
UC Irvine
UC Irvine Previously Published Works

Title

Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 
10 days of treatment

Permalink

https://escholarship.org/uc/item/6ps6g2xg

Journal

Journal of Biomedical Optics, 24(2)

ISSN

1083-3668

Authors

Cochran, Jeffrey M
Busch, David R
Leproux, Anaïs
et al.

Publication Date

2018-10-01

DOI

10.1117/1.jbo.24.2.021202
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ps6g2xg
https://escholarship.org/uc/item/6ps6g2xg#author
https://escholarship.org
http://www.cdlib.org/


Tissue oxygen saturation predicts response to breast cancer 
neoadjuvant chemotherapy within 10 days of treatment

Jeffrey M. Cochran,a,* David R. Busch,b Anaïs Leproux,c Zheng Zhang,d Thomas D. 
O’Sullivan,c Albert E. Cerussi,c Philip M. Carpenter,e Rita S. Mehta,f Darren Roblyer,g 
Wei Yang,h Keith D. Paulsen,I Brian Pogue,i Shudong Jiang,i Peter A. Kaufman,j So Hyun 
Chung,a Mitchell Schnall,k Bradley S. Snyder,l Nola Hylton,m Stefan A. Carp,n Steven J. 
Isakoff,o David Mankoff,p Bruce J. Tromberg,c and Arjun G. Yodha

aUniversity of Pennsylvania, Department of Physics and Astronomy, Philadelphia, 
Pennsylvania, United States
bUniversity of Texas Southwestern, Department of Anesthesiology and Pain Management,
Dallas, Texas, United States
cUniversity of California, Beckman Laser Institute and Medical Clinic, Irvine, California, 
United States
dBrown University School of Public Health, Department of Biostatistics and Center for 
Statistical Sciences, Providence,
Rhode Island, United States
eUniversity of Southern California, Keck School of Medicine, Department of Pathology, 
Los Angeles, California, United States
fUniversity of California Irvine, Department of Medicine, Irvine, California, United 
States
gBoston University, Department of Biomedical Engineering, Boston, Massachusetts, 
United States
hUniversity of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, 
Houston, Texas, United States
iThayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United 
States
jDartmouth-Hitchcock Medical Center, Department of Hematology and Oncology, 
Lebanon, New Hampshire, United States
kUniversity of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, 
United States
lBrown University School of Public Health, Center for Statistical Sciences, Providence, 
Rhode Island, United States
mUniversity of California, Department of Radiology, San Francisco, California, United 
States
nMassachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, 
Department of Radiology, Boston,
Massachusetts, United States
oMassachusetts General Hospital, Department of Hematology and Oncology, Boston, 
Massachusetts, United States
pUniversity of Pennsylvania, Division of Nuclear Medicine, Department of Radiology, 
Philadelphia, Pennsylvania, United States

*Address all correspondence to: Jeffrey M. Cochran, E-mail: cochranj@sas.upenn.edu



Abstract. Ideally, neoadjuvant chemotherapy (NAC) assessment should predict 
pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as 
early as possible during typical 3- to 6-month breast cancer treatments. We introduce and 
demonstrate an approach for predicting pCR within 10 days of initiating NAC. The 
method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and 
logistic regression modeling. Tumor and normal tissue physiological properties were 
measured longitudinally throughout the course of NAC in 33 patients enrolled in the 
American College of Radiology Imaging Network multicenter breast cancer DOSI trial 
(ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy 
tissue, produced models with robust predictions. Notably, logistic regression based on z-
score normalization using only tissue oxygen saturation (StO2) measured within 10 days 
of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 
95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence 
of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This 
early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic 
feedback for optimization of chemotherapy strategies in breast cancer. 

1 Introduction
Neoadjuvant chemotherapy (NAC) is a widely used treatment method for breast 

cancer that permits increased conservation of breast tissue during tumor resection and 
limits the need for axillary node treatment and surgery.1 In addition, pathologic complete 
response (pCR) to NAC, defined as no residual invasive carcinoma, has been correlated 
with improved survival compared to incomplete response.2,3 Unfortunately, this 
assessment occurs after the completion of NAC. The ability to predict response to NAC 
at an earlier timepoint during chemotherapy, by contrast, could enable physicians to
dynamically optimize the treatment regimen, thereby avoiding unnecessary therapy 
doses, reducing tissue damage, and improving patient outcomes.

