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Abstract

Induced dipole models have proven to be effective tools for simulating electronic 
polarization effects in biochemical processes, yet their potential has been constrained by
issues of energy conservation, particularly when historical data is utilized for dipole 
prediction. This study identifies error outliers as the primary factor causing this failure of 
energy conservation and proposes a comprehensive scheme to overcome this limitation. 
Leveraging maximum relative errors as a convergence metric, our data demonstrates 
that energy conservation can be upheld even when using historical information for dipole
predictions. Our study introduces the Multi-Order Extrapolation (MOE) method to quicken
induction iteration and optimize the use of historical data, while also developing the 
Preconditioned Conjugate Gradient with Local Iterations (LIPCG) to refine the iteration 
process and effectively remove error outliers. This scheme further incorporates a "peek" 
step via Jacobi Under-Relaxation (JUR) for optimal performance. Simulation evidence 
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suggests that our proposed scheme can achieve energy convergence akin to that of 
point-charge models within a limited number of iterations, thus promising significant 
improvements in efficiency and accuracy.

Introduction

Computer simulations are increasingly vital for elucidating molecular mechanisms at the 
microscopic level. To achieve dependable molecular dynamics (MD) simulations, force 
fields of high precision and consistent atomistic interaction descriptions are paramount. 
Polarizable force fields, encapsulating interactions between charges and induced higher 
moments like dipoles and quadrupoles, have shown superiority in depicting atomistic 
interactions over previous fixed-charge additive force field models, per comparisons with
high-level quantum mechanical calculations. Strategies for polarizable force field 
development are varied, involving Drude oscillators1, 2, fluctuating charges3, induced 
dipoles4-6, and continuum dielectrics7, 8. Recently, the polarizable Gaussian Multipole 
(pGM) model9-14  has emerged as a promising alternative approach, employing Gaussian-
shaped multipoles and dipoles to consistently treat intra- and intermolecular 
electrostatic interactions and circumvent "polarization catastrophe." 15, 16

The pGM model has been made available to the molecular modeling community through 
a series of recent papers. Specifically, a set of isotropic atomic polarizabilities and radii 
for the pGM model has been optimized at the B3LYP/aug-cc-pVTZ level of theory.9   A 
local reference frame with unit vectors defined along covalent or virtual bonds has been 
suggested, enabling closed-form analytical expressions to be obtained for atomic 
forces.10 For molecular simulations under the periodic boundary condition, the pGM 
model's electrostatic terms have been interfaced with the particle mesh Ewald (PME) 
approach.10, 17-20 The pGM internal stress tensor expression for constant pressure MD 
simulations of both flexible and rigid body molecular systems has also been derived.11 
Additionally, a python-based PyRESP program has been implemented, which enables 
parameterizations for various induced dipole polarizable models by reproducing the 
quantum mechanical (QM) electrostatic potential (ESP) around molecules.12 Finally, the 
pGM model has been shown to perform with high accuracy in predicting many-body 
interactions in peptide oligomers and to exhibit good transferability in predicting ESPs of 
molecules and oligomers.13, 14

In comparison to traditional point-charge models, MD simulations with polarizable 
induced-dipole models bring considerably higher computational costs due to the need for
computing induced dipoles and electric fields. This study explores strategies for efficient 
induction calculations within the pGM model framework, with findings applicable to other
induced dipole polarizable force fields.

A key step in the polarizable induced-dipole simulations is to compute the induced 
dipoles to describe the electrostatic induction. Like in other induced dipole models, 
induced dipoles in pGM can be obtained by solving the following equations as

pi=αi(E i−∑
j ≠i

N

T ij ∙ p j) (1)



were pi is the induced dipole vector, αi is the polarizability, and E i is the electric field due 
to permanent multipoles on the ith atom. T  is the dipole-dipole interaction tensor with 
elements in pGM model as10

T ij=∂ i
α ∂ j

β erf ( β ij R ij)

Rij
. (2)

Here superscripts α, β=1 , 2 , 3 refer to x, y, z directions, respectively, and β ij=
β i β j

√β i
2
+β j

2  where

β i and β j are the Gaussian parameters for atoms i and j. The Gaussian multipole is 
considered to have a radius 1/β ij while the pGM model can be reduced to point dipole 
model by setting β ij to infinity. Additional details can be found elsewhere.10 In the matrix-
vector format, it can be written as

P=α (E−T P )                          (3)
where P represents the induced dipoles and E is the electric fields due to permanent 
moments (including charges) on all atoms. Further transformation to the familiar A x=b 
format leads to

 T̂ P=E                                                                                                        (4)
where T̂=α−1

+T  is a 3N-by-3N matrix for a system of N particles, which can be denoted as

T̂=[α1
−1 T 12 ⋯ T 1 N

T 21 α2
−1

¿ ¿
⋮¿¿⋮¿T N 1¿⋯¿⋯¿αN

−1
¿].                        (5)

The tensor comprises two parts: inversed atomic polarizabilities as the diagonal 
elements (αi

−1) and dipole-dipole interaction terms as the off-diagonal elements (T ij). This 
general formulation is the same as other polarizable models with induced dipoles. For 
further discussion purposes, the matrix can also be written as the sum of diagonal terms,
upper right (R) and lower left (L) triangular terms:  T̂=α−1

+L+R .

