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The severity and frequency of wildfires have risen dramatically in recent years, drawing

attention to the wildland-urban interface (WUI), the region where human-made structures

meet wildland vegetation. The focus of my doctoral research is to obtain an improved under-

standing of wildfires at the WUI through mapping and modeling approaches. First, I revisit

the existing definitions of WUI for California and then propose a novel, finer-resolution

WUI-mapping method that is based on the linear intersection of flammable vegetation and

building footprints. From this mapping exercise, it appears that the dominant mode of

fire-induced damage in the WUI is from firebrands, which can travel long distances away

from the fire-front. Next, I proceed to test the capability of a non-hydrostatic, mesoscale

weather research and forecasting (WRF) model to capture the meteorological parameters of

different geographical regions in Southern California, during the 2007 Witch Fire. Hereafter,

I use a large eddy simulation (LES) version of WRF to analyze the mechanisms of turbu-

lence generation using momentum perturbation, since turbulence plays a vital role in ember

transport during fires that are driven by heavy wind events, such as the Santa Ana winds.

Finally, I discuss the potential of using a coupled fire-atmosphere model, called WRF-Fire,

to investigate ember transport over complex terrain as a major driver of wildfires in the

WUI. My research advances the science of fire prediction, with potential benefits for fire and

ecosystem managers and communities living within or near the WUI.
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Chapter 1

Introduction

1.1 Background

The goal of this Ph.D. project is to improve the existing understanding of fires in the WUI

through modeling and mapping approaches. In chapter 1, I first briefly discuss key back-

ground information that provides context and theory for the proposed research, separated

into the following topics: (1) fires in the WUI (section 1.2); (2) ember transport and spot

fires (section 1.3); and (3) complex terrain (section 1.4). The objectives and results of the

Ph.D. research are presented in five chapters, from chapter 2 to chapter 6, followed by the

dissertation conclusions in chapter 7.

1.2 Fires in the WUI

The intensity and frequency of wildland fires over the contiguous United States (CONUS)

have been increasing remarkably and caused much economic damages in the last two decades

[Massada et al., 2009, Bowman et al., 2009, Radeloff et al., 2018]. The damages due to
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these extreme events are mainly located at Wildland-Urban Interfaces (WUI), which are

regions where houses and man-made structures meet or overlap the wildland vegetation as

defined in the Federal Register (US Department of Interior (USDI) and US Department

of Agriculture (USDA)), 2001. The current definition of WUI includes the concepts of

‘Intermix’ and ‘Interface’. ‘Intermix’ is the area where human developments and wildland

vegetation overlap, while ‘Interface’ is that region which is nearby to a densely vegetated

wildland. This definition of WUI is in concurrence with the National Fire Plan (NFP) which

was based on the WUI fire risk report [Teie, 1999]. This framework consists of three main

parameters: (1) housing density threshold of 6.18 houses per sq. km (1 house per 40 acres);

(2) vegetation type and (3) proximity of 1.5 miles (2.4 km) from dense vegetation (over

an area of 5 sq. km with more than 75% vegetation cover). Out of these 3 parameters,

the housing density threshold is the most sensitive parameter in the existing definition of

WUI as studied by Stewart et al. [2007], Radeloff et al. [2005b]. Earlier definitions of WUI

were centered on the metric of population density [Glickman and Babbitt, 2001, Liu et al.,

2003]. However, it was later recognized by Liu et al. [2003] that housing density was a more

appropriate metric compared to population density for mapping WUI. Therefore, the WUI

criteria had been modified and the housing density threshold was included in WUI definition

in the Federal Register (2001) for WUI (for both intermix & interface).

Wildland fires destroy thousands of buildings in the US annually. In recent years, CA

wildfires have burned the highest number of acres of all states in the US, according to the

National Interagency Fire Center (NIFC) report (2018). This wildfire season gained the title

of ’giga fire’ in the year 2020 and burned more than a million acres of land compared to

previous years during which the burned area had been recorded as a few hundred thousand

acres (’mega fire’). In 2020, 4,177,855 acres of California burned with a total of 9,639

wildfire incidents that destroyed 10,488 buildings and caused 33 fatalities according to the

2020 CAL FIRE summary report. In the same year, out of nearly 17,700 total damaged

structures in the US, 11,253 buildings were destroyed and affected by wildfires in CA which
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made it one of the most devastating wildfire seasons on record. From 2010 to 2020, a

total of 52,955 buildings were destroyed in CA on its own (Headwater economics, November

2020: https://headwaterseconomics.org/natural hazards/structures-destroyed-by-wildfire/).

The biodiversity of nature was affected with the total extinction of a few species of flora

and fauna in the local and regional forested lands. Whenever homes are constructed near

flammable vegetation, it poses two types of major issues: first, the risk of human sparked

fires increases, and second, it also escalates the risk of damage caused by wildfires [Radeloff

et al., 2018]. Recent studies suggest that most of the CA wildfires destroyed houses in the

WUI but occurred outside the existing WUI regions [Kumar et al., 2020, Kramer et al.,

2018].

1.3 Ember transport and spot fires

There is a higher risk of structural damage due to wildfires in the WUI. However, it is

not clear whether the structural damage reported in the literature has been a result of the

wildfires penetrating the WUI. If it is found that most wildfires burn inside the WUI, it would

mean significant investments in fuel treatments are required within and nearby the WUI area.

If most of the wildfires are found to burn nearby but not within the WUI area itself, it would

mean that ember/firebrand ignitions play a significant role in property damage in the WUI

and therefore strong investments in home hardening in terms of more fire-resistant materials

and other fireproofing techniques are also equally important. Moreover, wildfires burning

near the WUI areas would also complicate firefighter access and evacuation efforts thereby

complicating suppression and overall firefighting strategy. Some modeling studies such as

by Koo et al. [2012] investigated firebrand transport during a wildfire event using a coupled

atmosphere/wildfire behavior model i.e., HIGRAD/FIRETEC. Firebrand spot ignition is

one of the main techniques of fire spreading. The effects of topography on these winds have
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a major impact on firebrand transport as firebrands are being carried and moved by the

fire-induced winds. The shape of the firebrand also impacts the distance traveled by it.

For example, disc shaped firebrands travel farther than cylindrical firebrands because they

are more aerodynamically favorable [Koo et al., 2012]. Similarly, fire size and types also

impact firebrand transport - in the case of canopy fires it travels larger distances than in the

case of surface fires [Koo et al., 2010]. Fernandez-Pello [2017] studied wildfire spot ignition

by firebrands and found that topography and weather conditions play an important role in

ember transport and therefore, wildfire spread models can be computed as a function of

these variables.

1.4 Complex terrain

In states like California (and many of the western states in the US), a significant area of

the WUI might be situated on complex topography. If the presence of the WUI is generally

perceived to be associated with heightened fire risk, it is worth knowing how much of the WUI

is on complex topography. This is important from a planning and policy perspective, given

that firefighting, rescue, and evacuation operations are significantly complicated due to the

presence of complex topography. The presence of topography adds to uncertainties in wildfire

behavior (Linn et al., 2007) and leads to the creation of micro-meteorological conditions

which changes the wind patterns and turbulence levels in the atmospheric boundary layer

over the WUI. This orographic effect might lead to differences in how far firebrands can

travel and where they land compared to flat terrain. Therefore, relying on a buffer zone of

1.5 miles from a densely vegetated area as a general criterion is worth analyzing further.

Graham et al. (2012) showed very interesting results that embers are not the only cause

of ignition away from the ignition points, and low intensity surface fires can also lead to

significant damages.
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Topography is one of the most influential factors in the fire spread rate. Wildland fires

travel much faster uphill than downhill, and the spread and intensity of a fire on an uphill

slope are further increased by wind, due the enhanced efficiency of convective preheating of

fuel elements on an upslope, downwind of the flame front. Wildfires are easier to control

over a flat surface and burn less intensely than over a moderate or steep slope. Moreover,

complex topography influences wind flow and local turbulence patterns, thereby altering the

uplift and dispersion of firebrands. It has been already established that firebrand exposure

is extremely important while considering structural and property damage in the WUI. To

better understand the perception of fire risk in the WUI, I analyzed the locations of the

existing WUI in California, which is associated with a very complex topography. Firebrands

can statistically travel more than 1.5 miles (2.4 km) distance as assumed in the USFS WUI

mapping method; and the meteorological factors like wind speed are more favorable for

higher rate of fire spread and firefighting is difficult due to complex terrain.
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Chapter 2

Examining the existing definitions of

wildland-urban interface for California

2.1 Introduction

The intensity and frequency of wildland fires over the contiguous United States (CONUS)

have been increasing remarkably and caused much economic damages in the last two decades

[Massada et al., 2009, Bowman et al., 2009, Radeloff et al., 2018]. The damages due to

these extreme events are mainly located at Wildland-Urban Interfaces (WUI), which are

regions where houses and man-made structures meet or overlap the wildland vegetation as

defined in the Federal Register (US Department of Interior (USDI) and US Department

of Agriculture (USDA)), 2001. The current definition of WUI includes the concepts of

‘Intermix’ and ‘Interface’. ‘Intermix’ is the area where human developments and wildland

vegetation overlap, while ‘Interface’ is that region which is nearby to a densely vegetated

wildland. This definition of WUI is in concurrence with the National Fire Plan (NFP) which

was based on the WUI fire risk report [Teie, 1999]. This framework consists of three main
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parameters: (1) housing density threshold of 6.18 houses per km2 (1 house per 16.2 hectares

or 40 acres); (2) vegetation type and (3) proximity of 2.4 km (1.5 miles) from dense vegetation

(over an area of 5 km2 with more than 75 % vegetation cover). Out of these 3 parameters, the

housing density threshold is the most sensitive parameter in the existing definition of WUI

as studied by Stewart et al. [2007] and Radeloff et al. [2005b]. Earlier definitions of WUI

were centered on the metric of population density [Glickman and Babbitt, 2001]. However, it

was later recognized by Liu et al. [2003] that housing density was a more appropriate metric

compared to population density for mapping WUI. Therefore, the WUI criteria had been

modified and the housing density threshold was included in WUI definition in the Federal

Register (2001) for WUI (for both intermix & interface). Several earlier studies had been

devoted to analyze the expansion of WUI areas across North America over the past several

decades and the drivers behind it. A few studies [Radeloff et al., 2001, Johnson et al., 2005]

identified the cultural aspect of human inclination to live near the natural amenities provided

by forested lands, mountainous regions and seashores. Housing growth was widespread in

rural and suburban areas in the United States during the mid-1900s. Its continued trend

contributed to a 41 % growth in the construction of new homes within the WUI from 1990

to 2010 [Radeloff et al., 2005a, 2018]. Housing density has grown faster than population

density in recent decades and the same trend is reflected in the context of WUI [Martinuzzi

et al., 2015]. Also, more than 50 % houses present in the WUI were damaged in California

due to large wildfires [Caggiano et al., 2020]. Thus, there is a higher risk of structural

damage due to wildfires in the WUI. The existence of the WUI terminology was already

in place before the wildland fire policies had taken it into consideration in the 2000s but

it was not as widespread in the wildfire literature. It had only become a widely used term

in the recent years due to the increasing/maximum damages in this land-use type due to

wildfires [Martinuzzi et al., 2015, Radeloff et al., 2018]. Vaux [1982] had discussed about

future risks due to the emerging interface areas and called WUI as the “hotseat of forestry”.

Also, Bradley [1984] had focused on this new interface in their famous book on resource
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management, but none of them had related WUI with wildfires. Finally, Davis et al. [1990]

connected the idea of WUI with the wildland fires. Currently, the termWUI is used mostly in

the context of wildfires as the maximum damages due to wildfires occur in the WUI [Kramer

et al., 2019]. Stewart et al. [2009] demonstrated that WUI definitions vary depending on

purpose and context by comparing the two definitions that are based on the NFP and Healthy

Forest Restoration Act (HFRA) with the study location over the Los Angeles area. The NFP

definition had focused on the number of structures (housing-centric definition) nearby the

wildland vegetation within a buffer of 2.4 km (1.5 miles) for the interfaces and therefore it

was more helpful to the policymakers in determining the risk prone housing regions and

taking possible steps in reducing the growth rate of the homes in these locations. According

to the California Fire Alliance (2001), on an average a firebrand can travel up to 2.4 km (1.5

miles) from a wildland fire-front and thus the buffer distance for the interface is the same.

The houses within this buffer zone would be at higher risk of burning during wildfire events.

On the other hand, the HFRA definition of WUI was more helpful to the land managers

and has the aim of finding the sources of fuels for future wildfires within the vicinity of

the houses/structures and therefore can be considered a fuel-centric definition. The HFRA

defined interfaces that are present within a buffer of 805m (0.5 miles) from the houses

and called it as a mitigation zone for the Community Wildfire Protection Plans [Wilmer and

Aplet, 2005]. Apart from these many existing definitions of WUI, a new WUI mapping called

Fire and Resource Assessment Program (FRAP) was developed by CAL FIRE, the agency

to serve and safeguard the people and protect the property and resources of California. The

FRAP modified the definition of WUI (intermix and interface) in terms of the housing density

thresholds in concurrence with the NFP policy and mapped it for California for 2010. Platt

[2010] compared five different WUI models, including FRAP, based on the choice of wildland

vegetation, housing density with and without public lands, buffer distance from wildland

vegetation or human settlements and its magnitude as well as the point and zonal based

approach of defining housing density. It was found that the WUI mapping methods were
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characterized by different degrees of accuracy, which vary with their utilization and extent

of study [Stewart et al., 2009]. For example, in the point-based approach of defining housing

density, structures were represented as points and mapped from parcel centroid excluding

remote buildings which were farther than 569m (0.35 miles) from another building [Platt,

2010]. Many other WUI definitions [Pereira et al., 2018] were based on different data sources

such as remote sensing, census block or their combination. Furthermore, there were different

WUI mapping methodologies based on purpose, for example - housing centric, fuel centric,

etc. as mentioned in Platt [2010]. However, none of the studies analyzed and compared

the predominant definitions of WUI with the context of wildfire occurrence. Syphard et al.

[2019] demonstrated the impact of climate change and urbanization on loss of buildings in

California. They quantified that building losses are high in low density buildings and with

housing development it might further increase. Kramer et al. [2019] also highlighted that

more destructive wildfires threatened and damaged more buildings in the interface WUI and

fewer in rural regions. Also, the rate of building destruction is higher in the urban areas

where there is higher population density than the rural areas. They reported that in the last

three decades, 50 % of buildings destroyed in California were at WUI interfaces and 32 % of

buildings destroyed were in WUI intermix areas [Kramer et al., 2019]. On an annual basis

in the WUI (1999–2014), an average of 2.5 million homes (2.2–2.8 million, 95 % confidence

interval) were threatened by human-started wildfires (within the perimeter and up to 1 km

away) as reported in a recent study by Mietkiewicz et al. [2020]. Therefore, increasing

trends of the expansion of WUI areas would mean that more lives and properties are at

risk from wildfire induced damage. Wildfire events have been increasing within the WUI

in the CONUS [Platt, 2010, Martinuzzi et al., 2015]. In California, the frequency of even

smaller fires (< 202.3 hectares or 500 acres) caused by human activities have increased from

2010 to 2019 [Li and Banerjee, 2021]. The wildfire ignitions are also directly proportional

to the WUI expansion [Syphard et al., 2019]. The proportion of buildings destroyed within

the WUI and non-WUI zones were 69 % and 31 % respectively in the US [Kramer et al.,
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2018]. However, on overlapping the area of fire perimeters with the building footprints from

2000 to 2013, only 1.1 % (1,398 km2) of the buildings were destroyed within the WUI, while

this number was 34 % (41,262 km2 within the non-WUI regions for the US (Kramer et al.,

2018). Caggiano et al. [2020] highlighted that more than 85 % building losses occurred in

the WUI due to wildfires from 2010 to 2018. However, out of total 2,777 fires, only 70 were

used in this study [Caggiano et al., 2020] which damaged more than 50 buildings and were

called WUI disasters. Fighting fire is difficult in the WUI due to the unique combination

of wildland and structural fuels as firefighters are usually trained in either wildland fires or

structural fires but not both [Stewart et al., 2003]. Moreover, wildfire exposure threatens or

undermines the community and ecosystem services provided by WUI areas, such as enjoying

recreational activities, timber production, habitat conservation for several species, watershed

protection and even visual aspects such as scenic beauty [Stewart et al., 2003]. Thereby it is

important to understand the modes of fire exposure at the WUI which would impact both

aspects of fire prevention, suppression, and fire impacts on the WUI. Recent wildland fire

policy has targeted fire prevention, evacuation planning, fuel treatment and home hardening

against ignition in WUI areas [Radeloff et al., 2018, 2005b, Cohen, 2000, Haight et al.,

2004]. Therefore, it is important to understand the occurrence of wildfires relative to the

WUI areas, as well the relative importance of WUI related factors that influence wildfire

occurrence and size. Moreover, in states like California (and many of the western states in

the US), a significant area of the WUI might be situated on complex topography. If the

presence of the WUI is generally perceived to be associated with heightened fire risk, it is

worth knowing how much of the WUI is on complex topography. This is important from a

planning and policy perspective, given that firefighting, rescue, and evacuation operations

are significantly complicated due to the presence of complex topography. The presence of

topography adds to uncertainties in wildfire behavior [Linn et al., 2007] and leads to the

creation of micro-meteorological conditions which changes the wind patterns and turbulence

levels in the atmospheric boundary layer over the WUI. This orographic effect might lead
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to differences in how far firebrands can travel and where they land compared to flat terrain.

