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ABSTRACT

Stérting with the well-known de Broglie relation mv = h/\ that holds for

a particle in zero magnetic field we give an elementayy (freshman physics)

)

derivation of the generalized de Broglie relation that ‘holds for a charged

particle in a circular orbit in a cylindrically symmetric magnetic field. We

_géke/ﬁo use of "div, grad, curl, and all that", and do not introduce canonical

momentum, the vector potential, or the Schroedinger equation. This generalized

de Broglie relation is then applied to two examples: (1) a single charged

particle in a uniform external magnetic field and (2) a superconducting hollow

- cylinder. In both cases we find the result that the flux @ enclosed by the

orbit (in example 1) or trapped by the cylinder (example 2) obeys the relation
@§=nh/q, but that the sameness of these two results is "accidental", since
superconducting Cooper pairs have velocities about a million times too émall for

them to be in equilibrium “c&clotr@n orbits" in the magnetic field they experience.

‘We also show that this de Broglie relation gives the correct value (i.é., the

Schroedinger theory value) for the London penetration distance. In the

appendices (junior physics cdurée level) we show that this de Broglie relation also
implies (correctly) the Meissner effect, and that it (correctly) ingists oﬁ

f§=nh/q for the superconducting flux, rﬁling out, fbr example, (n+%)h/g. Less
correctly, it gives for the'qdantized cyclﬁtron—orbit.energy levels of example

(1) the result E=nw whereas the correct (Schrbedinger theory) result is

well known to be (n+s)hw .

iii
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1._INTRODUCTION”
One of the most:fascinating results‘of quantum mechanics is the famous
prediction that the mégnetic flux trapped in a superconducting ring is
quantized: @=nh/q, where @ is the trappedvflux (SI units), h is Planék'svconstant,
q=2e is the'charge;of the'supercqndﬁéting Cooper electron pair, and h ié an integer.‘
It would be gratifying if a dérivafién of thié predic;iqﬁ could be presented to

students at the freshman physics level. Unfortunately for the‘freshman, the beautiful

‘treatment by Feynman1 requires familiarity with the concept of the vector potential,

" and with the Schroediﬂger equation.> It is therefore accessible only at the junior

physics level. S
It was therefore quite‘stimulating to read the interesting “plausibility derivation"

by Higbiez.of this famous result. In abbreviAtedvform, Higbie's argument goes as

follows: Consider a single Cooper pair cifculating on the inner wall of a superconduct-

ing ring of radius r. Assume that.¢the flux this single pair would generate is that

of a uniform magﬁetic field B which would coﬁfine thé pair to an equilibrium_

"cyclotron" orbit of radius r. That equilibrium requires ﬁvB=mv2/r, where ﬁ and v

are the mass and ﬁelocity of the pair. Now demand that an integer number n of de Broglie

waves of Qavelengthtx fit into the circumference: 2rr=nA. Then use the de Broglie

relation, mv=h/\. Cqmbine these three equations tolobtain ¢=nrzB = nh/2q, which is

half of the correct value given by the Schroedinger theory. The missing factor of .

two is then supplied by an additional argument involving a second Céopef pair.

The virtue of this derivation is that it is at the freshman physics level.

Unfortunately, Higbie's assumptions about sﬁperconducting pairs are iﬁcorrgct not

field experienced .by a single Cooper pair circulating in a reasonable
sized superconducting ring is of order 1018 times greater than that
produced by the pair jtself. That is because (in a reasonable geometry)

there are of ordef 1018 pairs generating the field. Furthermore, the

mégnetic field experienced by a circulating Cooper pair is not even.
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approximatelyrthg field that would keep it in an equilibrium.cyclotron
orbit. Inétead,.pairs_experience fields about 106 times Strpngér than
‘thgt. Put differently, their velocities are about 10-6 times too small
for them to be in cyclotron orbits in ﬁhe'field they eiperieﬁce.

Cyclotron orbits ﬁave,nothing ;o do with either théfradial equilibrium

‘of the pairs or with the size of the fiux-quantum, for a>superconducting

ring.

How is it possible to be off by a faétor o,f'106 in_velocity and still come ;
within a factor-pf 2 of the correct fbrmula?'This is partly éccomplished By using
the de Broglie relation h/kié mv. This relafion iSvihcomplete wﬁen ﬁheré is a
magnetic field: something else (s;e.) must bé aaded_to mv. This.s.e. turns out
to bé about a million times larger thap mv for a:reésonable superconductor
geometry. The correct de Broglie relation is mv+s.e. = h/A . After throwing
;way'the s.e; one.caﬁ cdmpeﬁsate by taking mv to be a‘million times larger than
it actually is. |

That still does not explain why the incorrect assﬁmption‘of'equilibrium
cyclotfon orbits for fhe doofef'pairs miféculously‘gives an answer within a factor
of two of the correct one.'vThat is Becauée in spite of the formula mv=h/k being
incorrect by a factor of a mil1ion for a superconductdr,.it is,oﬁly wroﬁg by a
factor of two for a charged particle. in a uniform.external field. In that case
the "something else" turns out to have half the,magnitude.df mv, and the opposite
sign, so that the sum, mv+s.e.,‘equa1s'%mv,; The éorrect de Broglié relatién then
gives lmv=h/\ and‘also giQes ¢=ﬁh/q for the flux enclosed by tﬁe'orﬁit; whereas
the incorrect relation mv=h/X gives the incorrgét result ¢=%ph/q. For the
supercbnductor the grror'in this:approach is.no;, however, a factor of % but‘a

factor of a million, as stated above.
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An élemgntary derivation follows. The qﬁantum‘physics is at the level of the
Bohr atom and makes no mention of vector pdténtial or of canonical momentum. It
is thus accessible to a student who has had qnly,freshman‘physics. First we
obtain the de Brogliekrelation'for a éarticle inzacirculgr orbit in a magnetic
field having‘cylinArical symmetry; As our firé£ applicétion we consider a particle
in an equilibrium cycléfron orbit in a uniform external magnetic field and find
that the flux enclosed by tﬁe orbit'is‘nh/q, which is the same formula as gives ;he
famous flux quantﬁm of superconductivity. That will lend.credibility“to the
incorrect assumption that Cooper pairs are in equilibrium‘cyclotron orbits. Then
we gpply the de Broglie relation to a long sﬁpe:conducting hollow cylinder and
again find that the flux- is nh/q. But then.we‘calculate the velocity of Cooper
pairs and find that they are much too slow to be iﬁ equilibrium cyclotfon orbits.
Next we calculate the magnitude of the "London penefration distapce". Ao’ of the
magnetic field into the superconductor, and obtain the same résult as in thg
Schroedinger theory.z Finally we answer the;qugstion "How can tﬁe,cifculaﬁing
pairs be in radial equilibrium if they are noﬁ in equilibrium cyclotron 6rbits?"