Although Eq. (4) is a linear system, its time complexity of matrix inversion is O(N3).21, 22 
Therefore solution of Eq (4) by direct inversion is impractical for complex molecular 
systems such as solvated biomolecules. In practice, iterative numerical methods are 
often adopted to solve the equation using some preset tolerance controlling 
convergence. An iterative scheme requires that the current solution can be represented 
as a function of the previous solution during iteration, i.e., Pi+1=Φ (P i).  To achieve this, an
auxiliary matrix W  is introduced, such that

W P+(T̂−W )P=E       (6)
 W Pi+1+(T̂−W ) Pi=E         (7)

By solving for Pi+1, a general iterative method can be formulated as21, 22 
Pi+1=Pi−W−1

(T̂ P i−E ).                    (8)
Given residue r i=E−T̂ P i, Eq. (8) can be simplified as Pi+1=Pi+W−1r i. The auxiliary matrix W
is often referred to as a preconditioning matrix, and choice for the preconditioning matrix
influences the optimality and speed of convergence. In the Jacobi method, the diagonal 
terms are chosen as the preconditioner (W =α−1) so the iteration is a highly vectorizable 
expression Pi+1=Pi+α r i .A Jacobi under-relaxation (JUR) method can be developed to 
minimize the effect of overshooting by introducing a relaxation factor (ω<1), with the 
revised iteration as Pi+1=Pi+ωα r i .23 



Iterative methods in principle converge towards the true solution by reducing the 

residue, which can be viewed as minimization of a residual function f (P )=
1
2 PT T̂ P−PT E.21 

When residue E−T̂ P=0, the residue function reaches minimum. One of the primary 
approaches to minimize the function value is the gradient descent algorithm. At each 
iteration, the optimal direction and the amount of move are found. We denote the search
direction to be e(i) for the ith iteration and α(i )to be the amount of move along the search 
direction. The new iterative solution is then a linear combination of all previous search 
directions. Pi+1=α(0)e

(0)
+α(1)e

(1)
+α(2)e

(2)
+….21, 22 

The conjugate gradient (CG) method is instrumental in reducing search iterations by 
utilizing search directions of the initial gradient and vectors conjugate to that gradient.21, 

22 In most cases, a preconditioner matrix that mirrors the original matrix yet is easy to 
invert can expedite the iteration. This method is widely employed in biomolecular 
applications of Poisson-Boltzmann solvent models24-27 and is also used in induction 
iteration, as reviewed by Wang and Skeel, Lipparini et al, and Aviat et al. 23, 28, 29 In this 
work, we introduce a local iteration-based preconditioner instead of the preconditioner 
presented by Wang and Skeel. This preconditioner more effectively captures the optimal 
search direction for updating induced dipoles as it is a better approximation to the 
inversed matrix. 

Moreover, another efficiency-improving technique can be applied in the CG method: an 
extra step—known as the "peek" step—in the form of a JUR iteration can be used to 
accelerate convergence.28 This strategy involves an additional attempted movement 
along the current residual direction (available during convergence evaluation). If this 
movement converges with the existing iteration solution, the peek step saves 
computation time by eliminating the need to calculate a new CG search direction. If it 
does not converge, the process proceeds to the next CG iteration.28 In this work, we 
explored an alternate strategy of applying a peek step after convergence, which, as 
demonstrated by Aviat et al., can effectively enhance the quality of induced dipoles.23

Aside from efficient iterative algorithms, the quality of the initial guess substantially 
impacts the convergence steps required. Toukmaji et al proposed using the external 
electric field due to permanent moments and atomic polarizability (α E perm) instead of zero
as the initial guess.30 In the context of MD simulations, which represent continuous 
system time evolution, induced dipoles from prior steps present viable initial guesses. A 
more contemporary proposal by Wang and Skeel involves an extrapolation scheme 
utilizing induced dipoles from numerous previous steps, thereby enhancing convergence 
efficiency. However, it has been observed that NVE simulations using prior steps' 
induced dipoles as initial guesses were found to lead to subpar energy conservation 
compared to simulations utilizing α E perm as initial guesses, even when employing the 
same convergence criterion. This phenomenon, while well-known, remains 
unexplained.28 Given that energy conservation is a crucial validation step for any force 
field development for MD simulations, addressing this issue is essential. In this context, 
Aviat et al. put forth a truncated conjugate gradient method involving a fixed number of 
iterations to achieve an approximated solution, established at a user-defined accuracy 
level.23 This approximated solution is treated as the "correct" solution, ensuring 
consistency in energy and forces with the approximation, thereby ostensibly achieving 



energy conservation in NVE simulations.23 In this study, we delve deeper into 
understanding this energy drift and propose an enhanced multi-order extrapolation 
method.

One last point worth mentioning is the convergence check in iterative solutions of linear 
systems. As solutions of all linear systems in the form of A x=b would lead to residues (
r=b−A x) approaching zero as close as possible, a standard practice is to claim 
convergence once the relative norm is less than a preset error tolerance (τ ), i.e.
‖r‖/‖b‖≤ τ .21, 22 Another way is to check whether the difference between two consecutive 
solutions is smaller than the tolerance. Either average unsigned difference or root mean 
squared difference can be used.28 A risk is that the iterative procedure may be stuck 
somewhere leading to very little change in the solution, resulting in a false convergence 
claim. This occurs often in solutions of the Poisson-Boltzmann equation.24-27

In this study, we strive to enhance the induction calculation efficiency of the pGM model, 
balancing optimal efficiency and energy conservation in molecular dynamics. We delve 
into the reasons behind poor energy conservation behavior when using history in initial 
guesses and propose the multi-order extrapolation (MOE) scheme to maximize the use of
previous steps' induced dipoles in initial guesses. We also developed the preconditioned 
conjugate gradient method with a local-iteration-based preconditioner (LIPCG), 
enhancing convergence rates. Finally, we optimize the "peek" step in the form of Jacobi 
under-relaxation (JUR) to better the convergence quality and efficiency.



Method

1. Residue Norm is a Poor Measure in Convergence Check

In the development of polarizable models, it is common to use induced dipoles from 
previous steps to initialize the induced dipoles in the current step, as this can speed up 
convergence. However, it has been observed that using history in the initial guesses can 
make it more difficult to achieve energy conservation, compared to simulations without 
history unless a more stringent convergence criterion is used.23, 28 In the end the time 
saving would be reduced in induction calculation. This issue also exists in pGM 
simulations, as we show in the Results and Discussion. We believe that this problem 
arises because the system does not truly reach the intended convergence quality 
whether history is used or not, when convergence is determined by residue norm.

To understand this issue, let us first consider the case when no history is used for initial 
guesses. In this case, all induced dipoles start in a similar situation with respect to 
convergence. As the induction iteration progresses, all induced dipoles converge in a 
similar manner, with individual dipole errors being reduced similarly. Thus, the residue 
norm can be used to check convergence reasonably well.

