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Abstract

The question of how children develop multimodal coordina-
tion skills to engage in meaningful face-to-face conversations
is crucial for our broader understanding of children’s healthy
socio-cognitive development. Here we focus on investigating
the ability of school-age children to coordinate turns with their
interlocutors, especially regarding when to take the floor (i.e.,
the main channel of the conversation) and when to provide at-
tentive listening signals via the back channel. Using data of
child-caregiver naturalistic conversations and data-driven re-
search tools, we found that children aged 6 to 12 years old al-
ready show adult-like behavior both in terms of reacting to the
relevant channel-specific cues and in terms of providing reli-
able, multimodal inviting cues to help their interlocutor select
the most appropriate channel of the conversation.
Keywords: backchannel; turn-taking; child development;
computational modeling

Introduction
To become a competent conversational partner, a child must
learn to coordinate the timing and nature of their turn in the
dialog. This is a complex task since the child must learn,
among other things, (i) when it is a good time to take the floor
and become the speaker and (ii) when it is more appropriate
to provide non-intrusive feedback while remaining in the role
of the listener. In more technical terms, children must learn
when to use the main channel, i.e., taking or yielding the floor
(hereafter, MC), and when to use the back channel, e.g., sig-
naling attentive listening using verbal or non-verbal signals
like “okay” or a head nod (hereafter BC) (Yngve, 1970). To
illustrate, here is an example of a child using the MC:

- Interlocutor: Did you like your food?
- Child: Yes!
- Interlocutor: Nice! I am glad you did!

and an example of the child using the BC:
- Interlocutor: First, we are going to have lunch..
- Child: [head nod]
- Interlocutor: Then we can go for a walk!

The choice to use the MC vs. BC in a conversation is not
arbitrary and requires attention to the interlocutor’s inviting
cues; otherwise, it can be perceived as unnatural or even dis-
ruptive (Sacks, Schegloff, & Jefferson, 1974). For example, if
the speaker pauses after their sentence is grammatically com-
plete (e.g., “I am going to the library.”) accompanied by a
falling intonation, this is most likely a signal that the speaker
is yielding the MC. If, however, the speaker makes a slight
pause while their sentence is not yet complete (e.g., “I am

going to the library and..”); this is unlikely an invitation to
take the floor. It is more appropriate in such a case to use the
BC and provide a signal of attentive listening, allowing the
speaker to continue (Ford & Thompson, 1996; Sacks et al.,
1974; Cathcart, Carletta, & Klein, 2003; Skantze, 2021; Gra-
vano & Hirschberg, 2011; Ward & Tsukahara, 2000; Duncan,
1972)

While developmental research has studied children’s use of
MC and BC, it has treated these two aspects of coordination
separately. Work on MC has primarily focused on children’s
developing skills in terms of optimizing the response latency,
i.e., avoiding excessive overlaps and pauses between turns
(for a review, see Nguyen, Versyp, Cox, & Fusaroli, 2022).
As for the BC, researchers have studied children’s ability to
provide and capitalize on listener feedback, but often in a con-
text where the use of MC is not a valid option, e.g., during
storytelling or while listening to an experimenter’s instruc-
tions (e.g., Hess & Johnston, 1988; Peterson, 1990; Park,
Gelsomini, Lee, & Breazeal, 2017).

A more accurate characterization of children’s ability to
engage in coordinated communication requires investigating
their appropriate use of both the MC and BC of the conver-
sation. The current study is a step toward addressing this
question. We focus on middle childhood (6 to 12 years old)
as some research has found children in this period to be still
lacking in their conversational skills (Hess & Johnston, 1988;
Baines & Howe, 2010; Maroni, Gnisci, & Pontecorvo, 2008),
whereas others have found them to already show adult-like
behavior in some specific aspects (e.g., Bodur, Nikolaus,
Prévot, & Fourtassi, 2023), Middle childhood is, therefore,
a good starting point to investigate the developmental sta-
tus of a complex coordination phenomenon that may require
relatively sophisticated socio-cognitive abilities (Devine &
Hughes, 2014).

