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ABSTRACT OF THE THESIS

Machine Learning for SERS Quantitative Detection of Pyocyanin

By

Cuong Q. Nguyen

Master of Science in Materials Science and Engineering

University of California, Irvine, 2018

Associate Professor Regina Ragan, Chair

Since its discovery in 1977, surface-enhanced Raman scattering (SERS) spectroscopy has

been cemented as a powerful spectroscopic technique. Taking advantage of local electric field

enhancement from plasmonic nanostructures, SERS provides vibrational fingerprints down

to the single molecule detection limits. Yet fully capitalizing on the technique has proven

challenging. The problem is rooted in (1) inherent variances in SERS enhancement factors

and (2) dated spectral analysis technique. To address (1), I present a fabrication scheme that

produces optically uniform SERS substrates by employing electrohydrodynamic flow to drive

chemical crosslinking between colloidal gold nanospheres. The resulting substrates exhibit

SERS signals with relative standard deviation of 10.4 % over 100×100 µm2. With pyocyanin

as analyte – a secondary metabolite produced by P. aeruginosa – SERS substrates exhibit

limit of quantification of 1 ng·mL−1 and robust quantification of concentrations spanning

5-orders of magnitude. To address (2), I implemented three machine learning algorithms

to analyze SERS spectra. Partial least squares regression is crucial in monitoring of P.

aeruginosa biofilm formation in a microfluidic environment, enabling detection as early as

3 h after inoculation in complex media. Feedforward artificial neural networks trained on

pyocyanin data produces prediction errors of 6.2 ± 1.1 %. Finally, 1D convolutional neural

networks trained with spectra stack further reduces prediction errors to an impressive 4.9 ±

0.9 %. Overall, this thesis demonstrates SERS spectroscopy as a potential diagnostic tool
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while laying the foundation to fully exploit its sensing capability by integrating machine

learning in the analysis pipeline.
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Chapter 1

Introduction

Surface-enhanced Raman scattering (SERS) spectroscopy is an ultrasensitive vibrational

spectroscopic technique that can provide molecular fingerprints as a label-free biosensing

method. SERS-active surfaces, composed of plasmonic nanoantennas, provide enhancements

to the local electric field and thereby optical signals that can reach detection limits down to

the single molecule region [1]. Its ability to detect molecules at low concentrations makes

SERS an attractive tool for biosensing applications where biologically relevant concentrations

often range from nM to mM levels in clinical samples [2, 3].

Throughout the years, SERS detection capability has been repeatedly documented in the lit-

erature. SERS-based studies have demonstrated detection of small proteins in the nM range

[4], DNA/RNA in the fM range using labeled sensing [5], and even differentiation between

bacteria strains during their maturation phase [6, 7, 8]. Yet achieving reproducible quan-

tification – a crucial aspect of biosensing – in these critical concentration ranges has proven

difficult with SERS due to dated techniques used in interpreting SERS data and inher-

ent variances of SERS enhancement factors resulting from non-uniformity in nanostructure

architecture.
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SERS enhancement factors are highly dependent on the nanogap distance between plas-

monic nanoantennas, increasing monotonically with decreasing gap size. Statistical analysis

of various size-controlled nanogaps using DNA tethering observed single molecule SERS

intensity when nanogaps are on the order of 0.5—0.9 nm [9, 10]. At nanogap distances

below approximately 0.5 nm, depolarization effects attributed to quantum tunneling reduce

enhancements [11]. Reaching sub-nanometer nanogap dimensions over large area without

large variations is difficult, and thus, SERS substrates often exhibit tradeoffs between repro-

ducibility and large enhancement factors. Yet it is necessary to have both uniform and large

enhancement factors across SERS substrates to reproducibly achieve low detection limits in

quantitative sensing applications. Consider that at extremely low concentrations, analyte

molecules will not be uniformly distributed across the surface [12, 13]. SERS measurements

on a mixture of two different analytes determined that single molecule sensing events occur

at nM concentration as not every molecule in the scattering volume will reside in a hotspot

[13, 14]. Inherent variances in SERS substrates’ enhancement factors only worsen any ana-

lyte’s location-dependent signal variations and will lead to large SERS intensity fluctuations.

Thus, a fabrication scheme that produces SERS surfaces having uniform and dense nanogaps

is necessary to increase the probability that an analyte will adsorb on a hotspot in the il-

luminating laser spot size and thereby reproducibly contribute to the SERS signal at low

concentrations.

Another crucial component to this issue is the dated techniques used in interpreting SERS

data. A SERS spectra is composed of rich vibrational information of the sample – depend-

ing on the molecule, it is not uncommon for a spectra to contain of 10 or more peaks. Yet

traditional methods of calibrating SERS surfaces’ quantitative response only track a single

Raman band, an analysis termed univariate linear regression, and discard the remaining

rich spectral information [15, 16, 17, 18, 19, 20, 21, 22, 23]. While efforts in breaking the

norms is minimal, multivariate regression analyses have demonstrated some successes for

SERS quantification of glucose [24]. Being linear algorithms, they cannot account for the
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non-linear nature of SERS enhancement factor variances and non-uniform distribution of

analyte molecule in SERS hotspots, and thus still lack performances at low concentrations.

It is important then to utilize a nonlinear algorithms to fully capitalize on SERS sensing ca-

pability. In this thesis, I present a chemical assembly fabrication method to generate SERS

surfaces that overcome such variances in electric field enhancements and a SERS-based mi-

crofluidic sensor to monitor biofilm formation of Pseudomonas aeruginosa, an opportunistic

pathogen commonly associated with medical devices contaminations and immunocompro-

mised patients [25, 26]. This is accomplished via SERS quantitative detection of pyocyanin

– a secondary metabolite produced by the bacteria that concurrently acts as its biomarker

– using statistical learning algorithms for spectral analysis. I also demonstrate the advan-

tages of using deep learning tools in interpreting SERS data for improved quantification of

pyocyanin.

1.1 Thesis Organization

Chapter 2 provides a theoretical and fundamental framework of the multidisciplinary topics

discussed in this thesis, ranging from Raman scattering to neural networks. In Chapter 3, I

introduce chemical assembly of SERS surfaces using EHD flow. Characterization and perfor-

mance of resulting SERS surfaces is also discussed in this chapter to provide further insights

on the advantages of using EHD flow to generate SERS surfaces. Chapter 4 demonstrates

instantaneous quantitative detection of pyocyanin using SERS surfaces, enabling early detec-

tion of P. aeruginosa biofilm formation. Spectra are collected in a microfluidic environment

and are analyzed with partial least squares regression, a multivariate linear statistical learn-

ing algorithm, to quantify pyocyanin concentrations. Finally in Chapter 5, I investigate

using deep learning methods to improve quantitative detection of pyocyanin. Performances

3



of feedforward artificial neural networks and convolutional neural networks are compared

with linear algorithms for this task.
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Chapter 2

Background

2.1 Localized Surface Plasmon Resonance

Metals, from an electromagnetic point of view, are plasmas of free electron gas oscillating

around a fixed core. On a macro scale, these oscillations, termed bulk plasmons, exhibit

resonant frequencies dictated in part by the restoring forces exerted on displaced electrons.

When light incidents on a metal nanosphere surrounded by a bulk dielectric environment, as

depicted in Figure 2.1, a similar phenomenon occurs. The oscillating electric field induces a

dipole moment in the nanosphere and displaces the electron gas as permitted by its polariz-

ability. The nanosphere’s curved surface exerts a restoring force on the electron gas, as in the

case of bulk plasmons, leading to the existence of a resonant frequency which is subsequently

termed the localized surface plasmon resonance (LSPR). It is then possible to theoretically

approximate this frequency by considering the polarizability of the nanosphere. When the

nanosphere is small with respect to the wavelength of the incident light, the polarizability

can be described in Equation 2.1 using simple quasi-static approximation where the phase

of the time-dependent oscillating incident field is assumed to be constant over the particle
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Figure 2.1: Schematic of physical system used to describe the phenomenon of localized sur-
face plasmon resonance: A nanosphere with permittivity of ε(ω) embedded in a uniform
dielectric medium with permittivity of εm(ω). Adapted by permission from Springer: Plas-
monics: fundamentals and applications by Stefan A. Maier. Copyright 2007.

volume, thus simplifying the problem to a particle in an electrostatic field.