NAC response is typically evaluated with physical exams and radiologic imaging 
in current clinical practice. Unfortunately, these methods are inadequate predictors of 
pCR.4–6 Magnetic resonance imaging (MRI) provides better correlation with pathology 
than mammography or ultrasound.7 Broadly, functional monitoring techniques offer 
significantly improved correlation with response relative to structural imaging modalities.
Magnetic resonance spectroscopy (MRS),8 contrast-enhancedMRI,9 and positron emission
tomography (PET),10–12 have predictive value with respect to pCR, but MRI, MRS, and 
PET all have practical constraints, which limit the frequency of monitoring in clinical 
care. These limitations include cost, the use of contrast agents, and ionizing radiation for 
PET.

The present contribution investigates the utility of diffuse optical monitoring for 
prediction of pCR during NAC and adds an analysis to prior reports of a multicenter 
trial.13 Briefly, diffuse optical techniques measure functional hemodynamic properties of 
tissue with nonionizing near-infrared radiation. These optical methods are relatively low 
cost and can be employed at the bedside. Furthermore, the technology offers a 
quantitative tool to predict treatment outcome based on longitudinal measurements during
therapy.14,15 Diffuse optical spectroscopic imaging (DOSI) and tomography (DOT) probe 
deeply, i.e., several centimeters, into tissue and provide information about tissue optical 



absorption (μa) and reduced optical scattering (μ0s), from which deoxygenated-(HHb) 
and oxygenated-hemoglobin (HbO2) concentrations, as well as lipid and water (H2O) 
concentrations can be deduced.16,17 The concentrations of HHb and HbO2, in turn, are 
readily utilized to calculate total hemoglobin concentration (HbT) and tissue oxygen 
saturation (StO2). These parameters have been shown to discriminate malignant from 
healthy tissue in the breast,18–23 and several studies have employed DOSI techniques to 
explore functional changes in malignancies during NAC and have correlated these 
changes with response to therapy.13,24–35

We recently reported the first results of ACRIN-6691, an American College of 
Radiology Imaging Network (ACRIN) multicenter clinical trial of patients monitored 
longitudinally by DOSI throughout their NAC regimen.13 The primary aim of ACRIN-
6691 was to evaluate whether a change in a particular DOSI endpoint, the tissue optical 
index (TOI), could be used to predict a clinical endpoint, pCR, by the midpoint of NAC,
∼2 to 3 months after the first infusion. The TOI combines tissue deoxyhemoglobin 
concentration (HHb), water, and lipid into a single index (see Sec. 2). In that initial study,
we reported significant reductions in tumor to normal (T/N) TOI ratios for pCR subjects. 
A 40% or greater change in this parameter at midpoint, combined with baseline tumor 
StO2 greater than median values (77%) was shown to be a promising predictor of
pCR (AUC = 0.83; 95% CI: 0.63 to 1).13

In this study, we explore the ACRIN-6691 secondary aim of predicting pCR much
earlier in the 3- to 6-month NAC cycle by examining DOSI response parameters within 
10 days of therapy initiation. To address this goal, we develop and retrospectively
apply z-score normalization21 and a logistic regression algorithm36 to correlate DOSI-
measured parameters of malignant breast lesions to subjects’ posttherapy pathologic
response status. Our hypothesis is that identification and optimization of this z-score 
DOSI index could predict pCR to NAC at an early timepoint in the course of therapy, 
providing significant potential for clinical utility.

2 Materials and Methods

2.1 Trial Design and Subjects

Data for this study were collected during the ACRIN 6691 multisite trial using a DOSI 
instrument developed at the University of California, Irvine.13 Subjects provided written
informed consent, and the HIPAA-compliant protocol and informed consent were 
approved by the American College of Radiology Institutional Review Board, the NCI 
Cancer Therapy Evaluation Program, and each site’s Institutional
Review Board. All 60 enrolled subjects were females between the ages of 28 and 67 with 
biopsy-confirmed invasive ductal carcinomas and/or invasive lobular carcinomas of at 
least 2 cm in length along the greatest dimension. For each subject, the chemotherapy 
regimen was determined by the subject’s physician. Chemotherapy type was not 
controlled in this study, except that regimens were required to include at least one 
cytotoxic chemotherapeutic agent.

pCR to therapy was defined as no residual invasive primary carcinoma without 
regard to residual lymph node disease and was determined for each subject from 
postsurgery pathology reports. Subjects that achieved partial response were not 



distinguished from nonresponders because of statistical considerations, i.e., sample size, 
and due to the previously reported correlation between complete response and improved
survival.2,3 Table 1 contains demographic information, as well as tumor histology and 
immunohistochemistry for complete and noncomplete responders.

