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separated. These are the two wings with which humanity must fly. One wing

is not enough. Every religion which does not concern itself with Science is

mere tradition, and that is not the essential. Therefore science, education and

civilization are most important necessities for the full religious life.”

—‘Abdu’l-Bahá ,

‘Abdu’l-Bahá in London, p. 28
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PREFACE

This work emerged from research in Density Functional Theory (DFT).

The attempts to achieve this level of valuable scientific precision were initially

launched to provide a not-expensive computationally method to solve precisely

many-body quantum systems. My interest in DFT and TDDFT started after

my master’s thesis in particle physics and cosmology. I saw that cosmological

and astronomical observations and theories are mainly based on precisely cal-

culated views in the standard model of cosmology and the standard model of

particle physics. Although those latter turned out to be very successful, their

theories remain restrained in the frame of imposed assumptions. The standard

model of particle physics assumes solving the problem separately within each

interaction. As the energy regime of each interaction varies significantly from

the energy of the other interactions, one can be taken as having zero impact

on a regime. For instance, when I solve the problems, including the quarks,

I use the strong force field and ignore the weak force’s possible effect. On a

larger scale, when I study the electronic structure, I mainly remain in Bohr-

Oppenheimer’s frame. I ignore the impact of the relativistic electromagnetic,

electro-weak and strong interactions entirely. To me, physics can be understood

if and only if I take account of the totality of phenomena. Nothing must remain

ignored if I seek the exact solution to a problem. My philosophical challenges

were mainly to find a way to answer two questions: 1) How can the standard

model of particle physics (or other models) can help the domain of electronic-

structure-related works? 2) How can our actual understanding of many-body

problems can help us to discover more in Astroparticle physics and cosmology?

Later on, when I heard about Density Functional Theory, I asked myself

if this could be a correct assumption to say: "Knowing the exact density of

any fundamental particles can lead us to their interacting energy"? Or, can I

also suggest a model of non-interacting fundamental particles that provides the

total energy of interacting particles? Of course, those questions were asked for

high-energy physics. At the time, what I was missing was all about DFT and

TDDFT.

I started to work at the University of Geneva with Prof. Tomasz Adam

Wesolowski on Analytical solutions to Frozen Embedding Density Functional
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Theory in April 2015. Some initial results of our attempts were more impor-

tantly, published in 2017 in the International Journal of Quantum chemistry.

During my three first years, I managed to form several collaboration groups.

The first collaboration started with the group of Prof. Leeor Kronik at the

Weizmann Institute of technology. This collaboration provided a very fruitful

impact on the numerical developments of the theory. Connected to this latter

group another collaboration with Griffiths University was developed through

interesting scientific communications with Prof. Tim Gould. He provided a

valuable mathematical approach to a scientific claim I had made two years

prior to our collaboration. The research continued after a gap of one and half

years within the group of Prof. David A. Strubbe at the University of California

in September 2019.

This work addresses the amount of hard work during five and half years

to the reader interested in the related fields. The chapters are prepared in

an independent form that helps the reader to have access to the fundamental

definitions and information without crossing the other chapters. Chapters 2

to 6 concern whether the already published paper, soon submitted paper, or

papers under preparation are to be published in close future. The latest group

of chapters includes important information in their “outlook” sections. Tim’s

beautiful work is inserted in the theory section of chapter 3.

This work includes the analytical methods used for the first time to produce

the results for solving certain model systems under specific conditions. Some

existing ambiguities about the feature of so-called exact analytically inverted

potential bi-functional were clarified precisely for the first time. The results in

this work are the essential tools for the improvement of successful theories in

orbital-free DFT.

During my graduate program, I gained a deep understanding of nuclear

DFT and QED-DFT and developed calculations in Lagrangian DFT. I still

don’t have a clear answer to the questions that led me into this field. The only

thing I know for sure is that even if it still takes more trying, there are sure

answers to these questions. Secondary interests sometimes bring more miracles

than the main stake of the work. So I can invite readers to think about these

questions and maybe add some follow-up questions to this problem.
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LIST OF NOTATION

• Analytically inverted non-additive potential bi-Functional:

vNAD/INV [ρB, ρtot](r),

• Numerically inverted non-additive potential bi-Functional:

vnad’[ρA, ρB](r),

• Numerically Approximated non-additive potential bi-Functional:

ṽnad’[ρA, ρB](r),

• Analytically inverted non-additive potential bi-Functional from

one-orbital formula:

vNAD/INV [ρB, ρ1](r),

• Analytically inverted potential Functional: vs[ρi](r)

• Approximated non-additive kinetic potential bi-Functional:

vNAD
t [ρB, ρtot](r).

• von Weizsäcker Kinetic Functional:

T vW
s [ρ](r). (also written as T vW

s [ρ](r))

• von Weizsäcker non-additive potential bi-Functional:

vNAD/vW[ρB, ρtot](r).

• Thomas-Fermi Kinetic Functional:

T TF
s [ρ](r).

• Effective potential:

veff (r).

• Fermi-Dirac Distribution Function:

F (z).

• Density Obtained from variational calculations using approxi-

mated non-additive kinetic potential:

ρ̃
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Acronyms

AAM Average Atom Model

DARSEC Diatomic Real-Space Electronic Calculation

DD Derivative Discontinuity

DFT Density Functional Theory

EA Electron Affinity

FDET Frozen Density Embedding Theory

GGA Generalized Gradient Approximation

HOMO Highest Occupied Molecular Orbital

KEDF Kinetic Energy Density Functional

KLI Krieger-Li-Iafrate

KS Kohn-Sham

LDA Local Density Approximation

LKT Luo-Karasiev-Trickey

LUMO Lowest Un-Occupied Molecular Orbital

OEP Optimised Effective Potential

OF-DFT Orbital Free Density Functional Theory

PBE Perdew-Burke-Ernzerhof

PDFT Partitioning Density Functional Theory
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PGS-KE Pauli-Gaussian Kinetic Energy Functionals

SCAN Strongly Constrained and Appropriately Normed

SS Step Structure

TDDFT Time-Dependent Density Functional Theory

TF Thomas-Fermi

xc exchange-correlation



Chapter 1

Introduction

In this chapter, a brief explanation of the main approaches to the calcu-

lations of this work is provided. A general idea and necessary background to

understand the attempts of this work can be extracted in the introduction.

For further knowledge and information, the readers can turn to the references

indicated in the text. In this chapter, they can also find the motivations before

this research and the practical applications of the reported discoveries.

All chapters include the required information for optimal understanding,

so those with a strong background related to the theories used in this work

can skip the introduction chapter. The chapter 2 is already published and the

chapter 3 is under preparation to be submitted. The other chapters are part of

two up coming publications under preparation.

1.1 Background and Motivation

Research on large and complex systems is often required to meet the de-

mands of industry, as well as to add to the fundamental scientific-based do-

mains. In important numbers of those works, the main system in question

is fragmented into subsystems to understand the physical properties of the

elements of the system or modelling properties of chemical species and chem-

ical reactions. Those studies require usually the quantum-mechanical level of

description. For instance, chemists are interested in the physical and chemi-

cal properties of a solution in which the molecules of the solvent (i.e. water)

cannot penetrate the interior of the solute. Another example is the attempts

3
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to understand the properties of an atom within a molecule from partitioning-

based theories. Orbital-free-density-functional-based attempts are promising

and computationally affordable methods for calculating the electronic struc-

ture of such complex systems. Among these theories, Frozen Density Embed-

ding Theory (FDET)[217, 212, 213, 166] is the main focus of this work. The

choice of FDET is mainly because of its computationally low cost for such

calculations, like in QM/MM because of not treating the whole system just a

part. In the partition-based frameworks of density functional theory (DFT)

similarly to FDET, the main challenge concerns the formulation of the inter-

action between sub-densities. The exchange of energy between sub-densities

or between a frozen density and the whole density of a system is provided by

the “non-additive potentialfunctional”, (vNAD). In numerical simulations based

on FDET or subsystem formulation of density functional theory (subsystem

DFT)[178, 35], the non-additive kinetic potential needs to be approximated.

Explicit semi-local approximations to the functional vNAD in numerical sim-

ulations are doomed to fail [9]. Such failures prompted the interest in the im-

plicit functionals for the non-additive kinetic potential constructed by means

of numerical inversion (of Kohn-Sham equation) procedures. Unfortunately,

numerical inversion of Kohn-Shame quation is an ill-defined problem if finite

basis sets are used. It results in numerical instabilities or multiple solutions. A

more recent analysis of the non-uniqueness of the numerical inversion and an

approach to deal with it can be found in the work by Jacob [100].

In the general case, Kohn-Sham equations must be inverted twice to obtain

the vNAD for a given pair of densities. The two-step inversion procedure ag-

gravates the problems. Only for some model systems can vNAD be expressed

analytically[214]. The analytical inversion of vNAD for some toy models was used

to discuss the relation between the pseudopotential theory[169] and FDET.

De Silva and Wesolowski[36] explored the construction of vNAD for various

partitioning of the ground-state electron densities using analytical inversion

from the lowest Kohn-Sham orbital density. Their study was confined by basis-

set-depended numerical tool and for the strongly overlapping densities. This

latter leads to violation of constraints required for precise calculation of ana-

lytical inversion which will be discussed later in this work. I and Wesolowski
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published a complete review of the construction of vNAD within approximations

and inversion procedures[9].

Unfortunately, in all previous attempts toward the construction of vNAD

some holes remained unfilled that concluded low understanding of vNAD. In

addition, the exact analytical inversion of the potential remained unknown as

those who studied this case were limited by basis-set-dependent numerical tools

which spoil the accuracy of the calculations due to numerical issues. This prob-

lem is similarly the case for the construction of the exact vNAD from numerical

iterative inversion procedures[60]. After all, no works was published for weakly

overlapping densities nor the cases in which the admissibility of the input den-

sity was satisfied (means one or two electrons were precisely localised in the

space. This is explained clearly later in this work.)

Among the different strategies to calculate the non-additive potential func-

tional, this work is distinct from previous work in terms of:

• using the basis-set-independent numerical tool for

• weakly overlapping partitioned densities

• with choice of density-to-potential inversion

• from exact analytical inversion calculation.

Finally, thanks to the framework itemised above, the clear understanding

of vNAD is ready to be published and explained in this work. The clear feature

of vNAD brought up other useful properties of exact potential that turns it into

a good candidate for wider use in various domain of research. I will see that

vNAD has the capacity to explain molecular dissociation, molecular ionisation

and atomic ionisation. These quantities expand the application of vNAD in

different domains such as:

• Condensed matter: Study the defect/s within a crystal (Fig.[1.1]). The

defect/s can be partitioned and studied separately from the rest of the

system and its interaction with the environment can be explained by

vNAD.

• Metal Insulator transition: Where metal hybrids are formed by the tran-

sition of metal and alloys from the homolytic dissociation of H2 to H.
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Similarly to the previous example, vNAD can provide the required infor-

mation related to such dissociation.

• Photo-Chemistry: vNAD has the capacity to explain the dissociation hap-

pening on excited potential via photo-excitation.

• Environmental science: Acid-Chemistry: In researches where acids are

used to release hydrogen ions from a solution. Such ion separation crosses

the molecular-dissociation-like actions again in which vNAD appears very

useful.

One possible motivation for studying the inverse problem of DFT is to

benchmark the many approximate exchange-correlation functionals[82]. In this

work, it will be explained how the properties of the exact potential appearing

in vNAD, can make from it a correction to frequently used kinetic functional

approximations in DFT framework.

During five years of hard-working I managed to formulate and understand

interesting questions such as theoretically expected feature and physical inter-

pretation of non-additive potential bi-functional of a pair of densities. I found

out the further application of my works in the wide domain of research and

highlighted the properties of the exact potential in my results. I developed

my research in different codes within various frameworks of DFT calculations.

Those accomplishments were extracted in the calculation of vNAD from the an-

alytical inversion procedure of admissible pair of densities to provide analytical

solutions of FDET equations. I suggested specific numerical tricks for preparing

the admissible required densities for my calculations.

Theoretical explanations required to understand this work together with

numerical tools and developments are given in the next chapter. The verified

results are presented in current progress and the steps required to be developed

to accomplish the program are clarified in Future work. More complete and

historical information is available in our previous publication[9].
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1.2 Theoretical Methods

1.2.1 Density Functional Theory

Prior to introducing the Frozen Density Embedding Theory (FDET) the

basic concepts of Density Functional Theory (DFT) is provided. The advantage

of DFT is that it can perform calculations relatively quickly with high enough

accuracy. It can therefore be used to find the properties of large molecules

and many crystalline solids. A computationally fast enough calculation such

as DFT is known inexpensive calculation. Approximately, for N -interacting

electrons, the cost of time scales is about N3 although that raises exponentially

for other methods.

The quantum Many-Body problem is solved in terms of electron density in

DFT framework. The latter distinguishes DFT from Schrödinger framework

that solves the problem in terms of the wavefunction. The original idea was

formulated first by Thomas and Fermi [193, 50], in 1927 that expresses repre-

sentation of the energy in terms of the electron density. Theoretical model of

Thomas-Fermi promoted in 1964 by Hohenberg and Kohn into the theoretical

DFT [93] through which Kohn and Sham in 1965 introduced the “one-electron-

system approach” to non-interacting many-electron system that satisfies the

problem [114]. The corresponding functional reads:

E[ρ] = Ts[ρ] + Eext[ρ] + J [ρ] + Exc[ρ] (1.1)

where Ts[ρ] is the kinetic functional of non-interacting electrons, Eext[ρ] the

coulomb interaction potential between the electrons and local nuclei, J [ρ] the

electron-electron coulomb repulsion and Exc[ρ] known as “exchange-correlation"

functional is the reminder of the total energy.

In Kohn-Sham formulation of the DFT, the energy functional of the entire

system is minimised with respect to the ground-state charge density:[
−1

2
∇2 + vKS(r)

]
ψi(r) = ϵiψi(r) (1.2)

with ϵi the energies of Kohn-Sham orbitals ψi(r). Kohn-Sham effective

potential (written either vKS or veff) needs to be constructed, such that the
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ground-state density of a non-interacting electrons confined by that potential

is equal to a given density ρ(r). Where:

ρ(r) =
N∑
i

niψ
2
i (r) (1.3)

where ni is the occupation number corresponding to the solution ψi(r). In

Eq.[1.2], the effective Kohn-sham potential reads:

vKS[ρ](r) = vext(r) + vH [ρ](r) + vxc[ρ](r) (1.4)

where vH [ρ](r) =
∫ ρ(r′)

|r′−r|dr
′ known as Hartree potential represents the mean-

field part of electron-electron repulsion energy whereas vxc[ρ](r) = δExc[ρ](r)
δρ(r)

reads the exchange-correlation potential. By exchange-correlation potential, I

simply mean the difference between the exact total energy of a system and

the classical Hartree energy. In DFT formulation of many-body problems, the

quality of calculation is determined by how close the approximate exchange and

correlation comes to the exact value. The developments of approximations to

Exc[ρ](r) can be found in different works (see for example [112, 31, 104, 78]).



9

1.2.2 Partitioned System

Figure 1.1: Illustrates the partitioning of a molecule. Red dashed circle represent the

Na+ cation, and the green dashed circle represent the Cl- cation; in a crystal or bulk

system of NaCl a missing, or defect, Cl- position is denoted with the electron cloud

(e-) in its position. This system is partitioned such that an ion is enclosed by the red

box and represented by density ρA. The system could be partitioned to exclude the

reminder site (Cl), and represented with density ρB.

As already mentioned earlier it is costly favourable to partition the complex

systems for quantum-mechanically treatments. Since the electron density is

possible to be introduced as an additive quantity, the system is eligible for

petitioning within a DFT framework [47, 153]. Cortona [35] introduced the

idea of Partition DFT for a system in which the electrons density is partitioned

in the way that the density of the full system is thus a sum over the “m”

subsystems’ density:

ρ(r) =
m∑
j

ρj(r) (1.5)

The kinetic energy of the full system is similarly the sum over the kinetic

energy of all subsystems, plus a “non-additive" term (TNAD
s ) which is the result

of the interactions between subsystems[[153]]. The ground-state solution due
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to each subsystem is obtained by a one-electron equation:[
− 1

2
∇2 + vsubeff [ρ, ρj](r)

]
ψij(r) = ϵijψij(r) (1.6)

where,

vsubeff [ρ, ρj](r) = veff [ρ](r) +
δTs[ρ]

δρ(r)
− δTs[ρj]

δρj(r)
. (1.7)

The last two terms at the right-hand side of Eq.[1.7] is called “Non-Additive

Kinetic Potential bi-Functional". Those required to be approximated as the

partitioning of other energy terms are straightforward. Numerical approaches

to “Non-Additive Kinetic Potential Functional" face a double self-consistency

problem as they depend on the densities generated from the orbitals of the

subsystems. Frozen Density Embedding Theory (FDET) was first suggested to

cure the “double" self-consistency problem.

1.2.3 Frozen-Density DFT

In FDET the subsystems are classified either as “environment" which repre-

sents the frozen subsystem or “Active subsystem" (called in this paper respec-

tively ρB and ρA). The last two terms at the right of Eq.[1.7] are replaced by

a new quantity, “Embedding Potential", vemb[ρA, ρB]:

vemb[ρA, ρB](r) = vBext(r) +
∫

ρB(r′)
|r′ − r|

dr′ +
δExc[ρ](r)
δρ(r)

∣∣∣∣∣
ρ=ρA+ρB

−δExc[ρ](r)
δρ(r)

∣∣∣∣∣
ρ=ρA

+
δTs[ρ](r)
δρ(r)

∣∣∣∣∣
ρ=ρA+ρB

− δTs[ρ](r)
δρ(r)

∣∣∣∣∣
ρ=ρA

(1.8)

where two first terms on the right-hand side of the equation are external (ionic)

and Coulomb repulsion potentials respectively and, terms 3 and 4 represent to-

gether, so-called Non-Additive-Exchange-Correlation bi-Functional ( δE
NAD
xc [ρA,ρB ](r)

δρA(r) =
δExc[ρ](r)

δρ(r) −
δExc[ρA](r)

δρA(r) ). The last two terms in blue are the main terms of interest

in this work, “Non-Additive Kinetic Energy bi-Functional":

δTNAD
s [ρA, ρB](r)
δρA(r)

=
δTs[ρ](r)
δρ(r)

− δTs[ρA](r)
δρA(r)

(1.9)

The flowchart of FDET in the applications can be summarised as following:



11

• The density of environment ρB can be constructed whether by numerical

tricks of partitioning or KS-DFT calculations

• Once the embedding is performed Eq. [1.10] will be solved with Con-

strained Electron Density for ρA while the environment is frozen

[
−1

2
∇2 + vemb[ρA, ρB](r)

]
ψi(r) = ϵiψi(r) (1.10)

The double Self-Consistency is thus avoided but the calculation of “Non-

Additive Kinetic Energy bi-Functional" and consequently Eq. [1.10] remain

ρB − dependent. For the complex system, the environment that provides the

embedding potential can be approximated while ensuring the efficiency of FDE

calculation. This latter brings up the choice of the environment density as a

key issue in FDET-based calculations ([166, 212, 213, 217]).

1.2.4 Analytical Inversion of Density

Inverse problems are common in science and have been central in quantum

mechanics since their inception. Much of what I know about the structure of

matter has come from scattering experiments, [140] which can be described

mathematically as inverse problems. In the direct problem of DFT I use an ap-

proximate exchange-correlation potential to solve the KS equations (Eq. 1.11)

for the unknown density. So, the problem is suffered by two unknown inter-

relating quantities: the density and the wavefunctions (the unknown quantities

are shown with red in Eqs.[1.11,1.13] ). The advantage of the inverted problem

is dealing with only one unknown quantity as the density is known (Eq. 1.13).

The strategy of the inversion procedure relies on the unique correspondence

between the Kohn-Sham potential (vs[ρ](r)) (we denote the inverted Kohn-

Sham potential from density by vs which is not the explicit expression for the

Kohn-Sham effective potential) and the ground-state density The Kohn-Sham

equation for a system of N electrons can be written as :

ϵαi ψ
α
i (r) =

[
−∇

2

2
+ vs[ρtot](r)

]
ψα
i (r) (1.11)
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ρtot(r) =
N∑
i,α

nα
i |ψα

i (r)|2

i = 1, 2, ...

α =↑, ↓

(1.12)

where nα
i is the occupation number and α is the spin index. Eq [1.12] must

respect the condition
∫
v
ρtot(r)dr = N .

The inversion procedures are categorised mainly into analytical inversion

and numerical inversions. In numerical inversions, Kohn-Sham equations must

be inverted twice. In first step the inverted kinetic functional Ts[ρin(r)] is

used to find the solutions which minimised the kinetic energy Ts[ρin](r) =∑N
i=1

∫
ψ∗
i (r)

(
− ℏ2

2m
∇2

)
ψi(r)d(r) and from those solutions, the potential will

be inverted.

Numerical inversions are suffering from the lack of the uniqueness. As they

are formulated in an iterative procedure, two slightly different solutions will

eventuate the same inverted potential. Also, the iterative inversion is signif-

icantly expensive in terms of computational calculations. Above all, numeri-

cal inversions are based on two-step inversion, one that provides Ts[ρin] which

through the minimisation of the kinetic energy concludes the solutions ϕi to

produce ρ and in the next step vt[ρ] will be calculated to solve the whole sys-

tem again to obtain ρ = ρin. Both steps are done in an iterative procedure. For

more information you can read my published review [9] in chapter 2. Analyt-

ical inversion doesn’t require iterative procedures and respects the uniqueness

condition of potential-wavefunction.

ϵαi ψ
α
i (r) =

[
−∇

2

2
+ vKS[ρtot](r)

]
ψα
i (r) (1.13)

ρtot(r) =
N∑
i,α

nα
i |ψα

i (r)|2

i = 1, 2, ...

α =↑, ↓

(1.14)
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Only under specific conditions, the potential could be inverted analytically

and in one step. I describe below those conditions.

One-Orbital Formula

The one-orbital formula for one electron or two spin compensated electrons

where the solution is real and positive ( means ψi(r) =
√
ρi(r)) Eq. [1.2] could

be rearranged as:

vKS(r) =
∇2ψi(r)
2ψi(r)

+ ϵi (1.15)

If the wavefunction is real and positive, the Kohn-Sham potential reads:

vKS(r) =
∇2

√
ρi(r)

2
√
ρi(r)

+ ϵi = vs[ρi(r)] (1.16)

where i defines is orbital index.

Analytical Inversion of Non-Additive Potential Functional of Pair of

Density

Non-Additive potential bi-Functional (vNAD) denotes the difference of the

energy between two given partitioned densities or one partitioned density (called

ρA in this work) the total ground-state density in a system. The latter is defined

in Eq. [1.17].

vNAD[ρA, ρtot](r) = vs[ρA(r)]− vKS(r) (1.17)

In order that vNAD be expressed entirely in functional notion, the last term

of Eq.[1.17] could be replaced by its definition from Eq.[3.5]:

vNAD[ρA, ρtot](r) = vs[ρA(r)]− vs[ρi(r)] (1.18)

Such Analytical inversion is correct under specific constraints. The density

used as an independent variable of analytically inverted potential functional

has to integrate to integers 1 or 2 in whole space for one-electron or two spin-

compensated electrons respectively.
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1.2.5 Numerical Simulations

The theory of this work has been numerically developed in two programs

developed in real space one based on all-electron calculation and the other with

pseudopotential approach. The advantage of the real grid approach compared

to other approaches such as spectrum algorithm[203] is the possibility of con-

trolling the quality of the discretisation with changes in the spacing of the grids

and the entire size of the system. That provides fast calculation while multiple

tests during the implementation of theories and high accuracy with decreased

errors for solving the problems. Below a brief explanation on all-electron cal-

culation with DARSEC[135].

All-electron Calculations

For all-electron-based calculations of this work code, DARSEC was used[134].

This code allows for spin-polarized all-electron DFT calculations for single

atoms and diatomic molecules, using a real-space prolate-spheroidal grid (Fig.[1.2]).

One or two atoms in question are sited at the centres of elliptic-like coordinates

(blue dots in Fig.[1.2]). The grids are very dense near the centres and get

distant far from the atoms. Clearly, the advantage of DARSEC is the high

precision of the calculations due to the better sampling at the vicinity of the

atoms where the atomic potential is singular and the orbitals oscillate rapidly.

The prolate-spheroidal coordinates (µ, ν, ϕ)[0,∞][0, π][0, 2π] for centres at

A(0, 0,−R/2) and B(0, 0,−R/2), are defined by:

x =
R

2
sinh(µ) sin(ν) cos(ϕ)

y =
R

2
sinh(µ) sin(ν) sin(ϕ)

z =
R

2
cosh(µ) cos(ν)

(1.19)

Similarly, the Prolate-spheroidal coordinates in terms of Cartesian coordi-

nates are defined as:

µ =cosh−1(
rA + rB
R

)

ν =cos−1(
rA − rB
R

ϕ =tan−1 y

x

(1.20)
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where rA(r) and rB(r) are the Euclidean distances of a general point (x, y,

z) from the centres A and B, respectively, and ϕ is the angle of rotation around

the interatomic axis, i.e., the z-axis.

Another advantage of DARSEC is its computational cost, knowing that the

code is not yet parallelised. The problem could be solved in 2D in DARSEC

due to the cylindrical symmetry of diatomic molecules. This is true while the

angle ϕ can be treated analytically.

Formally, this means that all physical entities (i.e., charge density, po-

tentials, squared absolute wave functions, etc.) are ϕ-independent and that

the one-particle wave functions are of the form ψ(µ, ν, ϕ) = ψ(µ, ν, 0)eimϕ for

m = 0,±1,±2, ..., where m is an integer corresponding to the quantum number

of angular momentum with respect to the interatomic axis.

Figure 1.2: DARSEC visualization the grids in real-space. The blue dots represent

position atom centres, with red dots denoting the grid of the coordinate system.

DARSEC employs the use of a real-space prolate-spheroidal grid.

Graphical Representation of the Results

The results are shown graphically in 1D or 2D representations. The outputs

of the calculations done within DARSEC are available to be plotted in 1D or

2D as the DARSEC reduces the calculations into 2D based on axial symmetry

of the parabolic coordinates and symmetry of the diatomic systems. As it

is manifested in Fig.[1.2], the atoms are sited on the center of the coordinate

system along the z-axis. The z = 0 has no grid points. When I show graphically
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the data in 1D, the plots represent the values of the grid points in first coming

(ν, µ) to the inter atomic axis in the half positive part of the space. In fact the

1D representation of the results are the value found on the grid points siting

on the red line in Fig.[1.3]

Figure 1.3: Schematic of the prolate-spheroidal coordinates. The red line represents

the grids from which the values of the calculations are extracted for the 1D represen-

tation of the results.

The 2D plots contain the value of entire grid points in the space as it is

illustrated in Fig.[1.2].



Chapter 2

non-additive kinetic potentials

from inverted Kohn-Sham problem

2.1 Abstract

This chapter is the expansion of my published work[9]. The non-additive

kinetic potential is a key element in density-dependent embedding methods.

The correspondence between the ground-state density and the total effective

Kohn-Sham potential provides the basis for various methods to construct the

non-additive kinetic potential for any pair of electron densities. Several re-

search groups used numerical or analytical inversion procedures to explore this

strategy which overcomes the failures of known explicit density functional ap-

proximations. The numerical inversions, however, apply additional approxima-

tions/simplifications. The relations known for the exact quantities cannot be

assumed to hold for quantities obtained in numerical inversions. The exact re-

lations are discussed with special emphasis on such issues as: the admissibility

of the densities for which the potential is constructed, the choice of densities to

be used as independent variables, self-consistency between the potentials and

observables calculated using the embedded wavefunction, and so forth. The

review focuses on how these issues are treated in practice. The review is sup-

plemented with the analysis of the inverted potentials for weakly overlapping

pairs of electron densities – the case not studied previously.

17
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2.2 Introduction

The non-additive kinetic energy (TNAD
s ) and potential (vNAD

t (r)) are key

ingredients in numerical simulation methods exploring the density embedding

strategy (see Section 2.2.2). Both quantities are defined as functionals of ad-

missible pairs of electron densities:

TNAD
s [ρA, ρtot] = Ts[ρtot]− Ts[ρtot − ρA]− Ts[ρA] (2.1)

and

vNAD
t [ρA, ρtot](r) =

δTs[ρ]

δρ

∣∣∣∣
ρ(r)=ρtot(r)

− δTs[ρ]

δρ

∣∣∣∣
ρ(r)=ρA(r)

(2.2)

where the functional Ts[ρ] is defined via the constrained search [127]:

Ts[ρ] = min
Ψs→ρ

〈
Ψs

∣∣∣T̂ ∣∣∣Ψs

〉
=

〈
Ψopt

s

∣∣∣T̂ ∣∣∣Ψopt
s

〉
(2.3)

where Ψs denotes a N -electron single-determinant trial wavefunction. Atomic

units are used throughout this work.

In practical applications, ρA(r) is the density corresponding to the wave-

function Ψemb associated with the embedded subsystem and ρtot(r) is electron

density of the total system comprising the part represented by Ψemb and its

"environment". Usually, explicit density functionals approximate the function-

als vNAD
t [ρA, ρtot](r) and/or TNAD

s [ρA, ρtot]. Simulations and studies on model

systems reported by several researchers revealed many cases where that the cur-

rently known explicit density functionals fail (see section 2.2.2). These failures

resulted in recent interest in an alternative - implicit - strategy to construct

vNAD
t [ρA, ρtot](r) (and TNAD

s [ρA, ρtot]) for arbitrarily chosen pairs of densities

ρA(r) and ρtot(r). Such constructions are based on the Levy correspondence

[127] between the Kohn-Sham potential [115] and the electron density. This

correspondence exists for admissible electron densities but using it in practice

relies on the numerical inversion, i.e., the construction of the Kohn-Sham po-

tential (and orbitals) for a given target density.

(see Section 2.2.1 for the exact relations between the quantities, which are

obtained from the inversion procedures and vNAD
t [ρA, ρtot](r) are given in.)

The non-additive kinetic potentials obtained from the inversion procedures

are presently being constructed by several authors for various purposes. To
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our knowledge, the numerically inverted potentials where introduced into the

general field of density based embedding methods to generate local atomic pseu-

dopotentials [229]. Other authors used accurate inverted potentials to detect

flaws of explicit approximations to vNAD
t [ρA, ρtot](r) and to determine their lim-

its of applicability [176, 215, 37, 55]. Reports on using inverted potentials in

practical simulations started appearing in the literature [229, 179, 171, 172, 173,

61, 62, 63, 6]. Such studies provide frequently direct or indirect (through calcu-

lated observables) inrormation about the quality of the inverted non-additive

kinetic potential.

The present work overviews these developments. Section 2.2.1 provides the

basic definitions and exact relations between the discussed quantities. These

relations provide the basis for various possible practical constructions of non-

additive kinetic potentials for a given pair of densities. Section 2.2.2 provides

key examples of failures of explicit functionals in approximating the exact po-

tential. The review of the literature concerning the non-additive kinetic poten-

tials obtained from various inversion techniques is given in Section 2.3. The lit-

erature examples are supplemented by our own new results concerning inverted

potentials at a special case of weak overlap between subsystem densities. The

inverted potentials for such a case were not discussed in the literature so far

and are provided here as a supplement.

2.2.1 Implicit definition of the functional for non-additive

kinetic potential

Up to a constant, Kohn-Sham equation provide the exact correspondence

between the total Kohn-Sham effective potential (the last three terms in the

operator in the right-hand-side of Eq. 2.4) and the ground-state electron density

ρo(r) obtained for this potential:(
−1

2
∇2 + vext(r) +

∫
ρo(r′)
|r′ − r|

dr′ + vxc[ρo](r)
)
ϕi = ϵiϕi for i = 1, N (2.4)

where ρo(r) =
∑N

i ni|ϕi|2 , and ni to be the obital occupation number.

This correspondence will be denoted hereafter as the functional vs[ρo](r).

This functional makes it possible to cast Eq. 2.4 into the form which does not
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involve explicitly the external potential:(
−1

2
∇2 + vs[ρo](r)

)
ϕi[ρo] = ϵi[ρo]ϕi[ρo] for i = 1, N (2.5)

where {ϕi[ρo]} are canonic Kohn-Sham orbitals corresponding to vs[ρo](r).

