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Abstract 

People often use norms to coordinate behavior and 
accomplish shared goals. But how do people learn and 
represent norms? Here, we formalize the process by which 
collaborating individuals (1) reason about group plans during 
interaction, and (2) use task features to abstractly represent 
norms. In Experiment 1, we test the assumptions of our model 
in a gridworld that requires coordination and contrast it with a 
“best response” model. In Experiment 2, we use our model to 
test whether group members’ joint planning relies more on 
state features independent of other agents (landmark-based 
features) or state features determined by the configuration of 
agents (agent-relative features).  

Keywords: joint intentionality; norms; team reasoning; 
reinforcement learning; features; computational modeling 

Introduction 
From driving to running institutions like the U.S. Postal 
Service, groups need to coordinate their behaviors to 
accomplish shared goals. Key to this is that agents learn and 
use norms to guide individual and collective behavior. But 
how do people (or more generally, how can any intelligent 
agent) represent and learn norms?  

One approach is to treat coordination as emerging through 
the ego-centric behavior of individual agents. For instance, 
norms can emerge when agents have other-regarding  or 
aligned preferences (Binmore, 2010). Other approaches use 
off-the-shelf algorithms, like Q-learning, to show how under 
certain reward structures, “socially-blind” learning 
mechanisms can produce social norms (Sen & Airiau, 2007; 
Claus & Boutilier, 1998). More sophisticated approaches 
allow agents to model others and best respond to the 
predictions of those models. For example, agents can 
recursively reason about one another in cognitive 
hierarchies (Camerer et al., 2004; Wunder et al., 2011). 

These computational approaches generally make two key 
assumptions: First, norms are modeled as emergent 
behavioral by-products rather than intended outcomes of 
agents’ learning mechanisms. Second, the space of possible 
norms is generally constrained to a small set of singular 
actions (e.g. cooperate or defect in Flood and Dresher’s 
Prisoner’s Dilemma). As a result, the representation of a 
norm is never distinguished from the low-level actions that 
instantiate the norm. 

Unfortunately, psychological research and intuition raise 
doubts about applying these assumptions to people. For 

instance, people take a group perspective when choosing 
their actions in coordination games using focal points 
(Schelling, 1960; Bardsley et al., 2010). Similarly, norms 
like “curb your dog” seem to rely on learned abstract 
representations that are applied flexibly to new situations. 
With this in mind, we have formulated a computational 
model that incorporates two novel properties:  
(1) Agents reason as if they were part of a single agent 

with joint mental states like beliefs, desires, and plans. 
For instance, a postal worker does not simply reason 
in terms of “I-intentions” (e.g. I will bring these letters 
to this address), but also in terms of “we-intentions” 
(e.g. I will deliver these letters so we can deliver the 
mail) (Searle, 1995; Bacharach, 2006). 

(2) Norms are represented as joint planning biases that 
reflect instructions to perform (or avoid) actions. 
Following Biccheri (2006), agents both follow these 
instructions and expect others to as well. Formally, 
these are feature-based reward functions for when an 
agent plans actions. This provides a compact 
representation for norms that enables generalization. 

This model represents a first step towards understanding 
how norms are learned through joint reasoning and 
represented abstractly, aspects of human norm learning not 
captured in previous formulations. 

To study how people learn norms, we focus on multi-
state, multi-round coordination games. In our tasks, payoffs 
are always shared and depend on multi-state planning to 
reach individual goals simultaneously. In two experiments, 
we examine the extent to which our model captures how 
people learn norms. Experiment 1 compares people’s 
behavior to our Norm-Learning model and a Best-Response 
model that plans actions optimally according to a learned 
model of its partner. Experiment 2 uses the Norm-Learning 
model to examine how people generalize norms across 
situations and the extent to which they use landmark-based 
or agent-relative features. 