The main text is kept elementary (no integrals, no différentialveduations) by
taking the Meissner effect to be a given experimental fact that is independent of
the de Brpglie relation. In Appendices A and B (which aré at thé level of a junior
physics course) we show that instead the Meissner effect isﬁactually implied by
the de Broglie relaﬁion, with no need to invoke the Schroedinger theory. 'In 
Appendix B we show that an ambiguity fha# arises in the choice of }ntegér n
versus half integer n+s can be resqlved in favor of n; without invoking the results

of the Schroedinger theory.
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2. DE BROGLIE RELATION

We want. an eleméhtary derivation of the de Broglie relatiop for a

| charged particle moving in a circular orbit in a magnetié field. Start with
the more familiér case of a particle mqving in a circle of radius r under

the influence of a central Coulémb electric field, as in the Bohr atom. 1In
that case we know we get correct results- if we demand that an integer number

n of de Broglie waves fit into pne orbit:

2Tr = nA S (1)
and that the de.Brdglie relation be given by

mwv = h/A. | S (2)
Together these give ‘the quantum relation

v = nh/2nr S - (3)

?

from which follow the familiar results of thekBohr afom.

Now consider a particle in a quantized Bohr orbit having a particular
value of n. Build, surreptitioﬁsly, a frictionless hollow rigid "doughnut"
that encloses the orbiﬁ without disturbing it. Then slowly‘"turnbdown" the -
magnitude of the central positive charge that gives the Coulomb field. That
is, slowly reduce to zero the fadiél eiectric field felt b& the éircu%gting
pérticle. Since we do this Qery slowly, and n can only change by the dis-
‘continuous jump of an integer, Qe expect n to remain fixed: An = 0. of
course ouf frictionless rigid doughnut will ﬁave to take over more and more
of the radial force that maintains radial equilibrium, as we turn down the

i

Coulomb field. During all this, will mv change? No, because all the forces



[

are always radial: A(nﬁ7)=0? Therefore our quantum relatioﬁ (3) continues

to hold even after the central charge is entirely gone and the particle is
confined radially by the frictionless tube alone. -Next_se start slowly

turning on a cylindrically symﬁetric magnetic field normal to the plane of

the orbit. Beeaese we‘&o it very slowly n will femain unchanged: An = O
However, mv eo longer remains constant:' A(mv) # 0., The magnetic flux con-
tained within tﬁe orbit at redius r, @(< r),vis changing with time. Accor-

ding to.Faraday's Law, that will give an induced electric field tangential

to the particle orbit, and the particle will be accelerated. 'Sinee mv does

not remain constant we hope to find a new quantity that does stay constant,

and that reduces to mv when there is no magnetic f1e1d. We can then hypothesize
that we should'replace the left sides of Eqs. (2) and (3) with that new quantity.

The induced emf € at radius r is given by e—-d¢(<r)/dt. But € also

equals the induced a21muthal electrlc fleld E, times the c1rcumference 27

Therefore
-d@(< r)/dt .

E= .27

The change in particle mv during time interval At is given by

A(mv) = FAt = qEAt = -qAP(< 1) /2T,

Almv + q#(< r)/2mr] = O _ - (4)

The left side of Equation (4) is the desired generalization of the result
A(mv) = 0 that we found while turning down the Coulomb field, and which main-

tained the de Broglie relation of Eq.(2)and the quantization relation given

by Eq.(3). Therefore the "something'" to be added to mv in Eq.(2)
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is just q@(<r)/2mr.  Combining ' this generalized de‘Brdglie relation with the
stillQValid>quantum condition of Eq.(l)»givesvus the generalization of Eq.(3):
mv(r) + qf(<r)/2mr = nh/27r. (5) |

Th; guantum relation (5) giyeé éll of the resulés of this article. ‘We will
assume it hélds more geﬁerally than its-"derivaﬁion". We assume it gives all the
allowed~sfates for a single particle in a circular orbit with ehclosed flux 6(<r).

It is importént to realize that we still need our "rigid frictionless tube"
in order to maintain radial equilibriuﬁ and keep r fixed while we change.the

flux @(<r). Our "tube'" will turn out to be a radial electric field; bht it will

not be due to a point charge in the case of a supef&onducting ring.

In our derivation we imagined that we séarted in a particularﬁhydrogen—atop—like
Bohr orbit, because for tﬁat case we know that Eqs.(l), (2),=and'(3) give the right
answers (that is, answers that égree with experiment). However, thét implies a
constraining relationship between v and r (to give.fadial equili£rium, balancing thel
centrifugal force and the Coulomb attraction), Now that we have our "rigid
frictionless tube" we can dobaway with that constfaint. Therefore our allowed values
of v, r, ¢(§r), and ‘the integer n are aﬂy values that sétisfy Eq.(S). The velocity
v(r) cén be positive or negative (clockwise or counterclockwise circulation), the

flux @ can be positive or negative, and the integer n can be either positive or

negative. We even assume n=(Q is allowed (infinite wavelength).

