ŝ

T̂
(H− L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ−1)− ÂB̂

T̂
∇

2
φ

]
.

(B.15)

The normal force balance Equation (C.3) reduces to

∇
4z−2L̂Ŝ∇

2
φ−2B̂Ŝ∇

2z
[
{φ logφ+(1−φ) log(1−φ)}+ Â

2
φ(1−φ)+

Â
4Ŝ
|∇φ|2 + L̂2Ŝ

B̂
φ

2
]

− T̂ (∇vvv+∇vvvT ) : ∇∇z = p+ T̂ λ∇
2z.

(B.16)
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Finally, the transport equation for the protein density field Equation (C.4) takes on the following

form:

φt +Pe ∇ · (vvvφ) = ∇
2
φ

[
1

1−φ
+

2L̂2Ŝ
B̂

φ− Âφ

]
−φ

[
2L̂
B̂

∇
2H +

Â
2Ŝ

∇
4
φ

]
+∇φ ·

[
∇φ

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∇H− Â

2Ŝ
∇(∇2

φ)

]
.

(B.17)

B.1.4 Linear stability analysis in the linear Monge regime

We substitute the follwoing normal modes into Equation (5.20) and Equation (5.21),

φ
′ = Φeαtei2πkkk·xxx and z′ = Zeαtei2πkkk·xxx, (B.18)

yielding the relations

Z
[

16π
4k4 +8π

2k2B̂Ŝ
(
{φ0 logφ0 +(1−φ0) log(1−φ0)}

+
Â
2

φ0(1−φ0)+
L̂2Ŝ
B̂

φ
2
0

)
+4π

2k2T̂
]
=−8π

2k2L̂ŜΦ,

(B.19)

and

αΦ =−4π
2k2

Φ

[
1

1−φ0
+

2L̂2Ŝ
B̂

φ0− Âφ0

]
−16π

4k4
φ0

[
L̂
B̂

Z +
Â
2̂S

Φ

]
. (B.20)

Eliminating variables Z and Φ, we obtain the dispersion relation given in Equation (5.22).

B.1.5 Numerical methods

We solved the dimensionless governing equations in the linear Monge regime (Equa-

tion (B.14) to Equation (B.17)) numerically inside a square domain with periodic boundary

conditions. Numerical simulations were performed on a spatial uniform grid of size 64 × 64
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for the lower value of Ŝ (200). However, we considered a finer uniform grid of size 128 × 128

for the higher values of Ŝ (500, 1000, and 2000), where we observed smaller sizes of protein

aggregates. We used a finite difference scheme to solve the transport equation for the protein

density (Equation (B.17)), whereas the velocity (Equation (B.14) and Equation (B.15)) and the

shape (Equation (B.16)) were solved using a Fourier spectral method [113, 114]. A semi-implicit

scheme was used for the time marching for the protein density φ with a time step ∆t = 3×10−4,

where the nonlinear terms involving velocity and curvature were treated explicitly. In contrast,

the nonlinear aggregation-diffusion terms were treated with linear implicit terms. The resulting

transport equation is shown below

φn+1−φn

∆t
+Pe ∇ · (vvvn+1

φ
n+1) = ∇

2
φ

n+1
[

1
1−φ

+
2L̂2Ŝ

B̂
φ− Âφ

]n+1

−φ
n+1
[

2L̂
B̂

∇
2Hn+1

]
+φ

n+1
[

Â
2Ŝ

∇
4
φ

n+1
]
+∇φ

n+1 ·
[

∇φ

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∇H− Â

2Ŝ
∇(∇2

φ)

]n+1

,

(B.21)

where the superscript n+1 indicates the explicit terms for time step n+1, for which the currently

available values were considered. The explicit terms were further updated using an iterative

scheme, and within each iteration, velocity and shape were recalculated for the updated values of

protein density. The iterations were performed within a time step until convergence was achieved.

For the convergence within a time step, we used a tolerance of 5×10−7. When the differences

between values of variables from successive iterations fell below the tolerance, we considered the

values of the variables to be converged in that time step.
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B.2 Phase diagram of membrane deformation and membrane

tension

1
0
0
0

2
0
0
0

Figure B.1: Protein distribution on the deformed membrane at a long time mimicking the steady
state in the plane of L̂ and Ŝ, with Â = 25.
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Figure B.2: Membrane tension on the projected membrane surface at a long time mimicking
the steady state in the plane of L̂ and Ŝ, with Â = 25.
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Appendix C

Dimensionless governing equation for

protein binding

The tangential force balance relation (Equation 6.7) and continuity (Equation 6.8) reduce

to

∇λ̃−4w̃∇H̃ +2(∇ · d̃dd−∇w̃ · b̃bb)