We follow the research method outlined in Liu, Nikolaus,
Bodur, and Fourtassi (2022) by modeling children’s coordi-
nation in a predictive fashion: We train a model capable of
handling sequential/time-dependent data (here, a Long Short
Term Memory recurrent neural network or LSTM) to predict
when the child makes a specific conversational move (in our
case, the use of MC vs. BC), based solely on the interlocu-
tor’s immediately preceding communicative cues, which we
call hereafter “inviting cues.” If the trained model makes this
prediction with a higher-than-chance accuracy, it suggests the
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Figure 1: Schematic illustration of how we characterize coordination between two interlocutors (here a child-caregiver dyad).
We train a model to predict the timing of the child’s conversational move (Main channel or Back channel) based on the care-
giver’s immediately preceding communicative signals (for simplicity, we only illustrated the speech signal but non-verbal cues
are also taken into account). The prediction accuracy of the model quantifies the extent to which both the child and caregiver
have been successfully coordinating for the child to select the appropriate channel of the conversation.

child makes their moves selectively, based on whether or not
their interlocutor had provided the relevant (inviting) cues for
that specific move. The prediction accuracy of the model
quantifies the extent to which both the child and interlocu-
tor have been successfully coordinating for the child to con-
tribute to the conversation appropriately (see Figure 1).

Using this research approach, we study the MC vs. BC co-
ordination skills in children conversing with their caregivers.
We quantify both their ability to select the most appropriate
channel of conversation by reacting consistently to the care-
giver’s inviting cues (the child model) and, in turn, their abil-
ity to offer reliable inviting cues that the caregivers can use to
pick a channel (the caregiver model). Crucially, these inviting
cues can be multimodal and may involve changes in intona-
tion, gaze, gesture, and/or sentence structure. The current
study thus investigates children’s ability to both interpret and
offer such rich multimodal cues to negotiate the MC vs. the
BC of the conversation with the interlocutor.

Finally, to draw conclusions about development, we com-
pare children’s skills not only to those of their adult conver-
sational partners (i.e., the caregiver) but also to the coordi-
nation dynamics between two adults recorded in a similar
conversational context. The reason we need this additional
developmental “end-state” reference is twofold: (i) the per-
formance of a model (as illustrated in Figure 1) cannot be
interpreted separately for each interlocutor in a given dyad;
the caregiver’s model quantifies not only their ability to cap-
italize consistency on children’s inviting cues but also the
ability of children to provide these cues in a reliable fash-
ion, and (ii) research indicates that caregivers tend to adapt
to children’s conversational competencies (e.g., Snow, 1977;
Misiek & Fourtassi, 2022; Fusaroli, Weed, Rocca, Fein, &
Naigles, 2021; Jiang, Frank, Kulkarni, & Fourtassi, 2022).

Methodology
In this section, we describe 1) the conversational dataset, 2)
how we characterized the outcome measures, i.e., the MC

and BC, 3) how we extracted the predictors, i.e., the inviting
cues in the verbal, vocal, and visual modalities, 4) the model
that uses these inviting cues to predict the outcome measures,
and finally, 5) the experiments that we conducted using this
model.

Conversational dataset
We use the ChiCo corpus (Bodur, Nikolaus, Kassim, Prévot,
& Fourtassi, 2021). This corpus consists of video call record-
ings at home1 of 10 conversations between children (aged
between 6 to 12 years old) interacting with their caregivers
(Child-Caregiver condition) and 10 conversations between
the same caregivers interacting with other adults (Adult-
Caregiver condition). To elicit a balanced exchange between
children and caregivers, the conversation takes the form of
an intuitive and weakly constrained game where interlocutors
try to guess each other’s words, giving participants the free-
dom to talk spontaneously. Each conversation lasted around
15 minutes, for a total of 5 hours and 49 minutes across both
conditions. The setup required that interlocutors use different
devices and that they communicate from different rooms (if
they record from the same house) to avoid issues due to echo.
The creators of the corpus took the necessary measures to
ensure that BC signals were not suppressed as “background
noise,” by the Zoom software. For further technical details
about the corpus, we refer the reader to the original paper.

