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INTRODUCTION
Exposure of the central nervous system (CNS) to multiple 
radiation types comes from a variety of sources, including 
environmental (background), occupational (nuclear 
workers), and from medical procedures (diagnostic and 
therapeutic). The most significant data regarding the 
radioresponse of the CNS have been derived from the 
clinical experience, where therapeutic treatments using 
cranial irradiation have been used to forestall primary 
and secondary CNS malignancies.1–5 Typical doses 
involve 60 Gy of photon- based (X- ray, gamma- ray) radi-
ation modalities delivered in multiple small fractions 
aimed at minimizing normal tissue damage while elic-
iting certain levels of tumor growth delay if not control.1 
More recently, hadron- based (charged particles gener-
ated in cyclotrons) therapies have been used to control 
head and neck and CNS tumors, and most often involve 
protons6,7 while outside the USA (largely in Germany 
and Japan), heavier ions (carbon) have been utilized.8,9 
Charged particles of specified energy and mass can be 

directed such that energy deposited can be localized 
to the tumor, where the density of ionizations (Bragg 
peak) can be superimposed over the tumor volume while 
minimizing damage to the collateral normal tissue bed.10 
Interestingly in space, a wider range of charged particles 
exist, that include protons and helium ions derived from 
the sun as well as minor contributions from heavier 
charged species ranging up to iron ions (atomic number 
Z ≤ 26) that define the isotropic field of Galactic Cosmic 
Rays (GCR).11 High atomic number (Z) and Energy 
(HZE) particles are charged nuclei in the GCR that 
possess an electrical charge greater than +2. The multiple 
fluences and energies of these HZE particles traveling 
at near relativistic speeds highlight the complexities of 
the radiation fields in space, and provide a launching 
point for our discussions highlighting the nuances of the 
CNS radiation response to the vastly disparate radiation 
exposure scenarios encountered terrestrially and in deep 
space.
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ABSTRACT

Not surprisingly, our knowledge of the impact of radiation on the brain has evolved considerably. Decades of work have 
struggled with identifying the critical cellular targets in the brain, the latency of functional change and understanding 
how irradiation alters the balance between excitatory and inhibitory circuits. Radiation- induced cell kill following clin-
ical fractionation paradigms pointed to both stromal and parenchymal targets but also defined an exquisite sensitivity 
of neurogenic populations of newly born cells in the brain. It became more and more apparent too, that acute (days) 
events transpiring after exposure were poorly prognostic of the late (months- years) waves of radiation injury believed 
to underlie neurocognitive deficits. Much of these gaps in knowledge persisted as NASA became interested in how 
exposure to much different radiation types, doses and dose rates that characterize the space radiation environment 
might impair central nervous system functionality, with possibly negative implications for deep space travel. Now 
emerging evidence from researchers engaged in clinical, translational and environmental radiation sciences have begun 
to fill these gaps and have uncovered some surprising similarities in the response of the brain to seemingly disparate 
exposure scenarios. This article highlights many of the commonalities between the vastly different irradiation para-
digms that distinguish clinical treatments from occupational exposures in deep space.
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WHAT HAPPENS TO YOUR BRAIN FOLLOWING 
CLINICAL RADIOTHERAPY OF BRAIN TUMORS
Clinicians have known for decades that brain tumor survivors 
(adult and pediatric) suffer from progressive and debilitating 
cognitive impairments resulting from their cranial radio-
therapy.3–5,12 These unintended normal tissue toxicities limit 
the dose that can be safely administered to the tumor bed, and 
severely compromise quality of life. For the treatment of glio-
blastoma multiforme (GBM), the most aggressive primary brain 
tumor, radiotherapy protocols are used in combination with 
temozolomide (TMZ). The use of TMZ as a concurrent and adju-
vant chemotherapeutic agent, has been shown to increase both 
overall and progression- free survival in patients.2 Furthermore, 
GBM patients typically receive whole- brain fractionated x- irra-
diation to a total dose of 60 Gy delivered in 2 Gy fractions over 
6 weeks.1,13 Such clinical radiation exposures have clearly been 
shown to induce cognitive impairments,4,14 and combined treat-
ment using radiotherapy and TMZ have similarly been shown to 
elicit significant adverse neurocognitive side effects.2,13 Despite 
acknowledgment of the cognitive problems, interpretation of the 
literature is hampered by numerous confounding factors (e.g., 
differences in disease status, inter patient variation, treatment 
regimen, psychological reactions to diagnosis and treatment, 
baseline cognitive reserve and differences in test administra-
tion).15–18 In addition, it is difficult to delineate the specific brain 
regions most sensitive to radiation and cytotoxic drug exposure 
and thus the mechanisms underlying effects on cognitive func-
tion. While it is beyond the scope of the present manuscript to 
review the clinical literature, several comprehensive reviews have 
elaborated on the radiation response of the CNS and the many 
potential causes and consequences of radiation- induced cogni-
tive dysfunction.3,19–23 Here, the focus will be on data derived 
from pre- clinical models, able to provide deeper mechanistic 
insight regarding the potential parallels between clinical and 
space radiation exposure of the CNS.