α = 4πa3
εm(ω)− εd(ω)

εm(ω) + 2εd(ω)
(2.1)

Here α is the polarizability of the nanosphere, a is the radius of the nanosphere, εd is the

permittivity of the dielectric environment, εm is the permittivity of the metal, and ω is the

frequency. The resonance condition is reached at the frequency where α is maximized, which

Equation 2.1 shows to take place when εm(ω) = −2εd(ω). Interestingly, this condition also

implies that the plasmonic response of a metal nanosphere is dependent on the surrounding

environment: A gold nanosphere in water will have a resonance that is red-shifted from

that in air. It is also worth noting two important aspects of this analysis. First, the quasi-

static approximation places an upper bound on the size of a nanosphere that can exhibit

this resonance, meaning that when the nanosphere becomes large relative to the incident

wavelength, surface plasmon polariton behavior is observed instead of LSPR. Second, when

considering a real metal with complex permittivity, it is apparent that α is still confined from

being infinite by the imaginary components of the permittivity associated with loss due to

absorption.
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Further investigation of the induced dipole described above reveals an important effect of the

LSPR. Equation 2.2 describing the electric near field of an oscillating dipole will elucidate

this.

E =
3n(n · p)− p

4πε0εd

1

r3
(2.2)

Here n is the unit normal vector, p is the dipole moment (to be differentiated from point P

in Figure 2.1), ε0 is vacuum permittivity, and r is the distance from the dipole. Considering

the dipole moment p is a function of the polarizability α, we can observe that, when the

resonance condition is met, the local electric field near the nanosphere also experiences an

enhancement as a result of the increased polarizability. This electric field enhancement is the

foundation to various surface enhanced spectroscopy techniques, including SERS as further

elaborated below.

2.2 Surface-Enhanced Raman Scattering Spectroscopy

2.2.1 Raman Spectroscopy

The Raman effect, commonly known as Raman scattering, is an inelastic scattering pro-

cess between a photon and a phonon, a quantum of a molecular vibration. The scattered

photons are reduced by energies characteristic to vibrational transitions within a molecule.

Consequently a Raman spectra, constructed by probing the frequency change of the scat-

tered photons with respect to the incident frequency, provides a vibrational fingerprint of

a molecule with high specificity. Classical treatment of Raman scattering is sufficient to

provide the necessary insight for this work. Consider an oscillating electric field applied to

a molecule. The electrons and nuclei will be displaced by the field through interaction with

phonon modes, thus resulting in an oscillating dipole moment in the molecule. This induced
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Figure 2.2: Energy diagram of Rayleigh and and Raman (Stokes and anti-Stokes) scattering.
νI and ν represent the frequency of incident light and vibration, respectively.

dipole moment can be described simply by

µind = αE (2.3)

where µind is the induced dipole moment, E is the incident electric field, and α is the

polarizability, a property of the molecule. As a vibrating molecule oscillates in size and shape,

its polarizability will also oscillate. Polarizability of the molecule can then be expanded as

α = α0 + α1 cos ωt (2.4)

where α1 is the amplitude of the oscillation around the static polarizability α0, and ω is the

frequency of the molecular vibration. The oscillating incident field can be represented by

E = E0 cos ωIt (2.5)
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where ωI is the frequency of the incident field. Substituting Equations 2.4 and 2.5 into 2.3

(and applying a simple trigonometric identity) gives Equation 2.6 [27].

µind = α0E0 cos ωIt+
1

2
α1E0 cos (ωI − ω)t+

1

2
α1E0 cos (ωI + ω)t (2.6)

From Equation 2.6, it is apparent that the induced dipoles—and thus vibrations—exist at

three frequencies: ωI , ωI−ω, and ωI +ω. The first term correlates to the unshifted frequency

of Rayleigh scattering, while the second (red-shifted) and third (blue-shifted) terms are

Stokes and anti-Stokes scattering, respectively. The energy diagram of the three scattering

events is depicted in Figure 2.2. Since most molecules energetically remain at the ground

state, Raman scattering is usually measured by the stronger Stokes scattering at ωI − ω.

2.2.2 SERS Enhancements

Raman scattering, however, is an inefficient process. Approximately only 1 in 106 – 108

incident photons scatters inelastically, and thus Raman detection limit is not suitable for

biosensing applications [28]. To overcome this, SERS utilizes LSPR of metal nanostructures

to achieve detection of single molecules. From Equation 2.6, it is easy to see the benefit

of LSPR in SERS: We can replace the incident field E0 with the local field of the metal

nanosphere from Equation 2.2, which is maximized at the resonant frequency. It is also

worth noting that Raman spectroscopy instruments measure intensity, which is proportional

to |E|2. This intensity at the detector with respect to the incident light also experiences

two enhancements: the electric field from external excitation source exciting the molecular

vibrations and from the light inelastically scattered from the molecule are both increased

by Equation 2.3. As a result, SERS exhibits approximately a |E|4 enhancement relative

to the incident electric field. This |E|4 enhancement is at the core of SERS impressive
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detection capability, consider that a 2-fold increase in electric field increases measured Raman

scattering intensity by 16-fold.

In practice, bringing two or more single plasmonic nanospheres closely together can lead to

coupling between their localized plasmons [29], which generates greater field enhancement

at the nanogaps—up to 1000-fold, equivalent to a 1012-fold increase in scattering intensity—

when the incident electric field is along the inter-particle axis [30]. It has been also shown

theoretically and experimentally that this enhancement diminishes quickly as the nanogap

size increases [31, 32]. Thus it is necessary to have SERS substrates with uniform nanogaps

to minimize the variance in field enhancement for reliable analyte quantification with SERS,

as demonstrated in Chapters 3 and 4.

2.3 Machine Learning for Regression Analysis

Regression analysis is a group of statistical tools used to model relationships between vari-

ables. Widely used for prediction and forecasting, it involves understanding mathematically

how changes in one or more independent variables affect the dependent variables of interest.

In the context of SERS quantification, they provide a means to accurately predict analyte

concentrations despite the non-linear nature of SERS enhancement factor variances and the

non-uniform distribution of analyte on SERS surfaces. The two tools described below –

partial least square (PLS) regression and artificial neural networks (ANNs) – subsequently

used in Chapters 4 and 5 to quantify pyocyanin concentrations from SERS spectra.

10



2.3.1 Partial Least Squares (PLS) Regression

PLS regression was developed in the 1980s to overcome the shortcomings of popular tech-

niques at the time. PLS regression is now a standard chemometric tool utilized by researchers

in a wide range of fields from analytical chemistry to social sciences.

In simple terms, PLS regression performs multiple linear regression on the projections of the

inputs and outputs. Suppose a system has m features, p labels, and n training examples, we

can set up a n×m matrix X consisting of all features and a corresponding n× p matrix Y

consisting of all labels. In PLS, X and Y are decomposed according to

X = TPT + E (2.7)

Y = UQT + F (2.8)

where T and U are the X and Y scores, respectively, and P and Q are the X and Y loading

vectors, respectively. The decomposition is carried out so that the covariance of T and U

are maximized, thus allowing the loading vectors to be rotated relative to each other [33].

Finally the least squares regression estimate of B is calculated for the relationship U = TB.

In practice, one needs to choose the appropriate amount of loading vectors to prevent under-

and over-fitting; since this value is generally smaller than m, the decomposition in Equation

2.7 is usually understood as a dimensional reduction step [34].

Intuitively speaking, PLS regression finds a best-fit linear model from the most important

components of the inputs and outputs. The inputs and outputs are reduced to the compo-

nents that explain the most changes, or variances, in each other. This step automatically

minimizes redundancy within the data, resulting in more accurate models than simple mul-

tiple linear regression (MLR) or principal component regression (PCR). As an example, one

can look at a Raman spectra as having high redundancy with respect to analyte concen-

trations: As the concentration increases (decreases), intensities of all peaks associated with

11



the analyte will also increase (decrease). Performing MLR or PCR in this case would result

in large prediction error whereas PLS regression overcomes this by using only the essential

information of the spectra.

2.3.2 Artificial Feedforward Neural Networks

Deep learning – having produced disruptively high performance in various artificial intelli-

gence applications – is rooted in the development of artificial neural networks (ANNs). To

understand ANNs, we first consider its fundamental building blocks: The artificial neurons

(Figure 2.3).

Figure 2.3: Components of an artificial neuron.

It is possible to see from Figure 2.3 that a single neuron takes in multiple inputs and outputs

a single value. The output is computed in two steps: (1) the neuron’s activation is calculated

as a weighted sum of all inputs and (2) an activation function is then applied on the activation
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to produce the output, summarized in Equations 2.9 and 2.10, respectively.

a =
∑

xjwj (2.9)

y = f(a) = f
(∑

xjwj

)
(2.10)

Here a is the activation, xj is the jth input, wj is the corresponding jth weight, f(x) is the

activation function, and y is the output. Activation functions can be chosen from a range of

options, such as sigmoid, tanh, or the popular rectified linear units (ReLU) [35].

ANNs are built by connecting these neurons into larger networks, as visually depicted in

Figure 2.4. Here each line represents a weight, and each circle represents a node that operates

as a single neuron. The hidden layers, an important aspect in deep learning, are any layers

of neurons between the input and output.