=−∇φ

[
2B̂Ŝ
T̂

log
φ

1−φ
− 4L̂Ŝ

T̂
(H̃− L̂Ŝφ)− ÂB̂Ŝ

T̂
(2φ−1)− ÂB̂

T̂
∆φ− 2M̂B̂Ŝ

T̂

]
,

(C.1)

along with the surface incompressibility relation,

∇ · ṽvv = 2w̃H̃. (C.2)
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The normal force balance equation (Equation 6.9) becomes

∆(H̃− L̂Ŝφ)+2(H̃− `Lσsφ)(2H̃2− K̃)−2B̂Ŝ H̃
[

φ logφ+(1−φ) log(1−φ)+
Â
2

φ(1−φ)

+
Â
4Ŝ
|∇φ|2− M̂φ

]
−2H̃

[
(H̃− `σsLφ)2]− T̂

[
b̃bb : d̃dd−w(4H̃2−2K̃)

]
= p̃+ T̂ λ̃H̃.

(C.3)

The transport equation of protein in the membrane (Equation 6.10) is given by

φ,t +Pe ∇ · (ṽvvφ) = ∆φ

[
1

1−φ
+

2L̂2Ŝ
B̂

φ− Âφ

]
−φ

[
2L̂
B̂

∆H +
Â
2Ŝ

∆
2
φ

]
+∇φ ·

[
∇φ

(
1

(1−φ)2 +
2L̂2Ŝ

B̂
− Â
)
− 2L̂

B̂
∇H̃− Â

2Ŝ
∇(∆φ)

]
+Q(Φ,φ).

(C.4)

The conservation equation of protein in the bulk domain (Equation 6.11) reduces to

∂Φ

∂t
=−

∫
A

Q(Φ,φ)dA. (C.5)

The above system of equations involves several dimensionless groups as given in Table 6.1.
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Appendix D

Derivation of shape equation for

protein-induced tube formation

D.1 Model Development

D.1.1 Surface representation

In a polar coordinate the membrane can be parameterized by the arclength s and the

rotation angle θ as

rrr(r,z,θ) = rrr(s,θ). (D.1)

The surface tangents are given by eees = rrr,s and rrr,θ. The surface metric ai j = eeei · eee j becomes

ai j =

 1 0

0 r2

 . (D.2)
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The curvature tensor bi j = ei, j.nnn simplifies to

bi j =

 ψs 0

0 r sinψ

 . (D.3)

The mean curvatures is given by

H =
1
2

aαβbαβ,

where, aαβ is the inverse of the metric tension. The principal curvature can be extracted from the

curvature tensor as

cζ = bαβξ
α

ξ
β,

and

cµ = bαβν
α

ν
β.

where, xxxiii and ννν are surface tangents in two principal directions, The deviatoric curvature becomes

D =
1
2
(cξ− cν).

D.1.2 Protein Orientation

Figure D.1: Orientation vectors of BAR-domain proteins

The orientation of a protein on the surface can be represented by orientation unit vector
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ζζζ which essentially indicates tangent to the curve on which protein orients [190]. Thus we can

constitute another unit vector µµµ, such that: µµµ = nnn×ζζζ.

D.1.3 Balance relations

The force balance equation is dictated by

TTT α
;α + pnnn = 000 , (D.4)

where, p is normal pressure on the membrane and TTT is traction on the membrane and given by,

TTT α = Nβαaaaβ +Sαnnn. (D.5)

Here, NNN in-plane components of the stress and is given by We further have,

Nβα = ζ
βα +bβ

µMµα and Sα =−Mαβ

;β , (D.6)

where, σβα and Mβα are obtained from the following constitutive relations [55]

σ
βα = ρ

(
∂F

∂aαβ

+
∂F

∂aβα

)
and MMMβα =

ρ

2

(
∂F

∂bαβ

+
∂F

∂bβα

)
, (D.7)

with F =W/ρ is the energy mass density of the membrane. Combining these we get the balance

equations in tangent and normal direction

Nβα

;α −Sαbβ

α = 0, Sα
;α +Nβαbβα + p = 0 (D.8)

153



The normal force balance relation in Equation D.8ii becomes [190]

1
2
[WD(ζ

α
ζ

β−µαµβ)];βα︸ ︷︷ ︸
I

+
1
2

WD(ζ
α

ζ
β−µαµβ)bαγb

γ

β︸ ︷︷ ︸
II

+

∆(
1
2

WH)+(WK);βαb̃βα +WH(2H2−K)+2H(KWK−W )−2Hλ = p,

(D.9)

where the marked terms are simplified in the next section for an axisymmetric geometry. To

construct a force boundary condition we use the expression of the normal traction force as given

by

Fn =(τWK)
′− 1

2
(WH),ν− (WK),β b̃αβvα

+
1
2
(WD),ν−

(
WDλ

α
λ

β

)
;β

vα−
(

WDλ
α

λ
βvβτα

)′
.