Computational Models 
Norms are instructions that individuals follow and expect 
others to follow. We formalize this notion and describe how 
a group of norm-following agents can converge on norms in 
a decentralized manner. 
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Multi-Agent Decision Making 
Markov Decision Processes (MDPs) and Stochastic 
Games MDPs model single-agent decision making and are 
defined by the tuple (𝑆,𝐴,𝑇,𝑅): a set of states in the world, 
𝑆; a set of actions the agent can take, 𝐴; transition dynamics, 
𝑇(𝑠!|𝑠, 𝑎), which assign a probability of transitioning to a 
state 𝑠! ∈ 𝑆 after an agent takes action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆; 
and a reward function 𝑅 𝑠, 𝑎, 𝑠! , which returns a real 
valued reward when transitioning to state 𝑠′ after the agent 
has taken action 𝑎 in state 𝑠!. An agent in an MDP has a 
policy (a mapping from states to actions) 𝜋: 𝑆 → 𝐴. An 
agent’s policy relates directly to the value, or expected 
future discounted reward, of each state: 𝑉 𝑠! = 
𝐸! 𝛾!𝑅 𝑠! , 𝑎! , 𝑠!!!!

!!! , where 𝛾 ∈ 0,1  is a discount 
factor specifying the value of immediate rewards relative to 
temporally distant ones. Here, 𝛾 = .95. 

To find an optimal policy, an agent needs to calculate the 
optimal state (𝑉∗ 𝑠 ) and state-action (𝑄∗(𝑠, 𝑎)) value 
functions. Given these functions, the optimal policy can be 
derived by taking the action with the highest value: 
𝜋∗(𝑠) ∈ argmax!∈! 𝑄(𝑠, 𝑎) (Sutton & Barto, 1998). 

MDPs can be extended to include multiple agents using 
game theoretic tools (Littman, 1994). A stochastic game is 
defined by the tuple (𝐼, 𝑆,𝐴! ,𝑇,𝑅!), where 𝐼 is an index set 
of agents in the environment, 𝑆 is the set of states; 𝐴! is the 
set of actions for each of the agents with 𝐴! denoting the 
action set of agent 𝑖 ∈ 𝐼; 𝑇 𝑠! 𝑠, 𝑗  defines the task 
dynamics by specifying transition probabilities given a joint 
action, 𝑗 ∈×!𝐴!, of all agents taken in state 𝑠 ∈ 𝑆; and 𝑅! is 
a set of reward functions for each agent, with 𝑅! 𝑠, 𝑗, 𝑠!  
denoting the reward received by agent 𝑖 ∈ 𝐼 when agents in 
state 𝑠 ∈ 𝑆 take joint action 𝑗 ∈×!𝐴! and the environment 
transitions to state 𝑠! ∈ 𝑆. 

Because multiple agents with individual reward functions 
are involved, there is no direct analogue of an ‘optimal 
policy’ in stochastic games. Rather, solution concepts can 
be posited (e.g. Nash equilibria) or a learning mechanism 
can determine how the multi-agent system converges.  

Norm-Learning Model 
Norms as reward function biases We assume that norms 
are instructions that an agent (a) follows, and (b) expects 
others to follow. More formally, we first represent the 
instructional content of norms as reward biases that cause a 
group of agents to prefer certain types of actions or states. 
For example, a norm to “drive on the right” would be 
represented as a collective preference for states that satisfy 
that description. This provides a natural, flexible way to 
represent the content of norms. To simplify the problem, we 
assume the norm bias is based on a linear combination of 
state features. Assuming agents have a feature function, 𝛷, 
that maps states to feature vectors, the norm bias is 
represented as: 

 
𝑅norm 𝑠 = 𝜃!𝛷 𝑠  

 
where 𝜃! is the transpose of a feature weighting vector. This 
allows the model to learn that certain state features (e.g. 
being on the right) is preferable during joint planning. 

Second, we incorporate the motivational influence of 
norms directly into individual agents’ reward functions that 
are used to calculate a reward-maximizing policy. Formally, 
for the 𝑖-th agent in a community, their total reward function 
will combine their private reward function and a norm bias: 

 
𝑅! 𝑠 = 𝑅individual! 𝑠 + 𝑅norm 𝑠 . 

 
All agents in the community will have the same norm bias, 
𝑅norm, and know other agents will follow it. Thus, norms are 
joint reward function biases that agents follow and expect 
other agents to follow. 
 
Inferring Norms We implement learning norms as group 
inverse reinforcement learning (IRL). In single-agent IRL 
one observes an agent behaving in an MDP and based on 
those observations infers the goals or reward function of the 
agent (Abbeel & Ng, 2004; Baker et al., 2009).  