Figure 2.4: Schematic representation of a feedforward ANN with 1 hidden layer.
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In matrix notation, one can describe the flow of values as followed

A1 = X0W1 + B1 (2.11)

X1 = f(A1) (2.12)

A2 = X1W2 + B2 (2.13)

X2 = Y = f(A2) (2.14)

where Ai, Xi, Wi, and Bi depict the activation vector, output vector, weight matrix, and

bias vector of the ith layer, respectively. It is apparent, then, that ANNs are just a series

of matrix transformation separated by nonlinear activation functions. During training, the

weight matrices Wi of each layer are iteratively updated—or learned—using backpropagation

[36]. In practice, the learning rate, the number of hidden layers (depth) and nodes in each

layer (width) are just three parameters from a multitude of application-dependent parameters

that require precise tuning for optimal performance.
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Chapter 3

Self-Assembled Plasmonic SERS

Substrates

Inherent variance in SERS enhancement factors – as described in Chapter 1 – is a cru-

cial limiting factor when it comes to SERS reproducibility and quantification capability.

This knowledge has understandably resulted in many reports demonstrating high unifor-

mity via fine control of hotpots size and cluster morphology using top-down approaches

[37, 38, 39, 40, 41]. In addition to expense, top down methods have substantial difficulty

in achieving interparticle distances less than 5 nm, limiting achievable signal enhancements

and detection limits. In this chapter I detail an alternative bottom-up self-assembly tech-

nique that minimizes variances in SERS enhancement by using EHD flow to drive chemical

crosslinking. The resulting SERS surfaces exhibit optical uniformity over large area and are

subsequently used in Chapters 4 and 5.
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Figure 3.1: Schematic overview of chemical assembly of SERS substrates. (a) Lipoic acid-
functionalized Au nanoparticles are electrophoretically driven toward a working electrode.
Au seeds chemically crosslink with amine functionalized PMMA regions on self-organized
diblock copolymer PS-b-PMMA template (inset). The resultant EHD flow field around the
seed entrains nearby nanoparticles forming transient oligomers. (b) Illustration of anhydride
bridge that forms between carboxylic acid and acylisourea on neighboring nanoparticles that
stabilizes oligomers when the external field is turned off.

3.1 Driving Chemical Crosslinking with EHD Flow

Directing the assembly of Au oligomers with uniformly distributed electromagnetic hotspots

over large areas is achieved by utilizing EHD flow to drive chemical crosslinking to form

nanogaps with sub-nanometer gap spacing as reported previously [42]. The chemical assem-

bly is facilitated using a two-step growth process: (1) electrophoretic sedimentation driving

chemical crosslinking of Au nanoparticle seeds onto a working electrode and (2) growing

oligomers via EHD flow and stabilizing via chemical crosslinking. During electrophoresis,

depicted in Figure 3.1a, lipoic acid-functionalized Au nanoparticle monomer seeds are chem-

ically assembled on amine-functionalized poly(methyl methacrylate) (PMMA) regions of a

diblock copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA)-coated working elec-

trode using 1-ethyl-3-(3-(dimethylamino) propyl)carbodiimide/N-hydroxysulfosuccinimide (EDC/s-

NHS) carbodiimide chemistry (inset). In the second deposition step, an applied field deforms

the ionic double layer around the Au seeds, shown on the right of Figure 3.1a, inducing an
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osmotic flow toward the seeds’ equator, termed the EHD flow [43, 44, 45]. These flow fields

entrain the nearby nanospheres and drives them toward Au seeds to form transient close-

packed oligomers, which are subsequently stabilized through an acylisourea-carboxylic acid

reaction that forms anhydride bridges between nanospheres, shown in Figure 3.1b. These

bridges result in oligomers with uniform interparticle gap spacings of approximately 0.9 nm,

corresponding to the sulfur-sulfur distance of an anhydride bridge calculated from atomistic

simulations and observed in transmission electron microscopy [42].

3.2 Uniform Optical Responses of SERS Substrates

A scanning electron microscopy (SEM) image of a SERS substrate composed of self-assembled

oligomers is displayed in Figure 3.2a. The size distribution in percent area (Figure 3.2b inset),

determined from image analysis of SEM images using Wolfram Mathematica, indicates that

trimers are observed with the highest probability, with quadrumers being the second. The

absorption cross section of a dimer, linear trimer, and linear quadrumer with a nanogap size

of 0.9 nm—corresponding to the calculated sulfur-sulfur distance of an anhydride bridge—

was calculated from full-wave simulations and shows good agreement with the fine structure

observed in the UV-visible measurement as shown in Figure 3.2b. This agreement suggests

that the measured attenuation is dominated by frequencies near the trimer resonance with

contributions from frequencies associated with dimers and quadrumers that are blue- and

red-shifted, respectively. Larger oligomers observed in the SEM image of Figure 3.2a con-

tribute to the broad shoulder at higher wavelength. This observation can be understood by

considering the effect of the close-packed arrangement of nanospheres in oligomers on their

plasmon resonance. It has been previously shown using dark field microscopy and full-wave

simulations that an oligomer’s plasmon mode is only slightly perturbed by the addition of a

nanosphere when the added nanosphere is unaligned with the incident beam’s polarization.
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Figure 3.2: (a) SEM micrograph of self-assembled Au oligomers. (b) Attenuation curve
of SERS substrates in DI water. Dotted curves represent absorption cross section of a
dimer (×), linear trimer (squares), and linear quadrumer (+) from full-wave simulations.
Inset shows oligomers distributions in percent area on SERS substrate calculated from SEM
images acquired over 10 µm2. (c) Calculated field enhancement of Au (i) linear trimer with
0.9 nm gap, (ii) dimer with 0.9 nm gap, (iii) linear trimer with 2 nm gap, and (iv) dimer
with 2 nm gap from full-wave simulations. Curve (i) and (ii) are offset by 100 for clarity. (d)
Normalized SERS intensity map of benzenethiol’s 1573 cm−1 vibrational band. Inset shows
distribution of normalized intensity with a RSD of 10.4%.
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For example, a hexamer made up of two trimers on top of each other has a plasmon mode

that is slightly red-shifted from that of a linear trimer [46]. Consider that for a close-packed

oligomer to have more than 4 nanospheres in a row, it must be composed of more than 21

nanospheres. From the oligomer size distribution, Figure 3.2b inset, it was determined that,

by number, 98% (88% by area) of the oligomers are composed of 21 nanospheres or less. It

is then unsurprising that the resonance is dominated by dimers, trimers, and quadrumers.

Full-wave simulations of the electric field enhancement—|Eolig|/|E0|4, where Eolig and E0 are

the plane wave field with and without oligomers, respectively—was performed for nanogaps

of 0.9 and 2 nm in dimers and linear trimers and are shown in Figure 3.2c. As expected, the

resonance red-shifts as the gap distance decreases. Furthermore, increasing the gap spacing

from 0.9 to 2 nm reduces the calculated field enhancement from 621 to 240 (762 to 314) in

a dimer (linear trimer). The SERS enhancement can be estimated as the fourth power of

the field enhancement, |Eolig|/|E0|4, and thus even slight variations in field enhancement will

lead to large variations in SERS intensity. Overall, the plasmon resonance is less affected

by close-packed oligomer size than the resultant field enhancement in the nanogaps when

the spacing decreases below 2 nm. Thus, chemically controlled gap spacing enables uniform

SERS intensity, as observed in Figure 3.2d.

Figure 3.2d displays the normalized SERS intensity of a benzenethiol vibration band, 1573

cm−1, acquired over a 100 µm × 100 µm area. The SERS intensity has a RSD of 10.4 %.

While nanogap spacing of 0.9 nm is important to achieve large and uniform SERS enhance-

ments, at the same time, the assembly method provides a sufficiently broad band response,

ranging over a window of 625–875 nm in the attenuation measurement, to enhance signals

at both the plasmon excitation wavelength and Raman scattered wavelength. The uniform

SERS response with large enhancements over large area enables the use of these SERS sub-

strates in device architectures. Of further significance, it also enables the acquisition of large

data sets needed for statistical analysis enabling quantitative detection.
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3.3 Fabrication and Characterization Procedures

Self-Assembly of SERS Substrates

Si wafers were cleaned in 10 % HF to remove the native oxide. The potential of HF to cause

severe injury mandates extreme caution during usage. Random copolymer PS-r -PMMA and

diblock copolymer PS-b-PMMA solution in toluene (1 wt%) were spin-coated on the flat Si

surface and annealed at 198 oC to form thin films as described in previous work [47]. PMMA

regions were selectively functionalized with amine end groups by first immersing in DMSO

and then in ED/DMSO solution (5% v/v) for 5 minutes each step and without rinsing in

between. The substrate was then washed with IPA for 1 minute and dried under nitrogen.