- Of course, we must keep in mind the fact that we are using the concept of
a classical orbit with well defined radius r, and that if we get the same result

as the Schroedinger theory we must count ourselves as perhaps lucky.
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3. PARTICLE IN A UNIFORM EXTERNAL MAGNETIC FIELD

‘As our first applicatién of tﬂé quantum relatiqn (5) ﬁe consider a
single particle of charge q traveling with-weidcity_v in a circle ofiradius r
in a uniform magneticffield B normal to the plane/of_the circle. The frictionless
tube confines the particle to radius r, independént of v. The circulating
particle can be thought of as an electrié current'lobp; so that it makes a
contribution to'the_total.magnetic field; but we assume this contributionfis.
completely negligible compared with the external field. (Even if it were not, we
would have to exclude thé aétion of the single particlg's self-produced field on
itself.) The flux contained within the orbit is ¢(<r)‘= ﬂrZB, sb thét Eq.(5)

becomes -
mv(r) + %qrB = nh/27r o (6)

The sign conventiqns in Eq.(6) are such that if the fingers of the right hand
curl around in the direction of positive v then the thumb points along positive
gB. Because of the frictionless-tubg any values of v and B that satisfy Eq.(6)
are allowed.

We now apply Eq.(6) to thé special case where; after the final value of B
has been achieved, the particle is.in an equilibrium "cyclotron orbit"; in that
case we can removévthe frictionless tpbe. "(We needed it to maiﬁtain the radius
constant during fhe build up of_fhe field.) - For suchxan‘orbit; Newton's 2nd
law, '"ma = F", givés mv2/r = qvB (in MKS units). That gives

| mv = -qrB : (D
where the minus sign comes from using the same fright-hand ruleﬁ.sign convention
as for Eq.(6). ‘Combining Eqs.(6)'and’(7) gives -}%qrB=nh/27r; of, dropping the
minus sign, the flux contained within the orbit is |

#(<r) = ﬁ:zB = nh/q (8)

The fact that Eq.(8) is identical with the formula for the trapped flux
in a superconducting ring is more or less an accident, since, as we shall show

later, the superconducting pairs'are far from being in cyclotron orbits. -
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For a charged particle in a uniform magnetic field it is easier to think
of ways tovmeasurelthe particle's kinetic energy %mv2 thaﬁ to measure the flux
enclosed by the orbit. We can easily show that Eq. (8) impliés quantized kinetic.
energy: solve Eq.(7) for r and substitut; into Eq.(8) to get

| w2 = n(h/2m)qB/m = - | o (9)
where ¥ equals h/2T and w= gB/m is the cyclotron angular freduency.

The quantized energy differences implied by Eq.(9) have actually been
observed in the beautiful "(g-2)/2"'ex§eriméht, using trapped single electrons an&
inducing quantum jumps be;weén neighboring cyclotron orbits (An=1) by means of
microwave quanta having energy ﬁ@ 3

At this point we should restrain 6ur enthusiasm. The Schroedinger theory -
does not give Eq.(9); it gives4

[ Y a0
The additional term “hw is the "zero-point" energy. It is not detectable in
- the (g-2)/2 experiment, which measﬁres‘dnly energy differences. If one asks why -
the simple de Broglie relatién miséed this term one might look at the aésumption
of Eq.(l): 27r =nA . Is it that the Schroedinger theory wants to fit a half
integer number of wavelengths into an orbit? No. If is'rather that there is
no well defined orbif, énd‘r therefore has no well defined value.

In the case of_quantize& trapped flux in a superconducting;ring the
Schroedinger theory1 gives ¢=nh/q, not (n+s)h/q. That is also what we Qill find
from the de Broglie relation (5). Pérhéps we should attribute thatﬁagreement to
good luck. But, remarkably, if we'generalize our de ﬁroglie relation so as to
replace n by ﬁ+k, where n ig the usuallinteger and k is én unknoﬁn constant, we .
will find (App.B) that for a solid éuperCOnduéting cylinder we must set k=0;

otherwise . there is no solution.
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4.THE DIFFERENCE BETWEEN ONE AND 1018-PARTICLES_'

In the theory of superconductivity it turns out tﬁat, at absolute zero,
all the Cooper eleetron pairs are in the same "single—patticle state".1 if we
assume (following Higbie) that in that etate_the Cooper paire in a superconducting
ring are in equilibriuﬁ cyclotron orbits under the influence of the magnetic
field traversing the ring and experienced by the‘paire; then Eq.(é) should
apply, and &e thus find a quantized trapped flux that agrees with thé\cotrect value.1

Why is this wrong? The qﬁantity @(<r) that appears in Eq.(5) represents the
total flux inside radius r. For a siﬁgle particle in an external field we can
neglect the flux produced by the particle‘itself. That is how we obtained Eq.(8).
But when we haveea superconductor and vary an‘external'field.the change in @(<r)
is due not only to the.change'in the external field Eut also to changes in the
fiux produced by changes in_the‘velecitieslof the huge number ef Cooper pairs
distributed'thfough the superconductor. When we turn. up thekexternal'fiela the
flux change that the pairs produce is, by Lenz s Law, oppositeé- 1n sign to the
change in external flux, and, because we have a superconductor, equal in magnltude
to the change in external flux. Thus the change in total flux, integrated over
all radii r, is zero. However,.the new total flux,‘even though equal in:magnitude
and sign to the old flux, is distrlbuted differently in space, because a
different fraction of it is due to the circulating Cooper pairs. Thus at each
r there is a'change‘in #(<r), with equal amounts of eositive and negative changes
at different r so that the integrated caange is zero. In order‘to use Eq.(5) we
must learn how €he maghetic-field is distributed in space. Note also'that the v(r)-
that appears in Eq.(5) is propertional to the current density at radius r, and .
this in turn contributes to the part of @(<r) due to the superconducting currents.
Thus we also need_to know how v(r) is distribated in space. We must consider the

superconductor in more detail.
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5. SUPERCONDUCTING CURRENTS

We assume that Eq.(5), derived for a single particle, can be applied to |
- a superconductiﬁg cylindef that (for our geomeﬁry) will have about 1018
contributing Cooﬁer electron pairs. Each pair haslcharge_qé-Ze and a mass m
which we_take to.be Zme,.where‘me is the mass of a free electron. (The effective
mass of a Cooper pair is a difficult subject that we avoid.) We assume the
superconductor.is at absolute zefo"énd that all ﬁairs are in thé same state, i.e.,
all have the same value of n in Eq.(S),.which we assume holdé for each pairf It
is important to realize that @(<r) in Eq.(5)'is the total magnetic flux at
radius less than r, i.e., it is the flux due to all of the Cooper pairs plus the
flux dué toany>énd all external sources of flux.. |

‘.Consider_a iong hollow cylinder of length £ made of leaa.(Which becomes
superconddacting at low enough temperature). This hollow cylinder has outer fédius
r, and inner radius Ty wiﬁh L and_r2 both small COmpared‘with fhe length £..