The above equation holds also for density and potential if approximated den-

sity functional is used for the exchange-correlation potential (ṽxc[ρ](r) in the

limit of complete basis set [38]. The admissible densities, for which such corre-

spondence exists, will be referred to in this work as pure-state non-interacting

v-representable (PSNIVR). For pairs of PSNIVR densities, such that ρtot(r) ≥
ρA(r), the functional vNAD

t [ρA, ρtot](r) can be expressed by means of the func-

tional vs[ρ](r) [217]. Up to a constant, the non-additive kinetic potential is just

the difference between the potentials:

vNAD
t [ρA, ρtot](r) = vs[ρA](r)− vs[ρtot](r) + const (2.6)

This relation cannot be used to obtain general analytic expression for the

functional vNAD
t [ρA, ρtot](r). For a given pair ρA(r) and ρtot(r), vNAD

t [ρA, ρtot](r)

can be obtained as implicit functional. This requires solving the inverted Kohn-

Sham problem. Kohn-Sham equation is solved for a given vext(r) and a given

functional ṽxc[ρ](r). To get vs[ρtarget](r) for a target ρtarget(r), one needs to solve

the inverted problem - to get a potential for a given density. In a particular

case, where one of the densities considered in Eq. 2.6 is obtained from Kohn-

Sham calculations, the inversion procedure can be - in principle - avoided for

this density. The inversion is, however, for this density in the pair which is

not obtained from the Kohn-Sham calculations. Only in a trivial cases of one-

electron or spin-compensated two-electron densities, the inversion can be made

analytically. This brings us to the key issue of the present review, "the necessity

to perform the numerical inversion in order to construct the non-additive kinetic

potential numerically for a given input pair of electron densities".

The numerical inversion procedures were introduced for other purposes -

to construct the exact exchange-correlation potentials. Reference exchange-

correlation potentials were constructed for various chemical species to under-

stand better the flaws of known approximations (see for Refs. [204, 198, 228,

74, 194, 222, 99]). In such calculations, ρtarget(r) is obtained from high quality

wave-function based calculations. To obtain the reference exchange-correlation
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potential, the numerical inversion procedure is performed only once and yields

the Kohn-Sham orbitals as well as the exact Kohn-Sham potential. Subtract-

ing from the inverted Kohn-Sham potential (vs[ρtarget](r)) the known compo-

nents (external potential and Coulomb potential) yields the exact exchange-

correlation potential for the target density.

The situation is not the same in the case of non-additive kinetic potentials.

Inverted potentials are used not only as a reference guiding the development

of improved explicit approximations but they can be generated inexpensively

(subject to additional approximations) and used in practical simulations. In

general case of an arbitrarily chosen pair of densities, two inversion procedures

are needed, one for each target density. The orbitals {ϕi[ρo]} obtained in the in-

version procedure and the corresponding eigenvalues can be also used to express

the potential δTs[ρ]
δρ(r) [110]. Up to a constant:

δTs[ρ]

δρ

∣∣∣∣
ρ(r)=ρo(r)

=

∑
i(−

1
2
ϕi[ρo]∆ϕi[ρo]− ϵi[ρo]ϕ2

i [ρo])

ρo
+ const (2.7)

Once a robust inversion procedure is at hand, the non-additive kinetic po-

tential can be obtained using either Eqs. 2.2 and 2.7 or Eq. 2.6.

Concerning the domain of the admissible densities, for which the functional

vNAD
t [ρA, ρtot](r) is defined, I notice that the necessary condition for Eq. 2.6 to

hold is that the corresponding energy functional TNAD
s [ρA, ρtot] exists (see the

derivation of Eq. 2.6 in Refs. [217, 213]). In practical calculations ρA(r), is

constructed from the embedded wavefunction. Its N -representability is built-in

in its construction. If ρtot(r) is, however, an independent variable, the quantity

ρB(r) = ρtot(r) − ρA(r) cannot be always interpreted as electron density. The

functional TNAD
s [ρA, ρtot] does not exist if ρB(r) = ρtot(r)− ρA(r) < 0. If ρA(r)

and ρtot(r) are chosen as independent variables, assuring N -representability of

ρB(r) = ρtot(r)−ρA(r) is not straightforward. A safer choice is to use ρA(r) and

ρB(r) as independent variables which yield ρtot(r) = ρA(r) + ρB(r). The quan-

tity ρtot(r) = ρA(r) + ρB(r) can a priori be made N -representable for any trial

N -representable ρA(r). To satisfy the conditions of N -representability given by

Gilbert [57], it is sufficient that ρB(r) ≥ 0,
∫
V
ρB(r)dr is integral, and the func-

tion is sufficiently smooth. If vNAD
t [ρA, ρtot](r) is evaluated, ρA(r) is always the

electron density represented by means of some quantum mechanical descriptor
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(embedded wavefunction) and it is the quantity which is not known a priori.

It is the result of the calculations. ρtot(r), on the other hand, can be either

the density obtained from independent calculations or it can be constructed as

a sum of ρtot(r) = ρA(r) + ρB(r) for some ρB(r) treated as the independent

variable. For such a choice of independent variables, the it is convenient to in-

troduce the non-additive kinetic energy functional which admits a larger class

of pairs of electron densities:

T nad’
s [ρA, ρB] = Ts[ρA + ρB]− Ts[ρA]− Ts[ρB] (2.8)

and express the non-additive kinetic potential as a functional of other variables:

vnad’
t [ρA, ρB](r) =

δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ρA+ρB

− δTs[ρ]

δρ(r

∣∣∣∣
ρ=ρA

(2.9)

The functional given in Eq. 2.8 is more general than that in Eq. 2.1. It

admits allN representable electron densities without any additional constraints.

For densities admissible in the Eq. 2.8,

T nad’
s [ρA, ρB] = TNAD

s [ρA, ρA + ρB] (2.10)

vnad’
t [ρA, ρB] = vNAD

t [ρA, ρA + ρB]

In methods based on Frozen-Density Embedding Theory (FDET), ρA(r) and

ρB(r) are considered as independent variables. FDET provides self-consistent

expressions for the embedding potential and the total energy for various quan-

tum mechanical descriptors of the embedded system such as: non-interacting

reference system [217], interacting wavefunction [213], one-particle reduced den-

sity matrix [166], or linear response of non-interacting reference system [210].

In each case, the optimal embedded quantum mechanical descriptor such as the

embedded wavefunction ΨA, is obtained from Euler-Lagrange equations leading

to the upper bound of the energy of the total system:

EFDET
AB [Ψopt

A , ρB] = EHK
AB [ρ

opt
A + ρB] ≥ Eo, (2.11)

where Eo is the ground-state energy of the total system, ρoptA (r) is the embedded

density corresponding to Ψopt
A , and EHK

AB [ρ] is the universal Hohenberg-Kohn

energy functional [94].
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If ρA(r) and ρB(r) are used as independent variables, the functionals T nad’
s [ρA, ρB]

and vnad’
t [ρA, ρB](r) can be approximated directly (without a "parent" T̃s[ρ]) [56]

to the bi-functional for the non-additive kinetic energy:

T̃ nad’
s [ρA, ρB] ≈ TNAD

s [ρA, ρB] = Ts[ρA + ρB]− Ts[ρA]− Ts[ρB] (2.12)

vnad’
t [ρA, ρB](r) ≈ ṽNAD

t [ρA, ρB](r) =
δT̃NAD

s [ρ, ρB]

δρ

∣∣∣∣∣
ρ(r)=ρA(r)

(2.13)

Methods introduced by Carter and collaborators [69, 70] represent another

choice of independent and hinges on the error compensation Ansatz:

EAB ≈ EAB[Ψ
methodI
AB ] + EA[Ψ

methodII
A ]− EA[Ψ

methodI
A ], (2.14)

where the method of the lower quality (methodI) can be applied to the whole

system and that of the higher quality (methodII) only to the embedded part.

Minimization of the energy given as a functional of the embedded wave-

function given in Eq. 2.11 or Eq. 2.14 proceeds via Euler-Lagrange equations.

Regardless, what is the quantum-mechanical descriptor used for ρA(r) in FDET

ormethodI in methods based on Eq. 2.14, the embeding potential comprises the

vNAD
t [ρA, ρtot](r) term defined in Eq. 2.2. If the non-interacting reference sys-

tem is used for ρA(r) in FDET, the Euler-Lagrange equations will be referred

to in this work as Kohn-Sham Equation with Constrained Electron Density

(KSCED).

It is worthwhile to notice that these two type of multi-level simulations

methods share the need of approximation to vNAD
t (r) but differ as far as their

scope is concerned. Without additional constraints, which to our knowledge

where not considered within the context of methods based on Eq. 2.14, the

quantity ρB(r) = ρtot(r)− ρB(r) cannot be interpreted as the electron density.

On the other hand, using ρA(r), ρB(r) as independent variables results in the

possibility to use any physical model (even classical) yielding ρB(r), which is a

physical observable at any scale. For such applications of FDET in multi-scale

simulations see Refs. [106, 123], in which ρB(r) was obtained from classical

statistical-mechanical model.

In practical terms, neither strategy that based on Eq. 2.11 nor 2.14 can yield

exact solutions of the quantum-many body problem for the whole system. These

two types of multi-level simulation methods target the effect of environment on
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properties of embedded species. Eq. 2.14 strategy relies of the choice of the

low-level quantum mechanical method used to obtain ρtot(r) wheres the FDET

strategy on the choice of ρB(r). Subsystem formulations of DFT, on the other

hand, such as that by Cortona [35] or various formalisms enforcing a common

embedding potential for all subsystem such as: Partition DFT (PDFT) [46, 48]

and the method introduced by Huang and Carter [96], are in principle capable

to yield exact solution of quantum many body problem. In such approaches a

priori assumption is made for neither ρtot(r) nor ρB(r), because also ρB(r) (or

ρtot(r)) is optimised to minimize the total energy in the presence of the local

potential , which is common for all subsystems.

2.2.2 Failures of explicit semi-local approximations to the

functional vNAD
t [ρA, ρtot](r) in numerical simulations

In practical calculations, vNAD
t [ρA, ρtot](r) is usually not constructed by

means of the inversion procedure. It is approximated using some explicit den-

sity functional. For any differentiable explicit approximated density functional

for the kinetic energy, T̃s[ρ], each of the functionals:

T̃ nad’
s [ρA, ρB] ≈ T̃s[ρA + ρB]− T̃s[ρA]− T̃s[ρB] (2.15)

vNAD
t [ρA, ρtot](r) ≈ ṽNAD

t [ρA, ρtot](r) =
δT̃s[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρtot

− δT̃s[ρ]

δρ(r)

∣∣∣∣∣
ρ=ρA

(2.16)

can be evaluated as an explicit functional.

Several specialized reviews cover applications of methods in which explicit

density functionals are used (see Refs. [101, 221, 102, 208, 152, 59, 13] for

instance). This section, I focuses rather on the numerical results indicating

the need of the alternative strategies such as the ones based in the inversion

procedures.

The errors of any approximated functional vNAD
t [ρA, ρtot](r) accumulate, if

not only ρA(r) is optimised but also ρB(r) in FDET. Such optimization can

be performed in practice by an iterative procedure freeze-and-thaw, in which

FDET equations are solved iteratively. In subsequent iterations, ρA(r) and

ρB(r) exchange their roles till self-consistency [218]. Such calculations represent

the numerical implementation of Cortona formulation of DFT [35], which leads
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to the exact solution of quantum-many-body problem at the hypothetical limit

of exact functionals. Note that it is not the case of FDET which leads to the

upper bound of the total energy at this limit. In the case of error compensation

based strategies this limit is reached only if methodI and methodII in Eq. 2.14

denote the exact solution of the quantum-many body problem.

The undesired feature of the Cortona formulation is the fact that the pair

of optimised densities yielding the exact total density is not unique. Subsys-

tem DFT admits multiple solutions, i.e., pairs of PSNIVR densities ρA(r) and

ρB(r) which add up to the same total energy. In practical applications of the

Cortona formulation of DFT, vnad’
t [ρA, ρB](r) is approximated as in Eq. 2.16

unique solution is usually obtained. The unique solution of the freeze-and-thaw

optimization is an artifact due to the error in ṽNAD
t [ρA, ρtot](r) (see the rele-

vant discussion in Refs. [97, 221]). Nevertheless, the Cortona formulation of

subsystem DFT, introduced to molecular complexes by Wesolowski and Weber

[218], was shown to yield surprisingly good description of weak intermolecular

complexes near equilibrium geometry [195, 216, 109, 45, 44]. It is probably

the combined results of errors in the embedding potential which penalizes the

overlap between the subsystem densities. As a result, the approximated compo-

nents to the total energy such as that due to the non-additive kinetic energy are

small. For larger overlaps between ρA(r) and ρB(r), semi-local approximations

to vnad’
t [ρA, ρB](r) systematically fail as shown for model systems [15, 176, 215],

realistically chemical systems such as intermolecular complexes at small in-

termolecular separations[218, 219, 220, 209] or covalently bounded subsystems

[54, 16, 77].

Another systematic failure of semi-local approximations concerns large sepa-

ration. Semi-local functionals ṽNAD
t [ρA, ρtot](r) were reported to lead to artificial

charge distribution between subsystems. Jacob et al. [103], analyzed this case

in detail and proposed a correction to this problem by enforcing that the total

embedding potential in FDET reaches zero at large separations. Lastra et al.

[56], addressed this problem in a different way, by enforcing exact properties on

the functional vnad’
t [ρA, ρB](r) at small overlaps between ρA(r) and ρB(r) and

constructing explicit functional ṽnad’
t [ρA, ρB](r) reflecting these properties.

These reported failures of semi-local approximations to vNAD
t [ρA, ρtot](r),
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which are explicit density functionals, motivated the recent interests in the

implicit functionals obtained using inversion procedures.
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2.2.3 Numerical inversion of the Kohn-Sham Equation

with finite atomic basis set

In this section, the universally applicable methods for inverting the Kohn–Sham

equation are overviewed. Such methods were developed originally for generat-

ing reference exchange-correlation potentials for a given density. I focus on

methods, which were used to construct non-additive kinetic potentials. The

scheme in Fig.[2.1-a], illustrates the key elements in such procedures.

Step I in the upper panel represents a solver of the Kohn–Sham equation,

which uses a given approximation to the exchange-correlation potential. The

ground-state density is the density corresponding to the total effective potential

at the end of self-consistent calculations. I refer to the problem shown in the

lower panel as inverting Kohn–Sham equation. The potential corresponding to

a given target density ρin(r) is to be found.

Step I is the key element consisting of the search for the orbitals which yield

ρin(r). In the trivial case of ρin(r) being an one-electron- or a two-electron

spin-compensated density, the orbitals can be obtained analytically and used

subsequently in step II to generate the potential v[ρin](r). In all other cases, in-

verting the Kohn–Sham equations relies on a numerical procedure. In practice,

the numerical inversion uses the Levy’s constraint search[127] for the potential

v(r) such that:

(
− 1

2
∇2 + v(r)

)
ϕi(r) = ϵiϕi(r)→ ρ(r) =

N∑
i=1

|ϕi(r)|2 = ρin(r) (2.17)

In the numerical inversion procedures, the search can be performed either

directly (among potentials) or indirectly (among orbitals). Unfortunately, nu-

merical inversion of Kohn–Sham equation is an ill-defined problem if the fi-

nite basis sets are used. It results in numerical instabilities or multiple solu-

tions. It is very likely that the numerical problems aggravate if the numer-

ical inversion is performed twice for the sake of obtaining vNAD
t [ρA, ρtot] (the

subject of the present review). The problem of nonuniqueness of local poten-

tials, if represented using finite basis sets, is not only relevant for inverting the

Kohn–Sham equation, but for other one-electron equations using local poten-

tials. For a comprehensive analysis of this issue, see the work by Staroverov,

Scuseria, and Davidson[182]. For other methods to circumvent the numerical
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(a)

(b)

Figure 2.1: KS equation solving procedures. a) Shows a normal Kohn-Sham equation

which is solved once there is a good approximation and knowledge to all terms of

KS potential. b) Shows the inverted procedure in which from a given electron den-

sity of system, the potential is constructed as a functional of electron density. The

corresponding orbitals to this latest are found based on Levy CS (step(I)). From the

obtained orbitals, inverted potential is calculated (step II) . ϵi is a constant in b)

equivalent to corresponding eigenvalue.
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difficulties due to the nonuniqueness of the optimized effective potential, see

Refs.[39, 67, 86, 117, 19, 87] for instance. The second step in the inversion

(Step II in the lower panel in Fig.[2.1-a]) consists of using a seemingly trivial

analytic formula. Up to a constant, it yields the inverted potential anywhere

except nodal planes of the used orbital. This step, however, contributes to

nonuniqueness of the inverted potential if a finite basis set is used. As shown

numerically by De Silva and Wesolowski[36], each orbital yields qualitatively

different inverted potential. A pragmatic solution proposed by King and Handy

is to take as inverted potential the density weighted average[110]. Up to a con-

stant (Eq.[2.7]).

Inversion procedure of KS equation contains construction of potential from

a given electron density (target) or orbitals as input (Fig.[2.1-b]). From this

procedure KS equation will be resolved using the recently constructed inverted

potential to yield an electron density equal to target density. The correspond-

ing orbitals to input density could be obtained from numerical application of

levy constraint (Step (I) of Fig.[2.1-b]). The inverted potential is used in cal-

culation of non-additive kinetic potential. Eq. 2.6 can be used as the basis

for constructing the non-additive kinetic potential implicitly for a given pair of

electron densities ρA and ρtot. To this end, the numerical inversion of the Kohn-

Sham equation must be performed twice. Once to obtain vs[ρA](r) and once to

obtain vs[ρtot](r). Several authors proposed generally applicable methods to in-

vert the Kohn-Sham equations for an arbitrarily chosen target density (denoted

as ρin in this section). Some of these methods based on iterative procedures use

linear responses [207, 64, 66, 177] and some used more complicated procedures

such as ones solving series of coupling equations eventuating to inversion meth-

ods more limited to small systems of few electrons [2, 7, 149, 150, 28, 29, 95].

Such procedures were developed to obtain reference exchange-correlation poten-

tials for a given density. The inversion procedure could results potential Vs(r)

directly from corresponding orbitals to density, up to a constant (Step (II) of

Fig.[2.1-b]). de Silva and Wesolowski [38], showed this constant is equivalent

to eigenvalue corresponded to the orbitals. Then King and Handy inversion

procedure [194], in which the potential was obtained as the density-weighted

average of the potentials obtained from each single occupied KS-Orbitals.
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Inverting the Kohn-Sham equations is an ill-defined problem (see also latter

in the present work) if the finite basis sets are used for solving Kohn-Sham

equation. This leads to numerical instabilities or multiple solutions. In the

latest case, one solution to KS equation could be obtained from different used

potentials. This raises up the lack of uniqueness problem. I can only ex-

pect that performing the numerical inversion twice for the sake of obtaining

vNAD
t [ρA, ρtot](r) can only aggravate the numerical problems. The nature of

lack of uniqueness could be explained through Eq.2.18 followed form Eq.11 of

Jacob [100].

∆ρ(r) = cnst.

N∑
i,a

⟨φi |∆V (r)|φa⟩
ϵi − ϵa

φi(r)φa(r) (2.18)

For ⟨φi |∆V (r)|φa⟩ = 0, any changing in ∆V (r) will not change ∆ρ(r).

Some researchers [222, 22, 81, 80] optimised potential by suggesting a lin-

ear combination of potential basis functions that can tune density variation,

V (r) =
∑

t btgt(r), where bt is expansion coefficient. Some others then tried to

fix uniqueness problem differently. For example Jacob [100], proposed an addi-

tional constraint to the variation of density by introducing a threshold ethresh

Eq. 2.19.

edensi =

∫
|∆ρ(r)dr| ≤ const.

∑
t

σt

∣∣∣∆b̃t∣∣∣dt, (2.19)

Where dt =
∫
|φt(r)|dr and σt are the Singular value decomposition of

basis-set transformation matrix (look for Eq.(13) in ref. [100] for more details).

Hirata et a. [87] for the finite number of orbitals for an ill-defined Optimised

Effective Potential (OEP) [71] integral equation suggested to project the equa-

tion and vx(r) upon the function space accessible by kernel and thereby making

the exchange potential unique.

Staroverov and scuseria [183], made a procedure to construct local vx(r) for

any number of electrons for any basis set to obtain exact unique HF energy and

density. Some other attempts were done to optimise the potential differently

to get rid out of ill-defined inverting procedure of KS equation by [58, 67, 86,

117, 19].
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Before reviewing the works, in which the non-additive kinetic potentials were

obtained by means of TWO numerical inversions, I provide the brief overview of

the key methods used in the literature for inverting the Kohn-Sham equations.

Due to the fact that the present review concerns vNAD
t [ρA, ρtot](r), I focus only

on the key features of methods for inverting the Kohn-Sham equation. For a

more complete overview, of this issue see the dedicated section in the review

by Neugebauer and Jacob [102] and the reference therein.

In the researches using DFT procedures, different methods were suggested

to calculate or approximate kinetic energy functional and potential from a given

density. Some based on iterative procedures use linear responses [207, 64, 66,

177] and some used more complicated procedures such as ones solving series

of coupling equations eventuating to inversion methods more limited to small

systems of few electrons [2, 7, 149, 150, 28, 29, 95].

Levy showed that one could consider all N-representable densities in such

a search, instead of searching in the smaller (and nearly impossible to define)

space of v-representable densities. Ground state can always be found by ap-

plying the variational principle[157] to Levy’s formulation of DFT. From Levy

constrained-search for a given density ρin, the appropriate orbitals of ρLevy,

found from Eq. 2.20, minimise kinetic energy function of form of Eq.2.3 and

satisfy equality of ρin = ρLevy .

ρ(r) =
N∑
i=1

|φi(r)|2, (2.20)

Such wave functions are solutions to KS equation in which effective poten-

tial is a local Lagrange multiplier function. The set of orbitals φi attempting to

minimise Eq.2.3 needs to contain normalised orbitals. This latest condition ne-

cessitates a set of eigenvalues as Lagrange multipliers. The stationary condition

of Eq. 2.21 must also be satisfied by φi.

Ws[Ψs, veff (r)] =
N∑
i

〈
φi(r)

∣∣∣T̂ ∣∣∣φi(r)
〉
+

∫
veff (r)[ρ(r)− ρin(r)]dr, (2.21)

Among methods based on Levy CR, one could call Wang et Parr [204]

who provided a numerical inversion method in which through a known electron

density ρin(r), they could obtain corresponding called “exact" KS potential plus
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non-interacting KS orbitals from self consistent KS solver. They replaced three

potential terms of Eq. 2.4 by called effecting potential:(
−1

2
∇2 + vpeff (r)

)
φi(r) = ϵiφi(r), (2.22)

Then multiply it by φ∗
i (r) and divided by ϵi, :

N∑
i

φ∗
i (r)φi(r) = v

(WP )
eff (r)

N∑
i

1

ϵi
φ∗
i (r)φi(r) +

N∑
i

1

ϵi
φ∗
i (r)(−

1

2
∇2)φi(r) = ρin(r)(2.23)

From that known electron density they construct an effective potential in one-

to-one correspondence with effective potential. Begining from a first estimation

of effective potential, Eq. 2.22 is solved for N lowest orbital energy and their

corresponding orbitals. From the initially known electron density and the latest

found orbitals, the first effective potential is constructed through Eq. 2.24.

v
p(WP )
eff (r) =

ρin(r)−
∑N

i
1
εi
φp∗
i (r)(−1

2
∇2)φp

i (r)∑N
i

1
εi
φp∗
i (r)φp

i (r)
, (2.24)

This procedure is repeated iteratively till the self-consistency be satisfied(vpeff (r) =

vp−1
eff (r)). Their model has the advantage of being free form Lagrange multi-

plier which needs supplementary calculations in numerical methods. The fact of

being independent on boundary conditions makes this inversion method more

general and easy to apply.

Seeking for approximate potentials over all space, van Leeuwen and Baerends

[198] suggested a procedure that takes account of the asymptotic behaviour of

potential at r → ∞ and r → 0. They made their method similarly to WP as

an iterative solver to KS equation and from Eq. 2.22, only from multiplication

by φ∗
i (r), they constructed:

N∑
i

ϵiφ
∗
i (r)φi(r) = v

(LB)
eff (r)

N∑
i

φ∗
i (r)φi(r) +

N∑
i

φ∗
i (r)(−

1

2
∇2)φi(r), (2.25)

Where iteratively they construct potential as following:

v
p(LB)
eff (r) =

1

ρin(r)

N∑
i

φp′∗
i (r)(−1

2
∇2)φp′

i (r) +
N∑
i

∣∣∣φp′

i (r)
∣∣∣2, (2.26)
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Till they achieve convergence once following constraint is satisfied for a given

threshold ϵ:

max
i

∣∣∣∣1− ρp
′
(r)

ρin(r)

∣∣∣∣ < ϵ, (2.27)

Asymptotic behaviour of potential is omitted in their procedure by setting it to

zero for r →∞. Another advantage of this procedure is that convergence limit

is unique due to application of Hohenberg-Kohn theorem-Kohn energy func-

tional on non interacting electron system. What could be considered as risk of

this wildly used method is the fact that convergence is not highly guaranteed be-

cause while proceeding, some densities are not non-interacting v-representable.

In contrast with LB procedure which updates potential in each iteration

and find out corresponding density, Kadantsev et al [105] for each iteration use

the difference between iteratively obtained density and ρin Eq.2.28.

vp+1
eff (r) = vpeff (r) + αp [ρp(r)− ρ0(r)] , (2.28)

Where ρ0(r) is fixed grand state density obtained as input density (target

density) and αp is minimisation parameter.

Colonna and Savin [32], used different technique to update potential based

on the Lieb Legendre transform definition of density functional.

Zhao, Morrison and Parr (ZMP) [228], supposed an inversion method de-

parting from grand state electron densities. From known grand state electron

density (ρin(r)) and via self-consistence calculation of KS equation, they obtain

veff (r) which is sum over external potential v0(r) and an additional potential

vc(r), forcing ρ to be equal to ρin(r). While looking for an effective potential

resulting densities (corresponding to the solutions of KS equation) equal to

grand state density, they introduced a global Lagrange multiplier λ, Eq. 2.29.

This latest form of KS equation tends to Eq. 2.4 for λ→∞.

[−1

2
∆ + v0(r) + vλc (r)]φ

λ
i (r) = ελi φ

λ
i (r), (2.29)

where vλc (r) is defined as:

vλc (r) = λ

∫
ρ(r′)− ρin(r′)
|r′ − r|

dr′, (2.30)

Out of this limit, the solution of newly constructed KS equation differs from

the one raised up from KS equation without Lagrange multiplier. To satisfy
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this expectation, they solve Eq.2.29 self-consistently for a series of specific λ

which is extrapolated to λ =∞.

Goodpaster et al. [62], accomplished ZMP procedure for six large finite vales

of λ. Some other authors like Miller et al. improved the inversion procedures

of non-additive potential construction’s algorithm by mixing ZMP.

Wu and Yang [226, 222] applied numerically Levy CS and defined a func-

tionalWs[Ψs[v
(WY )
eff (r)], v(WY )

eff (r)] of any N-electron single-determinant trial wave-

function Ψs whose orbitals {φi} are eigenstates of its Lagrange multiplier func-

tion v(WY )
eff (r) . ForWs to be stationary with respect to any variation of v(WY )

eff (r)

they made following constraint condition on electron density:

δWs[Ψs[v
(WY )
eff (r)], v(WY )

eff (r)]

δv
(WY )
eff (r)

= ρ(r)− ρin(r) = 0, (2.31)

They constructed Ts[ρin] Eq. 2.33, from variational principle in terms of one-

electron potential. Their effective potential respects an additional constraint

(Eq.2.32).

The procedure is robust owing to the concavity of the functionalWs[v
(WY )
eff ] =

Ws[Ψs[v
(WY )
eff ], v

(WY )
eff ]:

δ2Ws[Ψs[v
(WY )
eff (r)], v(WY )

eff (r)] =

2
occ∑
i

unocc∑
a

〈
φi

∣∣∣∣ ˆ
δv

(WY )
eff

∣∣∣∣φa

〉〈
φa

∣∣∣∣ ˆ
δv

(WY )
eff

∣∣∣∣φi

〉
ϵi − ϵa

+ const ≤ 0,

(2.32)

and the fact that the kinetic energy expressed as the functional of v(WY )
eff is

maximal at the exact inverted potential:

Ts[ρin] = max
v
(WY )
eff (r)

Ws[Ψs[v
(WY )
eff (r)], v(WY )

eff (r)], (2.33)

This latest constraint assures that the stationary point is maximum due to

concavity of Ws.

The procedure introduced recently by Nafziger et al.[148] uses numerical

solution of Kohn–Sham equations on a prolate-spheroidal real-space grid ap-

plicable for diatomic systems. In each grid point (j) and each orbital (i), the

Kohn–Sham orbitals are constrained to satisfy (to some arbitrarily chosen tol-

erance) the constraint given in Eq.[2.34] associated with the Kohn–Sham equa-

tion, and the constraints imposing that orbitals are orthonormal and that the
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sum of orbital densities yields ρin(r). The target orbitals are obtained through

direct minimization of the residuals representing each constraint.

residualKS
i,j = (−1

2
∇2ϕi)j + vs,jϕi,j − ϵiϕi,j (2.34)

The above five procedures were (directly or on some modifications) used by

several authors to construct the non-additive kinetic potential over-viewed in

section 2.2.

2.3 Non-additive kinetic potential from inversion

procedures

In this section, I overview literature reports concerning the construction of

non-additive kinetic potential for a given arbitrary choice of a pair of densities

(either ρA(r) and ρB or ρA(r) and ρtot(r)). Reports concerning the non-additive

kinetic potentials obtained using inversion procedures keep appearing in the lit-

erature. The current situation traces its origin to five key publications. As early

as in 2004, Zhou, Wang, and Carter, used the numerical inversion procedure to

construct local pseudo-potentials [229]. The pairs ρA(r) and ρB(r) correspond

to valence and core electrons. Shortly afterward, Roncero et al. [171] intro-

duced an universal inversion procedure to construct vNAD
t [ρA, ρtot](r) if ρA(r)

is mainly localized in a pre-defined part of space such as that occupied by

one molecule. In 2009, Savin and Wesolowski used a model, for which both

Kohn-Sham and KSCED equations can be solved analytically, and proposed

an analytical construction of non-additive kinetic potential applicable for some

particular choices of ρA(r) and ρtot(r): ρtot(r) obtained from any exact or ap-

proximated Kohn-Sham equation and ρA(r) being any one- or spin-compensated

two electron density such that ρtot(r) ≥ ρtot(r) [176]. In two publications, which

appeared in 2010, one by Goodpaster et al. [61] and one by Fux et al. [55], two

universally applicable methods based on numerically inverted potential were

proposed. The methods introduced in these two papers were validated in vari-

ational calculations using the inverted potentials. Further developments are

expected.

In the general case, two inversion procedures are needed to in order to het
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non-additive kinetic potential from Eq. 2.6. Only for some model systems,

both potentials in the right-hand-side of Eq. 2.6 can be expressed analytically.

It is possible to reduce the burden of numerical inversion by generating one of

the densities considered in Eq. 2.6 (ρtarget) using Kohn-Sham or KSCED calcu-

lations (even the ones which use approximated density functionals). The exact

potential vs[ρtarget](r) is equal to the sum of the last three components of the op-

erator given in the left-hand-side of Eq. 2.4). In practice, due to the use of finite

basis sets such correspondence between the density and Kohn-Sham potentials

not unique as demonstrated comprehensively in Ref. [38]. This problem can be

circumvented by using the orbital density of the smoothest orbital (see latter

in the present work). Concerning the admissible densities, it is worthwhile to

underline the fundamental difference between implicit constructions of poten-

tials approximating the exact vNAD
t [ρA, ρtot](r) and explicit density functionals

which affects the numerics of the inversion procedure. The former is defined

only for admissible densities (the necessary condition is that ρtot(r) ≥ ρA(r))

whereas for the latter approximations might accept pairs of densities violating

this condition. For the same reason of admissibility, using ρA(r) and ρtot(r) as

independent variables in methods using inverted potentials might lead to addi-

tional numerical difficulties and/or additional approximations compared to the

independent variables used in FDET (ρA(r) and ρB(r)).

Inverted potential using analytical and numerical inversion procedures are

discussed in separate sections below.