Table 1 Subject and tumor characteristics. Demographic, histological, and 
immunohistochemical data are provided for all subjects and divided into complete 
responder (pCR) and noncomplete responder (non-pCR) groups. For histological 
information, IDC refers to invasive ductal carcinoma, ILC refers to invasive lobular 
carcinoma, and DCIS is ductal carcinoma in-situ. ER, PR, and Her2 represent estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor status, 
respectively.





A number of enrolled subjects were excluded from the final data set. Of these, 
three subjects withdrew from the study. An additional 13 subjects were not included in 
the imaging analysis because of the following DOSI scan issues: mandatory baseline 
DOSI was not performed (n = 1), baseline DOSI was nonevaluable (n = 8), mandatory 
midtherapy DOSI was not performed (n = 3), or too few normal region points were 
available (n = 1). A DOSI scan was considered nonevaluable in case of unrealistic 
physiological values or incorrect instrument configuration. This decision was made on 
blinded, deidentified data using instrument calibration and raw data QC reports.13
A flowchart for this exclusion process can be found in Fig. 6 in the Appendix.

Fig. 1 Timeline and schematic of DOSI measurement during NAC. (a) Each enrolled 
subject underwent NAC for a period of 4 to 6 months. DOSI measurements were made at
four timepoints throughout the course of therapy: (1) baseline—prior to the 
administration of therapy, (2) early—5 to 10 days after the first dose of therapy, (3) 
midpoint—the midpoint of the therapy regimen, (4) final—at least 7 days after the final 
dose of therapy and prior to tumor resection. Note that some subjects are missing



data at one or more of the nonbaseline timepoints, and the measurements at the final 
timepoint were not used due to their limited predictive utility. (b) Top left: DOSI 
instrument and probe. Right: a grid of points, over a surface area ranging from 7 cm × 7 
cm to 15 cm × 16 cm, were measured on the lesion-bearing breast. This grid was chosen 
to encompass both the tumor and a portion of the surrounding healthy tissue. The grid of 
points was marked using a transparency, which was then used to mirror the grid for 
measurements on the contralateral breast. The transparency was also used to ensure 
consistent measurement locations across all timepoints. The tumor region was chosen to 
be all contiguous points with magnitude greater than half of the maximum TOI 
measurement. The tumor-bearing breast normal region was defined as all points outside 
the tumor region and areola, excluding a 1-cm margin around both the tumor and areola. 
The contralateral breast normal region was defined as all measured points, excluding the 
areola and a 1-cm margin around the areola. Bottom left: a sample DOSI image of the
TOI contrast mapped onto a 3-D breast surface (see Sec. 2).

2.2 Optical Imaging Methods

The DOSI instrument used in this study combines multispectral frequency-domain and 
broadband diffuse optical spectroscopy to measure tissue concentrations of oxygenated 
hemoglobin (HbO2), deoxygenated hemoglobin (HHb), water (H2O), and lipid, as well as 
the tissue scattering amplitude (A) and power (b), as defined by a simplified Mie 
scattering model.37 The combination of these measured parameters permits calculation of
total tissue hemoglobin concentration (HbT =  HbO2 + HHb), tissue oxygen saturation 
(StO2 = HbO2∕HbT), and the tissue reduced scattering coefficient (μ’s). For a full 
description of the DOSI method and instrument performance in the multicenter ACRIN-
6691 trial, see Ref. 38.

The DOSI instrument measured subjects using a handheld probe (handpiece) 
placed in contact with the patient’s breast. Four timepoints were acquired throughout the 
course of each patient’s NAC regimen13 (see Fig. 1). The first measurement (baseline) 
occurred prior to the first dose of chemotherapy. The second measurement, which is 
referred to as the early measurement timepoint, was performed between 5 and 10 days
after the first chemotherapy treatment. The third measurement (midpoint) occurred in the 
middle of the therapy regimen, and a final measurement was made after the completion 
of therapy but prior to tumor resection. During each subject’s baseline measurement, a 
grid of ∼50 to 240 points that encompassed both the palpated tumor region and the 
surrounding normal tissue was measured on the lesion-bearing breast. A mirrored grid of 
points was measured on the contralateral breast (see Fig. 1). These measurement grids 
were recorded using a hand-marked transparency film that was produced for each subject 
in order to guide DOSI handpiece placement to the grid points during each measurement 
session as previously described.13

2.3 Statistical and Analytic Methods

In this study, we trained a logistic regression algorithm to discriminate between 
responders and nonresponders based on DOSI-measured parameters (list of parameters 



available in Table 2 in the Appendix). The tumor region for each subject was determined 
using a TOI [TOI = (HHb · H2O)/∕lipid]. This TOI parameter has been empirically shown
to differentiate malignant tissue from normal tissue in the breast.19 The fullwidth-
at-half-maximum contour around the point of maximum TOI in the baseline measurement
of the lesion-bearing breast was designated as the edge of the tumor region. This region 
remained constant throughout all longitudinal measurements for a given subject. The 
normal region on the lesion-bearing breast was defined as all points outside the tumor 
region excluding the areola and 1-cm margins around the areola and tumor
region (see Fig. 1). These margins were not included in the normal region to limit signal 
contamination due to the partial volume effect.