Initially the lead cylinder is at room temperature. Inside the hollow region

there is a very long cylindrical permanent magnet of radius less than r, that

1
carries an unquantized external flux ¢o through the hollow region. See Fig.l.
For simplicity we‘make the permanent magnet vefy 1png'compared with the lead

cylinder so that in our first discussion we can neglect leakage flux and ''return”

flux from the permanent magnet.
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Fig. 1. Room temperature, End view of long hollow lead cylinder having
inner radius r, of order 1 cm and outer radius r, of order 2 cm. A very
long permanent magnet carries unquantized external flux @ through the
hollow region, the magnetic field lines being indicated ag dots. Leakage
flux and "return" flux in the lead are neglected. The warm lead is

not superconducting. '
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Now cool ‘the superconductor until it becomes supércoﬁducting; continue
cooling all the way to absolute zero. Assume Eq.(5) aéplies toreach of the
Cooper pairs. We will find (Appendices A and B) that Eq.(5) implies the Meissner
effectl, according to which the total magnetic field (dﬁe both to external sources
and to superconducting currents) mﬁst vanish'in thé interior of the superconductor:
both the total magnefic field and the,supgrconducting currgnts are qonfined ‘
to very‘thin surface la&ers (about 10“6 cm thick). If we had not assumed our
permanent magnét to be very long compared with the hollow lead cylinder there
would haﬁe been leakage and return flux‘from thé permanent magnet in the
material of the warm léad cylinder. When the cylindgr-became superconducting, the
Meissnér effect would demand the appearance of "spontaneously induced" surface
currents on ﬁhe cylinder surfaces, which are at r=r; and r,. Theb"pu:§OSe"
of these currents is to produce magnetic fields that will combine with the
external fields to give a total field¢afzero in the main body of the suﬁerconductor
(everywhere éxcept very near the surfaces). Any leakage or return flux from ‘the
very long permanent magnet would.give a small uniform external field throughout
the region from_r=0 to z,. This would be cancélled by a small induced cﬁrrent 12
on the outer surface of the cyliﬁder; at r=r2;‘ That_is'bécause such a current
is equivalent to the current in a long solenoid, and it is shown iq every

freshman physics course that such a current pfoduces a uniform field at smaller

radii than that of the current, and negligible field at larggf radii. Since’

the surface current 12 is not of present interest to us we assume there was no

leakage or return flux from the permanent magnet and that therefore Ii remains

zero. (In Appendices A and B we consider the case where there is a_uniform external

field and I2 is then not zero.) For the same reasons (Meissner effect and no
leakage or return flux) there are no spontaneously induced currents or magnetic

fields anywhere in the body of the cylinder, between r ~and r, (but not

2

'including the surface atvrl).
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6. FLUX QUANTIZATION

y
~ After the lead has become superconducting Eq.(5) applies. /That implies
the Meissne:‘effect, according to which ﬁhe_current density J(f)uvanishes in
the main body qf the superconductor. But J(r)=qu(r), where v(r) is the Cooper
pair . .- v;locity in Eq.(5), and N is the number of Cooper pairs per unit volume.
(N is‘just %Ne, where Ne is the number of supercoﬁducting electrons pef unit
volume.) Consider a radius r théf is sufficiently larger than rl( say 10-4.cm
greater than rl) that J(:) is zero, and hence v(r) is zero. Then according
to Eq.(5) the total flux wi;hin that radius r is quantizéd.and has the

value §(<r) = nh/q. That is the derivation!

7. INTEGER ROUND OFF FLUX
We seem to have a problem. The total flux for radius r a few times‘10—6 cm
greater t_han'r1 is qﬁﬁntized: ¢(<f);nh/q. But thé pérmaneht magnét's éontribu:ioﬁ
¢d is_ﬁnquantized. The solution isvthat in general there must be a small induced

current'I1 on the inner surface at-r=ri.‘ Otherwise we cannot satisfy Eq.(5).
Thé sign and magnitude of.I1 depends on the exact value of ¢o. .Tﬁe surface
curfent I1 provides é small unquantized flux which.we shall call tﬁe "integgr
round off" flux. This integer-round-off flux will be some fracﬁioﬁ (positive or )
negative) of a flux quantum h/q, such that the total flux is quantized. The

unquantized flux due to I, might be expected to have magnitude equal or less

1

than 1 quantum, i.e., "round off to the nearest integer'". That turns out to

be the case.5  The situation is summarized in Fig. 2.~
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Fig. 2, Superéonducting. Because of the Meissner effect the only currents

are the surface currents Il and 12, but 12 is zero-if there was no magnetic

field in the superconductor when it was warm. The small current I1 is

contained in a layer of thickness X°=3x10-§ cm, and provides an "integer-round-off"
flux of less than one flux quantum, indicated by the crosses. The total flux,

¢° + round-off, is quantized. The round-off field is uniform for <r, and falls

off exponentially along with the current density, in the thin surface layer

at radius rl.'
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8. TRAPPED QUANTIZED FLUX

