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Hydraulic diversity of forests regulates ecosystem 
resilience during drought
William r. L. Anderegg1*, Alexandra G. Konings2, Anna t. trugman1, Kailiang Yu1, David r. Bowling1, robert Gabbitas1,  
Daniel S. Karp3, Stephen Pacala4, John S. Sperry1, Benjamin N. Sulman5,6 & Nicole Zenes1

Plants influence the atmosphere through fluxes of carbon, water 
and energy1, and can intensify drought through land–atmosphere 
feedback effects2–4. The diversity of plant functional traits in forests, 
especially physiological traits related to water (hydraulic) transport, 
may have a critical role in land–atmosphere feedback, particularly 
during drought. Here we combine 352 site-years of eddy covariance 
measurements from 40 forest sites, remote-sensing observations of 
plant water content and plant functional-trait data to test whether 
the diversity in plant traits affects the response of the ecosystem to 
drought. We find evidence that higher hydraulic diversity buffers 
variation in ecosystem flux during dry periods across temperate and 
boreal forests. Hydraulic traits were the predominant significant 
predictors of cross-site patterns in drought response. By contrast, 
standard leaf and wood traits, such as specific leaf area and wood 
density, had little explanatory power. Our results demonstrate 
that diversity in the hydraulic traits of trees mediates ecosystem 
resilience to drought and is likely to have an important role in future 
ecosystem–atmosphere feedback effects in a changing climate.

Water, carbon and energy exchanges from the land surface strongly 
influence the atmosphere and climate; these exchanges are dominated 
by plants in most ecosystems1. Plant physiological responses to water 
stress influence these fluxes5,6, and the resulting land-surface feedback 
effects influence local weather as well as the regional atmospheric circu-
lation7. Furthermore, changes in vegetation physiology and cover can 
drive shifts in sensible and latent heat fluxes that intensify droughts2–4,8. 
Anthropogenic climate change is expected to intensify the hydrological 
cycle globally, leading to more frequent and more severe droughts in 
many regions9. Therefore, understanding the drivers of land–atmos-
phere feedback effects during drought and simulating them in Earth 
system models is critical for robust future projections and assessment 
of climate change impacts.

Seminal work has shown that grassland plots with more species 
exhibit smaller declines in productivity during drought and recover 
productivity much faster following drought10, indicating that plant 
biodiversity—particularly functional diversity—may be important for 
capturing how the land surface interacts with the atmosphere during 
extreme events. Indeed, it is well-established that—just as a diversified 
stock portfolio is more likely to survive market turbulence11—diversity  
can stabilize community function through multiple mechanisms12. 
First, diverse communities are more likely to contain species with 
different traits that dictate how they respond to disturbances13. As a 
result, at least some species are likely to persist through any given dis-
turbance14. Second, diverse communities are more likely to contain 
competitors that exhibit compensatory dynamics: when drought causes 
one species to decline in function, its competitor may increase in func-
tion and stabilize community function12. Critically, diversity–stability 
effects are mostly absent in most global land-surface models, most of 
which represent each biome or plant functional type with a single set 
of functional traits15, partly owing to a lack of understanding of which 
functional traits are the most important at ecosystem scales.

Diversity in the water transport strategies of plants has been hypoth-
esized to play a critical part in regulating the response of an ecosystem 
to drought16,17. Plant water transport through the hydraulic contin-
uum is mediated by a variety of traits18,19, including xylem vulner-
ability to embolism, stomatal regulation and other characteristics20. 
Thus, diversity of plant hydraulic strategies and traits could buffer an 
ecosystem against drought, as some species will curtail gas exchange 
and latent heat flux through transpiration before others. However, the 
physiological mechanisms that govern water transport through the 
hydraulic continuum do not correspond well with traditional plant 
functional types in land-surface models21,22. This raises the prospect 
that land-surface models may be missing a critical component of func-
tional diversity when simulating future climate scenarios with a more 
intense hydrological cycle.

Here we test whether plant trait diversity in forests can directly 
affect land–atmosphere interactions by mediating and buffering  
the response of latent heat fluxes to changes in water availability. We 
combine climate data, 352 site-years of eddy covariance data from  
40 temperate and boreal forest sites across the globe (Extended Data 
Fig. 1 and Supplementary Table 1), and datasets of multiple plant func-
tional traits at the species level. We test which site-level factors (for 
example, stand age) and plant traits are most associated with ecosystem 
flux variation in response to drought and whether diversity in response 
traits stabilizes fluctuations in ecosystem fluxes during drought periods.