2.3.1 vNAD
t [ρA, ρtot](r) from analytical inversion

Savin and Wesolowski [176, 215] used a simple model system, in which the

key quantities defined in FDET: vnad’
t [ρA, ρB](r), T nad’

s [ρA, ρB], vs[ρA](r) and

vs[ρA + ρB](r) could be constructed analytically for various ρB(r) and a given

ρtot(r). The system consists of four spin-unpolarized non-interacting electrons

in external potential −Z/r (in atomic units). The two lowest energy solutions of

the corresponding Kohn-Sham equation are the hydrogenic 1s and 2s functions.

The ground-state density for such system is just:

ρo(r) = 2|1s(r)|2 + 2|2s(r)|2 (2.35)
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This ρo(r) was used as ρtot(r) in the construction of the non-additive kinetic

potential. The second term in Eq. 2.6 is just:

vs[ρtot](r) = vs[ρo](r) = −
Z

r
(2.36)

As far as vs[ρA](r) is concerned, it is just:

vs[ρA](r) =
1

2

∆
√
ρA(r)√
ρA(r)

=
1

2

∆
√
ρtot(r)− ρB(r)√
ρtot(r)− ρB(r)

+ const (2.37)

for any pair of non-negative functions ρA(r) and ρB(r) , such that:∫
V

ρA(r)dr = 2 (2.38)

ρA(r) + ρB(r) = ρtot(r). (2.39)

Eq. 2.6 leads to an analytical expression for the non-additive kinetic potential

for any ρtot(r) (which can be modified by changing Z) and ρA(r) chosen ar-

bitrarily to satisfy the conditions given in Eqs. 2.38 and 2.39. This potential

reads:

vNAD
t [ρA, ρtot](r) = vNAD

t [ρtot − ρB, ρtot](r) =
1

2

∆
√
ρtot(r)− ρB(r)√
ρtot(r)− ρB(r)

− Z

r
+ const(2.40)

This example was used to discuss the relation between the pseudopotential

theory [168] and FDET. To this end, a series of densities ρB(r) satisfying con-

ditions given in Eq. 2.38 and approaching 2|1s(r)|2, i.e., the density of the

electrons in the core shell, was used. The vnad’
t [ρA, ρB](r) was obtained from

Eq. 2.6. By construction, addition of this potential to the Kohn-Sham potential

results in the lowest energy orbital such that it yields the exact target density

ρo(r)− ρB(r. At the limit of ρB = 2|1s(r)|2, the exact total density can be ob-

tained in two alternative ways. Either using the exact vnad’
t [ρA, ρB](r) in FDET

or following the pseudopotential strategy. The latter consists of adding a non-

local operator which projects out the 1s solution. This modification results in

2s being the lowest solution of such modified Kohn-Sham equation. In FDET,

a local (multiplicative) potential is added to the Kohn-Sham potential and the

lowest energy solution yields the same density as 2|2s|2. For ρB(r) approaching

2|1s(r)|2, the embedded orbital obtained from FDET does not approach 2s but

|2s|. FDET leads thus to the same correct total electron density without using

on-local operators in a modified Kohn-Sham equation (see Figure 9.2.4 in Ref.
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[215]). Concerning the relation between vnad’
t [ρA, ρB](r) and pseudopotentials

of the pseudopotential theory [168], I noticed that this issue, still is an object

of current discussions in the literature. Recent work by Unsleber et al. [197],

addresses this issue comprehensively in real chemical systems. The potential

vnad’
t [ρA, ρB](r) obtained from the numerical inversion is used for this purpose.

In practical applications, using some semi-local functional ṽnad’
t [ρA, ρB](r), ad-

dition of projection operators to the embedding potential might help to reduce

the errors due to the used functional (see Refs. [184, 30, 188]). For exact

vnad’
t [ρA, ρB](r), such addition would result in counting twice the kinetic energy

contributions to the total energy and to the potential. Neither the exact energy

nor density can be obtained if both exact vNAD
t [ρA, ρtot](r) and the projector

are used.

The analytically solvable case of FDET used in Ref. [176], was also used

to discuss the performance of various gradient-dependent approximations to

vnad’
t [ρA, ρB](r) [215]. The two canonic choices for a semi-local approximation

for Ts[ρ] to approximate vnad’
t [ρA, ρB](r) as in Eq. 2.16 are:

T vW
s [ρ] =

∫
V

1

8

|∇ρ|2

ρ2
dr (2.41)

the von Weizsäcker functional [201], which is the exact functional for spin-

compensated 2-electron systems. Or

TTF
s [ρ] =

∫
V

CTFρ5/3dr (2.42)

the Thomas-Fermi functional [192, 51] which is the exact functional in the case

of homogeneous electron gas.

In either cases, the analytical form of the functional derivative is known and

can be used in Eq. 2.16 to approximate vnad’
t [ρA, ρB](r). Although vnad’

t [ρA, ρB](r)

obtained from the von Weizsäcker functional reflects some features of the exact

functional, such as the large barrier if ρA(r) approaches zero, it fails to yield

reasonable target density. The density ρ̃optA (r) obtained in variational calcu-

lations using approximated non-additive kinetic potential differs qualitatively

from the target density in each case [215]. As far as the performance of the

Thomas-Fermi functional is concerned, the shape of ṽnad’
t [ρA, ρB](r) does not

resemble the exact potential at all. Interestingly, the ρ̃optA (r) obtained in varia-

tional calculations using this approximation were better than the ones obtained
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using the von Weizsäcker approximation. The former leads to ρ̃optA (r), which col-

lapses onto the 1s shell. The Thomas-Fermi approximation, on the other hand,

leads to too repulsive ṽnad’
t [ρA, ρB](r). In either cases, the accuracy of the non-

additive kinetic potential and energy insufficient, making these approximations

in practical simulations useless if the spacial overlap between ρA(r) and ρB(r)

is strong. In particular, using semi-local approximations to vnad’
t [ρA, ρB](r) in-

stead of the atomic pseudopotentials does not seem to be a promising strategy if

ρA(r) and ρB(r) correspond to core and valence electron densities. Other semi-

local approximations to vnad’
t [ρA, ρB](r) considered in Ref. [215] performed not

much better than the Thomas-Fermi functional. These analyzes revealed also

that the accuracy of the parent approximation to Ts[ρ] does not correlate with

that of the corresponding vnad’
t [ρA, ρB](r). These results are in line with the

results reported by Bernard et al. in Ref. [15].

The analytical inversion procedure used in these model studies is obviously

not designed for practical applications because it can be made only for partic-

ular pairs of densities for ρA(r) is a spin-compensated electrons two-electron

density and if vs[ρtot](r) is known. A more general approach applicable for

larger systems uses the fact that Kohn-Sham calculations for any external po-

tential and for any approximate density functional for the exchange-correlation

energy, yield the total effective potential in Kohn-Sham equation (vKS(r)) and

the ground-state electron density ρo(r). In principle, therefore, partitioning

ρo(r) into two non-negative components, such that one of them ρA(r) is a spin-

compensated two-electron density, makes it possible to obtain vnad’
t [ρA, ρB](r)

without relying on the numerical inversion procedure - which as a numerical

challenge for densities comprising more than two electrons. The exact (at the

limit of complete basis set) vs[ρo](r) is nothing else as the Kohn-Sham poten-

tial, obtained at the end of the self-consistent procedure to solve Kohn-Sham

equation. It is, therefore, available and can be used in Eq. 2.6.

vs[ρA](r), on the other hand, can be obtained analytically form Eq. 2.37. De

Silva and Wesolowski explored this possibility and constructed vnad’
t [ρA, ρB](r)

for various partitioning of the ground-state electron densities for beryllium

atom, He-Li+ diatomic, and Be-H2 and B+-H2 complexes [37]. In the construc-

tion of the potential, instead of the numerically available Kohn-Sham potential
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needed for the second term in Eq. 2.6, it was obtained (up to a constant)

from the lowest Kohn-Sham orbital density (ρ1(r) = 2|ϕ1(r)|2) using analytic

inversion always applicable for spin-compensated two-electron densities.

vs[ρtot](r) = vs[ρ1](r) + const =
1

2

∆
√
ρ1(r)√
ρ1(r)

+ const′ (2.43)

For such a case, the non-additive kinetic potential can be obtained for any

N-electron system and any ρB(r) such that:

ρtot(r) ≥ ρB(r) ≥ 0, (2.44)

and ∫
V

ρB(r)dr = N − 2 (2.45)

Eq. 2.6 leads to the following expression for the non-additive kinetic potential:

vNAD
t [ρA, ρtot](r) = vNAD

t [ρtot − ρB, ρtot](r)

=
1

2

∆
√
ρtot(r)− ρB(r)√
ρtot(r)− ρB(r)

− 1

2

∆
√
ρ1(r)√
ρ1(r)

+ const
(2.46)

where ρtot(r) and ρ1(r) are available numerically in any Kohn-Sham calculation.

The use of analytically inverted potential corresponding to the orbital den-

sity of the lowest energy Kohn-Sham orbital, instead of the explicit Kohn-Sham

potential results in elimination of the numerical instability due to the effect of

the use of the finite basis sets. The origin of this instability is the differ-

ence between the effective potential in Kohn-Sham equations at the end of

the self-consistent procedure and the inverted potential corresponding to the

ground-state density:

vs[ρ
opt(LCAO)
o ](r) ̸= vKS(r) (2.47)

discussed in detail in Ref. [38].

The inverted potential obtained from any of the orbital densities (|ϕ1|2 in

particular) using Eq. 2.43, is equal (up to a constant) to the potential in the

left-hand-side of the above equation. This inequality is most relevant near

the nuclei where the Kohn-Sham potential is singular. The character of the

singularity, which might appear in the left-hand-side of Eq. 2.47, depends on

the used atomic basis sets, whereas it behaves as −1/r in the right-hand-side
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for any basis set used. Far form the molecule, on the other hand, a similar

mismatch can be expected in the asymptotic region far from the molecule. In

the left-hand-side of Eq. 2.47 it is determined by the basis set whereas the

behavior of the right-hand-side is determined by the ionisation energy.

The densities ρB(r) for which the non-additive kinetic potential was con-

structed in Ref. [37] correspond to various linear combinations of Kohn-Sham

orbital densities for diatomics and in small intermolecular complexes with four

spin-compensated electrons using the following choices for ρB(r):

ρB(r) = 2α|ϕ1|2 + 2(1− α)|ϕ2|2 (2.48)

Such choices of ρB(r) guarantee the N -representability of ρA(r) (but also its

pure-state non-interacting v-representability) but result in non-negligible over-

lap between ρA(r) and ρB(r) due to the delocalisation of the Kohn-Sham or-

bitals. The approximate potential vNAD
t [ρtot−ρB, ρtot](r) obtained from the von

Weizsäcker functional and such choices for ρB(r) reproduced some features of

the exact vnad’
t [ρA, ρB](r) better than other approximations. It remained rather

unsatisfactory in other regions of space.

2.3.2 vNAD
t [ρA, ρtot](r) from numerical inversion

Reports concerning the non-additive kinetic potentials obtained using nu-

merical inversion procedures keep appearing in the literature. The current situ-

ation traces its origin to four publications. As early as Zhou, Wang, and Carter,

used the numerical inversion procedure to construct local pseudo-potentials

[229]. The pairs ρA(r) and ρB(r) correspond to valence and core electrons.

Shortly afterward, Roncero et al.[9] introduced an universal inversion proce-

dure to construct vNAD
t [ρA, ρtot](r) if ρA(r) is mainly localized in a predefined

part of space such as that occupied by one molecule. In two publications,

which appeared i, one by Goodpaster et al.[61] and one by Fux et al.[55],two

universally applicable methods based on numerically

Methods reviewed in this section, concern vNAD
t [ρA, ρtot](r) obtained for

more general choices of the densities ρA(r) and ρtot(r), then the ones discussed

in the previous section. They were developed mainly for practical simulations,

in which ρA(r) and ρtot(r) are unknown. Compared to the analytically inverted
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potentials, for which the unique correspondence between densities and poten-

tials us built-in by construction, the numerically inverted potentials always

involve additional approximations. In all procedures reviewed in this section,

finite basis sets are used implying the inequality given in Eq. 2.47. The exact

relations between vs[ρ]((r), vNAD
t [ρA, ρtot](r), {[ϕi[ρB]} discussed in the previ-

ous sections do not hold for the Kohn-Sham potential, orbital energies, and

orbitals. Regularization techniques are used to assure unique correspondence

between potential and density. In some methods, additional constrains impose

the N -representability of the density for which the inverted potential is con-

structed. Last but not least, pure-state non-interacting v-representability of the

considered densities is always assumed. For these reasons, enforcing that the

exact relations hold also for the considered densities in such procedures cannot

be made in a controllable manner. The quality of the inverted potentials is

validated based on errors in the density (and frequently also other observables

such as energy) obtained using them in variational calculations. To this end,

the considered quantities are compared to the corresponding targets such as the

the total density obtained using the same method as the one used for isolated

embedded species but applied to the whole system (see Ref. [61] for instance).

Some of the reviewed methods were tested in this way showing their impres-

sive accuracy. The obtained non-additive kinetic potentials provide valuable

references for comparisons with potentials derived from explicit functionals.

Turning back to practical applications of numerically inverted potentials,

an additional approximation is frequently made:

vNAD
t [ρA, ρtot](r) ≈ vNAD

t [ρ′A, ρ
′
tot](r) (2.49)

if the densities ρA(r) and ρtot(r) for which vNAD
t [ρA, ρtot](r) is evaluated is differ-

ent than the final density obtained from the optimised embedded wavefunction.

(This approximation is also made in some methods using explicit functionals.)

Solving the quantum-many body problem for the embedded wavefunction yield-

ing ρA(r), proceeds usually through an iterative procedure. Repeating the in-

version (or evaluation of the explicit functionals) at each iteration would not

be practical. If the potential and density are not fully consistent, the above

approximation might lead to some residual error. Compared to the errors in

potentials obtained from explicit approximations it is probably a minor effect.
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Goodpaster et al. [61], constructed vNAD
t [ρA, ρtot](r) using the Zhao-Morrison-

Parr inversion procedure [228] for ρtot(r) being the sum of two electron den-

sities ρA(r) and ρB(r), each obtained from coupled KSCED equations. Such

choice of the independent variables assures that all considered densities are

N -representable. The first term in Eq. 2.16 was evaluated from Eq. 2.7 us-

ing the orbitals obtained in the inversion procedure. The second term could

be obtained without involving the numerical inversion because the Kohn-Sham

orbitals corresponding to ρB(r) ({[ϕi[ρB]}) are available if ρB(r) are obtained

in KSCED. The densities ρA(r) and ρB(r) were optimised using either inverted

non-additive kinetic potential or semi-local explicit approximations to it. The

soundness of the numerical inversion procedure was verified by comparing of the

total density obtained from the coupled KSCEDs with the reference density of

the whole system obtained from Kohn-Sham calculations. The results obtained

for several three and four electron atomic systems demonstrated qualitative

superiority of the inverted potential over the potentials derived from semi-

local approximations. These results are in line with the ones demonstrated for

model system used by Savin and Wesolowski discussed in the previous section.

Inverted potentials led to significantly better ionisation energies than the ones

obtained using semi-local approximations. In the subsequent work [62], the au-

thors used the inverted potentials for Li+-Be, CH3-CH3, and water dimer, i.e.,

for cases featuring both large and small overlaps between large and small ρA(r)-

ρB(r) overlaps. Excellent agreement between the Kohn-Sham densities and the

ones obtained using inverted potential in coupled KSCED calculations was re-

ported. For the water dimer, the total energies using semi-local approximations

to vNAD
t [ρA, ρtot](r) were slightly worse than the ones obtained using the inverted

non-additive kinetic potential but their performance worsened systematically

with the increase of the overlap. The authors refined the method targeting the

whole embedding potential and not its non-additive kinetic potential only [63].

It was used in calculations based on Eq. 2.14 where methodI used the inter-

acting wavefunction (such approach was called "WFT-in-DFT embedding").

Wu-Yang inversion procedure [222] was used. The very good performance of

the method was demonstrated for the total energies in the ethylene-propylene

dimer and in the hexaaquaion(II) complex, as well as for low-high spin splitting
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energy in open shel systems. Direct direct comparisons with the approximated

density functionals were not made.

The method introduced by Fux et al. [55] provided also a strong numerical

evidence that the inverted potentials overcome the flaws of semi-local explicit

approximations for vNAD
t [ρA, ρtot](r). Instead of building up the total density

from subsystem components, as it is made in Ref. [61], the authors partitioned

the Kohn-Sham density of the whole system as:

ρB(r) =
∑

i∈frozen−subsystemB

|φLMO
i (r)|2 (2.50)

where φLMO
i (r are localized molecular orbitals. The Wu-Yang [222] inversion

procedure was used to obtain vs[ρA](r).

The procedure was shown to be numerically robust. It leads to the to-

tal density closely resembling ρtot(r) regardless the magnitude of the overlap

between the densities in the subsystems: from small overlaps in the hydrogen-

bonded complexes to large ones in covalently bonded subsystem such as C2H6.

The latter molecule was represented as a sum of two species CH+
3 and CH−

3

associated formally with ρA(r) and ρB(r). The corresponding optimised den-

sities obtained using semi-local explicit approximations lead to qualitatively

worse total density. Localisation of orbitals involved also a special treatment

of locally negative spurious components of the total densities resulting from

the localisation procedures in finite basis sets. Compared to the conventional

calculations applying explicit semi-local approximations, the deviations from

the target density was significantly smaller.

An improved inversion procedure of Fux et al. [55] was used by Unsleber et

al., [197] to demonstrate performance of the inverted potentials in an extremal

case of partitioning the density of argon atom into core and valence compo-

nents. Without non-local operators, the authors reached the target densities

with impressive precision. The integrated module of the density difference was

in the range of 10−6 electrons. The same method applied for ammonia dimer

led to very good agreement between the sum of optimised subsystem densi-

ties and the target density from Kohn-Sham calculations for the whole system

(the integrated density difference in the range of 10−3 electrons). Interestingly,

the semi-local approximation to vNAD
t [ρA, ρtot](r) introduced in Ref. [219] per-
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formed not much worse leading tho the integrated density error in the range of

10−2 electrons.

Artiukhin et al [6] applied the inversion procedure by Fux et al. [55] in cal-

culations of excitation energies obtained from the method combining FDET and

LR-TDDFT [211] for several organic chromophores such as cis-hydroxyquinoline,

2-aminopyridine, acetophenone, in complex with small hydrogen bonded such

as water or methanol. For numerical inversion, the improved procedure intro-

duced by Jacob [99] was used. Excitation energies obtained using the inverted

potential were systematically closer to the reference data obtained from conven-

tional LR-TDDFT calculations for the whole complex, than the results using

the tested semi-local approximations. It is worthwhile to notice that such uses

of the inverted potential do not allow for incorporating the kinetic energy com-

ponent to the response kernel in a straightforward manner because the inverted

potential is not an explicit density functional. Such approximation corresponds

to Eq. 2.49 because the potential in the right-hand-side of this equation is

ρA(r)-independent and as such does not contribute to the response kernel.

In the literature discussed so far, the case where ρA(r) and ρB(r) were

associated with core and valence electrons, were used as ultimate test cases

for validations of numerical algorithm. A side product of such studies was a

comprehensive demonstration that none of the considered semi-local approxi-

mations is applicable for such a case. A proper description of the embedding

potential for such a case was the main target in the earlier work by Zhou et

al. [229], who used numerical inversion to get local pseudopotential to be used

for simulations of solids. The Wang-Parr procedure was used for numerical

inversion [204]. Various properties of bulk Si and defects in Si (structure, elec-

tron density, total energy, transition pressure) obtained using the constructed

local embedding potentials compared very well with their counterparts derived

using conventional non-local pseudopotentials. The same construction of the

embedding potential was subsequently used in simulations of CO on Cu(111)

surface, in a method based in Eq. 2.14 where CO was considered as emebdded

species and with the embedded wavefunction of the Configuration Interaction

type [179]. Such calculations also invoke approximation given in Ref. 2.49.

Roncero et al, [171] proposed an inversion precedure based computational
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method also using the approximation given in Eq. 2.49. As far of the densities

at which the inverted potential is concerned, ρtot(r) was obtained from conven-

tional Kohn-Sham calculations whereas ρA(r) was "carved out" from ρA(r) in

a way assuring that
∫
V
ρA(r) is a desired integer number of electrons. Zhao-

Morrison-Parr procedure [228] was used for numerical inversion. The inverted

potential was used as the one-electron operator in MCSCF and MRCI calcu-

lations of embedded species. The method was tested on a model system of

consisting of a chain of hydrogen atoms of which a subgroup was earmarked

as "embedded part". The same technique was used to for a complex of H2

interacting with a H10 chain, to demonstrate the adequacy of the method for

description of van der Waals interactions. Compared to reference CI results

for the whole systems, the used embedding method led to the indistinguish-

able interaction energy curves (or underestimated by less than 10% if a simple

variant of the method was used) [172]. Further applications of the proposed

method include a case of Br2 in water clusters. This model system was used to

investigate the performance of the proposed method if the electronic excitation

in embedded species lead to a significant amount of charge transfer [173].

In summary, the numerical inversion methods were shown by many authors

to overcome the flaws of simple semi-local approximations which are inadequate

at large overlaps between ρA(r) and ρB(r). To our knowledge, the inverted

potential at the small overlap limit was not investigated so far in detail. The

next section attempts to fill this gap.
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2.4 Supplementary results:Analytically inverted

vNAD
t [ρA, ρtot](r) at small ρA(r)−ρB(r) overlaps

Figure 2.2: Kohn–Sham (PBE) electron density for LiHe+ (ρtot(r) shown in green)

and ρB(r) from Eq.[2.51] (shown as shaded area) in the overlap region. Li is situated

at −1.5 Bohr and He at 1.5 Bohr.
∫
V ρA(r)ρB(r)dr = 0.0292499

The potentials constructed in this section were obtained following the pro-

cedure used previously in Ref. [37] for which Eqs. 2.43-2.46 apply. Two sig-

nificant modifications of the procedure were made to adopt the calculations

for small overlaps: a) ρA(r) was generated using the Kohn-Sham equation

with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [165] was

solved numerically for diatomic systems using the code DARSEC [135], ρtot(r)

was partitioned into ρA(r) and ρB(r) in such a way that the overlap was small.

Numerical solver of Kohn-Sham equation assures that the exact relations given

in Eqs. 2.43-2.46 are satisfied with arbitrary accuracy. The artificial numerical

instabilities as the ones reported in Ref. [37] due to the use of finite basis sets

are, therefore, avoided.

As far as the smallness of the overlap is concerned, the following ρB(r) was

used:

ρB(z) = f(z).ρtot(r) (2.51)
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where

f(z) =
1

eαz−α′κ + 1
(2.52)

the parameters α and α′ were constrained to satisfy conditions given in Eqs.

2.44 and 2.45. All results shown in this section were obtained for densities ρB(r)

satisfying the condition given in Eq. 2.45 within ±1× 10−5.

In contrast to the partitioning used in Ref. [37], the densities ρA(r) and

ρB(r) are localized in different regions of space with a minimal overlap region

between atoms. The amount of the overlap can be varied by varying the inter-

atomic distance and/or varying the parameters α and α′ constrained to satisfy

Eq. 2.45 with arbitrary accuracy.

The numerical solver of Kohn-Sham equation assures that the considered

potentials are not affected by the used basis set (compare the asymptotic be-

havior of the inverted potentials for the same system shown in Figure 2 of Ref.

[37]. The symmetric grid comprises 2107 points and the the boundary sphere

radius is set at 14 bohr.

Figure 2.3 shows the analytically inverted potentials obtained from Eq. 2.46

together with the corresponding density differences ρA(r) − ρ1(r) for three

interatomic distances. We note that the exact potential vnad’
t [ρA, ρB](r) is

relatively smooth in the overlap region compared to a sharp spike near Li

and a narrow well near He. ρA(r) − ρ1(r), which is the change of the den-

sity due to vNAD
t [ρA, ρB](r), behaves corresponding to this potential. Without

vnad’
t [ρA, ρB](r) the lowest energy solution of the Kohn-Sham equation is ϕ1

which is localized mainly near Li. vnad’
t [ρA, ρB](r) is repulsive near Li. As a

result, the lowest energy solution of KSCED in which the effective potential

contains the exact vnad’
t [ρA, ρB](r), does not collapse on Li. The attractive well

near He adds up to this effect. These behavior does not change with increased

interatomic distance.

A striking feature of vnad’
t [ρA, ρB](r) is that it is almost flat in the overlap

region. It varies the most where ρA(r) and ρB(r) is negligible! We underline this

feature of vnad’
t [ρA, ρB](r) in view of attempts to approximate vnad’

t [ρA, ρB](r)

by means of explicit density functionals. Only the overlap region contributes

to T nad’
s [ρA, ρB] if this functional is approximated by means of a semi-local

density functional. At zero overlap such contributions disappear. The errors
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in total energy due T̃ nad(semi−local)′
s [ρA, ρB] and in density obtained using the

corresponding ṽnad(semi−local)′

t [ρA, ρB](r) cannot be expected to be related. The

contributions to these functionals comes from different regions. We note also

that semi-local approximations to vnad’
t [ρA, ρB](r) are doomed to fail in repro-

ducing the exact functionals if ρA(r) disappears (near Li in our case). This

probably is not very important flaw of semi-local approximations in practice

because it is relatively easy to force ρA(r) to avoid certain regions in space it is

known a priory. This is commonly made in multi-level simulations simulations,

by localizing the basis sets in a predefined region in space (such as the embed-

ded molecule - see the analyses in Ref. [208]). Alternatively, it can be achieved

by forcing the embedding potential to disappear in certain regions of space (see

the correction to the embedding potential proposed in Ref. [103]) or adding an

ad hoc fixed repulsive component to the embedding potential where it is needed

(see Ref. [122]). The attractive well in vnad’
t [ρA, ρB](r) near He reflected also

in ṽnad(weiz)′

t [ρA, ρB](r) (see Figure 2.4) is a less general feature and reflects the

fact that ρA(r) is a two-electron density in this example.
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Figure 2.3: The analytically inverted potentials vnad’
t [ρA, ρB](r) obtained from Eq.

2.46 at various Li-He distances (right column) and the corresponding density differ-

ence ρA(r)− ρ1(r) (left column): a) top: d(Li-He)=0.944863 bohr
∫
V ρA(r)ρB(rdr =

0.357595, b) middle: d(Li-He)=3.897687 bohr
∫
V ρA(r)ρB(rdr = 0.0000311497, c)

bottom: d(Li-He)=4.917687 bohr
∫
V ρA(r)ρB(rdr = 4.8× 10−7.

Approximated potentials derived from von Weizsäcker or Thomas-Fermi

density functionals for Ts[ρ]: ṽ
nad(weiz)′

t [ρA, ρB](r) and ṽ
nad(TF )′

t [ρA, ρB](r) only

partially reflect the features of the corresponding vnad’
t [ρA, ρB](r) (see Figure

2.4).
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Figure 2.4: Analytically inverted potential vnad’
t [ρA, ρB](r) (top) and the approxi-

mated potentials ṽ
nad(weiz)′

t [ρA, ρB](r) (middle) ṽ
nad(TF )′

t [ρA, ρB](r) (bottom). All

functionals are evaluated for the same pair of densities. Li is situated at -1 bohr and

He at 1 bohr.

Figure 2.5 shows the same tendencies concerning the exact potential and its

approximated counterparts in other four-electron systems.

Figure 2.5: (a) Density difference ρA(r) − ρ1(r), (b) analytically inverted potential

vnad’
t [ρA, ρB](r), (c) ṽ

nad(weiz)′

t [ρA, ρB](r), (d) ṽ
nad(TF )′

t [ρA, ρB](r), in several four-

electron diatomic molecules: LiHe (green), BeHe (orange), LiH (violet), and BeH

(blue).
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2.5 Conclusions and Outlook

The non-additive kinetic potential is a functional of a pair of electron densi-

ties ρA(r) and ρtot(r), i.e., up to constant it is uniquely determined by this pair.

In numerical simulations, this functional is usually approximated by means of

explicit semi-local density functionals. An alternative strategy uses implicit

functionals which involve solving the "inverted Kohn-Sham problem" has been

recently explored in several research groups. The construction of implicit po-

tentials is based on the constrained search as formulated by Levy in his seminal

paper Electron densities in search of their Hamiltonians [127]. The potentials

used from this strategy were shown comprehensively to perform qualitatively

better than explicit approximations in the case where subsystem associated

with ρA(r) is covalently bounded to its environment or if ρA(r) represents core

electrons. In such cases, the overlap between ρA(r) and ρtot(r)− ρA(r) is large.

To our knowledge, no semi-local approximation to the non-additive kinetic po-

tential exists which could be applied for such cases. The results reported by var-

ious authors show comprehensively that the numerical inversion is the method

of choice at small overlaps even if the inversion involves additional approxima-

tions. Moreover, even for small overlaps, the numerically inverted potentials

perform usually slightly better than the explicit approximations.

Several authors constructed very accurate inverted potentials using either

analytical inversion techniques such as the analytical inversion for some model

choice of ρA(r) and ρtot(r) or inversion techniques especially designed for this

purpose. Potentials obtained in this way might serve as guidelines in construc-

tion of explicit approximations. They were used to identify the origin of failures

of existing semi-local approximations in the strongly overlapping case.

The overview of these developments made in the present work is supple-

mented by examples of analytically inverted non-additive kinetic potentials

and their semi-local counterparts at small overlaps. Inverted potentials have

not been constructed so far for such cases. Cases, where the overlap is small

(molecules non-covalently bound to their environment), belong to the domain of

most successful applications of explicit functionals. The analytically inverted

potentials were obtained using especially designed procedure, which involves

numerical solver of Kohn-Sham equation to assure that the densities and or-
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bitals satisfy the exact relations with arbitrary accuracy. The procedure can

be used to generate the reference potentials for a controllable amount of the

overlap. Comparisons with reference potentials indicate that there is still a

room of improvement for semi-local functionals at small overlaps.
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2.6 Re-production of the Fig. 3 in the publica-

tion IJQC (erratum)

I have been suspicious about the previous results of the vNAD[ρA, ρtot](r) rep-

resenting the cusp-like singularities at the position of the nuclei. The properties

of the input partitioned density, together with the fact that the analytically in-

verted potential from an orbital density or the density that integrates to one or

two made me to expect a cusp-less vNAD[ρA, ρtot](r) at the end. I kept investi-

gating more in the numerical implementations also developed more theoretical

and analytical arguments to clarify the correct shape of the potential. Those

approaches are provided in chapter 3.

In the publication I reported the results in [a.u] however DARSEC produces

the realisable outputs in Ry. The analytically inverted vNAD[ρA, ρtot](r) reported

in section.2.4 are provided from:

vNAD[ρA, ρtot](r) = vs[ρA](r)− vs[ρ1](r) (2.53)

where vs[ρi](r) for i = 1, A are calculated from Eq.[2.37]. As the results are

in Ry, I had to divide the values by 2 to obtain the energy in the atomic

unit. In the code I added a factor 1/2 to the terms of the vNAD[ρA, ρtot](r)

and surprisingly one of the terms in the equation were missing this factor and

remained hidden from our eyes at the time of the publication. Later on, I fixed

the numerical problem in the code and re-calculated the systems with the same

properties as it was reported in our publication and inserted the correct results

here (Fig.[2.6]).

The new results will be sent to the journal for the erratum purpose.

The caption of the Fig.[2.6] is the same as the one in Fig.3 of the published

review.
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Figure 2.6: ..., (left column): top: d(Li-He)=0.944863 Bohr
∫
v ρA(r)ρB(r)dr = 2.17×

10−2, : middle: d(Li-He)=3.897687 Bohr
∫
v ρA(r)ρB(r)dr = 6.74×10−5, : Bottom:

d(Li-He)=4.917687 Bohr
∫
v ρA(r)ρB(r)dr = 1.58× 10−5.

The published plot is repeated here (Fig.[2.7]) for easier comparison.
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Figure 2.7: Fig.3 in IJQC

The Figure 3 of M. Banafsheh, T. A. Wesolowski, Int. J. Quant. Chem. 118

(2018): e25410 is reproduced with the debugged numerical implementation.