Characterization of MC and BC
MC coding We segment the conversations into “turns”, i.e.,
when an interlocutor is understood to be taking the MC. We
follow research in dialog systems regarding how we define a
turn and how we automatically detect it using speech tech-
nology (Skantze, 2021). A turn is defined/approximated as
a stretch of speech from one interlocutor without any si-
lence exceeding a certain amount (also known as Inter-Pausal
Units, IPUs). We segmented speech into IPUs using the voice

1Using Zoom software
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activity detector in SPPAS software (Bigi, 2015). The corpus
comes with two separate audios for interlocutors (since each
is recorded with a different microphone/computer), which al-
lowed us to segment IPUs for each speaker without having to
do speaker diarization or deal with speech overlap issues.

We set the minimum duration of an IPU to 150ms to be
able to detect short utterances. We excluded instances of ver-
bal BC of a similar length (using the set of BC that were al-
ready coded in the ChiCo corpus, see below). Indeed, a short
segment like “yeah” can be both a response to a question, in
which case it was labeled as an MC move, but it can also be
a way to show attentive listening, in which case it was la-
beled as a BC move. We set the maximum duration of silence
(within a turn) to 500ms. In addition, we set a threshold on
the volume (to distinguish silence/noise from speech) to be
of a minimum of 150 rms in the case of children and a mini-
mum 200 rms for adults (this difference is to account for the
fact that children tend to speak with a lower volume). Finally,
we manually checked and corrected the outcome of the auto-
matic annotations.

BC coding Instances of BC were already available in the
ChiCo corpus. They were manually coded and included ver-
bal instances such as “mmhm”, “uh-huh”, “okay” and non-
verbal instances such as head nods and smiles. Descriptive
statistics of both MC and BC instances in the corpus are
shown in Table 1.

Multimodal Inviting Cues

We used vocal, visual, and verbal cues that could play a sig-
naling role, inviting communicative moves from the inter-
locutor in face-to-face conversations (e.g., Holler & Levin-
son, 2019).

Visual Cues The visual features are manually annotated
and are provided as a part of the ChiCo corpus. Most of these
cues have been found in previous research to be relevant to
turn-taking/MC management or BC signaling. These cues
are head movements (nods & shakes), gaze, eyebrow move-
ments (raises & frowns), mouth curves (smiles & laughs),
and body posture (leaning forwards & backwards) (Duncan,
1972; Paggio & Navarretta, 2013; Kendon, 1967; Park et al.,
2017; Brunner, 1979). We use one-hot encoding for the visual
features, i.e., for each time frame, the visual cues were repre-
sented with a vector of ones (for cues occurring in the frame
at hand) and zeros (for cues not occurring in that frame).

Vocal Cues For the vocal cues, we use the features ex-
tracted by Liu et al. (2022) for their BC study on the ChiCo
corpus. These features are a subset of the eGeMAPS fea-
tures (Eyben et al., 2016) a standard set of features commonly
used for automatic voice annotation, including in previous
work on inviting cues for MC and BC in adult-adult conversa-
tions (Murray et al., 2022; Jain & Leekha, 2021; Morency, de
Kok, & Gratch, 2010; Goswami, Manuja, & Leekha, 2020;
Ruede, Müller, Stüker, & Waibel, 2017). The categories of
cues we used are pitch (variation), Mel-Frequency Cepstral

Coefficients (MFCC), voice quality, energy, and pausal infor-
mation.

Verbal Cues For the textual features, we relied on the Part-
Of-Speech (POS) tags extracted by Liu et al. (2022). We use
these features to represent the morpho-syntactic cues (e.g.,
indicating whether a sentence is complete). We know from
previous research that interlocutors can use morpho-syntactic
cues for coordinating both BC and MC (Cathcart et al., 2003;
Ford & Thompson, 1996). We had a total of 17 POS tags and
we used a one-hot encoding to signal the presence or absence
of each POS tag for each time frame.

LSTM Model
The model should take as input inviting cues from one inter-
locutor to predict the channel of the conversation selected by
the other. For all our experiments (see below), we make use of
a recurrent neural network known as Long Short-Term Mem-
ory (hereafter LSTM) (Hochreiter & Schmidhuber, 1997).
We use this modeling architecture because of its ability to
capture sequential input. This feature is crucial for learning
and testing many important inviting cues that are sequential in
nature, such as the utterance structure and some vocal features
(e.g., rising vs. falling intonation). Following previous work
(e.g., Jain & Leekha, 2021), the model is fed a sequence of
40 time-frames of 50ms each (that is, a 2-second-long context
window2) where each frame contains information about the
value (or presence/absence) of all the cues considered. The
context window immediately precedes the target move, and
the goal of the model is to guess the identity of this move,
i.e., MC or BC (or nothing), depending on the experiment
(see Experiments).