Therefore, relying on a buffer zone of 2.4 km (1.5 miles) from a densely vegetated area as a

general criterion is worth analyzing further. Graham et al. [2012] showed very interesting

results that embers are not the only cause of ignition away from the ignition points, and

low intensity surface fires can also lead to significant damages. However, there is always a

higher risk of ignition within the fire perimeter than outside it because of the close vicinity to

the flame front. Overlapping past wildfire events with WUI along with complex topography

would help us understand where wildfires occur relative to the WUI areas; thereby providing

a quantified measure of the perceived risk associated with the wildfire-WUI connection. In

this work, our objectives are the following: (1) evaluate the two predominant definitions of

WUI against the actual occurrences of wildfires in CA; (2) examine the role of the parameters

used to define the WUI, such as the buffer distance, in determining the relationship between

wildfire occurrence and WUI; (3) evaluate if the presence of complex terrain is an important

factor in the WUI, as complex topography might mean more complex rescue, firefighting,

and evacuation operations, and presence of complex terrain means further uncertainty in

parameters such as buffer distance since they are based on ember transport characteristics;

(4) evaluate the relative importance of parameters that define the WUI in wildfire occurrence

within or near the WUI. To satisfy these objectives, we will attempt to answer the following

research questions: (1) Where are the wildfires (a) igniting and (b) burning relative to the

WUI? (2) what is the impact of buffer distance in the percentage overlap of fire perimeters

and fire ignition points in the WUI? (3) where is the WUI located in terms of elevation and

the complexity of the terrain? and (4) what are the relative importance of WUI parameters

that impact wildfire occurrence and size within or near the WUI? Results from this paper

will be helpful for the wildfire management and would benefit the policymakers and land

managers at the state and local level to focus on the factors that determine the high-risk

prone areas for future wildfires.
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2.2 Materials and Methods

2.2.1 WUI data

We used two existing WUI data sources for 2010 that were obtained from USFS [Martinuzzi

et al., 2015] and CAL FIRE (FRAP, 2015). We designate them WUI-A and WUI-B respec-

tively for our study. We plotted the spatial map of WUIs over CA to analyze the variation

in the location of the WUI which includes both WUI intermix and WUI Interface. WUI-A

used the definition of Federal Register (2001) following the NFP policy, while CAL FIRE

modified the housing threshold and added the wildfire influence zone & moderate or higher

levels of fire hazard severity zones.

2.2.2 Wildfire data

Since we wanted to overlap wildfires datasets with WUI which was from 2010; therefore, we

can not choose those wildfires that occurred before 2010 to overlap with 2010 WUI data.

Perimeters of wildfire events were obtained from the Monitoring Trends in Burn Severity

(MTBS) dataset (MTBS, 2020) that includes all fires (2010-2017) in CA having an area

greater than 1,000 ac (400 ha). We designate these wildfires as large wildfires Butry et al.

[2008]. Landsat imagery of pre-fire and post-fire images at a resolution of 30 were used by

Eidenshink et al. [2007] to detect MTBS fire perimeters, which reflect the boundary of the

region burned by a wildfire event. The wildfire data obtained from MTBS for CA has a total

area of 19,517.675 km2 of wildfires from 2010 to 2017. It also comprises a total 329 fire ignition

points in the state from 2010 to 2017. Also, the fire ignition points data are consistent with

the wildfire perimeter datasets. Ignition points of the fires were obtained from MTBS Fire

Occurrence Points [Scott et al., 2016] for 8 years i.e., from 2010 to 2017 (MTBS, 2020). The

National Wildfire Coordinating Group classified wildfires into seven classes, ranging from A
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to G, based on their size. In this study, we defined classes A through E as small fires, or

wildfires with an extent of less than 404.7 hectares or 1,000 acres. The thresholds for large

and small wildfires were determined with reference to the research of Butry (2008). Small

wildfire (less than 1000 ac or 400 ha) points were obtained from the fifth edition of spatial

wildfire occurrence data originated by Short [2017]. It collected wildfires from 0.001 acre

across the United States from 1992 to 2018. Wildfires in California that are smaller than

404.7 hectares or 1,000 acres were extracted from this database and defined as small wildfires

in this study.

2.2.3 County and topography data

County boundaries for the state of California have been taken from the CA government

geographic boundary (County Boundary, 2019). Elevation data were obtained from Google

Earth Engine (GEE) which has used USGS DEM elevation maps available at 1/30 arc-second

(GEE, 2012). For our study we resampled the obtained data from GEE at a spatial resolution

of 10m to 30m using the ArcMap (10.7.1) tool in ArcGIS (ArcGIS, 2020). To calculate the

overlap of 2010 WUI and different elevation ranges, we have used the ArcMap 10.7.1 (ArcGIS,

2020) spatial analyst tool, selected the extraction tool, and then chose extraction by mask.

First, we reclassified the elevation data into nine separate ranges: the first eight ranges were

from 0 to 800m in 100-meter intervals, while the last range was from 800 to 4,410m. Then

we merged both WUI-A and WUI-B with these ranges to calculate the number of counts

falling in each elevation range. Moreover, we have made sure that WUI and Elevation raster

layers have the same properties. WUI-A data available in vector form was converted to raster

using ArcPy (ArcGIS with python) keeping the same 30m spatial resolution as the elevation

data. We have then divided the number of counts in each elevation range to the total count

to find the percentage WUI over different elevation ranges. We performed similar methods

for calculating the percentage overlap of WUI and elevation for CA with both WUI-A &
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WUI-B for the year 2010. To see the surface roughness for the state which has numerous

mountains and complex topography, we have calculated the rugosity of this region, which

is defined as the ratio of actual surface area to the planar surface area of a region. Higher

value of rugosity shows presence of more complex terrain in that region and vice-versa. We

have used the Digital Elevation Map (DEM) surface tool developed by Jenness [2004] in

the ArcMap to calculate the rugosity (surface ratio) for the state. The DEM surface tool

has one advantage over other existing surface ratio calculation tools. Here, we do not need

to do adjustment in Z-units with respect to (w.r.t.) X/Y -units while dealing with data in

geographic coordinate systems. Otherwise, we need to get Z-units corrected first to calculate

the surface ratio. The WUI (both WUI-A & WUI-B) have been overlapped with rugosity

following the same methodology as discussed above for elevation to find its variation with

surface roughness for the state.

2.2.4 Analysis methods

The overlap of wildfire perimeters and WUI has been processed in ArcGIS with varying

buffer distances using the buffer tool in geoprocessing, followed by the dissolve tool to merge

each buffer into one feature. Five different buffer radii from 1 km to 5 km have been selected

around wildfire perimeters and WUI (both WUI-A & WUI-B). WUI-A data were available

in polygon (vector), so WUI-B raster data were converted to polygon using conversion tools

in ArcMAP. Finally, we intersected fire perimeters (WUI buffers) and WUI (fire perimeter

buffers) to obtain the overlapped area. For the calculation of fire ignition points within WUI

buffers, we have used “select by location” using the selection method as “select from layer”,

choosing target layer as fire ignition points and source layer as WUI buffer layers (WUI-A

& WUI-B).
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2.2.5 Statistical models

To model the relationship among wildfire presence, wildfire area, distance from wildfires

to WUIs, housing density and vegetation density, the logistic regression model (LoR) was

applied. The dependent variables in the model are the probability of wildfire occurrence

(including both large and small wildfires), and large wildfire areas, separately. It is noted

again that for wildfire occurrence, data from both large and small wildfires are available as

discussed above, while for burned area, only the data for large wildfires (greater than 1000 ac

or 400 ha) are available and considered. The ignition points of wildfires extracted from MTBS

were assigned a value of 1. Then, as many random points as wildfire points were generated

within the boundary of California and out of the large wildfire perimeters. These points

were assigned a value of 0, which means there were no large wildfires from 2010 to 2017. The

independent variables in this model included distance from wildfires to WUI-A and WUI-B,

which was calculated using the “near” function in ArcGIS Pro; housing density, calculated

using 2010 Census data; vegetation density, which was calculated using fuel vegetation cover

(FVC) from LANDFIRE; and topographic information including elevation, aspect, slope and

rugosity. The area under the Receiver-Operating Characteristic curve (ROC) of LoR model

is the probability of large wildfire occurrence with a range of 0 to 1. The probability higher

than 0.5 represents a strong correlation. When there are more than one independent variable

in the model, the estimated coefficients represent the change in the log odds of large wildfire

occurrence per unit change in the independent variables. The results table also included the

standard error, z statistics and associated p-values in model fitting.
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2.3 Results and Discussion

2.3.1 Difference between two types of WUI mappings for Califor-

nia

The definition of WUI varies with different mapping methods and the changes in the major

parameters like housing density threshold, buffer distance, etc. Figure 2.1 shows the differ-

ences in the WUI distribution for California as mapped by USFS [Martinuzzi et al., 2015]

and CAL FIRE (FRAP, 2015) for the year 2010. The housing density threshold used by

these two mappings are different and is 6.18 houses per km2 (1 house per 16.187 hectares 40

acres) in the former while it is > 1 house per 0.08 km2 (> 1 house per 8 hectares or 19.8

acres) in the latter. CAL FIRE also includes other parameters for the WUI definition and

requires moderate to very high fire hazard severity zones (The Fire Hazard Severity Zones

(FHSZ) were defined by CAL FIRE to evaluate “the severity of fire hazard that is expected

to prevail there” based on various factors such as fuel, slope and fire weather). In addition,

their definition warrants spatially contiguous groups of 30m cells having an area larger than

0.04 km2 (4 hectares) for the WUI Interface and larger than 0.1 km2 (10 hectares) for the WUI

intermix. Although the buffer distance of 2.4 km (1.5 miles) is the same in both the cases,

for WUI-A, it is the distance from a densely vegetated area and is called WUI-intermix.

Whereas, for WUI-B, it is the distance up to which flammable vegetation lie from WUI-

intermix or WUI-Interface and is known as wildfire influence zone. The WUI-A consists of

more area (27,025.683 km2) than WUI-B (9,606.273 km2) as shown in Figure 2.1 because of

the difference in the housing thresholds and additional vegetation classification parameters

used for WUI-B. The overlapping results between WUIs and wildfires are similar for both

types of WUIs (WUI-A and WUI-B), where intermixes have higher percentage overlap than

interfaces (Table 2.1).
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Site WA (km2) WBA (km2) OA (km2) POWBA PWI POA
a) WUI-A 19,517.68
Interface 8046.64 49.39 0.25 0.30 (1/329) 0.61
Intermix 18, 979.04 747.11 3.83 3.34(11/329) 3.94
Total 27,025.68 796.50 4.08 3.65(12/329) 2.95

b) WUI-B 19,517.68
Interface 4,232.85 24.43 0.13 1.22 (4/329) 0.58
Intermix 5,373.43 129.17 0.66 0 (0/329) 2.40
Without 9,606.27 153.60 0.79 1.22(4/329) 1.60

Table 2.1: The overlap between wildfire burned areas and fire ignition points with WUI-
A and WUI-B. Here, POA-percentage of overlapped area; PWI-percentage of wildfires ig-
nited; POWBA- percent overlap in wildfire burned area; OA-overlapping area; WBA-wildfire
burned area; WA-WUI area.

Figure 2.1: The figure on the left and right panels shows the spatial plots of WUI in 2010
over California using WUI data from USFS (Martinuzzi et al., 2015) and CAL FIRE (FRAP,
2015) and we designate them as WUI-A and WUI-B respectively for our study. “Intermix”
represents the area where human developments and wildland vegetation overlap, while “In-
terface” is that region which is nearby to a densely vegetated wildland.
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2.3.2 Overlap of WUI with wildfire burned areas

The wildfire data used in this study obtained from MTBS report a total burned area of

19,517.675 km2 for CA. These historical wildfire datasets are from 2010 to 2017 and include

all fire events with burned areas greater than 1,000 ac (400 ha or 4 km2). Table 2.1 shows total

area of WUI-A in CA to be 27,025.683 km2 with both interface (8,046.643 km2) and intermix

(18,979.040 km2) types of WUI-A. WUI-A interface has less (49.387 km2) overlap between

wildfire burned areas and WUI-A than WUI-A intermix (747.113 km2). The percentage of

overlap in wildfire burned areas in intermix WUI-A (3.83 %) is higher than interface WUI-A

(0.25 %), making a total of almost 4.1 % of wildfire areas that burned within WUI-A. Note

that these (aforementioned) percentages are computed as compared to the total wildfire

burned areas (i.e., overlap area/wildfire burned area). The percentage of overlap between

WUI areas and wildfire burned areas can also be computed relative to the area of WUI itself

(overlap area/WUI area shown in the rightmost column in Table 2.1). From this perspective,

the percentage overlap in WUI-A intermix is 3.94 %, i.e., more than six-times the overlap

in WUI-A interface (0.61 %). Therefore, only 2.947 % of WUI-A areas have been directly

burned by wildfires during this study period. Table 2.1 also shows the total area of WUI-

B in CA to be 9,606.273 km2 with a lower proportion of WUI-B interface (4,232.847 km2)

than WUI-B intermix (5,373.426 km2). Clearly, the percentage of overlap between WUI-B

interface and wildfire perimeters relative to wildfire burned areas is lower (0.125 %) than

intermix WUI-B (0.662 %) for the state. Hence, only 0.79 % of wildfire burned areas are

contained within WUI-B in CA. When the overlapped area is expressed relative to WUI-B

areas, there is a higher percentage overlap in the WUI-B intermixes (2.4 %) compared to

WUI-B interfaces (0.58 %). Therefore, only 1.6 % of WUI-B in CA has burned directly

during the study period. Moreover, the intermixes have more wildfire burned area than

interfaces for both types of WUIs. The percentage overlap of wildfire burned areas with

respect to (w.r.t) WUI areas is less for WUI-B (1.6 %) as compared to WUI-A (2.95 %)
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because of the exclusion of the influence zone from WUI-B definition (Figure 2.1).

2.3.3 Analysis of buffer distance from wildfire perimeters

From the discussion above, it is clear that a very small percentage of wildfires burn within

the WUI areas in CA. This invokes the question of whether these wildfires burn in the

vicinity of the WUI areas. To investigate the occurrence of wildland fires outside and away

from the existing WUIs, we performed a buffer analysis, varying the distance from 1 km to

5 km from wildfire burned areas (Table A.1 in the supplementary file) and recalculating the

previous statistics reported in Table 2.1. Appendix A: Table A.1 shows an increase in the

percentage overlap of wildfire burned areas and WUI-A with buffer distance relative to the

wildfire buffer area (fifth column) and relative to the WUI area (sixth column). When the

buffer radius increased from 0 km to 5 km around the wildfire burned areas, the overlapped

region increased by more than 9 times (from 796.5 km to 7,580.4 km). The percentage of this

overlapped region in the WUI-A increased from almost 3 % (for no buffer) to 28 % (for 5 km

buffer distance) respectively. On the other hand, we observed a small change of only 4 %

was in the percentage overlap in wildfire buffers by increasing buffer distance from 0 km to

5 km. This is expected because the wildfire buffer area relative to which the percentages are

calculated also increases with the buffer distance. Similarly, the percentage overlap relative

to WUI-B (sixth column) increased to 25.5 % (Appendix A: Table A.1) with 5 km buffer

distance from wildfire burned areas. On the other hand, the increase in the percentage of

overlap relative to the wildfire buffers is from 0.8 % to 2.5 % with no buffer to 5 km buffer

distance, respectively. However, the effects of WUI types on the percentage overlap is not

different between WUI-A & WUI-B; increasing the buffer distance from wildfires increased

percentage overlap in both the WUIs (Appendix A: Table A.1).

Figure 2.2 shows the spatial distribution of overlap between varying buffer distances from
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Figure 2.2: The figure on the left panel shows a spatial plot of buffers of fire perimeters (large
fires only, having an area greater than 1,000 ac) and WUI-A for CA; similarly, the figure
on the right panel represents buffers of large wildfires and WUI-B in CA. Legends in these
spatial plots show types of WUI (intermix and interface) and the varying wildfire perimeter
buffer distances.
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Site Parameters Large Wildfires Small Wildfires

WUI-A

Estimate Std. Error z value Pr(> |z|) Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.00000 0.17480 -5.72 0.00000 0.97320 0.01064 91.46 < 2e−16

D2WUIA -0.00003 0.00001 -3.11 0.00183 -0.13680 0.00121 -112.82 < 2e−16

RhoHou -0.00032 0.00013 -2.56 0.01021 0.00001 0.00000 40.02 < 2e−16

FVC 0.03545 0.00370 9.59 < 2e−16 -0.01663 0.00029 -57.53 < 2e−16

WUI-B

Estimate Std. Error z value Pr(> |z|) Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.05100 0.17550 -5.99 0.00000 1.17000 0.01131 103.46 < 2e−16

D2WUIA -0.00002 0.00001 -2.62 0.00862 -0.10100 0.00087 -116.54 < 2e−16

RhoHou -0.00032 0.00013 -2.54 0.01102 0.00001 0.00000 29.32 < 2e−16

FVC 0.03621 0.00368 9.84 < 2e−16 -0.02119 0.00029 -73.62 < 2e−16

Table 2.2: Results of logistic regression model for parameters in WUI definition and wildfire
occurrence probability. Here, * FireIdx - Fire Index, presence/absence of large wildfires;
D2WUIA/D2WUIB - Distance to WUI-A/WUI-B, the distance from fire and random non-
fire points to WUI areas; RhoHou - Housing density, the number of houses per km2 in each
Census blocks; FVC - Fuel vegetation cover, the percentage cover of vegetation.

the existing wildfire perimeters and two types of WUI used in this study (WUI-A and WUI-

B). Wildfire perimeters are nearer to WUI-A as seen in Figure 2.2 on the left panel and

thus will result in higher percentage overlap between wildfire burned area and WUI-A (also

shown quantitatively in Appendix A: Table A.1). Also note that the total area of WUI-

B: 9,606.273 km2 is less than that of WUI-A: 27,025.683 km2. Figure 2.3 shows that the

percentage overlap with increasing buffer distance with respect to the WUI area in the red

line and with respect to the wildfire buffer area in black line. Both increasing trends are

found to regress well with a linear trend. These linear trends are found for both WUI types.