A Norm-Learning agent attempts to infer the norm that a 
group follows given some history of group interaction. That 
is, each agent estimates the most likely norm given a history 
of interaction, ℋ = 𝑠!, 𝑗!, 𝑠! ,… , 𝑠!!!, 𝑗!!!, 𝑠! : 

 
𝑅norm = argmax

!norm
𝑃 𝑅norm  ℋ ). 

 
Since the norm bias function is a linear weighting of 
features, this corresponds to finding the most likely 
weights, 𝜃. 

Here, we focus on norm learning in collaborative games. 
That is, we assume that all agents all have the same goal 
(i.e. have the same 𝑅individual! ) but must figure out how to 
work together to accomplish it. This simplifies inferring the 
norm bias. Other work should investigate how norm 
learning interacts in competitive scenarios (e.g. see 
Kleiman-Weiner et al. in this year’s proceedings).  
 
Features for Learning Norms Our representation of norms 
and implementation of norm learning depends on the 
features available to individuals in the group. The specific 
features are important for several reasons. First, to converge 
on a norm, individuals must have sufficiently similar 
features available to them to determine which norm the 
group uses. Second, features must be sufficiently expressive 
to allow individuals to pin down the norm that they 
collectively use to solve a task. Third, learning norms in 
terms of features allows generalization to novel situations. 
Without a concise, abstract representation of a norm, people 
would not be able to apply a learned norm to a new context 
and would need to learn an appropriate norm from scratch. 
For the tasks in the experiments reported, we describe which 
types of features are used for constructing norms. 
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We consider two types of features: landmark-based 
features, such as “Agent X is north of its goal”, and agent-
relative features, such as “Agent X is north of Agent Y”. 
These two types were chosen because the former are an 
‘asocial’ representation, while the latter explicitly involve 
social others. Moreover, they lead to different predictions in 
the tasks we use. 

Best-Response Model 
Best-response agents individually plan using a model of 

other agents. This means that instead of reasoning about a 
joint-policy directly, an agent i uses a predictive model of 
another agent j’s policy, 𝜋!, to predict what j will do in a 
certain state. That is, an agent i will construct a transition 
function that includes predictions about the behavior of the 
other agent, 𝑇!(𝑠!|𝑠, 𝑎!) = 𝑇 𝑠! 𝑠, 𝑎! ,𝜋 𝑠 . 

Here, we use a level-1 cognitive hierarchy planner as our 
Best-Response model. It models its partner’s behavior 
directly by counting its partner’s actions and decaying past 
counts by a parameter 𝛿. Additionally, to accelerate 
learning, the model assigns a pseudocount, 𝛼, to joint states 
in which the partner’s location on the grid is the same1. 
Although we could have modeled a higher level of 
reasoning (e.g. best responding to a level-1 planner) we did 
not for two reasons. First, previous experimental work has 
shown that people do not typically reason beyond one or 
two levels (Camerer et al., 2004). Second, in non-
competitive contexts, strategies often converge at higher 
levels in the cognitive hierarchy, and even level-1 reasoning 
provides a good estimate of this converged behavior 
(Bardsley et al., 2010). 

Experiment 1: Hallway Task 

Task Description 
To test whether people best respond or learn norms, we 
designed the 2-person Hallway task shown in Figure 1. Two 
agents (circles) start at opposite ends of a 5x3 grid and on 
each turn simultaneously move up, down, left, right, or wait. 
The two agents cannot enter the same state or immediately 
switch positions – if they attempt this, then they collide and 
remain in the same location as in the previous time-step. 
Each agent has its own goal tile, indicated by a matching 
color, and the two agents start the task on one another’s 
goals. Whenever either agent enters its own goal state, the 
round ends. However, to succeed in a round (and in the 
human case win a bonus), the agents must simultaneously 
enter their respective goals. This necessitates collaboration. 