Lipoic acid functionalized 40 nm Au nanospheres suspended in water were concentrated

twofold by adjusting the pH to 8 with potassium carbonate and centrifuging for 25 minutes

at 1700 RCF and redispersed in DI water. 3 mL of concentrated Au nanosphere suspension

was added to a 10 mL beaker, followed by 35 µL of freshly prepared 20 mM s-NHS in

0.1 M MES buffer and 35 µL of freshly prepared 8 mM EDC in 0.1 M MES buffer. The

suspension was swirled and moved on a hotplate to be heated to 8ooC. A 1 cm × 1 cm Pt

mesh and 1 cm × 1 cm Si substrate were stabilized using alligator clips and placed into the

suspension vertically as the anode and cathode, respectively. A DC Regulated Power Supply

was used to apply a voltage of 1.2V for 10 minutes to drive electrophoretic sedimentation

of Au nanospheres to the surface. EDC initiated carbodiimide crosslinking chemistry was

used to covalently bind carboxylic acid functionalized Au nanospheres to the selectively

amine-functionalized PMMA regions of the template via an amide bond [47]. The substrate,

Pt mesh, and beaker weree rinsed with IPA for 1 minute and dried under nitrogen. The

process was repeated on the same substrate with a freshly concentrated Au nanospheres

suspension, but with 30 µL of EDC and s-NHS solution. Here electrohydrodynamic flow

around previously attached nanospheres drives nanospheres to chemically crosslink via EDC
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coupling chemistry to nanospheres assembled in the first step. Finally, the diblock copolymer

layer was etched under oxygen plasma (50W, 60s) in the PC2000 Plasma Cleaner from South

Bay Technology (San Clemente, CA) to remove organic groups from nanoparticle surfaces.

Assembly on indium tin oxide (ITO)-coated glass were carried out identically, with the

exception of the surfaces undergoing oxygen plasma etching at 100 W for 1 min before

spin-coating PS-r -PMMA.

Characterization

Images of SERS substrates are collected with a Magellan XHR scanning electron microscope

(FEI). UV-vis absorption measurements of SERS substrates are carried out using a Shi-

madzu UV-1700 absorption spectrometer. Absorption spectra are taken of ITO-coated glass

substrates taped (away from the beam path) onto a quartz cuvette filled with DI water.

Simulations

Full-wave simulations (frequency domain finite elements method solver) are implemented

in CST Microwave Studio (CST AG). We calculate the absorption cross sections of several

nanosphere oligomers: dimer, linear trimer, and linear quadrumer. The structure is as

follows. Au nanospheres of 40 nm in diameter with 0.9 nm interparticle gaps [42] are partially

embedded in a 40 nm PMMA layer [48] with their centers 8 nm above the PMMA. The

PMMA layer is directly above a 150 nm ITO layer, which is directly above a 2 µm glass

layer. The upper medium surrounding nanospheres is water. The total size of the structure

in x-y plane (transverse plane) is assumed to be 4 µm × 4 µm, which is approximately four

times larger than the largest excitation wavelength of 900 nm, and we applied software’s

open boundary condition. Briefly, open boundary conditions enable saving computation

time on calculations involving large structures with small features by reducing the required

computational domain. Here, the software considers the glass, ITO, and PMMA layers to

extend beyond the computational domain, thus waves can pass this boundary with minimal
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reflection. Au permittivity was calculated from Drude model with parameters extracted

from Grady [49]. The relative electric permittivity used for water, PMMA, glass, and ITO

are 1.77, 2.47, 2.3207, and adapted from Moerland [50], respectively. The permittivity in

the gap region was unknown due to anhydride bonding [42], and thus was approximated by

performing a parameter sweep of the gap permittivity and calculating the absorption of the

dimer configuration to determine which best corresponds with the observed dimer peak at

686 nm. The resulting permittivity of 2.25 was used in simulations. Oligomers are excited

with plane wave illumination at normal incidence with electric field polarization along the

axis of the linear oligomers, and the absorption cross section of the structures is determined.

Field enhancement was also calculated from full-wave simulations of dimer and linear trimer

with 0.9 nm and 2 nm interparticle gaps using the same conditions. Field enhancement is

defined in equation (3.1).

FE = |Eolig|/|E0| (3.1)

|Eolig| represents the electric field magnitude at the center of the gap in the oligomer (dimer

or trimer), and |E0| is the electric field magnitude at the same location in the absence of the

structure.

3.4 Summary

Chemically assembled SERS substrates, using EHD flow to initiate chemical crosslinking

yields uniform nanogap spacings of 0.9 nm. Full-wave simulations of near-field enhancements

comparing 1 and 2 nm nanogaps show that variation of this parameter is critical to achieve

high and reproducible SERS intensity. Consequently, the 1573 cm−1 vibrational band of

adsorbed benzenethiol produces intensities with RSD of 10.4 % over a 100 µm × 100 µm
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area. The substrates exhibit broad band resonance between 625 nm and 875 nm, sufficient

to enhance both the excitation and Raman scattered light.
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Chapter 4

Robust SERS Quantitative Detection

of Pyocyanin

Self-assembly of SERS substrates using EHD flow and EDC crosslinking chemistry minimizes

inherent variances in SERS enhancement factor, producing optically uniform SERS surfaces

(Chapter 3). Yet such uniformity does not guarantee high performance in molecular sensing

without appropriate spectral analysis. In this chapter, I show the advantage of using PLS

regression – a multivariate statistical learning algorithm – over the dated method of linear

regression in analyzing SERS spectra of pyocyanin, a metabolite produced by P. aeruginosa.

More importantly, I demonstrate an integrated microfluidic SERS device capable of early

detection of P. aeruginosa biofilm formation via instantaneous quantitative detection of

pyocyanin.
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4.1 Pyocyanin: A Biomarker for PA

During biofilm formation, differential gene expression is regulated through a cell density-

dependent mechanism called quorum sensing (QS) [51, 52]. Soon after surface attachment,

bacteria begin producing extracellular polymeric substances and QS signaling molecules [53].

Once formed, a combination of physical mechanisms and genetic and metabolic adaptations

within the biofilms imparts extreme antibiotic tolerance or resistance to the constituent cells

[54], which can withstand up to 1000 times higher doses of antibiotics than their free float-

ing planktonic counterparts [55]. While new antimicrobial strategies are being developed to

combat antibiotic resistance, here we investigate a promising parallel strategy, sensing bac-

terial metabolites associated with QS for early detection of P. aeruginosa biofilm formation

at a stage where antibiotic treatment has higher efficacy. P. aeruginosa is a biofilm-forming,

opportunistic pathogen that is associated with the contamination of medical devices and res-

piratory infections in immunocompromised patients [25, 26] and is one of the most common

bacteria isolated in chronic wounds [56]. Among the many virulence factors and QS com-

pounds that P. aeruginosa produces is pyocyanin [57], a redox-active secondary metabolite

which can act as a terminal signaling factor in the QS process. Pyocyanin has been shown

to exist in concentration in the ng·mL−1 to µg·mL−1 (ppb to ppm) range in clinical sam-

ples [58]. Thus quantitative detection of pyocyanin at low concentrations may enable early

detection of P. aeruginosa infections and earlier, more effective treatment.

4.2 Experimental Procedures

Materials

Random copolymer Poly(styrene-co-methyl methacrylate)--Hydroxyl--tempo moiety (PS-r -

PMMA) (Mn = 7.4 kg mol−1, 59.6% PS) and diblock copolymer poly(styrene-b-methyl
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methacrylate) (PS-b-PMMA) (Mn = 170-b-144 kg mol−1) were purchased from Polymer

Source, Inc. (Dorval, Canada). Gold nanospheres with diameter of 40 nm and lipoic func-

tionalization were purchased from Nanocomposix (San Diego, CA). Si(001) wafers with

resistivity of 0.004 ohm·cm were purchased from Virginia Semiconductor (Frederickburg,

VA). Hydrofluoric acid (HF) was purchased from Fisher Scientific (Pittsburg, PA). 2-(N-

morpholino)ethanesulfonic acid (MES) 0.1M buffer was purchased from Pierce (Rockford,

IL). 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride, N-hydroxy sulfosccin-

imide (s-NHS), dimethyl sulfoxide (DMSO), ethylenediamine (ED), toluene, ethanol, iso-

propanol (IPA), potassium carbonate, and 52-mesh Pt gauze foil were purchased from Sigma

Aldrich (St. Louis, MO). Nanopure deionized (DI) water at 18.2 Mohm·cm was obtained

from Milli-Q Millipore System.