In practice, significant inter- and intrasubject variation in optically measured 
physiological parameters of the breast can arise,21,39 and these systemic variations can bias
the logistic regression. Moreover, the optically measured tissue parameters are not 
normally distributed (see Fig. 2).

To remedy these issues, we introduce and employ a z-score normalization method
to define target variables for prediction of pathologic response. Briefly, the natural 
logarithm of each data point is first taken. Then, the mean and standard deviation of a
normal (healthy) region of tissue are used to transform raw tumor data into z-score data 
as in

Here, Xj is the unnormalized j’th measured parameter in the tumor region, XjNorm 
is the unnormalized j’th measured parameter in the normal (healthy) region of the tumor-
bearing breast, hln XjNorm i represents the mean over all points in the normal (healthy) 
region, and σ|[ln XjNorm ] represents the standard deviation over all points in the normal 
(healthy) region. Zj is then the tumor region z-score relative to the healthy tissue for the 
j’th parameter. Each Zj parameter was averaged over all spatial points in the tumor region
for a given subject and timepoint. As a result, the logistic regression algorithms can 
utilize a single tumor quantity for each subject, for each timepoint, and for each measured
parameter. Thus every predictor data point used in the regression model is measured in 
units of standard deviations from the mean of a given parameter in healthy tissue. In 
addition to transforming all parameters to be approximately the same magnitude, this
method better accounts for the intersubject systemic variations by finding the difference 
of each parameter from the mean value of the normal (healthy) tissue. It also more fully 
accounts for intrasubject variation in healthy tissue by normalizing with the healthy tissue
standard deviation. A concrete example of this statistical transformation scheme is shown 
in Fig. 2 for early timepoint tissue oxygen saturation. In this study, we explored z-score 
normalization schemes that defined the normal region as either the healthy breast 
(excluding the areola) or all tissue on the lesion breast outside a certain margin of the 
tumor region (excluding the areola). See Fig. 1 for a graphical representation of these 
different normalization regions.

In the logistic regression framework, a response parameter for a given model is 
defined as



Here,  is the given model’s log odds of response for the i’th subject, βo is the 
intercept term of the fitted weight vector, βj is the weighting term for the j’th measured 
parameter used in the model, Zi

 j is the z-score for the j’th measured parameter of
the i’th subject, and Nj is the number of parameters used in a particular model. The full 

weight vector   is

The  weight vector is fit using MATLAB’s native logistic regression function, mnrfit.40
The response parameter R can then be transformed into a probability of response 
parameter PR using a logistic function 

The parameter PR represents the probability that a subject will achieve pCR. It 
has a range from 0 to 1, and it can readily be used to predict each subject’s status as either
a pathologic complete responder, or noncomplete responder, depending on threshold 
levels.

Because we are working with a small dataset, we employed a leave-one-out 
validation protocol41 to test the regression model. Briefly, a series of logistic regression 
models are created for each parameter set we wish to test, and each of these models
leaves one of the subjects out of the dataset (see Fig. 3). The weight vector created by 

each of these models is the weight vector created when the i’th subject is left-out; it is 

used to produce a probability of response prediction for the i’th subject 

which is independent of the model. This well-known approach provides the most 
robust and least biased validation given our sample size, which precludes the use of a 
significantly large independent test set.41 For completeness, we compared the leave-one-
out protocol to other methods. For example, we also tested k-fold cross validation with k 

= 3, 5, and 10; these schemes produced  vectors and AUC values that were similar to 
those of the leave-one-out protocol.



Fig. 3 Data analysis flowchart. (1) Data processing—measured quantities at all spatial 
points and all n subjects across the first three timepoints are first divided into tumor and 
normal (healthy) regions (see Fig. 1). All tumor points are then z-score normalized to 
their respective normal (healthy) regions [see Eq. (1)], and the mean is taken for a given 
subject and timepoint. Finally, one-, two-, or threemodel parameters are chosen from 
among the combinations of measured quantities and timepoints as model inputs. (2) 
Leave-one-out logistic regression—a set of n logistic regression algorithms are 
performed, each of which leaves out a single subject from the training data and produces 

a weight vector. Each is then used to calculate the probability of response for the 
subject left out of the given training set [see Eqs. (2) and (4)]. (3) Model evaluation—
ROC analysis is performed using the calculated Pi R values to determine the AUC and a 

median weight vector  is calculated from the n resulting vectors.