However, when history is used, the induced dipoles start in different situations. On one 
hand, many initial guesses are so good that they converge quickly with few iterations. 
On the other hand, there are dipoles that are far from convergence and require many 
iterations to converge. Due to the larger range of initial errors, the overall residue norm 
is not an appropriate measure for checking convergence because the ratio, named 
residue error: ε=‖r‖/‖b‖ would mask the large errors, which accumulate and cause 
significant energy drifts.

Therefore, it is better to use the maximum relative error in convergence checking 
whether history is used or not. (In the following, errors are all relative by default, so we 
drop “relative” for presentation clarity). This approach makes it possible to identify the 
slowest-converging induced dipole and ensure that convergence is achieved for all 
induced dipoles in the system. By using this approach, energy conservation can finally 
be achieved as we shown in Results and Discussion.

2. Multi-Order Extrapolation (MOE) Scheme for Initial Guesses

Given the maximum error as the measure for checking convergence, the energy drift 
problem would not be an issue as shown in Results and Discussion. Thus, we can safely 
use history in initial guesses to accelerate the induction calculation.

Since in molecular simulations atoms do not move much at each step, we can assume 
that induced dipoles change in a linear fashion for a few simulation steps. In general, the
following linear extrapolation can be used to approximate the induced dipoles,28

Pn≈∑
i=1

k

Pn−i ∙ λi

(9)



where Pn is a 3N-dimensional vector representing all induced dipoles of the system at the
current step n. λi is the extrapolation coefficient, and k is the number of previous steps 
that are used. Obviously, the above equations are over-determined and can be solved by
a least square fitting approach,

Pn− j
T ∙ Pn=∑

i=1

k

Pn− j
T ∙Pn−i ∙ λi                                                    (10)

where j takes values from 1 through k.

However, since Pn is not known until the induction calculation is finished, the above 
extrapolation scheme is not feasible. One way to address this problem, as described in 
Ref 28, is to solve the above equation for Pn−1 and reuse those obtained λ values to 
predict Pn.

Here, we introduce an alternative method, which is to solve the least square fitting 
equation with En, the permanent electric field (due to permanent multipoles) instead of
Pn at the current step n.

En− j
T ∙ En=∑

i=1

k

En− j
T ∙ En−i ∙ λi                                                    (11)

Next the λ' s are used to extrapolate Pn. The advantage of the scheme is that we are 
using the most up-to-date information from the current step to obtain the coefficients.

Our extrapolation scheme is based on the assumption that T̂−1
=( α−1

+T )
−1

 varies very little 
during simulations as noted before.28 Thus, we have

Pn=(α
−1

+T n )
−1 E n≈ (α−1

+T )
−1 En≈ (α−1

+T )
−1
∑
i=1

k

En−i ∙ λi ≈∑
i=1

k

( α
−1

+T n−i )
−1 En−i ∙ λi≈∑

i=1

k

Pn−i ∙ λ i

      (12)
In addition, the scheme can be extended to the second-order extrapolation since the 
difference between the true and extrapolated Pn values also satisfy the same relation,

Pn
real

−Pn
extrapolated ≈∑

i=1

k

(Pn−1
real

−Pn−1
extrapolated

) ∙ λi       (13)

Similarly, the third-order extrapolation can also be applied to extrapolate the “difference 
of the difference”.
Thus, this scheme is termed the multi-order extrapolation (MOE) scheme. 

3. Local Iterations for Accelerating Maximum Error Convergence

In order to accelerate the convergence of induced dipoles with poor initial guesses, 
which significantly impact the overall convergence rate, additional methods are required 
even when using the maximum error as the convergence measure and an aggressive 
MOE scheme to take advantage of history as much as possible.

Our approach is to use "local" iterations after each "global" iteration, which can be 
demonstrated most clearly with a stationary point method. Eq. (3) shows that a 
stationary point method can be used to solve the linear system. However, if this method 
is used to conduct iterations to solve the system, dipoles with very poor initial guesses 
will converge much more slowly than most other dipoles. If the maximum error is used to
verify convergence, the majority of the iterations will be wasted attempting to improve 



the dipoles with the poorest initial guesses. To address the limitation of the general 
iterations, we rewrite Eq. (3) as

    P=α [E− (T +T local−T local ) ∙ P ]       (14)
Here

 (T ij )local
=∂

i
α ∂ j

β erf ( βij Rij )

Rij
,if Rij ≤ d ;∧(T ij )local

=0 ,if Rij>d .       (15)

Cutoff distance “d” can be chosen for optimal efficiency of the overall convergence, 
usually 3~4 Å. Eq. (15) above can be rewritten as:

(α
−1

+T local ) P=E− (T −T local ) ∙ P       (16)
Thus, we have

            P=(α
−1

+T local )
−1

[E− (T −T local ) ∙ P ]                    (17)

Since the local iterations only consider very short-range dipole-dipole interactions, it is a 
highly efficient way to account for the fast-changing local interactions that cause the 
poor initial guesses.

Eq. (17) leads to a different stationary point method, which requires two different matrix-
vector operations at each iteration to solve the system, i.e. 

Pn+1=(α
−1

+T local )
−1

[ E−(T−T local ) ∙ Pn ]       (18)
The first one is (T−T local ) ∙ Pn, similar to any stationary point method. Because this iteration 
requires the calculation of T ∙Pn, which represents interactions between all pairs of 
induced dipoles in the system, this step can be called the global iteration. The second 
one involves the inversion of α−1

+T local. This can be done iteratively by solving the 
following equation,

(α
−1

+T local ) ∙Pn+1=b       (19)

where b=E− (T −T local ) ∙Pn. Because this iteration does not require the calculation of T ∙Pn+1 
but only a local truncated T local ∙ Pn+1, this step is called the local iteration. Using Eq. (17) 
instead of Eq. (3) adds a local iteration on top of a global iteration, which further relaxes 
the system in a more efficient manner. 

