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Can tile low-rank compression live up to expectations? An application to 3D multi-dimensional de-
convolution
Yuxi Hong*, Matteo Ravasi, Hatem Ltaief, David Keyes, KAUST

SUMMARY

Wave-equation-based seismic processing algorithms have
been developed over the years with the aim of handling the 3D,
full-wavefield nature of seismic waves. Multi-Dimensional
Deconvolution (MDD) is one of such algorithms, commonly
used to remove overburden-related effects from up/down sep-
arated wavefields (e.g., removal of free-surface multiples from
ocean-bottom data). However, MDD comes with several com-
putational challenges; this is especially the case for its time-
domain implementation, which requires repeated access to
Terabyte-scale seismic datasets. In this work, we present
a novel algorithmic solution that leverages the inherent data
sparsity of seismic data in the frequency domain by means
of tile low-rank data compression. We further rely on so-
called Hilbert reordering to achieve a boost in the compress-
ibility of the dataset under study. Tile Low-Rank Matrix Vec-
tor Multiplication (TLR-MVM) is then introduced to speed up
the Multi-Dimensional Convolution (MDC) operator that lies
at the core of the MDD algorithm. The presented solution
is tested on a realistic 3D seismic dataset modelled from the
SEG/EAGE Overthrust model, and the impact of two key pa-
rameters in tile low-rank compression algorithm, namely tile
size and error accuracy, is thoroughly investigated. Inversion
is finally performed using the LSQR solver with all MDC oper-
ations performed onto GPUs. On a 4 A100 cluster, successful
deconvolution for single virtual source is accomplished within
2 minutes (including I/O). To conclude, the proposed algo-
rithm is deployed onto several mainstream hardware the as-
sociated roofline performance model is presented.

INTRODUCTION

Traditional algorithms in reflection seismology rely on strong
assumptions about wave propagation in the subsurface, typi-
cally considering a 1D layered medium assumption. As a re-
sult, these algorithms overlook the propagation effects caused
by lateral heterogeneities. In the 1990s, various wave-equation-
based processing methods emerged in an attempt to handle the
multi-dimensional nature of seismic waves (Verschuur, 1992;
Jakubowicz, 1998; Amundsen, 2001). These methods have
been later reformulated as inverse problems (van Groenestijn
and Verschuur, 2009; Lopez and Verschuur, 2015; Wapenaar
et al., 2011, 2014), offering superior processing capabilities
for enhancing the imaging of seismic data acquired in com-
plex geological settings.

Despite their undoubted potential, inversion-based methods present
significant computational challenges, mainly due to the need
for repeated access to the entire seismic dataset when solv-
ing the associated inverse problem (Ravasi and Vasconcelos,
2021). Consequently, the adoption of these techniques in in-
dustrial applications is still in its early stages, as it requires

careful consideration and optimization to address the associ-
ated computational demands.

Multi-Dimensional Deconvolution (MDD) is a technique that
can be used to remove free-surface effects from ocean-bottom
seismic data (Wapenaar et al., 2011; Ravasi et al., 2015; Boiero
and Bagaini, 2020; Ravasi et al., 2022b) or overburden-related
multiples from synthesised data at a target depth of interest
(van der Neut and Herrmann, 2013; Vasconcelos et al., 2017;
Vargas et al., 2021). In its time-domain implementation, which
we will consider in this work, the overall computational cost
of MDD is dominated by the repeated application of the so-
called Multi-Dimensional Convolution (MDC) operator and
its adjoint. In this work, we assess the feasibility of apply-
ing tile low-rank compressed MDC on a realistic 3D synthetic
dataset. Our findings show that, provided a proper sorting is
applied to sources and receivers in the kernel of the MDC
operator, frequency-domain seismic data can be significantly
compressed. This ultimately leads to a faster and less mem-
ory demanding MDD process. This corroborates our previous
findings in the context of Marchenko-based redatuming for a
synthetic dataset modelled in a much simpler geological set-
ting (Hong et al., 2021; Ravasi et al., 2022a).

Our contribution is three fold,

• We create a realistic 3D seismic dataset and assess for
the first time the benefit of applying tile low-rank com-
pression to its frequency matrices.

• We show the importance of applying distance-aware
reordering to improve the compressibility of seismic
data.

• We present a GPU-friendly implementation of MDD
that scales up to 4 A100 GPUs. Future work will ex-
tend our algorithm to multiple virtual sources, i.e., im-
plementing a tile low-rank version of the matrix-matrix
multiplication.