The quality of the resultant models was empirically determined using DeLong’s 
method for the area under the curve (AUC) and 95% confidence interval of a receiver-

operating characteristic (ROC) analysis graph for the  parameter.42 The ROC analysis 
is performed using each of the individual leave-one-out models, and the reported weight 

vector  will be the median  from the series of models created for each parameter set,



with the interquartile range (IQR) of these models reported as uncertainty. We also 
calculated a single-logistic regression model run across the entire dataset; it produced

very similar  vectors to the median  vector approach described above.
Models based on the z-scores of each single measured parameter (HHb, HbO2, 

lipid, H2O, HbT, StO2, and TOI) at the baseline, early, and midpoint timepoints were 
tested, and the most predictive models were chosen using the AUC value as a criterion. 
To explore any additional benefit from multivariate models, combinations of two and 
three measured parameters were also evaluated. Models with more than three parameters 
were not tested to avoid overfitting. Data from the final timepoint were not used because 
our focus in this work is on early diagnosis. 

Other, more commonly used, normalization methods were also tested to 
demonstrate the improvement in predictive ability provided by z-score normalization. 
These comparisons included tumor-to-normal ratio normalization without information 
about the normal tissue heterogeneity, as well as raw tumor physiological values without 
normalization, and baseline-normalized values, which represent changes in the measured 
parameters over the course of the therapy regimen. All statistical analysis as performed 
using MATLAB R2015a (The Mathworks, Inc., Natick, Massachusetts, USA).40

3 Results

The final data set was derived from n = 33 subjects who had complete data sets at 
the baseline and midpoint time-points. For models that used measured parameters from 
the early timepoint, slightly fewer subjects were used (n = 29) due to missing data at this 
time-point. All subjects had biopsy-confirmed invasive carcinomas and underwent an 
NAC regimen determined by their physicians.13

For the logistic regression algorithm, z-score normalization to the healthy tissue 
on the lesion breast, as opposed to normalization to the contralateral breast, produced 
more predictive models. Recall that we derive z-score data for multiple data types
(HbO2, HHb, HbT, StO2, H2O, and lipid) at multiple timepoints (baseline, early, and 
midpoint) (all data available in Table 3 in the Appendix). The single best regression 
model used only the early timepoint tissue oxygen saturation (eStO2). The weight vector 

for this model was  = [βo = 0.79 + 0.09, βeStO2 = 2.29 + 0.04]. This finding suggests 
that, at early timepoints, tumors that are not hypoxic relative to the surrounding normal 
tissue, or tumors that are only slightly hypoxic and within the normal region’s confidence
interval, are more likely to be pathologic complete responders to NAC. By contrast,
tumors that were significantly hypoxic relative to the normal tissue were likely to be 
nonresponders (see Fig. 4 for data summary in traditional units). When ROC analysis was
performed, this model produced an AUC = 0.92 with a 95% confidence interval of AUC 

= 0.82 to 1 (see Fig. 5). Additionally, the small uncertainties of the components, 

relative to the median, indicate that the fitted did not vary significantly across the 
leave-one-out validation protocol. Two- and three-parameter models did not improve 
upon the single-parameter model AUC. Higher-order models, e.g., four-parameter,
were not considered in order to avoid overfitting of the data.



Notably, in addition to the early timepoint oxygen saturation, a two-parameter 
model using only baseline data provided an AUC = 0.83 with a 95% confidence interval 
of AUC = 0.70 to 0.97, thus enabling an even earlier prediction of a subject’s pCR status, 
albeit with lower accuracy than the early timepoint oxygen saturation. This two-
parameter model incorporated the baseline oxygen saturation (bStO2) and water 

concentration (bH2O), and the median weight vector was  = [βo = 0.14 + 0.09; βbStO2 = 

1.69 + 0.06; βbH2O = 0.65 + 0.03]. Again, the uncertainties in the components for H2O 
and StO2 are small, signifying a consistent fitted model across