It is worth noting that solution of Eq. (19) can be achieved by a preconditioned CG 
algorithm, where the diagonal term of the polarization tensor (α) can be used to speed 
up convergence of the local iteration.

r 0=b−(α−1
+T local) ∙ x 0

                                                                                  z0=αr 0

                                                                                  p0=z0

            do

                                                                           αk=
r k

T ∙ z k

pk
T ∙(α−1

+T local) ∙ pk

                                                                               xk +1=x k+αk pk

                                                                               r k+1=r k−αk (α
−1

+T local) ∙ pk

                                                                            if  ‖r k+1‖/¿ ‖b‖≤ τ , break
                                                                               zk+ 1=αr k +1

                                                                                   βk=
r k+1

T ∙ zk +1

rk
T ∙ zk



                                                                               pk+1=r k+1+βk pk

                                                                               end do

4. Implementation of Local Iterations as Preconditioner for Conjugate Gradient 
(LIPCG)

As mentioned in Introduction, conjugate gradient (CG) methods fall into another category
of linear system solvers, e.g., the Krylov method.21 It is often believed and practically 
true that CG methods are much faster than stationary point methods for induction 
iterations.23, 28 In this section, local iterations will be incorporated into the CG algorithm 
within the preconditioning framework. 

As reviewed in the introduction, the preconditioned conjugate gradient (PCG) method 
leverages a preconditioner to accelerate convergence. For simpler cases, the 
preconditioner is often selected as the diagonal elements of matrix A. However, for 
larger and more complex systems, the preconditioner can be an approximation of A. One
such example of a preconditioner was proposed by Wang and Skeel, who used a first-
order approximation: T̂−1 ≈ ( α

−1
+T local )

−1 ≈ α−αT T local α.28 The implementation of this 
preconditioned conjugate gradient method provides a robust and swift path to 
convergence. The standard operational scheme of a PCG method with a preconditioning 
matrix (M) is detailed below.
r 0=b−A∙ x0

 z0=M−1r 0

                                                                                    p0=z0

do

                                                                            αk=
r k

T ∙ z k

pk
T ∙ A∙ pk

                                                                               xk +1=x k+αk pk

                                                                               r k+1=r k−αk A∙ pk

                                                                            if  ‖r k+1‖/¿ ‖b‖≤ τ , break
zk+1=M−1r k+1

                                                                                   βk=
r k+1

T ∙ zk +1

rk
T ∙ zk

                                                                               pk+1=r k+1+βk pk

                                               
                                                                               end do

In this work, we extended the potential utility of preconditioners. We not only 
investigated the first-order approximation of  T̂−1 by Wang and Skeel,28 but also utilized 
the local iterations previously mentioned to enhance the approximation of T̂−1. To 
understand how to corporate this in CG, we introduce a quantity, pseudo-solution xk

' . For 
each “real” solution, xk,

xk
'
=(α

−1
+T local )

−1
[b−(T−T local ) ∙ xk ]       (20)

From the Eq. (17) of the last section, we know that this is, in fact, the result of a local 
iteration.
Thus, instead of generating r k as b−( α−1

+T ) ∙ xk, we use xk
'
−xk as the new residue, r k

' ,



r k
'
=x k

'
−xk=(α

−1
+T local )

−1
[b− (T −T local ) ∙ x k ]−xk                  

¿ (α
−1

+T local )
−1

[b−(T−T local ) ∙ xk ]−( α
−1

+T local )
−1

(α
−1

+T local ) ∙ x k

¿ (α
−1

+T local )
−1

[b−(α−1
+T ) ∙ xk ]=( α

−1
+T local )

−1r k                                                (21)
Therefore, the new residue is the standard CG residue with a constant transformation
(α

−1
+T local )

−1
. In another word, this extra step of local iteration effectively plays the role of 

a preconditioner, M , i.e.
M−1

=(α
−1

+T local )
−1

      (22)
In summary, we intend to compute z0=M−1r 0 by calling the local-iteration CG as shown at 
the end of last section. Of course, this process can be expensive if we insist for high 
accuracy. However, this is not necessary as we do not rely on the precise search 
direction derived from the preconditioning step. In our testing, a few steps of iterations 
(2 to 3) were found to be sufficient for the local-iteration PCG method to improve 
convergence and reduce the overall CPU time notably.

r 0=b−A∙ x0

 z0=localiter (r 0)

                                                                                    p0=z0

             do

                                                                            αk=
r k

T ∙ z k

pk
T ∙ A∙ pk

                                                                               xk +1=x k+αk pk

                                                                               r k+1=r k−αk A∙ pk

                                                                            if  ‖r k+1‖/¿ ‖b‖≤ τ , break
                                                                              zk+1=localiter (r k +1)

                                                                                   βk=
r k+1

T ∙ zk +1

rk
T ∙ zk

                                                                               pk+1=r k+1+βk pk

                                               
                                                                               end do

5. Molecular dynamics simulation for performance tests

In all conducted tests, we employed a cubic box containing 512 water molecules, 
identical to the one used in our prior research.10 The box dimensions were (33 Å)3, and all
simulations were performed under the NVE conditions. To meet the high precision 
necessary for energy computations, we utilized the following parameters for the PME 
setup: a β0 = 0.4 Å-1 setting for the Ewald coefficient, a B-spline interpolation order of 8, a
Fast Fourier Transform (FFT) grid spacing size of 0.66 Å, and a direct space cutoff 
distance of 9.0 Å. These parameters yield a PME accuracy level of 10-6, which ensures 
that PME is not the primary contributor to energy drift. The timestep of 1 femtosecond 
was used to guarantee a good quality of energy conservation. The Jacobi-under 
relaxation scheme is applied for iterative approach as mentioned in the appendix. The 
maximum number of PCG iterations was limited to 50, and the under-relaxation 
parameter was set to 0.65. For local iterations, a cutoff distance of 4.0 Å and three 



iterations were established. The other parameters followed the default values provided 
in the Amber simulation package. 31

Results and Discussion 

1. Detailed Error Analysis of Induction Iteration

A vital aspect of implementing a new force field in a molecular dynamics program is 
validation of energy conservation. As depicted in Table 1, energy drifts are generally 
more substantial when using the previous step's induced dipoles as the initial guess (μn−1