For each target conversational move, we predicted its early
few frames, more precisely, the first 4 frames (while mov-
ing the context window input accordingly). This is done for
each frame independently and without seeing the values of
the preceding frames (remember, the model only “sees” the
other interlocutor). Predicting more than one frame makes
the model more robust to noise. At the same time, we do
not predict frames much further into the target conversational
move in order not to trivialize the task. To illustrate, imag-
ine the move to be predicted is an MC and that our target
participant is now taking the floor for a few seconds while
the interlocutor is completely silent. Training the model to
predict MC frames at this point will make it – trivially – as-
sociate the prediction of MC with silence (as the predictive
2-second context window will be mostly “empty”). If we re-
strict the prediction to just the first few frames of the move,
the model would be forced to learn the cues used by the target
interlocutor to initiate their move.

The LSTM has several hyperparameters (such as the num-
ber of hidden dimensions, neural layers, dropout, learning
rate, batch size, etc.). We tuned these hyperparameters us-
ing Ray Tune (Liaw et al., 2018). The hyperparameters have

2We experimented with larger context window sizes, but this led
to lower model performance.
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Figure 2: Accuracy scores of the BC predicting models (Experiment 1, top) and the MC predicting models (Experiment 2,
bottom) both in the child-caregiver condition (left) and the adult-caregiver condition (right). In each case, we show the results
of the modality-specific models (i.e., the models using predictors from a single modality) and the full model (where cues from
all modalities are combined). We show the accuracy scores obtained with different training/testing configurations according
to the LOOCV cross-validation (here represented with dots) in addition to the mean and 95 % confidence intervals over these
scores. The dotted line represents the chance level.

been tuned for each of the three Experiments below. Fur-
ther, the tuning was done with respect to both children’s data
and adult data3. Finally, the hyperparameters were tuned with
respect to the model that uses inviting cues from all modali-
ties. For each experiment, the same hyperparameters are used
to train models across all 4 groups of participants (child and
caregiver in the first condition and adult and caregiver in the
second) and for single-modality models.4

Model training and evaluation The conversational data is
heavily imbalanced with respect to our target moves (i.e.,
MC or BC), as the speech signal contains many more frames
containing neither a BC signal nor a MC switch between
interlocutors. To obtain interpretable accuracy scores, we
train and test the models to discriminate between our target
frames and a sample of an equal number of random frames
in each conversation.5 As for model evaluation, and to test
the ability of our models to generalize across participants,

3We found almost no changes in the results across these two sets
of hyperparameters, so we only report the results using the first.

4The details of the hyperparameters as well as all
materials and code necessary to reproduce the results
can be found at https://osf.io/jv6y2/?view only=
3bdd2749410142dbbfbd2ad3ec97c54c

5Except in the case of Experiment 3 (as we describe in the sub-
section below).

we use the Leave-One-Out Cross-Validation technique (here-
after, LOOCV). If we take the child model as an example,
LOOCV means that we train the model on all children except
one, and then we test it on the child that was left out in train-
ing. This procedure is repeated with all training/testing con-
figurations (here we have 10 children, which means we have
10 possible configurations and 10 accuracy scores evaluating
each model).

Experiments

We had three sets of experiments. Each experiment was con-
ducted on all groups of participants. Further, for each experi-
ment and each group of participants, we did a feature ablation
study by considering only the set of inviting cues belonging
to a particular modality, one at a time. Table 1 describes the
size of data used (in terms of frames) in each experiment.