Fig. 4 Tumor and normal StO2 versus probability of response. This graph shows the 
probability of response predicted by the regression model using only early timepoint 
StO2 (see Fig. 5). Contour lines of constant probability are also included. The probability 
of response (shading) is plotted versus the difference between the absolute tumor region 
percent oxygen saturation and the absolute normal region percent oxygen saturation 
(horizontal axis), and the size of the confidence interval for the absolute normal region 
oxygen saturation, corresponding to one standard deviation in the log-transformed
data (vertical axis). Note that the oxygen saturation in this figure is not log-transformed 
or z-score normalized. Each cross represents a subject that was a pathologic complete 
responder while each circle indicates a nonresponding subject. All subjects that had 
tumor regions with absolute oxygen saturations that were higher than their normal 
regions achieved pCR. Subjects whose tumor regions were only slightly hypoxic relative 
to their normal regions were more likely to achieve pCR if the subjects’ normal regions 
had larger confidence intervals. These observations indicate that a subject is likely to
be a pathologic complete responder if the oxygen saturation of the tumor region is either 
higher than that of the normal region or well within the normal region’s confidence 



interval. A subject whose tumor was significantly hypoxic relative to the normal tissue 
was likely to be a nonresponder.

Fig. 5 Early timepoint oxygen saturation prediction model. The model providing the best 
predictions used the early timepoint tissue oxygen saturation (eStO2). The median weight

vector  = [βo = 0.79 + 0.09; βeStO2 = 2.29 + 0.04] indicates that tumors that are not 
hypoxic relative to the normal tissue on the tumor breast are more likely to be pathologic 
complete responders to chemotherapy. (a) ROC analysis of eStO2 model—this model 
produced an AUC = 0.92 (95% CI: 0.82 to 1), indicating excellent predictive value. (b) 
Boxplots of probability of response—the probability of response boxplots, divided into 
subjects that achieved pCR (n = 12) and subjects that did not achieve pCR (n = 17), 
indicate clear separation between the two groups using this model (p = 8.74 × 10−6 using
a two-sided student’s t -test). The hinges of the boxplots represent the first and third 
quartiles of the data, the whiskers represent the range of measurements within a distance 
1.5× the IQR, and the cross represents an outlier. Note that there is no overlap between 
the IQRs of the probability of response of the complete responders and noncomplete 
responders.

the leave-one-out validation procedure. The fact that βbStO2 > βbH2O indicates that the 
oxygen saturation is a more significant predictor of pCR than water concentration at the 
baseline timepoint. As with the early timepoint model, subjects with hypoxic tumors were
less likely to achieve pCR. 

For comparison, additional models were produced that (1) used the contralateral 
breast for z-score normalization, (2) used tumor-to-normal ratio normalization, i.e., with 
no information about the standard deviation of the normal region, and (3) used no 
normalization. With contralateral z-score normalization, instead of z-score normalization 



to the healthy tissue on the tumor-bearing breast, the aforementioned early (eStO2) and 
baseline (bStO2 and bH2O) models had AUC values of 0.67 and 0.64, respectively. With 
simple tumor-to-normal ratio normalization, the same two-parameter sets produced
AUC values of 0.80 and 0.67, and when completely unnormalized data were used, the 
eStO2 model produced an AUC = 0.75 while the bStO2 and bH2O model produced an 
AUC = 0.68. Thus, for these parameter sets, z-score normalization to the healthy tissue in
the tumor-bearing breast provided the best results.

4 Discussion

By application of a logistic regression model using z-score normalized DOSI 
measurements, we derived a robust predictor of response (AUC = 0.92; 95% CI: 0.82 to 
1) within the first 10 days after a subject’s initial chemotherapy dose. Using an optimally 
chosen cutoff value of PR = 0.50, which maximizes the sum of the sensitivity and 
specificity, this model provided an overall classification accuracy of 86% (25 of 29 
subjects), including a positive predictive value of 79% for subjects predicted to achieve 
pCR (11 of 14), and a negative predictive value of 93% for subjects predicted to not 
achieve pCR (14 of 15). Prediction of response at this therapy timepoint was a secondary 
aim of the ACRIN 6691 protocol13 and could, with further validation, enable clinicians 
to modify the patient’s therapeutic plan after a single dose. This ability holds potential
to improve patient outcomes and prevent unnecessary side effects from ineffective 
treatments.