). In all examined instances, energy drifts were less than half when history was 
disregarded (α E perm) as compared to when history was considered (μn−1). This discrepancy
between the two methods suggests a difference in convergence quality, with the scheme
disregarding history achieving better convergence despite both methods employing the 
same tolerance. This observation aligns with Wang and Skeels' experiments, where 
employing history information increased the likelihood of energy conservation failure.28  
This detrimental effect is likely to be more significant in pure water due to its high 
flexibility. However, since water molecules predominantly mimic the biomolecular 
environment in biomolecular simulations, addressing this issue is essential for molecular 
dynamics applications. This observation led us to hypothesize that the use of history 
information might result in more unconverged induced dipoles, as we elaborated in the 
Methods section. As delineated in Table S1, the average iteration count and CPU time for
a simulation comprising 1000 steps are documented. It is discernible from the table that,
when maintaining identical convergence criteria, the employment of historical data 
facilitates a reduction of approximately two iterations before convergence is achieved, 
thereby yielding substantial time savings. If we consider the time component, an equal 
number of iterations correlates with a similar time duration. This implies that utilizing 
historical data at certain convergence criteria will result in a simulation time comparable 
to a scenario where historical data is not utilized, but with looser convergence criteria. 
Furthermore, this observation underscores that the utilization of the standard norm as a 
convergence check is not unassailable.

In this section, we first discuss why history information forms a valuable component of 
the initial guess. Figure 1 illustrates the error distribution of induced dipoles on 512 
water molecules before iteration, with and without history information. As depicted in the
figure, employing the permanent field as an initial guess delivers relatively larger errors. 
Using the previous step as an initial guess, however, can expedite convergence by 
providing a more accurate starting point. Interestingly, despite smaller initial errors when
using history, the quality of convergence tends to be worse compared to when history is 
not used. This conclusion is supported by Figure 2, where the error distribution post-
convergence is depicted. Tests incorporating history information yielded larger errors 
than those disregarding history, signifying that the use of history leads to relatively poor 
convergence quality. As mentioned in the Methods section, when history information is 
employed, some large errors converge more slowly compared to quickly converging 
errors, potentially contributing to energy drift in induced dipole models.

We also aim to shed light on the impact of error outliers on the issue of energy 
conservation failure. A detailed analysis of the error outliers' distribution is presented in 



Figure 3. Here, we define the outliers when the error exceeds 1000 times the current 
tolerance τ . As indicated in the figure, the use of history information consistently 
resulted in a higher number of error outliers compared to those with α E perm. Moreover, a 
stricter convergence tolerance diminishes the difference between error distributions, 
suggesting that energy drift should be similar for μn−1 and α E perm given a sufficiently 
stringent convergence tolerance. To achieve convergence with high tolerance, we 
propose the maximum error as a potential candidate for convergence checking.

Table 1: Comparative Analysis of Energy Drift (expressed in kcal/(mol·ps)) and Convergence 
Tolerance (τ ) Utilizing Residue Norm as a Convergence Measure. The number of degrees of 
freedom in the system is 3069. The table exhibits that energy drifts in simulations where the 
initial values stem from the last step (μn−1) consistently exceed those where the initial values are 
drawn from the permanent field (α E perm). Refer to Figures S1, S2, and S3 for more detailed 
energy plots pertaining to these simulations. A comprehensive timing analysis for these 
simulations can be found in Table S1.

τ            10-4             10-5            10-6 10-7

μn−1 −8.25 ×10−2
−1.76 ×10−3

−1.11 ×10−4 6.59 ×10−4

α E perm 1.92 ×10−3
−5.33 ×10−4

−3.47 ×10−5 1.98 ×10−5

TIP3P energy
drift

−5 .56 ×10−4

Figure 1: Initial Error Distribution Comparison for μn−1and α E perm as Initial Guesses. This figure 
showcases the difference in initial error distribution when using either the last step (μn−1) or the 
permanent field (α E perm) as the initial guess. It clearly indicates that using historical data (μn−1) as
an initial guess proves to be a significantly better option than not utilizing historical data. The 
convergence tolerance for this comparison is set at 10-4.



Figure 2:  Post-convergence Error Distribution Comparison with and without the Use of Historical 
Data. This figure presents the error distribution after achieving convergence when employing 
historical data compared to not using it. It illustrates that the use of historical data results in 
larger errors compared to using the permanent field (α E perm) as the initial guess. The 
convergence tolerance for this analysis is set at 10-4.

Figure 3: Distribution of Error Outliers Versus Convergence Tolerance (τ ) in 100ps NVE 
Simulations Employing Residue Norm as a Convergence Measure. An error outlier is defined 
when the error is 1000 times larger than the convergence tolerance τ , with individual relative 
errors analyzed. The error axes are presented on a logarithmic scale. Each plot within the figure 
illustrates error distributions from simulations utilizing two different initial guesses for induced 
dipoles (μn−1 and α E perm). It is evident that simulations adopting μn−1 as the initial guess introduce 
more errors compared to those employing  α E perm. However, these differences diminish as tighter
convergence criteria are applied.

2. Maximum Error Is a Better Choice for Convergence Check



In our investigation, we strived to rectify the limitations of employing residue norm in 
convergence evaluation, thereby considering the maximum error as a possible 
candidate. The outcomes of our experiments demonstrated that the energy drifts in the 
majority of simulations, both those using and not using the history for the initial dipole 
assignment, were largely akin to those observed in TIP3P water (Table 2). This 
corresponded to an energy drift of −5 .56 ×10−4 kcal / (mol ∙ ps )  (Refer to Table 1). The only 
deviations from this pattern were observed with the most lenient convergence tolerance 
of 10-1. Consequently, it was noted that an implementation of a maximum error of 10-2 
led to sufficiently low energy drift for both initial dipole assignments. Interestingly, 
tightening the convergence tolerance further (from 10-2 to 10-4) did not yield any 
significant improvements in energy drifts. This observation suggests that induction error 
is no longer the primary determinant of the overall system energy drift when the 
maximum error in induction iteration is set to less than 10-2.

It is essential to underscore that when choosing the maximum error as the convergence 
criterion, the quality of convergence must be high, devoid of extreme errors. This aspect 
becomes particularly critical when employing historical data as an initial estimate since 
improved convergence quality paves the way for a more accurate initial estimate.