Chapter 3

Nuclear Cusp and singularities in

Non-Additive Kinetic Potential

bi-Functional from Analytical

Inversion

3.1 Abstract

Non-additive kinetic potential bi-functional that is the key issue of embed-

ding DFT theory, Partition DFT and almost all ab-initio Non-additive kinetic

potential functional remained unknown due to available computational tools

so it has been approximated. The cusps that appeared in the results from

both numerical and analytical inversion of the potential remained suspicious.

Some accepted them as numerical artifacts, and others tried to find an appro-

priate physical interpretation. In this work, I prove the non-existence of the

cusps mathematically in non-additive kinetic potential bi-functional for a class

of density partitioning and prove our argument with results of analytically in-

verted non-additive kinetic potential bi-functional from a pair of densities for

some model systems in real space from a given ground state density. I explain

the partitioning class for which the inverted potential is expected to include

singularity at the vicinity of the nuclei.

57
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3.2 Introduction

When the precise descriptions of large and complex systems are not af-

fordable computationally, I often partition them into smaller subsystems. The

investigation procedure of main quantities of interest frequently takes place

in a localised region of the whole system. Such a region can be solved sepa-

rately, with a higher level of theories that usually are computationally costly.

In contrast, the rest of the system can be solved with computationally cheaper

methods.

Frozen-density embedding theory (FDET) method [217, 213, 166, 178, 35]

and Partitioning DFT (PDFT) methods [146] are appealing methods for cal-

culating the electronic structure of complex molecular systems. They allow

in a formally exact framework, the total electronic density to be divided into

subsystem densities that can be separately calculated.

In calculations based on system-fragmenting methods within the Kohn-

Sham DFT framework, the relation between the potential of two subsystems is

investigated by so-called non-additive kinetic potential functional vNAD.

This quantity plays a critical role in calculating correct ground state density.

In the overlap regions between partitioned densities, vNAD is the quantity that

ensures that the solution of the entire system is orthonormal. Also, the exact

vNAD is supposed to predict the discontinuity at integer particle numbers. The

latter makes vNAD applicable in search for delocalised electronic charge-density.

Delocalised charge density is the critical issue of intermolecular charge trans-

fer, a ground-state phenomenon. The fact that the charge transfer itself was

also suggested for excitation studies [144] makes non-additive potential widely

demanded for different purposes.

Non-additive kinetic potential functional has been approximated until now

for real systems. The approximations within DFT are evaluated by their ca-

pacity in providing the well-known properties of the ground-sate with high

accuracy. The cusps relations (known as Kato Theorem) [185, 108, 151, 155]

as an important property of accurately calculated ground-state density. The

importance of the cusps of the density, initially revealed by Wilson [17], is that

it can determine the nuclei’s location and atomic number. Despite interesting

results of vNAD from both numerical and analytical inversion, works have not
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been published arguing the existence of nuclear cusps . The following questions

have remained unanswered in the past: " Does vNAD contain the singularities at

the vicinity of the nuclei? ", " Does vNAD represent any other discontinuities?

If yes, how are they related to the ground-state charge density?" In this work,

I theoretically prove the nonexistence of singularity on analytically inverted

vNAD at the vicinity of the nuclei from a class of pair of densities and I show

the related numerical results for a few model systems. I discuss the cases with

the nuclear singularity expected to appear on the potential to ensure the cusp

condition of the ground state density.

In the coming section, I recall the analytical inversion of Kohn-Sham poten-

tial followed by the construction of non-additive potential bi-functional from

analytical inversion. The setup for a specific class of densities for which the

inverted potential is free of singularities will be explained in the same section,

and we’ll conclude the cases for which the singularities at the vicinity of the

nuclei are expected. In the following section to this latter, I provide the numer-

ical preparations, and in the result section, for some model systems, I justify

the theories and compare our results with ones from von Weizsäcker kinetic

potential functional [200].

The complementary calculations are given in the appendices.

3.3 Theory

The non-additive kinetic bi-functional is defined by the pair of densities pro-

vided by total ground state density ρtot(r), and is denoted by vNAD[ρA, ρtot](r)

where ρA(r) is one of the possible partitions of the total density. vNAD in

fact is given by the functional derivative of the non-additive kinetic-energy

bi-functional:

vNAD
t [ρB, ρtot](r) =

δTNAD
s [ρ, ρtot](r)

δρ(r)

∣∣∣∣∣
ρ=ρB

=
δTs[ρtot](r)
δρtot(r)

− δTs[ρB](r)
δρB(r)

(3.1)

where ρB and ρA = ρtot − ρB have different qualities, depending on how

they are partitioned. In numerical approaches TNAD
s [ρ, ρtot] is defined in the
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constrained search procedure [127]. The exact form of δTs[ρi]
δρi

is not known , so

it requires to be approximated. Within the Kohn-Sham formulation of Density

Functional Theory (KS-DFT), the explicit semi-local approximations to the

functional vNAD in numerical simulations are doomed to fail [9]. Such failures

prompted the interest in the implicit functionals for the non-additive kinetic

potential constructed by means of numerical inversion (of Kohn-Sham equation)

procedures. Unfortunately, numerical inversion of Kohn-Sham equation is an ill-

defined problem if finite basis sets are used. It results in numerical instabilities

for multiple solutions. A more recent analysis of the non-uniqueness of the

numerical inversion, and an approach to deal with it, can be found in the work

by Jacob [103]. Banafsheh and Wesolowski published a complete review of the

construction of vNAD within approximations and inversion procedures [9].

Only for some model systems, vNAD can be expressed analytically [214]. The

systems have to satisfy the constraints of analytical inversion:

3.3.1 One-Orbital Formula

A Kohn-Sham system is described by a set of orbitals, ϕi, that obey the

Kohn-Sham equations,

[
−1

2
∇2 + vKS(r)

]
ϕi(r) = ϵiϕi(r) (3.2)

where vKS is the Kohn-Sham potential. The density is then,

ρ(r) :=
∑
i

fi|ϕi(r)|2 (3.3)

where fi is the occupation factor of orbital, ϕi. In order to apply one-orbital

formula, I shall restrict 0 ≤ fi ≤ 2 but not require it to be integer.

For one electron or two spin-compensated electrons where the solution is

real and positive ( means ϕi(r) =
√
ρi(r)), Eq. (3.2) could be rearranged as:

vKS(r) =
∇2ϕi(r)
2ϕi(r)

+ ϵi (3.4)

Thus the Kohn-Sham potential reads:
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vKS(r) =
∇2

√
ρi(r)

2
√
ρi(r)

+ ϵi (3.5)

where i defines is the orbital index. We define analytical inversion of the density

as:

vs[ρi](r) :=
∇2

√
ρi(r)

2
√
ρi(r)

(3.6)

So that in one orbital formula case:

vs[ρi](r) = vKS(r) + ϵi (3.7)

In the context of Eq.[2.46] for finite molecular systems, it reads:

vt[ρ](r) :=
δTs[ρ]

δρ(r)
= −vKS[ρ](r) = −vs[ρ](r) (3.8)

If the exact Ts[ρ](r) is known (in Eq.[2.46]), then vs[ρ](r) = ∂Ts

∂ρ
. in terms of

the Kohn-Sham potential,

vKS[ρ](r) := vext(r) + vHxc[ρ](r), (3.9)

where vHxc[ρ](r) := δEHxc

δρ
is the Hartree, exchange and correlation (Hxc) po-

tential obtained exactly or via an approximation.

3.3.2 Cusps, Singularities and the non-additive potential

Let us consider very generally the relationship between cusps in densities,

and singularities in potentials – I shall define both below. Before beginning, we

will impose two restrictions on densities and potentials that will be assumed

in the remainder of this work: 1) densities will be obtained from and yield

singularity-free Hxc potentials; 2) the states considered will always have at least

one 1s orbital at each nucleus, which dominates the density near each nucleus.

Both restrictions apply to the exact ground state density and potentials. They

ensure (see conclusions of [137]) that cusp conditions [108, 18, 155, 151, 137]

hold for cusps in densities, and singularities in both external and approximated

Kohn-Sham potentials.
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Our goal in this section will be to explore how cusps in densities manifest as

singularities in non-additive potentials. Since this varies depending on the na-

ture of densities, I will first derive a general rule; and then apply it to examples

from the literature and the work done here.

A nuclear cusp means that the angularly averaged density obeys, limr→RN
|∇ρ| =

2ZNρ; while a nuclear singularity means that the potential obeys, limr→RN
rNv →

Z, where rN = r−RN . We will use a short-hand notation to describe cusps via

e−2ZN |r−RN | and singularities via −ZN

|r−RN | . Each cusp and singularity is uniquely

described by (RN , ZN) for some set of nuclei, N ∈ N . Sums over N without

extra clarification imply N ∈ N .

Note, the notation covers behaviour near each nucleus, but does not describe

every aspect of the system. The true density and potentials may be written as,

ρ(r) :=
∑
N

ρ0,Ne
−2ZN |r−RN | + ρsmooth(r) , (3.10)

v(r) :=
∑

N
−ZN

|r−RN |
+ vnon-sing(r) . (3.11)

Here, ρsmooth(r) has no cusps and is zero at each nucleus. vnon-sing(r) has no

singularities, but few other restrictions. Both functions are discussed in a little

more depth in Appendix A.

All subsequent results follow from three theorems:

Theorem 1: The density of any electronic system has a cusp of form

ρ(r) ≈ ρ0,Ne
−2ZN |r−RN | near every singularity in the external or KS potential,

vext(r) ≈ vs(r) ≈ −ZN

|r−RN | .

Proof: A more general case is a long-known result. [108, 137] Here, I used

that ρ0,N is non-zero, consistent with our second restriction of having a 1s

orbital, to narrow it down to systems of relevance. Our first restriction extends

it to approximate Kohn-Sham systems.

Theorem 2: If the density of an electronic system has a cusp of form ρ(r) ≈
ρ0,Ne

−|r−RN |, then the external and Kohn-Sham potentials have singularities,

vext(r) ≈ vs(r) ≈ ZN

−|r−RN | .

Proof: The result for interacting systems follows from Theorem 1 and the

Hohenberg-Kohn theorem. [93, 113] The KS result is easily shown for up to two
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electrons, by using the von Weizsäcker potential,

vvW [ρ](r) :=
∇2

√
ρ(r)

2
√
ρ(r)

=
∇2ρ(r)
4ρ(r)

− |∇ρ(r)|
2

8ρ2(r)
, (3.12)

and properties of the Laplacian and Gradient. Since, vs = vvW + C, for some

constant, C, the singularities are inherited by vs. For more than two elec-

trons one may use the results of (Appendix C). This extends the known result

for exact potentials [137] to well-behaved approximations consistent with our

restrictions.

Theorem 3: There are thus one-to-one mapping between cusps in the

density and singularities in the potential. That is,

ρ(r) ≈
∑
N

ρ0,Ne
−|r−RN | ←→

∑
N

−ZN

|r−RN | ≈ v (3.13)

up to smooth terms. This includes the important special case of no singularities

leading to no cusps, which relies on restriction 1 for approximations to DFT.

Proof: This follows directly from the previous two theorems and a recog-

nition that singularities and cusps near a nucleus at RN are smooth functions

near a different nucleus at RM ̸= RN .

These theorems let us understand how the non-additive potential in Eq.[2.46]

behaves in the vicinity of a nucleus. The most general result is that the set of

singularities in

vNAD
t [ρA, ρB] = vs[ρA]− vs[ρA + ρB]

(from Eq. (2.46) and vs = − δTs

δρ
) is equal to the set of singularities from ρA

minus the set of singularities from ρ = ρA+ ρB, which follows from Theorem 3.

More precisely, if ρA has a set of cusps CA := {(RA
N , Z

A
N)}N∈NA , ρB has

a set of cusps CB := {(RB
N , Z

B
N )}N∈NB , and ρ = ρA + ρB has a set of cusps

C := {(RN , ZN)}N∈N then the singular part of the non-additive potential is,

vNAD
sing (r) =

∑
N∈NA

−ZA
N

|r−RA
N |

+
∑
N∈N

ZN

|r−RN |
, (3.14)

Although I treated it as independent above, it follows from ρ = ρA + ρB that C
can be obtained from CA and CB by the following rules: i) if R = RA

N = RB
M for

some N ∈ NA and M ∈ NB then C has a combined cusp (R, ρ
A(R)ZA

N+ρB(R)ZB
M

ρ(R)
);
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ii) other cusps in A and B are included unmodified. Either set can be empty (al-

though this would be very strange for C), leading to zero for the corresponding

sum.

Applying these rules depends on precise details of the embedding or par-

tioning scheme. The next sections therefore applies Eq. (3.14) to the case of

smooth partitioning of densities studied here, as well as some cases from the

literature.

Smooth partitioning of densities

The remainder of the manuscript deals with densities that are partitioned

according to, ρA(r) = w(r)ρ(r) and ρB = (1− w(r))ρ where 0 < w(r) < 1 is a

smooth, cusp-free and positive function. 1−w therefore has the same qualities

as w. In this case, the non-additive potential has no cusps.

To show this, I recognise that ρA, ρB and ρ all have the same cusps, which

follows from the definition of the density, and w and 1 − w being smooth and

finite, so that they only contribute to smooth terms. Therefore, CA = CB = C
and I obtain,

vNAD,part
sing (r) =0 (3.15)

In section [3.4], I numerically apply a smooth cusp-less function to par-

tition the ground-state density of some model diatomic systems of two and

four electrons and I show that the corresponding non-additive potential has no

singularities at the nuclei, consistent with theory.

Embedding with a cusp-free density

In some cases, such as that considered in Appendix A of García-Lastra et

al. [56] where it is an implicit assumption, one obtains a density ρA that is cusp

free in some region of interest, but otherwise has the same cusps as ρ. These

problems appear in (e.g.) embedding calculations where some molecules (with

cusps at nuclei) are treated at one level of theory and an additional molecule

(with existing cusps and new cusps at the additional nuclei) is embedded in the

pre-computed set.
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As a result, all cusps of ρA appear in ρB and ρ, but not vice versa. All cusps

appear with the same value and at the same nuclear positions, when they are

present, giving CB = C. I use, NB/∈A to denote nuclei yielding cusps in B and

A+B that are not in A. It follows that,

vNAD,emb
sing (r) =

∑
N∈NB/∈A

ZN

|r−RN |
. (3.16)

Use of a finite basis to represent densities

Another interesting case is where densities are obtained using a finite basis

set. I first consider a Slater-type orbital (STO) basis set, which is able to

reproduce cusps, but where the resulting cusps are imperfect. [37] In a finite

STO base one obtains, ρ(r → RN) ≈ ρ(RN)e
−Z̃N |r−RN | where Z̃N is the finite

basis approximation for ZN . Z̃N ≈ ZN varies with choice of basis, choice of

density functional approximation, and other details of the calculation.

For convenience I shall assume that all densities contain all cusps, like in

Sec. 3.3.2. This leads to ρA, ρB and ρ defined by cusp sets CA = {(Z̃A
N ,RN)},

CB = {(Z̃B
N ,RN)} and C = {(Z̃N ,RN)}, respectively. Importantly, RN is the

same in all cases but Z̃A
N ≈ Z̃B

N ≈ Z̃N are not the same (but are similar) because

of errors introduced by the finite basis. The singular part of the non-additive

potential is therefore,

vNAD,STO
sing =

∑
N∈N

Z̃ − Z̃A

|r−RN |
(3.17)

where the terms Z̃ − Z̃A in the numerator are effectively random artefacts,

defined by the basis set and other computational and methodological choices.

These artefacts also apply to embedding, per Sec. 3.3.2. Eq. (3.17) then acts

in addition to the “exact” cusps from Eq. (3.16).

Gaussian-type orbitals (GTOs) cannot reproduce cusps at all, unlike STOs,

as they are analytic near nuclei. Nevertheless, they have an effective analogue

to Eq. 3.17 for small but finite rN in the vicinity of a nucleus.

Of greatest relevance to the present work is that calculations on a finite

grid can eliminate these errors entirely. This involves effective use of numerical

methods, chosen such that derived potentials are as consistent as possible with

the routines used to solve effective Hamiltonians. Especially, one should use
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∇2√ρ
√
ρ

rather than the mathematically equivalent ∇2ρ
2ρ
− |∇ρ|2

4ρ2
when computing

potentials.

3.4 Numerical Calculation

The calculations are obtained on accurate numerical grids using the all-

electron program package DARSEC [135]. Consequently, I are restricted to

computations of molecules with two atomic centres with spherical symmetry.

In DARSEC, the Kohn-Sham equations are solved self-consistently using the

high-order finite difference approach [52, 11]. In this work, the stencil was

set to 12 for the finite difference. A real-space grid based on prolate-spherical

coordinates is used to describe a system with two atomic centres. The grid is

very dense near two centres and increasingly sparse farther from the centres.

Due to the cylindrical symmetry of diatomic molecules, the problem is reduced

to a two–dimensional one. In the calculations for this work, the systems are

defined within 15 Bohr of radius and number of 115 × 121 grid points. The

ρtot(r) is the ground-state density of the systems performed with the LDA

[24, 162].

Based on Eq.[3.4] I implemented Eq.(3.18)

vNAD[ρA, ρtot](r) = vs[ρA](r)− vs[ρ1](r) (3.18)

where ρ1(r) = 2 | ψ1(r) |2. The ρtot(r) is obtained by a common DFT

theory. Such analytical inversion is correct under specific constraints. The

density used as an independent variable of analytically inverted potential func-

tional has to integrate to integers 1 or 2 in whole space for one-electron or two

spin-compensated electrons, respectively. Knowing that vNAD obtained from

von Weizsäcker theory is equal to Eq.[3.18] up to a constant, I implemented

numerically

vNAD/vW[ρB, ρtot](r) = vvWs [ρB](r)− vvWs [ρ1](r) (3.19)

where vvWs [ρ(r)] is given by Eq.[3.20].
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vvW
s [ρ](r) =

1

4

(
∇2ρ(r)
ρ(r)

)
− 1

8

|∇ρ(r)|2

ρ2(r)
(3.20)

In section 3.5, I introduce the cst that ensures the equality vNAD/vW[ρA, ρtot](r) =

vNAD[ρA, ρtot](r) + cst for different systems for the cases in which
∫
ρtot(r) > 2.

In section 3.5.3 I show for
∫
ρtot(r) ≤ 2 vNAD/vW[ρA, ρtot](r) = vNAD[ρA, ρtot](r).

The derivation of the latter equality is given in Appendix D .

Localisation of one or two electrons

For partitioning the ground state density numerically, I use a smooth distri-

bution function 0 ≤ F (z) ≤ 1 that has no cusps and respects the smoothness of

the function explained in Section[3.3.2]. The choice for such a function used for

the reported result is Fermi-Dirac distribution function that changes smoothly

from value one to zero (Eq.[3.21]). This latter was realised within binary-search

algorithm to localised the density around one nucleus.

F (z) =
1

eα(z−z0) + 1
(3.21)

By partitioning the whole density to two sub densities I obtain: ρB(r) =

F (z).ρtot(r) and ρA(r) = ρtot(r)− ρB(r).
In a diatomic system of N = 2+2M electrons where two spin-compensated

electrons can be localised around one nucleus, the following construction is

applied:

ρA(r) =
∫
v

F (z)ρtot(r)dr = 2 (3.22)

For the case of one-electron-localisation, F (z) can be chosen to equal the

integration of Eq.(3.22) to 1. By definition, the second fragment of the system

is:

ρB(r) = ρtot(r)− ρA(r) (3.23)

In the present calculations α = 20 was chosen.
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3.5 Results and Discussion

Two classes of diatomic model systems were chosen to study. One class

contains two electrons in the whole system in which one electron is localised

around one nucleus. In the other one, four electrons are distributed in the

system among which two electrons are localised around one nucleus. The lat-

ter includes two model systems; one is a homonuclear diatomic system and

the other one is a heteronuclear model system. For each system, I compare

the analytically inverted potential with vNAD obtained through von Weizäcker

(Eqs.[3.19] and [3.20]).

The ground state charge density used as input in all calculations are ob-

tained by LDA theory, consequently the inverted potential (Eq.[3.5]) is com-

pared with vLDA
KS .

To facilitate the density localisation around a nuclei and minimise the over-

lap charge density between the atoms, the calculations are done for interatomic

distance of 6 Bohr. For mononuclear systems the maximum density overlap

occurs at half distance between the atoms while for the heteronuclear system

the location of maximum overlap occurs closer to the nuclei with smaller atomic

number.

3.5.1 Two-electron-localisation

Homonuclear model system: He-He

The potential is inverted analytically from Eq.[3.5] for ρ1 = 2|ϕ1(r)|2 and the

eigenvalue ϵ1. The exactitude of the analytical inversion of the potential yields

to ∆V = vLDA
KS − vs[ρ1] = 0. In Fig.[3.1] although the ∆V doesn’t constantly

appear zero everywhere in the space but comparing the difference between

the orders of magnitude of two curves of about 1010, ∆V satisfies the value

0 numerically. As it is shown in Fig.[3.2] the system represents symmetrically

distributed charge density, once two electrons are localised around the left atom,

two other electrons are sited around the right nucleus. In Fig.[3.2] the cutoff z0
from Eq.[3.21] is shown by a vertical gray line at z = 0 Bohr.
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Figure 3.1: Difference between the analytically inverted vs[ρ1](r) and vKS(r). system:

He-He, Blue curve: Kohn-Sham Potential from LDA calculations. Red curve: ∆v =

vKS(r)− vs[ρ1](r).

Consequently, the ρA and ρB are integrated both to 2 and both are dis-

tributed around one nucleus separately as they have close to 0 charge distribu-

tion at the vicinity of the opposite nucleus (Fig.[3.3]).

The potential vNAD/vW from von Weizsäcker is alternative mathematically

to vNAD/inverted . In Fig.[3.4] I see this equality as both potentials superpose

perfectly and the small orders of magnitude of their difference (showed by red

curve representing ∆v in the figure) is an additional numerical confirmation to

that fact. The 2D representation of vNAD/vW and vNAD/inverted shows that the

difference between two potential is considered negligible.
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Figure 3.2: system: He-He, Ground-State charge density distribution, calculated from

LDA approximation. The cutoff line represent spatial location at which the whole

density is partitioned to two sub-densities that each integrates to two electrons. The

precision of localisation is:
∫
(ρA(r).ρB(r))dr = 3.8× 10−6 ( e2

Bohr3
)

Figure 3.3: Localised densities from ground-state density, provided from LDA calcu-

lation. system: He-He, 1D representation of density localisation.
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Figure 3.4: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory. system: He-He, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r);

Orange-Square-Line: vNAD/vW[ρB, ρtot](r). Vertical Dashed Lines: nuclei.

Figure 3.5: Analytically inverted non-additive kinetic potential bi-functional in real

space. system: He-He, Two-dimensional representation of v
NAD/inverted
s [ρB, ρtot](r).

Black dots: nuclei.



72

Figure 3.6: von Weizsäcker non-additive kinetic potential bi-functional in real space.

system: He-He, Two-dimensional representation of vNAD/vW
s [ρB, ρtot](r). Black dots:

nuclei.

Heteronuclear model system: LiHe+

The localisation in LiHe+ (Li at the left side in all figures), occurs at its

highest precision integrating to 2, for z0 = −0.29 Bohr which is closer to the

nucleus with a smaller atomic number. Similarly the overlapping density inte-

grates to a higher value compared to the homonuclear system.

When ρB is localised around the larger nucleus the vNAD/vW has to be sub-

tracted by ϵ1 to become comparable with vNAD/inverted (see Fig.[3.7]). Instead,

if I localise the electrons around the smaller nucleus (He in our model system),

I must subtract ϵ2 from vNAD/vW.
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Figure 3.7: Localised densities from ground-state density, provided from LDA calcu-

lation. System: LiHe+, 1D representation of density localisation. The precision of

localisation is:
∫
(ρA(r).ρB(r))dr = 2.51 × 10−3 ( e2

Bohr3
). Vertical Dashed Lines:

nuclei.

For the heteronuclear system, as we see in Fig.[3.7], ∆v is zero in the space

with some noise at the overlap region. The appeared noise is negligible due to

its small order of magnitudes considering the machine precision. This numer-

ical artefact rose up from numerical difference between the Laplacian and the

gradient for the very small values.

Figure 3.8: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory. System: LiHe+, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r);

Orange-Square-Line: vNAD/vW[ρB, ρtot](r). Vertical Dashed Lines: nuclei.
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Figure 3.9: Analytically inverted non-additive kinetic potential bi-functional in real

space. System: LiHe+, Two-dimensional representation of vNAD/inverted
s [ρB, ρtot](r).

Black dots: nuclei.
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Figure 3.10: von Weizsäcker non-additive kinetic potential bi-functional in real space.

System: LiHe+, Two-dimensional representation of v
NAD/vW
s [ρB, ρtot](r). Black

dots: nuclei.

3.5.2 One-electron-localisation

The expectation of equality between vNAD/inverted[ρB, ρtot](r) and vNAD/vw

becomes maximal for a two-electron heteroatomic system of two nuclei. I stud-

ied stretchedH2 system in which one electron is localised around the left nucleus

(Fig.[3.11]). The z0 = 0 Bohr to make the cutoff to provide the localisation

of one electron. vNAD/vw matches perfectly vNAD/inverted[ρB, ρtot](r) (Fig.[3.12

]). The difference between the two potentials is zero in the entire space, and

the noise observed on the curve is shown in Fig.[3.12] is interpreted as numeri-

cal. The 2D representations of vNADs are also perfectly matching(Fig.[3.13] and

Fig.[3.14]).
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Figure 3.11: Localised densities from ground-state density, provided from LDA cal-

culation. System: H2, 1D representation of density localisation.
∫
(ρA(r).ρB(r))dr =

1.75× 10−5 ( e2

Bohr3
)

Figure 3.12: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory. System: H2, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) Orange-

Square-Line: vNAD/vW [ρB, ρtot](r). Red dots: nucleii.
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Figure 3.13: Analytically inverted non-additive kinetic potential bi-functional in

real space. System: H2, Two-dimensional representation of vNAD/inverted
s [ρB, ρtot](r).

Blue dots: nuclei.
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Figure 3.14: von Weizsäcker non-additive kinetic potential bi-functional in real space.

System: H2, Two-dimensional representation of v
NAD/vW
s [ρB, ρtot](r). Blue dots:

nuclei.

3.5.3 Different Approach towards vNAD/vW [ρB, ρtot]

vvWs [ρi] is exact if ρi integrates to 2 in whole space. vNAD/vW [ρB, ρtot] can

be calculated in two ways. Either from:

vNAD/vw[ρB, ρtot](r) = vvWs [ρB](r)− vvWs [ρtot](r) (3.24)

or:

vNAD/vw[ρB, ρtot](r) =

vvWs [ρB](r)− (vvWs [ρ1](r)− ϵ1)
(3.25)

where in each equation vvWs [ρi] for i = A,B, 1 or tot is calculated from

Eq.[3.20]. If for all i in Eq.[3.24] and Eq.[3.25] the 0 ≤
∫
v
ρi(r) ≤ 2 both

equations are exactly equal otherwise vvWs [ρi] is not exact analytical form of

inversion. Below, I calculated vNAD/vW [ρB, ρtot] from Eq.[3.25] for diatomic

systems of for electrons. I see that this latter matches exactly the analytical

inverted potential (Eq.3.18).
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Homonuclear model system HeHe

TEST!!!

Figure 3.15: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory. System: H2, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) Orange-

Square-Line: vNAD/vW [ρB, ρtot](r) obtained from Eq.[3.25]. Vertical Dashed

Lines: nuclei.

Heteronuclear model system LiHe+

Figure 3.16: Difference between the analytically inverted potential bi-functional and

the one from von Weizsäcker approximation. System: LiHe+, Blue-Mark-Line:

∆v = vInverted
s [ρB](r)− vvW

s [ρB](r)(from Eq.[3.25]); Vertical Dashed Lines: nuclei.
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Figure 3.17: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory. System: H2, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) Orange-

Square-Line: vNAD/vW[ρB, ρtot](r) obtained from Eq.[3.25].Vertical Dashed Lines:

nuclei.

Figure 3.18: Difference between the analytically inverted potential bi-functional and

the one from von Weizsäcker approximation. System: LiHe+, Blue-Mark-Line:

∆v = vInverted
s [ρB](r)− vvW

s [ρB](r)(from Eq.[3.25]); Vertical Dashed Lines: nuclei.

3.6 Conclusion

To defend the exactitude of analytically inverted potential three remarks

are considered:

1. For the class of two sub-densities that overlap weakly and the inverted

potential of each that represent the singularities at the vicinity of the
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nuclei, analytically inverted vNAD/inverted[ρB, ρtot](r) has to appear with no

cusp-like singularity at the nuclei. It requires to be smooth everywhere

in the space except at the region where two densities overlap.

2. The potentials shown in Figs.[(3.4,3.8,3.12)], feature a step and a bar-

rier between the two nuclei. These are desired and expected features

of vNAD[ρB, ρtot](r) evaluated for such pair ρB(r) and ρtot(r) for which

ρtot − ρB disappears near the nucleus B. From the practical perspective,

any approximation to vNAD[ρB, ρtot](r) should reproduce these features.

Practical calculations using an approximated vNAD[ρB, ρtot](r) that does

not reproduce these features are prone to an artificial leak of electrons on

the nucleus B (for a detailed discussion of this issue see [56]).

3. As it is proven in the theory that vNAD/vw is exact for a system in which

the electron density integrates to a value between 0 and 2, the exactitude

of the analytically inverted potential can be evaluated by comparing these

two potentials. The equality of these potentials ensures that the exact

analytically inverted potential is not suffering by numerical artefacts.

For all the model systems of our study, the three conditions above were

respected. I proved that a system that analytically inverted potential from

each partition includes the same cusp-shape singularity at the nuclei as the

ones in Kohn-Sham potential would provide non-additive potential with no

cusps at nuclei. The vNAD/inverted[ρB, ρtot](r) requires to be exactly zero where

the localisation happens. When the localised density is the same as one of the

solutions of the system, its inverted potential must be equal to the Kohn-Sham

potential up to a constant and this constant as it was shown in this work must

be the corresponding eigenvalue to the solution.
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3.7 Supplementary Information on Calculations

for "Nuclear Cusp and singularities in Non-

Additive Kinetic Potential bi-Functional from

Analytical Inversion."

In this document the choice of different numerical parameters are explained

for the calculations in the current chapter. In addition, vNAD/inverted is compared

with vNAD/vW for localisation around different nuclei in HeLi+.

Note for readers: The plots all concern the He-He system. If not

specified!

3.8 Stencil for Gradient and Laplacian

DARSEC uses the Finite difference method for gradient and Laplacian cal-

culations. The users can choose an even number for stencil (s) of the Finite

difference between 2 to 20. In the code s = 12 is suggested as an accurate

choice for the calculations. In Fig.[3.19], vNAD is showed from different stencils.

The s ≤ 10 do not provide the smooth extrema on the curves so; the final

choice has to be one among s ≥ 12 (Fig.[3.20]). To choose a reliable stencil, I

finally compared s = 12 with s = 20 at the region where the densities overlap.

As it showed in Fig.[3.22], the difference between these two choices is negligible

except at a distance above 10 Bohr from the system’s centre, where it is not the

region of our interests. The potentials from s = 12 and s = 20 at this region

are zoomed in in Fig.[3.23]. In this region, the Laplacian is more sensitive to

the choice of the stencil (Fig.[3.21]).

Based on the reported calculations in this work, I decided to stay with

s = 12 for the calculations of the up-coming paper.
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Figure 3.19: For system He-He where the atoms are located at (0, 0,−3) Bohr and

(0, 0, 3) Bohr, the vNAD/inverted is calculated with different choice of stencil number

for the higher order calculations within the finite-difference approach. Red Dots:

Location of the nuclei.

Figure 3.20: s ≥ 12 provides smoother curves at the extrema of the potential. Red

Dots: Location of the nuclei.
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Figure 3.21: With the choice of s ≥ 12, the curves goes smooth up to the infinity as

the radius of the system is defined 15 Bohr. Only beyond 15 Bohr different stencils

vary slightly the potential.

Figure 3.22: Between the suggestion of the authors of DARSEC for s = 12 as default

and the maximum possible value implemented in DARSEC s = 20; the potentials

remain the same except where in the space it is considered as out-of-range. Red

Dots: Location of the nuclei.
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Figure 3.23: Even beyond 15-Bohr from the system’s center, the difference between

v
NAD/inverted
s=12 and v

NAD/inverted
s=20 is negligible.