While the mechanisms underlying the unintended side effects of 
cranial radiation exposure remain to be completely elucidated, 
rodent studies using single dose and fractionated irradiation 
protocols, designed to approximate clinical treatments, have 
pointed to certain underlying mechanisms that characterize the 
CNS response to irradiation. Some insight has been provided by 
structural MRI studies, where white matter necrosis transpiring 
at protracted times after the cessation of treatments appears 
more dependent on total dose rather than a particular fraction-
ation schedule.24 Neuroinflammation has also been shown to 
be a persistent problem, and in many instances can be linked 
to microglial activation.25–31 Adverse effects can result from a 
pro- inflammatory environment, where disruptions in synaptic 
transmission and secretion of growth factors may result.32,33 
Astrocytes also play a role in neuropathological conditions, 
including neurodegeneration and neuroinflammation.34,35 In 
the context of brain injury, persistent modifications that char-
acterize reactive astrogliosis have been described over acute and 
protracted post- irradiation time frames.25,36

Following cranial exposures (≤10 Gy) rodents exhibit a number 
neurocognitive decrements spanning multiple regions of the 

brain that persist (perhaps indefinitely) and over protracted post- 
irradiation times.37–40 Hippocampal and cortical- based deficits 
in learning and memory, along with the emergence of mood 
disorders are temporally coincident with changes in the struc-
tural plasticity of neurons and inflammation as documented after 
cosmic radiation exposures.39–41 Clinical irradiation paradigms 
elicit marked reductions in neurogenesis, dendritic complexity, 
spine density, and elevations in neuroinflammation that are 
hallmarks of the CNS radiation response.29,42–46 Data derived 
from both space and clinical irradiation scenarios suggest that 
compromised neurocognitive functionality goes in step with 
reductions in the structural complexity of neurons and increased 
inflammation in the brain. Faced with this reality, much of the 
work from my laboratory has focused on interventions able to 
ameliorate radiation- induced cognitive dysfunction, and iden-
tifying common mechanistic themes for resolving radiation- 
induced pathology in the brain.

TREATMENTS FOR RADIATION-INDUCED 
COGNITIVE DYSFUNCTION
Despite the growing acknowledgment that cognitive outcome 
is a major criterion for assessing therapeutic outcome, cogni-
tive dysfunction following cancer treatments remains an unmet 
medical need. To address this unresolved normal tissue compli-
cation, our lab was the first to pioneer stem cell and stem- cell 
derived Extracellular Vesicle (EV)- based strategies for the 
potential resolution of such normal tissue toxicities.38 Using 
several models of radiation- induced cognitive dysfunction, we 
have shown that intrahippocampal transplantation of several 
human stem cell sources were capable of ameliorating cogni-
tive deficits following clinical irradiation paradigms.47–51 Trans-
planted stem cells were shown to engraft, adopt neural cell fates 
and functionally integrate into hippocampal circuitry.47 Longer 
term effects pointed to trophic support mechanisms. In the rela-
tive absence of engrafted cells, expression of the Activity Regu-
lated Cytoskeleton- associated protein (ARC) known to facilitate 
synaptic transmission, was elevated in irradiated brains previ-
ously transplanted with Human Neural Stem Cells (hNSC).51 
Importantly, neurocognitive benefits associated with stem cell 
grafting included a preservation of host neuronal morphology 
and an attenuation of neuroinflammation.