However, the slope in case of WUI-B is higher as compared to WUI-A, and thus, there is a

higher rate of increase in the percentage overlap. On the other hand, the percentage overlap

with respect to wildfire buffer areas does not increase in the similar manner for both the

cases with varying buffer distances. However, the rate of increase in percentage overlap in

wildfire buffers is higher for WUI-B (from 0.8 % to 2.6 %) as compared to WUI-A (from 4

% to almost 8 %).
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Figure 2.3: The figure on the top panel shows percentage overlap between wildfire burned
area with WUI-A with respect to WUI-A area (solid red line) and percentage overlap with
respect to wildfire buffer area (solid black line). The figure in the bottom panel shows the
same for WUI-B. Here, Y-axis represents the percentage overlap, while X-axis represents the
buffer distance (in km). The dotted line indicates curve fitting (linear) for the percentage
overlap in different types of WUIs (WUI-A & WUI-B).
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Site type Parameters Estimate Std.Error z value Pr(> |t|)

WUI-A

(Intercept) -729.00000 3749.00000 -0.19400 0.84587
D2WUIA 199.30000 162.40000 1.22700 0.22012
RhoHou 0.00319 0.13560 0.02300 0.98126
FVC 292.40000 78.75000 3.71300 0.00022

WUI-B

(Intercept) -3393.00000 3786.00000 -0.89600 0.37000
D2WUIB 296.10000 119.10000 2.48700 0.01300
RouHou 0.02858 0.13570 0.21100 0.83300
FVC 310.10000 78.05000 3.97200 0.00008

Table 2.3: Results of linear model for large wildfire area. Here, * FireIdx - Fire Index,
presence/absence of large wildfires; D2WUIA/D2WUIB - Distance to WUI-A/WUI-B, the
distance from fire and random non-fire points to WUI areas; RhoHou - Housing density,
the number of houses per km2 in each Census blocks; FVC - Fuel vegetation cover, the
percentage cover of vegetation.

Site Parameters Large Wildfires Small Wildfires

WUI-A

Estimate Std. Error z value Pr(> |z|) Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.95514 2.81267 0.69500 0.48698 1.24000 0.02670 46.42 < 2e−16

D2WUIA -0.02901 0.00922 -3.14600 0.00165 -0.13610 0.00122 -111.35 < 2e−16

RhoHou -0.00028 0.00011 -2.52800 0.01149 0.00001 0.00000 39.28 < 2e−16

FVC 0.02712 0.00397 6.83800 0.00000 -0.01520 0.00030 -51.29 < 2e−16

ELE 0.00016 0.00011 1.51600 0.12944 -0.00036 0.00001 -34.43 < 2e−16

ASP 0.00120 0.00069 1.73900 0.08209 0.00164 0.00006 27.12 < 2e−16

SLP 0.05763 0.01944 2.96400 0.00304 -0.03489 0.00084 -41.71 < 2e−16

RUGO -3.54702 2.82999 -1.25300 0.21007 0.01077 0.02318 0.46 0.642

WUI-B

Estimate Std. Error z value Pr(> |z|) Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.76137 2.81130 0.62700 0.53097 1.43800 0.02540 56.62 < 2e−16

D2WUIA -0.02017 0.00660 -3.05700 0.00223 -0.10070 0.00088 -115.03 < 2e−16

RhoHou -0.00029 0.00011 -2.53500 0.01125 0.00001 0.00000 28.62 < 2e−16

FVC 0.02733 0.00396 6.90700 0.00000 -0.01981 0.00029 -67.18 < 2e−16

ELE 0.00020 0.00011 1.78900 0.07355 -0.00035 0.00001 -34.15 < 2e−16

ASP 0.00130 0.00069 1.89800 0.05764 0.00168 0.00006 27.43 < 2e−16

SLP 0.05641 0.01945 2.90100 0.00372 -0.03532 0.00085 -41.68 < 2e−16

RUGO -3.38495 2.83051 -1.19600 0.23174 0.00563 0.02127 0.26 0.791

Table 2.4: Results of logistic regression model for parameters in WUI definition, topo-
graphic parameters, and wildfire occurrence probability. Here, * FireIdx - Fire Index,
presence/absence of large wildfires; D2WUIA/D2WUIB - Distance to WUI-A/WUI-B, the
distance from fire and random non-fire points to WUI areas; RhoHou - Housing density,
the number of houses per km2 in each Census blocks; FVC - Fuel vegetation cover, the
percentage cover of vegetation; ELE-Elevation; ASP-Aspect;SLP-Slope;RUGO-Rugosity.
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Site type Parameters Estimate Std.Error z value t

WUI-A

(Intercept) 4684.000 64760.000 0.072 0.94235
D2WUIA 311.800 123.400 2.526 0.01169
RouHou 0.020 0.136 0.146 0.88382
FVC 232.800 85.860 2.711 0.00682
ELE -1.452 2.526 -0.575 0.56557
ASP 23.990 15.580 1.540 0.12395
SLP 328.300 452.900 0.725 0.46865

RUGO -11360.000 65150.000 -0.174 0.86161

WUI-B

(Intercept) 4684.000 64760.000 0.072 0.94235
D2WUIB 311.800 123.400 2.526 0.01169
RouHou 0.020 0.136 0.146 0.88382
FVC 232.800 85.860 2.711 0.00682
ELE -1.452 2.526 -0.575 0.56557
ASP 23.990 15.580 1.54 0.12395
SLP 328.300 452.900 0.725 0.46865

RUGO -11360.000 65150.000 -0.174 0.86161

Table 2.5: Results of linear model for parameters in WUI definition, topographic parameters,
and large wildfire area. Here, * FireIdx - Fire Index, presence/absence of large wildfires;
D2WUIA/D2WUIB - Distance to WUI-A/WUI-B, the distance from fire and random non-
fire points to WUI areas; RhoHou - Housing density, the number of houses per km2 in
each Census blocks; FVC - Fuel vegetation cover, the percentage cover of vegetation; ELE-
Elevation; ASP-Aspect;SLP-Slope;RUGO-Rugosity.
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2.3.4 Analysis of Buffer distance from WUI perimeters

In subsection 3.2.1, the buffer distances were calculated from the wildfire perimeters. In this

section, the buffer distances are calculated from the WUI perimeters and similar statistics

are calculated. The percentage overlap of wildfire burned areas with varying buffer distance

from WUI-A has been shown in Appendix A: Table A.2 and depicted in Figure 2.4. The

percentage of overlapped regions w.r.t. wildfire burned areas (19,517.675 km2) increased

from 4 % to 56 % when the buffer distance from WUI-A changed from 0 km to 5 km. Even

with a buffer distance of 1 km, there is a 13 % increase in the percentage overlap (from 4

% to 17 %). Whereas the same overlapped areas w.r.t. WUI-A areas do not increase in

percentage overlap (from 3 % to 5 %) with 5 km buffer distance, given that the WUI buffer

area also increases significantly (the denominator increases as well). Similarly, Appendix

A: Table A.2 shows that the overlap of wildfire burned areas with varying buffer distance

from WUI-B. The percentage overlapped w.r.t. wildfire perimeters increased up to 36 %

with a buffer distance of 5 km from almost 0.8 % overlap without a buffer around WUI-B.

While the percentage overlap in WUI-B buffers did not increase in the same manner and

changed to 4.2 % from 1.6 % with 5 km buffer distance (again, due to the increase of the

buffer area itself). Figure 2.5 shows that the percentage overlap w.r.t. wildfire perimeters

increase linearly with buffer distance for both types of WUIs. However, the rate of increase

in percentage overlap is higher in case of WUI-A (top panel) as seen from the slope of the

linear equation as compared to WUI-B (bottom panel). On the other hand, the percentage

overlap w.r.t. WUI areas do not increase significantly for both the cases.

Therefore, these results (Appendix A: Table A.2, Figure 2.4, and Figure 2.5) give a clear vi-

sualization that wildfire events are not limited to the existing WUI, but are more widespread

outside it i.e., in the extended WUI. Fire risk maps associated with WUI areas should con-

sider the buffer regions as well. These results also highlight how the two mapping approaches

have different sensitivities to the proximity to wildfire events. The discussion above only con-
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Figure 2.4: The figure on the left panel shows the spatial plot of overlap of buffers of WUI-
A with fire perimeters (large fires only, with area > 1,000 ac). While the figure on the
right panel shows the spatial plot of overlap between buffers of WUI-B and fire perimeters
(large fires only having area > 1,000 ac). Legend in these spatial plots show types of WUI,
wildfire perimeters and the areas of WUI-A & WUI-B with varying buffer distance from
WUI. Overall, the percentage overlap between the buffers of the existing WUI and wildfire
perimeters are higher in WUI-A than WUI-B, and it increases in both the cases on increasing
buffer radius.
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siders fire perimeters, and it is worth asking whether fire ignitions also originate within or

outside these WUI perimeters. This is discussed in the following subsection.

2.3.5 Overlap of WUI with fire ignition points for larger fires

(greater than 1,000 ac or 400 ha)

Table 2.1 shows that total 12 wildfires ignited in the WUI-A, out of which only 8 % (1

out of 12) occurred in the WUI-A interface, while 92 % (11 out of 12) ignited in the WUI-

A intermix. While only 4 wildfires ignited in the WUI-B out of total 329 fires, and all

of those occurred in WUI-B interface, and zero fires ignited in the WUI-B intermix zone

(Table 2.1). Thus, more wildfires ignited in WUI-A (3.6 %) as compared to WUI-B (1.2

%) in California. The percentage overlap of fire ignition points with varying buffer distance

from WUI-A has been shown in Appendix A: Table A.2 and plotted in Figure 2.5. Here,

the number of wildfire ignition points within WUI-A increases drastically when the area of

WUI-A increases with buffer distances. The number of ignition points was 72 out of 329

when there was a 1 km buffer around WUI-A and it increased to 217 ignition points at a

buffer radius of 5 km, making the percentage overlap to 66 % from 22 %. In addition, Figure

2.5 shows the logarithmic increase in the percentage overlap of fire ignition points within

the WUI buffers. However, WUI-A (figure 2.5 on the top panel) shows a higher rate of

increase than WUI-B (figure 2.5 on the right panel). Also, Appendix A: Table A.2 shows

the number of fire ignition points within WUI-B, increases to 150 out of 329 (almost 46 %)

at 5 km buffer radius as compared to 4 out of 329 ignition points (1.2 %) within WUI-B

buffers. Clearly, there is a noticeable increase in the number of fire ignition points falling in

these WUIs (WUI-A & WUI-B) when the buffer radius increases from WUI. Therefore, our

analysis shows that wildfire events do not occur in these predefined WUIs only, rather its

frequency and burned area increases as we increase the buffer distance from existing WUIs.
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Figure 2.5: The figure on the top panel represents the percentage overlap of wildfire burned
areas with WUI-A buffer areas. The solid red line represents the overlap w.r.t. WUI-A
buffer perimeters. Percentage overlap w.r.t. wildfire perimeters is shown by solid blue lines
and the fire ignition points within the WUI-A buffers are shown by solid black lines. The
bottom panel shows the same for WUI-B. Here, X-axis shows the percentage overlap, while
buffer distance (km) has been represented on Y -axis. The dotted line indicates linear curve
fitting for the percentage of overlap in the area of wildfire perimeters and logarithmic curve
fitting for fire ignition points within WUI buffers.
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2.3.6 Overlap of WUI with fire ignition points of smaller fires (less

than 1,000 ac or 400 ha)

In our analysis with smaller fires (less than 1,000 ac or 400 ha), we found that a total of

63,723 smaller wildfires ignited in the WUI, with only 32.42 % of them igniting in the WUI-

A (Appendix A: Table A.7). In WUI-B, smaller fires ignited 18.51 % (Appendix A: Table

A.7). As a result, more wildfires erupted in WUI-A than in WUI-B in California. Appendix

A: Table A.7 and Figure 2.6 shows the percentage overlap of smaller fire ignition points

with varying buffer distances from WUI-A. When the area of WUI-A increases with buffer

distances, the number of wildfire ignition points within WUI-A increases. The percentage of

ignition points within WUI buffers was 60.17 % with a 1 km buffer radius around WUI-A and

increased to 85.11 % with a 5 km buffer radius. Figure 2.6 also depicts the linear increase in

the percentage overlap of fire ignition points within WUI buffers (figure 2.6, bottom panel).

Similarly, it also shows that the number of smaller wildfire ignition points within WUI-B

increased to 79.70 % at a 5 km buffer radius as compared to 50.96 % at a 1 km buffer radius.

Furthermore, we revealed that WUI-B has a higher rate of increase than WUI-A (figure 2.6,

bottom panel). When the buffer radius from WUI increases, the number of fire ignition

points falling in these WUIs (WUI-A & WUI-B) significantly increases. As a result, this

study demonstrates that even smaller wildfire events do not occur only in these predefined

WUIs, but that their frequency and burned area increase as the buffer distance from existing

WUIs increases. It is interesting to note that only a small percentage of ignitions from both

small and large wildfires starts at the WUI, and the number of ignitions increases as we

move further away from the WUI.

In the previous sections, the existing definitions of WUI have been discussed in the context of

wildfire ignition and burned areas to investigate the risk of wildfires in the WUI. One of the

three factors that influence fire risk and fire behavior is topography, namely slope, aspect,

elevation and surface roughness (along with fuel and weather). Therefore, whether the WUI
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Figure 2.6: The figure on the top left and top right panel shows a spatial plot of WUI-A
and WUI-B in CA respectively with the buffers of smaller wildfire ignition points (small fires
only, having an area less than 1,000 ac). Legends in these spatial plots show types of WUI
(intermix and interface) and the varying buffer distances surrounding WUIs. The figure on
the bottom panel represents the percentage overlap of smaller wildfire ignition points with
WUI-A and WUI-B buffer areas. Percentage overlap w.r.t. the fire ignition points within
the WUIs buffers are shown by solid lines. Here, X-axis shows the percentage overlap, while
buffer distance (km) has been represented on Y -axis. The dotted line indicates linear curve
fitting for smaller fire ignition points within WUI buffers.
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areas in CA are strongly associated with complex topography is worth investigating, to place

the WUI fire risk into context and this is discussed in the next subsection.

2.3.7 WUI on the complex topography

Elevation

Figure A.1a (given in the Appendix A) shows the distribution of elevation ranges in CA.

Figure A.2a (top left panel) shows the spatial distribution of elevation across CA with a

maximum elevation of 4,410m. In Appendix A.1: Table A.3, we show the percentage overlap

of WUI-A in 2010 with 9 ranges of elevation for CA. The histogram plot (Figure 2.7a) shows

that a significant WUI percentage lies in the elevation range of 0-100m for WUI-B (20.17

%) and above 800m for WUI-A: (21.4 %).

Rugosity

Figure A.2b (top right panel) shows the spatial distribution of surface roughness or rugosity

over CA. In Figure 2.7b, analysis of percentage overlap between WUI areas and rugosity for

CA yields an interesting outcome. It shows that only 0.4 % of the WUI (WUI-A) are present

on the regions with planar surfaces, having rugosity equal to 1. While this number grows to

92.7 % and 97.2 % for WUI-A and WUI-B respectively for surfaces with the rugosity values

greater than 1 and less than or equal to 1.1 (Appendix A: Table A.4 in the supplementary

file). A significant portion of terrain (55 % and 62 % for WUI-A and WUI-B respectively)

is still situated on very low or moderate rugosity between 1.0 and 1.01. Moreover, it shows

that almost 99.6 % and 99.8 % of the WUI-A and WUI-B respectively are in the non-planar

regions within CA. Therefore, a significant portion of the WUI in this state are located on

mild to moderately rough terrain where fire spread rate is higher than the flat surface and
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controlling large fires are more difficult.

Slope and Aspect

Figure A.2c on the bottom left panel shows spatial distribution of slope over California and

most of the regions are in the lower slope ranges. The percentage overlap of WUI-A (WUI-B)

with the slope ranges 0-30, 30-60 and 60-86 of the state are 97.72 % (99.4%), 2.27 % (0.6

%) and 0.0003 % (0.003 %) respectively as can be seen in Figure 2.7c (Appendix A: Table

A.5 in the supplementary file). The direction that a surface slope faces is called aspect and

is defined as the angle between the positive x axis and the projection of the normal onto the

x, y plane. In Figure A.2d (bottom right panel), the spatial variation of the aspect has been

shown for California and there is almost similar distribution of the direction of the surface

slopes as represented by the aspect in all the four quadrants. However, there is almost

similar distribution of the percentage overlap of WUI-A and aspect for California in the

three quadrants having first (23.82 %), second (23.61 %), fourth (23.4 %) and with a little

higher (29.17 %) in the third quadrant (Figure 2.7d; Appendix A: Table A.6). Also, Figure

2.7d shows the percentage overlap of WUI-B and aspect for California and it is highest in

the second quadrant (30 %), while the other three quadrants have 23.4 % (first), 23.4 %

(third), and 23.1 % (fourth), that is, almost equal percentages.