Experiment 1: BC vs. random non-BC In this set of ex-
periments, our goal was to replicate the results reported by
Liu et al. (2022) on the same corpus regarding the predic-
tion of BC moves (which they did separately from MC). We
trained the model to use inviting cues from the speaker to
identify instances of the listener’s BC. The model had to dis-
tinguish BC instances from an equivalent number of random
non-BC frames in each conversation. In this random sample,
we did not consider frames from inside the target interlocu-
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Figure 3: Accuracy scores of the BC vs. MC predicting models (Experiment 3) both in the child-caregiver condition (left) and
the adult-caregiver condition (right). In each case, we show the results of the modality-specific models (i.e., the models using
predictors from a single modality) and the full model (where cues from all modalities are combined). We show the accuracy
scores obtained with different training/testing configurations according to the LOOCV cross-validation (here represented with
dots) as well as the mean and 95 % confidence intervals over these scores. The dotted line represents the chance level.

tor’s turns (while the other interlocutor is silent), as this could
trivialize the task by making the model learn to associate BC
move with trivial features in the inviting cues such as “no si-
lence.”

Experiment 2: MC vs. random non-MC In this set of
experiments, we test the prediction of MC moves (separately
from BC). The procedure was similar to Experiment 1. In the
random non-MC sample, we did not consider frames from
inside the turn (for the same reason as above).

Experiment 3: BC vs. MC While Experiments 1 and 2
tested the prediction of BC and MC independently from each
other, Experiment 3 dealt with both. Crucially, here we did
not test the ability of the models to identify BC or MC signals
from a random sample of frames but to tease these two signals
apart. We trained and tested the models on an equal sample
of BC and MC (see Table 1).

Table 1: The number of BC, MC, and/or random samples
used in our experiments per interlocutor in each condition.

Interlocutor Experiment 1 Experiment 2 Experiment 3
BC Rand. MC Rand. BC MC

Child 1836 1836 5191 5191 1836 1836
Caregiver/C 1640 1640 6802 6802 1640 1640
Adult 2736 2736 5321 5321 2736 2736
Caregiver/A 2532 2532 6340 6340 2532 2532

Results
Experiment 1 and 2: Figure 2 shows the scores for the pre-
dictability of BC moves on the one hand (top) and of MC
moves on the other (bottom) made by one interlocutor (i.e.,
the outcome measures), given the immediately preceding 2-
second window of multimodal cues from the other interlocu-
tor (i.e., the predictors). We show the results for predictors
in a single modality (“visual”, “vocal”, or “verbal”) and for
inviting cues from all modalities combined (“all”).

We report two main findings. The first is that the overall
predictability of both MC and BC moves (i.e., “all”) is well
above chance across all groups of interlocutors in both con-
ditions. This finding suggests that interlocutors provide con-
sistent, informative cues to invite MC and BC moves and –
when on the receiving end – they capitalize on these cues to
make the corresponding move. Crucial to our research goals,
this was observed in both children and adults alike, thus repli-
cating the results reported in Liu et al. (2022) for the case of
BC and extending them to the case of MC as well. The sec-
ond finding concerns the predictive power of single modal-
ities: We found that all three modalities, when considered
alone, allowed for an above-chance prediction6 of both BC
and MC moves. That said, cues in the vocal modality were,
overall, the most informative, especially in the case of MC.
Here again, this finding was observed in both children and
adults.

Experiment 3: Figure 3 shows the scores quantifying the
ability of predictors from one interlocutor to distinguish when
the other interlocutor is making a BC move or an MC move.

6As can be deduced from the fact the %95 confidence intervals
do not cross the chance threshold of 0.5
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We report two main findings. The first is that the scores for
the combined cues (i.e., “all”) are above chance, suggesting
that interlocutors do not only provide – and capitalize on –
consistent cues to invite MC and BC moves (as reported in
Experiments 1 and 2 above), they also provide and capitalize
on cues that are distinctive to MC vs. BC moves, allowing
interlocutors (both children and adults) to coordinate in terms
of which conversational channel is more appropriate to use
at a specific time. The second finding concerns the role of
specific modalities. Each modality contained predictive cues,
allowing the distinction of BC from MC moves. In contrast to
Experiments 1 and 2, where the cues from the vocal modality
were predominant, this was no longer the case here. In par-
ticular, the visual modality seems to bring, overall, as helpful
cues as the vocal modality does.