Success of these preclinical studies prompted efforts to circum-
vent certain limitations associated with cellular transplantation 
strategies, namely immune rejection and teratoma formation. 
To this end, we evaluated the therapeutic benefits of hippo-
campally grafted EV derived from human stem cell sources 
following cranial irradiation. In a proof of principal study, we 
found that hNSC- derived EV afforded similar neuroprotective 
properties as grafted stem cells, where neurocognitive benefits 
of EV were again associated with significant protection of host 
neuronal morphology and a reduction of neuroinflammation.52 
More recent work has now extended these findings by demon-
strating that systemic administration of hNSC- derived EV can 
resolve radiation- induced cognitive dysfunction and inflam-
mation in wild- type mice through an miR-124- based mecha-
nism.53 The similar protective benefits found after either stem 
cell or EV grafting suggested that strategies able to preserve 
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neuronal structure, myelination, and limit inflammation in the 
brain would have a positive impact on multiple facets of cogni-
tion following CNS exposure to ionizing radiation.54–57 Indeed, 
related data from us and others have found that in general, inter-
ventions able to curtail oxidative and/or inflammatory signaling 
in the brainprovide an overall beneficial outcome for the CNS 
following radiation exposure.31,44,58–60

A NEW TWIST FOR REDUCING NORMAL TISSUE 
TOXICITIES IN THE IRRADIATED BRAIN: THE 
“FLASH EFFECT”
Data highlighted to this point indicate that radiation- induced 
toxicities in the brain involving changes to neuronal structure 
and inflammation seem to be contributory if not causal to resul-
tant cognitive dysfunction. It therefore stands to reason that 
potentially any strategy able to preserve neuronal structure, 
myelination state and minimize inflammation in the irradiated 
brain may have long- lasting neurocognitive benefits. In this 
regard, FLASH radiotherapy (FLASH- RT) does precisely that, 
and represents a burgeoning radiation modality that implements 
ultra- high mean dose rates in excess of 100 Gy/s. The idea that 
dose rate could be an adjustable parameter for therapeutic gain 
has caught the field of radiation oncology by surprise, and its 
capability to spare normal tissue toxicities without compro-
mising tumor treatments points to one of the more exciting 
developments in radiation biology in years.61 Recent reports 
from our group highlight the tremendous potential of this inno-
vative radiation modality. When compared to conventional dose 
rate irradiation, FLASH- RT eliminated short- and long- lasting 
cognitive deficits (1–6 months post- exposure), minimized 
astrogliosis and the activation of microglia and preserved the 
structural integrity of mature neurons in the brain.62,63 Implica-
tions for radiation oncology are significant and suggest that if 
properly implemented, dose escalation to the tumor bed can be 
safely achieved while maintaining and/or reducing normal tissue 
toxicities to acceptable levels.64 While the benefits of FLASH- RT 
are only starting to be realized, such advantages are certainly 
not limited to the CNS, as normal tissue sparing has now been 
demonstrated in multiple tissues using several preclinical animal 
models65–69 including the first human subject.70

SPACE RADIATION
Despite the fact that clinical treatments involve much different 
types (low LET) and higher doses of ionizing radiation (~60 Gy) 
used to control CNS malignancies,1,2 it behooves an examination 
of NASA- related research investigating space radiation effects on 
CNS functionality. As highlighted below, research emerging over 
the last decade has revealed some surprising parallels regarding 
the response of the CNS to these disparate irradiation scenarios.

The Earth is protected by the magnetosphere, a shield that 
deflects charged particles and prevents them from reaching the 
surface of our planet. This protection is sacrificed during deep 
space travel where the highly energetic charged particles of 
the GCR can penetrate the hull of the spacecraft and bodies of 
the astronauts. HZE particles are characterized in part by their 
mass and Linear Energy Transfer (LET, expressed as keV/μm) 
a term used to distinguish the microdosimetric properties of 

specific charged species.11 HZE particles of higher LET have 
higher ionizing capacity, since they produce an increased density 
of ionized species per unit volume at a given dose. Thus, they 
produce more complex “clustered” cellular damage that chal-
lenges the repair and regenerative reserve of cells traversed by 
these damaging charged particles.

The realization that deep space radiation exposures are far below 
those used therapeutically or diagnostically in medical practice 
is also important, where total doses from all radiation types are 
accrued at dose rates of ~1 mGy/day or one- thousandth of a 
Gray.11 While dose rates are low, biological damage will depend 
on the nature and extent of specific ionizations incurred from all 
particle traversals, and the sum of these events over a projected 
round- trip transit to Mars is not expected to exceed a combined 
dose 0.5 Gy (depending of course on mission duration).71 Given 
this brief backdrop, we will now explore how terrestrial simula-
tions of the space radiation environment have contributed to our 
knowledge regarding the space radiation response of the brain.