3.9 Correction to possible division by zero

DARSEC doesn’t provide the values on axis z = 0. As there is nowhere in

the space except at the infinity where the density tends to be zero; I don’t need

to prepare any correction (δ) to plausible division-b-zero issue in the calcula-

tions. Still, I tried to make sure that the results are not affected unwillingly

by the lack of the correction to division-by-zero. The corrections are done by

adding δ to where in the equation the terms might be question of the division-

by-zero issue.

vNAD[ρB, ρtot](r) =
1

2

∇2
√
ρB(r)√

ρB(r) + δ
− 1

2

∇2
√
ρ1(r)√

ρ1(r) + δ
(3.26)

From Fig.[3.24] to Fig.[3.26] I see that if the correction is a number δ ≤
1 × 10−10, our calculations are not affected. in Fig.[3.27] I see that with no

correction applied to the calculations (case 0 in the graph), the results remain

the same.

Based on the presented results for the paper, the calculations are all done

with "NO-CORRECTION" to the division-by-zero issue.
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Figure 3.24: vNAD/inverteds for which the calculations include the correction to the

division-by-zero issue, overlap in whole space if the correction is chosen to be smaller

than δ = 1 × 10−10. All curves overlap entirely for δ varying from 1 × 10−10 to

1× 10−47. Red Dots: Location of the nuclei.

Figure 3.25: Here I zoomed Fig.[3.24] in the region where the overlap of the densities

tend to be maximum.
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Figure 3.26: With the very small δs, the potential may vary at the infinity, where it

is not a region of interest.

Figure 3.27: No correction to the division-by-zero issue (case of δ = 0) is compared to

some other small values of δ. As the overlap region of the densities is our main part

of interests, and no changes appear in the potential’s curve at this region, I remain

with no-correction for the rest of calculations.

3.10 Parameter α in the Fermi-Dirac Distribu-

tion Function for Density Localisation

The parameter alpha in the Fermi-Dirac distribution function ( Eq.[3.21])

for density localisation from Eq.[3.22] was sought for the most accurate value.
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The Fig.[3.28] and Table [3.1] the most appropriate choices for α are shown in

the table together with the vNAD from the different choices of α.

Figure 3.28: Among different choices of α in Fermi-Dirac distributions, I decided to

accept 20 ≤ α ≤ 30. For the calculations that will be published, α = 20 which ensures

the density localisation with the highest numerically possible precision. Red Dots:

Location of the nuclei.
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Table 3.1: The choice of α in Eq.[3.21] and the corresponding ρB(r) and obtained

cutoff z0.

In the paper, the calculations will be shown; all done from α = 20 for F (z)

defined in Eq.[3.21].

3.11 Density Localisation Numerical Algorithm

To localise two electrons around one nucleus, I chose the binary-Search

algorithm in which the start-point is the location of the left nuclei, and the

end-point is the location of the right nuclei. The precision of the localisation

is given as input parameter by user, and the algorithm stops turning when

end− start ≤ Precision.
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3.12 Density Localisation Around He vs Density

Localisation Around Li in HeLi+

The vNAD/vW − ϵ1 becomes comparable with vNAD/inverted for the homonu-

clear diatomic systems, . Instead, for the heteronuclear diatomic system, the

eigenvalue that must be subtracted from vNAD/vW is a question of the location

of the density localisation. I show that if the density is localised at the vicinity

of the nuclei with larger atomic number ( in our case Li) the corresponding

eigenvalue to be involved in the calculation is ϵ1, instead if the density is lo-

calised around the smaller nuclei ( in our case He), I need vNAD/vW − ϵ2 to

compare it with vNAD/inverted.

In both case ∆v = (vNAD/vW − ϵi) − vNAD/inverted where i = 1, 2, shows a

step that is related to the difference of the eigenvalues, ∆ϵ.

See Fig.[3.29] to Fig.[3.31].

(a) He at the left where the density is localised. (b) Li at the left where the density is localised.

Figure 3.29: The atoms are at 6 Bohr distance from each other. (a) HeLi+, where

the density ρB is localised around the atom He at the left. (b) LiHe+, where the

density ρB is localised around the atom Li at the left.
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(a)

(b)

Figure 3.30: Inverted potential from density localisation around different atoms. Ver-

tical dashed lines: nuclei. Interatomic distance: 6 Bohr. (a) System: HeLi+, Blue-

Mark-Line: vNAD/inverted[ρB, ρtot](r) Orange-Square-Line: vNAD/vW[ρB, ρtot](r) − ϵ2.

(b) System: LiHe+, Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) Orange-Square-Line:

vNAD/vW[ρB, ρtot](r)− ϵ1.
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3.13 Spatial Symmetry In homonuclear diatomic

system with two or four electrons

In Fig.[3.32], I show that within our density localisation approach when two

electrons are localised around one nucleus and two other one around the other

nucleus, for the homonuclear diatomic systems vNAD[ρA, ρtot](r) and vNAD[ρB, ρtot](r)

are spatially symmetric. By spatially symmetry I mean: vNAD[ρA, ρtot](r) =

vNAD[ρB, ρtot](-r).

(a) (b)

(c) . (d)

Figure 3.32: (a) vNAD[ρA, ρtot](r); (b) vNAD[ρB, ρtot](r); (c) vNAD[ρA, ρtot](r) and

vNAD[ρB, ρtot](-r)
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(a)

(b)

Figure 3.31: Eigenvalue shift in the von Weizsäcker potential from total den-

sity. Vertical dashed lines: nuclei. Interatomic distance: 6 Bohr. (a) System:

HeLi+, Blue-Mark-Line:∆v = vAnalytic
s [ρB](r)− [vvW

s [ρB](r)− ϵ2]; Horizontal dashed

line: the difference between the first and second eigenvalues: ∆ε = ε2 − ε1 =

[−1.476393 − (−4.376893)](Ry) = 2.9005(Ry). (b) System: LiHe+, Blue-Mark-

Line:∆v = vAnalytic
s [ρB](r) − [vvW

s [ρB](r) − ε1]; Horizontal dashed line: the dif-

ference between the first and second eigenvalues: ∆ε = ϵ1 − ε2 = [−4.376893 −
(−1.476393)](Ry) = −2.9005(Ry).



Chapter 4

Step Structure

4.1 Abstract

The step structure is a direct result and mandatory attribute of the exact

potential in the Kohn-Sham formulation of the DFT. The step is a mandatory

structure to align the KS energy levels within the ionisation potentials in the

two fragments. For the first time, I calculate the gap energy of a partitioned

system of two atoms through the analytically inverted potential bi-functional

of two sub-densities. The results are compared with the most accurate results

obtained from OEP theory with the KLI local approximation.

4.2 Introduction

The strength and quality of the theories in DFT are evaluated by the ac-

curacy of calculations based on the approximation of the unknown exchange

correlation energy. While many successful approximations exist, they often lack

the derivative discontinuity (DD) [164, 31, 8, 141, 143, 142] of Exc[ρ](r) con-

cerning integer electron number, N. In some theories one of the property of the

accuracy of the theory is evaluated with when its Exc[ρ](r) represents at DD

that when added to the Kohn-Sham band gap, results in the fundamental band

gap of the system. The fundamental gap Eg = I − A describes the difference

between I, the ionisation potential (IP), and A, the electron affinity (EA).

The presence of the DD is expected in molecular dissociation when two

atoms are stretched far apart[136]. The atoms take on integer numbers of
94
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electrons to neutralise their charges, so the total energy of the system, which

is additive, tends to show a DD relative to a number change of electrons when

one atom transfers its electron to another.

If any potential claims to be exact, the DD has to appear in form of a step on

the curve of the potential solving a system of stretched atoms , the open-shell

systems or excited time-dependent systems. It is manifested in the xc potential

and appears in form of a jump in the level of the potential. The importance of

the step structure (SS) is in approaches that look for the tunneling electrons

and charge transfer or electron excitation [199, 82, 73].

It is essential to consider the step structure in the approximations to ensure

the accuracy of the methods. The step structure provides an accurate ground

state electron density. It is a direct result of the necessary alignment of the KS

energy levels (the ionisation potentials) in the two fragments [133, 129].
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4.3 Origin of Step structure

A stretched heteronuclear diatomic molecule toward the molecular disso-

ciation approaches into neutral atoms A and B. Atoms A and B in form of

isolated elements possessing different external potentials so consequently differ-

ent HOMO energies ϵAHOMO and ϵBHOMO. In the exact Kohn-Sham formulation

HOMO energies must be equal to first ioinosation energy:ϵAHOMO = −IA and

ϵBHOMO = −IB. The variational principle for the total energy implies ensuring

ϵAHOMO = ϵBHOMO for when A and B are considered as constituent parts of a

dissociated AB molecule. Within the approximate theories of DFT, an artifi-

cial transferring a fractional electron charge from A to B is forced to ensure

the equalisation of HOMO energies in the dissociated molecules. This leads to

incorrect physics. Instead, in the exact formulations of DFT, this equality is

obtained by the optimisation of vxc(r) at the vicinity of one of the nuclei (Atom

B for when the electronic charge has the potential of being transferred from A

t o B) that reads[1]:

ϵAHOMO − ϵBHOMO = IB − IA (4.1)

The physical interpretation of this formula is that vxc(r) represents a well

for each atom. Through this equality, the vxc(r) well of the atom with a

higher electronegativity will be raised by IB − IA accordingly to the vxc(r)

well of the other atom. This upshift is what is called “Step Structure”, char-

acteristics to the exact vxc(r). In some literatures, it is also known as the

“counterionic field”[72]. The name is deduced from the fact that this phe-

nomenon will prevent the electron density from flowing toward the more elec-

tronegative atom. In DFT approximations it is often found that atoms carry

functional charges in a stretched molecule. The reason is that those approx-

imations of the step structure is absent[174]. Step structure of molecular

vxc(r) has been studied by different groups both analytically and numerically

[75, 73, 72, 107, 136, 190, 82, 84, 119, 21]. Hodgston et al.[89, 90] explained the

origin of the step structure from model systems for which the exact electron

density is known. They showed that the steps forms at points in the density

when the probability of the existence of a charge in the local effective ionisation

energy of the electrons is nonzero. They also determined the shape of the step,
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its heights and position for ground state density both for time-dependent and

time-independent systems.

4.3.1 Height of the step in a stretched diatomic molecule

The step height S for a system of two distant atoms is given by:

S = IR − IL + ηHOMO
R − ηHOMO

L (4.2)

where IL and IR are the ionisation energy of the left and right atoms respectively

and η refers to the HOMO energy of molecular KS orbital localised around an

atom. If the stretched molecule compromise two open-shell atoms, ηHOMO
R =

ηHOMO
L and Eq.[4.2] will simplify to S = IR− IL which is the famous Almbladh

and von Barth’s expression [1]. If the overall ionisation potential (IP) of the

molecule be the IP of one the atoms (for example the one of the right atom),

then ηHOMO
R = −IR so the height of the step becomes S = ηHOMO

L − IL. This

latter can be zero or not essentially.

To interpret more clearly the functionality of the step I may introduce the

molecular energy ηHOMO
L in terms of the atomic energy ϵHOMO

L :

ηHOMO
L = ϵHOMO

L + S (4.3)

Eq.[4.3] means that the molecular energy is elevated by the step height relatively

to the atomic energy.

4.3.2 Height of the step in terms of the derivative discon-

tinuity of Exc[ρ](r)

The Derivative Discontinuity in the well-known approximations underesti-

mate the gap [162, 12, 125, 165] underestimate the gap energy almost by 50%.

The failure of those approximations may appear while calculation of charge

transfer in chemical processes. Derivative discontinuity could be manifested as

a uniform shift ∆, in the level of exact Kohn-Sham potential in the position

in real space when the ground state density integrates to a value that exceeds

the integer value infinitesimally. The shift ∆ has similar nature to step height

explained previously:

∆ = ϵHOMO(N+
0 )− ϵHOMO(N−

0 )− (ϵLUMO − ϵHOMO) (4.4)
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where N0 is the expected integer value, the ground state density integrates to in

absence of the derivative discontinuity (
∫
V
ρ0(r)dr), and ϵHOMO and ϵLUMO are

the highest occupied and lowest unoccupied Kohn-Sham eigenvalues, respec-

tively. The charge N0 varying infinitesimally by δ from integer is N±
0 = N0± δ.

As it was already mentioned the HOMO and LUMO Kohn-Sham eigenvalues

are related to the ionisation potential and electron affinity[227, 130, 161, 164,

79].

ϵHOMO(N+
0 ) = −A (4.5a)

ϵHOMO(N−
0 ) = −I (4.5b)

It is important that ∆ explains the correct gap energy in form of Eq.[4.6].

Eg = ∆− (ϵLUMO − ϵHOMO) (4.6)

This is the case for the stretched molecules in which the atoms can not be

considered as isolated.

4.3.3 Step Height S vs Step Height ∆

The two preceding phenomena, ∆ and S, are generally treated as inde-

pendent and unrelated properties of the exact KS potential. Their differences

mainly are related to the fact that S is a quantity related to two fragments of

the system in which the atoms could be approximated to the isolated elements

whereas ∆ is the quantity that defines the correct gap energy of the entire sys-

tem as a whole. Additionally, the EA and the LUMO energy, yielding ∆, are

absent from S. Convincingly, in a system, S occurs at an integer of electrons

in a fixed location in the space while the ∆ occurs when a small amount of

charge is added to the whole system. However, depending on the range of the

system and the interaction between elements the S step could be related to the

derivative discontinuity. The relation between the interatomic step, S, and the

DD, ∆ is published by Hodgson et al.[90].
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4.3.4 Position of the step

Far from the localised electrons (around the midpoint of interatomic axis)

in subsystems the density must decrease with the ionisation energy of the entire

system. This is the case of a molecule of separate atoms with weakly overlap-

ping atomic wavefunctions. There exist locally a second charge in the effective

ionisation energy away from the system if any subsystem density does not de-

crease with this energy. This local additional charge in form of the step on

vxc(r) was initially observed by Perdew. [157] and then later by Makmal et al.

[136] in the exact exchange potential for LiF, where they attribute the steps to

shifts in the Kohn-Sham eigenvalues.

Thus, the step is expected to appear on the exact vxc(r) to define the decay

charge occurring in ρ0(r) far from the nuclei. More about the position of the

step structure could be find in Ref.[190].

For the model systems that can be solved by one-orbital formula (see sec-

tion 3.3.1), a spatial function in the form of Ĩ(x) = 1
8ρ2

( ∂ρ
∂x
)2 could be defined

that is sensitive to the ionisation energy for when the density decays asymptot-

ically. As this asymptotic decay is manifested in form of the step on the exact

vxc(r) so, Ĩ(x) may predict the location in the space where the step occurs[89].

The detection of the step through Ĩ(x) is from the fact that in the vicinity of

the nucleus Ĩ(x) is equal to the corresponding ionisation energies whereas at

the point where a change happens in the local ionisation energy (far from the

nuclei), Ĩ(x) shows a step. Both the height and the position of the step were

previously reported by the one-dimensional (1D) Heitler–London model wave

function[190].

4.3.5 Shape of the step

The shift is spatially uniform only for δ → 0+. In a finite system, such as

an atom or molecule, for any small, but finite δ, vKS(r) forms a “plateau” that

elevates the level of the potential in the vicinity of the nuclei. At the edge of

the plateau, the level of vKS(r) must drop to 0, forming a sharp spatial step.

As δ vanishes, the plateau extends over all space, becoming spatially uniform,

and its height approaches the value ∆.

A plateau in the exact vKS(r) is also observed for a different physical sce-
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nario: a stretched diatomic molecule with an integer number of electrons,

L . . . R, which is one system consisting of Atom L and Atom R with a large

separation, d.

The plateau forms around one of the atoms, introducing an interatomic[83,

82, 14], and ensuring the correct distribution of charge throughout the system[91,

159, 175, 129, 136, 53, 68, 190, 147, 116, 118, 131].In the general case, the step

height, S, is related to IR and IL, the IPs of atoms R and L, respectively, as in

Eq.[4.2].
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4.4 Step Structure in vNAD[ρB, ρtot](r)

Previously Makmal et al.[136] published their work on molecular dissocia-

tion of a diatomic molecule with an all electron Kohn-Sham solver DARSEC.

They used the orbital formulation of OEP [121, 180, 187, 71, 49] locally mod-

ified by KLI[120]. Their main goal was to examine exact-exchange (EXX)

Kohn-Sham potential. The vxc(r) of semi-local functionals in molecules decays

exponentially along with the density. The asymptotic behaviour of the exact

vxc(r) instead, is −1
r

[3, 40]. The incorrect asymptotic behaviour of the semi-

local vxc(r) is the consequence of self-interaction error. The self-interaction

problem of semi-local potentials can be compensated by Perdew-Zunger self-

interaction correction [163]. Even with such correction and calculations within

the methods that are exact for all-electron calculations, the correct asymptotic

behaviour of vxc(r) is not guaranteed[202]. It was shown by Makmal et al.

that Kohn-Sham EXX plays an important role in curing the problem of frac-

tional molecular dissociation. They used stretched LiF molecule to study the

performing EXX calculation. They achieved correct binding energy in their

calculations while using the lowest-energy electronic configuration for different

interatomic distances. The correct binding energy was reflected by a plateau-

like local Kohn-Sham vxc(r) accompanied by two step structures.

The steps that appeared locally on vxc(r) bring the fact that the exact vxc(r)

of a diatomic molecule is not simply given by the sum of corresponding atomic

potentials. This latter is always true even for very large arbitrary interatomic

distances. The reason is that one of the atomic potentials is shifted by a

constant due to the HOMO localised energy while the other atom lacks this

shift.

The density-dependent theories within DFT suffer from the lack of this pre-

cision in their vxc(r) even the successful accurate approximations. Instead, the

orbital-dependent approaches such as KLI can reflect the molecular dissociation

through the derivative discontinuity of the corresponding Exc(r) at the level of

the nonzero atomic shift of the potential.

We expected that the exact non-additive potential bi-functional thanks

to the analytical inversion reflect the step structure spatially where the in-

dividual atomic potential shifts oppose. Within DARSEC, I solved the same
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model systems with EXX locally approximated by KLI and also calculated

vNAD[ρB, ρtot](r) with a given ground state density. I examined if the step

structure appears spatially at the same position for both calculations. I also

verified the relation between the height of the step and the gap energy.
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4.5 Numerical Calculation

The calculations are obtained on accurate numerical grids using the all-

electron program package DARSEC [135]. Consequently, I are restricted to

computations of molecules with two atomic centres with spherical symmetry.

In DARSEC, the Kohn-Sham equations are solved self-consistently using the

high-order finite difference approach [52, 11]. In this work, the stencil was

set to 12 for the finite difference. A real-space grid based on prolate-spherical

coordinates (see Eq.[1.20] and Eq.[1.19]) is used to describe a system with

two atomic centres. The grid is very dense near two centres and increasingly

sparse farther from the centres. Due to the cylindrical symmetry of diatomic

molecules, the problem is reduced to a two–dimensional one. In the calculations

for this work, the systems are defined within 15 Bohr of radius and number of

115 × 121 grid points. The ρtot(r) is the ground-state density of the systems

performed with the LDA [24, 162].

The calculations are down for two different sub-densities: 1) for when∫
ρB(r)dr = 2.0, and for the case in which the charge density is not localised

into an integer value at the vicinity of the nuclei,
∫
ρB(r)dr = 1.5.

For partitioning the ground state density numerically, I use a smooth distri-

bution function 0 ≤ F (z) ≤ 2 that has no cusps and respects the smoothness

of the function explained in Section[3.3.2]. The choice for such a function used

for the reported result is the Fermi-Dirac distribution function that changes

smoothly from value one to zero (Eq.[3.21]). This latter was realised within

binary-search algorithm to localised the density around one nucleus.

All the calculations for the exact and the approximated theories were per-

formed based on the same choice of the parameters explained above.
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4.6 Results and Discussion

I seek for the SS in exact vNAD[ρB, ρtot](r) analytically inverted from a

ground state density and a partitioned sub-density integrating to two spin-

compensated charge density for two diatomic model systems one heteronuclear

and one homonuclear. The vNAD[ρB, ρtot](r) appears in both cases with the

SS in the space, where the overlap between two sub-densities is maximal. In

Fig.[4.1] and in Fig.[4.2] I compared the related vNAD[ρB, ρtot](r) with vKLI
xc (r)

for a heteronuclear and homonuclear model systems respectively.

The DD in vNAD[ρB, ρtot](r) appears spatially at the same position in which

the SS appears on vKLI
xc (r) in both models. In the Figs. [4.3] and [4.4] the DD

of potentials are zoomed and obviously, it doesn’t appear easy to deduce the

height of the SS from the vKLI
xc (r). Instead, the vNAD[ρB, ρtot](r) shows more

information about the behaviour of the related ground state density where the

charge number varies infinitesimally from the integer where the sub-densities

overlap.

The zoomed in plot on the overlap region in Fig.[4.3] and Fig.[4.4]shows that

compared to vKLI
xc (r), the step appears at the vicinity of the inflection point of

the in the vNAD[ρB, ρtot](r) closer to the first argument of the potential, here,

ρB(r). This is true for both the heteronuclear and homonuclear model systems.

This means the second derivative nor the third order of the vNAD[ρB, ρtot](r) is

zero where the step happens regarding the step position from KLI.
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Figure 4.1: In search of the Step Structure on the exact vNAD[ρB, ρtot(r)] from LDA

density input through the comparison of it with the location of the Step Structure

on the curve of the vOEP-KLI
xc (r); System: HeLi+ where He is at (0, 0,−3.5) Bohr and

Li is at (0, 0, 3.5) Bohr; Blue line: vNAD[ρB, ρtot(r)]; Red Line: vOEP-KLI
xc (r); Vertical

brown line: nuclei; Vertical green line: the location of the Step.

Figure 4.2: Comparing the position Step Structure on the exact vNAD[ρB, ρtot(r)]

from LDA density with the Step Structure on the curve of the vOEP-KLI
xc (r); Sys-

tem: He-He where He is at (0, 0,−3.5) Bohr and He is at (0, 0, 3.5) Bohr; Blue line:

vNAD[ρB, ρtot(r)]; Red Line: vOEP-KLI
xc (r); Vertical brown line: nuclei; Vertical green

line: the location of the Step.

We need to dig more in the results for the heteronuclear system but the step

position at first glance is expected to be exactly at the middle of the interatomic

distance for a homonuclear model. In fact, it is not exactly the vNAD[ρB, ρtot](r)

that tells us about the exact position of the step. The difference between
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the exact analytically inverted potential (so-noted as vEXACT
s [ρA/B](r)) of the

density of the separated systems (vEXACT
s [ρB](r) or vEXACT

s [ρA](r)) can provide

the exact position of the SS. In the end what is obvious and the vNAD[ρB, ρtot](r)

or vNAD[ρA, ρtot](r) have to reflect is that the inflection point of the curve occurs

in the vicinity of the SS in the exact potential. In section 4.6.3, the exact

position of the SS from analytically inverted potential together with the correct

gap energy will be discussed.

Figure 4.3: Zoom-in representation of the potentials around the overlap region be-

tween ρA(r) (around Li) and ρB(r) (around He) in search of the Step on the exact

potential bi-functional (optained from LDA density); System: HeLi+ where He is at

(0, 0,−3.5) Bohr and Li is at (0, 0, 3.5) Bohr; Blue line: vNAD[ρB, ρtot(r)]; Red Line:

vOEP-KLI
xc (r); Vertical green line: the location of the Step.
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Figure 4.4: Zoom-in representation of the potentials around the overlap region be-

tween ρA(r) (around He at the right) and ρB(r) (around He at the left) in search of the

Step on the exact potential bi-functiona; System: He-He where He is at (0, 0,−3.5)
Bohr and Li is at (0, 0, 3.5) Bohr; Blue line: vNAD[ρB, ρtot(r)]; Red Line: vOEP-KLI

xc (r);

Vertical green line: the location of the Step.
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4.6.1 The Exact Position of the Step

The origin of the exact position of the Step is based on the information

carried by the SS is predicted to happened in the curve of the vNAD[ρB, ρtot(r)]

where the overlap between ρB(r) and ρA(r) occurs to be maximal. The ρA(r) =

ρtot(r) − ρB(r) where for the specific system models used in this work the∫
ρA(r)dr = 2.

Although the position of the step accurately appeared on the vNAD[ρB, ρtot(r)]

but its exact position remains ambiguous on the curve. If the exact posi-

tion of the step be directly related to the difference of the sub-densities, then

the step has to happen on the local critical point of the curve ∆v(r)] =

vs[ρA](r)− vs[ρB](r).

Figure 4.5: Deducing the position of the step from the difference between vs[ρA] and

vs[ρB]; System: HeLi+ where He is at (0, 0,−3.5) Bohr and Li is at (0, 0, 3.5) Bohr;

Red line: ∆v(r) = vs[ρA](r)− vs[ρB](r); Blue Line: vOEP-KLI
xc (r); Vertical green line:

the location of the Step.
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Figure 4.6: Deducing the position of the Step from the difference between vs[ρA] and

vs[ρB]; System: He-He where He is at (0, 0,−3.5) Bohr and He is at (0, 0, 3.5) Bohr;

Red line: ∆v(r) = vs[ρA](r)− vs[ρB](r); Blue Line: vOEP-KLI
xc (r); Vertical green line:

the location of the Step.

The difference between charge densities ∆v(r) is plotted in Fig.[4.5] and

compared to the vOEP-KLI
xc (r). Although, OEP being locally approximated by

the KLI theory is highly accurate but might vary slightly from the exact vxc(r).

After all, the vOEP-KLI
xc (r) is the best available candidate to evaluate the SS of

the vNAD[ρB, ρtot(r)].

The position of the step shown in Fig.[4.5] from two theories although are

infinitesimally dis-matched (about 0.04 Bohr) but is a good confirmation of the

accuracy of the vNAD[ρB, ρtot](r). In Fig.[4.6] the results are shown for He-He

model system and this time both theory shows exactly the same position for

the SS in both curves.
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4.6.2 LDA vs KLI and vNAD[ρB, ρ
LDA
tot ]

The SS as it’s been already mentioned previously is one of the properties

of the exact potential. Now that the vNAD[ρB, ρtot(r)] provides precisely this

information, it could be used as a reference for the evaluation of the other

theories.

Figure 4.7: Assessment of vLDA
xc (r) from the appearance or nonappearance of the Step

on its curve vs the vOEP-KLI
xc (r); System: He-He where He is at (0, 0,−3.5) Bohr and

He is at (0, 0, 3.5) Bohr; Red line: vOEP-KLI
xc (r); Blue Line: vLDA

xc (r); Vertical green

line: the location of the Step.

Figure 4.8: Evaluation of vLDA
xc (r) from the appearance or nonappearance of the Step

on its curve vs the vOEP-KLI
xc (r); System: HeLi+ where He is at (0, 0,−3.5) Bohr and

Li is at (0, 0, 3.5) Bohr; Red line: vOEP-KLI
xc (r); Blue Line: vLDA

xc (r); Vertical green

line: the location of the Step.
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The LDA was already evaluated to be not exact but accurate enough to

be used as a low-cost theory within the Kohn-Sham formulation of the DFT. I

simply chose this theory to show that it misses the physical information carried

by SS on the vxc(r) curve. The vLDA
xc (r) is compared with the vOEP-KLI

xc (r) and

the vNAD[ρB, ρ
LDA
tot ] for He-He and HeLi+ in Fig.[4.8] and Fig.[4.7], consecutively.
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4.6.3 Gap Energy

The Gap Energy is the first physical property to be deduced from the SS.

In an section 4.3 I explained that the origin of the step is related to the atomic

ϵHO/LU or the molecular ηHO/LU
R/L (see Eq.[4.2] and Eq.[4.4]).

Within a heteronuclear diatomic close-shell system, the step height is re-

lated to the difference between HOMO and LUMO of the whole system but

mathematically can be deduced from both the localised charge densities and

the vNAD[ρB, ρ
LDA
tot ](r).

When it concerns the charge distribution of the sub-densities, the position of

the step has to match the local extremum of the charge density that represents

the density around the larger nuclei (here ρA(r) that is formed around atom

Li).

However, when the system concerns a homonuclear diatomic case, the step

is expected to occur in the middle of the interatomic distance and the position

of the step has to match the intersection of two sub-densities’ curves.

Figure 4.9: Analytical inversion of the potential from ρA(r) (localised around Li at

the right site of the interatomic axis) and ρB(r) (localised around He at the left site

of the interatomic axis); System: HeLi+ where He is at (0, 0,−3.5) Bohr and Li is

at (0, 0, 3.5) Bohr; Red line: vEXACT
s [ρA](r); Blue line: vEXACT

s [ρB](r); Vertical green

line: the location of the Step observed on the vNAD[ρB, ρtot(r)].

In Fig.[4.9] I plotted the sub-densities for HeLi+ in which the density ρB(r)

is localised around He atom at the left side. Accurately, the position of the SS

occurs at the local critical point of the charged distribution corresponding to
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the Li atom at the right side of the interatomic axis.

Figure 4.10: Analytical inversion of the potential from ρA(r) (localised around He at

the right site of the interatomic axis) and ρB(r) (localised around He at the left site

of the interatomic axis); System: He-He where He is at (0, 0,−3.5) Bohr and Li is

at (0, 0, 3.5) Bohr; Red line: vEXACT
s [ρA](r); Blue line: vEXACT

s [ρB](r); Vertical green

line: the location of the Step observed on the vNAD[ρB, ρtot(r)].

Fig.[4.10] shows the position of the step happening accurately at the inter-

section of the two graphs.

The tangents to the second spatial derivative of the vNAD[ρB, ρtot](r) ( I

mean d2vNAD[ρB ,ρtot](r)
dr2 ) at the vicinity of the step position have been parallel to

the interatomic axis. The half of the difference between the energy related to

each tangent is the Eg. If that is the correct value, then the exact position of the

step must occurs spatially exactly at the mid-distance of two local extrema. If

Fig.[4.11] the vertical green line shows where the step happened on vOEP-KLI
xc (r).

I see that this line is not happening at the mid-distance of two local extrema of

the exact potential. That means the EEXACT
g must be underestimated compared

to the ENAD
g for when the localised density is highly comparable with any of

the |ϕi|2(r). In Table.[4.1] I see clearly this underestimation of the EEXACT
g

compared to the ENAD
g by a value about 1.6×10−3 Ry. To have a more accurate

conclusion from this comparison I also want to see how the energy gap calculated

by vNAD varies for non-localised charge density.
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Figure 4.11: Finding the gap energy from the exact vNAD[ρB, ρtot](r); System: HeLi+

where He is at (0, 0,−3.5) Bohr and Li is at (0, 0, 3.5) Bohr; Vertical green line:

location of the step. The Eg is the half value of the difference between the tangent to

the inflection points (horizontal brown lines) before the local extremum of the cure

at the neighbouring of the step position (horizontal red lines).

4.6.4 Non-localised Electrons

This comparison between the EEXACT
g and the ENAD

g could be not justified

if both theories don’t share the same density distribution of sub-densities in

order to calculate the Eg.

In fact, the vOEP-KLI
KS was suggested to solve accurately a molecular system in

which the molecular orbital densities could partially surpass the integer value

while being integrated spatially in the whole space. So, it is more justified if

I evaluate the OEP − KLI approach with comparing its EEXACT
g with gap

energy obtained from vNAD[ρB′ , ρLDA
tot ](r) where

∫
ρB′(r)dr = 2± δ.
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Figure 4.12: Different partial localisation of the charge density around the He nuclei

at the left side of the interatomic axis; System: HeLi+ where He is at (0, 0,−3.5)
Bohr and Li is at (0, 0, 3.5) Bohr; Vertical brown line: nuclei.

4.6.5 Heteronuclear System

4.6.6 HeLi+

The vNAD[ρB′ , ρtot](r) for partially localised charge density shown in Fig.[4.13]

compared to inverted potential from the integer localisation of charge density

(Fig.[4.1]) shows a significant change on the potential curve. The change of the

future of the potential inverted from partial localisation, although appears on

the overlap region and close to the nuclei around which the charge density is

localised but remain comparable for different partially localised densities.
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Figure 4.13: The exact vNAD[ρB, ρtot](r) from analytical inversion for different partial

localisation of the charge density around the He nuclei at the left side of the inter-

atomic axis plotted in Fig.[4.12]; System: HeLi+ where He is at (0, 0,−3.5) Bohr and

Li is at (0, 0, 3.5) Bohr; Vertical brown line: nuclei. The Eg ≃ 1.44 (Ry).