We first examine which plant traits and site-level factors can best pre-
dict how eddy covariance measurements of daily latent energy exchange 
(a proxy for forest transpiration) vary in response to water availability. 
At each eddy covariance site, we quantified this drought response with 
two complementary metrics: the ‘drought coupling’ (model R2) and 
the ‘drought sensitivity’ (standardized model coefficient values) of a 
multiple regression of latent energy as a function of vapour pressure 
deficit (VPD), soil moisture and their interaction (equation (1) in the 
Methods). All else being equal, forest sites with lower coupling and 
lower sensitivity will experience smaller variation (higher resilience) in 
latent energy fluxes explained by variations in VPD and soil moisture.

We considered site factors—stand age, species richness and gym-
nosperm fraction—and the mean and standard deviation of key func-
tional traits expected to influence drought responses. We examined 
wood density, specific leaf area, maximum light-saturated photosyn-
thetic rate (Amax), the water potential at which 50% of stem xylem 
conductivity is lost (P50), the minimum stem water potential typically 
experienced (Psimin) and several estimates of the hydraulic safety mar-
gin18,23 (HSM; the difference between Psimin and P50 in Fig. 1; alter-
native analyses in Supplementary Table 2). We compiled trait data for 
the dominant tree species at each site that make up more than 80% of 
the biomass (mean trait coverage: 91% of biomass). A strong influence 
of mean trait values indicates the importance of particular trait values 
in dictating community-wide responses to drought. By contrast, the 
influence of trait standard deviations suggests that it is the trait diversity 
per se that buffers communities24. We used univariate regression with 
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individual traits, multivariate regression with model selection using the 
Akaike information criterion (AIC) and a machine-learning algorithm  
(random forests) to identify the most critical traits or site factors.

Of the tested traits, the community-level variation in HSM was the 
most predictive of forest flux responses to drought (Fig. 1), explaining 
41% and 34% of the cross-site patterns in univariate models of drought 
coupling and drought sensitivity, respectively (P < 0.01 and P = 0.02 
after correction for multiple hypothesis testing). However, considerable 
variation in drought coupling and sensitivity existed at sites where the 
HSM variation was low. Model selection techniques on multivariate 
trait models showed that the standard deviation of HSM and mean 
maximum photosynthetic rate were the most parsimonious models 
for drought sensitivity (R2 = 0.45, P < 0.001, ΔAIC < −2 from all other 
models). The standard deviation of HSM alone was selected as the most 
parsimonious model for drought coupling (R2 = 0.41, P = 0.001). Model 
selection further indicated that the remaining predictors had little effect 
on model performance. In addition, the machine-learning algorithm 
consistently indicated that the standard deviation of HSM was one of 
the most important predictor variables (Extended Data Fig. 2).

We found that higher diversity in the HSMs of the species in an 
ecosystem significantly buffers ecosystem latent heat flux response to 
drought (Psens = 0.003, Pcoup = 0.001; Fig. 2). All else being equal, forest 
communities with higher hydraulic diversity (defined as a higher stand-
ard deviation in HSM) experienced smaller variation in latent energy 
fluxes explained by VPD and soil moisture. This pattern was generally 
robust, especially for the drought coupling metric, to the method of 
data processing including: (1) adjustment of measured latent energy 
exchange to correct for energy balance non-closure (Pcoup = 0.007); 
(2) using both standardized (z-score) and raw drought variables 
(Pcoup = 0.001); (3) alternative estimates of the HSM (Supplementary 
Table 2 and Extended Data Fig. 3); and (4) accounting for other poten-
tially confounding factors such as forest age (Methods).

We found here that plant trait variation, particularly hydraulic 
diversity, has a critical role in the response of temperate and boreal 
forests to drought. The importance of trait variation metrics (Fig. 1), 
as opposed to trait mean metrics, highlights a critical role of compen-
satory dynamics among species in how functional diversity mediates 
ecosystem responses to climate extremes (Supplementary Information). 
We acknowledge, however, that our analysis is limited to 40 flux sites 

and the examined traits do not capture all the important elements of 
the drought-response strategies of each species. More traits, particularly 
rooting depth and allometric differences (for example, leaf-to-sapwood 
ratios), will probably help to explain some of the remaining variations 
in ecosystem resilience. Furthermore, our sites generally do not include 
droughts that are severe enough to trigger tree mortality or changes in 
species composition, which may be important processes that influence 
the long-term response of an ecosystem to drought25.