METHOD

MDC in a nutshell

At the core of the MDD algorithm lies a linear operator per-
forming batch matrix-vector multiplication with the frequency
matrices of the kernel of the MDC operator (here, the down-
going wavefield). This operator can be written in a compact
matrix-vector form

y = FHKFx, (1)

where F and FH represent forward and inverse Fast Fourier
Transform applied along the time/frequency axes (implemented
as subroutines, not dense matrix multiplications), and x and y
contain vectorized versions of the input and output functions.
Finally, K is the operator that performs repeated Matrix-Vector
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Figure 1: Visualization of a Single Frequency Matrix in Normal Ordering (left) and Hilbert Ordering (middle), The Compressed
Rate and Frequency Spectrum (right).

Multiplications (MVMs) with the frequency matrices belong-
ing to the seismic bandwidth of interest.

When dealing with large-scale 3D datasets, this operation dom-
inates the cost of MDD mostly because of its heavy memory
requirements. Recent research has shown that this challenge
can be mitigated by performing a pre-proprocessing step where
the frequency matrices are compressed in a tile low-rank fash-
ion, i.e., the matrix is divided into tiles and a singular value de-
composition (SVD) is applied to each tile separately to capture
the most significant information. This allows identifying local
low-rankness even though the matrix may not be globally low-
rank. After applying SVD to tile, we increasingly add singular
values to the approximated matrix until the norm of residual
matrix is smaller than a percent of original one defined by the
user. The resulting singular vectors, usually referred to as U
and V bases, are then stored on disk for subsequent computa-
tions.

Hilbert reordering of frequency matrices

Before performing matrix-vector multiplication, one has the
flexibility to re-arrange the rows (sources) and columns (re-
ceivers) of the matrix as long as the input and output vectors
are re-arranged accordingly. This is also the case for the TLR-
MVM version of this operation. Such a re-ordering can be
applied prior to tiling and SVD with the aim of increasing the
compressibility of the resulting tiles. The approach adopted
here involves using the Hilbert reordering method, which al-
lows us to rearrange sources and receivers based on their geo-
graphical distance rather than their natural or cable-based or-

dering. Subsequently, when applying the MDC operator, we
employ a tiled batch matrix-vector multiplication approach, re-
sulting in faster computations due to the smaller size of the
singular vectors compared to the dense matrix.

TLR-MVM GPU implementation

We now briefly recall the GPU TLR-MVM implementation
used within our MDC operator. Ltaief et al. (2021) first intro-
duced TLR-MVM in the context of hard real-time controllers
for ground-based telescopes. It operates on the pre-computed
U/V bases of matrix, which are stacked together to increase
memory alignment. TLR-MVM contains three phases: the
first phase involves a batched GEMV with variable size U
bases; The second phase is an element-wise reshuffling, and
The third phase is also a batched GEMV with variable size V
bases. The TLR-MVM implementation in Hong et al. (2021) is
done in C++ on the NEC SX-Aurora TSUBASA vector engine
using the MPI+OpenMP programming models. To enhance
performance and reduce idle times during the simultaneous
processing of all seismic frequency matrices in single complex
precision arithmetic, a load balancing technique is introduced.
The objective here is to extend TLR-MVM to a broader range
of systems, including x86, ARM, and GPU platforms.

For x86 and ARM systems, MPI+OpenMP is natively sup-
ported, and achieving portability requires moderate effort. How-
ever, to maximize performance, careful mapping of MPI pro-
cesses and corresponding OpenMP threads is necessary to align
with the underlying core/socket packaging. In the case of GPU
implementation (specifically NVIDIA GPUs in this study), MPI



Tile Low-Rank Multi-Dimensional Deconvolution

0.0

0.5

1.0

1.5

2.0

t(s
)

a) Adjoint (nb=25, acc=1e-4)

0.0

0.5

1.0

1.5

2.0

t(s
)

b) Inverse (nb=25, acc=1e-4)

0.0

0.5

1.0

1.5

2.0

t(s
)

c) Inverse (nb=25, acc=7e-4)

0 2000 4000 6000 8000 10000 12000 14000
#Rec

0.0

0.5

1.0

1.5

2.0

t(s
)

d) True local reflectivity

Figure 2: MDD results. a) Cross-correlation (i.e., adjoint), b)
and c) inversion with 30 iterations of LSQR and MDC kernels
compressed with different accuracy, and d) true local reflectiv-
ity. Each panel shows the data from 8 equally spaced receiver
lines for a virtual source in the middle of the receiver grid.

serves as the communication bridge across GPUs, while the
CUDA software ecosystem is utilized within the GPU. Streams
are employed to launch batch MVMs with varying sizes and
monitor data dependencies during the TLR-MVM computa-
tion. Leveraging the CUDA Graph framework allows for asyn-
chronous execution of these streams, reducing kernel launch
overheads associated with small data structures. A total of 20
streams are used to optimize the performance.