P. aeruginosa cell-free supernatant preparation

Wild type P. aeruginosa (strain PA14 [59]) shaking culture supernatant was used to mea-

sure pyocyanin production over time. PA14 was streaked onto lysogeny broth (LB, EMD

Millipore) agar plates from frozen glycerol stocks and grown overnight at 37 oC. Shaking

cultures were inoculated from single colonies on the LB plate into 5 mL of liquid LB and

grown at 37 oC on an orbital shaker overnight. 50 µL of the shaking culture was diluted

into 24 mL of 10 g·L−1 tryptone media (Bacto tryptone ”TB”, BD Scientific) and this sub-

culture was grown at 37 oC on an orbital shaker. Aliquots were taken periodically from the

shaking subculture for optical density measurements. To measure pyocyanin production, P.

aeruginosa conditioned medium was isolated by centrifuging the 2 mL cultures at 15000 × g

and passing the resulting supernatant through a 0.2 µm PES vacuum filter (Corning). The

filtered supernatants were dropped onto the SERS substrates and measured within 1 hour

from their collection time.

Fluidic Device Fabrication and Biofilm Growth
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The microfluidic device consists of two channels, one for the biofilm and the other for the

SERS substrate. Microfluidic channels for the biofilm were made by bonding the plasma-

activated surfaces of PDMS with a glass slide. SERS substrate and a glass slide are separated

by an adhesive spacer of 100 µm thickness (3M 415) with channel design laser cut (Epilog

Fusion Laser Cutter) in the adhesive layer.

P. aeruginosa biofilms for in-line detection of pyocyanin were grown in the above microfluidic

devices as previously described using a P. aeruginosa strain constitutively expressing yellow

fluorescent protein (YFP) [60]. P. aeruginosa cells were seeded with no flow in the biofilm

growth channel for 2 h. The fluid feed was then switched to sterile tryptone media and the

outlet of the channel was connected to the SERS channel input. The 0 h surface-enhanced

resonance Raman scattering (SERRS) measurements were collected once the in-line device

is fully connected, prior to start of flow. Media was then pulled through the in-line detec-

tion device at 10 µL·h−1 and SERRS spectra were collected at the indicated time points.

Identical biofilms were grown and imaged in the flow cells to measure the time-dependence

of biofilm growth. The biofilm volume was obtained from Volocity imaging analysis soft-

ware (PerkinElmer) of confocal fluorescence images of the YFP-producing biofilms. SERRS

collection parameters are described below.

Antibiotic Susceptibility Measurements

P. aeruginosa biofilms were grown for 10, 15, and 24 h on glass coverslips submerged in 2

mL of TB supplemented with 3 g·L−1 NaCl in sterile, six well tissue culture plates (Fisher

Scientific). After the indicated growth time, the growth media was aspirated and the biofilms

on the coverslips were rinsed once with PBS while still in the wells. The PBS rinse solu-

tion was then aspirated and replaced with 600 µg·mL−1 carbenicillin (minimum inhibitory

concentration in P. aeruginosa strain PA14 128 µg·mL−1) [61] in PBS or PBS only for the

control. Biofilms were soaked in the antibiotic or control solutions for 3 h, rinsed again with

PBS, and then stained with live/dead cell viability assay stains, propidium iodide and Syto
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9 BacLight kit (Fisher Scientific) at 2 µM final concentration each, for 15 min. Coverslips

were rinsed once more in PBS, removed from the wells and placed face down on a microscope

slide for confocal fluorescence imaging. The fraction of dead cells was calculated using the

biovolumes of each color channel (red and green) obtained from Volocity imaging analysis

software (PerkinElmer) of confocal fluorescence images of biofilms.

At 6 h biofilm growth, the washing steps described above removed all cells from the coverslips.

Instead, the antibiotic susceptibility of surface-attached bacteria was measured from cells

grown in microfluidic devices. After 6 h of growth, as described above for pyocyanin detection

experiments, the input line was changed from TB to 600 µg·mL−1 carbenicillin in PBS for

3 h. The input line was then changed again to the BacLight solution for 15 min and finally

PBS for 30 min, after which cells attached to the channel surface were imaged and the dead

cell fraction quantified by counting individual cells of each color channel.

Spectroscopic Measurements Instrumentation and Procedure

Surface enhanced Raman spectroscopy (SERS) measurements were conducted using a Ren-

ishaw InVia Raman Microscope system. A 785 nm continuous wave laser was chosen to

excite near the plasmon resonance of Au nanoparticle assemblies as determined from elec-

tromagnetic simulations and ultraviolet-visible absorption measurements [42].

In droplet measurements, as referred to in the main text, a 60X water immersion objective

with 1.2 NA was used for illumination and collection. Approximately 150 µL of solution

of interest was transferred onto SERS substrates and the measurements were acquired with

laser power and acquisition time of 7.3 µW and 0.5 second, respectively, over area specified for

each case. SERS substrates were cleaned with IPA and DI water for 1 minute each and dried

under nitrogen between measurements. One substrate was used per set of measurements

(concentrations or time points).
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For in-line measurements, a 50X objective was used. Measurements were taken with laser

power and acquisition time of 14.6 µW and 0.1 second, respectively. Illumination and col-

lection were done through the glass slide of SERS microfluidic channel.

Spectra Processing and Analysis

Raman scattering spectra processing and analysis were performed off-line using MATLAB

R2016b (The MathWorks Inc, Natick, MA). Each spectrum underwent baseline correction,

smoothing with Savitzky-Golay, and normalization to the average intensity of Si second-order

vibrational band. While this band was previously reported between 920 – 1045 cm−1 [62], the

range 920 – 970 cm−1 was used due to the appearance of pyocyanin ring stretching vibrational

band at 975 cm−1. Preprocessing allows for comparison of different samples where slight

intensity variations may arise due to deviations in optical collection in the experimental setup.

When preparing SERRS spectra for full-spectrum partial least squares (PLS) regression, a

constant k = 1.0067 was added to the processed signals to eliminate negative values in

the calibration matrix associated with variations due to noise. This is necessary as signals

are then log-transformed before analysis with PLS regression. PLS regression combines

characteristics of principal component analysis with multiple linear regression to predict a

set of dependent variables from a large set of independent variables [33].

4.3 Results and Discussions

4.3.1 Quantification and Detection of Pyocyanin in Aqueous Me-

dia

Pyocyanin exhibits a broad absorption band from 550 to 900 nm [16, 63]; thus using a 785

nm laser to excite nanoantennas results in surface-enhanced resonance Raman scattering
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(SERRS). Henceforth, the acronym SERS is used to represent the fabricated substrates,

while SERRS is used to describe measurements associated with pyocyanin. SERRS spectra

of aqueous pyocyanin from 1 µg·mL−1 (4.8 µM) to 100 µg·mL−1 (480 µM) (Figure 4.1a)

displays clear Raman bands similar to pyocyanin spectra reported using surfaces with Ag

colloids [15] and Ag and Au nanorods [16, 17] at 552, 1353, 1602, and 1620 cm−1. These

bands rise at a concentration as low as of 100 pg·mL−1 (480 pM), as exemplified in Figure 4.1b

for the band 552 cm−1. The log–log dose–response curve of pyocyanin at 552 cm−1 (Figure

4.1c) reveals a linear regime between 1 ng·mL−1 and 10 µg·mL−1, consistent with Langmuir

adsorption kinetics; similar linear relationships with concentration are also observed for

other pyocyanin vibrational bands, and results are shown in Appendix A. Within this linear

regime, pyocyanin concentration can be quantified using the formula shown in Equation 4.1

with R2 = 0.951.

logC = a log I + b (4.1)

Here a and b are fitting constants with values of 3.623 and 2.924, respectively, while C

and I represent pyocyanin concentration and normalized SERRS intensity at 552 cm−1,

respectively. For concentrations below the limit of quantification (LOQ), 1 ng·mL−1, SERS

substrates detection of pyocyanin was determined by comparing the signal and background

at 552 cm−1 per guideline EP17 of the Clinical and Laboratory Standards Institute [64]. The

limit of blank (LOB) is calculated by adding the mean background signal [deionized (DI)

water] Ībg at 552 cm−1 to 1.645 its standard deviation σbg, as shown in Equation 4.2.

LOB = Ībg + 1.645σbg (4.2)

Detection is defined in the standard manner where the mean signal, ĪD, at 552 cm−1 is at

least 1.645 standard deviations, σD, greater than or equal to the LOB, as shown in Equation
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Figure 4.1: (a) SERRS spectra of (i) DI water, (ii) 1 µg·mL−1, (iii) 10 µg·mL−1, and (iv) 100
µg·mL−1 pyocyanin in water. Grey bars indicate Raman bands of pyocyanin. (b) SERRS
spectra of of (i) DI water, (ii) 100 pg·mL−1, (iii) 1 ng·mL−1, (iv) 10 ng·mL−1, and (v) 100
ng·mL−1 pyocyanin in water. Dark grey bar highlights pyocyanin’s 552 cm−1 band while
light grey bars indicate other pyocyanin Raman bands. (c) Dose-response relationship of
pyocyanin and normalized SERS intensity at 552 cm−1. Error bars depict standard deviation
calculated from 100 measurements.