The jump of the step in between two atoms happens to have a similar height

for different ρB(r)s. However, the closer the charge localisation is to the integer

value, the more the jump (from the left to the right) on the potential is shifted

to the right side and the smaller gets the width of the step.

As I asserted previously that the exact position of the Step must occur at

the local extremum of the inverted potential from the reminder charge density,

it’s essential to verify this fact by looking at the vs[ρi](r) for i = A,B.

In Fig.[4.14] the position of the step happens exactly at the bump of the

vs[ρA](r) and accurately crosses the mid-hight of the change in vs[ρB](r).

The ENAD
g this time is the same as the EEXACT

g (last line in Table.[4.1]).
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Figure 4.14: Analytical inversion of the potential from ρA(r) (localised around Li at

the right site of the interatomic axis) and ρB(r) (localised around He at the left site

of the interatomic axis) for partial localisation(
∫
ρB(r)dr = 1.5) of the charge density

around the He nuclei at the left side of the interatomic axis plotted in Fig.[4.12];

System: HeLi+ where He is at (0, 0,−3.5) Bohr and Li is at (0, 0, 3.5) Bohr; Vertical

brown line: nuclei. The Eg ≃ 1.44 (Ry).

Theory HOMO (Ry) LUMO (Ry) Gap (Ry)
LDA −2.814 −0.415 1.088
KLI −2.122 −0.683 1.439
NAD −− −− 1.215
NAD’ −− −− 1.441

Table 4.1: The energy gap from different theories for the model system LiHe+. NAD

refers to the potential inverted from the density that integrates to 2 and NAD’ cor-

responds to the potential inverted from a density that integrates to 1.5. All input

densities are from LDA.
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Figure 4.15: 1D representation of the 2s orbital ρ2(r) = 2|ϕ2(r)|2 for the system

HeLi+; He is sited at (0, 0,−3.5) Bohr and Li is located at (0, 0, 3.5) Bohr; Vertical

brown line: nuclei.

We plotted the ρ2(r) = 2|ϕ2(r)|2 in Fig.[4.15] and showed the ∆ρ(r) =

ρ2(r)−ρB(r) = ρ1(r)−ρA(r) if Fig.[4.16] for different partially localised charge

densities.

Figure 4.16: Variation of the partially localised ρB(r) from the 2s orbital-density

around the He nuclei; System: HeLi+; He is sited at (0, 0,−3.5) Bohr and Li is

located at (0, 0, 3.5) Bohr; Vertical brown line: nuclei; coloured curves: ∆ρ(r) =

ρ2(r)− ρB(r) = ρ1(r)− ρA(r) for 1.5 ≤
∫
ρB(r)dr ≤ 1.95.

The Analytically inverted potential bi-functional needs to predict the miss-

ing charge to compensate ρB(r) to become a ground state orbital density.
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4.6.7 HLi

To verify the vNAD[ρB′ , ρtot](r) for more realistic system, the HLi molecule

was chosen to be studied. First I take a look at the first orbital density distri-

bution in the space to understand its locality (Fig.[4.17]).

Figure 4.17: 1D representation of the Orbital density; System: HLi; H at (0, 0,−3.5)
Bohr and Li at (0, 0, 3.5) Bohr; the density is ρ2(r) = 2|ϕ2(r)|2

Obviously for HLi, the ρB(r) norρA(r = ρtot(r − ρB(r) for the condition in

which
∫
V
ρB(r)dr = 2 cannot be localised at the vicinity of one of the atoms

(Fig.[4.18]).
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Figure 4.18: 1D representation of the localised density; System: HLi; H at (0, 0,−3.5)
Bohr and Li at (0, 0, 3.5) Bohr; Blue mark-line: ρB(r) as

∫
V ρB(r)dr = 2; Orange

mark-line: ρA(r) = ρtot(r)− ρB(r)

Instead the ρB(r) become more localised around the H atom at the left side

of the interatomic axis if
∫
V
ρB(r)dr = 1.5 (Fif.[4.19]).
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Figure 4.19: 1D representation of the densities; System: HLi; H at (0, 0,−3.5)
Bohr and Li at (0, 0, 3.5) Bohr; Blue mark-line: ρtot(r); Green mark-line: ρB(r) as∫
V ρB(r)dr = 1.5; Orange mark-line: ρA(r) = ρtot(r) − ρB(r); Vertical dashed lines:

nuclei.

We choose the latter localisation of the ρB(r) and I provide the vs[ρA](r)

and vs[ρA](r) (Fif.[4.20]) from which I can obtained more information about

the gap energy.
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Figure 4.20: Analytical inversion of the potential from ρA(r) (localised around Li at

the right site of the interatomic axis) and ρB(r) (localised around H at the left site of

the interatomic axis) for partial localisation(
∫
ρB(r)dr = 1.5) of the charge density

around the He nuclei at the left side of the interatomic axis plotted in Fig.[4.12];

System: HLi where H is at (0, 0,−3.5) Bohr and Li is at (0, 0, 3.5) Bohr; Vertical

brown line: nuclei.

As the vNAD[ρB′ , ρtot](r) must carry the information about the difference

between ρB(r) and ρir) (for i = 1, 2, 3, ...), it’s essential to know the feature of

the ∆ρ(r) = ρ2(r) − ρB(r) = ρ1(r) − ρA(r). For different density localisation

around the H atom this difference is plotted in Fig.[4.21].
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Figure 4.21: Variation of the partially localised ρB(r) from the 2s orbital-density

around the He nuclei; System: HLi; H is sited at (0, 0,−3.5) Bohr and Li is located at

(0, 0, 3.5) Bohr; Vertical brown line: nuclei; coloured curves: ∆ρ(r) = ρ2(r)−ρB(r) =

ρ1(r)− ρA(r) for 1.5 ≤
∫
ρB(r)dr ≤ 2.

The corresponding vNAD[ρB′ , ρtot](r) for different ρB(r) is demonstrated in

1D representation in Fig.[4.22].
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Figure 4.22: The exact vNAD[ρB, ρtot](r) from analytical inversion for different partial

localisation of the charge density around the He nuclei at the left side of the inter-

atomic axis plotted in Fig.[4.12]; System: HLi where H is at (0, 0,−3.5) Bohr and Li

is at (0, 0, 3.5) Bohr; Vertical brown line: nuclei.

Theory HOMO (Ry) LUMO (Ry) Gap (Ry)
LDA −0.283 −0.111 0.172
NAD’ −− −− 0.334

Table 4.2: The energy gap from different theories for the model system HLi. NAD’

corresponds to the potential inverted from a density that integrates to 1.5.

For the system in which any atom carry a density distribution at its vicinity

that integrate into an integer value, the step structure forms very close to the

larger atom where the overlap between the density cannot be minimised ulti-

mately. What is obvious is the fact that, even the localised density integrating

close to 2 is not localised in the space, but its difference with the orbital density

happens to be localised. That’s why in Fig.[4.22] I see that the inverted po-

tential from all different ρB(r) provide a smooth curve around the H atom and

in between the atoms except the potential obtained by
∫
V
ρB(r)dr = 1.5. This

latter could be a good candidate from which one can extract the most accurate

gap energy from.

It is important to know that the vNAD[ρB, ρtot](r) obtained form the ρB(r)

in which
∫
V
ρB(r)dr > 1.5 does not calculate very accurately the gap energy
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for a system in which the atoms are forming strong bounding.

4.6.8 Homonuclear System

Figure 4.23: Different partial localisation of the charge density around the He nuclei

at the left side of the interatomic axis; System: He-He where He is at (0, 0,−3.5)
Bohr and other He is at (0, 0, 3.5) Bohr; Vertical brown line: nuclei.

Figure 4.24: 1D representation of the 2s orbital ρ2(r) = 2|ϕ2(r)|2 for the system He-

He; He is sited at (0, 0,−3.5) Bohr and other He is located at (0, 0, 3.5) Bohr; Vertical

brown line: nuclei.

Choosing rhoB15:
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Figure 4.25: 1D representation of the ρB(r) , ρA(r)and ρtot(r)for the system He-He;

He is sited at (0, 0,−3.5) Bohr and other He is located at (0, 0, 3.5) Bohr; Vertical

red line: nuclei.

Theory HOMO (Ry) LUMO (Ry) Gap (Ry)
LDA −1.14 0.07 1.206
KLI −1.835 −0.280 1.555
NAD −− −− 1.4727
NAD’ −− −− 1.555

Table 4.3: The energy gap from different theories for the model system He-He. NAD

refers to the potential inverted from the density that integrates to 2 and NAD’ cor-

responds to the potential inverted from a density that integrates to 1.5.
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Figure 4.26: Analytical inversion of the potential from ρA(r) (localised around He at

the right site of the interatomic axis) and ρB(r) (localised around He at the left site

of the interatomic axis) for partial localisation(
∫
ρB(r)dr = 1.5) of the charge density

around the He nuclei at the left side of the interatomic axis plotted in Fig.[4.12];

System: He-He where one He is at (0, 0,−3.5) Bohr and another one is at (0, 0, 3.5)

Bohr; Vertical brown line: nuclei. The Eg ≃ 1.555 (Ry).
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Figure 4.27: The exact vNAD[ρB, ρtot](r) from analytical inversion for different partial

localisation of the charge density around the He nuclei at the left side of the inter-

atomic axis plotted in Fig.[4.12]; System: He-He where one He is at (0, 0,−3.5) Bohr

and another one sits at (0, 0, 3.5) Bohr; Vertical brown line: nuclei. The Eg ≃ 1.44

(Ry).
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4.7 Conclusion and Outlook

The exact analytically inverted non-additive potential bi-functional is accu-

rately predicts the position of the step structure. This latter is correct for both

cases of integer-localisation of the charge density around nuclei and partially

localised density.

The energy gap obtained from the analytically inverted potential is strongly

comparable with the one obtained from orbital related DFT model, the OEP-

KLI. The difference between two energies becomes negligible when the bi-

functional potential is inverted analytically from partially localised charge den-

sity. The case related to the partially localised charge density is more realistic

case that immitates the partially occupied orbitals. The partially occupied

orbitals are the source of the gap energy that must be manifested on the po-

tential curve. This proves that the height of the SS appeared on the curve of

the potential is also accurate.

The finding in this work confirms that the low-cost exact vNAD[ρB′ , ρtot](r) is

a very reliable and accurate candidate to help the common approximations for

more relevant calculations of the band gap. It has the advantage of being appli-

cable to the other methods in order to improve them. Such application could be

done both numerically within the modification of the potential with the help of

the vNAD[ρB′ , ρtot](r) in the iterative procedures or analytically modifying the

vxc(r).

The vNAD[ρB, ρtot](r), provides the exact position of the SS, its height and

the correct Eg. I may suggest that this work be repeated by other ground state

densities (for example the experimental GS densities or more exact theories

such as full CI). The very first guess is that the vNAD[ρB, ρtot](r) will provide

very accurate energy gap if one use one of the suggested inputs.

The least but not the last point to bring up is that the width of the step

appearing on the vNAD[ρB, ρtot](r) inverted from the charge density integrating

to a non-integer value must not be neglected. It is possible that some physical

interpretation could be deduced from it. The first guess is the spatial probability

where the system starts to attract or repulse the electron. This latter is related

to the binding energy so it is essential to investigate more in this direction.



Chapter 5

Non-additive Potential

bi-functional from Analytical

Inversion for Diatomic Systems

with 2 +N Electrons

5.1 Introduction

In reality the physical systems include more than two atoms with larger

number of the electrons. Now that the enough information is accessible about

the vNAD/inverted
s [ρB, ρtot](r) for diatomic model systems of two or four electrons,

it is indispensable to understand the behaviour of the potential for larger sys-

tems.

In this chapter I study couple of diatomic model systems including more

than four electrons but have the capacity based on which, two electrons can be

localised around one of the atoms with high precision.

The inversion is analytic for when we invert the potential from a charge

density integrating to 0 to 2, however I used the same formula to invert the

potential from a charge density integrating to > 2 using the analytical inversion

formula. In that case we are not anymore in the regime of exact potential. We

use the ground state density calculated from LDA for diatomic atoms stretched

about 7 Bohr from each other. The vNAD/inverted
s [ρB, ρtot](r) is calculated from

130
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Eq.[5.1] for which I localised charge density ρB(r) from Eq.[5.1].

vNAD/inverted
s [ρB, ρtot](r) = vs[ρB](r)− vs[ρ1](r) (5.1)

where ρtot(r) is an input ground sate density.

ρB(r) =
∫
v

F (z)ρtot(r)dr = 2 (5.2)

The F (z) is defined in Eq.[3.21]. We also want to understand how the vNAD/inverted
s [ρA, ρtot](r)

(Eq.[5.3]) behaves as the
∫
V
ρA(r)dr > 2.

vNAD/inverted
s [ρA, ρtot](r) = vs[ρA](r)− vLDA

KS (r) (5.3)

where

ρA(r) = ρtot(r)− ρB(r) (5.4)

and
∫
v
ρB(r)dr = 2

As the first attempt I decided to pick the atoms from the noble gas group.

The fact that those atoms are unwilling to attract an additional electron, the

corresponding inverted potentials from both ρB(r) and ρA(r) will be more forced

to a constant value around the atom where the charge density is localised. This

will allow us to study the potential’s behaviour more accurately elsewhere in

the space.

Similarly, the analytical inversion of the non-additive kinetic potential bi-

functional is known to be exact if the inversion is done from the density that

integrates in the space between 0 and 2. The feature of the analytically in-

verted v
NAD/inverted
s [ρA/B, ρtot](r) remained unknown for the cases in which the∫

V
ρA/B(r)dr > 2. This was because of the available numerical tools that where

mainly basis-set dependent, also because the theory were studied previously for

strongly overlapping densities.

Also, when the number of the electrons in a system surpass four, the higher

orbitals start to form. Those orbitals include nodes at various locations in the

space. It is very interesting to see how the vNAD/inverted
s [ρA/B, ρtot](r) is affected

by those singularities existing in the charge density. The inverted potential

for all calculations was compared to its mathematically alternative formulation

v
NAD/vW
s [ρA/B, ρtot](r) (see Eq.[3.19]).
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Once the results were obtained for the model system of the noble gas, I

tried a more realistic diatomic system with 10 electrons. In the next section

the results are presented for both case in 1D and 2D representation. The visual

interpretation of the 1D plots is given in section 1.2.5.
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5.2 Results and Discussion

5.2.1 HeNe

We start first the He-Ne model system with 12 electrons. The ground state

density calculated from LDA is shown in Fig.[5.1] known as ρB(r). The model

system provides the condition that ρB(r) can be easily localised around the He

atom at the left side of the interatomic axis. The reminder density ρA(r) is lo-

cated around the Ne atom at the right side. Those sub-densities are overlapping

very weakly in between the atoms close to Ne.

Figure 5.1: System: He-Ne; 1D representation of the ρB(r) , ρA(r)and ρtot(r); He is

sited at (0, 0,−4) and other Ne is located at (0, 0, 4)

We first showed interest in understanding the vNAD/inverted
s [ρA, ρtot](r). Our

expectation based on the theory was that the potential shows a harsh wall at the

location of the atom He. That is the prove to the fact that the He is saturated

by electrons and does not desire to receive an additional electron. However, the

behaviour of the potential around the other atom and at the overlap region of

the sub-densities was unknown known to us.



134

Figure 5.2: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory; System He-Ne; Blue-Mark-Line: vNAD/inverted[ρA, ρtot](r) su-

perposing vNAD/vW[ρB, ρtot](r); Red mark-Line: ∆v = vNAD/inverted[ρA, ρtot](r) −
vNAD/vW[ρA, ρtot](r). Vertical Brown line: nuclei.

In Fig.[5.2] it is shown that our expectation about the wall-form of the

potential at the He position is confirmed. The potential remains smooth be-

tween the nuclei with small bump where the sub-densities’ overlap is maximal.

The difference between the inverted potential and the von Weizsäcker poten-

tial (∆v = vNAD/inverted[ρA, ρtot](r)− vNAD/vW[ρA, ρtot](r)) appears to be zero in

whole space, of course with some numerical so-called noises.

The shape of the vNAD/inverted[ρA, ρtot](r) at the vicinity of the atom Ne is

new to us compared to the potential calculated for all the other model systems

with equal and less than four electrons.

We then verified if it is also the case for the vNAD/inverted[ρB, ρtot](r). In

Fig.[5.3] this latter is shown to be confirmed. The good news is that the po-

tential appears to be constant where the charge density os localised.
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Figure 5.3: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory; System He-Ne; Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) su-

perposing vNAD/vW[ρB, ρtot](r); Red mark-Line: ∆v = vNAD/inverted[ρB, ρtot](r) −
vNAD/vW[ρB, ρtot](r). Vertical Brown line: nuclei.

Figure 5.4: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory; System He-Ne; Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) super-

posing vNAD/vW[ρB, ρtot](r); Red mark-Line: ρ4(r) = 2|ϕ4(r)|2. Vertical Brown line:

nuclei.

We guessed that the change in the curve of the potential around the atom Ne

must be related to the nodes existing in higher level orbitals. To verify that this
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change of the potential happens exactly at the same position of the node in an

orbital happening, I chose to plot the orbital density ρ4(r) = 2|ϕ4(r)|2 together

with vNAD/inverted[ρB, ρtot](r). From the illustration in Fig.[5.4] I can deduce

that the potential is clearly affected by the nodes existing in the higher orbitals.

That means the vNAD/inverted[ρB, ρtot](r) provides much more information that

what I explained previously in the other chapters.

Figure 5.5: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[5.1]; System: He-Ne; Two-dimensional representation of vNAD/inverted
s [ρA, ρtot](r)

Ry. Black dots: nuclei.
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Figure 5.6: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[8.17]; System: He-Ne; Two-dimensional representation of vNAD/inverted
s [ρB, ρtot](r)

Ry. Black dots: nuclei.

To see how the analytically inverted potentials behave in whole space, I

plotted vNAD/inverted
s [ρB, ρtot](r) and vNAD/inverted

s [ρA, ρtot](r) in 2D (Fig.[5.5] and

Fig.[5.5]).

Where I interpreted the potentials to be smooth in the space form the 1D

representations previously are also confirmed by the last two figures.



138

5.2.2 LiF2+

In this section I show the results for a more realistic system LiF2+. The

motivation of starting the calculation for LiF with ten electrons instead of 12

was to avoid numerical possible artifacts while localising two electrons around

the left atom, Li.

Also, the investigation can be generated to further understating of the step

structure and related gap energy for when we decide to remove one electron

from each atom of LiF.

Figure 5.7: System: LiF2+; 1D representation of the ρB(r) , ρA(r)and ρtot(r); Li is

sited at (0, 0,−4) and other F is located at (0, 0, 4)
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Figure 5.8: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory; System LiF2+; Blue-Mark-Line: vNAD/inverted[ρB, ρtot](r) su-

perposing vNAD/vW[ρB, ρtot](r); Red mark-Line: ∆v = vNAD/inverted[ρB, ρtot](r) −
vNAD/vW[ρB, ρtot](r). Vertical Brown line: nuclei.

Figure 5.9: Analytically inverted bi-functional potential vs the one from von

Weizsäcker theory; System LiF2+; Blue-Mark-Line: vNAD/inverted[ρA, ρtot](r) su-

perposing vNAD/vW[ρB, ρtot](r); Red mark-Line: ∆v = vNAD/inverted[ρA, ρtot](r) −
vNAD/vW[ρA, ρtot](r). Vertical Brown line: nuclei.
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Figure 5.10: Effect of orbital nodes on the inverted potential. Analytically inverted

bi-functional potential vs the one from von Weizsäcker theory; System: LiF2+; Blue-

Mark-Line: vNAD/inverted[ρB, ρtot](r) superposing vNAD/vW[ρB, ρtot](r); Red mark-

Line: ρ4(r) = 2|ϕ4(r)|2. Vertical Brown line: nuclei.

Figure 5.11: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[8.17]; System: LiF2+; Two-dimensional representation of vNAD/inverted
s [ρB, ρtot](r)

Ry. Black dots: nuclei.
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Figure 5.12: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[5.1]; System: LiF2+; Two-dimensional representation of vNAD/inverted
s [ρA, ρtot](r)

Ry. Black dots: nuclei.

The explanation of the results for LiF2+ is the same as the one given for the

system HeNe. Non of the deductions taken for HeNe is violated for LiF2+.

5.3 Conclusion and Outlook

The fact that the results shown in this chapter were accurately according

our physical expectation of the potential is very promising step for further

investigations. Previously I showed in chapter 3 that the analytically inverted

potential is exact if and only if it is inverted from the density related to one

or two spin compensated electrons. However, the results of this chapter shows

similar behaviour of the non-additive potential functional from the inversion of

a charge density corresponding to more than two electrons. This progression

must be absolutely evolved and spread to further investigations to know more

about the inverted potential. The fact that the inverted potential shows the

specific feature where in the space the orbitals involve the nodes is not a hazard.

This means that the potential carries important information of the solution of
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the system in those regions. Plausibly, it can tell about the spatial probability

of the different lobes of the higher orbitals. One of the suggestions is remaining

with LiF system and understanding the vNAD/inverted
s [ρA/B, ρtot](r) for different

number of the electrons, different interatimic distances, etc. Finding the gap

energy form the vNAD/inverted
s [ρA/B, ρtot](r) is necessary step to be done as well.



Chapter 6

Analytically inverted Non-additive

Potential bi-Functional from

All-electron calculations vs

Pseudopotential calculations

6.1 Introduction

To evaluate the existence of the cusp-like singularity on the vNAD, one is to

compare the potential obtained from all-electron calculation to one from the

pseudopotential calculation. I know that in pseusopotential approach the total

potential of a system is smooth at the vicinity of the nuclei and does not rep-

resent such singularity. If the feature of the vNAD happens to be comparable

from both Pseudopotential and all-electron calculations, one can deduce that

the exact analytically inverted vNAD must lack the cusp-like singularities even

within an all-electron calculation. In this work, for a simple diatomic heteronu-

clear model system of four electrons, I compared vNAD[ρB, ρtot](r) obtained from

pseudopotential and all-electron approaches. The same approach as was done

in the all-electron calculation is taken to localise two electrons in the vicinity of

one atom in a diatomic model system with four-electron with pseudopotential

method. The implementation was simpler within Octopus code[189], as the

Kohn-Sham analytical inversion was already implemented. In Octopus there

143
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exists the choice of ground-state electron density for input from different ap-

proximations. In the result section I show our finding for He-He system while

using the input density calculated by the LDA approximation. The closure

of the chapter includes some ideas for further application of the non-additive

kinetic potential bi-functional for pseudopotential-related calculations.

6.2 Theory

In all-electron calculations in real space are subject to the divergence of

the wavefunctions at −Z
r
|r=0 where r signifies the distance between electron

and nuclei. This issue is known as Cusp-condition in mechanical quantum sim-

ulations. It concerns the singularity problem of the potential which causes

non-differentiable wavefunction, for which the pseudopotential introduces a

smoother at this point in the space. Among various numerical tricks to deal

with this problem, pseudopotential method is the most accurate and frequently

used approach as it is the exact reformulation of the atomic calculation. For

the cases in which the quantities of interest are mainly related to the chemi-

cally active valence electrons, pseudopotential calculation is a great candidate.

It focuses on valence electrons by replacing the strong all-electron atomic po-

tential with a weakly interacting pseudopotential. This successfully reproduces

the effects of the core electrons on the valence states. Valence electrons occupy

the outermost shell or highest energy level of an atom while core electrons are

those occupying the innermost shell or lowest energy levels. The advantage of

such approximation is substantial for complex and large systems, especially for

heavier elements since it significantly reduces the number of eigenpairs to be

handled. The pseudopotential which corresponds to the sum of true potential

v of the whole system and repulsive potential related to Ec − Ev (core energy

and valence energy respectively) reads:

vps(E) = v +
∑
c

(E − Ev)|ψc⟩⟨ψc|. (6.1)

where ψc is core wavefunction. The valence and core wavefunctions are related

through Eq.[6.2] in which the valence states, ϕv are found from with time-

independent Schrödinger equation.
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|ϕv⟩ = |ψv⟩+
∑
c

|ψc⟩αcv (6.2)

where αcv = ⟨ψc|ϕv⟩.
Considering the computing time and effort involved, pseudopotential method

gives significantly accurate results. It is a good approximation of potential for

the cases in which the core electrons of neighbouring atoms interact weakly and

for a single atom pseudopotential is exact.

The schematic representation of the pseudopotential versus the all-electron

potential is shown in Fig.[6.1][156]. From the region of r smaller than the

critical distance rc from the nuclei, pseudopotential is significantly different

from the potential in the all-electron scheme consequently the wavefunctios in

that region are not the same for those different approaches. The real and the

pseudo wavefunction and potentials match outside a certain cutoff radius rc.

The solutions are the same for both methods. Since pseudopotential smooths

the curve on the cusp position, the solution varies significantly from the one of

all-electron calculation. The pseudopotential method is frequently used also to

deal with the cusp issue. This latter is briefly explained in the next section.

Figure 6.1: Schematic illustration of all-electron (solid lines) and pseudoelectron

(dashed lines) potentials and their corresponding wave functions. The radius at which

all-electron and pseudoelectron values match is designated rc[156].
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6.3 Numerical Calculations

For the calculations within the pseudopotential approach, Octopus code[5,

4, 138] has been used and developed. Octopus was initially created to solve

the time-dependent DFT equations. It uses the Kohn-Sham formulation of

DFT and couples a set of single-particle equations to yield many-body ground-

state density. For “xc" functional of Kohn-Sham equations, Octopus contains a

rich library of approximations that include local, semilocal (implemented as a

separate component, known as Libxc library [139]) and even orbital-dependent

functionals notably, Optimal Effective Potential (OEP) and hybrid approaches.

All data represented within a real-Space grid (Fig.[6.2]), Octopus sums the

quantities over the grid for integration and approximates differential operators

with high-order finite-difference methods [27].

It is possible to model both finite and periodic systems as the real-space grid

is not limited by any particular form of boundary conditions. Octopus has the

computational cost advantage with parallel calculation. It is possible to provide

the data with different formats for post-analysing the data. The problems are

solved in 3D and the possibility of theoretical modelling up to 5D is available

within the code. The results could be extracted in 1D, 2D, and 3D. In Fig.[6.2]

a 2D (y = 0) grids is shown for two atoms sited at [−2, 0, 0], [2, 0, 0]. For

the purpose of this work the analytical inversion, was implemented in octopus

initially for the purpose of “Exact Kohn-Sham potential of correlated finite

systems" [82] is used for the sake of Non-Additive Potential Functional.
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Figure 6.2: Octopus visualization of the real space grid. The blue dots represent

position atom centres, with red dots denoting the grid of the coordinate system.

Octopus employs the use of a real-space Cartesian grid.

6.4 Results and Discussion

The vNAD[ρB, ρtot] obtained from the all-electron calculation turned out to

have pronounced singularity at the other nuclei (He at the right side) compared

to the one from the pseudopotential calculation. Such singularity has physical

interpretation and doesn’t affect our expectation of the non-additive potential

bi-functional. The fact that this singularity does not have a cusp shape is

aligned with our understanding in chapter 3. Actually if the nature of the

pseudopotential approach was not smoothing the potential around the nuclei, I

would obtain similar potential from both calculations. Also the pit form of the

vnad/pseudopotential[ρB, ρtot] at the position of the left atom comes from the fact

that part of the localised density is trapped in core-electrons in pseudopotential

approach. So the potential shows the capacity of the nuclei to absorb slightly

the electron at this position. This must not be the case for the potential

obtained withing the all-electron calculation and the Fig.[6.3] shows perfectly

0 Ry around the He at the left side.
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Figure 6.3: For He-He placed at -2 and +2 Bohr, vNAD[ρB, ρtot] was calculated within

pseudopotential approach (grey doted line) and all-electron calculation (orange dotted

line).

6.5 Conclusion and Outlook

It is very important to verify such systems in both all-electron and pseu-

dopotential approaches as the physical interpretations of them might change

based on the choice of the calculations. For example, studying vNAD a sys-

tem such as LiLi+ in all-electron calculation, while two electrons are localised

around one atom will yield the energy required for the valence electron of the

other atom to wander from one atom to the others. In the end the obtained

energy from vNAD won’t give any exact information for either of the atoms

separately. The vNAD for the same system studied in pseudopotential instead

will result in exact information about the valence electron in the system as the

electron related to 2s orbital will be a one-electron system which can be solved

exactly within the analytical approach of vNAD.

One of the further and interesting research is to study the behaviour of vNAD

within the pseudopotential calculation for H-Rb system as this system contains

the atom with particular pseudopotential. For example in the pseudopotential

approach, the atom H or He contains no core electrons but only the valence

electrons. Now that I have a clear understanding of the exact analytical inver-

sion of vNAD I can use it to evaluate the gap energy of the systems calculated

within the pseudopotential theory[169] and FDET. The best models could be

the system that contains one or two valance electrons.



Chapter 7

Analytically inverted Non-additive

Potential bi-Functional from the

Ground-State Density calculated

by different Theories

7.1 Introduction

The non-additive potential bi-functional is entirely an orbital-free approach.

Its only input is a ground-state charge density. It is important to know how sen-

sitive the vNAD/inverted[ρB, ρtot](r) is to the input density. In all chapters of this

work, I showed the potential obtained from ρin calculated from LDA. Here I re-

evaluate some properties of the potential obtained from different inputs. In this

chapter I compare the calculations from the input of the local approximation

with the potential obtained from PBE[165] (in GGA family of the DFT frame-

work) and also with the vNAD/inverted[ρB, ρtot](r) obtained by using the ground-

state density calculated by the orbital-dependent theory OEP[180, 187, 71]

approximated locally by KLI[98]. In practice I used the EXX[65] functional for

the OEP approach.

From the properties of the vNAD/inverted[ρB, ρtot](r), I mainly compare the

height, the position, and width of the step structure at the overlapped-density

region between two sub-densities. I also evaluate the level of the analytically in-
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verted potential from one admissible density (vs[ρi](r) where i = 1, 2, A,B, etc)

around the nuclei.

The width of the step can be interpreted as the exact position in the space

where the step structure has to happen. If the feature of the localised density

varies from one input density to another, the position of the SS has to be

different. However, the width of the SS on the potential curve must not vary

significantly from different theories. The width varies only if in one theory the

potential is forced to be smooth in the region where the atomic orbitals are

overlapping. More the theory is exact more precisely the density at the overlap

region is calculated, consequently the width of the SS has to be smaller.

At the end, if the potentials calculated from different input densities happen

to be different the exactitude of the analytically inverted potential will be con-

cluded as more reliable. This is true because one of the attribute of a reliable

calculation is its uniqueness. That means that even slightly different inputs

have to provide different potentials.

The arguments above are tested for the heteronuclear and homonuclear

diatomic model systems of four electrons. The results are shown in next section,

graphically represented in 1D along the interatomic axis. All calculations are

done in the real-space all-electron diatomic system solver DARSEC. Some more

calculations and applications are suggested in section 7.3.

7.2 Results and Discussion

Within DARSEC I examined the vNAD/inverted[ρB, ρtot](r) for two diatomic

model systems, one heteronuclear and one mononuclear system. Both include

four electrons. I compared the potential for three different inputs. The results

for the heteronuclear system are provided by the calculation of the potential

from the ground-state density obtained from LDA and OEP-KLI (we shorten

the notation to KLI here) methods.

In addition, for the homonuclear model system, I also evaluated the poten-

tial using the ground-state density obtained from the PBE calculation.
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7.2.1 HeLi+

In Fig.[7.1], the ρLDA
tot (r) appears to superpose entirely the ρKLI

tot (r). As the

KLI and the LDA theories has totally different approaches to solve the system,

it is obvious that their GS densities cannot be the same.

Figure 7.1: 1D representation of the ground-state density ραtot(r) where α =LDA,

KLI; System: [HeLi]+ with 7 Bohr of interatomic distance; Blue Mark-line: GS from

LDA; Orange Mark-line: GS from KLI; Vertical dashed-lines: position of the nuclei.