To extend our analysis on the energy conservation properties of the tested systems, we 
also evaluated total energy fluctuations, as illustrated in Table 2. The table demonstrates
that energy fluctuations at 10-2, 10-3 and 10-4 convergence criteria were all in the order of 
10-1 kcal/mol, both for tests conducted with and without history. This data corroborates 
the energy drift analysis presented earlier. Detailed energy plots are available in Figure 
S4 and S5. Lastly, Table 2 also encapsulates the average number of iteration steps, 
indicating that the utilization of history could still lessen the iteration by 2 to 3 steps. 
This observation reinforces the adoption of history for a more efficient induction 
iteration, provided the maximum error is employed as the convergence measure.

Table 2: Energy Drift (expressed in kcal/(mol·ps)), Energy RMSD (in kcal/mol), and Average 
Iteration Count for NVE Simulations Utilizing Maximum Error for Convergence Checking. This 
table outlines the outcomes of NVE simulations, detailing metrics such as energy drift, energy 
Root Mean Square Deviation (RMSD), and the average number of iterations, with the simulations 
specifically employing the maximum error as the criterion for convergence checking.

τ 10−1 10−2 10−3 10−4

TIP3P energy drift −5 .56×10−4

Energy drift μn−1 −5.78 ×10−2 2.55 ×10−5 2.39 ×10−4 8.00 ×10−5

α E perm 2.11 ×10−3
−7.33×10−4

−2.61 ×10−4
−5.63 ×10−4

Energy RMSD μn−1 16.69 1.23 ×10−1 1.40 ×10−1 1.68 ×10−1

α E perm 6.64 × 10−1 2.43 ×10−1 1.45 ×10−1 2.03 ×10−1

Average 
number of 
iterations

μn−1 7.29 9.62 11.82 14.11
α E perm 10.06 12.31 14.60 16.84

3. Optimization of Initial Guess using MOE Scheme



To enhance the initial estimate for induced dipoles, we employed Multiple Order 
Extrapolation (MOE) schemes, capitalizing on historical information in an effective 
manner. Our investigative data implies that while the MOE scheme theoretically 
possesses the capacity for unlimited expansion, its potential for productivity 
improvement becomes marginal beyond the third order.

A rigorous investigation was conducted to assess the performance timing across diverse 
extrapolation orders and varying counts of preceding steps included for extrapolation. 
Specifically, we evaluated extrapolations of the first, second, and third orders in 
coordination with two to six preceding steps. A comprehensive encapsulation of the 
mean iteration number and cumulative CPU time per 1000 molecular dynamics (MD) 
steps under all test conditions is found in Table 3. Our inquiry identified several settings 
– five preceding steps in conjunction with first-order extrapolation, four preceding steps 
paired with second-order extrapolation and two preceding steps paired with third-order 
extrapolation – as consistently delivering the minimal iteration count and the shortest 
aggregate CPU duration. Moreover, in scenarios with a looser convergence tolerance, 
specifically around 10-2, the second-order extrapolation proves to be a more advisable 
choice. Under the conditions of a tighter tolerance, in the realm of 10-3 and 10-4, the 
third-order extrapolation is also a reasonable choice. It is pertinent to mention that the 
overall performance of our MOE could be further enhanced through the integration of a 
more efficient solver (as will be mentioned in later section), thereby generating richer 
and more valuable historical data for the MOE's optimal application. Not surprisingly, the 
ideal number of historical steps for the first-order MOE converges with the results of 
Wang and Skeel's study,28 which is also a first-order extrapolation scheme. 
Consequently, aggressive utilization of historical data culminates in expected reductions 
in convergence duration and iteration count. 

The distribution of initial errors utilizing different initial guesses is exhibited in Figure 4. It
is apparent from the figure that a solitary historical step only mildly decreases error, 
while Wang and Skeel's extrapolation (WSE) effectuates a more substantial reduction. 
Our MOE, with optimal parameters, performs marginally better than WSE and 
subsequently reduces simulation time, though the performance improvements are 
higher for the tighter tolerance conditions.

Lastly, Table S2 portrays the energy drift values associated with varying extrapolation 
combinations across 1 ns NVE simulations. Contrary to observations by Wang and 
Skeel,28 the energy drift values demonstrate remarkable consistency and similarly align 
with those documented in Table 2 (where τ  ≤ 10-2). This offers further substantiation for 
the reliability of utilizing maximum error in the convergence check as a means of 
ensuring energy conservation.



Figure 4. Distribution of Initial Errors with Varying Initial Guesses and their Associated CPU Time 
for 1000 MD Steps. The figure illustrates the initial error distribution for different initial guesses, 
with a convergence tolerance set at a maximum error of 10-2. The simulation is performed using 
a standard Conjugate Gradient (CG). The initial guesses include: α E perm (Permanent Field); μn−1 
(last step); WSE (Wang and Skeel’s extrapolation, which employs 5 preceding steps); and MOE 
(Multi-Order Extrapolation, which employs a third-order extrapolation using 2 previous steps). 
The inset demonstrates the average CPU time consumed for 1000 MD steps. The illustration 
suggests that the application of MOE results in the smallest error distribution and quickest 
overall performance.

4. Use of Local Iterations to Speed up Convergence

In the light of the maximum error employed for induction convergence checking and the 
optimized initial induced dipole guess, we ventured into further diminishing induction 
costs via the Preconditioned Conjugate Gradient (PCG) method. The concept of deploying
local iterations to refine induced dipoles possessing suboptimal initial guesses was 
detailed in the Methods section. Initially, we aim to demonstrate the potency of the local 
iteration method. Figure 5 reveals the error distribution following one iteration of 
computation. It is evident from the figure that while traditional CG minimally reduces 
error, the application of a preconditioner (as per Wang and Skeel)28  significantly curtails 
the error in just one iteration. Further, substituting our local iteration for the 
preconditioner leads to even greater error reduction.

Table 3: Performance Evaluation of the MOE (Muti-order Extrapolation) Scheme and Number of 
Preceding Steps Employed in the Least Square Method under Different Convergence Criteria. The
table presents a detailed analysis of the performance of the MOE scheme in relation to the 
number of previous steps incorporated in the least square method, subject to various 
convergence criteria. The left column enumerates the average iteration count per MD step 
necessary to achieve convergence, while the right column depicts the average CPU time required
to complete 1000 MD steps. Data pertaining to the WSE (Wang and Skeel’s extrapolation) 
scheme is included as a reference point.