Recent advances have shown that plant hydraulics can be used to 
predict stomatal responses to changing environmental conditions19,26 
and the simulation of plant hydraulic transport in Earth-system models 
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Fig. 1 | Variation in hydraulic traits mediates ecosystem flux response 
to drought. The percentage of explained variance (R2) in an ordinary 
least-squares linear regression of community-weighted plant traits (dark 
red, hydraulic traits; red, other traits) and site metrics (black, above the 
dashed line) in explaining cross-site patterns in the coupling (a) and 
sensitivity (b) of latent energy exchange variation in response to drought 
variables. Site metrics include: forest age (Age), species richness (nspp) and 

fraction of forest composition that is gymnosperm species (Gfrac). Traits 
include the community-weighted mean and standard deviation (s.d.) of: 
wood density (WD), specific leaf area (SLA), Amax, P50, HSM and Psimin. 
For samples sizes for each trait, see Supplementary Table 3. Asterisks 
indicate statistically significant regressions (P = 0.001 (a) and P = 0.02 (b) 
after correction for multiple hypothesis testing).
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Fig. 2 | Ecosystem sensitivity to drought as a function of community 
variation in hydraulic safety margin. a, Drought coupling is expressed 
as the percentage of explained variation (R2). b, Drought sensitivity is 
expressed as the summed absolute values of standardized coefficients 
of drought variables regressed against latent energy (LE) exchange 
as a function of daily VPD, soil moisture (SM) and their interaction 
(regression: LE = f(VPD, SM, VPD × SM). Hydraulic variation is expressed 
as the community-weighted standard deviation in the HSM of each 
species. Colours indicate biomes of deciduous broadleaf (green) and 
needleleaf (red) forests. The size of the dot indicates the number of days 
included for each flux site. The solid black line is the best-fit ordinary 
least-squares linear regression and dashed lines are the 95% confidence 
interval of the regression fit (n = 23 independent sites).
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is now possible27. Current land-surface models largely do not simulate 
diversity in strategies in plant response to drought, nor do they currently 
include plant hydraulics, potentially leading to substantial carbon cycle 
uncertainty28. Efforts are underway to develop and test functional trait-
based models at the Earth-system scale15. Incorporating plant hydraulic 
diversity, especially through diversity in P50 and stomatal response to 
water potential (for example, HSM), will also improve the representa-
tion of related processes. For example, the loss of plant hydraulic trans-
port is the key mechanism of drought-induced mortality29 and can 
predict mortality risk among species in diverse communities30.

Our broadly distributed temperate and boreal forest flux tower anal-
yses suggest that drought resilience signals from biodiversity might 
be observable in satellite-based estimates of vegetation water content 
(Methods and Extended Data Figs. 4, 5). As a preliminary exploration, 
we examined covariation of the variability in vegetation water content 
with dominant tree species diversity across the continental United 
States and conducted a similar, more speculative analysis at global 
scales. Similar to the eddy flux tower findings, higher species diver-
sity was associated with a more buffered response of vegetation water 
content to drought indicators across the United States (Psens = 0.0005; 
Pcoup < 0.0001; Extended Data Fig. 6) and globally within tropical moist 
(P < 0.0001), tropical dry (P = 0.03), temperate broadleaf (P = 0.01), 
temperate conifer (P = 0.02) and boreal (P < 0.0001) forest ecosystems, 
and was marginally associated in Mediterranean-type woodlands 
(P = 0.07) (Fig. 3 and Extended Data Fig. 7). Species richness was also an 
important predictor variable identified using the machine-learning algo-
rithm (Extended Data Fig. 8), for which the complete model explained 
27% of the variance in drought responses in global forests. The influ-
ence of diversity on ecosystem sensitivity showed strong biome-specific 
differences (Fig. 3). Across biomes, we observed a saturating relation-
ship between the biodiversity and drought sensitivity of the ecosystems 
(Extended Data Fig. 9), although this appears to be driven by biome-level 

differences in sensitivity. Although this initial exploration should be 
treated with caution before a more detailed observational validation is 
performed, it provides a starting point for global analyses of how forest 
diversity regulates ecosystem resilience during drought that is consistent 
with conclusions drawn from flux tower analysis.

We have documented a fundamental effect of trait variation on eco-
system stability that directly influences the atmosphere and climate 
system. Temperate and boreal forest ecosystems with higher hydraulic 
diversity are more buffered to changing drought conditions. Owing to 
the paucity of eddy covariance sites and physiological trait measure-
ments at tropical forest sites, additional measurements are needed to 
test these diversity–stability patterns in more diverse forests. Our initial 
analysis suggests that satellite measurements of canopy water content 
may be promising for overcoming some of the scarcity barrier of lim-
ited eddy covariance sites for scaling and testing drought responses at 
continental scales. Our results provide evidence that hydraulic diversity 
is a critical element of biodiversity for next-generation land-surface 
models to include to improve simulations of carbon, water and energy 
fluxes in a rapidly changing climate.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0539-7.
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Fig. 3 | Forest ecosystem response to drought estimated from remote-
sensing-derived vegetation water content variation is influenced by 
species richness. a, Drought coupling as the percentage of explained 
variation (R2) in an ordinary least-squares linear regression by drought 
variables on an index of aboveground plant water content variation at 
midday (regression: vegetation optical depth at midday (VODmidday) 
= f(VODnight, VPD). b, Native plant species richness (percentage of 
the maximum). Data available from http://ecotope.org/anthromes/
biodiversity/plants/data/. c–h, Regressions between these two variables 
for six major biomes. c, Tropical and subtropical moist broadleaf forests. 