The best model indicated that low StO2 at the early timepoint relative to the 
surrounding normal tissue was predictive of nonresponse to chemotherapy. This 
observation suggests that tumors that are well-perfused in the early stages of treatment,
and therefore are not hypoxic relative to healthy tissue, may receive chemotherapy more 
efficiently. Such tumors are also typically more responsive to therapy than hypoxic 
tumors, which often exhibit resistance to treatment.43,44 Additionally, the lack of hypoxia 
in complete responders could indicate a decreased oxygen demand due to suppression of 
tumor metabolism, a condition previously shown to be correlated with response to 
therapy.45

Additionally, the two-parameter model using only the baseline StO2 and water 
concentration (AUC = 0.83; 95% CI: 0.70 to 0.97) also indicated that higher StO2 is 
correlated with pCR. Though the AUC value is lower for this model compared to the 
early timepoint StO2 model, prediction of response prior to the initiation of therapy offers
additional clinical utility. These models are also consistent with previous studies, which
have observed correlation between pCR and optically measured tissue oxygen saturation 
prior to the start of therapy31 and after the first dose.29

Previous diffuse optical studies of response to breast cancer NAC have correlated 
temporal changes in measured physiological parameters with response to treatment.24–30,32

We compared our technique to this approach in the current study. However, even the most
predictive of the models derived in this analysis that used the change in DOSI 
physiological parameters between the baseline and early timepoints only produced an 
AUC = 0.63. The temporal change models of StO2, in particular, could be limited by the 
large intersubject dispersion of the baseline oxygen saturation; this large dispersion 



prevents the change in StO2 from the baseline to early timepoint from accurately 
reflecting the oxygenation state of the tumor relative to the normal region. By contrast,
the model we have presented in this contribution does not depend on the baseline StO2 
and, as such, is not affected by intersubject baseline variation.

Z-score normalization was implemented to place all parameters on the same 
magnitude scale, which mitigates systemic physiological differences among the subject 
population and accounts for the systemic effects of chemotherapy. For comparison,
we also investigated models that used fully unnormalized data and tumor-to-normal ratio 
normalization. However, since neither model incorporates healthy tissue standard 
deviation, neither model accounts for the heterogeneity of normal tissue. With tumor-to-
normal ratio normalization, a one-parameter model with early timepoint StO2 produced 
an AUC = 0.80, and the two-parameter model with baseline timepoint StO2 and H2O 
produced an AUC = 0.67. The AUC values for the same models but with no 
normalization were even lower (AUC = 0.75 and AUC = 0.67, respectively). Thus z-
score normalization improves the predictive power of the tissue oxygen saturation 
logistic regression models.

For completeness, several other models were explored that did not incorporate the
baseline or early StO2. Some of these produced predictions of response to therapy that
were significant (AUC ≈ 0.75 to 0.80). However, in addition to having lower AUC 
values, these other models relied on data from the midpoint timepoint, which increases 
the time-to-prediction of response by ∼2 months. Furthermore, the early timepoint 
measurements typically occur before significant anatomic changes in tumor size arise. 
This feature enables the DOSI measurement to sample known tumor tissue more easily; 
at the midpoint of therapy, by contrast, the tumor size has decreased and signal 
contamination between the malignant and healthy tissue can occur and limit the ability of 
DOSI to determine tumor physiological parameters accurately. Note also that the 
physiological predictions of these other models were consistent with our two primary 
prediction models.

Another interesting and potentially important finding of the present work is that 
the best models used z-score normalization to the normal tissue on the lesion breast rather
than the contralateral breast. If, instead, the contralateral breast was used, our one-
parameter early StO2 model produced an AUC = 0.67, and the two-parameter model with 
baseline StO2 and H2O produced an AUC = 0.64. The comparatively better quality of the 
tumor breast z-score normalized models suggests that measurement of the contralateral 
breast is less important for early prediction of response to therapy than previously 
thought. If this is true, then the paradigm could eliminate the need for contralateral 
measurement and reduce imaging time.

The results we have presented provide evidence for early prediction of response 
with AUC results that are comparable to other modalities, such as MRI,46,47 FDG-
PET,11,47,48 and biomarker analysis.49,50 Some of these studies produced predictions
prior to or within the first 10 days of treatment initiation,48–50 whereas other approaches 
relied on imaging that occurred either after 6 weeks of NAC,46 at the midpoint of 
therapy,11 or after the completion of NAC.47 The potential advantage of the logistic
regression DOSI model is premised on its unique combination of accurate prediction at 
an early timepoint in therapy and its portability, low cost, and lack of ionizing radiation.