NUMERICAL EXAMPLES

To begin with, we describe the 3D seismic dataset used in this
study. The SEG/EAGE Overthrust model, Aminzadeh et al.
(1997) is modified by including a 300m water column in order
to mimic an ocean-bottom acquisition scenario. The modelled
dataset is composed of a grid of 217x120 sources and 177x90
receivers with 20m spacing in both inline and crosslink direc-
tions. Pressure and particle velocity data are modeled with a
flat wavelet up to 45Hz for a total time of 4.5sec, with each
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Figure 3: Effect of compression on the quality of the MDD in-
version product. Top: Black lines represent percentage change
of normalized mean square error of each solution against the
benchmark solution with nb = 25 and acc = 1e− 4. Brown
lines refer to percentage of compression of each approxima-
tion compared to the original, dense solution. Bottom: Aggre-
gated size of the U and V bases as function of frequency for
the different combinations of nb and acc.

dataset having an effective size of 1.7TB. After wavefield sep-
aration, the downgoing pressure data is transformed in the fre-
quency domain.

Each frequency matrix is then compressed using the tile low-
rank compression algorithm with tiles of size 256x256. Fig-
ure 1 shows that the arrangement of rows and columns plays a
crucial role in the compressibility of such matrices. As Hilbert
reordering gathers the main contributions towards the matrix
main diagonal, off-diagonal tiles can be further compressed
leading to superior compression capabilities over the original
cable-by-cable sorting and other matrix re-arrangements. Us-
ing frequency matrices up to 48 Hz (i.e., 220 matrices with a
total size of 712GB), we then perform time-domain MDD with
30 iterations of LSQR. The resulting deconvolved wavefield is
shown in Figure 2 alongside the cross-correlation (i.e., adjoint)
wavefield and the directly modelled reflectivity. Although the
data has been compressed by a factor of 13.33 from its original
size, the performance of MDD is not affected with most of the
free-surface multiples present in the adjoint solution clearly
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being removed.

To demonstrate the impact of the accuracy threshold, we present
an additional MDD result using a much looser accuracy toler-
ance (acc = 7e−4) for the TLR compression of the frequency
matrices (Fig.2c). Comparing this with Fig.2b, it becomes evi-
dent that reducing the accuracy to achieve higher compression
levels introduces undesirable noise in the solution. We sum-
marize the effect of tile size nb and accuracy acc in Fig. 3,
where two opposing trends emerge. As we loosen the accu-
racy threshold (from 1e−4 to 7e−4), we trade the quality of
the final solution for increased compression. Three regions are
therefore identified: green, orange, and red, representing accu-
rate, satisfactory (with some additional noise), and unaccept-
ably inaccurate solutions, respectively. As a rule of thumb, the
level of accuracy required by the MDD process depends on the
downstream application as well as the computational resources
available to the user. We consider the green solutions to be
accurate enough for subsequent quantitative analysis, such as
seismic inversion, while the yellow solutions may still be suit-
able for qualitative analysis, like seismic interpretation.

Figure 4: Roofline Performance Model for the TLR-MVM.

To conclude, we conduct a performance campaign of TLR-
MVM on all mainstream architectures in the market, as MDC
operators are the most time consuming part in the MDD appli-
cation. We choose nb and error threshold that best fit the hard-
ware specifications. Figure 4 presents the roofline performance
models of various contemporary vendor offerings required to
host our real seismic processing workload in memory. It in-
cludes single devices from NVIDIA, NEC, and Fujitsu, as well
as two-socket x86 solutions from AMD and Intel. The results
show that NVIDIA A100 is able to achieve around 800 GB/s
bandwidth, which is the fastest among other 5 architectures.

CONCLUSION

We present the first application of time-domain MDD on a
large-scale, geologically realistic 3D synthetic seismic dataset.
To begin with, the data sparsity nature of the frequency-domain
representation of the down-going wavefield is assessed: empir-
ically, we observe that by applying a distance-aware reordering
method (e.g., Hilbert sorting) to the rows and columns of the
matrices to be compressed is critical to achieve decent com-
pression whilst retaining the required accuracy. Our numer-
ical results confirm that time-domain MDD is robust to the
small numerical errors introduced by the tile low-rank com-
pression algorithm. We reach around 800 GB/s memory band-
width on a single TLR-MVM using a single A100 GPU. We
benchmark the whole MDD application and finish the whole
pipeline within 2 minutes using 4 A100 GPU (including I/O).

In future work, we plan to extend the algorithm to multi virtual
source. The corresponding matrix vector multiplication will be
changed into matrix matrix multiplication.
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