Discussion
This paper studied an essential dimension of children’s con-
versational coordination: How they coordinate the use of the
main vs. the back channel of the conversation with their inter-
locutors. While previous work in the developmental literature
has studied aspects of both main-channel and back-channel
coordination (Nguyen et al., 2022; Hess & Johnston, 1988;
Peterson, 1990; Park et al., 2017; Bodur et al., 2023), the cur-
rent is – to the best of our knowledge – the first to study both
phenomena jointly, especially in a face-to-face setting. The
goal is to better characterize the complexity of the challenge
that children face, i.e., learning how to coordinate across sev-
eral dimensions simultaneously and learning this coordina-
tion not only with words but also via multimodal signaling.

To capture children’s spontaneous use of their communica-
tive skills in real life, we relied on a corpus of dialogs where
children conversed freely with their caregivers at home while
playing an intuitive word-guessing game. Such naturalistic
data come with a methodological challenge: Unlike in-lab,
controlled experiments where communicative signals (or the
elicitation of these signals) are pre-designated top-down by
the experimenter, here we need to rely on sophisticated com-
putational tools that allow a bottom-up study of how inter-
locutors negotiate their contribution to the conversation via
complex multimodal signaling mechanisms (that cannot all
be anticipated a priori by an experimenter).

Thus, following Liu et al. (2022), we borrowed techniques
from the literature on dialog systems (e.g., Skantze, 2021)
to provide a quantitative account of children’s coordination
skills in a naturalistic context. This approach was fruitful as
our study resulted in several findings. Consider first the re-
sults from the “child models” (compared to the “adult mod-
els”): (a) We replicated the results from Liu et al. (2022), con-
firming that, by middle childhood, children show adult-like
behavior in terms of their high responsiveness to interlocu-
tors’ inviting cues to provide BC signals (Experiment 1), (b)
we extended this finding and showed that children are also on
par with adults in their consistency in reacting to inviting cues
to take the MC (Experiment 2), and (c) we found children to

be as capable as adults in selectively reacting to the inviting
cues specific to BC vs. MC (Experiment 3). If we look at re-
sults from the “caregiver model” in the child-caregiver condi-
tion, we found that children also showed similar consistency
(to adults) in terms of providing relevant, inviting cues for the
caregiver to capitalize on.

The overall accuracy scores for Experiment 3 were lower
compared to those obtained in Experiments 1 and 2. This re-
flects the fact that the task in Experiment 3 is much harder:
The models did not only have to predict instances of BC and
MC signals but to differentiate these two signals, whose invit-
ing cues may overlap. This is also apparent regarding the role
of modalities. In particular, the vocal modality played a rather
dominant role in predicting MC and – to some extent – BC,
but this role diminished when the models needed to tease MC
and BC apart (and we observe an opposite pattern for the vi-
sual modality). This could be due to the fact that both BC
and MC share some similar vocal inviting cues (e.g., they can
both be invited by pauses) while they may diverge slightly in
terms of visual cues (e.g., pausing while looking away invites
BC but pausing while looking at the interlocutor invites MC).
More research is needed for a finer-grained examination of
these findings.7

Limitations and future work

The current work, like any data-driven modeling study of nat-
uralistic data, remains mainly correlational. The causality of
the conclusions we draw from it should thus be taken with
a grain of salt (pending further confirmatory work). For ex-
ample, while we found that models mimicking children’s be-
havior (given similar contextual input) performed similarly to
the models mimicking adults, this finding does not entail with
certainty that children and adults use exactly the same coor-
dination mechanisms. Take, e.g., the result that all modalities
were predictive of children’s BC vs MC moves. This could
be due to caregivers systematically providing multimodal sig-
nals in a redundant fashion, and not necessarily to children
capitalizing on all these modalities.

Another limitation of the current study is its reliance on
video-call data as an approximation of face-to-face conversa-
tions. While this data acquisition method allows for natural-
istic recording (it takes place at home instead of the unfamil-
iar context of a lab), it also involves introducing a medium
(i.e., a screen) and is subject to time lag issues (Boland, Fon-
seca, Mermelstein, & Williamson, 2022). While our conclu-
sions remain valid in this specific context, more research is
required to precisely quantify the potential effect that online
video call systems might have on conversational coordination
as opposed to direct face-to-face communications.

7Here, we could not apply off-the-shelf interpretability algo-
rithms such as SHAP (Lundberg & Lee, 2017) due to their presup-
position of feature independence (a condition that is not met in our
data).
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