2.3.8 The importance of parameters in WUI definition to wildfires

The importance of current parameters to wildfire occurrence probability

The pairs plots for current parameters in WUI mapping definition are shown in Appendix

A: Figure A.3 and A.4. The red points represent wildfire ignition points and black points

represent the random non-fire points. It shows intuitively that the distance to WUI areas
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Figure 2.7: Histogram showing the percentage overlap of WUI for California (CA) with (a)
different elevation ranges (b) rugosity (c) slope, and (d) aspect. Two colored columns are
used to show the different WUI data sources used here for comparison; red column shows the
WUI data from Martinuzzi et al. (2015) while blue column is used for CAL FIRE (FRAP,
2015) WUI data set. Here, Y -axis represents overlaps in percentage, while X-axis shows
different elevation ranges over CA in meters.
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and housing density have significant correlation with wildfire occurrence: both large and

small wildfires tend to occur close to WUI areas; large wildfires were concentrated in non-

developed areas, while small wildfires occurred at all housing density levels. To further

understand the relationship between parameters in WUI definition and wildfire occurrence

probability, logistic regression models were fitted to each parameter as a function of wildfire

occurrence probabilities. Due to the differences of large and small wildfires in Appendix

A: Figure A.3 and A.4, they were fitted separately. As shown in Figure 2.8, within WUI

areas and within 10 km of the periphery, the occurrence probability of wildfires is higher

than the threshold (0.5), and increases with the shortening of the distance. In terms of the

housing density, large wildfires were most likely to occur in low housing density areas. The

probability of fire occurrence decreases monotonously with the increase of housing density,

and the housing density at the probability threshold is 252 houses per km2. While most

small fires also occurred in relative non-developed areas, their occurrence probabilities are

not stable, and there is no significant correlation with the housing density. The relationships

between the occurrence probability of large and small wildfires and vegetation density are

completely opposite. The occurrence probability of large wildfires increases monotonically as

vegetation density increases; while the small wildfire occurrence probability decreases with

the increase of vegetation density.

After analyzing the relationship between individual WUI parameters and wildfire occurrence,

a logistic regression model integrating all parameters was fitted to show the relative impor-

tance of parameters in WUI definition in wildfire occurrence. The estimated coefficients in

Table 2.2 show that for large wildfires, vegetation density contributes the most and has posi-

tive correlation with occurrence probability. Distance to WUI and housing density have very

little effect on large wildfires. While in the small fires, distance to WUI areas contributes

the most to their occurrence, followed by vegetation density. Housing density still has little

effect on small wildfires.
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The importance of WUI parameters in describing wildfire area

In the previous section, the estimated probability of large and small wildfires varies greatly

with respect to the corresponding housing and vegetation density. Therefore, we changed

the analysis object from the presence of wildfires to the area of wildfires, and integrated

all parameters to fit the linear model, so as to observe the changes in the importance of

parameters. Due to the limitation of data, only large wildfire areas were analyzed here.

The fitted linear model results are shown in Table 2.3. Both the vegetation density and

distance to WUI have significant positive correlation with large wildfire areas. Wildfire area

would increase with the increase of these two parameters. Thus, the distance to the WUI

area has an impact on wildfire occurrence probability, but compared with vegetation density,

its contribution can be ignored. However, when it comes to wildfire size, the effects of the

distance to WUI areas are significant, large wildfires tend to occur far away from the WUI

area, which usually occurs deep in the forests or mountains. The impact of housing density

on wildfire size is still negligible.

The importance of complex terrain on wildfires in WUI

Per results in section 3.4, the terrain in WUI is complex, which could also have an impact on

wildfire occurrence. Thus four topographic variables (elevation, aspect, slope and rugosity)

were fitted in the logistic regression model as functions of wildfire occurrence probability and

fire area to show how they relate. As shown in Table 2.4, contributions of each parameter in

models for WUI-A and WUI-B are similar, especially for large wildfires. After adding terrain

information, the contribution of rugosity to the large wildfire occurrence became prominent.

Apart for rugosity, slope also contributes more to large wildfire occurrence, compared to other

parameters. In terms of small fires, distance to WUI is still the most prominent parameter in

occurrence probability, followed by slope, vegetation density and rugosity. The results from
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Figure 2.8: Probability curves for the occurrence of wildfires as a function of distance to
WUI, housing density and vegetation density, separately: (a) large wildfires, distance to
WUI-A; (b) small wildfires, distance to WUI-A; (c) large wildfires, distance to WUI-B; (d)
small wildfires, distance to WUI-B; (e) large wildfires, housing density; (f) small wildfires,
housing density; (g) large wildfires, vegetation density; (h) small wildfires, vegetation density.
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these two models illustrate the complex topography within WUI have an impact on wildfire

occurrence.

In addition to the above estimates, the impact of parameters in WUI definition and topo-

graphic parameters were explored by fitting a linear regression. The estimated results of

models for WUI-A and WUI-B are still similar. Among all the parameters, rugosity affects

the large wildfire area much more than other variables, followed by slope, distance to WUI

and vegetation density. It provides another confirmation of the influence of topography on

the wildfires close to WUI. Comparing Table 2.4 and Table 2.5, the distance to WUI, housing

density and elevation contribute to wildfires in different directions but to similar degrees.

2.4 Conclusions

Current wildland fire policy has placed a significant interest in the wildland urban interface

(WUI) areas, where increasingly more resources will be allocated for fire prevention, fuel

treatment, home hardening against ignition and general fire preparedness such as removal

of flammable materials around structures, as well as evacuation planning. In this work

we examine the modalities of WUI exposure to wildfires in California by comparing two

pre-existing definitions of WUI with respect to past wildfire events. We specifically asked

the following questions: (1) Where are the wildfires (a) igniting and (b) burning relative

to the WUI? (2) what is the impact of buffer distance in the percentage overlap of fire

perimeters and fire ignition points in the WUI? (3) where is the WUI located in terms of

elevation and the complexity of the terrain? And (4) what are the relative importance of

WUI parameters that impact wildfire occurrence and size within or near the WUI? It was

found that a very small percentage of wildfire burned areas were within the WUI areas.

Additionally, only a very few numbers of wildfires were ignited within WUI areas. However,

when we introduce a buffer distance from the existing WUI perimeters, there is a significant
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increase in the percentage of wildfire events in terms of fire ignition points. More than

50% of wildfire events occurred at a buffer distance of 5 km from the existing WUIs. This

shows that not only WUIs are the zones of wildfires occurrence but also the non-WUI or

areas larger than the existing WUI (extended WUI) are highly prone to wildfires. Our

results highlight a rapid rate of increase in the percentage overlap of wildfire burned areas

and fire ignition points in the extended WUIs. The buffer distance analysis shows the

importance of considering spotting fire behavior when considering fire risk in the WUI.

While the actual fire front might not burn significantly within the WUI areas, firebrands and

burning embers originating from the fire front might travel these buffer distances and under

favorable conditions, might be able to ignite structures (Storey et al., 2020). Anecdotal

evidence of unburnt and unconsumed trees adjacent to destructed structures in the WUI

during high intensity fires (such as Paradise, California, during the Thomas Fire, 2018) bears

evidence of these effects. WUI areas do not need to see a ‘tsunami or flood of flames’, rather

they are at a higher risk from firebrand ignitions, also reported in wildfire today (2020). The

topography of a landform plays an important role and knowing the location of existing WUIs

relative to topographic factors would give us a better understanding of fire dynamics and

planning adequate firefighting strategies. This study highlights that a significant portion of

the existing WUI in California is on complex topography where, the meteorological factors

like wind speed are more favorable for higher rate of fire spread, increased spotting distances

and firefighting is difficult due to complex terrain. Last but not the least, we also studied

the relative importance of WUI parameters in explaining wildfire occurrence and wildfire

area in the WUI. Density of vegetation in the WUI was found to be strongly related to

both the occurrence and areas of large wildfires (greater than 1000 ac or 400 ha), while the

distance between the wildfire ignition points and the WUI was found to be most significant

in describing occurrence of smaller wildfires (less than 1000 ac or 400 ha). When including

topographic parameters, surface roughness and slope plays a significant role in describing

the occurrence and burned areas of large wildfires. On the other hand, topography plays a
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less dominant role in explaining the occurrence of smaller wildfires compared to distance to

WUI areas. The two existing maps of WUI in California are not found to be significantly

different when it comes to the relative importance of WUI parameters in determining wildfire

occurrence or burned areas, however, they have different sensitivities in the context of buffer

distance or overlaps with previous wildfire events and their relative proportions of interface

and intermix areas. This analysis can provide context while planning fuel treatment and

home hardening projects and resource allocation for wildfire preparedness in the wildland

urban interface areas in the state of California and elsewhere.
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Chapter 3

Mapping the wildland-urban interface

in California using a vector-based

edge approach

3.1 Introduction

People like to live near and within forests for a variety of reasons [Radeloff et al., 2001,

Johnson et al., 2005, Bartlett et al., 2000]. In the past few decades, there has been a dramatic

proliferation in the number of regions where human-made structures are present within or

near wildland vegetation, known as the Wildland-Urban Interface (WUI) [Radeloff et al.,

2018, Martinuzzi et al., 2015]. This growth has been attributed to the increasing number

of houses near forests and densely vegetated lands in the US since the mid-1900s [Radeloff

et al., 2018, Martinuzzi et al., 2015]. In recent years, the term WUI has gained tremendous

popularity and has been widely used in the context of wildfire studies. For the purpose of a

more accurate analysis of the wildfire occurrence, tracking the location of wildfires, and land
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use planning, different WUI mapping methodologies have been developed in the past using

a wide range of datasets across many countries including Europe, Australia, and Canada

[Hanberry, 2020, Miranda et al., 2020, Bento-Gonçalves and Vieira, 2020]. A few studies

have used point-based house locations (Li et al., 2022, Risk-factor by First Street Foundation

(available on https://riskfactor.com)), while others have implemented a zone-based approach

such as census block data for WUI mapping [Radeloff et al., 2005b, Wilmer and Aplet, 2005].

In addition, these maps also depend on the context and purpose of the study; for example,

housing-centric or fuel-centric WUI mapping, as demonstrated in Stewart et al. [2009]. WUI

maps in Canada show that these features could also be developed for different types of

human infrastructure, and a recent study mapped the wildland industrial interface for dense

industrial locations, as well as for interfaces for urban regions and commercial properties or

infrastructure elements [Johnston and Flannigan, 2017].

In the US, WUI mapping was based on the 2001 federal register definition of the US De-

partment of Interior (US DOI) and the US Department of Agriculture (USDA) which states

that WUI are those areas where houses are present within or near wildland vegetation. In

the original definition of 2001 federal register, it was not specified whether the intersection

of these two types of land use were based on the intersected area or the common boundary

of two polygons. However, previous studies were based on areal intersection, i.e., in terms

of intersection of the area of these two features. Defined in this way, the resulting WUI has

units in in m2 or km2. In addition, past WUI maps focus on providing WUI area and do

not account for the length of the interface. Moreover, existing WUI maps are based on zonal

approaches where either a housing density is defined or a point-based approaches is used (in

these cases individual housing locations are identified). These approaches lack consistency

on accurate information for all three components of the WUI definition together - housing

and vegetation information, an equitable definition of the interface, and the proximity of

buildings to large, vegetated areas.
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To address this gap, Pereira et al. [2018] argued that a semantically correct definition of an

interface (Webster’s Third New International Dictionary [Gove, 1986]) should be a plane or

other surface forming a common boundary of two bodies or spaces. Therefore, ideally, the

result of WUI mapping would be a line segment that could show the common boundary or

the physical contact between the boundaries of two features. A vector-based WUI offers

greater simplicity in the storage and utilization of information over previous WUI mappings

because each WUI line segment can be tagged with information about its surroundings,

such as distance to nearby roads, fuel types, population, building and vegetation density,

etc. [Pereira et al., 2018].

In this work we aim to develop a vector-based WUI map for the state of California at a high

resolution (30m). Further statistical analysis using these new maps and past wildfires may

help with land use planning and identifying high-risk sites. The distance between previous

wildfire ignition points and WUI lines will show how far wildfires occurred from the vector-

based WUI. In addition, the wildfire burned area with respect to the WUI line segments will

provide more information on the severity of the fire as well as the respective risk level.

The resulting WUI features from this approach will be in vector format as opposed to

rasters, which have been provided by the previous WUI mapping approaches. In geospatial

analysis, vector data are associated with higher geographic accuracy because they depend

less on grid size. Moreover, storing, handling, and appending new data layers to vector

data is significantly more efficient compared to rasters which are considerably larger in

size. In comparison to raster, vector data are much more scalable, amenable to defining

connections between topology and network structures, and easier for delineating boundaries

and administrative maps in fine resolution. Moreover, storing of vector data is possible

without the loss of generalization. It is also possible to preserve geolocation information.

Therefore, it is envisioned that developing wildland fire policies under a changing climate

and growing trends in WUI land use features will be more efficient using the vector-based
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WUI approach as developed in this manuscript.

The key objectives of this study are as follows: (i) map the vector-based WUI in terms

of direct and indirect interfaces and determine which WUI is more widespread in CA; (ii)

determine the percentage of wildfire perimeters intersecting with the vector-based WUI in

CA; (iii) examine the distance between wildfire ignition points and the vector-based WUI to

see how far the fires ignited from them since 2010 in CA.

To the authors’ knowledge, this paper is one of the first attempts to map the WUI of

California using a vector-based approach. This means that rather than providing the areas

that WUIs contain, the focus of this approach is to map the boundaries that mark the

edges of the interface, which is more useful compared to rasters as discussed in the previous

paragraph. This paper is organized as follows. Data and methodology that are used to

generate WUI maps for CA are presented in section 2. Section 3 describes the results and

discussions of our novel vector-based WUI calculations using building footprint datasets.

Finally, conclusions and implementation of this study are given in section 4.

3.2 Data and Methodology

3.2.1 Vegetation data

The vegetation data used for this study was the Landsat-based National Land Cover Database

(NLCD, 2016) [Jin et al., 2019], a new generation of NLCD products, released by the U.S.

Geological Survey (USGS). It was downloaded from Multi-Resolution Land Characteris-

tics (MRLC) Consortium (available on https://www.mrlc.gov/) and was available at 30m

spatial resolution. The accuracy and robustness of the NLCD 2016 map were also shown

by recent studies including Jin et al. [2019] and Homer et al. [2020]. It contained a total
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of 28 different types of land cover classes over the CONUS. For the purpose of mapping

the vector-based WUI, we chose only those vegetation categories which were flammable

vegetation and included shrubland, grassland, woody wetlands, and all kinds of forest veg-

etation (California fire alliance 2001; Radeloff et al., 2005). Specific steps used for ex-

tracting the vegetation layer using the ArcMap (10.7.1) tools in ArcGIS (available online:

https://desktop.arcgis.com/en/arcmap/) will be discussed in methodology section 2.4.

3.2.2 Building data

A new method of rasterizing building footprint was developed by Heris et al. [2020] and

was used in this study. The building dataset was extracted from the Microsoft dataset

containing 124,885,597 computer-generated building footprints in GeoJSON format for the

US. Regarding the accuracy metrics, the precision of the evaluation set is 99.3 % and the

recall is 93.5 %. The California building footprint file implemented in this study contained

10,988,525 computer-generated building footprints in California and was extracted from the

US building footprint dataset by Microsoft (2018), then converted to shape file format. We

used a rasterized format of Microsoft building footprint datasets, available at 30 m spatial

resolution, and used the boundaries of houses for producing the vector-based WUI feature

[Heris et al., 2020, Li and Banerjee, 2021]. This boundary data was obtained from Heris

et al. [2020] in which the value of each cell represents the area of the cell that was covered

by building footprints. The cell values were calculated by developing an algorithm that used

High Performance Computing (HPC) [Heris et al., 2020]. This algorithm created a small

meshgrid (a 2D array) for each building’s bounding box, generating unique values for each

meshgrid cell that was further coordinated with NLCD products to make it more usable

(projected using Albers Equal Area Conic system) [Heris et al., 2020]. The range of values

was from 0 to 900m2. To better aid the implementation of building footprint data into

large-scale computation, these values are represented as raster layers with a 30m cell size
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covering each of the 48 conterminous states.

3.2.3 Wildfire data

Wildfire perimeter data were downloaded from Monitoring Trends in Burn Severity (MTBS),

(available on https://www.mtbs.gov/direct-download). MTBS is an interagency initiative

whose purpose is to continuously monitor the intensity of wildfires in terms of burn severity

and the size of major fires from 1984 to present in the US. It does not cover small fires and

includes all those fires in the Western US of 1000 or more acres (400 ha), and 500 or greater

acres (200 ha) in the Eastern part of the US (MTBS, 2021). In this study, we used two kinds

of MTBS datasets, namely, wildfire occurrence dataset that showed wildfire ignition points,

and burned area boundaries datasets, representing wildfire perimeters following the analysis

presented by Kumar et al. [2020]. For analyzing the overlap of previous wildfires with the

vector-based WUI features, we used wildfire perimeters. While detecting the distance of

previous wildfire events from the vector-based WUI features, we used wildfire ignition points

data. Since the liner WUI was mapped using the recent land cover and housing information,

therefore, to better analyze the WUI maps and their relationship with the previous wildfires,

we included only those fires which occurred in the last decade i.e., from 2010 to 2020. The

dataset includes 492 fire perimeters in California from 2010 to 2020.

3.2.4 Methodology

The NLCD data were clipped for California from CONUS (see the flowchart in Figure 3.1).

The clipped land cover data were converted to polygons from the original raster data using

the conversion tool from the ArcMap (10.7.1) geoprocessing tool in ArcGIS (available on-

line: https://desktop.arcgis.com/en/arcmap/). A wildland vegetation layer was generated

for WUI mapping using selection by attributes from the attribute table using the ArcMap
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(10.7.1) tool in ArcGIS. Only shrub/grassland, herbaceous, woody wetlands, emergent herba-

ceous wetlands, and forests including evergreen, mixed, and deciduous were selected for the

wildland vegetation layer Martinuzzi et al. [2015], Radeloff et al. [2018]. The building raster

layers were converted into vectors. The boundaries of the buildings were intersected with

the wildland vegetation areas to map the WUI. We computed direct WUI and indirect WUI

line segments from these data. These two different data products are defined below.