At the beginning of a round, each agent is exactly 4 tiles 
away from its goal. But they cannot both take a direct route 
to their goals without colliding. Rather, they must choose a 
series of actions that enables them to “break the symmetry” 

                                                             
1 For example, if the agent is at (1,1) and the partner is at (0,0), 

then the partner’s behavior will be generalized to other joint states 
where it is at (0,0). In this paper 𝛿 = 0.5, 𝛼 = 0.5. 

and pass one another. Critically, at least one of the two 
agents has to deviate from the center row of the grid and 
return to the center for the two to successfully complete the 
task. The other agent will either have to do the same, but on 
a different row, or wait two time-steps for the other agent. 
Figure 1 displays two joint plans that successfully complete 
the task in the minimal number of steps (6). Note though 
that there are many other possible joint actions that the two 
agents can take to pass one another. 

In a given round, we can consider the row that each player 
is on when the two pass. Each player can be either on the 
top, bottom, or center row when attempting to move closer 
to their own goal. Clearly, successful passing requires that 
the two agents be on different rows while attempting to 
pass. Figure 2 visualizes this as an outcome matrix. 
Executing a successful joint policy, defined as both agents 
reaching their goal in the minimal number of steps, requires 

that both agents select different passing rows. 

Model Simulations 
Best-Response Suppose two Best-Response agents succeed 
where player 1 passes through the center and player 2 passes 
along the top ({center, top, success}). Having observed 
player 2’s behavior, player 1’s predicts that player 2 will 
again choose top. From player 1’s perspective, it is equally 
optimal to choose center as it is to choose bottom. However, 
if player 2 reasons similarly about player 1, then player 2 
will treat top or bottom as equally optimal. If the players 
choose their respective pairs of equally optimal actions at 

  Player 2’s 
Passing Row 

  Top Center Bottom 
Player 1’s 
Passing 

Row 

Top Fail Success Success 
Center Success Fail Success 
Bottom Success Success Fail 

Figure 1: Hallway Task examples where (a) agents pass on 
top and bottom rows, and (b) they pass on middle and top 
rows. Smaller circles indicate the agent waited a step. 

Figure 2: Matrix representing passing success as a 
function of each player’s row in the gridworld. Note that 
“Success” means the game was solved optimally. 
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random (i.e. 0.5 each), then they will stay at {center, top, 
success} with .25 probability, switch to the {bottom, top, 
success} or {center, bottom, success} cells with 0.5 
probability, or switch to {bottom, bottom, fail} with .25 
probability. In our implementation, the probabilities differ 
from this ideal due to the decaying memory. Nonetheless, 
this illustrates the central prediction of best-response 
decision making in this collaborative game: that there will 
be high row-passing switching as well as a moderate amount 
of collisions from agents simultaneously switching. 
 Note also that the memoryless, mixed-strategy Nash 
equilibrium is itself a type of best-response solution 
concept. In this particular coordination game it is 
1 3 , 1 3 , 1 3 , which leads to an even higher proportion 

of collisions – 1 3 – as well as switching –  2 3. 
 
Norm-Learning In the Norm-Learning model, two agents 
observe the same history of interaction, and use this to infer 
the most likely norm that a hypothetical collective agent is 
using. By using their shared observations and reasoning 
processes to deduce the most likely norm that they as a 
group have, they converge on and stay with a particular 
norm. For the Hallway task, we use a set of landmark-based 
features to define the space of norm reward biases. 
Specifically, for each of the two agents, we represent which 
row they are on relative to the row that their goal is on: 
above (top), on (center), or below their goal’s row (bottom). 
This gives us a total of 6 binary goal-based features. 

Unlike the Best-Response model, the Norm-Learning 
model predicts that people will stick with a combination of 
rows when performing the task. That is, in dyads that 
collaborate successfully, participants will not change which 
row they pass on and there will be few, if any, collisions. 

Experiment 
Design and Procedure We recruited 50 MTurk participants 
(25 dyads). They signed a consent form and then completed 

demo tasks that familiarized them with the grid game 
interface and task dynamics. They received a $2.00 base 
payment and an additional $0.10 bonus when they 
simultaneously reached their goals. Afterwards, each 
participant completed a post-task survey that included 
questions about the task and demographics. One dyad was 
excluded from analysis due to missing data. 