The primary limitations of this study are the relatively small number of subjects 
and the highly variable chemotherapy regimens across the subject population.  
dditionally, the initial study had a fairly high dropout rate,13 introducing a potential
bias into the statistical analysis. The dropout rate is likely to be artificially elevated in this
study due to the difficulties inherent in translating an experimental imaging technique 
into a multisite setting for the first time.13 We do not anticipate that these issues will affect
the DOSI technique moving forward. Finally, although the initial ACRIN 6691 trial was a
prospective study, this z-score parameter imaging metric was retrospectively optimized 
using a standard leave-one-out protocol for multiple potential models. The leave-one-out 
technique limits overfitting and enhances the generalizability 
of the prediction metric;41 it has been extensively used by the cancer community.31,46,51–53 
Of course, a fully prospective validation of this single prediction model, as opposed to the
series of models tested here, will be necessary prior to clinical adoption.

Per the first limitation noted above, application of this model to a prospective 
study with a larger subject population is a natural course of action. Importantly, because 
the DOSI instrumentation has been shown to provide consistent performance over time, 
across multiple instruments, and across multiple measurement sites,38 we anticipate that 
the weight vector derived for the early timepoint StO2 (see Fig. 5) could be used with z-
score normalized measurements in future DOSI studies to calculate a probability of 
response, i.e., without creating a logistic regression model for each population. In this 
case, the future study would serve as a direct, independent test set for the results obtained 
by our current model. Additionally, a logistic regression could also be run on this larger 
data set to derive an improved prediction model based on a larger training set. If a future 
study was performed on a significantly different patient population, e.g., patients with 
tumors in nonbreast tissue, then deriving a weight vector via logistic regression would
likely be beneficial.

In addition to providing evidence to further corroborate the results of this pilot 
investigation, the larger subject population may enable stratification of the subject 
population by tumor subtype and/or chemotherapy regimen. Our current results are
reported for a diverse patient population, various tumor molecular subtypes, and an 
assortment of chemotherapy regimens (see Table 1). Tumor subtypes may have different 
levels of tissue oxygen saturation and may respond to chemotherapy differently.3,54 The 
physiological mechanisms of chemotherapy regimens also vary. Thus, especially for 
parameters at the early timepoint, response prediction might be improved by creating
individual models for different classes of chemotherapy and/or different tumor subtypes. 
Also, independent hypoxia biomarkers, such as carbonic anhydrase IX, and 
measurements of vascular density, such as CD31 staining or DCE-MRI, can be collected 
at similar timepoints and may enable better understanding of the mechanisms responsible 
for correlations between tissue oxygen saturation and response. Exploration of these 
questions should be possible in a larger study.

5 Conclusion

Logistic regression modeling of z-score normalized physiological parameters measured 
by DOSI was presented and found to predict pCR to NAC. The best model successfully 
predicted pCR (AUC = 0.92; 95% CI: 0.82 to 1) using tumor and normal tissue oxygen 



saturation measured within the first 10 days after the initial dose of therapy based on data 
from the ACRIN 6691 clinical trial.13 This model suggests that if tumors are hypoxic
relative to the surrounding normal tissue, then they are less likely to achieve pCR. These 
early predictions of therapeutic efficacy are based on quantitative DOSI measurements of
tumor (and normal) tissue functional parameters, rather than changes in tumor size, and 
the z-score normalization of the tumor physiological data yielded improved prediction 
models compared to tumor-to-normal ratio or unnormalized data. Prospective validation 
is still needed to confirm these promising results. With this validation, DOSI and logistic 
regression methods could be used early in NAC to optimize treatment outcomes for 
individual patients.

Appendix

This appendix contains details about the subject exclusion criteria (Fig. 6) and a more 
complete accounting of measured z-score parameters for responders and nonresponders at
all timepoints (Tables 2 and 3).
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Fig. 6 Subject exclusion chart. Of the 60 subjects accrued for this study, n = 3 withdrew 
consent, n = 1 did not have central pathology data, and n = 10 were excluded for lack of 
normal tissue measurement. The other n = 13 subjects were excluded due to lack of 
baseline DOSI measurement (n = 1), baseline DOSI measurements that were not 
evaluable (n = 8), lack of midpoint DOSI measurement (n = 3), or too few normal region 
points were available (n = 1). This subject population is identical to the population used 
in the initial ACRIN 6691 study13 except that one fewer subject was used. This 
additional excluded subject did have a normal tissue measurement but not a sufficient 
number of spatial points in the normal region to perform the necessary standard deviation
calculation [see Fig. 2 and Eq. (1)].

Table 2 Definitions of measured DOSI parameters and their methods of calculation. 
HHb, HbO2, lipid, and H2O concentration are all fit directly using the measured 
intensities throughout the wavelength range. HbT, StO2, and TOI are all derived from the 
fit parameters.



Table 3 Median z-score values with IQRs for each measured parameter and timepoint, 
separated by pCR status.
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