(D.10)

D.2 Simplification in axisymmetry

D.2.1 Governing equations

We have orthogonal surface tangent vectors as given by

aaa1 = eees aaa2 = reeeθ. (D.11)

We get the expression of orientation unit vector in terms of orthogonal basis vectors as given

below

ζζζ =−eeeθ =−
1
r

aaa2 µµµ = aaa1. (D.12)

We first find the expressions of the direct products of orientation vectors used in Equation (D.9)

below

ζ
α

ζ
β =

0 0

0 1/r2

 , (D.13)
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and

µαµβ =

1 0

0 0

 . (D.14)

In the limit of axisymmetry, the components of Christoffel symbols denoted by Γa
bc =

1
2aad [∂aabd +∂badc−∂dabc] simplifies to

Γ1
11 = 0, Γ2

22 = 0, Γ1
22 =−r cosθ,

Γ2
12 = Γ2

21 =
cosψ

r , Γ1
21 = 0,and Γ2

11 = 0.
(D.15)

We first simplify the term I in equation Equation (D.9) below

I =
1
2

[
WD

(
λ

α
λ

β−µαµβ

)]
;βα

= (WDλ
α

λ
β);βα−

1
2

[
WD

(
λ

α
λ

β +µαµβ

)]
;βα

= (WDλ
α

λ
β);βα−

1
2
(WDaαβ);βα.

(D.16)

Note that we recover the surface metric from the addition of the direct products of the orientation

vectors as given below (
λ

α
λ

β +µαµβ

)
=

 1 0

0 1/r2

= aαβ. (D.17)

From Equation D.16 we can further write term I as

I = (WDλ
α

λ
β);βα−

1
2

∆(WD)

= η
β

;β−
1
2

∆(WD),

(D.18)

where
η

β =
(

WDλ
α

λ
β

)
;α

=
(

WDλ
α

λ
β

)
,α
+WDΓ

α
αγλ

γ
λ

β +WDΓ
β

αγλ
α

λ
γ.

(D.19)
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The components of ηβ are estimated below in two principal directions

η
1 = 0+0+WDΓ

1
22λ

2
λ

2 =−cosψ

r
WD, (D.20)

and

η
2 = 0+0+0 = 0. (D.21)

The divergent η
β

;β reduces to

η
β

;β =
1√
a
(
√

aη
β),β

=
1
r
(rη

1),1

=−(cosψWD)
′

r
.

(D.22)

Substituting the expression of η
β

;β in Equation D.16 we get term I simplified as

I =−1
2

∆(WD)−
(cosψWD)

′

r
. (D.23)

Next, we simplify term II below

II =
1
2

WD

(
ζ

α
ζ

β−µαµβ

)
bαγb

γ

β

=
1
2

WD
{

ζ
2
ζ

2b22b2
2−µ1µ1b11b1

1
}

=
1
2

WD

{
sin2

ψ

r2 −ψ
′2
}

=
1
2

WD

(
sinψ

r
+ψ

′
)(

sinψ

r
−ψ

′
)

=
1
2

WD 2H 2D

= 2HDWD.

(D.24)
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Finally, using the simplifications of term I (Equation (D.23)) and term II (Equation (D.24)), the

shape equation becomes

p =
L′

r
+WH

(
2H2−K

)
−2H (W +λ−WDD) , (D.25)

where L relates to the expression of the traction as shown in Equation (D.10), given by

L/r =
1
2
[
(WH)

′− (WD)
′]− cosψ

r
WD =−Fn. (D.26)

The above relation gives a natural boundary condition for L at the both the boundary. At the

center it directly correlates with the value of pulling force as

p f = lim
r−→0

2πrFn =−2πL(0). (D.27)

Note than the derivation of shape equation was presented in [190] where the last term was missing

in the definition of L/r in Equation (D.26) and which led to an incorrect residual term (WD)
′ cosψ

r in

the shape equation. Please note that an artificial pulling force is introduced if boundary condition

of L = 0 is used at the center of the membrane.

D.2.2 Area parameterization

The governing equation is solved in a patch of membrane with fixed surface area, where

the coat area of protein is prescribed. The arclength parametrization poses some difficulty since

total arclength varies depending on the equilibrium shape of the membrane. Therefore, we did a

coordinate transformation of arclength to a local area a as given by

∂

∂s
= 2πr

∂

∂a
. (D.28)
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Note that in the differential form local area relates as

da = 2πr̃ds̃ (D.29)

The tangential force balance relation in Equation 7 transforms to

∂λ

∂a
= 2κ(H−C0)

∂C0

∂a
+2κd(D−D0)

∂D0

∂a
. (D.30)

The normal force balance relation in Equation 8 becomes

p =2π
∂L
∂a

+2κ(H−C0)
(
2H2−K

)
−2H (W +λ−2κdD(D−D0)) (D.31)

where,

L/r = πr
∂

∂a

{
κ(H−C0)−κd(D−D0)