4.3.

ĪD − 1.645σD ≥ LOB (4.3)

From this analysis, SERS substrates exhibit detection of pyocyanin in aqueous media at

concentration of 100 pg·mL−1, above which one can observe pyocyanin signals above the

background in Figure 4.1c. We did not measure pyocyanin at lower concentration since our

interest was in establishing a limit of detection (LOD) in biological media. These results are

discussed in the following section.

4.3.2 Predicting Pyocyanin Concentration with PLS Regression

Using linear regression on a single Raman band allows for facile comparison with other SERS

surfaces in the literature as it is widely used for quantitative calibration [15, 16, 17, 18, 19,

20, 21, 22, 23]. While this method is sufficient for the analysis of a pure analyte in water,
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it discards the remaining rich spectral information in each spectrum and can lose sensitivity

when other molecules are present in solution as is the case when monitoring biofilm growth.

Alternatively multivariate analysis, specifically partial least square (PLS) regression, ana-

lyzes the full spectra collected from SERS substrates and improves LOQs in complex media

[65]. Thus, we capitalize on the uniform SERS response of our surfaces to acquire necessary

training data and employ PLS analysis to quantify pyocyanin in a more complex biological

media, an important requirement for diagnostic applications. Training data sets, composed

of SERRS spectra from known concentrations of pyocyanin spiked in LB media, generate a

robust PLS-predictive model for pyocyanin concentration in the increased background noise

of the biological media. The multivariate model predictive capability is subsequently demon-

strated by quantifying pyocyanin production from P. aeruginosa planktonic cultures during

in vitro growth.

First, we demonstrate the suitability of our substrates for detecting pyocyanin in complex

media by comparing SERRS spectra of blank LB media, LB media spiked with 10 µg·mL−1

of pyocyanin alongside spectra of cell-free supernatants collected from mid-stationary phase

cultures of wild-type P. aeruginosa PA14 and its phenazine-deficient mutant strain ∆phz1/2

as a control (Figure 4.2a). The ∆phz1/2 strain does not produce phenazines; hence its

SERRS spectrum (multiplied a factor of 5 for clarity) indeed lacks the vibrational fingerprint

of pyocyanin; it is similar to the spectrum obtained for blank LB media. Meanwhile, SERRS

spectra of wild-type PA14 and pyocyanin in LB broth exhibit similar features, including

distinct pyocyanin vibrational bands and thus confirming the suitability of our substrates

for the task. While pyocyanin signals are clearly seen here, signal interference from other

molecules is amplified at low concentration, requiring more sophisticated analysis.

The calibration datasets that were acquired by collecting SERRS spectra of LB media spiked

with 100 pg·mL−1 to 100 µg·mL−1 pyocyanin generated a predictive model of pyocyanin

concentration in LB media using PLS regression. From the 400 spectra collected for each
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pyocyanin dose, 380 were randomly selected as training set and the remaining 20 withheld

as testing set. To optimize the model, over- and under-fitting are avoided by using 10 PLS

components where a minimum in root mean square error of cross validation (RMSECV) is

observed, displayed in inset of Figure 4.2b. With the testing set, the model demonstrates

accurate prediction between 1 ng·mL−1 and 100 µg·mL−1 as shown in Figure 4.2b. Fitting

the predicted versus actual concentration with a line having a slope of 1 – representing

perfect predictive capability – gives a R2 value of 0.956.

4.3.3 Pyocyanin Quantitative Detection in Complex Media

The generated predictive model was used to quantify pyocyanin from SERRS spectra of

cell-free conditioned growth medium of wild type P. aeruginosa and ∆phz1/2 as a func-

tion of incubation time. For each incubation time point, 400 SERRS spectra were collected

within the span of less than 4 minutes, and their corresponding pyocyanin concentrations

were calculated using the PLS model; the average concentration for incubation times ranging

from 0 to 24 h are shown in Figure 4.2c. The performance of SERRS-PLS was compared

with UV-vis absorption spectroscopy typically employed to quantify pyocyanin. Pyocyanin

concentrations were calculated from UV-vis absorption peaks using the reported molar ab-

sorptivity ε = 4.31× 103 mol−1 cm−1 at λmax = 690 nm [66].

The pyocyanin-deficient ∆phz1/2 strain were used to calculate the instrument noise and

contributions from the background media. This yielded the UV-vis LOD as 197 ng·mL−1

(0.94 µM), equivalent to 3 standard deviations above the background of the ∆phz1/2 strain.

This value agrees well with the reported LOD of 1 µM for UV-vis [67]. The UV-vis data is

also plotted in Figure 4.2c for comparison with SERRS data. The LOD of SERRS observed

in Figure 4.2b is 1 ng·mL−1 (4.8 nM) using the same definition for differentiating from

background noise and PLS model discussed above. Thus SERS substrates are able to detect
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Figure 4.2: (a) SERRS fingerprint of (i) bacteria-free supernatant from mid-stationary phase
cultures of wild-type P. aeruginosa PA14, (ii) 10 µg·mL−1 pyocyanin in LB broth, (iii)
phenzine-null mutant strain ∆phz1/2 and (iv) LB broth. Spectra in (i) and (ii) are multipled
by a factor of 5. (b) Pyocyanin concentration predicted by PLS model for spectra in testing
set. Error bars depict standard deviation calculated from 20 measurements. Inset shows RM-
SECV of the PLS model with respect to the number of components used. (c) Pyocyanin con-
centration in bacteria-free supernatants of wild-type P. aeruginosa PA14 and its phenazine-
null strain over 24 hours. Concentrations from SERS and UV-Vis measurements are calcu-
lated using trained PLS model and reported molar absorptivity ε = 4.31× 103 mol−1 cm−1

at λmax = 690 nm, respectively. Error bars show standard deviation calculated from 400
measurements. (d) Growth curves for planktonic cultures of P. aeruginosa PA14 and its
phenazine-null mutant strain as determined from optical density.
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pyocyanin as early as 2 h of shaking culture growth and quantify the concentration as 2.5

ng·mL−1 (12 nM), as opposed to after 8 h of shaking culture growth when using UV-vis

absorption. From 8 h onward, quantitative performance of the two methods is comparable.

The sharp increase in pyocyanin concentration detected by SERRS from 2 to 8 h correlates

with the exponential growth phase of P. aeruginosa in shaking culture, which is observed in

Figure 4.2d as an increase in optical density and thereby accumulation of biomass. Overall

this data validates SERS substrates robustness toward detection of pyocyanin in complex

media.

4.3.4 Monitoring Biofilm Formation via Pyocyanin Quantification

Here, we integrate microfluidic channels with SERS substrates to perform in-line sampling

of biofilm’s effluent, thus enabling rapid quantitative detection of pyocyanin as a means

to longitudinally monitor biofilm growth. P. aeruginosa biofilms were grown in tryptone

broth (TB) medium as previously described [60]. Effluent from the biofilm growth channel is

delivered to a microfluidic channel with Au oligomers assembled on the surface as illustrated

in Figure 4.3a. Every 3 hours, 200 SERRS spectra are collected in the effluent with a total

acquisition time of 2 min, thus eliminating the need for performing chloroform extraction and

incubating [16], or evaporating the solvent on SERS surfaces [17]. To quantify pyocyanin, a

suitable predictive model was generated by repeating PLS analysis on the training dataset

acquired using the appropriate collection parameters for TB media (as opposed to LB in

planktonic cultures growth) as reported in our methods. The resulting LOD from this

analysis is 10 ng·mL−1. Using the model, pyocyanin was detected in the SERRS signal

above the LOD starting between 6 and 9 h after inoculating as observed in Figure 4.3b.

Thus, the time of quantification (TOQ) falls within this range. Pyocyanin concentration

after 9 h was determined to be 24 ng·mL−1 (115 nM), above the determined LOD. The

half-life of pyocyanin desorption from the surface was determined to be on the order of
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11 min from subsequent SERS measurements from samples immersed in water, exposed

to 1 µg·mL−1(4.8 µM) pyocyanin, rinsed, and reimmersed in water, as shown in Appendix

B. Thus, the calculated concentrations are indicative of the instantaneous production of

pyocyanin in the biofilm growth channel. Investigation of results generated from the model

shows that some spectra at 3 and 6 h reveals Raman bands associated with pyocyanin above

the background. By analyzing the individual spectra, it was determined that 7.8 and 14.3

% of the spectra at 3 and 6 h, respectively, show a pyocyanin concentration above the

background; representative spectra are plotted in Figure 4.3c. This fraction increases to

70.3, 96.7, and 100 % for the subsequent time points. This is consistent with nonuniform

distribution of pyocyanin on the substrate surface at low concentrations. Hence, while the

averaged concentration of pyocyanin calculated for the set of Raman spectra at 3 and 6 h of

the biofilm growth lies below the LOD, a fraction of those spectra shows that pyocyanin is

detected at those early time points. Thus, 3 h is set as the time of detection (TOD). The

calculated concentrations of pyocyanin correlate with the time-dependent accumulation of

biofilm biomass obtained from the analysis of fluorescence images of the microfluidic growth

channels (Figure 4.3d). Representative confocal fluorescence images of the growth channels

show the initial stages of bacterial cell adhesion (0-6 h), microcolony formation (10 h),

and three-dimensional growth of biofilms above the channel surface (16 h). The biomass and

imaging data indicates that the biofilm formation can be monitored reliably after TOQ. More

significantly, it reveals that the earliest detection of biofilms, corresponding to TOD, occurs

during the initial stages of bacterial cell adhesion, earlier than that observed in fluorescence

confocal images.