Figure 3.1: Flowchart for mapping vector-based WUI. WUI stands for wildland urban inter-
face and NLCD stands for National Land Cover Data.

Direct WUI was calculated using the intersection tool from the ArcMap (10.7.1) in ArcGIS

using the vegetation polygon and housing boundary, and it represents the direct physical

contact of buildings with the flammable vegetation. There is always a higher risk of damage

to the communities living at the direct WUI feature as compared to those living at the

indirect WUI as studied by Pereira et al. [2018]. To map the indirect WUI, first, we took

a buffer distance of 100m from the vegetation polygon and then extracted those areas in

California which had neither buildings nor vegetation using the erase tool from the ArcMap

(10.7.1) in ArcGIS. We then intersected the extracted layer with the buffered vegetation
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layer. Finally, we intersected the previously intersected layer with the housing boundary

to get the Indirect WUI (see Figure 3.1). We did not intersect the vegetation layer with

a buffer and housing boundary to avoid the repetition/duplication of indirect WUI lines

with the direct WUI. The resulting WUI, both direct and indirect, have units of length in

meters (m) with [L]1 dimension. It is important to note that the 100m buffer distance was

taken following the approach of Pereira et al., 2018, however, the indirect WUI could be

recalculated using any buffer distance deemed necessary following our workflow.

3.3 Results and Discussion

3.3.1 Wildland fire ignition frequency

A total of 492 wildfires occurred in California from 2010 to 2020 according to MTBS. These

included both human-caused fires as well as lightning-caused fires. In the left panel of Figure

3.2, we show the countywide fire frequency in California. Some counties are characterized

by the occurrence of more than 20 wildfires, as shown with the colorbar. Figure 3.2 (right

panel) depicts the wildland vegetation cover used in the mapping of vector-based WUI. More

information on both the fire ignition points and the vegetation layer can be found in the

supplementary materials. Further information on the fire ignition data and the building

footprints can be found in section S1 in the supplementary materials.

3.3.2 Vector-based WUI features in California

Direct WUI is a vector-based WUI feature that is shown in Figure 3.3, with lengths in

meters (m) and is represented with a green colorbar. Enlarged portion of Figure 3.3 on the

right panel depicts a clearer visualization of the different vector-based WUI segments (direct
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Figure 3.2: The left panel on the figure above shows wildfire frequency in all the counties
of California from 2010 to 2020. The blue markers represent the wildfire ignition points
in the respective counties, while the colorbar shows the fire counts for each county during
this time period. The right panel on the figure above shows the spatial pattern of NLCD
data, the wildland vegetation data used to map the vector-based WUI for California at 30
m resolution; it includes three kinds of forest, shrubs, and emergent herbaceous & woody
wetlands; white color represents the water bodies and other vegetation types that were not
included for mapping the vector-based WUI.
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and indirect WUI) and Non-WUI segments. It became possible only due to the finer-scale

mapping using building footprint data at 30-m resolution. In addition, such a fine-scale WUI

map provides more detailed information related to both housing and wildland vegetation.

Figure B.1 shows an enlarged map of Figure 3.3 where the empty spaces near the indirect

WUI are the regions that have neither buildings nor vegetation. It is interesting to note

that this vector-based approach clearly identifies and delineates the boundaries between

wildland vegetation and buildings which might be at risk due to wildfires as opposed to

traditional raster based zonal approaches. Clear identification of WUI boundaries at such a

fine resolution might also help develop more precise fuel treatment (such as fuel breaks) and

home hardening strategies down to individual building footprints.

We calculated that the total length of direct WUI in California is 119,640,741m. It has

672,435 segments with a maximum segment length of 5,958m. In contrast, indirect WUI

has a total length of 164,706,030m, which comprises a total number of 3,009,978 segments,

with the maximum length of a segment being 5,022m. Therefore, the direct WUI has a lower

total segment length than the indirect WUI. In addition, the maximum length of a segment

and the statistical parameters like mean, median, and mode are higher for the direct WUI.

However, the total number of segments is lower for direct WUI as compared to indirect WUI.

This difference in segment counts reveals that the direct WUI is less fragmented than the

indirect WUI (Figure 3.4).

A greater length of vector-based WUI in a region corresponds to a higher likelihood of wildfire

risk due to the presence of flammable vegetation nearby. Moreover, a greater length of WUI

segments also indicates the presence of extended interfaces between flammable vegetation

and human settlements which would mean a higher risk of damage to the lives, properties,

and health of a larger number of communities nearby that region. In the next section, we

examine the relationship between fire ignitions and the classes of vector-based WUI segments

mapped in this study.
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Figure 3.3: The left panel on the figure above shows the spatial pattern of Microsoft building
footprints and vegetation data in San Diego. A section of the County map has been enlarged
to depict the direct, indirect, and non-WUI lines as well as their actual visualization at 30m
resolution. This is displayed in the right panel of the figure above.
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3.3.3 Overlap of wildfires and vector-based WUI

Figure 3.4 depicts the overlap of wildfire perimeters with direct and indirect WUI from 2010

to 2020. This result clearly indicates that overall, there is a low percentage of overlap between

the direct WUI and previous large wildfire perimeters. However, a maximum of up to 19

% of all direct WUI segments in a California county overlap with past wildfire perimeters

(left panel, Figure 3.5) and this percentage is 26 % for indirect WUI. Thus, the results show

that the majority of the WUI segments did not encounter wildfire perimeters during the last

decade. This finding is consistent with the recent observations by Kumar et al., 2022. In the

case of indirect WUI, though, the percentage overlap between indirect WUI segments and

wildfire perimeters, while still low, is higher than what we observe with direct WUI (Figure

3.5). Moreover, some counties have higher overlap between the vector-based WUI segments

and large wildfire perimeters. This is attributed to some recent wildfires with a significantly

large burned area. For example, due to the devastating wildfire in Butte County in 2018

(i.e., the 2018 Camp Fire), the maximum value of percentage overlap increases significantly.

However, we also note that the percentage overlap of wildfire perimeters and indirect WUI

might vary depending on how we choose the wildland vegetation perimeters when mapping

the indirect WUI. On the other hand, 76 % of all fires burning in or into CA encountered

direct WUI segments and 51 % of all wildfires encountered an indirect WUI segment in CA

between 2010 and 2020.

3.3.4 Distance of fire ignition points from vector-based WUI fea-

tures

Using the fire ignition data points for the large wildfires obtained from MTBS, we computed

the distance between the ignition points and the nearest direct and indirect WUI lines, using
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Figure 3.4: The figure shows the overlap of California historic wildfire perimeters (2010-
2020) with direct WUI (top left panel) and indirect WUI (top right panel). Legends with
green and blue lines represent direct and indirect WUI respectively in the above figure. The
right-hand panels present enlarged views of the relevant sections of the two maps for clearer
visualization.
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Figure 3.5: The figure shows the countywide percentage overlap of total direct WUI (left
panel) and total indirect WUI (left panel) of California with wildfire perimeters from 2010 to
2020. Colorbar shows the increase from yellow (low) to red (high) for the respective counties
in California.
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the proximity near function of the ArcMap (10.7.1) tool in ArcGIS. We found that a higher

percentage of fires ignited in close proximity to direct WUI as compared to those in the

vicinity of indirect WUI (see Table B.1 in the supplementary materials or Figure 3.6) which

is elaborated further below.

In Figure 3.6, we show the histogram plots for the distribution of distance of wildfire ignition

points from the direct, and indirect WUI segments against the proportion of total number of

fires that occurred between these distance classes. We observe that in case of the direct WUI,

157 fires ignited out of a total of 492 fires i.e., 32 % of fires ignited within the range of 0-1 km

on either side of direct WUI. The percentage of fire ignition has decreased continuously as

we increase the distance farther away from the direct WUI. And it dropped to only 6 % of

total fires that were ignited beyond 5 km of the direct WUI in California. In case of indirect

WUI, we found a different trend of the fire ignitions with distance ranges on the either side

of the indirect WUI. Only 75 fires ignited within 1 km distance on either side of the indirect

WUI, which accounts for 15 % fires within this range. However, the percentage ignition has

increased from 15 % to 21 % in the range of 0-1 km to 1-2 km distance from indirect WUI

features respectively. Additionally, a significant portion of the fires i.e., 28 % ignited beyond

5 km on either side of the indirect WUI and this accounts for 139 fires out of a total 492 fires

that ignited past 5 km from the indirect WUI in California from 2010 to 2020.

To summarize, more than 60% of the fires ignited within 2 km of the direct WUI segments,

while about 35% of the fires ignited within 2 km of the indirect WUI segments. As a result,

even though direct WUI has a lower total segment length in California, it has a larger

potential of fire ignitions in its vicinity based on prior fire incidence data. As a result, we

can observe that there are lower risks of wildfire ignition close to indirect WUI than to direct

WUI.

To further quantify how far fires ignited from the vector-based WUI features we performed
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Figure 3.6: The figure shows two histograms for the distribution of distance of wildfire
ignition points (2010-2020) on the either side from vector-based WUI features (left panel:
direct WUI and right panel: indirect WUI). Histogram for the direct WUI shows a continuous
decreasing percentage of wildfires; while it is neither continuously increasing nor continuously
decreasing and has two peaks for the indirect WUI).

statistical analyses and used different curve fittings to choose the best fit curve for the

distance between fire ignition points and both direct and indirect WUI. We chose 14 different

distributions to test the best fit as shown in Table B.2 and Table B.3 in the supplementary

information. Our analysis reveals that the ‘gamma with three parameters’ distribution is

the best fit curve for the direct WUI (see top panel of Figure 3.7). This curvature had the

highest p-value of the 14 possible distributions at 0.225 (see Table B.2 in supplementary

materials). However, for indirect WUI, the ‘lognormal with three parameters’ distribution

with a p-value of 0.956 is the best fit curve as can be seen in the bottom panel of Figure

3.7 (see Table B.3 in supplementary materials). Further information on the curve fitting

procedure can be found in section S2 in supplementary materials.
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Figure 3.7: The figure shows the distribution of the best fit plot for distance (km) of wildfire
ignition points (2010-2020) from direct WUI (top panel) and indirect WUI (bottom panel).
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3.4 Conclusions

Past studies showed that different WUI maps were developed for the CONUS using a variety

of datasets and different mapping methodologies. However, none of these focused on WUI

mapping based on the vector-based intersection of vegetation and housing boundary. In this

study, we mapped vector-based WUI at 30 m resolution using building footprint and NLCD

land cover data. We defined two types of vector-based WUI i.e., direct, and indirect WUI.

Direct WUI has direct physical contact between flammable vegetation and housing boundary

and thus, has a higher risk of fires. While indirect WUI is mapped by the intersection of

housing, and 100m buffer boundary surrounding flammable vegetation and therefore it has

a lower probability of fires. We had three objectives in the study – namely: (i) map the

vector-based WUI in terms of direct and indirect interfaces and determine which WUI is more

widespread in CA; (ii) determine the percentage of wildfire perimeters intersecting with the

vector-based WUI in CA; (iii) examine the distance between wildfire ignition points and the

vector-based WUI to see how far the fires ignited from them since 2010 in CA.

Regarding objective 1, results revealed that the direct WUI had a lower total segment length

and is less scattered than the indirect WUI in California.

Regarding objective 2, we found that the overlap between wildfire burned areas and WUI

segments is generally low for most counties. A maximum of up to 19 % of all direct WUI

segments in a California county overlap with the past wildfire perimeters and this percentage

is 26 % for indirect WUI. Therefore, the majority of the WUI segments did not encounter

wildfire perimeters during the last decade in California. On the other hand, a majority (76

%) of all fires burning in or into CA encountered direct WUI segments and about half (51

%) of all wildfires encountered indirect WUI segments in CA between 2010 and 2020.

Regarding objective 3, we found that higher percentage of fires ignited in the vicinity of

direct WUI because of a higher extent of human activities as compared to indirect WUI.
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Hence, even though direct WUI has a lower total segment length in California, it has a larger

potential of fire ignitions in its vicinity based on the historical wildfires. More specifically,

63 % of large wildfires between 2010 and 2020 ignited within 0-2 km range of direct WUI

and 35 % ignited within the same range of indirect WUI in California. Therefore, in this

study, we show that the direct WUI are more prone to wildfire ignition as compared to the

indirect WUI. Moreover, the distribution of the distance from the fire ignition points from the

vector-based WUI features follow a ‘gamma with three parameters’ and a ‘lognormal with

three parameters’ distribution for direct and indirect WUI respectively. The advantage of

the proposed vector-based framework in this work is that it can be appended with additional

geospatial information and remote sensing data. It can also be rapidly updated with different

values of the parameter such as the buffer distance used to map the indirect WUI for a specific

location at the same fine scale resolution. This flexibility is not currently available with the

raster based zonal approaches to map WUI which uses census data that be updated once per

decade. Moreover, clearly delineating the actual boundaries of the wildland urban interfaces

will be also useful for land managers and fire authorities to identify precise strategies for

home hardening, fuel treatment and overall wildfire risk mitigation.
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Chapter 4

Evaluating the performance of the

WRF model in simulating winds and

surface meteorology during a

Southern California wildfire event

4.1 Introduction

Wildfires are associated with high suppression costs and have significant socioeconomic con-

sequences [Burke et al., 2021, Stephens and Ruth, 2005, Stephens et al., 2016]. The intensity

and frequency of wildland fires in California (CA) have increased in recent years, causing

significant damages to human health, lives, and properties [Bowman et al., 2020, 2011, Can-

non and DeGraff, 2009]. Reliable simulation of wildfire behavior can help decision-makers

mitigate the impacts of these extreme events [Andrews et al., 2007, Jiménez et al., 2018,

Wang et al., 2022].
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One specific type of wildfire events which are characterized by high fire intensity and a signif-

icantly high rate of spread, are the Santa Ana wind driven wildfires. Santa Ana wind (SAW)

events are associated with specific weather conditions where hot, dry, and gusty wind blows

from the deserts east of the Sierra Nevada to the coast of southern California [Glickman,

2000, Raphael, 2003, Westerling et al., 2004, Jin et al., 2015, Brewer and Clements, 2019],

usually occurring in the months of fall, spring, and winter. The SAW events during fall are

known to considerably elevate fire risk because these events often co-occur with times when

live fuel moisture is very low following the hot and dry Mediterranean summer [Westerling

et al., 2004, Keeley and Syphard, 2019].The wind events are usually easterly or northwesterly,

and characterized as foehn-type winds. The hot, dry, and gusty conditions associated with

SAW events have fanned many large fires, including, the Camp Fire in 2018, the Woolsey

Fire in 2018, the Thomas Fire in 2017, the Witch Fire in 2007, and the 2003 Cedar Fire,

among many others [Masoudvaziri et al., 2021, Brewer and Clements, 2019].

In this study, we focus on one of the SAW driven wildfire events, the Witch Fire, to evaluate

the performance of the WRF model with several different parameterizations. On Sunday,

October 21, 2007, at 12:35 PM PDT, the Witch Creek Fire or Witch Fire started in Witch

Creek Canyon near Santa Ysabel as a result of strong SAW blowing down a power line

and releasing sparks into the wind (California Department of Forestry and Fire Protection

(CAL FIRE) 2019 report). After burning 400 acres (1.6km2), the fire was quickly contained

on October 23 (10news.com, 2007), although spot fires within its perimeter continued to

burn until October 26, when it eventually merged with the expanding Witch Fire (Orange

County Authority report of 2007). It caused an estimated damage of 1.3 billion (2007 USD)

as reported in CAL FIRE (2007).

Large wildfire events, such as the SAW driven Witch Fire event, create their own weather

[Coen et al., 2013]. A variety of models exists which can be used to predict wildfire behavior

and estimate fire-weather characteristics, such as, WRF, WRF-Fire (Sullivan [2009], Coen
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et al. [2013]). However, conventional fire behavior models fail in predictive efforts for highly

severe wildfire events [Mölders, 2008, Di Giuseppe et al., 2016, Clarke et al., 2013]. This

is because large-scale and high-intensity fire events release a significant amount of heat

and energy, and the dynamical processes that characterize the resulting fire-atmosphere

interaction are not represented well in fire behaviour models [Lindley et al., 2019, Varga

et al., 2022, Neary, 2022, Cruz and Alexander, 2013, Jiménez et al., 2018].

While using mesoscale models to predict the fire weather associated with a wildland fire, it

is important to understand how well the models are able to simulate the transport of mass,

momentum, heat, and energy occur [Bryan and Fritsch, 2002, Coen, 2018, Mallia et al., 2020].

The Fire-atmosphere interaction takes place primarily (since can be feedback with plumes

in troposphere or stratosphere) within the atmospheric boundary layer. The predictability,

thus, depends on the choice of PBL parameterization schemes, which parameterize vertical

mixing, and near surface turbulent processes. Some of the most widely used PBL schemes

are categorized into local and non-local schemes [Skamarock et al., 2019], based on how they

represent the interaction among different columns of the atmospheric layers within the PBL.

Some of the previous studies on wildfire simulation used the WRF model to investigate how

well these PBL schemes can capture smoke transport and meteorological conditions during

a wildland fire [Lu et al., 2012, Brewer and Clements, 2019, Fovell and Cao, 2017, Fovell

et al., 2022]. However, the sensitivity of the WRF model to the PBL schemes in resolving

the fire weather during large scale wildfire events is not clear from the existing literature.