n = 1,380 grid cells. d, Tropical and subtropical dry broadleaf forests. 
n = 241 grid cells. e, Temperate broadleaf and mixed forests. n = 1,289 grid 
cells. f, Temperate coniferous forests. n = 318 grid cells. g, Boreal forests. 
n = 1,784 grid cells. h, Mediterranean-type forests, woodlands and shrubs. 
n = 319 grid cells. Each point represents an individual grid cell from the 
map and redder colours indicate a higher density of points. Red lines show 
ordinary least-squares regression lines of best fit. Numbers in the upper 
right of panels indicate the linear generalized least-squares regression 
R2 and P values indicate statistical significance of that regression after 
accounting for spatial autocorrelation.
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MEthodS
Flux tower analysis. We used the FLUXNET2015 Tier 1 dataset of eddy covariance 
sites (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) around the world to 
quantify ecosystem sensitivity to drought and the degree to which plant traits 
mediate ecosystem flux variation due to changes in environmental drivers. The 
FLUXNET2015 dataset provides a standardized set of fluxes of carbon, water and 
energy at over 210 sites and has undergone a standard set of quality assurance 
and quality control tests and gap-filling31. Using the biome classification from 
the International Geosphere–Biosphere Programme (IGBP) provided for the 
FLUXNET2015 sites, we selected sites that were forest or woodland ecosystems 
(deciduous broadleaf forest, evergreen needleleaf forest, evergreen broadleaf forest 
or mixed forest) and sites that had not experienced disturbance in at least 10 years 
before flux monitoring, to avoid sites with frequent disturbances or rapidly devel-
oping vegetation. This led to a list of 65 candidate sites. Because adequate on-site 
climate data are needed to determine drought sensitivity and knowledge of the 
functional traits of dominant canopy species, we further excluded sites that did 
not have on-site measurements of the vapour pressure saturation deficit of air 
(VPD, calculated from temperature and relative humidity and reported as a derived 
variable in the FLUXNET2015 dataset), soil water content of the top 30 cm, or 
sites that did not have adequate species coverage of functional trait measurements 
(see below) for at least two of our functional traits. This led to a final site list of 40 
forest sites around the world (Supplementary Table 1 and Extended Data Fig. 1), 
covering 352 site-years of data.

We used a previously published method5 that was specifically designed to esti-
mate drought sensitivity at a given eddy covariance site by focusing on days when 
water availability was most likely to control ecosystem fluxes (for example, screen-
ing out days when other meteorological drivers, such as radiation, were likely to be 
more important influences on fluxes). In brief, we used the daily-level records of 
latent energy exchange as dependent variables to quantify variation in water and 
energy fluxes. Latent energy is dominated by plant transpiration in forest ecosys-
tems under certain conditions5,6 and thus variation in latent energy exchange is a 
major mechanism through which plants on the land surface affect the atmosphere. 
Following previous analyses5, we conservatively selected only days on which latent 
heat was dominated by transpiration, changes in leaf area were likely to be relatively 
minor, and flux variation was likely to be influenced by water availability. Thus, 
at each site, we restricted our analysis to days during the peak of growing season, 
quantified as days on which: (1) the average temperature was above 15 °C; (2) solar 
radiation was high, quantified as days in which 24-h average photosynthetic pho-
ton flux density was greater than 500 μmol m−2 s−1; and (3) sufficient evaporative 
demand existed to drive water fluxes, quantified as 24-h average VPD > 0.5 kPa. 
For all analyses, we used both the ‘LE’ and ‘LE.CORR’ variables reported by the 
FLUXNET2015 database for latent energy exchange. LE.CORR reflects a correc-
tion factor, which assumes that the measured Bowen ratio is correct; this fac-
tor scales the energy fluxes with the measured Bowen ratio and is used to force 
energy balance closure at each flux site. Our results were robust to either variable. 
Following previous analyses5, we standardized the timeseries of latent energy by 
dividing by the mean latent energy at a given site where VPD was between 0.9 and 
1.1 kPa and volumetric soil water content was >90th percentile (considered to be 
well-hydrated conditions). This standardization allowed for cross-site comparison 
of latent energy sensitivity to climate conditions, by accounting for fixed extrinsic 
(for example, stand biomass or leaf area) drivers.