WHAT HAPPENS TO YOUR BRAIN WHEN YOU 
TRAVEL TO MARS: THE CNS RESPONSE TO 
SPACE RADIATION
Our understanding of the CNS response to charged particle 
exposures that typify the space radiation environment have made 
tremendous strides over this last decade. This progress has come 
in large part, through the efforts of NASA- funded investigators 
carrying our ground- based simulations of the radiation fields in 
space at the NASA

Space Radiation Laboratory (NSRL) at Brookhaven National 
Laboratory (BNL). Here, investigators expose a variety of 
biological samples to selected beams and scrutinize the conse-
quences of such exposures at various times post- irradiation. For 
the CNS, rodent models have proven invaluable, as the need to 
assess neurobiological outcomes in an intact brain are an abso-
lute necessity. In this light, mice and rats exposed to low doses 
(≤0.5 Gy) of single beams or combinations of multiple beams 
including protons, helium ions, and various HZE particles have 
revealed marked neurocognitive decrements that persist for 
months to years after exposure.72–74 Over the past few years, 
NASA and the team at the NSRL have developed a 33- beam 
complex GCR simulation that can sequentially deliver a complex 
spectrum of space radiations (Table). Investigators having access 
to this advanced GCR simulation have been able to expose their 
samples to pre- selected total doses (≤50 cGy) over a chronic 
6 day/week, 4- week interval (2.08 cGy/day), and compare data 
to that obtained when the same total dose and sequential ion 
combination is delivered in a single day (i.e., 2 h). Results derived 
from these ongoing experiments will undoubtedly shed further 
light on the multifaceted consequences of space radiation expo-
sure on CNS functionality.

Armed with a battery of behavioral tasks able to interrogate 
multiple cognitive domains, research has clearly identified 
space radiation- induced impairments in learning and memory 
that suggest astronauts engaged in deep space travel are at an 
elevated risk for manifesting mission critical performance 
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decrements.75–78 Past work with rodents has shown that whole- 
body exposure to charged particles can disrupt behavioral 
performance that can be linked to impairments in the hippo-
campus,76,79–81 amygdala,73 basal forebrain,75 mPFC,72,73,75,82 and 
other regions.74,83,84 Furthermore, individual animals subjected 
to charged particles often exhibit deficits in multiple behav-
ioral paradigms, and many of these decrements transpire over 
6–52 weeks after exposure and are temporally coincident with 
a marked structural plasticity of neurons and glia and elevated 
neuroinflammation.72–74 This realization has triggered a surge of 

research designed to evaluate further the potential CNS health 
risks associated with such exposures. While rodent- based studies 
have clearly uncovered many intriguing mechanisms impacting 
space radiation- induced cognitive dysfunction, disruptions to 
the integrity of mature neuronal structure and chronic neuroin-
flammation represent two salient features shared in common 
with clinical exposure paradigms.

Studies have shown that space relevant doses of various charged 
particles elicit a robust and persistent deterioration of dendritic 
structure.72,73,80,85 These changes have now been documented in 
various types of neurons throughout the brain and include reduc-
tions in dendritic arborization and overall dendritic complexity 
that point to the capability of charged particles to significantly 
compromise neuronal morphology over extended times. Coinci-
dent with these more macroscopic alterations to neuronal struc-
ture are more microscopic changes to the dendritic spines.72,73 
Dendritic spines are the structural correlates of learning and 
memory and contain the synaptic machinery that mediates 
neurotransmission. Space radiation exposure elicits significant 
reductions in dendritic spine density, essentially stripping these 
structures off the dendritic shaft. Individual animals showing the 
greatest reductions in dendritic spine density routinely exhibit 
the poorest performance on select behavioral tasks, suggesting a 
defined structure function relationship between neuronal struc-
ture and cognition.73 At higher resolution, electron micrographs 
reveal that similar charged particle exposures lead to significant 
reductions in axonal myelination,86 implicating the capability 
of space radiation exposure to compromise conduction velocity 
and neurotransmission at multiple levels.