Another factor that is important while resolving atmospheric boundary layer processes in

Numerical weather prediction (NWP) models, is the grid resolution. In order to resolve the

atmosphere, NWP models must use a three-dimensional grid. Higher grid resolution usually

results in better predictability of small scale turbulent processes. Small horizontal grids

necessitate more levels in the vertical direction and faster time steps, which requires higher

computational cost [Collins et al., 2013].
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Forecasts for numerical weather prediction are typically generated at 10 km for global models

and around 1 km for regional models [Jiménez et al., 2018]. The HRRR model provides one

of the highest resolution forecasts over a 3 km grid resolution over the contiguous United

States [Jiménez et al., 2018, Benjamin et al., 2016]. Even though this resolution is widely

advocated as high, it is insufficient to resolve the interaction between wind and topography

around complex terrains [Jiménez et al., 2018]. Therefore, the choice of grid resolution plays

an important role in predicting weather [Giunta et al., 2019, Collins et al., 2013, Wedi, 2014].

Some of the existing convectional mesoscale models, such as, WRF, WRF-Fire, have the

capability to capture the day-to-day weather as well as related processes and parameters of

the extreme events. On contrary, when it comes to capture the fire-weather conditions with

such models during a wildfire, it is important to use coupled fire-weather fire models. This

is because of the ability of coupled fire-atmosphere [Lagouvardos et al., 2019, Coen et al.,

2013] to implement changes in the mass, momentum, and heat fluxes, relatively well than

weather model (WRF) during fire-atmosphere interaction.

In the WRF model, there is a capability to compute the feedback of fire-atmosphere inter-

action at each time step and improve the performance of the model. This is done using a

two-way nested domain at which the fire and atmosphere interact and feeds information back

and forth. The operational forecast stations do not use coupled fire-atmosphere to predict

the fire-weather associated with wildfires. In addition, the grid resolutions are not that high

to avoid the higher computational cost. We do not know how well the WRF model would

simulate a wildfire event at a finer grid resolution when fire model in not coupled with it,

especially, the Mega fires like the 2006 Witch Fire. To fulfill the gap, we test the capability

of the WRF model to simulate a Mega fire, without the fire model coupled with it and

with finer horizontal grids, two widely used PBL schemes (YSU & MYNN), and an active

feedback.

The goals of this study are as follows:(1) to quantify the predictability of a NWP model
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in capturing fire-weather; (2) to evaluate the sensitivity of the PBL scheme in capturing

fire weather; and (3) to examine the effect of horizontal grid resolution on the prediction

of meteorological parameters associated with a wildfire. We use the Weather Research and

Forecasting (WRF) model to simulate the weather conditions during the wildfire event. Our

results will advance the understanding of optimal strategies for operational forecast of fire-

weather associated with large wildfires using mesoscale model simulations.

This study is organized into four main sections. Section 1 provides the background and

motivation for this study. The data and methodology used to perform the sensitivity of PBL

schemes and grid resolutions are presented in section 2. Section 3 describes the results and

discussion of our analysis. Conclusions are presented in section 4.

4.2 Data and Methodology

4.2.1 Datasets used

We use the North American Regional Reanalysis (NARR) dataset (Mesinger et al. [2006])

that is available at 12 km horizontal grid resolution and at every three hourly interval to pro-

vide initial and boundary conditions to the Weather Research and Forecasting (WRF) model

(Skamarock et al. [2019]). In this study, we run the model for five days i.e., from 21th Octo-

ber 2007 to 26th October 2007. In addition, we use the hourly surface measurements (wind

speed at 10m, temperature at 2m, and relative humidity at 2m) from the U.S. Environmen-

tal Protection Agency (EPA) Air Quality System (AQS) data (https://www.epa.gov/aqs)

for model validation. Meteorological data, such as wind speed at 10m, temperature at 2m,

and relative humidity at 2m, are extracted from individual AQS surface stations within

the WRF innermost domain and are compared against the WRF predictions. Finally, we
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use AmeriFlux data from the SCw station to compare surface heat and momentum flux

observations against WRF outputs.

4.2.2 Model configuration and experimental set-up

We use WRF model version 4.3.1 [Skamarock et al., 2019] with three two-way nested do-

mains. The initial and boundary condition for the model are provided from NARR data

at every three hourly interval. We choose two sets of PBL schemes, namely, the Yonsei

University (abbreviated as YSU throughout this manuscript) [Hong et al., 2006] and the

Mellor-Yamada-NakanishiNiino Level 2.5 scheme (abbreviated as MYNN throughout this

manuscript) [Nakanishi and Niino, 2004] and combined with the two sets of grid resolutions.

Therefore, we perform a total of four simulations as shown in Table (4.1) using various

permutations of grid resolution and PBL schemes. During the simulation, we stored WRF

outputs at every 1-hour interval. We compare results of all simulations with observations on

an hourly basis.

All the simulations are initialized at the same time and run from 00Z UTC (5 p.m. Pacific

time) on October 21st to 00 Z UTC (5 p.m. Pacific time) on October 26th 2007, allowing

12 hours for model spin-up and 4 days & 13 hours for simulations. Two sets of horizontal

grid resolutions are used for model set-up in our study: 9 km, 3 km, and 1 km and 36 km,

12 km, and 4 km for the outermost, middle, and innermost domains respectively. We used

33 vertical pressure levels with the top level at 13,706m for all WRF simulations.

In the coarser grid experiments, the mesoscale domain (d01) has a horizontal extent of

3240 km by 3240 km, with 90 grid cells in both X and Y directions, while domain 2 (d02) has

151 grids in both X and Y directions with a domain size of 1812 km by 1812 km, and domain

3 (d03) has a horizontal extent of 1084 km by 1084 km, with 271 grid cells in both X and Y

directions. The time step for integration is 216 seconds for d01 in the coarser grid simulation.
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Since this ensures the model stability required for the simulation, it is recommended to set

the time-step in the WRF model between 3*dx to 6*dx, where dx is in km for the outermost

domain and the time-step is in seconds [Skamarock et al., 2005, Hutchinson, 2007]. In the

finer grid experiments, the mesoscale domain (d01) has a horizontal extent of 3213 km by

3213 km, with 357 grid cells in both X and Y directions, while domain 2 (d02) has 601

grids in both X and Y directions with a domain size of 1803 km by 1803 km, and domain 3

(d03) has a horizontal extent of 1081 km by 1081 km, with 1081 grid cells in both X and Y

directions. The time step for integration is 30 seconds for d01 in the finer grid simulations.

The outputs for innermost domain (d03) are stored at every hour and the parent time step

ratio (outer/inner) is 3 for all simulations.

We use the rapid radiative transfer model (RRTM) (Mlawer et al. [1997]) for the longwave ra-

diation schemes and the Dudhia scheme (Dudhia [1989]) for the shortwave radiation scheme

throughout the three domains for all simulations. For surface physics, we use the Revised

MM5 Scheme (Jiménez et al. [2012]) throughout the three domains for all simulations. Fur-

thermore, we use the Unified NOAH land-surface model (Mukul Tewari et al. [2004]) as the

land surface scheme throughout the three domains for all simulations. For the microphysics

parameterization, we use the Purdue Lin scheme (Chen and Sun [2002]) for all simulations

and in all domains. For the cumulus parameterization scheme, we choose the Grell 3D En-

semble scheme (Grell [1993]) for two outermost domains in all experiments, while for the

innermost domain, we do not use cumulus parameterization in any of the experiments.

4.2.3 Data analysis and quality check

While comparing WRF outputs at specific locations with the AQS surface station dataset,

a few quality control criteria are established. As a gap-filling strategy, some stations embed

repeated values of the last valid observation for specific variables. We filter out the repeated
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PBL Resolution Time step (second) PBL

(scheme) d03 d01 (reference)

MYNN 1km 30 [Nakanishi and Niino, 2004]

MYNN 4km 216 [Nakanishi and Niino, 2004]

YSU 1 km 30 [Hong et al., 2006]

YSU 4 km 216 [Hong et al., 2006]

Table 4.1: The table shows the list of simulations performed for this study using two PBL
scheme options (YSU and MYNN2.5) at two different horizontal grid resolutions (36 km,
12 km, 4 km and 9 km, 3 km, 1 km) in the WRFmodel. The ’Resolution’ in the table represent
the horizontal grid resolution and it is shown for the inner-most domain (d03) only.

values of meteorological variables from the AQS data while calculating correlation statistics

when it gets repeated for more than three continuous hours. Furthermore, we also filter out

those stations that contain missing data values at one or more time instants.

The Python interpolation tool is used to extract the relevant meteorological variables from

Figure 4.1: The WRF Preprocessing configuration is shown in panel (a) with three different
two-way nested domains (d01, d02, and d03). All the results in this study are shown from
d03. The panel (b) shows the number and location of different stations used for the model
validation for temperature, relative humidity, wind speed, and heat flux. The Witch Fire
area is shown in panel (c) from the San Diego County.
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WRF outputs within the innermost domain of the model. After quality control, For compar-

ing hourly temperatures at 2m height (T2), 90 AQS stations are used. For comparing hourly

relative humidity at 2m height (Rh2), we use a total of 48 stations. Similarly, we use a total

of 43 AQS stations for the purpose of comparing wind speed at 10m height (Wspd10). The

Pearson’s correlation coefficient and the root mean square error (RMSE) statistics are used

to evaluate these comparisons. One specific site near the Witch Fire location (site 1006, Lat-

itude 32.842242 N and Longitude -116.768225 W) is investigated in more detail and the time

series of T2, Rh2, and Vapor Pressure Deficit (VPD) are compared against WRF outputs.

4.2.4 PBL schemes

The Yonsei University scheme (YSU) [Hong et al., 2006] and the Mellor-Yamada-Nakanishi-

Niino (MYNN) [Nakanishi and Niino, 2004] schemes are two of the most commonly used PBL

schemes in the WRF model. Since the YSU PBL scheme expresses turbulence in terms of

mean variables rather than additional prognostic variables, it is a first-order closure scheme.

The YSU PBL scheme also incorporates an explicit treatment of the entrainment layer at

the top of the PBL, is an improvement to the medium range forecast (MRF) PBL scheme

[Hong and Pan, 1996]. The YSU scheme is also classified as a ”non-local” scheme because, in

addition to parameterizing the effect of turbulence caused by small eddies, it also considers

transport caused by convective large eddies [Hong et al., 2006, Skamarock et al., 2008].

The MYNN scheme is based on a prognostic equation for turbulent kinetic energy (TKE) and

is a 1.5-order local closure scheme [Nakanishi and Niino, 2004, 2006]. It is an improvement

of the Mellor–Yamada–Janjic (MYJ) PBL scheme [Janić, 2001]. The MYNN scheme uses

the results from large eddy simulations (LES) to generate expressions of stability and mixing

length as contrary to MYJ, which derives these expressions from observations [Njuki et al.,

2022, Cohen et al., 2015]. However, like other local closure schemes, the MYNN scheme does
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not account for deeper vertical mixing caused by large eddies [Cohen et al., 2015].

Surface heterogeneity and land-cover information is not adequately represented at the coarser

resolution in the model. Therefore it is worth testing whether a finer grid resolution would

capture the finer scale surface characteristics, which would enhance surface feedback pro-

cesses and thereby affect the near surface meteorology. The choice of grid resolution, there-

fore should affect fire-weather simulations. Most of the operational weather prediction sys-

tems use 3 km to 5 km horizontal grids for predicting local and regional weather conditions

from an hourly to weekly basis. At the coarser resolution, the WRF model is unable to

resolve some of the small scale processes and effect of finer scale features in the weather

prediction, such as clouds and turbulence, etc. In addition, model at such resolutions fail

to capture the physical features, for example, near coastal regions, there are presence of

clouds during the evening period and coarser resolution model may not represent them well.

Similarly, in the regions of complex topography, models do not resolve the orography well

and thus fail to capture their effect on some of the underlying processes, resulting in a poor

prediction.

68



4.3 Results and Discussion

4.3.1 Comparing meteorological parameters against surface sta-

tion observations

Aggregated analysis

The correlation for temperature (T2) (panels a, b, c, d), relative humidity (Rh2) (panels e, f,

g, h), and wind speed (WSPD10) (panels i, j, k, l) for AQS surface stations in the innermost

domain (d03) are shown in Figure 4.2 shows against WRF outputs at the same locations.

The R-squared value, R2, and root mean square error (RMSE) for all variables are reported

in Table 4.2.

We find that there is significantly strong correlation among the surface station observations

and WRF outputs. The overall prediction of temperature at 2m for all stations is sensitive

to the horizontal grid resolution regardless of the choice of PBL schemes. Therefore, simula-

tions with 1 km grid resolution are found to have higher correlation for surface temperature

compared to simulations with 4 km (Figure 4.2) resolution. For the coarser resolution simu-

lations, the MYNN scheme yields higher correlation as opposed to the YSU PBL scheme.

For relative humidity at 2m height above the surface, correlations observed for all surface

stations are significantly lower than surface temperature and much more variability is ob-

served in the datasets. However, no significant sensitivity to grid resolution or the choice of

PBL scheme is noticed. The RMSE is slightly higher for the coarser resolution simulations

for both PBL schemes.

For wind speed at 10m height, the correlation between all surface station observations and

WRF outputs for all four simulations is higher than relative humidity but lower than surface

temperature. These correlations are also not as sensitive to PBL schemes but are strongly
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dependent on grid resolution, while finer scale simulations yielding stronger correlations.

From Figure 4.2 and Table 4.2, we can generally conclude that while surface temperature and

surface wind speed are captured relatively well compared to surface relative humidity, there

is also a significant spread in the data while considering all weather stations in the inner

domain of WRF. Moreover, the choice of the PBL scheme does not have much impact on

predicting meteorological parameters on the surface, although finer scale simulations provide

improved predictions. In the next section, we investigate whether there is a spatial variability

while comparing the surface stations against WRF outputs.

Figure 4.2: Correlation plots for T2, Rh2, and WSPD10 for all the stations within the
innermost domain (d03). The results are presented from 1 km and 4 km using YSU and
MYNN PBL schemes and with the observational data (AQS) in order to show (a) T2 at
1 km for MYNN;(b) T2 at 1 km for YSU;(c) T2 at 4 km for MYNN;(d) T2 at 4 km for
YSU;(e) Rh2 at 1 km for MYNN;(f) Rh2 at 1 km for YSU;(g) Rh2 at 4 km for MYNN;(h)
Rh2 at 4 km for YSU;(i) Wspd10 at 1 km for MYNN;(j) Wspd10 at 1 km for YSU;(k) Wspd10
at 4 km for MYNN; and (l) Wspd10 at 4 km for YSU in the respective panels.
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PRM Site MYNN 1KM YSU 1KM MYNN 4KM YSU 4KM
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

T2 d03 0.8 3.32 0.8 3.32 0.77 3.49 0.53 5.98
1006 0.76 2.71 0.79 2.48 0.66 4.04 0.76 3.19

Rh2 d03 0.38 20.36 0.38 20.51 0.38 21.00 0.38 21.18
1006 0.81 9.58 0.90 8.04 0.77 11.54 0.79 11.03

Wspd10 d03 0.57 3.21 0.57 3.12 0.49 3.34 0.48 3.35
6001 0.53 4.12 0.64 3.57 0.44 4.53 0.36 5.53

Table 4.2: The summary table showing RMSE and R2 values for T2, Wspd10, and Rh2 from
the different simulations at site 1006, site 6001, and for all stations combined within the d03
(inner-most domain) domain in California.

Spatial variability of meteorological parameters at the surface level

The spatial variability of the correlation for the meteorological variables among the surface

stations and WRF outputs during the simulation period of the Witch Fire event is depicted

in Figure 4.3. We find that temperatures at 2m is better captured over valleys than moun-

tains 4.3. Coastal sites are associated with lower correlation for temperature as shown with

the lighter color in Figure 4.3. This could be because the model grid for coarser resolu-

tion simulations are situated partially on both land and ocean. Furthermore, presence of

clouds near the coastal regions could be another reason for poor model performance. It is

important to note that MYNN performs relatively better than YSU at 4 km in capturing

the spatial variability of temperature. A significant spatial variability is also observed for

relative humidity and surface wind speed. In the next section, we focus on one specific site

(1006) which is proximal to the Witch Fire location.
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Figure 4.3: Location-wise plots for T2, Rh2, and WSPD10 for all the stations within d03.
The results are computed from 1 km and 4 km using YSU and MYNN PBL schemes and with
the observational data (AQS) in order to show (a) T2 at 1 km for MYNN;(b) T2 at 1 km for
YSU;(c) T2 at 4 km for MYNN;(d) T2 at 4 km for YSU;(e) Rh2 at 1 km for MYNN;(f) Rh2
at 1 km for YSU;(g) Rh2 at 4 km for MYNN;(h) Rh2 at 4 km for YSU;(i) Wspd10 at 1 km
for MYNN;(j) Wspd10 at 1 km for YSU;(k) Wspd10 at 4 km for MYNN; and (l) Wspd10 at
4 km for YSU in the respective panels.

4.3.2 Fire weather at a single site

Correlation with surface station observations

Table 4.2 also shows the correlations for the station 1006 [32.84 N, 116.77 W] along with the

aggregated correlations for all sites as discussed before. It can be assumed that this station is

influenced by the presence of the Witch Fire. It is interesting to note that while correlations

for temperature are high for site 1006, the correlations are significantly improved for relative

humidity and wind speed compared to the aggregated correlations, at least for the higher
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resolution simulations. Similar to the aggregated correlations, higher resolution simulations

perform better than coarser resolution simulations for site 1006 as well. Moreover, the YSU

scheme performs better compared to the MYNN scheme except for wind speed for the 4 km

resolution simulations. The correlations for vapor pressure deficit are significantly high as

well for all simulations. This observation is particularly interesting in the context of fire

weather as VPD is a strong predictor for the hot and dry conditions that promote wildfire

ignition and propagation.