Once this subset of days was determined, we constructed a multivariate drought 
model for each site by performing a multiple linear regression of daily latent energy 
exchange (LE) as a function of daily VPD, soil moisture (SM) and their interaction, 
as has previously been done for cross-site comparisons in eddy covariance data5,6:

β β β ε= + + × +LE VPD SM SM VPD (1)1 2 3

in which βi indicates the regression coefficient for term i. Consistent with previous 
drought regression studies that focused on temperate forest eddy covariance sites 
across the United States5,6, soil moisture in the top 30 cm was used because data 
for soil moisture from deeper layers are rarely available. We note that soil mois-
ture is challenging to quantify across flux sites and absolute values of volumetric 
water content of soil should be treated with caution. This multivariate regression 
method has been used successfully in multiple temperate forest studies across the 
United States to quantify the sensitivity of ecosystems to the critical components 
of drought stress5,6 and performed relatively well at our flux sites (Extended Data 
Fig. 10).

The adjusted R2 values of these regressions represent the degree to which eco-
system-level variation in latent energy exchange was controlled by VPD and soil 
moisture and was subsequently used as a dependent variable (‘drought coupling’ 
in the main text) in our cross-site analysis. In addition, we further performed 
all multiple linear regressions with standardized (z-score) VPD, soil moisture  
and their interaction, which enabled quantitative comparison of the regression 

coefficients32. We summed the absolute values of the three coefficients to provide 
a metric of ‘drought sensitivity’ at each flux site.

From published literature, we compiled the species composition and, where 
possible, dominance of tree species at each flux site (Supplementary Tables 3, 4). 
Using a combination of the metadata and studies listed on the host site for each flux 
tower and targeted literature searches, we created a database of the dominant tree 
species in the footprint of each flux tower. For 22 of the 40 sites (Supplementary 
Tables 3, 4), we were able to acquire estimates of relative dominance of each  
species, typically through metrics of basal area or composition percentage, and we 
converted these metrics to the proportion of each species within the total plant 
community (that is, between 0 and 1). These values were used in a subsequent 
analysis to calculate community-weighted (for example, dominance-weighted) 
trait means and standard deviations.
Trait analysis. We compiled trait data for dominant tree species that comprised 
>80% of the biomass and/or composition at all sites (mean across all sites: 91%), 
which enabled capturing first-order effects of functional traits on ecosystem water 
fluxes. For sites for which biomass and/or composition data were not available, we 
assumed that all ‘dominant’ species listed in the publication had equal composition. 
We used the Global Wood Density Database33,34 to compile wood density data 
for species. We used a previously published dataset35 to compile the traits of each 
species for light-saturated maximum photosynthetic rate and specific leaf area 
(SLA). Traits related to photosynthetic rates and SLA are prominent traits that 
are typically considered as inputs for next-generation ‘trait-based’ models, and 
SLA is often related to leaf metabolic rates and lifespan in these models. We used 
the Xylem Functional Traits database36 to compile the water potential at 50% loss 
of hydraulic conductivity (P50) and the HSM, defined as the difference between 
P50 and the minimum water potential experienced (see alternative definitions in 
Supplementary Table 2), for each species. The HSM has previously been observed 
to be a critical predictive trait18, because it provides an integrative assessment 
of species ‘riskiness’ during drought, integrating both hydraulic vulnerability to 
water potential and stomatal responses23 and/or potentially diversity in the rooting 
strategies of each species. We then calculated the mean and standard deviation of 
each trait for each site as the community-weighted mean and standard deviation. 
Supplementary Table 3 describes the proportion of species composition at each 
site for which we had adequate trait data and sites were dropped from trait-level 
analyses if they had insufficient trait data.