We have exhibited quantized flux, @#=nh/q, but it is not yet in the form
we desire--a trapped quantized flux entirely due to superconducting current.
Welneed to get rid of ?he permanent magnet. Let us slowly (so as'not'to change
the ingeter n) pull'out.the permanent magnet. As we do so we can no longer
disregard the flux that emerges from one end of the permanént magnet and returns’
at thé other. By the time we have removed the permanent magnet all of these
flux lines will ﬁéve passed through the superéonductor. During the slow removal
there will be néw induéed cﬁrrenté Both at r, and rl..FWhen the magnet has been
completely removed thé current I2 will hévq returned to zero (it was only needed
to give zero net field in the body of the superconductor during the removal).
After remo§al, the sﬁrface current Il’ which used to provide oﬁly tﬁe small
"round ﬁff"‘flux, now provides the entire flux. This flux still has the same
quantized value; nh/q, as before the removal. This flux is . "trapped'. We
can piék up the hoilow superconducting cylinder and‘carry it around with ifs
trapped flux (provided wé keep it cold). The trapped quantized flux nh/q equals:
the original unquantized flux ¢° to within plus or minus about a half of a

flux quantum, the round-off flux. The situation is summarized in Fig. 3.
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Fig. 3. Trapped quantized flux.. The permaﬁent magnet has been slowly removed.
The flux has the same quantized‘value as in Fig.2, but is now entirely provided
by the large induced current Il' A uniform field B1 (indicated by gots) fills

the hollow region and falls exponentially to zero, as does Il’ in the‘thin

surface layer at radius . The surface current Iz_is still zero.
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9¢  VARIATION OF VELOCITY AND FIELD IN THE SURFACE LAYER
No& let us looﬁ more closely at the thin surface-laye.r-at‘r=r1 that

carries the surface current 11, wﬁich provides the integer round-off flux
before removal of the permanent mégnet, or the entire flux after the removal.
We demand that Eq.(5) hold for all r, with'thersame value_of n. Stért ét

r several times 10-6 cm larger than rl, s§ we a:e.&ell into the interior. Then
- v(r)=0 and the flux @(<r) includes the entire quantized flux nh/q. Now progress
to smaller r, approachiﬁg.the'sﬁrface at'r=ri; We will eVéntually-reach
radii where v(r) starts to grow from zero. As we pass>through an increment dr
that includes non-zero current density J(r) we will p#sévinside'a small

current increment dI, = J(r)fdr. This current increment gives magnetic field

1

only at smaller radii than its radius. Thus thé.flux from dI, no longef iies

1
entirely within our presently attained radius."Some of that flux lies outside.

Thus @#(<r) decreases slightly, as v(r) increases, while we approach r from larger

1
rédii. But that is just what we ﬁeed to maintéin the.left sidg of Eq.(S) constant.
By pursuing this line of reasoning carefully wé'éan derive the e#act relation
between v(r) and the magnetic field B(r) within the.thin'layer that is needed

in order t? maintain Eq.(S); We do that in App.A. Here we sha11 simp1y say

that it wiil tufn ouﬁ that v and B are always (aﬁ every r) proportional to one

another and fall off together expenentially with the common factor exp-(r—rl)/lo,

where Ao is called the London penetration distance.
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10. INDUCED VELOCITY OF COUPER PAIRS

Let ug find the Cooper-pair velocities after the pefmanent maénet-has been
removed; and cﬁmpare them with velocitiés that would giye équiiibrium cyclotron
orbits. It will be sﬂfficient to find_the'velocitf | ‘v‘= vy at‘r=r1‘aqd relate
it to the magnetic fiéld‘B%Bl.thefe,becaﬁse at 1arger T, v(r) and B(r) are
proportional, with thé saﬁe proﬁortionality constant as at r=r, (See App.At)

It is a good enough approximation for our presenﬁlpurpose to say thaf the total
trapped flux is ¢o, and that it is essentiallf all contained betweén r=0 and r=r
- That gives ¢O=B1ﬂriz.

Now look at Eq.(5) and think of how we can maintain the 1eft side constant as

1
in the form of a uniform magnetic field B

we progress from r slightly greater than r., to r=r . ¥e can neglect the tiny

1 1

.change in r as far as its effect in Eq.(5). The only variables are v(r) and #(<r).

For r slightly greater than r, we havé v=0 and ¢=¢o. Whenn we have reached r=r,

1

we have v=v, and the flux @(<r) mﬁst havevbeenbdecreaéed by an amount Aﬁ

~ such that the change in the left side.of'Eq.(S).is zero;
A mv+q Aﬁ/Zﬂr1=0 -
Or, since Av equals Vl’ we have, dfopping a minﬁs sign,
mv, =g Aﬁ/Zfrl o | ' (11)

The flux 0 is the flux contained in the small annular ring-of radius r, and effective

thickness Aoin which B falls exponentially from its maximum value of B, to

1

times the area 2 ﬂrlko:

~

zero. We can estimate A as the maximum field B,

AB = B, ZﬂrLAO
Combining this with Eq.(ll) gives

v, = quao/m ' | (12)
Eq.(12) gives the correct ratio - between v and B throughout the layer of surface

current. (?q.(lZ) is derived more rigorously in App.A:]

Let us compare the actual induced velocity v, with the velocity vy that

1

would give an equilibrium cyclotron orbit in the magnetic field B, experienced

1

by Cooper pairs at r=r

1 According to Eq.(7) we have
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= qurl/m : ' (13)

Compafing (13) and (12) we see that the induced velocity v, is less than the

1
cyclotron-orbit velocity v, by a factor of Ao/rl'. Since we shall find that .

Aolié of order.lo-6 cm, then in a geometry having r =i cm, we have Ql/vo2 10_6,
Thus thé magnetic field.tends to press the'birculating pairs firmly again;t the
inner wall of the hollow cylinder;This ééme factor of about 10_6 holds

throughout the surface layer.

11. RADIAL EQUILIBRIUM

If the magnetic‘field.is so strong (or the velociﬁy so small), how do the
Cooper pairs .remain confinéd to a given_radius? ‘The simplest reply is that the
inner wall of the hollow cylinder confines them. But then we must worry about
whefhér the surface layer of thickness Ao‘gets "squashed flat". It seems we
might really need our "rigid frictionless tube'" to confine the orbits and
maintain radial equilibrium. The "frictionless tube" exists. It is provided by
radial electric fields. The magnetic field produces a tiny inwards drift of the
Cooper pairs. This induces a smali negative charge on the inner surface and
simultaneously uncovers ;he same émount of positive nuclear charge épreadvthrough
the thiﬁ layer. This gives a "radial?Hallfeffect" eléctric field that halts the
radial drift.and estéblishes radial equilibrium. _The disfance the pairs
drift radially before*équilibrium is established is finy compared with Ao.