Time-series of Meteorological Parameters

The mesoscale meteorological conditions and SAW gusts during the 2007 Witch Fire event

intensified the fire spread and the fire intensity. To evaluate the ability WRF model in

simulating the surface meteorological conditions of the fire, such as, temperature at 2m

(T2), relative humidity at 2m (Rh2), and wind speed at 10m (Wspd10) during the event,

we compare modeled and observed time-series at the surface stations as shown in Figure

4.4. We observe that the performance of WRF model is better in capturing the temporal

variation of meteorological parameters at site 1006 at 1 km resolution simulations for both

MYNN and YSU PBL schemes as compared to at 4 km simulations (fire start time: October

21, 2007, at 19:35 UTC). The surface temperature and VPD is under-predicted by WRF,

while the relative humidity is over-predicted at site 1006 (Figure 4.4). No clear trend of

under or over prediction is observed for wind speed.

These results suggest that even without an explicit fire-weather parameterization, WRF is

able to capture the meteorological conditions during a large wildfire event relatively well. In

the next subsection, we investigate how well the surface sensible heat flux is captured.
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Figure 4.4: Timeseries for T2, Rh2, VPD, and Wspd10 for stations closer to the 2007 Witch
Fire. The results are compared from 1 km and 4 km using YSU and MYNN PBL schemes
with observations in order to show (a) T2 at site 1006;(b) Rh2 at site 1006;(c) VPD at site
1006;(d) Wspd10 at site 6001 in the respective panels.
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Time-series of Fluxes

Figure 4.5: Timeseries of sensible heat flux [Wm−2] at SCw site (Southern California Climate
Gradient - Pinyon/Juniper Woodland) from AmeriFlux tower and model simulation as shown
in Table 4.1. This site has Latitude and Longitude value of 33.6047 N, 116.4527 W and the
elevation is 1,281m.

The accurate representation of surface sensible heat flux is highly required for capturing

fire-weather and fire atmosphere interaction (Thapa et al. [2022]). In this study we use the

parameterized sensible heat flux from the model, represented as SHFX (the sub-grid scale

heat flux is ignored). Also, we compare these modeled SHFX against the sensible heat flux

reported by an AmeriFlux flux tower observatory nearest to the Witch Fire perimeter. The

site has an elevation of 1,281m with Latitude and Longitude of 33.6047 N and -116.4527

W respectively. This site is referred as US-SCw: Southern California Climate Gradient -

Pinyon/Juniper Woodland in the AmeriFlux tower data repository. This is only available

flux tower which had data recorded during the Witch Fire event. Although the site was not

affected by the fire area/perimeter, it was close to the Witch Fire region as shown in Figure

4.1.

It is observed that even without an active fire-weather interaction module switched on, the

WRF model is able to capture the heat flux reasonably well as compared to the observations

(Figure 4.4). However, the sensible heat flux is underestimated by WRF during the day time.
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During the intense fire period (from 18th hr of 21st October to 0 hr of 23rd October), no

significant difference in the sensible heat flux can be observed. While comparing four modeled

experiments, we find that the temporal variation of heat fluxes are similar. Therefore each

set of the combined PBL scheme and grid resolution that we use in this study would be

effective in simulating sensible heat fluxes.

76



Time-series of PBL Heights

Since we test two different, widely used PBL schemes at two different grid resolutions of

1 km & 4km, we investigate the PBL heights variations over the period of this study for all

four experiments over three different sites. In addition, we also focus on the PBL heights

when the Witch Fire was highly intense, i.e., 23rd October at 00:00 UTC (Figure 4.3). It is

interesting to note that there is no major difference in the simulated PBL heights at site 1006

with MYNN at 1 km and 4 km grid resolutions. However, the YSU PBL scheme estimates

a higher PBL heights during this period (top panel in Figure 4.6). The variation in the

magnitude of PBL heights are negligible for MYNN at both 4 km and 1 km during intense

fire period. Furthermore, we also find that, during the period when fire was intense, from

18th hr of 21st October to 0 hr of 23rd October, variation in the PBL heights at SCw and

at 6001 is much higher with the simulations at 4 km grid resolution than at 1 km (middle

and bottom panel in Figure 4.6).
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Figure 4.6: Timeseries plots for PBL heights for stations closer to the 2007 Witch Fire. The
results are compared with 1 km and 4 km using YSU and MYNN PBL schemes to show (a)
PBL at site 1006;(b) PBL at site called SCw (AmeriFlux);(c) PBL at site 6001 (San Diego)
in the respective panels. These results are not compared with the observational data due
the data unavailability at those sites.
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4.3.3 Wind Conditions

Surface wind conditions

In this section, we compare the 10m wind speed and wind direction from all simulations

at 12:00 UTC on October 22, 2007, i.e., during the period when the Witch Fire was highly

intense. We find that the WRF model is able to simulate the direction of easterly winds,

i.e., the surface wind flow for Santa Ana winds (Figure 4.7(a, b, c, and d)). This is captured

significantly well in all experiments regardless of the choice of PBL parameterization and

horizontal grid resolution.

The wind speed at 10m has a higher magnitude over the ocean as well to the south of the

San Diego coast and further down in the ocean (Figure 4.7(a, b, c, and d)). The magnitude

is higher for YSU at 4 km (Figure 4.7(d)) as compared to the other cases (Figure 4.7(a, b,

and c)). Such higher magnitude of wind over ocean is present because of the influence of

intensified upper level wind conditions as described in section 4.3.3.

Spatial variation of wind speed is analyzed in section 4.3.1 and we find that the wind speed is

predicted better at 1 km resolution due to better representation of topography in the model.

By comparing wind directions with wind arrows in Figure 4.7(a, b, c, and d), we observe

that the arrows appear to be similar in direction and length for MYNN and PBL at 1 km

and MYNN and YSU at 4 km. In addition, the model at 1 km generates higher wind speed

as shown with the length of arrow over San Diego in Figure 4.7(a, b) when compared with

Figure 4.7(c, d). Thus, the choice of horizontal grid has an impact on the wind direction

and wind speed and the model performs reasonably well as a finer grid resolution.

Upper level or 850 MB wind conditions
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Figure 4.7: Wind speed (ms−1) and wind direction at 10m for (a) MYNN 1km; (b) YSU
1 km; (c) MYNN 4km; (d) YSU 4 km as shown in Table 4.1. These plots are shown at 00 Z
UTC (5 p.m. Pacific time) on October 21st 2007, when the fire is intense. The panels from
(a) to (d) represent the entire innermost domain (d03) as shown in Figure 4.1.
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Observing the upper level wind conditions at 850 MB, (shown in Figure 4.8) we find that

there is a presence of higher magnitude wind speed due to synoptic conditions. It is also

evident that these synoptic wind conditions drive the surface wind which ultimately fanned

the 2007 Witch Fire.

We do not find any significant difference in the results of four simulations as shown in Figure

4.8(a, b, c, and d). However, there are slight variations in the wind speed magnitude among

the four set of simulations. In conclusion, it could be stated that the model is able to resolve

the synoptic wind conditions that impact surface SA winds which fanned this Mega fire.

Figure 4.8: Wind speed (knot) and wind direction at 850 MB for (a) MYNN 1km; (b) YSU
1 km; (c) MYNN 4km; (d) YSU 4 km as shown in Table 4.1. These plots are shown at 00 Z
UTC (5 p.m. Pacific time) on October 21st 2007, when the fire is intense. The panels from
(a) to (d) represent the entire innermost domain (d03) as shown in Figure 4.1.
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Vertical cross-section of wind speed and W component of wind

In this section, we analyze the vertical cross section of wind speed and the vertical W

component of wind speed. Since from our analysis in the previous sections, it was determined

that the wind speed is resolved well at the finer horizontal grid resolution, we present the

vertical cross-section of wind speed from the MYNN PBL scheme only at 1 km as shown in

Figure 4.9. In addition, this vertical cross section is drawn at the latitudinal value of 32.84 N

which crosses the 2007 Witch Fire perimeter. The longitude varies from 120 W to 114.5 W

to demonstrate the variation of wind speed across heights from land to ocean (Figure 4.9).

The wind speed (Figure 4.9b) and vertical component of wind (W) (Figure 4.9a) both have

a higher magnitude on the leeward side of the mountain range, which is a characteristics of

the Santa Ana wind events. In addition, a strong updraft is observed on the windward side

of the mountain, as well as a strong downdraft on the leeward side. This area of higher wind

speed coincides with the perimeter of the Witch Fire burned area (Lat: 32.87 N to 32.88 N

and Lon: 117.40 W to 115.67 W). Since the Figure 4.9 is shown at the instant when the fire

was intense, we observe that the wind conditions are favorable for the intensification and a

higher rate of spread for the Witch fire.
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Figure 4.9: Vertical cross section of (a) W component of wind (ms−1); (b) wind speed (ms−1)
from MYNN at 1 km at 00 Z UTC (5 p.m. Pacific time) on October 21st 2007, when the fire
is intense. In addition, this vertical cross section is drawn at the latitudinal value of 32.84
N which crosses the 2007 Witch Fire perimeter and longitudes from 120 W to 114.5 W.
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4.4 Conclusions

This study investigated the 2007 Witch Fire event using two different and widely used PBL

schemes, YSU and MYNN. In addition, we performed a sensitivity experiment with two

different horizontal resolutions at 1 km and 4 km. The goal was to test the capability of the

WRF model in simulating fire-weather and related conditions with different grid sizes and

PBL schemes combinations. We found that the model was able to capture fire-weather asso-

ciated with the fire event with a reasonable accuracy close to the surface. On the other hand,

the spatial and temporal variability of different meteorological parameters in the model was

significantly dependent on the grid resolutions and the choice of PBL schemes. In summary,

results from this study with 4 simulations suggested that the model’s ability to predict near

surface meteorological conditions was improved for finer grid resolution simulations than

coarser resolution simulations. The results also indicted that wind is difficult to capture

even at a finer resolution of 1 km than compared to temperature and relative humidity. Fur-

thermore, the performance of the MYNN scheme is found to be generally better than the

YSU scheme.

In general, the WRF model is not highly sensitive to the presence of the wildfire. This is

because the weather model doesn’t account for fire-atmosphere interaction. Another reason

is that the grid resolutions is quite coarse, especially for the wind to be resolved well near

complex topography.

It is evident that the WRF model coupled with an active fire-atmosphere interaction com-

ponent would have higher capability of resolving wildfire events. However, such models are

also computationally prohibitive and require resolutions close to 10m to be run in a cou-

pled large eddy simulation mode. Therefore the results of this study can be used to test

the limits of the simple WRF model configuration to capture the effects of wildfire events.

These results can provide the baseline over which the performance of more complex coupled
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WRF-fire models can be tested.
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Chapter 5

Impact of momentum perturbation on

convective boundary layer turbulence

5.1 Introduction

Grid nesting for mesoscale-to-large-eddy simulation (LES) is a useful technique for a variety

of atmospheric model applications, from wind energy to wildfire spread investigations [Haupt

et al., 2020, 2019a,b, Mazzaro et al., 2019, Mirocha et al., 2014, Ching et al., 2014]. In LES,

realistic atmospheric turbulence emerges as a result of wind shear and buoyant forcing.

However, realistic turbulence can require long time scales to develop. Turbulence generation

methods can accelerate the generation of turbulence in the LES domain, effectively reducing

the distance it takes for turbulent motions to develop, known as fetch. A common approach

is to use a periodic domain where wind through the outflow boundary is recycled through the

inflow boundary, retaining memory of the flow characteristics. However, periodic simulations

are limited in their ability to represent heterogeneous surfaces, or flow around obstacles. For

these applications, a boundary-coupled simulation with an inflow and outflow are required.
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In boundary-coupled simulations using inflow data that does not contain resolved turbulence

at the time and space scales of the LES discretization (e.g. from a mesoscale simulation),

the development of resolved-scale turbulence generally requires a long fetch. Therefore,

a large LES domain is needed to capture the development of turbulence at fine scales,

increasing computational cost [Mirocha et al., 2010, 2014, Connolly et al., 2021, Muñoz-

Esparza et al., 2014, Mazzaro et al., 2017, 2019]. One way to reduce the fetch is to run

a precursor LES using periodic lateral boundary conditions with the same time and space

discretization as the target LES, and use the solution as inflow. However, the precursor

simulation can require significant additional computational overhead, while also requiring

forcing and surface conditions amenable to periodicity.

To overcome these challenges, a class of methods exist to initialize inflow boundary condi-

tions with turbulence. For example, synthetic turbulence methods [Le et al., 1997, Pamiès

et al., 2009] use digital filtering techniques of flow to infer Reynolds Stresses [Di Mare et al.,

2006, Klein et al., 2003, Xie and Castro, 2008]. These techniques require some information

about the turbulence, either from observations or a periodic simulation. These methods also

require relatively long fetches for the generation of turbulence. Another technique is the

forcing method [Spille-Kohoff and Kaltenbach, 2001, Zajaczkowski et al., 2011, Keat et al.,

2004], which uses wall-normal forces to move the flow into the domain inlet and generate

the necessary Reynolds shear stress. However, it also needs a priori information about the

targeted level of turbulence. Additional simulations are needed for generating an adequate

amount of turbulence from this method in order to get a value that is closer to the observa-

tion.

As a compromise to using a turbulent inflow condition, another approach is to seed the inflow

characteristics with added perturbations and allow the flow to develop realistic turbulence

over a reduced fetch. One such method, the cell perturbation Method (CPM) [Muñoz-

Esparza et al., 2014, 2015, Muñoz-Esparza and Kosović, 2018], is a turbulence generation

87



technique that employs random perturbations to potential temperature to induce small-scale

motions near nested domain inflow boundaries. Mazzaro et al. [2019] modified the CPM ap-

proach by applying forces to the momentum in the horizontal and vertical directions rather

than perturbing the potential temperature fields. Mirocha et al. [2014] applied tendencies

with sinusoidal amplitudes to temperature and velocity fields near inflow boundaries. This

perturbation method produced promising results with the target turbulence level by trig-

gering turbulent motions near the nested domain inflow boundaries. Muñoz-Esparza et al.

[2014, 2015], and Muñoz-Esparza and Kosović [2018] advanced this method by adding ran-

dom forces instead of using sinusoidal perturbations, and also introduced perturbation cells.

Perturbation cells are a span of contiguous model grid points located adjacent to the LES

inflow boundaries that are perturbed with the same random value. A configuration of three

cells consisting of eight grid points per cell in each of the horizontal directions is found to

be optimal [Muñoz-Esparza et al., 2014]. In addition, Muñoz-Esparza and Kosović [2018]

optimized the CPM for different stability conditions. Thermal perturbations are chosen to

encourage the most rapid formation of realistic correlations associated with buoyancy forces

generated by the patches of resolved temperature variability. Although this optimization re-

duces the fetch size considerably relative to simulations using no perturbations, a nontrivial

fetch still remains.

To further reduce the fetch required for turbulence generation, Mazzaro et al. [2019] ap-

plied tendencies directly to the momentum components, rather than potential temperature.

This study showed that simulations perturbations were applied to the vertical momentum

term produced the shortest fetches overall, thereby further reducing fetch requirements and

associated computational costs. However, the consequence of introducing momentum pertur-

bations at the domain boundary on the fate and transport of turbulence in the domain is not

yet well understood [Mazzaro et al., 2019]. Quantifying the TKE budget in the WRF-LES

domain can shed light on this question. In this study, we examine how momentum pertur-

bations shift the balance between the terms of the TKE budget during a diurnal cycle in
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the convective atmospheric boundary layer (CBL). We apply random (stochastically selected

from within an amplitude range of 1,000 kgs−4 to 10,000 kgs−4) forces in both vertical and

horizontal directions and vary the vertical extent of the perturbations from 307m (halfway

between the surface and boundary layer and 1,608m (top of the domain). TKE budget

terms, including buoyant production, shear production, turbulent transport, and pressure

correlation are then compared between simulations including these different perturbation

configurations, periodic simulations and simulations not including perturbations.

The goals of this study are as follows: (1) to explore the impact of a simple and computa-

tionally efficient Stochastic Cell Perturbation method (SCPM) to accelerate the generation

of turbulence; (2) to understand how momentum perturbations shift the balance between the

terms of the TKE budget; (3) to evaluate the role of momentum perturbation amplitudes on

the TKE budget; and (4) to examine the effect of height in a convective boundary layer at

which momentum perturbations are applied. We use the Weather Research and Forecasting

(WRF) LES model to simulate the convective boundary layer. Our results will advance the

understanding of optimal strategies for performing coupled mesoscale-microscale simulations

of atmospheric boundary layer processes.