Using the drought correlation and drought sensitivity of flux sites as dependent 
variables, we used three complementary approaches to determine which site factors 
and functional traits were most important. First, we performed univariate ordinary 
least-squares regressions between functional traits and the drought response met-
rics (Fig. 1). Because this involved multiple hypothesis testing, we implemented 
the Bonferroni correction to adjust P values for multiple comparisons. Because the 
hydraulic trait P50 can be sensitive to method artefacts, we repeated this analysis 
with alternative values for the few (n = around 6–8) potentially problematic species 
(Supplementary Table 5) and observed that our results were robust. Second, we 
used models of multiple traits, determining the most parsimonious model through 
model selection procedures. Because variable importance estimates can be biased 
by collinear predictor variables, we used a matrix of pairwise correlations and 
removed any variable with high correlations (R > 0.5) with other predictor var-
iables. Each pairwise correlation was performed and the variable with the lower 
correlation with the dependent variable was removed37. With this reduced set 
of predictor variables, we then used both forward and backward stepwise model 
selection via AIC, with ΔAIC values of <−2 used as a criterion to drop variables38. 
This technique provides a rigorous estimate of the most parsimonious model, and 
the coefficients of the (previously standardized to z-score) predictor variables that 
remain can be compared directly. Because the quantity of data available across sites 
was highly variable (range 10–1,200 days that met the above criterion) and thus 
the variable statistical insight that can be drawn from each site varied based on 
this sample size (that is, a regression that covers 20 days should be down-weighted 
relative to a regression that covers 800 days), we weighted each site by the number 
of days for which data were available. For plotting Fig. 2, one site with adequate 
HSM data was classified ‘mixed forest’ by the FLUXNET2015 database and for 
simplicity we plotted it as an ‘evergreen needleaf forest’, because it was dominated 
by gymnosperm species.

Finally, we used a machine-learning algorithm of random forests39 to estimate 
the variable importance on the non-collinear traits identified as above. We chose 
this algorithm because it (1) performs well among machine-learning algorithms; (2) 
makes no assumptions about the distribution (for example, normality) of the input 
data; (3) makes no assumptions on the functional form of the relationship between 
independent and dependent variables (for example, linear, nonlinear, and so on); 
and (4) can handle interactions between independent variables. We examined 
variable importance using the total decrease in node impurities for each variable.
Satellite estimates of drought-driven variation in vegetation water content. We 
tested spatial patterns of variations in drought sensitivity using ecosystem-scale 

© 2018 Springer Nature Limited. All rights reserved.

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/


Letter reSeArCH

estimates of vegetation water content from microwave radiometry-derived  
vegetation optical depth (VOD). We used VOD from the land parameter  
data record, which was retrieved from the X-band (10.7 GHz) observations  
of the advanced microwave scanning radiometer–earth observing system 
(AMSR-E) based on simultaneous retrieval of atmospheric water vapour, surface 
soil moisture, VOD and the canopy scattering albedo. Measurements across a 
variety of ecosystem types have previously shown that VOD is proportional to 
plant water content40 and therefore also to leaf water potential41, although addi-
tional research is needed to determine how the relationship between VOD and 
plant water potential varies across ecosystems. Full retrieval algorithm details can 
be found in previously published studies42–44. Rainy days were filtered from the 
record to avoid contamination from intercepted water on the leaves affecting the 
AMSR-E observations. Data for which the land-surface temperature (derived from 
higher-frequencies of the AMSR-E radiometer) was below 273 K were assumed 
to represent frozen soil conditions for which the VOD retrieval algorithms are 
not valid, and were also removed from the dataset. We used data from January 
2003–December 2010 (the AMSR-E failed in 2011). Rain was determined based 
on data from the Global Precipitation Climatology Project45. We compared daily 
midday VOD estimates to the total daily latent energy fluxes at our flux tower 
sites and found that the two were linearly related despite each VOD observation 
representing an area 2–3 orders of magnitude greater than the flux tower fetch 
(P < 0.0001, Extended Data Fig. 4), indicating that both captured the broad-scale 
ecosystem response to water availability. Furthermore, we observed that hydraulic 
diversity was correlated with tree species richness in the United States (R2 = 0.65; 
P = 0.04, Extended Data Fig. 5).

To calculate drought coupling, we first conducted a similar analysis to equation 
(1) by calculating the R2 for each grid cell of the regression of VOD at midday ver-
sus VOD at night and daily VPD, although without the interaction term present in 
equation (3). The night-time (01:30) VOD was used because it is representative of 
root-zone soil moisture variation, given pre-dawn equilibrium between root-zone 
soil water potential and leaf water potential. This R2 was used to measure drought 
coupling (coefficient of determination) at global scale. To quantify drought sensi-
tivity, we used estimates of ecosystem ‘anisohydricity’ derived from the same VOD 
data. Anisohydricity is a measure of leaf water-potential response to soil drying and 
increases in VPD, as influenced by stomatal closure and xylem loss of conductivity. 
The anisohydricity was calculated as previously published22 based on the slope of 
the relationship between midday (13:30 local time) overpass VOD and midnight 
(01:30 local time) overpass VOD, for which—at the latter time—leaf and soil water 
potential are assumed to be in equilibrium owing to night-time refilling. Higher 
values indicate more anisohydric or less drought-sensitive ecosystems, although 
prolonged droughts may still lead to a reduction in growth46.