For a reasonable maghetic field'BI = 0.1 T the radial drift is about 10_12

AL
o
(See App. C) The "squashing” of the surface layer is thus negligible. The

"tube" is very rigid.
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12 .. LONDON PENETRATION DISTANCE

Lét us estimate the penetration distance Ao' We‘ﬁan do that becauﬁe
Eq.(12) relates fhe induced velocity (and henée the curfent density) to. the’
trapped maénetic field and the penetration distance, and we know how to cal-
culéte the'mégnetic field of a long solenoid, given the gurrenf;

First we find the total current I That equals the maximum current

1

density Jl = Nqv, times the effective cross sectional area Qlo seen by the

1

current:
I = Nyt | oaw

The magnetic field B1 is equivalent to that inside a long solenoid and is

given by Ampere's circuital law (MKS units):

Bj& = u L. o (15)

Combining Eqs. ('15), ( 14), and (12) gives

2 2 ' |
A", = m/Nq Boe o | - (16)

(We derive Eq.(16) more rigofously in App. A.)

Setting q = Zé, m = Zme, and N = %Ne, whére Ne is the ﬁumber of coﬁduction
electrons per unit volume (twice the number of Cooper pairs per unit voiume)
.we find |

A =f——\. | an

This result is identical with that of the Schroedinger theory. 1

Tor lead we take Ne=3x1022_pér cc (one conduction electron per lead nucleus).

Express everything in MKS units. Then Eq.(17) gives )\0=3x10“6 cm.
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13. NUMBER OF COOPER PAIRS

How many Cooper pairs'contribute to I,? The effective volume is the length 2

1

times the perimeter 2mr, times the effective thickness Ao of the surface layer.

1
Thus the number of pairs equals N 2ﬂrlko. Taki‘nng=1.5x1022 per cc, 2= 10 cm, “

and r, = 1 cm gives 3x1018.pairs.

DISCUSSION

It is remarkéble that the quantum relation (5), based on tﬁe
""old quantum theory",which retains the concept  of a‘defiﬂite orbit, gives
many of the results of the more sophisticated Schroedinger theory. It
gives the Meissner effect.(App.A),»thé correct value for'the flux quantum,
and the correct value for the London penetration distance. Surprisingly, we
also find by considering the exact solution of Eq.(5) for a solid cylinder (App-B)
that there is no freedom to replace n by, for example, n+s. That is surprising
because it is often the gaée.that the '"old qu#ntum theory" gives a result that
agrees with the 'Schroedinger tﬁeor& in'tﬁe limit of large quaﬁtum numBers But
disagregs for low quantum numbers. That.is apparently the case when we tty to
apply Eq.(5) to finding the energy levels of a single particle in a uniform
maggeéic field. . We don't get the "zero-point energy". Thus the result of

App. B was a pleasant surprise.
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APPENDIX A, THE MEISSNER EFFECT

Start with the generalized quantum relation, Eq.(5). Rather than
induced velocity v(r) we work with the induced current density

I(r) = Nqv(r) o a8)

Multiply Eq.(5) by rNq/m to get the equivalent . quantum relation

r3(r) + (Ng>/2mm)@(< r) = n Ngh/2mm (19)
'The flux @(< r) is the sum of an externai'flux plus the induced flux due to
the superconducting. current:

‘¢(-< r) =@ (<) + B ,(< 1) | . (20)

The induced flux is due to induced magnetic field Bin:
' r : . o
P, (< 1) = fBin(r')zﬂr'd;' , (21)
, - 0 ’ I

The induced magnetic field 1s obtained by applying Ampere's circuital law
to a long solenoid of length ¢: |
‘ -~ ! = > 1 . i
Bin(r )L uoI( r') o I (22)
where u, comes from the MKS units, and I( >r') is the induced current at

larger radii than r':

: Xy ) » '
I ') = [J@E") W » o (23)
N | |

Inserting (20) through (23) into (19) and defining

the quantum relation (19) becomes r ;
r 2 _ :
rJ(r) + ¢ (< r)/(2mu Xz) + (l/lz) fr'dr' fJ(r")dr" = nNqh/27m (25)
ext 0 0 0 ° !

Eq. (25) relates current density and external flux in such a way that, as we shall
see, the total magnetic field and current density go to zero in the body of the
superconductor (provided r,~r, is large compared with Ao). That is the Meissner

effect.
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In our examplé in the main text the external flux ¢ext(< r) is due to> |
a permanent magnet c.a'rr'ying flux Qo thrqugh the hollow space. In this Ap—
pendix we will inétead consider the external fiux to be due to a ‘uniform' ' -
external field Bo directed along r;h'e c’ylinder. axis and filling all space.

That gives

8 (< =Bl ' (26)

In order to solvé Eq. (25) for Jk(r) we will differentiate it twice with-
respect to r and obtaiﬁ a second order differential equation. In so doing
we will lose the b}oundary conditions cdntained in (25), and will have to .
put them back when we have found' a solution. First differentiate Eq.(25)
once with respect to r. The first term gives rdJ/dr + J. The second
term includes 'tﬁé factor d;ﬁ'e'i.{it.(<r)/dr= ZﬁrBo. | In differentiatiné »
the double integral-with.reépect to r we éimply‘ ex}ase'the first integral sign

and the .dr', and replace r' by r whereverrit appears. Thus (25) becomes
2 L : _
rdJ/dr+ J + Bor/(uok‘z) + (llli)r [I(e™dr" =0 ~ 27)
r oo

“Notice that in obtaining (27) from (2’:5) we have lost the quantum cbndition,
that n be an integer. Any constant on tﬁe right side of Eq.(25) would have
sufficed to give (27)._ ‘Now divide (27) by r, and then .differentiate with
respect to r. The first two terms give dzJ/er'*'(l/r)dJ/dl‘-J/rz; the next
gives zero. Differentiating the integral gives a minus sign' (because r is at .
the lower limit of the integral), erases the integfal- sign and the dr", and
replaces r" by r. Then (27) becomes | : . ‘ ' . ~

atsra?+/oyassam o - ands=o0 (28)

In obtéining (28) from (27) we lost the numerical value of B and also lost

the boundary co'ndition that J is zero for r > Tys and for r < ry.
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For convenience we introdxice the dimensionless variable _
X = r/}\ . o B ' "(29)‘:-',".‘
Multiplying Eq.(28) by 2 and using (29) we get