}
−2κD(D−D0)

cosψ

r
. (D.32)

D.3 Non-dimensionalization

In this section we use ˜(·) to represent the dimensionless quantities. We used a scale of

curvature 1/R0, where R0 is the equivalent length scale in the domain. The dimensionless mean,

deviatoric and Gaussian curvature becomes H̃ = R0H, D̃ = R0D, and K̃ = R2
0K. The same scale

for curvature is used to nondimensionalize spontaneous mean and deviatoric curvature and they

become C̃0 = R0C0 and D̃0 = R0D0. The area is dimensionalized with scale A0 = 2πR2
0. The

scale for membrane tension is taken as κ/R2
0, therefore λ̃ = R2

0λ/κ. The dimensionless form of L

becomes L̃ = R0L/κ.

The tangential force balance relation in Equation (D.30) reads as

∂λ̃

∂ã
= 2(H̃−C̃0)

∂C̃0

∂ã
+2κ̃d(D̃− D̃0)

∂D̃0

∂ã
, (D.33)
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where κ̃d = κd
κ

represents the dimensionless deviatoric curvature. The normal force balance

relation in Equation (D.31) simplifies to

p̃ =
∂L̃
∂ã

+2(H̃−C̃0)
(
2H̃2− K̃

)
−2H̃

{
(H̃−C̃0)

2 + κ̃d(D̃− D̃0)
2

+ λ̃−2κ̃dD̃(D̃− D̃0)

}
,

(D.34)

with

L̃/r̃ = r̃2 ∂

∂ã

{
(H−C0)− κ̃d(D−D0)

}
−2κ̃d(D−D0)

cosψ

r
. (D.35)

D.4 Scale analysis

In this section we will estimate a scale of tube radius for a protein-induced tube formation.

Free energy of the membrane across the membrane area for a tubular geometry simplifies to

E = 2πRL
{

κ

(
1

2R
−D0

)2

+κ

(
1

2R
−D0

)2}
+λ02πRL. (D.36)

The energy minimization gives the size of the tubes. The variation of energy with the tube radius

reads as

∂E
∂R

= 2πL
{

2κ

(
1

2R
−D0

)2}
+2πRL

{
4κ

(
1

2R
−D0

)(
− 1

2R2

)}
+λ02πL

= 4πκL
(

1
2R
−D0

)(
1

2R
−D0−

1
R

)
+λ02πL

=−4πκL
(

1
4R2 −D2

0

)
+λ02πL

. (D.37)
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We obtain estimation of the tube radius by equating the variation of energy to zero, as given by:

∂E
∂r

= 0 =−4πκL
(

1
4R2 −D2

0

)
+λ02πL

or, R =
1√

2λ0
κ

+4D2
0

.
(D.38)

160



Bibliography

[1] R. Glowinski, T.-W. Pan, V. L. H. Juarez, and E. Dean, “Numerical methods for the
simulation of incompressible viscous flow: An introduction,” in Multidisciplinary Methods
for Analysis Optimization and Control of Complex Systems, pp. 49–175, Springer, 2005.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of
the Cell. Garland Science, 1985.

[3] T. Harayama and H. Riezman, “Understanding the diversity of membrane lipid composi-
tion,” Nat. Rev. Mol. Cell Biol. Cell Biol., vol. 19, pp. 281–296, 2018.

[4] P. Bassereau, R. Jin, T. Baumgart, M. Deserno, R. Dimova, V. A. Frolov, P. V. Bashkirov,
H. Grubmüller, R. Jahn, H. J. Risselada, L. Johannes, M. M. Kozlov, R. Lipowsky, T. J.
Pucadyil, W. F. Zeno, J. C. Stachowiak, D. Stamou, A. Breuer, L. Lauritsen, C. Simon,
C. Sykes, G. A. Voth, and T. R. Weikl, “The 2018 biomembrane curvature and remodeling
roadmap,” Journal of physics D: Applied physics, vol. 51, no. 34, p. 343001, 2018.

[5] S. Singer, “The molecular organization of membranes,” Annu. Rev. Biochem., vol. 43,
pp. 805–833, 1974.

[6] K. S. Kim, J. Neu, and J. Oster, “Curvature-mediated interactions between membrane
proteins,” Biophys. J., vol. 75, pp. 2274–2291, 1998.

[7] E. Sackmann, H. P. Duwe, and H. Engelhardt, “Membrane bending elasticity and its role
for shape fluctuations and shape transformations of cells and vesicles,” Faraday Discuss.
Chem. Soc., vol. 81, pp. 281–290, 1986.

[8] R. Lipowsky, “The conformation of membranes,” Nature, vol. 349, pp. 475–481, 1991.
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