For the US-based analysis, we used the richness of dominant tree species from 
a previous study47 to compare to hydraulic diversity of our eddy covariance sites. 
Globally, we used the previously published dataset48 that provides spatial pat-
terns of plant diversity based on species-area relationships and ground plots. We 
converted this dataset to a raster with 1 × 1 degree resolution and then used the 
previously published biome map49 at the same resolution to determine the biome 
of each grid cell. We examined only grid cells that were dominated by one of six 
forest biomes (moist tropical forest, dry tropical forest, broadleaf temperate forest, 
coniferous temperate forest, boreal forest or Mediterranean-type forest/woodland). 
We further screened grid cells to remove cells with >25% human impact (typically 
croplands) based on a previous study50.

We converted the vegetation water content variation metrics (correlation and 
sensitivity to drought variables) to the same resolution using bilinear interpola-
tion. For each biome, we examined the relationship between species richness and 
water content variation using linear mixed-effects models to account for spatial 
auto-correlation. Per standard practice51, we included the latitude and longitude 
coordinates of each grid cell in the regression and tested the following spatial cor-
relation structures—linear, quadratic ratio, exponential, spherical and Gaussian—
selecting the most likely and parsimonious model using ΔAIC < −2 or more. The 
quadratic correlation structure was most parsimonious for all biomes. We further 
checked that the effect of species richness was not due to patterns in biomass and/or 
productivity alone by including models that had both richness and the mean pixel 
VOD over the whole record, which is strongly related to aboveground biomass. 
Using stepwise model selection using AIC, the most parsimonious model included 
both mean VOD and species richness, indicating that richness is important beyond 
average biomass/productivity. Finally, we performed a similar random forest anal-
ysis and variable importance as conducted for the flux tower analysis and included 
species richness, mean VOD, canopy height52 (to account for potential successional 
and/or land use effects) and biome.
Statistics. No statistical methods were used to predetermine sample size. All sta-
tistical analyses were performed in the R computing environment53. Model selec-
tion was performed using the stepAIC function in the MASS package54. Statistical 

assumptions of linear models were verified by examining residual and quantile 
plots of the models and transformations were applied as needed. All maps were 
generated using the raster55 and rworldmap56 packages and spatial autocorrelation 
was modelled using the gls function in the nlme package57. The generalized addi-
tive model in Extended Data Fig. 9 was performed using the gam function in the 
mgcv package58. Random forest analyses were performed using the randomForest 
and ranger packages.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Eddy flux data are available at http://fluxnet.fluxdata.org/data/fluxnet2015-data-
set/; community trait data are available at http://www.anderegglab.net/data/trait-
data/; detailed trait data are available in Extended Data Figs. 1–10 and at https://
datadryad.org//handle/10255/dryad.235, https://datadryad.org//handle/10255/
dryad.80340 and from a previous publication18.
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Extended Data Fig. 1 | Map of the included eddy covariance flux sites 
overlaid on species richness. Species richness is shown by different colours 
(data from http://ecotope.org/anthromes/biodiversity/plants/data/).  

Size of the circle is representative of the sample size of included days 
ranging from 10 (smallest circles) to 1,057 (largest circles) samples.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 2 | Variable importance analysis for traits at flux 
sites. a, b, Variable importance (total decrease in node impurities) results 
from the machine-learning algorithm, random forests, for each variable 
for drought sensitivity (a) and drought coupling (b) metrics. Traits include 

SLA, (Amax), P50 and HSM. The suffix ‘m’ indicates the community-
weighted mean; the suffix ‘SD’ indicates the community-weighted 
standard deviation. See Supplementary Table 3 for sample sizes.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 3 | Increased hydraulic variation buffers ecosystem 
drought responses. a, c, Drought coupling is expressed as the percentage 
of explained variation (R2). b, d, Drought sensitivity is shown as the 
summed absolute values of standardized coefficients for drought variables 
that are regressed against latent energy (LE) exchange. Regression: 
LE ≈ VPD + SM + VPD × SM. a, b, Panels are identical to Fig. 2 but 
with site identifications shown. Hydraulic variation is expressed as the 
community-weighted standard deviation in the hydraulic safety margin 

of species. c, d, The hydraulic safety margin was calculated from the 50% 
loss of hydraulic conductivity in gymnosperms and 88% loss of hydraulic 
conductivity in angiosperms. Colours indicate biomes of deciduous 
broadleaf (green) and needleleaf (red) forests. The size of the dot indicates 
the number of days included for each flux site. The solid black line is 
the best fit of the ordinary least-squares linear regression (c, P = 0.008; 
d, P = 0.01) and dashed lines are the 95% confidence interval of the 
regression fit.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Satellite comparisons to flux towers.  
a–c, Relationship between daily total latent energy (LE) exchange 
measured via eddy covariance and midday canopy water content from 
remote-sensing of VOD for global forest sites (a; n = 4,525 grid cells), 
broadleaf forest sites (b; n = 1,915 grid cells) and evergreen forest sites  