(d J/dx ) + X(dJ/dX) (1+x )J =0 _ o (30)

'Equati‘on (30) is an example of T.Bessel's modified differ_ential eq’uation6

x2(a2a/ax?) + g'(dJ/dx-)'_-(sz%xz)ho ) (31)
with, in our case, 52‘ = 1. For the region where r is of order 1 cm, we have
'x of order 106. In that region we need the é;-symptotic solutions of (30) for
large x. To obtain them consider (30) . For large x.neglect the "1" in
the factor 1+ xz). (That also means we are considering s=0and s =1 to
be indistingﬁishable.) Then assume we can negleetx-.(‘-_dJ/dx) compared' with x‘2J.
After cancelling a common factor x2 we then get.‘dzJ/dxz - kJ =. 0., with 'general.
solution |
J(x) =‘C1exp(x) + Czexp(—x)- L (32)
We easily verify that neglect of x(dJ/dx) was justified for x>>1. The largest
x for which ﬁhere can be any nonfzero J is x = X, = rz/)\o. Assume J = J2 at
X = X,. As we go to smaller x, with r decreasing_by as much as 1 cni and
hency x decreasing by as much as 106, we must set C2 = 0 in order to prevent
""blow up" of J(x). That gives
J(x) = Clexp X dzexp(x - xz). | ) (33)
After r has decreased from T, to a few millimeters less than ré, the cnrrent
density (33) is negligible. Howe{rer. when we reach the inner surface at r = r,

we have to consider again the general solution (32) and fit it to the

boundary conditions at r = r;.
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Before doing that we shall vefify that ¢33) provides exactly the right
flux to cancel the external flux to zero insidé» the body of the superconductor,
thus giving the Meissner effect. Go back to (27). Express it in terms of x.

Divide by x. The result is x
2

a3/dx 4B /O 4 fIGMa" =0 (34)
. | .

L 22

According to (33) we have d'J/dx=J..For‘0'ur:asymptotic solution we have neg-.

)

lected 1 compared with X, s0 we neglect J/x in (34).. The integral, using
(33) , is just J(xz) - J(x). Then (34) becomes

J(x) +0+B /(A u) + J(x,) - Ix) =0,
which gives ’

I =3y =BG 6

' We can now find the induced magnetic field. Use (22) and (23) with
(33) and (35) for J: 4 -
x B
= " wo_ - . .
Bin(x) Aouo }{ J(x")dx Bo + Boexp(x xz). _ €36)

The total field, Bo + Bin(x)’ equals Bo at r = and then falls exponentially

T2
to zero with decreasing radius. For r only'lo_4 cm smaller than r, (and

letting >‘o =3 x 10-6cm) the magnetic field is down by a factor of about 10_1§

which we might as-well call zero. Thus we have shown that Eq.(S) gives the Meissner

effect. We may note that our Eq.(27), which gives the Meissner effect, would still

7S

hold if the "n" in Eq.(5) were replaced by n#s, or by any constant.

In ali the results o'f. thiS‘AISpendix, so far, we have not used the fact

that our cylindef 1is hollow, with inner radius r,. If in fact the cylinder

1

‘is solid, i.e., r is zero, then the solution we have found can, to a first

1
approximation, be'extrapolated all the way to r = 0. That is oniy an approxi-
mation, because the solution given by (33) was to the ssasjmptotic differential

equation with x >> 1. 'In Appendix B we will use the exact equation so that
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we can more carefully examine a solid cylinder all the way to the origin. But

2 we have found at r = r2 is

equivalent to the current in a long solenoid, it gives a uniform induced

-already we can see that, since the current I

field for radii sufficiently smaller than r , and hence,'in this example;

2
cancels the external field B0 all the way to r = 0. For radii from slightly

less than r, tor = O,.the state is indistinguishable from one for which there

is no external field B° and no surface current I2 at r = r,, just as we
assumed in the main text.

Returning to our hollow cylinder with inner radius r,, let us start at

1’

r, and proceed to smaller radii. The solution we have just found continues

to hold as long as we have x >> 1. When we are at r slightly less than r,

the induced surface current density has become completely negligible and
the induced field has risen to its '"cancellation'" value of -Bo. As we

approach the inner surface at r =,r1 the same differential equation, holds, namely

2 2 . :
d“J/dx"-3 = 0; but now, in order to satisfy the boundary conditionms, we

v must superpose onto the existing solution (33) another term. This term will

be. due to surface current at r = - Since we are still in the regime

X >> 1, the new term must be picked from.the general solution given by (32).
In order to prevent "blow up" of this term for x increasing beyond x = Xy, we
need the decreasing exponential. Thus we get

6N

J(x) = J, exp-(x —_xl).

1

In the region between r, and Ty s J(x) is the superposition of (37) and (33).
Of course, in most of that region they are both negligible, but each gives
induced fields that extend to r = 0.

The magnétic field produced by I, is obtained by using (37) in Egs. (22)

1
and (23). The result is
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Bin(x) = uoloJlexp—(x-xl). | ) (38)

Eq7(38) gives the induced field for r»2F1¢ Of course for r f;l this field

is constant and equal to B1 = uokal 3 this.relatidn, with Eqs.(18) and (16)

verifies our qualitatively derived Eq.(12).

The total fluk,from r = 0 to a radius r that is sufficiently greater
than L] (i.e., r - r, >> Ao),is,given'by integrating (38) from r = T to

this sufficiently large r, and'iadding that -flux to the flux erzBl from r<r..

1
The result is

) =v(nri + 2mr A )B, = nh/q ‘ o (39)
where the sétting of.;his flux equal to nh/q came from (19),.with J(r) = 0
for r - r, >> Ao' Recall that in this same region (from r=0 to r several
times ngreatg;_than rl)ythe external magnetic'fie;d B° is compietely cancelled
by the induced field dﬁe to the current I2 on the outer surface.
-1f we now slowly.turn down the external field to zero the surface current I2
will also go to zerb.i The.current L will-not change; We will be lefF with

trapped flux given by Eq.(39). Note that not only the flux is quantized, but also

the field value B1 and, because of Eq.(12), the current density Jl at r=r,.