Convergence Criterion: 10-2

Number of Order 1 Order 2 Order 3



previous steps
Last 2 429.43(9.98) 324.83(4.94) 344.88(6.13)

Last 3 368.03(6.89) 345.73(6.17) 405.18(9.24)

Last 4 384.98(7.59) 325.62(5.09) 364.00 (7.07)

Last 5 330.77(5.14) 354.69(6.59) 412.23(9.44)

Last 6 344.73(5.95) 339.86(5.97) 398.04(8.47)
WSE 331.02(5.18)

Convergence Criterion: 10-3

Order 1 Order 2 Order 3
Last 2 493.56(13.26) 398.00 (8.04) 352.96(6.62)

Last 3 428.71(9.96) 355.74(6.64) 423.45(9.64)

Last 4 445.86(10.89) 343.77(6.17) 373.76(7.64)

Last 5 395.01(8.39) 370.13(7.11) 426.52(9.96)

Last 6 408.13(9.06) 365.97(7.00) 414.91(9.54)

WSE 396.31(8.43)

Convergence Criterion: 10-4

Order 1 Order 2 Order 3
Last 2 552.78(16.48) 455.05(11.23) 419.93(8.86)

Last 3 496.20(13.25) 414.70(8.91) 481.73(11.61)
Last 4 505.79(14.01) 427.31(9.12) 430.84(9.74)

Last 5 457.68(11.69) 427.64(9.14) 493.01(11.98)
Last 6 470.49(12.35) 431.08(9.69) 490.83(11.81)
WSE 458.19(11.83)

The efficacy of local iterations is inherently tied to the cut-off distance employed. An 
extended cut-off invariably enhances the convergence rate, albeit at a higher 
computational cost. Building upon the optimal initial guess identified in the previous 
subsection, we scrutinized different cut-off distances, the results of which are presented 
in Table 4. The data indicate that larger cut-off distances correlate with a decrease in 
iterations, which aligns with expectations, but these also increase the CPU time per MD 
step. Thus, it is vital to evaluate the total CPU time consumed, as portrayed in Table 4. It 
demonstrates that a cut-off distance of 4 Å demands the least amount of total CPU time.



Figure 5: Error Distribution Following a Single Step of Iterative Method Implementation. The 
convergence tolerance for this analysis is set at a maximum error of 10-2. The inset figure 
displays the CPU timing necessary for executing 1000 steps of Molecular Dynamics (MD). As 
demonstrated in the figure, the LIPCG method results in the smallest overall error distribution 
and is also associated with the least CPU time, thus indicating its superior efficiency in this 
context.

5. Use of Peek Step to Further Improve Performance

Striving to reduce the computational iterations and enhance overall system 
performance, we incorporated an additional 'peek' step — constructed as a single Jacobi 
under-relaxation iteration — into the LIPCG protocol. The optimization strategy for this 
procedural element is elaborated upon in the appended section. As represented in Table 
5, this novel peek step hastens the convergence process when the convergence criteria 
are set to either 10-2 or 10-3, culminating in an average reduction of approximately half 
an iteration step. Figure 6 visually illustrates the effects of the peek step, showing that 
the norm of residuals is halved, and maximum errors are significantly diminished post 
the peek step implementation.

Table 4: Optimal Cutoff Distance Determination for the Local Preconditioner using Best 
Parameters Derived from Table 3. This table employs the optimal parameters ascertained from 
Table 3 to ascertain the most suitable cutoff distance for the local preconditioner. The data 
reveals that the optimal cutoff is 4 Å. The left column represents the average iteration count per 
MD step necessary to achieve convergence, while the right column indicates the average CPU 
time required to execute 1000 MD steps.

Convergence Criterion: 10-2

Cut-off
distance

Order1 Order2 Order3

3 Å 267.17(2.60) 255.91(2.31) 271.04 (2.83)
4 Å 260.40 (2.34) 255.23(2.17) 260.93(2.60)
5 Å 264.16 (2.11) 258.90 (2.09) 272.84 (2.47)
6 Å 264.23(1.96) 265.62 (1.95) 280.19(2.36)

Convergence Criterion: 10-3

Order1 Order2 Order3
3 Å 305.44(4.02) 272.87(3.03) 280.23(3.09)
4 Å 294.54 (3.57) 271.01(2.76) 268.99(2.81)
5 Å 307.48(3.38) 273.53(2.58) 284.64 (2.67)
6 Å 314.29(3.17) 279.57(2.46) 295.20 (2.58)

Convergence Criterion: 10-4

Order1 Order2 Order3
3 Å 332.88(5.52) 298.14 (4.20) 295.26 (4.15)
4 Å 330.32(5.05) 296.37(3.80) 292.37(3.74)
5 Å 334.50 (4 .71) 302.83(3.56) 301.60 (3.48)
6 Å 341.90 (4 .43) 314.29(3.32) 312.98(3.25)



Table 5: Comparative Analysis of Average Iteration Counts for Tests Conducted Without and With
Peek Steps. This table provides a contrastive evaluation of the average number of iterations 
required in tests conducted both without and with the inclusion of peek steps. The left column 
represents the average iteration count per MD step needed to achieve convergence, while the 
right column denotes the average time necessary to complete 1000 MD steps.

Convergence Criterion: 10-2

Order1 Order2 Order3
Without Peek 260.40 (2.34) 255.23(2.17) 260.93(2.60)

With Peek 258.26 (2.23) 241.33(1.64) 245.99(2.10)

Convergence Criterion: 10-3

Order1 Order2 Order3
Without Peek 294.54 (3.57) 271.01(2.76) 268.99(2.81)
With Peek 292.74 (3.54) 261.23(2.43) 257.71(2.53)

Convergence Criterion: 10-4

Order1 Order2 Order3
Without Peek 330.32(5.05) 296.37(3.80) 292.37(3.74)

With Peek 328.98(5.03) 290.94 (3.73) 285.44 (3.69)

6. Final Performance Using Optimal Strategy

With the implementation of our optimal strategy which includes local-iteration 
preconditioning, multi-order extrapolation, and a more proper selection of the 
convergence criterion, the overall performance of the induced dipole model has been 
significantly optimized. Our comparison of Wang and Skeel’s approach with our optimal 
strategy, as illustrated in Table 6, highlights this performance improvement. As the table
shows, our optimal strategy managed to achieve the same convergence quality with less
time. Moreover, the degree of improvement was particularly pronounced under 
conditions requiring tighter convergence criteria. To further emphasize this point, let us 
consider a comparison with the CG method which utilizes only the last step’s history 
information (as per Table S1). If we insist on a similar energy conservation quality which 
can be achieved at the convergence tolerance of 10-6, we have managed to decrease the
CPU time taken from 533.14s to 245.99s; this translates to an efficiency/speed gain over 
210%. The results clearly illustrate the effectiveness of our proposed enhancements to 
the induced dipole model.