To have the better vision of the difference between the results of these two

theories, the ∆ρ(r) = ρLDA
1 (r) − ρKLI

1 (r) is shown in Fig.[7.1] is shown, where

ρ
LDA/KLI
1 (r) = 2|ϕLDA/KLI

1 (r)|2.
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Figure 7.2: Difference between orbital density calculated with LDA vs the one from

OEP-KLI; System: [HeLi]+;where He locates at (0, 0,−3.5) Bohr and Li locates at

(0, 0, 3.5) Bohr; Blue mark-line: ∆ρ(r) = ρLDA
1 (r) − ρKLI

1 (r); Vertical dashed lines:

nuclei.

Clearly I see that ∆ρ(r) ̸= 0. That means the ρLDA
B (r) must be also different

than ρKLI
B (r). I recall again that ρB(r) used in the calculation of this chapter is

obtained from Eq.[3.23].

Based on analytical inversion from one-orbital formula, I want to see how

∆v(r) = vKS(r)−vs[ρ1](r) between LDA and KLI. In Fig.[7.3] I see that ∆v(r)

is smaller for KLI. That means, more exact is the input solution, better infor-

mation will be available about the analytically inverted potential functional.
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Figure 7.3: Difference between the vKS(r) and the vs[ρ1](r); System: [HeLi]+ where

He is ate the left and Li is sited at the right on the z-axis; Blue mark-line: the results

calculated from LDA; Red mark-line: the results calculated from OEP-KLI; Vertical

dashed lines: nuclei.

Figure 7.4: ∆ρB(r) = ρLDA
B (r) − ρKLI

B (r) for 1.5 ≤
∫
ρB(r)dr ≤ 2 ;System: [HeLi]+

where He locates at (0, 0,−3.5) Bohr and Li locates at (0, 0, 3.5) Bohr; Vertical dashed

lines: nuclei.

To see the variation of the ρB(r) obtained from different theories and also

for different electron localisations, I calculated ∆ρB(r) = ρLDA
B (r)− ρKLI

B (r) for
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1.5 ≤
∫
ρB(r)dr ≤ 2. As I see in Fig.[7.4], the height if the ∆ρB(r) doesn’t

change for different ρB(r) but closer the ρB(r) is to the molecular orbital more

the two theories behave differently.

This consequence must reflect in the analytical exact inversion of the vs[ρB](r).

As I explained in Chapter.4, the height of the vs[ρi](r) for i = A,B is related

to the gap energy. I also know that LDA underestimate the gap compared to

OEP-KLI. This latter requires that the level of the vLDA
s [ρB](r) be slightly in

lower-level than the vKLI
s [ρB](r) in the space (Fig.[7.5]-Fig.[7.9]). In contract,

the level (height of the step when it is in the overlap region) of the vLDA
s [ρA](r)

be slightly higher than the vKLI
s [ρA](r) in the space (see Fig.[7.13]).

Figure 7.5: Analytical inversion of the potential from localised charge density around

the atom He. System: [HeLi]+; Orange mark-line: vKLI
s [ρB](r); Blue mark-line:

vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 2 ;System: [HeLi]+ where He locates at (0, 0,−3.5)

Bohr and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.
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Figure 7.6: Potential from partial localisation of the charge density around the atom

He. System: [HeLi]+; Orange mark-line: vKLI
s [ρB](r); Blue mark-line: vKLI

s [ρB](r);

Both for
∫
ρB(r)dr = 1.5 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr and

Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

Figure 7.7: Potential from partial localisation of the charge density around the atom

He. System: [HeLi]+; Orange mark-line: vKLI
s [ρB](r); Blue mark-line: vKLI

s [ρB](r);

Both for
∫
ρB(r)dr = 1.75 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr

and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.
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Figure 7.8: Potential from partial localisation of the charge density around the atom

He. System: [HeLi]+; Orange mark-line: vKLI
s [ρB](r); Blue mark-line: vKLI

s [ρB](r);

Both for
∫
ρB(r)dr = 1.85 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr

and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

Figure 7.9: Potential from partial localisation of the charge density around the atom

He. System: [HeLi]+; Orange mark-line: vKLI
s [ρB](r); Blue mark-line: vKLI

s [ρB](r);

Both for
∫
ρB(r)dr = 1.95 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr

and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.
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Figure 7.10: Analytically inverted Potential bi-functional based on one-orbital formula

for the localisation of the charge density around the atom He. System: [HeLi]+; Or-

ange mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r); Both

for
∫
ρB(r)dr = 2 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr and Li

locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

Figure 7.11: Analytically inverted Potential bi-functional based on one-orbital formula

for the partial localisation of the charge density around the atom He. System: [HeLi]+;

Orange mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r);

Both for
∫
ρB(r)dr = 1.75 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr

and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.



158

Figure 7.12: Analytically inverted Potential bi-functional based on one-orbital formula

for the partial localisation of the charge density around the atom He. System: [HeLi]+;

Orange mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r);

Both for
∫
ρB(r)dr = 1.5 ;System: [HeLi]+ where He locates at (0, 0,−3.5) Bohr

and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

Knowing the system includes four electrons, while localising two electrons in

the space (ρB(r)) the reminder of the total charge density (ρA(r)) will also inte-

grate to 2. For the heteronuclear system such as HeLi+ that provides localised

orbitals standing at the vicinity of the nuclei, both ρB(r) and ρA(r) become

comparable to the molecular orbital densities. It is totally fare to compare

the analytically inverted potential bi-functionals from different ground-state

densities (input) for the inversion from the ρA(r).

For that purpose, I reported vs[ρA](r) for two theories for the case
∫
ρA(r)dr =

2 (Fig.[7.13]) and the related vNAD[ρA, ρtot](r) (Fig.[7.14]).
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Figure 7.13: Analytical inversion of the potential from localised charge density around

the atom He. System: [HeLi]+; Orange mark-line: vKLI
s [ρA](r); Blue mark-line:

vKLI
s [ρA](r); Both for ρA(r) = ρtot(r)− ρB(r) where

∫
ρB(r)dr = 2 ;System: [HeLi]+

where He locates at (0, 0,−3.5) Bohr and Li locates at (0, 0, 3.5) Bohr; Vertical dashed

lines: nuclei.

Figure 7.14: Analytically inverted Potential bi-functional based on one-orbital formula

for the localisation of the charge density around the atom He. System: [HeLi]+; Or-

ange mark-line: vNAD/KLI[ρA, ρtot](r); Blue mark-line: vNAD/LDA[ρA, ρtot](r); Both

for ρA(r) = ρtot(r) − ρB(r) where
∫
ρB(r)dr = 2 ;System: [HeLi]+ where He locates

at (0, 0,−3.5) Bohr and Li locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

As I see the potentials shown in Fig.[7.13] and Fig.[7.14] confirm our ar-

gument about the fact that LDA underestimate the gap energy compared to

OEP-KLI theory.
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7.2.2 He-He

In this part of the work I try to see if the difference between the vNAD/inverted[ρA, ρtot](r)

is less or more pronounced for the case of entirely symmetric diatomic system,

He-He as our choice. When it concern the mononuclear system, I expect to

see the vNAD/inverted[ρA, ρtot](r) shows larger difference between the different in-

put densities. This is because of the fact that the orbitals in such system are

not localised. That means the difference between two theory will be reflected in

whole space instead of appearing locally as it was the case for the heteronuclear

system (see Fig.[7.16]).

Figure 7.15: 1D representation of the ground-state density ραtot(r) where α =LDA,

KLI; System: He-He with 7 Bohr of interatomic distance; Blue Mark-line: GS from

LDA; Orange Mark-line: GS from KLI; Vertical dashed-lines: position of the nuclei.

We repeated the same approaches numerically as it was explained in pre-

vious subsection for He-He. The Fig.[7.15] shows the ground state density

calculated from LDA vs the one obtained by OEP-LKT.

The difference between ρ1r from both theory is plotted in Fig.[7.16].
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Figure 7.16: Difference between orbital density calculated with LDA vs the one from

OEP-KLI; System: He-He; where one He locates at (0, 0,−3.5) Bohr and another

one locates at (0, 0, 3.5) Bohr; Blue mark-line: ∆ρ(r) = ρLDA
1 (r) − ρKLI

1 (r); Vertical

dashed lines: nuclei.

Figure 7.17: ∆ρB(r) = ρLDA
B (r) − ρKLI

B (r) for 1.5 ≤
∫
ρB(r)dr ≤ 2; System: He-He

where one He locates at (0, 0,−3.5) Bohr and another He locates at (0, 0, 3.5) Bohr;

Vertical dashed lines: nuclei.
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Figure 7.18: Analytical inversion of the potential from localised charge density

around the atom He. System: He-He; Orange mark-line: vKLI
s [ρB](r); Blue mark-

line: vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 2; System: He-He where one He locates at

(0, 0,−3.5) Bohr Bohr and another one locates at (0, 0, 3.5) Bohr; Vertical dashed

lines: nuclei.

The difference between localised density ∆ρB(r) around the left atom of

both theory for various localisations are shown in Fig.[7.17] and the related

vs[ρB](r) are represented in figures [7.18] to [7.21].

Figure 7.19: Potential from partial localisation of the charge density around the

atom He at the left. System: He-He; Orange mark-line: vKLI
s [ρB](r); Blue mark-

line: vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 1.75 ;System: He-He where one He locates

at (0, 0,−3.5) Bohr and another one locates at (0, 0, 3.5) Bohr; Vertical dashed lines:

nuclei.
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Figure 7.20: Potential from partial localisation of the charge density around the atom

He at the left side of the z-axis. System: He-He; Orange mark-line: vKLI
s [ρB](r);

Blue mark-line: vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 1.85 ;System: He-He where one

He locates at (0, 0,−3.5) Bohr and another one locates at (0, 0, 3.5) Bohr; Vertical

dashed lines: nuclei.

Figure 7.21: Potential from partial localisation of the charge density around the

left atom He. System: He-He; Orange mark-line: vKLI
s [ρB](r); Blue mark-line:

vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 1.95 ;System: He-He where one He locates at

(0, 0,−3.5) Bohr and another one locates at (0, 0, 3.5) Bohr; Vertical dashed lines:

nuclei.
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Figure 7.22: Analytically inverted Potential bi-functional based on one-orbital formula

for the localisation of the charge density around the left atom; System: He-He; Orange

mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r); Both for∫
ρB(r)dr = 2 ;System: He-He where one He locates at (0, 0,−3.5) Bohr and another

He locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

In Fig.[7.22] I see that the vNAD/KLI[ρB, ρtot](r) shows very smooth behaviour

of the potential at the overlap region between two sub-densities compared to

vNAD/LDA[ρB, ρtot](r). This is very probably because the orbital dependency

approach involved in OEP-KLI calculate more precisely the molecular orbital

that locally integrates to a very small value.

To see if the vNAD/KLI[ρB, ρtot](r) curve provides also information about

the weakly overlapping partitioned densities, I zoomed in the curve in that

specific region. This latter is represented in Fig.[7.23]. It appears that the

vNAD/inverted[ρB, ρtot](r) from both theory contains the information about the

region where the partitioned densities overlap. Taking into account of our

understanding from the step structure, the width of the step happens to be

comparable in both cases, however, the energy level of the curves at the point

of changing sign (second spatial derivative of the potential as it was explained

in section.4.6.3 to calculate the gap energy) varies significantly between two

theories.

This is the source of obvious difference between the gap energy in OEP-KLI

methods vs LDA one.
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Figure 7.23: Zoomed in potentials showed in Fig.[7.22] at the overlap region of the

sub-densities.

From figures [7.24] to [7.26] I see that the feature of the vNAD/KLI[ρB, ρtot](r)

become more similar to the vNAD/KLI[ρB, ρtot](r) in whole space. We may un-

derstand from that observation that the theories differs more when it is the

exact solution of a system is sought rather than a decided solution is imposed.

Figure 7.24: Analytically inverted Potential bi-functional based on one-orbital formula

for the partial localisation of the charge density around the left atom ; System: He-

He; Orange mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r);

Both for
∫
ρB(r)dr = 1.75 ;Vertical dashed lines: nuclei.
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Figure 7.25: Analytically inverted Potential bi-functional based on one-orbital formula

for the partial localisation of the charge density around the left atom He; Orange

mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r); Both for∫
ρB(r)dr = 1.85 ; system: He-He with 7 Bohr of the distance between the atoms;

Vertical dashed lines: nuclei.

Figure 7.26: Analytically inverted Potential bi-functional based on one-orbital for-

mula for the partial localisation of the charge density around the left atom ; Orange

mark-line: vNAD/KLI[ρB, ρtot](r); Blue mark-line: vNAD/LDA[ρB, ρtot](r); Both for∫
ρB(r)dr = 1.95 ; system: He-He; Vertical dashed lines: nuclei.

Similarly to HeLi+, I calculated the vNAD/inverted[ρA, ρtot](r); for He-He from

both theories. I show the vs[ρA](r) in Fig.[7.27] and the corresponding vNAD/inverted[ρA, ρtot](r)s

in Fig.[7.28].
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Figure 7.27: Analytical inversion of the potential from localised charge density around

the left atom; Orange mark-line: vKLI
s [ρA](r); Blue mark-line: vKLI

s [ρA](r); Both for

ρA(r) = ρtot(r) − ρB(r) where
∫
ρB(r)dr = 2 ; System: He-He where one He locates

at (0, 0,−3.5) Bohr and another He locates at (0, 0, 3.5) Bohr; Vertical dashed lines:

nuclei.

Figure 7.28: Analytically inverted Potential bi-functional based on one-orbital for-

mula for the localisation of the charge density around the left atom; Orange

mark-line: vNAD/KLI[ρA, ρtot](r); Blue mark-line: vNAD/LDA[ρA, ρtot](r); Both for

ρA(r) = ρtot(r) − ρB(r) where
∫
ρB(r)dr = 2 ;System: He-He where one He locates

at (0, 0,−3.5) Bohr and another He locates at (0, 0, 3.5) Bohr; Vertical dashed lines:

nuclei.

Zooming in the vNAD/inverted[ρA, ρtot](r)s as it is ilustrated in Fig.[7.29] con-

firms our arguments about the vNAD/inverted[ρB, ρtot](r) previously.
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Figure 7.29: Zoomed in potentials showed in Fig.[7.28] at the overlap region of the

sub-densities.

Test

7.2.3 PBE input for the calcuation of the system He-HE

The PBE mainly varries from the LDA based on the fact that it is locally

dependent to the gradient of the density. That means the potential inverted

from density might vary slightly and locally between PBE and LDA. That

variety must appear mostly in from of the smoothness of the potential at the

position the density changes not continuously.

We compare in Fig.[7.30] the vs[ρB](r) between LDA, PBE and LKT calcula-

tions for the case
∫
V
ρB(r)dr = 2. Together, with the corresponding vNAD/inverted[ρB, ρtot](r)

shown in Fig.[7.32] with the help of the zoomed in graphs at the region of weakly

overlapping densities, I conclude that the difference between the results coming

from LDA and PBE is neglectable. However, the results related to the input

density provided by OEP-KLI required to be discussed.
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Figure 7.30: Analytical inversion of the potential from localised charge density around

the atom He at the left; Blue mark-line: vLDA
s [ρB](r); Orange mark-line: vPBE

s [ρB](r);

Green mark-line: vKLI
s [ρB](r); Both for

∫
ρB(r)dr = 2; System: He-He where one He

locates at (0, 0,−3.5) Bohr and another one locates at (0, 0, 3.5); Vertical dashed lines:

nuclei.

Figure 7.31: Zoomed in potentials of Fig.[7.30].
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Figure 7.32: Analytically inverted Potential bi-functional based on one-orbital for-

mula for the localisation of the charge density around the left atom; Blue mark-line:

vNAD/LDA[ρA, ρtot](r); Orange mark-line: vNAD/PBE [ρA, ρtot](r); Green mark-line:

vNAD/KLI[ρA, ρtot](r); all calculated for
∫
ρB(r)dr = 2; System: He-He where one He

locates at (0, 0,−3.5) Bohr and another He locates at (0, 0, 3.5) Bohr; Vertical dashed

lines: nuclei.

Both the vs[ρA](r) and the vNAD/inverted[ρA, ρtot](r) follows the same argu-

ments reported for the inversion of the potential from the ρB(r) (Fig.[7.34] to

Fig.[7.37]).

Figure 7.33: Zoomed in potentials of Fig.[7.32].
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Figure 7.34: Analytical inversion of the potential from localised charge density

around the left atom; Orange mark-line: vKLI
s [ρA](r);Blue mark-line: vLDA

s [ρB](r);

Orange mark-line: vPBE
s [ρB](r); Green mark-line: vKLI

s [ρB](r); all calculated for

ρA(r) = ρtot(r) − ρB(r) where
∫
ρB(r)dr = 2; System: He-He where one He lo-

cates at (0, 0,−3.5) Bohr and another He locates at (0, 0, 3.5) Bohr; Vertical dashed

lines: nuclei.

Figure 7.35: Zoomed in potentials of Fig.[7.34].
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Figure 7.36: Analytically inverted Potential bi-functional from one-orbital formula;

Orange mark-line: vNAD/KLI[ρA, ρtot](r); Blue mark-line: vLDA
s [ρB](r); Orange mark-

line: vPBE
s [ρB](r); Green mark-line: vKLI

s [ρB](r); all calculated for ρA(r) = ρtot(r) −
ρB(r) where

∫
ρB(r)dr = 2; System: He-He where one He locates at (0, 0,−3.5) Bohr

and another He locates at (0, 0, 3.5) Bohr; Vertical dashed lines: nuclei.

Figure 7.37: Zoomed in potentials of Fig.[7.36].

7.3 Conclusion and Outlook

The exact non-additive potential bi-functional behaves sensitively into the

change of the input ground state charge density. The attempts to this part of

the investigation of correct vNAD/inverted[ρA/B, ρtot](r) confirms one of the prop-

erties of an exact density functional potential, the “Uniqueness”. The one-to-one
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relation between a potential functional of density and a given density has to be

unique in order to have a reliable correct potential. The fact that the results

showed vNAD/PBE[ρA, ρtot](r) ̸= vNAD/LDA[ρA, ρtot](r) ̸= vNAD/KLI[ρA, ρtot](r)

for infinitesimally differentiating ρNAD/PBE
GS (r) from ρ

NAD/LDA
GS (r) and from ρ

NAD/KLI
GS (r)

is a strong confirmation toward the accuracy of the analytically inverted vNAD/inverted.

Above that conclusion, the difference between the vNAD/KLI[ρA, ρtot](r) and

the vNAD/LDA[ρA, ρtot](r) explains the origin of the difference between the gap

energy calculated in both theory(see table.[4.1] and table.[4.3] ).

Another important conclusion is about the shape, height and position of the

step. In all three theories those properties of the step structure were present and

acceptably accurate based on the theoretical expectations explained in chapter

4.

Now that I know enough about the feature of the correct vNAD/inverted[ρA/B, ρtot](r)

I need to find out the exact value of the potential. In order to provide the exact

potential bi-functional, I need to use an exact ground state density as the in-

put. This latter can be prepared whether experimentally or from more accurate

theories although they might be computationally more expensive.

For such small model systems, full CI can be a good candidate for a better

input for the potential. This can be a small but very fruitful project in close

future.



Chapter 8

Evaluation and Improvement of

Common Theories

8.1 Abstract

From the GGA family of DFT theories, I evaluated the accuracy of an

unconventional, constraint-based and unconventional orbital free kinetic energy

density functional approximation, proposed by Luo et al. from the functional

derivative of the latter and compare it with exact analytically inverted potential.

8.2 Introduction

The advantage of the explicit KEF compared to the implicit KEF is that

they correspond to OF-DFT and computationally are less expensive as it con-

cerns linear computational scaling (approximately). OF-DFT in its place is

a promising approach in large-scale molecular calculations. When it is the

question of isolated or balk systems, a practical KEDF become challenging in

development.

Three generations have been developed in the construction of KEDFs. 1)

the local approach started by TF functional[192, 50], that is exact for when

the density is exact in any region of the space and for homogeneous gas; 2)

the semi-local approaches match the terms based on electron density gradient

to the TF functionals like vW functional[200]. 3) the non-local approaches

use two-point functionals with the information of the density for two positions
174
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and are performed by the relationship between the KE and density response

[25, 76, 85].

The functionals of GGA category depend on the local density and the

local density gradient. The GGA functionals expanded to so-called meta-

GGA functionals by taking into account of the local gradient expansion to

second derivative or higher-order dependencies of the density. For longtime,

semi-local approximations were known to be not accurate enough for OF-DFT

calculations[224]. Recently, those functionals improved significantly to calcu-

late the ground-state properties of semiconductors and balk metals [34, 41, 196,

205, 206, 167, 124, 181, 26, 223]. Among those attempts, the one from Luo et

al., known as LKT approximation provided highly accurate results. It is im-

portant to mention that LKT is a meta-GGA approximation that is known also

as a reduced-cost version of SCAN[186] semi-local density functional.

Considering the advantages of semi-local OF-DFT approximations and their

wide application, some deserve to be improved locally by modifying the xc

potential with the help of exact non-additive potential bi-functional. Even if

the idea sounds ambitious, at least comparing the functional derivative of the

semi-local OF-DFT KE with the exact analytically inverted potential will help

understand where and at what point those approximations doom to fail.

In the next section, a brief explanation of semi-local functionals is given.

The section is included an introduction to LKT functional and will be followed

by the recipe of the functional derivative applied to KEDF of LKT TLKT
s to

calculate the inverted kinetic potential functional vLKT
s .

The numerical calculations are explained in section.8.4 and the results of

the calculations for some diatomic model systems are presented graphically in

section.8.5.

In the discussion section, some potential ideas for future works are sug-

gested.
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8.3 Theory

The semi-local KE functionals in their general form are made by a sum over

the von Weizsäcker KE functional and a TF-KE form functional:

T semi-local
s [ρ](r) = T vW

s [ρ](r) + TΘ
s [ρ](r) (8.1)

where TΘ
s [ρ](r) is the Pauli KE functional [128, 92] and is defined in form of:

TΘ
s [ρ](r) =

∫
τTF(r)F θ

s (s, q)dr (8.2)

where τTF = 3
10
(3π2)2/3ρ5/3(r), and:

s =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
(8.3)

s is the inhomogeneity wave vector, and

q =
∇2ρ(r)

4(3π2)2/3ρ5/3(r)
(8.4)

In this formulation of the semi-local KE functionals the vW-KE functional

can be written as:

T vW
s [ρ](r) =

∫
τTF(r)

5

3
s2dr (8.5)

The exact constraint condition [128] requires that F θ
s (s, q) ≥ 0.

The GGA approximations are recognised by their definition of the T θ
s [ρ](r).

It might be essential to understand the reasons behind the development of the

various approximations to T θ
s [ρ](r). A short historical review is provided in

section.8.3.1.

8.3.1 Toward approximations of the T θ
s [ρ](r)

The majority of the approximations started by considering slowly varying

electron density. The corresponding KE functionals could be represented by a

gradient expansion[111, 88] as following:

T θ
s [ρ](r) =

∫ {
k0 + k2 + k4 + ...

}
dr (8.6)
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where

k0 =
π

4
33

5
3

10
ρ

5
3 (r) = CTFρ

5
3 (r),

k2 =
1

72

|∇ρ(r)|2

ρ(r)
,

k4 =
(3π2)
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3

540
ρ
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3

{(
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ρ(r)
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8

∇2ρ(r)
ρ(r)

[
|∇ρ(r)|
ρ(r)

]2
+
1

3

[
|∇ρ(r)|
ρ(r)

]4}
,

etc.

(8.7)

Those series are asymptotic expansions in which each term depends on local

values of the scale-density-gradients (we mean s). Clearly, I find out that

k0 = TTF
s [ρ](r). If the system is one of the uniform electronic density, this latter

yields an accurate value of the KE. However it is not a correct assumption

for molecular systems. The k2 = T vW
s [ρ](r). In some approximations k2 is

the dominant term in the series. T vW
s [ρ](r) yields to very accurate KE and

provides the correct asymptotic behaviour far from the vicinity of the nuclei.

As it is already mentioned, T vW
s [ρ](r) is exact of the cases of the single orbital

systems. The disadvantage of the T vW
s [ρ](r) is that it does not satisfy[10] the in-

homogeneity condition (see section.8.7 for more information). The k4 yields the

divergent functional derivative of Ts[ρ](r) and the terms of the higher orders

are divergent for both molecules and atoms[145]. The main challenge of the

gradient expansion-based strategy towards the approximations is they are not

adapted to the approaches based on the Euler–Lagrange equations. To that end,

other strategies were proposed. One was developed by Ou-Yang et al.[154] to

modify the series in Eq.[8.7]. They replaced the ki terms with analytical terms

functional of [ρ,∇ρ] while taking into account the scaling properties. They

came out with two approximations knowm as TOL1
s [ρ](r) and TOL2

s [ρ](r)[220].

There exist approximations in family of TFλvW functionals are defined by

Pauli enhancement factor. Their F θ
s (s) functions have the following form:

F TFλvW
s (s) =

5

3
(λvW − 1) + 1 (8.8)

where λ is a parameter[34].
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Another family of these approximations is Pauli-Gaussian KE functionals

(PGS-KE) in which the F θ
s (s) is related to the scale-density-gradients exponen-

tially:

F PGµ
s (s) = exp

{
−µs2

}
(8.9)

where λ is a parameter[111, 34].

The PGS functionals upgraded to so-called PGSLβ family of approximations

[34] in which a Laplacian-level correction was added to the F PGS
s (s).

F PGSLβ
s (s) = F PGS

s (s) + βq2 (8.10)

where β is a parameter and q is given in Eq.[8.4].

Finally The PGSL family of approximations was developed by a comple-

mentary strategy, known as PGSLr functionals. In this new family, the F θ
s (s)

is expressed in Taylor expansion of higher orders of both s and q[88, 20, 225, 33].

Some other researchers replaced the local s-dependency of the KE by several

analytical values to smooth the KE functionals [42, 170].

Analytical form of the KE functional form the ex energy was another ap-

proach to improve the GGA approximations . This idea was suggested first by

Lee et al.[126] who suggested the new T approximate
s [ρ](r) in form of the Eq.[8.2].

From the approximations based on the last strategy I can name a few of the fre-

quently used ones such as TLLP
s [ρ](r)[126], T PW86

s [ρ](r)[158],T PW91
s [ρ](r)[160],

T T92
s [ρ](r)[191], and TLKT

s [ρ](r)[132]. The latest is known as the most success-

ful approximation of this family. The following sub-section explains how the

analytical form of the vLKT [ρ](r) is obtained.

8.3.2 The vLKT [ρ](r) from the Functional Derivative of the

TLKT [ρ](r)

The functional derivation of T approximation[ρ](r) to calculated analytically

inverted vs[ρ](r) could appear to be complicated mathematically based on the

definition of Fs(s) included involved in KE functional. The requirement of

this inversion is its use in vNAD
s [ρB, ρtot](r) later on. We base on the work

of Wesolowski and Tran[216] in which they formulated a general form for

the KE bi-functional of a pair of densities and the functional derivative of
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the KE functional of a given density as in Eq.[8.11] and Eq.[8.12]. To cal-

culate vNAD/GGA
s [ρ1, ρ2](r) one can develop δTGGA

s [ρ1,ρ2](r)
δρi

for i = 1, 2 depend-

ing on the sub-density in question or calculating separately the terms of the

v
NAD/GGA
s [ρi, ρj](r) = vs[ρi](r) − vs[ρj](r) from δTGGA

s [ρi,j ](r)
δρi,j(r)

again for i, j being

the indices of the sub-densities.

TGGA
s [ρ1, ρ2](r) = CTF

∫
(ρ1(r) + ρ1(r))

5
3Fs(s)

(
|∇(ρ1(r) + ρ1(r))|
(ρ2(r) + ρ1(r))

4
3

dr
)

− CTF

∫ [
ρ

5
3
1 (r)Fs(s)

(
|∇(ρ1(r)|
(ρ1(r))

4
3

dr
)

+ ρ
5
3
2 (r)Fs(s)

(
|∇(ρ2(r)|
(ρ2(r))

4
3

]
dr

(8.11)

δTGGA
s [ρ](r)
δρ(r)

=
5CTF

3
ρ2/3(r)

[
Fs(s)−

|∇ρ(r)|
ρ

4
3 (r)

F ′
s(s) +

4

3

( |∇ρ(r)|
ρ

4
3 (r)

)2
F ′′
s (s)

]
+ CTFD

ρ
1
3 (r)

|∇ρ(r)|3
[F ′

s(s)−
|∇ρ(r)|
ρ

4
3 (r)

F ′′
s (s)]

− CTF
F ′
s(s)ρ

1
3 (r)

|∇ρ(r)|
∇2ρ(r)

(8.12)

where D =
∑3

i=1

∑3
j=1 ∂iρ(r)∂i∂jρ(r)∂jρ(r).

The FLKT
t (s) is:

FLKT
t (s) =

1

cosh (1.3s)
+

5

3
s2 (8.13)

where:

s =
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

(8.14)

Eq.[8.12] can also be written in simpler way in form of Eq.[8.15].

δT [ρ](r)
δρ(r)

=
CTF

3

{
5ρ5/3(r)Fs(s)

− |∇ρ(r)|
2

ρ2(r)
(F ′(s)− 4sF ′′

s (s))

− 6
∇2ρ(r)
ρ(r)

(
F ′(s)− 2sF ′′(s)

)}
(8.15)

where CTF = 35/3π4/3

10
. In the appendix.E the step-by-step calculation of the

vLKT
s [ρ](r) from TLKT

s [ρ](r) is given. For a diatomic model system, I calculated
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non-additive kinetic bi-functional for two different pairs of densities as following:

vNAD/LKT
s [ρB, ρ1](r) = vs[ρB](r)− vs[ρ1](r) (8.16)

where ρ1(r) = 2|ϕ1(r)|2 for ϕ1(r) being the solution of the system with the

lowest energy and ρB(r) is defined in Eq.[3.22] with the help of Eq.[3.21].

vNAD/LKT
s [ρB, ρtot](r) = vs[ρB](r)− vLDA

KS (r) (8.17)

In the next section I briefly explain the numerical approach to those calcu-

lations.

8.4 Numerical Calculation

The calculations are obtained on accurate numerical grids using the all-

electron program package DARSEC [135]. Consequently, I are restricted to

computations of molecules with two atomic centres with spherical symmetry.

In DARSEC, the Kohn-Sham equations are solved self-consistently using the

high-order finite difference approach [52, 11]. In this work, the stencil was

set to 12 for the finite difference. A real-space grid based on prolate-spherical

coordinates (see Eq.[1.20] and Eq.[1.19]) is used to describe a system with

two atomic centres. The grid is very dense near two centres and increasingly

sparse farther from the centres. Due to the cylindrical symmetry of diatomic

molecules, the problem is reduced to a two–dimensional one. In the calculations

for this work, the systems are defined within 15 Bohr of radius and number of

115 × 121 grid points. The ρtot(r) is the ground-state density of the systems

performed with the LDA [24, 162].

The calculations are down for two different sub-densities: 1) for when∫
ρB(r)dr = 2.0 and one for the case in which the charge density is not lo-

calised into an integer value at the vicinity of the nuclei,
∫
ρB(r)dr = 1.5. For

partitioning the ground state density numerically, I use a smooth distribution

function 0 ≤ F (z) ≤ 2 that has no cusps and respects the smoothness of the

function explained in Section[3.3.2]. The choice for such a function used for

the reported result is Fermi-Dirac distribution function that changes smoothly

from value one to zero (Eq.[3.21]). This latter was realised within binary-search

algorithm to localised the density around one nucleus.
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8.5 Results and Discussion

The non-additive kinetic potential bi-functional from LKT theory is shown

calculated from Eq.[8.17] and compared to the vNAD/LKT obtained from Eq.[8.16].

The reason to compare these two potentials comes from the fact that from ex-

act analytically inverted potential the second term of both equations must be

equal. I previously showed that it comes true for analytically inverted poten-

tial in section. 3.3.1 of Chapter 3. In Fig.[8.1] the vNAD/LKTs are compared.

It shows them incomparable. To understand such a huge difference between

bi-functional potentials, I compare first each inverted potential vs[ρi](r) where

i = 1, B (Fig.[8.3]) and then I show how vLKT
s [ρ1](r) varies from the exact

inverted potential vEXACT
s [ρ1](r) calculated in Eq.[3.5] (Fig.[8.4]) .