(c; n = 2,610 grid cells). Red lines indicate best fits for ordinary least-
squares regressions. Note that the canopy water content at each pixel 
integrates a spatial area that is two orders of magnitude greater than the 
eddy covariance sites.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | Hydraulic trait variation compared to species 
richness. Comparison of dominant tree species richness from gridded 
data of US forests against the hydraulic diversity—the standard deviation 

in HSM—at six eddy covariance sites in the United States that have 
adequate trait data. The red line indicates the best fit of the ordinary least-
squares linear regression (n = 6 sites; R2 = 0.65; P = 0.04).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 6 | Higher species diversity is associated with more 
buffered drought responses in US forests. a, b, Drought coupling  
(a; n = 163 grid cells) and drought sensitivity (b; n = 163 grid cells) from 

variation in remotely sensed canopy vegetation water content compared 
to tree species richness in the United States. Black line is the best fit of the 
ordinary least-squares linear regressions.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 7 | Higher species diversity is associated with more-
buffered drought responses in forests globally. a, Drought sensitivity 
as the slope (β) in an ordinary least-squares linear regression of an index 
of the variation in aboveground plant water content at midday compared 
to night (regression: VODmidday = β × VODnight + ε). b, Native plant 
species richness (percentage of maximum; data from http://ecotope.org/
anthromes/biodiversity/plants/data/). c–h, Ordinary least-squares linear 
regressions between these two variables for six major biomes. c, Tropical 

and subtropical moist broadleaf forests (n = 1,380 grid cells). d, Tropical 
and subtropical dry broadleaf forests (n = 241 grid cells). e, Temperate 
broadleaf and mixed forests (n = 1,289 grid cells). f, Temperate coniferous 
forests (n = 318 grid cells). g, Boreal forests (n = 1,784 grid cells).  
h, Mediterranean-type forests, woodlands and shrub (n = 319 grid cells). 
Each point represents an individual grid cell from the map and colours 
that are more red indicate a higher density of points. Red lines show the 
best fit of ordinary least-squares linear regression lines.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 8 | Analyses of the importance of variables using 
satellite data. The importance of the variables (total decrease in node 
impurities) results obtained using the machine learning algorithm, 

random forests, for each variable of the drought coupling metric (n = 6,698 
grid cells). ‘CanHeight’, lidar-derived canopy height.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 9 | Ecosystem sensitivity to drought saturates with 
species richness (the percentage of maximum) across forests globally. 
a, Drought coupling is expressed as the explained variation (R2) of midday 
aboveground plant water content in forest ecosystems regressed against 
drought variables using ordinary least-squares linear regression.  

b, Drought sensitivity is expressed as the regression coefficient of midday 
aboveground plant water content regressed against a metric of soil water 
stress using ordinary least-squares linear regression. n = 6,698 grid cells. 
The black line shows the best fit generalized additive model and dashed 
lines are the 99% confidence interval.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 10 | Performance of the multivariate drought 
regression model. Nine randomly selected sites of observed 
latent energy (LE) fluxes versus predicted fluxes from the multiple 
regression model based on VPD, soil moisture and their interaction. 
Red lines are the ordinary least-squares best-fit regression line. 
Sites are as follows (abbreviations can be found in Supplementary 
Table 1). a, US-UMB (R2 = 0.12, P < 0.0001). b, US-WCr (R2 = 0.13, 

P < 0.0001). c, DK-Sor (R2 = 0.11, P < 0.0001). d, IT-Ca1 (R2 = 0.44, 
P < 0.0001). e, IT-PT1 (R2 = 0.06, P = 0.002). f, IT-Ro1 (R2 = 0.10, 
P < 0.0001). g, JP-SMF (R2 = 0.40, P < 0.0001). h, NL-Loo (R2 = 0.25, 
P < 0.0001). i, US-NWR (R2 = 0.15, P < 0.0001). k, Performance of the 
drought multivariate ordinary least-squares linear regression model 
(LE = f(VPD, SM, VPD × SM) across eddy covariance sites shown in a 
histogram of site-level model P values from those regressions.

© 2018 Springer Nature Limited. All rights reserved.
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