For the simulations, agent dyads played 20 rounds and 
only learned at the end of each round. The Best-Response 
model updated its model of its partner based on the play the 
previous round, while the Norm-Learning model updated its 
distribution over possible norm biases. To simplify 
inference, we considered the space of feature weights to be 
𝜃 ∈ −1,0,1 !!. 
 
Results and Discussion Participants reported the task being 
relatively easy where 1 = Very Difficult to 7 = Very Easy 
(Mean = 5.67; SE = .19). Additionally, participants reported 
that they were skilled at the task on a scale from 1 = Very 
Bad to 7 = Very Good (Mean = 5.64; SE = .18).  

The dyads were successful at collaborating on the task 
and winning the bonus. For our analysis, we focused on 
dyads that scored more than half of the rounds (23 of 24 
dyads). These dyads, on average, jointly scored 17.5 out of 
20 rounds (SE = 0.50) and jointly scored in the minimum 
number of steps possible (6) 15.22 out of 20 rounds (SE = 
0.85). Human rounds scored did not differ from the Norm- 
Learning model (t(35.307) = 1.82, p = 0.07) but did differ 
from the Best-Response model (t(38.0) = 4.98, p < .001) 
(Figure 3a). However, direct comparison by scoring is 
difficult since the simulations update only once a round 
completes. This leads the Best-Response model to 
potentially collide indefinitely and never reach its goal. 

Overall, the experimental results resemble the predictions 
of the Norm-Learning model over the Best-Response model. 
To compare human behavior in the collaborative Hallway 
task to the models, we focused on two measures: the 
number of rounds in which the agents collided at least once, 

Figure 3: Human (experimental), Norm-Learning (simulation), and Best-Response (simulation) results for (a) number of 
rounds (out of 20) in which both agents scored, (b) number of rounds in which agents collided at least once, and (c) 
proportion of rounds in which agents switched their strategy from the previous round (averaged over both agents). These 
results suggest that human collaboration relies on jointly learned norms rather than best-responding to one’s partner.  
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and the proportion of rounds in which agents switched their 
strategy from the previous round. 

Figure 3b plots the number of rounds in which at least one 
collision occurred for a dyad. Human collisions fell directly 
in between the Norm-Learning model and Best-Response 
model and significantly differed from the numbers in both 
models (Best-Response: t(34.7) = -2.67, p = 0.01; Norm-
Learning: t(33.2) = 2.49, p = 0.02). While this fails to 
distinguish between the two idealized models presented, it is 
consistent with a noisy or imperfect norm learning process. 

To determine what strategy human and simulated agents 
used in a given round, we used the following heuristic: the 
first time a dyad collided in a round, the respective rows of 
the agents were coded as their strategies (note that agent 
locations after a collision remain the same as before). If a 
dyad never collided in a round we looked at the first step in 
which they were in the same column or switched columns -- 
i.e. the step at which they passed one another. Their 
respective rows after passing were coded as their strategy. 

The amount of trial-to-trial strategy-switching provides a 
critical contrast between the Norm-Learning model and 
Best-Response model. Individuals in the human dyads 
switched their strategies rarely (14% of rounds) (Figure 3c). 
This closely matches the predictions of the Norm-Learning 
model (t(38.8) = 0.66, p = .51) and deviates significantly 
from the Best-Response model (t(40.9) = -6.14, p < .001). A 
related measure of joint strategy diversity tells us about 
global rather than local variability. To measure this, we 
calculated the entropy of the frequency distributions of joint 
strategies. Although the joint strategy entropy for humans 
significantly differed from both models (Norm-Learning: 
t(36.6) = 2.81, p < .001; Best-Response: t(36.2) = -5.55, p < 
.001), human entropy was closer to Norm-Learner entropy 
(Human: M = 0.68, SE = 0.10; Norm-Learning: M = 0.34, 
SE = 0.06; Best-Response: M = 1.34, SE = 0.06). Overall 
then, people displayed behavior more consistent with 
learning a jointly understood norm rather than best 
responding to their partner’s behavior.2 

Experiment 2: Feature-Based Norm 
Generalization 

In our model, feature-based norms allow agents to converge 
on a joint strategy quickly, but they also enable individuals 
to generalize norms to new contexts. Here, we present the 
predictions of two sets of landmark-based features and one 
set of agent-relative features. We show that human norm 
learning better resembles landmark-based features assuming 
people learn norms like the Norm-Learning model.  