Superimposed on the structural alterations detailed above, are 
indications of a persistent inflammation in the brain that serves 
to perpetuate the signature of radiation injury over extended 
post- irradiation times.73,74 Multiple reports have now shown 
that space relevant exposures elicit a persistent neuroinflamma-
tion involving significant increases in activated microglia, the 
innate immune cells of the brain.73,74,87–89 Chronic increases 
in activated microglia can trigger inflammatory cascades in 
the irradiated brain that can elicit signaling changes to disrupt 
the balance between excitatory and inhibitory neurotransmis-
sion. Microglia also play active roles in re- shaping the synaptic 
landscape, where they can prune dendritic arbors and spines 
to remodel the connectivity of the irradiated brain.90–92 Studies 
showing that microglial elimination can restore neurocognitive 
function after space and clinical radiation exposures support 
this idea,59,93 and point to importance of neuroinflammation in 
dictating the long- term radiation response of the brain.

Interestingly, our group has recently completed studies under-
taken to simulate chronic, space relevant low dose (≤0.20 Gy) 
and low dose rate (1 mGy/day) exposures using neutrons and 
photons derived from a 252Cf source.94 Results have shown that 
rodents develop significant cognitive decrements and reductions 
in Long- Term Potentiation (LTP), a form of synaptic plasticity 
that facilitates learning and memory.94 These new findings point 
to the marked susceptibility of the CNS, where critical functional 
outcomes show surprising sensitivity to low dose and low dose 

Table 1. Definition of the Full GCR Simulation (In order of 
delivery)

Ion Energy (MeV)
H 1000

He 1000

Si 600

H 20

H 23

He 20

He 23

Ti 1000

He 27

He 32

H 27

H 32

H 37

H 43

He 37

He 43

O 350

He 50

He 59

H 50

H 59

H 69

H 80

He 69

He 80

C 1000

He 100

H 100

H 150

He 150

Fe 600

He 250

H 250
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rate radiation exposures. While these data sets portend several 
potential problems associated with radiation exposure in space, 
this is not an insurmountable problem or a deal breaker for space 
travel.95,96 Advanced shielding and biological interventions 
designed to combat the adverse effects of space radiation expo-
sure on the brain are areas of active investigation.

SUMMARY AND PERSPECTIVES
The response of the CNS to either clinical or cosmic irradiation 
scenarios involves a complex and multifaceted series of events 
that never completely resolve and invariably compromise the 
functional connectivity of neural circuits and synaptic transmis-
sion. While much is now known regarding the radioresponse of 
the CNS, much remains to be resolved, including the identity of 
critical cellular and subcellular targets that exhibit differential 
radiosensitivities. Elucidating meaningful parallels between clin-
ical and space radiation- induced CNS responses is confounded 
further by the paucity of human data regarding exposure to 
combined spaceflight stressors. A longitudinal MRI study of 
astronauts pre- and post- flight uncovered volume changes in 
various regions of the brain97 and the highly publicized NASA 
twin study found that compared to his terrestrial bound brother, 
spaceflight compromised certain indices of cognitive perfor-
mance.98 These recent studies point to spaceflight- induced 
changes to the brain, but in each instance, it remains difficult to 
attribute such changes to the effects of radiation exposure alone.

Our capability to intervene on the adverse cascade of signaling 
events triggered by irradiation will ultimately depend on 
a more thorough understanding of how ionizing radiation 
damages and disrupts the delicate balance between excitatory 
and inhibitory neurotransmission. Protecting the brain against 
the structural degradation of neurons and the ensuing cascades 
of oxidative and inflammatory processes triggered by irradia-
tion seem critical to preserve CNS functionality. In support 
of this rationale, three distinct interventions were highlighted 
that have been shown to be neuroprotective in the irradiated 
rodent brain, namely, 1) cranial grafting of human stem cells, 
2) cranial grafting and systemic injection of human stem cell- 
derived EV, and 3) FLASH irradiation. Noteworthy here was 
that for each of these treatments, neurocognitive sparing was 
temporally coincident with reductions in neuroinflammation 
and a preservation of mature neuronal morphology. Thus, it 
stands to reason, that potential treatments targeting the adverse 
neurocognitive effects of cranial radiotherapy in humans 
should, in part, consider agents capable of impacting pathways 
known to minimize inflammation and protect neuronal struc-
ture. Similar logic would apply to the protection of astronauts 
exposed to the deep space radiation environment. For long- 
term human health, the brain is likely the last frontier, and 
protection of our neural circuitry must be a priority for those 
trying to resolve the neurocognitive side effects resulting from 
brain tumor radiotherapy and for those destined to engage in 
deep space travel.
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