Figure 6: Distributions of Ratios Between Maximum/Average Errors Post-Peek Step and Pre-Peek 
Step. This figure illustrates the distributions of the ratios derived from the maximum and average
errors after the peek step in relation to those prior to the peek step. A smaller ratio is desirable 
as it indicates a reduction in error.

Table 6: Performance Comparison Between the Optimal Strategy Developed in This Study and 
the Approach Proposed by Wang and Skeel. This table presents a comparative evaluation of the 
performance between the optimal strategy derived in this research and the methodology 
proposed by Wang and Skeel. In all simulations, the maximum error was employed as the 
convergence check to ensure energy conservation.

Method Relative Norm/CG/Last Step Maximum Relative
Error/LIP-CG/MOE/Peek

Convergence Criterion 10-6 10-7 10−2 10−3 10−4

Time per 1000 
steps(Avg Iter)

533.14 s(12.00) 588.60 s (14.03) 241.33s
(1.64)

257.71s
(2.53)

285.44s
(3.69)

Conclusion

Polarizable force fields, which account for interactions between charges and higher 
moments like dipoles and quadrupoles, have proven more accurate in describing 
atomistic interactions compared to high-level quantum mechanical calculations. Despite 
this, polarizable models such as the pGM model have grappled with energy conservation 
issues in NVE simulations unless a stringent convergence criterion is employed. Large 
energy drifts are indicative of inadequate convergence of induced dipoles. Tests 
performed using the pGM model have revealed that energy drifts are more significant 
when historical data is leveraged, irrespective of the tolerance used, aligning with 
observations made with other polarizable force fields. In all test scenarios, energy drifts 
when history is not incorporated are less than half of those where history is used. This 
discrepancy implies differences in the quality of induction convergence, even when using
the same tolerance level.

Our detailed error analysis shows that the convergence quality and outlier errors are two
reasons that prevents energy conservation. In general, using history will lead to a poorer



convergence quality with more outlier errors compared to not using history at the same 
convergence criterion. As a consequence, using the residue norm in convergence check 
fails to safeguard the convergence of the poorly converged dipoles, leading to 
unacceptable energy conservation properties unless an unusually tight convergence 
criterion is used. We therefore explored using the maximum error in the convergence 
check. Our tests show that energy drifts are qualitatively the same in NVE simulations 
with or without history when the maximum error is set to be less than 10-2. Additionally, 
history can still improve the convergence rate in these tests; the iteration steps are 
reduced by 2 to 3 for the tested systems.

Based on our observations, we explored a scheme to improve induction convergence by 
utilizing more prudent initial guesses based on previous steps' induced dipoles. The MOE 
scheme was developed to produce better initial guesses. Our tests show that the third-
order interpolation with two previous steps is consistently the most effective, reducing 
the iteration steps by another 2 to 5 for all tested conditions without impacting the 
energy conservation of the simulations.

Furthermore, we studied the effect of local iterations as a preconditioner to improve the 
convergence of error outliers when maximum errors are used in convergence check. The
error analysis for the tests with and without history shows that the LIPCG scheme leads 
to smaller and more uniform errors than the standard CG and PCG. These analyses 
indicate that local iterations can be used to improve the convergence rate of the PCG 
method. We explored the optimal cutoff distance to be 4 Å for the local iteration and 
under such condition, iteration steps are reduced by another 3 to 5, and overall 
simulation time is also reduced, despite the extra cost of local iterations.

Finally, we studied the effect of the "peek step" on the convergence quality. Overall, the 
residue norms are reduced to half, and the maximum errors are mostly reduced after the
peek step. Interestingly, the peek step further improves the convergence rate when the 
criterion is set as 10-2 or 10-3, with average iteration steps reduced by as much as a half 
step, likely due to better initial guesses when the convergence quality is better. 

In summary, the development documented here shows that it is possible to achieve 
reasonable energy convergence with just a few iterations when both MOE and LIPCG 
schemes are used along with the peek step, if the maximum error is used to check the 
convergence quality. Apparently, the development and optimization documented here 
will need to be further tested in heterogeneous systems such as ions, proteins, nucleic 
acids in water. We will certainly revisit the issue in our future development when pGM 
force fields for ions, proteins, and nucleic acids become available. In addition, our current
focus has been on the quality of energy conservation, so we have focused on NVE 
simulations with the 1fs time step. Clearly larger time steps are often used for NVT and 
NPT simulations and will lead to worse initial guesses of induced dipoles. Nevertheless, 
the timing with 2fs is still more efficient than that with 1fs due to the use of fewer PME 
calls as Wang and Skeel have pointed out. Nevertheless, this indicates further 
optimization is still feasible when the pGM model is applied to NVT and NPT simulations.

Supporting Information



Performance analysis of CG method, energy drift values of various MOE schemes with 
different convergence tolerances, energy plots under different convergence criterion 
with history and without history, parameter scanning for Jacobi under-relaxation.

This information is available free of charge at the website: https://pubs.acs.org/. 
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Appendix

Jacobi under-relaxation (JUR) is utilized as the peek step in our overall optimized 
induction iteration. The use of JUR instead of the standard Jacobi is to minimize the effect
of overshooting by introducing a relaxation factor (ω) to the Jacobi method as reviewed 
in the Introduction. To fully take advantage its benefit as the peek step, we have 
optimized ω for the pGM model as shown in Figure S6, which is similar to that identified 
for the amoeba induced dipole model.23
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