Task Description 
We designed the Courtyard tasks shown in Figure 4 to test 
norm generalization. In Direct Courtyard, agents can 
immediately move towards their respective goals through 

                                                             
2 We assume that best responders do not default to the previous 
choice if indifferent between options. Future studies will need to 
rule this out in people. 

entrances. In Indirect Courtyard, agents must first move 
upwards towards entrances to cross. But both versions 
require agents to devise a way to pass. In our simulations 
and experiment, agents first play 10 rounds of Direct 
Courtyard, followed by 10 rounds of Indirect Courtyard. 

If the agents have no means of generalizing learned joint 
plans, then they will have to find a new one when moving 
from Direct to Indirect Courtyard. On the other hand, if they 
learned a norm as a feature-based reward bias, then they can 
use it to guide their strategy choice on Indirect Courtyard.  

Models 
We tested three sets of binary feature-based reward biases: 
goal-relative features – is agent X’s current row above, 
below, or the same as the goal row? (fn = 2 agents x 3 
features = 6 total features) –, entrance-relative features – is 
agent X’s current row above, below, or the same as the 
entrances? (fn = 6) –, and agent-relative features – is agent 
X above, below, or on the same row as agent Y? (fn = 3). 40 
simulations of each model were run. 

Experiment 
Procedure 90 MTurkers (45 dyads) participated. 3 dyads 
were excluded due to technical error. The procedure 
matched Experiment 1 except participants played 2 games. 
 
Results and Discussion To determine whether and how 
participants generalized from Direct to Indirect Courtyard, 
we analyzed individual strategies within dominant joint 
strategies. Each round, we identified the strategy used with 
the same heuristic as in Experiment 1. For each dyad, we 
then identified the most frequent strategies in the Direct 
Courtyard and Indirect Courtyard phases. We then identified 
each agent’s individual strategy in the two phases. Figure 5a 
shows individual strategy counts in the two phases. Note 
that if people were forming new joint plans from scratch, the 
strategies in the two phases would be uncorrelated. This was 
not the case (𝜒!(4) = 27.45, p < .001). 

To explain the systematicity in how joint plans were 
generalized to the Indirect Courtyard, we compared this 
distribution to the simulation results of our three models 
(Figure 5b, 5c, and 5d). A visual analysis of these tables 
suggested that the participant results reflect a mixture of 
goal-relative and entrance-relative features. We confirmed 

Figure 4: (a) Direct and (b) Indirect Courtyard Tasks 
with example optimal joint plans. The bold lines are 
walls that agents cannot pass through.  
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this by calculating maximum likelihood mixture values for 
the three models: pEntrance = 0.21, pGoal = 0.79, and pAgent = 
0.0. Thus, participants tended to generalize norms using 
landmark-based rather than agent-relative features. 

Conclusion 
Here, we have presented a novel model of norm learning 
based on inferring joint reward biases. We compared the 
predictions of this model to those of a best response model 
in the Hallway task, and used the same model to show that 
people use landmark-based rather than agent-relative 
features to generalize norms across the two Courtyard tasks. 

A central aspect of human sociality is engaging in shared 
intentions and joint plans with others (Searle, 1995). Using 
the formal tools of multi-agent MDPs, we are able to make 
quantitative predictions about how collaborating individuals 
represent and reason about themselves as part of a larger 
entity. Future work should explore how individuals learn 
norms over particular types of features, what happens when 
agents’ feature sets differ from one another, and how 
learned norms interact in competitive scenarios. 
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Figure 5: Individual agents’ most frequent strategies (counts) by Direct and Indirect Courtyard phases for (a) experimental 
participants, (b) our Norm-Learning agent with Agent-Relative features, (c) Goal-Based features, and (d) Entrance-Based 
features. The distribution indicates which row an agent is likely to take in the Indirect Courtyard grid given what row was 
taken in the Direct Courtyard. Human results are best explained as a mixture of the two landmark-based feature sets (Goal-
based and Entrance-based; see text). Grayed out rows in the gridworlds indicate the most frequent individual strategy. 
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