Figure 8.1: System: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is lo-

cated at (0, 0, 3) Bohr (at right). Orange Line: vNAD/LKT from Eq.[8.16]; Blue Line:

vNAD/LKT from Eq.[8.17]; Vertical dashed lines: The location of the nuclei in space.
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Figure 8.2: System: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is lo-

cated at (0, 0, 3) Bohr (at right). Orange Line: vNAD/LKT from Eq.[8.16]; Blue Line:

vNAD/EXACT from Eq.[3.19]; Vertical dashed lines: The location of the nuclei in

space.

In Fig.[8.3] I see both vLKT
s [ρ1](r) and vLKT

s [ρB](r) vary very smoothly in

whole space and figure a cusp-like discontinuity at the vicinity of the nuclei. I

already showed (see section 3.3) that the exact analytically inverted potential

from a charge density that corresponds to the solution of the system (ρi(r) =

2|ϕi(r)|2; for i = 1, 2, ...) must behave exactly as vKS(r). When the localisation

of the electron in a diatomic system of four electron respects accurately the

equation
∫
ρB(r)dr = 2, consequently ρB(r) corresponds to one of the solutions

of the system. Expectantly, the corresponding inverted potential has to be

comparable with vKS(r).

When the analytical inversion of the ρB(r) and the ρ1(r) is done from the

LKT theory, all small changes in the potential are forced to be suppressed

to provide a smooth solution of the system for when it’s plugged into the KS

equation.
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Figure 8.3: System: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is located

at (0, 0, 3) Bohr (at right). Orange Line: vLKT
s [ρ1](r); Blue Line: vLKT

s [ρB](r); Ver-

tical dashed lines: The location of the nuclei in space.

To clarify better where the theory fails to provide the exact potential, I

compared the inverted potential from the solution-charge-density in LKT and

Exact inversion and compared them in Fig.[8.4].

The failure of LKT in the calculation of the vLKT
s [ρ1](r) from the functional

derivative of the TLKT
s [ρ1](r) is more clear when I look at it’s difference with

the vKS(r). Fig.[8.5] the ∆vLKT
s [ρ(r) = vLKT

s [ρ1](r) − vLDA
KS (r) is plotted and

compared with ∆vLKT
s [ρ(r) = vEXACT

s [ρ1](r) − vLDA
KS (r). In exact theory the

∆vLKT
s [ρ(r) = 0 (taking into account of the actual machine precision which may

bring some noises in the curve). In LKT theory the vLKT
s [ρ1](r) cannot read

the total exact potential at all. Such a huge difference between vLKT
s [ρ1](r) and

vKS(r) predict how the uniqueness condition of one-to-one mapping between

the potential and ground-state density is violated.
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Figure 8.4: System: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is located

at (0, 0, 3) Bohr (at right). Orange Line: vLKT
s [ρ1](r); Blue Line: vEXACT

s [ρ1](r) from

Eq.[3.5]; Vertical dashed lines: The location of the nuclei in space.

Figure 8.5: System: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is located

at (0, 0, 3) Bohr (at right). Orange Line: ∆vLKT
s [ρ(r) = vLKT

s [ρ1](r) − vLDA
KS (r);

Blue Line: ∆vEXCAT
s [ρ](r) = vEXACT

s [ρ1](r) − vLDA
KS (r) where the vEXACT

s [ρ1](r) is

calculated in Eq.[3.5]; Vertical dashed lines: The location of the nuclei in space
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Figure 8.6: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[8.17]; System: LiHe+, Two-dimensional representation of v
NAD/LKT
s [ρB, ρtot](r)

Ry. Black dots: nuclei.

To understand how the non-additive kinetic potential bi-functional behave

in space under, the LKT theory, I showed in Fig.[8.6] and Fig.[8.7] the 2D-

representation of the v
NAD/LKT
s [ρB, ρtot](r) and v

NAD/LKT
s [ρB, ρ1](r) consecu-

tively.
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Figure 8.7: 2D representation of the non-additive kinetic potential bi-functional from

Eq.[8.16]; System: LiHe+, Two-dimensional representation of v
NAD/LKT
s [ρB, ρ1](r)

Ry. Black dots: nuclei.
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8.5.1 The vNAD/LKT for Non-localised Charge Density

Some theories may not provide enough information of the overlap region

of two neighbouring sub-densities if this latter is not varying enough from the

integer charge density of the whole system. To see how LKT analytically in-

verted potential behaves in such region, for the same system I localised par-

tially the charge density around He and calculated vNAD/LKT[ρB, ρ1](r) and

vNAD/LKT[ρB, ρtot](r) for
∫
ρB(r)dr = 1.75 where ρB(r) being density localised

around the He atom at the left-side of the system.

Figure 8.8: Non-additive kinetic potential bi-functionals for the non-integer charge

density localisation of
∫
ρB(r)dr = 1.75; System: HeLi+, He is located at (0, 0,−3)

Bohr (at left) and Li is located at (0, 0, 3) Bohr (at right). Orange Line: vNAD/LKT

from Eq.[8.16]; Blue Line: vNAD/LKT from Eq.[8.17]; Vertical dashed lines: The loca-

tion of the nuclei in space.

One more time these two potentials appear incomparable as it is shown in

Fig.[8.8]. Similarly, both inverted potentials vLKT
s [ρ1](r) and vLKT

s [ρB](r) have

totally different feature from vKS(r) as I see in Fig.[8.9].
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Figure 8.9: Analytically inverted potential functionals for the non-integer charge den-

sity localisation of
∫
ρB(r)dr = 1.75 and from orbital density ρ1(r) = 2|ϕ1(r)|2; Sys-

tem: HeLi+, He is located at (0, 0,−3) Bohr (at left) and Li is located at (0, 0, 3)

Bohr (at right). Orange Line: vLKT
s [ρ1](r); Blue Line: vLKT

s [ρB](r); Vertical dashed

lines: The location of the nuclei in space.

Also, the ∆vs are:
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Figure 8.10: 2D representation of the Non-additive kinetic potential bi-functionals

for the non-integer charge density localisation of
∫
ρB(r)dr = 1.75 from Eq.[8.16];

System: LiHe+, Two-dimensional representation of v
NAD/LKT
s [ρB, ρ1](r) Ry. Black

dots: nuclei.

Instead, from the 2D representation of vNAD/LKT
s [ρB, ρ1](r) for non-localised

charge density compared to the one from localised density (Fig.[8.7]) I recog-

nised that the negative value of the potential (means the potential being at-

tractive Colombian potential) is shifted to the left for the case of non-localised

charge density. This is the expected behaviour of the potential, although the

attraction of the potential at the overlap region requires to be tested to see if it

can ensure the correct molecular ground state density. This latter is beyond our

main goal of this work. However, the 2D representation of vNAD/LKT
s [ρB, ρtot](r)

(Fig.[8.11]) appeared the same as the one for localised charge density around
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He nuclei(see Fig.[8.6]).

Figure 8.11: 2D representation of the Non-additive kinetic potential bi-functionals

for the non-integer charge density localisation of
∫
ρB(r)dr = 1.75 from Eq.[8.17];

System: LiHe+, Two-dimensional representation of vNAD/LKT
s [ρB, ρtot](r) Ry. Black

dots: nuclei.

As the second term in the calculation of the vNAD/LKT
s [ρB, ρi](r) for i = 1, tot

remains the same for both localised and non-localised charge density cases, I

may compare the first term of the equation for both cases to understand more

precisely about the accuracy of the theory.
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8.5.2 Localised vs non-Localised Charge Density

Figure 8.12: Difference between the analytically inverted potential in LKT theorem

for localised and non-localised charge density. The localised charge density satisfies∫
ρB(r)dr = 2, however, in non-localised case

∫
ρB(r)dr = 1.75; System: HeLi+, He

is located at (0, 0,−3) Bohr (at left) and Li is located at (0, 0, 3) Bohr (at right). Blue

Line: ∆vLKT
s [ρB](r) = vLKT

s [ρlocB ](r)− vLKT
s [ρnon−loc

B ](r); Vertical dashed lines: The

location of the nuclei in space.

We subtracted vLKT
s [ρnon−loc

B ](r) from vLKT
s [ρlocB ](r) and showed the result in

Fig.[8.12]. Except at the location of Li nuclei ((0, 0, 3)) that a single point comes

apart from the rest of the curve, the ∆vLKT
s [ρB](r) = 0 in whole space. That

single grid-point with the potential about 1.0× 10−6 is nothing than numerical

taking into account of its orders of magnitude compared to the one from vKS(r).

Some more systems could be chosen to test the accuracy of LKT potential

but at this level if fails at different stages.
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8.6 Conclusion and Outlook

The vLKT
s [ρi](r) for i = 1, Bloc, Bnon−loc so consequently vNAD/LKT

s [ρB, ρ1](r)

and vNAD/LKT
s [ρB, ρtot](r) failed the accuracy.

The beauty of the exact vNAD/EXACT
s [ρB, ρ1](r) is its potential to improve

the other theories by its local application to the region where two neighbouring

sub-densities overlap weakly. The failure of the LKT theory in direct analytical

inversion of the potential from a given density is no restraint to the overlap

region, it fails gravely at nuclei locations as well.

Although the LKT is known as the best approximation in GGA family in

providing smooth curve of the penitential yielding acceptable accurate ground

state density and computationally being one of the least costly theories, it

doesn’t have the potential to become close to an exact theory with the help

of exact analytical inversion method. So, such modification might not be cost

effective.

At the end, I might add that the huge difference of the orders of magnitude

between analytically inverted v
NAD/EXACT
s [ρB, ρ1](r) and v

NAD/LKT
s [ρB, ρ1](r)

(also from ρtot) seems suspicious. It requires more investigation in the numerical

implementation to find out the validity of such difference.
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8.7 Supplementary Information

Let’s understand the homogeneity relationship between two functionals. As-

suming a system of spin polarised wave functions. The KE is a bi-functional of

the spin polarised densities Ts[ρ↑, ρ↓](r). In the spin-polarized scenario of the

KS formulation of DFT, the total energy of the ground-state density is given

by:

E[ρ↑, ρ↓](r) = Ts[ρ↑, ρ↓](r) + J [ρ](r) + Exc[ρ↑, ρ↓](r) + vne[ρ](r) (8.18)

where Exc[ρ↑, ρ↓](r) is ex density functional, and

J [ρ](r) =
1

2

∫ ∫
ρ(ri)ρ(rj)
|ri − rj|

dr′idr
′
j (8.19)

and

vne[ρ](r) =
∫
ρ(r)v(r)dr′ (8.20)

which are electron-electron repulsion and nuclear-electron attraction potentials,

respectively. The Exc[ρ↑, ρ↓](r) contains a contribution of KE functional in

terms of the difference between the total KE and the KE of a non-interacting

system of electrons: T [ρ↑, ρ↓](r)− Ts[ρ↑, ρ↓](r).
The non-interacting KE bi-functional has to read the following Euler- La-

grange equation:

δE[ρ↑, ρ↓](r)
ρσ(r)

=
δTs[ρ↑, ρ↓](r)

ρσ(r)
+ veff,σ(r) = µσ (8.21)

where µσ is a Lagrange multiplier (chemical potential), σ ∈ [↑, ↓], and veff,σ(r)

is the Kohn-Sham effective single-particle potential:

veff,σ(r) =
δ

ρσ(r)
{
E[ρ↑, ρ↓](r)− Ts[ρ↑, ρ↓](r)

}
(8.22)

The related Euler-Lagrange equations that determine the ρiσ(r) are given

by:

−1

2

∇2ρ
1
2
iσ(r)

ρ
1
2
iσ(r)

+ veff,σ(r) = ϵiσ (8.23)

where the ϵiσ (eigenvalue) are the Lagrange multipliers considered to satisfy∫
ρiσ(r)dr′ = 1. Evaluating the functional derivative at the solution points one
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needs to read:

δTs
δρσ(r)

[ρ↑, ρ↓](r) = −
1

2

∇2ρ
1
2
iσ(r)

ρ
1
2
iσ(r)

+ (µσ − ϵiσ). (8.24)

Let’s define T∆[ρ↑, ρ↓](r) in terms of the vW-KE as following:

δT∆[ρ↑, ρ↓](r)
ρσ(r)

=
δ

δρσ(r)
{
Ts[ρ↑, ρ↓](r)− TvW [ρ↑, ρ↓](r)

}
. (8.25)

In the limit of r →∞ the following conditions must be respected:

lim
r→∞

δTs[ρ](r)
ρ(r)

= µ− ϵmax − IP, (8.26)

where IP is the ionisation potential, and

lim
r→∞

δT∆[ρ↑, ρ↓](r)
ρσ(r)

= µ− ϵmax,σ; (8.27)

where ϵmax,σ is the maximum of all the ϵϵσ.

8.7.1 Homogeneity relationships of T∆[ρ↑, ρ↓](r) and Ts[ρ↑, ρ↓](r)

First, I replace the explicit form of the TvW in Eq.[8.25]If the following

equations is satisfied:∑
σ

∫
ρσ(r)

δT∆[ρ↑, ρ↓](r)
ρσ(r)

d(r′)−
∑
σ

∫
ρσ(r)

δTs[ρ↑, ρ↓](r)
ρσ(r)

d(r′)

= T∆[ρ↑, ρ↓](r)− Ts[ρ↑, ρ↓](r)
(8.28)

then I conclude that T∆[ρ↑, ρ↓](r) and Ts[ρ↑, ρ↓](r) are retained to be homoge-

neous of degree one in ρ because of the existing term of
∑

σ

{∑Nσ

i ϵiσ−µσNσ

}
for Nσ =

∫
ρσ](r)d(r′)in functional derivative of the KE functionals.

We note that TvW [ρ↑, ρ↓](r) is homogeneous of degree one in ρ. To verify

the homogeneity relationship, one needs to replace the Ts[ρ↑, ρ↓](r) with T appx
s

and the explained approach needs to be taken.
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Conclusions and Further Work

No matter how big and complicated are the physical and chemical systems

in the real world, What makes a system exist is the chemical bonds between its

atoms. Good to know that no matter what is the nature of the bonds to form

chemical compounds, molecules, crystals, or metals, the bnnding phenomena

are nothing more than a friendly relationship between two crazy electrons.

Those electrons are part of only two atoms but not more.

So to me, if we want to find exactly what happens in the complicated sys-

tems, we need to understand what happens between two funny electrons of two

mysterious atoms before everything. That is why I’ve been looking at only two

atoms for years.

9.1 Recap

The main question was how two neighbouring charge densities interact and

what kind of kinetic energy can explain this interaction. I tried to find an answer

to this question from a potential defined as a functional derivative of such energy

as kinetic energy in terms of the charge density. An inverse process was of

figuring out the form of that kinetic energy was taken. Within this approach,

I tried to study the exact analytical form of the potential of an admissible

pair of known charge density and understand the feature and behaviour of

the potential together with scratching the physical information from it. To

provide the requirements for the potential being analytically exact, I studied

the model systems in this work as the first attempt. I studied the larger and

195
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more realistic systems for more advanced levels and tried to re-evaluate other

known and frequently used theories with my found potential.

9.2 accomplishments

I managed to provide important information about the feature of an exact

potential from the analytical inversion of a given density. I looked more into the

results to prepare the physical information carried by the potential. I proved

that the potential manifested the properties of the exactitude and explained

it in the Chapter Step Structure (Chapter 4). Within this chapter, I showed

how the gap energy could be extracted from the potential and showed the high

accuracy of the results compared to the other theories. Based on my theoretical

understanding, I showed numerically that for what class of the pair densities,

the analytically inverted potential bi-functional must not carry a cusp-shape

singularity. Through different mathematical and numerical attempts, I justi-

fied the results of this work as being free of numerical artifacts. The detailed

theoretical and numerical attempts were gathered in chapter 3 to be published.

From my work, those interested in the related research know that the an-

alytically inverted potential bi-functional is exact for specific classes of pair

densities. They also know that although the potential includes the singular-

ities at some points in the space, but has to be free of cusp-like singularities

at the nuclei when the input densities used to invert the potential are compa-

rable to the orbital densities of the system. The potential is proven to be a

reliable candidate to verify the accuracy of the orbital-free theories in the DFT

framework.

9.3 Concluded

To make easier the understanding of this hard and amazing work for the

readers I itemise the proven facts as following. This work shows:

• Finally the analytically inverted potential bi-functional vNAD was proved

numerically to be in agreement with theoretically exact potential for an

admissible pair of charge density
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• The analytically inverted potential functional from an orbital density is

equal to the Kohn-Sham potential

• The analytically inverted potential functional showed expected sensitivity

to the change of the input density. This latter is the minimal requirement

for a potential respecting the one-to-one relation with the density. With

that, I mean, two different densities must corresponds two different po-

tentials and consequently two different potentials have to solve the same

system with two different solutions.

• The analytically inverted non-additive potential bi-functional of a pair of

charge densities includes the step structure on its curve

• The position of the step structure on the non-additive potential bi-functional

is found to be comparable to the step appearing in vOEP-KLI
xc .

• The exact position of the step was found to be happening where the

overlap between two neighbouring charge densities is maximal

• The height of the step structure on the potential curves provide acceptable

gap energy

• vInv/Analyt[ρB, ρtot](r) provides an accurate Eg even while using the LDA

ground state density as input

• The analytically inverted non-additive potential bi-functional of a pair of

charge densities behaves well also for large system and its value is precisely

accurate for the region in the space the ground state density integrates

to a real number between 0 and 2

• For the large system including the orbitals above 1s, The analytically

inverted non-additive potential bi-functional carries information about

the nodes in the orbitals

• The analytically inverted non-additive potential bi-functional is proven to

be a good candidate for the betterment of frequently used and computa-

tionally affordable theories within the DFT framework. It was shown in

chapter 8 that some theories can be examined by the functional derivative
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of their kinetic energy functional compared to the analytically inverted

vNAD to see if they provide expected physical feature such the cusp on

the position of the nuclei, step structure, etc.

9.4 Outlook and the Applications of this Work

Some of the chapters deserve more investigation as they showed the potential

of providing more interesting physical information of the system. It is also

good to know for what purpose and how the analytically inverted non-additive

potential bi-functional can be applied in the other works. Below, I summarised

the possible further investigations of my work.

• It is essential to use the exact ground state density in the analytically

inverted potential functional calculation to verify the reliability of the

physical properties carried by the potential such as the gap energy.

• Although all attempts and results reported in this work are based on the

orbital-free approaches, but it was shown (Chapter 5) that the analyti-

cally inverted potential functional carries information about the spatial

properties of the orbitals. It is good to seek more to find the relation

between the potential and the molecular or atomic orbitals of the large

systems.

• It was shown that the theories in local approximations and semi-local

approximations don’t have the capacity of being improved with the help of

the analytically inverted potential functional. By not having the potential

I mean such an attempt could appear to be computationally very costly

but above that theoretically, it is not intriguing.

• However, the non-local KEFs in DFT could be improved with the help

of the analytically inverted non-additive potential bi-functional. It re-

quires to find some theoretical local modifications to those theories using

the inverted potential for weakly overlapping densities. It seems more

straightforward to do some numerical approaches but those will be less

exact and not universal at the end.
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• The non-additive kinetic functional was the key issue of FDET and PDFT.

Now that the exact form and properties of the analytically inverted non-

additive potential bi-functional are known, it’s time for insertion of it

into the theories of FDET and PDFT. It gives a good hint to better

approximation to Ts[ρ](r) in Eq.[3.1].

• Future studies could investigate the association between DFT and average

atom models (AAM)[43]. The AAM was first used to calculate the elec-

tronic structure of an atom in plasma. Currently, these models are mainly

used in studies of understanding the warm dense matter. Warm dense

matter points to the phase of the matter with high kinetic energy that

brings up the characteristics of plasmas, gases, liquids and solids. Pre-

viously KS-DFT has been widely used un WDM. The AAMs compared

to KS-DFT are computationally less expensive. It exists some works of

using DFT approach for the AAM [23].

9.5 Closure

This work is the result of five years of oscillating between excited states

and ground states, up and down, humiliation and pride and feeling helpless

and hopeful. Although the negative feelings were longer-lasting, they were

dominated by the value and the huge order of magnitudes of the good feel-

ings. Nothing is comparable to that amazing “AHA!" and “WOW!" moments

of finding and understanding a new fact. I finished this work happily with

satisfaction.



Appendix A

Smooth densities, cusps, and

non-singular potentials

This part is with significant contribution of Professor Tim Gould.

Densities of electronic systems are finite, meaning that at any point RN I

can make a series expansion in small rN = r − RN . The general formula for

expansion of ρ is,

ρ(r) =ρ0,N +BρrN +Bρ · rN

+ rNC
′
ρ · rN + rN ·Cρ · rN + . . . (A.1)

where B and C11 are vectors and C is a 3 × 3 matrix. This includes analytic

and non-analytic terms. We may rewrite this as,

ρ(r) =ρ0,Ne−2ZrN + ρsmooth(r) (A.2)

ρsmooth(r) =Bρ · rN + rNC
′
ρ · rN + rN ·C′′

ρ · rN + . . . (A.3)

where Z = −Bρ/[2ρ0,N ] and C′′
ρ = Cρ−2Z2I. Here, I focused on a single nucleus

– the smooth density must have a similar expansion near every nucleus.

We therefore obtain,

∇2ρ(r)
ρ(r)

=
−4Z
rN

+
2C ′

ρ

ρ0,N
· r̂N + const (A.4)

where r̂ indicates an unit vector. Clearly, the first term dominates, and the

second has a radial average of zero. This is how the cusp gives rise to singular-

ities.
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The non-singular part, vnon-sing, of the potential obeys,

lim
r→RN

rNvnon-sing(r) =0, ∀RN (A.5)

and contains similar terms to Eq. (A.3). It can also have a constant term, a

term BvrN , and even logarithmic singularities like Lv log(rN). Any non-singular

potential obeying Eq. (A.5) will not alter any of the conclusions of the main

text.



Appendix B

Singularities lead to cusps

Certain parts of this analytical work is due to Professor Tim Gould.

This appendix concerns the properties of the density and potential in the

vicinity of a singularity located at rN . I therefore define, rN = r − rN , as

our coordinate, and use properties of v and ρ to expand around, r = rN and

rN → 0.

The Kohn-Sham equations [eq. (3.2)] become,[−∇2
rN

2
− ZN

rN
+ v(0)

+ v(1) · rN

+ . . .
]
ϕi(rN) = ϵiϕi(rN) .

(B.1)

where I have used that vHxc is smooth and singularity-free to define v(0) =

vHxc(rN) +
∑

A ̸=A′
−ZA′

|rN−rA′ | and v(1) to be the next term in the expansion.

We make the similar expansion,

ϕ =ϕ(0) + ϕ(1)
r rN

+ {ϕ(1) · rN + rNrϕ(2)
r · rN + rN · ϕ(2) · rN}+ . . . .

Then,

− 1

2

∂2

∂r2N
[ϕ(0) + ϕ(1)

r rN ]−
1

rN

∂

∂rN
[ϕ(0) + ϕ(1)

r rN ]

− ZN

rN
[ϕ(0) + ϕ(1)

r rN + ϕ(1) · rN ]− {2ϕ(2)·rN
rN

+ Tr[ϕ(2)]}

+ v(0)ϕ(0) = ϵϕ(0),

to leading two orders. Here, I used ∇2{. . .} = 2{2ϕ(2) · r̂N + Tr[ϕ(2)]}.
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The leading order r−1
N term of eq. (B.2) is then, −ϕ(1)

r − ZNϕ
(0) = 0, which

gives, ϕ(1)
r = −ZNϕ

(0). Therefore,

ϕi →

ϕ(0)[1− ZNrN ] + . . . ϕi(rN = 0) ̸= 0,

ϕ
(1)
i · rN + . . . ϕi(rN = 0) = 0

(B.2)

and I finally obtain, [eq. (3.3)]

ρ(rN) ≈
∑
i

fi|ϕi(rN = 0)|2[1− ZNrN ]
2

:=ρ0,N [1− 2ZNrN ] +O(r2N) .

(B.3)

Note, since electronic ground states have a 1s orbital which has a value at the

nucleus, I always obtain ρ0,N > 0 in electronic systems.

Finally, considering all singularities and using 1− x ≈ e−x for small x then

yields, ∑
N

−ZN

|r− rN |
−→

∑
N

ρ0,Ne
−2ZNrN (B.4)

The case of interacting wavefunctions is more complicated, but nevertheless

leads to the same result. There, one must consider how, Ψ(rN + rN , r2, . . .),

behaves in the vicinity of a nucleus, by recognising that the kinetic energy and

potential are the only terms that matter.



Appendix C

Cusps lead to singularities

This part is with significant contribution of Professor Tim Gould.

For two or few electrons it is trivial to show that singularities lead to cusps.

The leading terms of our density may be described using, ρ := e−2ZNrN , where

rN = r − rN is the distance from the cusp at rN . The remaining terms begin

(by definition) at O(rN) and therefore contribute to the potential only at a

constant or higher terms.

The von Weizsäcker potential is,

vvW =
∂rrρ

4ρ
+
∂rρ

2rρ
− (∂rρ)

2

8ρ2
=
Z2

N

2
− ZN

r
(C.1)

which is clearly dominated by the −ZN

rN
singularity. This gives our proof for

two electrons. To go beyond two electrons, I will show that, vvW , has the same

singularities as the KS potential for more than two electrons.

To begin, rewrite, ρ =
∑

i fi|ϕi|2, [eq. (3.3)] using,√
fiϕi(r) := ζi(r)

√
ρ(r) , (C.2)

where,
∑

i≤h |ζi(r)|2 = 1. The KS orbital equations [eq. (3.2)] yield,

0 = 1√
ρ
[−∇2

2
+ vKS[ρ]− ϵi]ζi

√
ρ

=[−∇2

2
− g[ρ] · ∇+ ṽ[ρ]− δi]ζi(r) ,

(C.3)

for ζi. Here, ṽ := vKS[ρ]− vvW [ρ], g[ρ] := ∇√
ρ

√
ρ

= ∇ρ
2ρ

, and δi are constants.

Importantly, I recognise that |g| <∞ and is smooth in any nuclear density,

while ṽ is singular at nucleii, N ∈ Ñ , where vKS is singular but ρ has no cusp,

after making the assumption that vHxc has no cusps.
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We show, by contradiction, that no ζi can have cusps. Assume, ζi∈IN
=

ζi,0[1 − ZNrN ], has cusps only for some set of orbitals, IN , near nucleus, N .

Then,
∑

i |ζi|2 = (1− CN) + CN [1− ZNrN ], where CN =
∑

i∈IN
|ζi,0|2 +O(r2N)

and I used that the sum is one at rN = 0. But, unless CN = 0, this cannot be

constant due to the O(rN) cusp term. Therefore,
∑

i∈IN
|ζi,0|2, means that, ζi,0

for ∀i ∈ IN , and that no solution can have a cusp.

Next, I remember that any cusps in ṽ lead either to a solution that is

zero near a nucleus, or a solution that has a cusp. The former is forbidden

by normalisation while the latter is forbidden by the results in the previous

paragraph. Therefore, Ñ must be the empty set and ṽ has no cusps. It follows

that the KS potential, vKS has the same cusps as the von Weizsäcker potential,

vvW . This extends results to more than two electrons.

Finally, I obtain, ∑
N

ρ0,Ne
−2ZNrN −→

∑
N

−ZN

|r− rN | (C.4)



Appendix D

Inverted potential alternative to

von Weizsäcker potential

Here I need to use the expansion for ∇2
√
F (r):

∇2
√
F (r) =

2F (r)∂
2F (r)
∂r2 − (∂F (r)

∂r )2

4F
3
2 (r)

(D.1)

replacing F (r) by ρ(r) in Eq.[D.1] I have:

∇2
√
ρ(r) =

2ρ(r)∂
2ρ(r)
∂r2 − (∂ρ(r)

∂r )2

4ρ
3
2 (r)

(D.2)

Replacing ∂2ρ(r)
∂r2 by ∇2ρ(r) and ∂ρ(r)

∂r by ∇ρ(r) :

1

2
∇2

√
ρ(r) =

ρ(r)∇2ρ(r)
4ρ

3
2 (r)

− (∇ρ(r))2

8ρ
3
2 (r)

(D.3)

Finally I obtain:

vInvs [ρ(r)] = −1

2

∇2
√
ρ(r)√
ρ(r)

=
(∇ρ(r))2

8ρ
1
2 (r)ρ

3
2 (r)
− ρ(r)∇2ρ(r)

4ρ
1
2 (r)ρ

3
2 (r)

=
1

8

(
∇ρ(r)
ρ(r)

)2

− 1

4

∇2ρ(r)
ρ(r)

= vvWs [ρ(r)]

(D.4)
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GGA-LKT

Functional Derivative of GGA-LKT:

δT [ρ](r)
δρ(r)

=
CTF

3

{
5ρ5/3(r)F (s)

− |∇ρ(r)|
2

ρ2(r)
(F ′(s)− 4sF ′′(s))−

6
∇2ρ(r)
ρ(r)

(
F ′(s)− 2sF ′′(s)

)}
(E.1)

where CTF = 35/3π4/3

10
.

The FLKT
t (s) is:

FLKT
t (s) =

1

cosh (1.3s)
+

5

3
s2 (E.2)

where:

s =
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

(E.3)

Red term:

5ρ5/3(r)F (s) = 5ρ5/3(r)
1

cosh (1.3s)

+
25

3

|∇ρ(r)|2

ρ8/3(r)
.ρ5/3(r)

(
1

2(3π2)1/3

)2

=
5ρ5/3(r)

cosh (1.3s)
+

25

4(3π2)227

|∇ρ(r)|2

ρ(r)

(E.4)

For the green term of the Eq.[E.1], I go step by step to calculate F ′(s) and

F ′′(s):
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F ′(s) =
10s

3
− 1.3 tanh (1.3s) sech (1.3s)

=
10s

3
− 2(1.3) sinh (2× 1.3s) cosh 1.3s

(cosh (2× 1.3s) + 1)2

(E.5)

Taylor expansion of F ′(s) for s→ 0:

F ′(s) = (
10

3
− (1.3)2)s+

5(1.3)4s3

6
− 61(1.3)6s5

120
+O(s6) (E.6)

F ′′(s) = −(1.3)2 sech3 (1.3s) + (1.3)2 tanh2 (1.3s) sech (1.3s) +
10

3

= − 8(1.3)2 cosh3 (1.3s)

(cosh (2× 1.3s) + 1)3
+

2(1.3)2 sinh2 (2× 1.3s) cosh (1.3s)

(cosh (2× 1.3s) + 1)3
+

10

3

(E.7)

Taylor expansion of F ′′(s) for s→ 0:

F ′′(s) = (
10

3
− (1.3)2) +

5(1.3)4s2

2
− 61(1.3)6s4

24
+O(s5) (E.8)

The green term of Eq.[E.1] become:

|∇ρ(r)|2

ρ2(r)
(F ′(s)− 4sF ′′(s)) =

|∇ρ(r)|2

ρ2(r)
×

[
10

3

(
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

)
−

2.6× sinh (2.6 1
2(3π2)1/3

)
(

|∇ρ(r)|
ρ4/3(r)

)
cosh (1.3 1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r))

(cosh (2.6
(

1
2(3π2)1/3

|∇ρ(r)|
ρ4/3(r)

)
+ 1)2

]

− 4
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

[
8(1.3)2 cosh3 (1.3s)

(cosh (2× 1.3s) + 1)3
+

2(1.3)2 sinh2 (2× 1.3s) cosh (1.3s)

(cosh (2× 1.3s) + 1)3
+

10

3

]

(E.9)
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It remains to develop the blue term in Eq.[E.1]:

6
∇2ρ(r)
ρ(r)

(
F ′(s)− 2sF ′′(s)

)
=

6∇2ρ(r)
ρ(r)

×

[
10

3

(
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

)
−

2.6× sinh (2.6 1
2(3π2)1/3

)
(

|∇ρ(r)|
ρ4/3(r) cosh (1.3

1
2(3π2)1/3

|∇ρ(r)|
ρ4/3(r))

)
(cosh (2.6

(
1

2(3π2)1/3
|∇ρ(r)|
ρ4/3(r)

)
+ 1)2

]

− 2

[
8(1.3)2 cosh3 (1.3s)

(cosh (2× 1.3s) + 1)3
+

2(1.3)2 sinh2 (2× 1.3s) cosh (1.3s)

(cosh (2× 1.3s) + 1)3
+

10

3

]

(E.10)

All I need is insert Eq.[E.4], Eq.[E.9], and Eq.[E.10] into Eq.[E.1].
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