Bacterial biofilms impart antibiotic resistance and tolerance on constituent cells via several

distinct mechanism [54]. These mechanisms are characteristic of bacterial phenotypes and

properties of mature biofilms; hence, early treatment with antibiotics can be more effective

than equivalent treatment of mature biofilms. The potential for early detection to provide

a therapeutic improvement for infection outcomes was assessed by measuring the antibiotic
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Figure 4.3: (a) Schematic of the biofilm inline measurements setup. (b) Pyocyanin con-
centration predicted by PLS model from SERS spectra of various time. Each data point
represents the averaged of predicted concentrations and error bars show standard deviation
calculated from 200 measurements. (c) Individual representative SERS spectra at (i) 12h
(ii) 9h, (iii) 6h, and (iv) 3h contrasted with spectrum of (v) TB media. Grey bars indicate
pyocyanin vibrational bands. (d) Accumulated biomass of biofilm growth in the flow cell
over time. Error bars depict standard deviations calculated from n = 3 independent growth
channels. Confocal fluorescence microscopy images show representative bacterial accumu-
lation on the glass surface at the time points indicated by the arrows (scale bars are 20
µm). (e) Susceptibility of surface-attached bacteria to carbenicillin treatment at the speci-
fied growth times. Error bars depict standard deviation of dead cell fraction calculated from
n = 3 biological replicates.

susceptibility of surface-attached bacteria at different stages of biofilm growth. Bacteria

exposed to a bactericidal antibiotic, carbenicillin, were differentially susceptible after 10 h

of growth, after which their susceptibility decreased significantly with increasing growth

time as they transition into a more antibiotic-tolerant state (Figure 4.3e); this transition

is also captured as the sharp increase in pyocyanin concentration measured from SERRS
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in Figure 4.3b between 9 and 12 h. A control biofilm was grown for 24 h and exposed to

phosphate-buffered saline (PBS) instead of carbenicillin indicates no statistically significant

difference between the antibiotic susceptibility of cells grown in flow channels for 6 and

10 h. Treatment of biofilms after 15 and 24 h of growth with the same concentration of

carbenicillin, however, resulted in significantly reduced the effectiveness of the antibiotic.

Consequently, the detection of a P. aeruginosa infection and intervention at early stages of

colonization (<10 h growth) show the potential to substantially improve the effectiveness of

antibiotic treatment.

4.4 Summary

SERS substrates, with nanostructures assembled using methods of Chapter 3, provide uni-

form and reproducible SERS intensity over 100 × 100 µm2. This allows for integration of

SERS substrates in a device platform and the rapid acquisition of large data sets for statis-

tical analysis. SERS substrates exhibit the ability to detect pyocyanin in aqueous media at

concentration of 100 pg·mL−1 when individual pyocyanin Raman bands are investigated. In

more complex media, PLS analysis of spectral data enables robust quantification of pyocyanin

spanning 5-orders of magnitude in biologically relevant levels between 1 ng·mL−1 and 100

µg·mL−1. Integration of microfluidic architectures with SERS substrates facilitates inline

sampling of effluent medium for longitudinal monitoring of pyocyanin concentration dur-

ing P. aeruginosa biofilm formation. Measured pyocyanin concentration in effluent medium

correlates with accumulated biofilm biomass obtained from confocal fluorescence images.

More significantly, pyocyanin can be detected as early as 3 h after inoculation. A sharp

increase in pyocyanin concentration is observed between 9 and 12 h after inoculation; this

corresponds to decreased susceptibility of surface-attached bacteria to bactericidal antibi-

otic carbenicillin after 10 h. Thus detecting microbial production of metabolites associated
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with quorum sensing with chemically assembled SERS substrates and analysis using machine

learning algorithms lays out a promising strategy for detection of metabolites in biological

media that can be pursued in future studies for more complex systems.

39



Chapter 5

Deep Learning for Improved SERS

Quantitative Detection

In the last decade, improved computing power (from modern GPUs) and more accessi-

ble code (from open-source frameworks) has led to significant developments in the field of

artificial intelligence/machine learning (AI/ML). Deep learning, a branch of AI/ML char-

acterized by the use of deep artificial neural networks (ANNs), has been among the largest

beneficiaries of this development. Continuous breakthroughs had already resulted in every-

day use-cases such as Facebook’s face identification feature, improved Google Translate, and

even self-driving cars. More significantly, open-source deep learning frameworks developed

by institutions ranging from universities (Theano) to Google (TensorFlow) and Microsoft

(CNTK) now provide scientists and engineers with access to deep learning tools previously

available only to AI/ML researchers. In this chapter, I develop models that map SERS

spectra to concentration of pyocyanin using deep learning tools, namely feedforward ANNs

and convolutional NNs (CNNs). Using the same training set from Chapter 4.3.1, the NNs

exhibit superior performances in both quality of fit and accuracy of predictions.

40



5.1 Feedforward Artificial Neural Networks

5.1.1 Hyperparameters Tuning

In deep learning, choosing the right hyperparameters (i.e. learning rate, activation function,

optimization algorithm, etc) can be the difference between a useful model and a useless

one. In this work, hyperparameters tuning is carried out using Bayesian optimization with

Gaussian process priors as it reduces the amount of trials and time required to search the

hyperparameters space [68]. Table 5.1 outlines the parameters to be tuned, their respective

value ranges, and the resulting optimal values.

5.1.2 Limit of Quantification, R2, and Prediction Error

Using the resulting Model 1, 2, and 3 consistently produces LOQs of 100 pg·mL−1 (100

ppt in Figure 5.1). Interestingly, it seems that the obtained training data does not include

sufficiently low concentrations to reach achievable detection limits. When fitting a line with

slope of 1 representing perfect accuracy in prediction R2 values of 0.991, 0.987, and 0.991

are obtained. Note that they are all higher than the R2 of 0.951 and 0.956 from linear

algorithms used in Chapter 4. Moreover, over-fitting is not taking place, as evidenced in

the training and validation losses monitored during training. The prediction errors (in %)

of each model is calculated in two steps: (1) the mean of prediction errors is taken for each

concentration, and (2) the mean of this value over all concentrations is the prediction error

for that model. The calculations are summarized in Equation 5.1.

Prediction Error (%) =
1

N

N∑
i

1
M

∑M
j |Ci,j − Ĉi|
Ĉi

(5.1)

Ci,j represents the jth predicted concentration for concentration set ith during testing, Ĉi
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(Layer) Parameter Range Model 1 Model 2 Model 3

(1) Hidden nodes
{16, 32, 64, 128,
256} 128 64 64

(1) Activation
{ReLU, Leaky
ReLU, ELU} Leaky ReLU ReLU ReLU

(2) Hidden nodes
{16, 32, 64, 128,
256} 16 16 256

(2) Activation
{ReLU, Leaky
ReLU, ELU} ReLU ELU ELU

(3) Hidden nodes
{16, 32, 64, 128,
256} 128 64 16

(3) Activation
{ReLU, Leaky
ReLU, ELU} ReLU Leaky ReLU ReLU

(4) Hidden nodes
{16, 32, 64, 128,
256} 32 256 256

(4) Activation
{ReLU, Leaky
ReLU, ELU} ReLU ReLU ELU

(5) Hidden nodes
{16, 32, 64, 128,
256} 64 128 16

(5) Activation
{ReLU, Leaky
ReLU, ELU} Leaky ReLU ReLU ELU

-Log(learning rate) 4—1 2.15 2.93 2.18

Nesterov Momentum {True, False} False False True

Epochs {10, 20,. . . ,100} 100 100 60

Table 5.1: Summary of hyperparameters range and optimized values for feedforward ANNs.
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Figure 5.1: Predicted pyocyanin concentrations and losses during training of feedforward
ANNs (a)(b) Model 1, (c)(d) Model 2, and (e)(f) Model 3.
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represents the true value of concentration set ith, N and M are the number of concentration

sets and number of samples in each concentration set, respectively. This calculation produces

prediction errors of 5.8 %, 7.7 %, and 5.1 % for an average of 6.2 ± 1.1 %. It is worth noting

that spectra only need individual scaling to achieve this performance, unlike the extensive

preprocessing required in Chapter 4.