That implies that the current I is quantized.
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APPENDIX B. THE QUANTUM NUMBER IS n, NOT n +3.

Consider a solidvéuperconducting“cylindgr,of radius r, in a uniform external
field B° directed along thé axis;" All of ;he discussion of Appendix A that
led to the solution (33)lstill holds. But now ﬁé have no inner surface, so
that we need not only the :asymptotic solution given by (33) but also tbé
solution all thé.way in to the origin. When we go all the way to the origin
we can of course distinguish between s = 0 and s = 1 in(31) .. E§en~though
our equation has s = 1 it tqrné'out that the solution for s = 0 wiil be
useful. By using a pbwer series expénsion at x = 0 we easily verify'that

the solutions of (31) for s = 0 and s = 1 that do not blow up at the origin .
6 .

are
| xz ' xﬁ x ' ‘
s=0: 1 (X)=1+=F5+-—-"— + + ... (40)
o 2T 2.2 02 2. 2
s=1: I,(x) = > + x + x f— x| + ... R3S
1 2224 2% 426 2% 42 6% 3
with
41,00 /dxt = L. o 5 (42)

The function'Io(x) resembles coshx; Il(x)-resembles siﬁhx. At large x, Io
and Il are both ffoportional to exp(x% and_&re_nearly indistinguishable as
discussed after Eq.(31). We.now take the eﬁact-solﬂtion of (30) corresponding
to the sasymptotié solution (33), to be

J(x) = A L () | | (43)
with A as unknown coefficient. The quantﬁm condition (25) expressed in terms

of x becomes
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2 X9
BoxA I I )
xJ + 53 + x'dx' J(x")dx" = nNqh . ' (44)
oo o - x' 2TmA
. ! i o
Using (43) and (42) we £ind
XZ . .
[ J(x")ax" = A[T_(x,)) - I (x)]. : (45)
x' '
Thgn % \ ‘
X 2 2 X
[xlax' [ J(x™ax" =% AL (x,)x" - A [ x'I_(x")dx'. - (46)
\ . :

o X ' , o

Multiplying (40) by x and integrating term by term, and then comparing with
(41), we find y
X _ _ :
fx't (x")dx' = xI; (). : ' , - (47)
o - : .
Inserting (47) into (46), and_theﬂ (46) into (44) we find the happy result
~ that the term xIl(x) cancels and we are left with a simple result that holds

for all values of x:

1.2 4 31 - - |
7 X [130/>\0uo + AT (x,)] = 1;11‘1Imgl;\1 . (48)
. . o "

The right side of (48) is independent~of.x. ‘'Therefore the left side must
vanish. That gives - \
| | A= %Bolxouolo(xz) (49)
and the exact result . ' . '
n=0, o | - (50)
At this point we may recall ourf"enthusi;asm t‘empel.'ingv" dislc.:ussion after
Eq.»(9) where we pointea oﬁt that in using the "old quantum theory" we could
not be sufe whether we should uée n or nts, In the preéent example of a solidﬁ
cylinder in a uniform external field, Eq;(48) can only be satisfied fo£ n=0.
That is if we replace n bybn+% and then set n=0 there is no solution. ﬁe conclude

.that at least for this case we can resolve the ambiguity and firmly choose the

quantum number to be n, not n#s, without resorting to“the Schroedinger theory. .
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To complete the present example we find the.magnetic field for all values
of x. The field is obtained from Eqs. (22), (23), (45), and (49). The result is

Btot(x) = Bin(x) + Bo

1

BI(O/T (x) G

This‘égreés with Eq.(33), except that (51) holds all the.way in to x=0 whereas

(33) holds only fbr x >>1, 'Remarkabiy, they agree at erIas well as at # >>1,
To summarize: for -a sdiid cylindervthe magnetic field is essentially

excluded from the intire cylinder and flux-quantum integer n is exactly zero.
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APPENDIX C. RADIAL'EQUILIBRIUM:,THE RADTAL HALL EFFECT

We have found4that‘everywhere in ‘the thin surface-current layer at r = r,
the magnetic field is rl/Ko times larger than that which would give an -

equilibrium cyclotron orbit. Therefore the orbits of the Cooper pairs will

v

drift to slightly smaller radii until anegative surface charge is induced
on the inner surface, and a positive nuclear charge is slightly uncovered
throughout the surface layer. The drift will continue until radial equil-

ibrium is established between the induced radial electric field Er\and the

-magnetic field. Since we have found that the magnetic force is of order 106
times mvz/r, the eléctric force must nearly cancel the magnetic force at all

radii. At r=r1.that gives qEr=QV1B1 Since v and B each fall off exponentially
with increasing r [see Eqs.(37) éhdt(38)] that gives Er as a function of r:

E-= 2(z- | 52
| Er—lelexpEz(r rl)/ko-x | - (52)
Integrating Eq.(52) from r=r, to r2,‘with rz—r1>> Xo gives a radial

"Hall effect" emf _ -
; = ‘ = ’ 53
Vr !ﬁle1 Ao %qu.ko/m.' | (53)
where in the last step we used Eq.(l12) to eliminate L For Bl=0.1T, m=2me,‘

q=2e, and Ao = 35:10-'6 cm this-giveS'Vrﬁ0.8 microvolts.

How far do the Cooper pairs drift before they establish the equilibrium
electric field? (It had better be small compared'with_lo or we are in deep
trouble!) .The largest drift needed will be where there is the largest B, at

o | ) ‘ ,
"y = r.. The radial field there is E_ = v.B. = qA BT /m. The corresponding

1 r 11 "ol .
total induced charge Q is given by using Gauss' Law: -Er2ﬂr1£ = Q/eO
Let the drift distance be d. Then Q is given by the pairs in the volume of

the very thin layer of thickness d: Q=Nq21Tr1IL“d‘. Putting all these together

gives
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. _ 2 i -
d/AQ = Bi€_/Nm. | (54)

For Bo = 0.1T and N = 1.5 x'1022 per cc we get (putting everything first

into MKS) d/)\o =3 x 10—12. Thus the ”fricﬁionless tube" provided by the

radial electric field is extremely rigid. There is no tendency for the

surface layer to be "squashed flat".
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