5.2 Convolutional Neural Networks

While using feedforward ANNs drastically improve quantification capabilities, the models can

further benefit from learning and analyzing multiple spectra at once. This is accomplished

by using 1D CNNs, which have been shown to perform well on data having spatial relations

in a single dimension, such as stock price [69], electroencephalograms (EEGs) [70], audio

signals [71], and spectra. In short, a group of 5 spectra, termed spectra stack, is fed to

the network as one training sample with dimensions of (1011 × 5). As shown below, this

method increases R2 to a maximum of 0.998 and reduces the average prediction error by an

additional 1.3 % to 4.9 ± 0.9 %.

5.2.1 Hyperparameters Tuning

Hyperparameters are tuned similarly to feedforward ANNs using Bayesian optimization.

CNNs traditionally require more epochs to sufficiently train than feedforward ANNs, thus

the upper limit of epochs range is increased to 200. Table 5.2 details the parameters, their

respective range of values, and the resulting architectures.
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(Layer) Parameter Range Model 1 Model 2 Model 3

(1) Filter {8, 16, 32} 16 8 8

(1) Kernel length {16, 32, 64} 32 16 16

(1) Activation
{ReLU, Leaky
ReLU, ELU} ReLU ReLU ReLU

(2) Filter {16, 32, 64} 64 32 32

(2) Kernel length {8, 16, 32} 32 8 8

(2) Activation
{ReLU, Leaky
ReLU, ELU} Leaky ReLU Leaky ReLU Leaky ReLU

(3) Filter {32, 64, 128} 128 64 64

(3) Kernel length {4, 8, 16} 16 8 8

(3) Activation
{ReLU, Leaky
ReLU, ELU} ReLU ReLU ReLU

(4) Hidden nodes {8, 16, 32} 8 16 16

(4) Activation
{ReLU, Leaky
ReLU, ELU} ReLU ReLU ReLU

-Log(learning rate) 4—1 3.95 3.35 2.41

Nesterov Momentum {True, False} False True True

Epochs {10, 20,. . . ,200} 200 200 200

Table 5.2: Summary of hyperparameters range and optimized values for 1D CNNs.
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Figure 5.2: Predicted pyocyanin concentrations and losses during training of 1D CNNs (a)(b)
Model 1, (c)(d) Model 2, and (e)(f) Model 3.
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5.2.2 Limit of Quantification, R2, and Prediction Error

1D CNNs Model 1, 2, and 3 also reproducibly exhibit LOQs of 100 pg·mL−1, as shown

in Figure 5.2. Class activation mapping, a popular technique used in computer vision to

visualize how CNNs make predictions [72], shows the networks devote high importance on

pyocyanin vibrational bands (Appendix C). Over-fitting is again prevented by monitoring

training and testing loss. Here R2 values are calculated to be 0.995, 0.996, and 0.998 – an

improvement over the already accurate results of feedforward ANNs. Finally, using Equation

5.1, prediction error of each models are 5.4 %, 5.7 %, and 3.6 %, thus further reducing the

average prediction error to 4.9 ± 0.9 %.

Interestingly 1D CNNs also exhibit better generalizing ability than feedforward ANNs, as

evidenced by the lack of spikes in testing losses for all three models during training. This can

be attributed to the use of spectra stack. Intuitively, using spectra stacks as training samples

is somewhat equivalent to averaging the predicted concentrations from 5 individual spectra;

the key difference is that spectra stacks let the models recognize the possible variances before

making a prediction.

5.3 Summary

Nonlinearities in deep learning algorithms, when employed to analyze SERS spectra, im-

prove prediction accuracy and precision in comparison to PLS regression. Specifically, two

architectures – feedforward ANNs, and 1D CNNs – were investigated. Bayesian optimization

was used to search for optimal hyperparameters, resulting in three models per architecture

for a total of six models. Conventional feedforward ANNs achieve accurate predictions with

R2
max = 0.991 and average prediction error of 6.2 ± 1.1 %. Meanwhile 1D CNNs, using

spectra stacks as inputs, further improve these values while maintaining low LOQ of 100
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pg·mL−1 to R2
max = 0.998 and average prediction error of 4.9 ± 0.9 %. The results presented

in this chapter pave the way for NNs to be a valuable spectral analysis technique. More

significantly, they reveal the potential to fully capitalize on SERS sensing capability – a

task pursued by many researchers since the discovery of SERS – by employing deep learning

algorithms.
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Chapter 6

Conclusion

While there still exists a significant amount of hurdles to overcome before a commercial

label-free SERS sensing platform is realized, the purpose of this thesis is to present potential

solutions to two of those challenges: inherent variances in SERS EF and inadequate spec-

tral analysis techniques. In short, self-assembly using EHD flow and chemical crosslinking

minimizes inherent variances of SERS EF by driving reactions in plasmonic nanogaps to

produce uniform interparticle distance of 0.9 nm. The resulting SERS substrates exhibit

uniform optical response: SERS signals from benzenethiol adsorbed to the nanostructures

have RSD of 10.4% over 100 µm × 100 µm area. Regarding spectral analysis, PLS regression

enables the detection and quantification of pyocyanin in complex media from 1 ng·mL−1 to

100 µg·mL−1 (R2 = 0.956) and facilitates early detection of biofilm formation as early as 3

h after inoculation. The most drastic improvement takes place when deep learning is em-

ployed. Feedforward ANNs tuned using Bayesian optimization lowers LOQ from 1 ng·mL−1

to 100 pg·mL−1 with R2
max = 0.991 and prediction errors of 6.2 ± 1.1 %. More impressively,

1D CNNs trained with spectra stack has R2
max = 0.998 and further reduces prediction errors

to 4.9 ± 0.9 %.
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Appendix A

Dose-Dependent Response of

Pyocyanin Vibrational Bands

The log-log dose-response curves of commonly observed pyocyanin vibrational modes (1620

cm−1, 1602 cm−1, and 1353 cm−1) were determined from the corresponding normalized

SERRS intensity. The intensity versus concentration was also fit to Equation 4.3 in the

main text. The linear regression results are plotted in Figure A.1.

Figure A.1: Dose-response response of SERS normalized intensity at 1620 cm−1, 1602 cm−1,
and 1353 cm−1.

57



Appendix B

Desorption Half-Life of Pyocyanin

In order to measure the time for desorption of pyocyanin from sample surface, a SERS

substrate was cleaned with IPA and DI water for 1 minute each. Droplet measurements

were carried out to collect SERS signals from samples exposed to DI water and 1 µg·mL−1

(4.8 µM) pyocyanin. The substrate and immersion objective were subsequently rinsed with

IPA and DI water, and methanol and DI water, respectively, after exposure to pyocyanin.

The sample was then immersed in DI water and SERS spectra were acquired at 0, 10, and

20 min after rinsing to monitor the decay of pyocyanin signal. 100 spectra were collected at

each step using the collection parameters described in the methods section. The resulting

dose-response curves for major pyocyanin bands at 1620 cm−1, 1602 cm−1, 1353 cm−1, and

552 cm−1 are illustrated below in Figure B.1.

After 20 minutes, two-sample t-tests with significance level α = 0.01 show no statistically

significant differences between the clean and used substrates at listed vibrational bands

(p-value > α). Thus this indicates that pyocyanin has appeared to desorp from the surface.

To roughly estimate the half-life of this desorption, we fit an exponential decay function to

the averaged intensities of each vibrational bands after rinsing (shown in last 3 data points

58



of each curve in Figure B.1).

y = aert + b (B.1)

We assume 2 fixed values: (1) the decay begins at the average intensity at t = 0 and (2) the

decaying intensity will ultimately reach that of the substrate before exposure to pyocyanin,

Iclean. Hence

a+ b = I(t=0) (B.2)

b = Iclean (B.3)

where I(t=0), and Iclean represent SERS signal initially after rinsing (third data point in Figure

B.1), and the average intensity at the specified wavenumber on the clean surface (first data

point in Figure B.1), respectively.

The resulting decay rates and their corresponding half-life are summarized in Figure B.1.

The half-life of desorption is approximated as the mean of all calculated half-life to be 11 ± 2

min.
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Figure B.1: Desorption kinetics of pyocyanin.
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Appendix C

Visualizing CNNs Attention

With CNNs it is possible to provide a visual explanation of how the network makes its

predictions via class activation mapping, or CAM. Figure C.1 shows SERS spectra in a

spectra stack overlaid with their corresponding CAM heatmap. Note that all hot regions—

indicating higher importance to the final prediction—coincide with pyocyanin peaks, most

notably around the 1353 and 1620 cm−1 vibrational bands.

Figure C.1: CAM of 1D-CNN Model 3 (R2 = 0.998) for SERS spectra of pyocyanin.
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