This study is organized into three main sections. The methods and experimental set-up that

are used to perform the SCPM using momentum perturbations (SCPM-M) are presented in

section 2. Section 3 describes the results and discussion of our analysis. Conclusions are

presented in section 4.
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5.2 Methods

5.2.1 Model Configuration

In this study, we examine the impacts of applying SCPM-M in a convective (unstable)

atmospheric boundary layer on the TKE budget. We use the WRF model version 4.1.3

[Skamarock et al., 2019] to conduct idealized LES simulations of a convective boundary

layer based on measurements at the Scaled Wind Farm Technology (SWiFT) facility located

in West Texas, USA. Simulations are initialized using data from 14Z to 20 Z UTC (8 a.m. to

2 p.m. Central time) on November 8th, 2013, allowing 4 hours for model spin-up and 2 hours

for perturbed simulation. The SCPM-M is applied in the LES domain from 18Z to 20 Z

UTC (12 noon to 2 p.m. Central time). In this study, WRF-LES is used with a horizontal

grid resolution of 12m and is one-way nested within an idealized mesoscale domain with a

horizontal grid resolution of 240m. The mesoscale domain (d01) has a horizontal extent of

115 km by 115 km, with 480 grid cells in both X and Y directions, while the LES domain

(d02) has 961 grid cells in X direction and 481 grids in Y for a domain size of 11.5 km by

5.7 km. We use 88 vertical eta levels with the top level at 1,608m (ztop). An input sounding

is used from the SWiFT facility with a capping inversion at approximately 600m. The time

step for integration is five seconds and the outputs for the LES domain are stored at every

minute. Overall we perform nine WRF-LES simulations. Seven WRF-LES simulations are

performed using various permutations of perturbation height and magnitude. In addition,

we also perform one simulation with no inflow perturbations (referred as No-SCPM) and

another simulation with periodic boundary conditions (referred as periodic) for context. By

using periodic boundary conditions, it is implicitly assumed that both the atmospheric fields

and the underlying land usage have repeating periodic characteristics [Mirocha et al., 2014,

Zhong et al., 2021]. These simulations are summarized in Table 5.1 and described in more

detail in section 5.2.2.
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We use the YSU [Hong et al., 2006] PBL scheme for the mesoscale domain. We do not use

cloud microphysics, land surface, cumulus physics, or radiation physics in this study. We

use the nonlinear backscatter and anisotropy (NBA) scheme [Kosović, 1997, Mirocha et al.,

2010] to model subgrid scale (SGS) mixing in the LES and mesoscale domain respectively. In

the LES sub-domain, Monin-Obukhov similarity theory is used to parameterize the surface

layer (surface layer option 1 [Jiménez et al., 2012, Monin and Obukhov, 1954]).

Label Amplitude Amplitude Ktop Height

Fxy (kgs−4) Fz (kgs−4) (value) (meters)

No-SCPM − − − −
Periodic − − − −
Ktop34L 1,000 1,500 34 307

Ktop54L 1,000 1,500 54 609

Ktop88L 1,000 1,500 88 1607

Ktop88M 2,000 4,000 88 1607

Ktop34H 5,000 10,000 34 307

Ktop54H 5,000 10,000 54 609

Ktop88H 5,000 10,000 88 1607

Table 5.1: The table shows a list of simulations performed in this study using different Ktop
values as well as the maximum amplitude of perturbations in both horizontal and vertical
direction. It also shows the periodic and No-SCPM simulations that are used to compare
the results of the SCPM-M cases.
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5.2.2 Experimental set-up

Periodic and No-SCPM Simulations

SCPM Simulations

In this study, we apply momentum perturbations to 8 x 8 x 1 grid point cells from the surface

up to the 34th, 54th, and 88th pressure level along the inflow boundary of the LES domain

(denoted as Ktop34, Ktop54, and Ktop88 respectively). The vertical extent of these per-

turbations is 307m, 609m, and 1,607m, respectively. These extents correspond to heights

halfway between the surface and the capping boundary layer, the height of the capping

boundary layer, and the top of the domain. We also vary the perturbation amplitude. Sim-

ulations with low amplitude perturbations (Fxy = 1000 kgs−4; Fz = 1500 kgs−4) are denoted

as Ktop34L, Ktop54L, and Ktop88L), and simulations with high amplitude perturbations

(Fxy = 5000 kgs−4; Fz = 10000 kgs−4) as Ktop34H, Ktop54H, and Ktop88H (Table 5.1). For

medium amplitude perturbations (Fxy = 2000 kgs−4; Fz = 3000 kgs−4), we only perform a

simulation for the Ktop88 case as mentioned in Table 5.1, denoted as Ktop88M. Only this

case is selected for the medium amplitude perturbations as the vertical extent (from Ktop22,

150m to Ktop88, 1,607m) of added perturbations is higher than the other two cases, i.e.,

Ktop54 (from Ktop22, 150m to Ktop54, 609m) and Ktop34 (from Ktop22, 150m to Ktop88,

307m).

5.2.3 Analysis Methods

In order to calculate mean and turbulent statistics, we use standard turbulence decomposi-

tion, where u′ = U − U , v′ = V − V , w′ = W − W , and θ′ = θ − θ where θ. Here U , V ,

and W are the instantaneous velocity components, θ is the potential temperature, over-bars
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denote time averaging, and primes denote fluctuations from the mean. The wind speed is

calculated as

√
U

2
+ V

2
with an averaging time of the last 30 minutes of simulation i.e.,

from 19:30 Z to 20 Z UTC (1:30 p.m. to 2 p.m. Central time). The heat flux is given by w′θ′

and momentum flux is given by w′u′.

The turbulent kinetic energy (TKE) budget equation is given by Stull [1988]:

∂e

∂t
+ Ūj

∂e

∂xj

= δi3
g

θv
u′
iθ

′
v − u′

iu
′
j

∂Ūi

∂xj

−
∂u′

je

∂xj

− 1

ρ

∂u′
ip

′

∂xi

− ϵ (5.1)

where, the first and second term on the left hand side (LHS) of equation 5.1 represent local

storage or tendency of TKE and the advection of TKE by mean wind, respectively. The

terms on the right hand side (RHS) of equation 5.1 in order from left to right represent

the buoyant production or consumption term, a mechanical or shear production term, the

turbulent transport of TKE, a pressure correlation term, and the viscous dissipation of TKE,

respectively (Stull [1988]). The e is the TKE, defined as:

e = 0.5(u′u′ + v′v′ + w′w′) (5.2)

The TKE budget equation after assuming horizontal homogeneity, neglecting subsidence,

and choosing a coordinate system that is in the direction of mean wind, is simplified as:

∂e

∂t
= +

g

θv
w′θ′v − u′w′∂Ū

∂z
− ∂w′e

∂z
− 1

ρ

∂w′p′

∂z
− ϵ (5.3)

Using these concepts and equations, we compute TKE, heat and momentum fluxes, as well

as TKE budget terms associated with buoyancy, shear, transport, and pressure correlation

for all simulations outlined in Table 5.1. In the next section, we present and discuss results

of this analysis.
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5.3 Results and Discussion

5.3.1 Turbulent kinetic energy (TKE)

Spatial variation of TKE

TKE is a measure of turbulence intensity. We calculate TKE for all simulations (Table 5.1),

and compare its variation over height (z) and streamwise distance (x) (Figure 5.1). The

distance from inflow boundary at which turbulent fluctuations starts to develop is called

fetch [Mazzaro et al., 2017, 2019]. We observe that for simulations without momentum

perturbation (No-SCPM), turbulence begins to develop 5,000m into the domain, with a

significant fetch, and realistic representation of turbulent structures only appears in the

last 25% of the domain. After applying SCPM-M, the fetch is reduced significantly for all

perturbed cases.

For high amplitude perturbations (Figure 5.1(b-d)), the fetch is diminished, but the maxi-

mum of TKE is present along the inflow boundary, and near the boundary layer top. For

Ktop54H and Ktop88H, positive values of TKE extend above the boundary layer, an arti-

fact related to the high perturbation height and amplitude (Figure 5.1(c) and Figure 5.1(d)).

Furthermore, for Ktop34H, the TKE maximum is present near the bottom of the domain,

near the surface and most importantly, the fetch has reduced significantly (Figure 5.1(b)).

In the case of lower and medium amplitude perturbations (Figure 5.1(e-h)), the TKE maxima

near the boundary layer are not present. We also observe that the rate at which the TKE

increases with the downwind x direction is similar for the medium and lower amplitude

perturbations but not the same as the No-SCPM case (Figure 5.1a).

These spatial patterns highlight that the vertical and horizontal extent of inflow perturba-
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tions can influence the underlying turbulence evolution. Moreover, SCPM-M produces a

vertical profile of TKE that spans the boundary layer more rapidly than without the per-

turbations. In addition, tuning the amplitude of the perturbation helps minimize the fetch

to fully develop the TKE. However, if the height of perturbations approaches or exceeds the

boundary layer, this leads to artifacts in the flow field above the boundary layer height.

Fetch

In boundary-coupled simulations using inflow data that does not contain resolved turbulence

at the time and space scales of the LES discretization (e.g. from a mesoscale simulation),

the development of resolved-scale turbulence generally requires a long fetch. We compare

the variation of the TKE in the x direction (at two heights, 10m and 53m, Figure 5.2)

from the perturbed cases and the periodic simulation to investigate the extent of the fetch.

The distance from the inflow boundary at which the TKE from the SCPM-M simulations

becomes comparable to the TKE obtained from the periodic simulation can be used a rough

estimator for the fetch.

We observe that the fetch is longest for the No-SCPM simulation (Figure 5.2). At 10m

height, the fetch for the No-SCPM case is around 9,000m and at 53m the fetch is around

7,200m (Figures 5.2(a-d)). Before the fetch is fully established, the TKE increases to an

unrealistically high level as indicated by the large departure from the periodic case.

However, after applying SCPM-M, the fetch is reduced significantly. At both 10m and 53m,

the TKE is fully developed around 2,000m for all perturbed cases as shown in Figure 5.2. At

the last quarter of the domain, starting at x = 9, 600m, the TKE for the perturbed cases are

quite close to the periodic case. Therefore, we will use the last three quarters of the domain

(x from 2,880m to 11,520m) to average over turbulence statistics subsequently reported in

this study. The TKE profiles averaged over the last quarter of the domain (x from 86,400m
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Figure 5.1: Y-averaged TKE (m2/s2), computed over the entire inner domain, compared
between simulations with and without momentum perturbation with different perturbation
amplitudes and vertical extents with panels (a) No-SCPM, (b) Ktop34H, (c) Ktop54H, (d)
Ktop88H, (e) Ktop34L, (f) Ktop54L, (g) Ktop88L, and (h) Ktop88M as shown in Table 5.1.

96



to 11,520m) will be reported only for reference in section 5.3.1.

Figure 5.2: Fetch of Y-averaged TKE (m2/s2), computed after applying momentum pertur-
bation with higher, medium, and lower amplitudes as shown in (Table 5.1) and show fetch
at (a) 10m height for periodic, No-SCPM, and higher amplitude SCPM-M, (b) 53m height
for periodic, No-SCPM, and higher amplitude SCPM-M, (c) 10m height for periodic, No-
SCPM, and lower and medium amplitude SCPM-M, (d) 53m height for periodic, No-SCPM,
and lower and medium amplitude SCPM-M. These plots are generated for TKE that are
Y-averaged over the entire inner domain.

TKE profiles

Based on the discussion in the previous section 5.3.1, we compare the TKE profiles that

are averaged over two different areas: three quarters of the domain (over all y and x from

2,880m to 11,520m) farthest away from the inflow (Figures 5.3 (a-b)), and last quarter of

the domain (over all y and x from 86,400m to 11,520m) farthest from the inflow (Figures

5.3 (c-d)). We observe that applying SCPM-M produces TKE closer to the periodic case

regardless of the extent of its application (Figures 5.3(a-d)).

As it is observed in Figure 5.3, the TKE is highest near the surface, and decreases with

height in all SCPM-M simulations and as well as in the case of No-SCPM. Up to 200m, the
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TKE is similar for all the perturbed cases as well as the periodic case, while the TKE for the

No-SCPM case is lower, when the TKE is area averaged over the last three quarters of the

domain (Figures 5.3(a-b)). However, between 300m and up to the CBL height, SCPM-M

cases with higher amplitudes are closer to the periodic case; while No-SCPM shows the largest

deviation from the periodic case (Figures 5.3(a-b)). When the last quarter area averaged

profiles are compared (Figures 5.3(c-d)), we find that the TKE is highest for No-SCPM case

below 300m and it decreases sharply above 300m, deviating the most from the periodic

case. However, the SCPM-M cases are closer to the periodic case for all heights. In addition,

we also observe that the medium and lower amplitude SCPM-M cases are almost equal in

the magnitude throughout the domain (Figure 5.3(d)). From the high amplitude SCPM-M

cases, the TKE for the Ktop34H is closest to the periodic case above 300m (Figure 5.3(c)).

It is important to note that the effect of momentum perturbation is not only to enhance

TKE but rather to adjust TKE closer to the appropriate levels at all heights within the

CBL.

5.3.2 Mean and instantaneous flow features

Instantaneous flow features

Figure 5.4 shows the instantaneous U component of velocity at two-third and half of the

CBL height (211m and 391m, respectively) for simulations without SCPM and the SCPM

applied to three different vertical extents. These velocities are shown at the last instant of

the simulation period i.e., at 20 Z (i.e., 20 Z UTC) for the nested LES domain. As observed in

Figures 5.1,5.2, and 5.3, and in previous studies, such as Mazzaro et al. [2017, 2019], a large

fetch is required for the no-SCPM simulation. The fetch is reduced significantly whenever

perturbations are applied, regardless of the extent and amplitude of the applied momentum

perturbation.
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Figure 5.3: Area-averaged TKE (m2/s2) profiles, computed for the inner domain after ap-
plying momentum perturbation with higher amplitude (Table 5.1) in the right panels and
lower & medium amplitudes (Table 5.1) in the left panels, respectively. Profiles (a) and
(b) show TKE values that are area averaged over the last three quarters of the domain,
i.e., over all y and x from 2,880m to 11,520m for (a) Periodic, No-SCPM, and high ampli-
tude SCPM-M (Ktop34H, Ktop54H, and Ktop88H); (b) Periodic, No-SCPM, and low and
medium amplitude SCPM-M (Ktop34L, Ktop54L, Ktop88L, and Ktop88M). While, panels
(c) Periodic, No-SCPM, and high amplitude SCPM-M (Ktop34H, Ktop54H, and Ktop88H),
and (d) Periodic, No-SCPM, and low and medium amplitude SCPM-M (Ktop34L, Ktop54L,
Ktop88L, and Ktop88M) are the TKE profiles that are area averaged over only the last
quarter of the domain, i.e., over all y and x from 86,400m to 11,520m.

Mean wind speed profiles

We find that the time and area averaged (over the last 30 minutes of simulation for the last

three quarters of the domain) vertical profiles of the wind speed for the different simulation

cases follow the expected logarithmic profile up to the CBL height of 600m (Figure 5.5a).

The extent and amplitude of inflow perturbations have little effect on the wind speed profiles.

Between 100m to 500m, the wind speed for the No-SCPM case is higher as compared to

the other perturbed cases. Between 100m to 500m, the lowest wind speed is observed for

the Ktop88H case (purple line in Figure 5.5a), compared to the other cases. Wind speed

profiles for the lower and medium SCPM-M cases are similar to each other but lower than

the No-SCPM case up to about 500m.
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Figure 5.4: Instantaneous U component of velocities (ms−1), computed at two different
heights that is at half (level=27, z=211m) and at two-third (level=37, z=391m) of the
boundary layer height for (a-b) No-SCPM, (c-d) Ktop54H (e-f) Ktop54H (g-h) Ktop88H.
The color bar corresponds to the magnitude of velocity for panels (a) to (h). The domain
shown is the inner LES domain used in this study.
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Figure 5.5: Wind speed (ms−1) area averaged over three quarters of the domain (all y and
x from 2,880m to 11,520m) for all the cases as shown in Table 5.1 for (a) higher, (b) lower
and medium amplitude SCPM-M. The wind speeds are generated from the last 30 minutes
of the simulation time period i.e., from 19Z (UTC) to 20 Z (UTC) and for top of the entire
simulation inner domain up to 1608m.

101



Figure 5.6: Area averaged (a) < σ2
u >, (b) < σ2

v >, and (c) < σ2
w > over three quarters of

the domain (all y and x from 2,880m to 11,520m) for No-SCPM, Ktop34H, Ktop54H, &
Ktop88H. These results are shown from the last simulation period at 20 Z and for top of the
entire simulation inner domain up to 1,608m. The angular brackets denote area averaging.
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Velocity variance statistics

In order to examine the contributions of the velocity variance components (σ2
u, σ

2
v , σ

2
w) to

the TKE, we area-average them over the last three quarters of the domain and compute

in Figure 5.6. Similar to the TKE profiles in Figure 5.3, all three velocity variances are

higher for the SCPM-M cases compared to the No-SCPM case. The σ2
w is higher for the

Ktop34H case around 200m. Just below the CBL height of 600m, the σ2
u and σ2

v are higher

for Ktop88H compared to the other cases.

5.3.3 Fluxes of sensible heat and momentum

Similar to the other turbulence statistics, the fluxes of sensible heat (w′θ′) and momentum

(u′w′) are averaged over the last three quarters of the domain and plotted in Figure 5.7.

We observe that below 200m, the fluxes of sensible heat and momentum are higher for the

No-SCPM case as compared to the SCPM-M cases (Figure 5.7). This could be attributed

to unrealistically high levels of TKE in the No-SCPM case in the last two quarters of the

domain, as observed in Figure 5.2. Above 200m, the sensible heat flux for the SCPM-M

cases is similar to the No-SCPM case (Figure 5.7(a-b)). However, the momentum fluxes are

higher for the SCPM-M cases than the No-SCPM (Figure 5.7(c-d)) case above 200m.

Among the SCPM-M cases, the Ktop34H has a higher sensible heat flux than the other cases

(Figure 5.7a). The lower and medium amplitude SCPM-M cases are similar in the sensible

heat flux throughout the domain (Figure 5.7b). For the momentum flux, all high amplitude

SCPM-M cases (Figure 5.7c) and all the low and medium amplitude cases (Figure 5.7d) are

similar to each other.

At the top of the inversion layer, Ktop34H has the highest entrainment flux (this is where

the ’potentially’ warmer air is entrained into the CBL), as indicated by the strongly negative
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sensible heat flux at the top of the CBL for Ktop34H. Ktop88H and Ktop54H simulations

produce similar entrainment fluxes of heat from above into the CBL. This is due to turbulence

being artificially excited near and above the top of the CBL.

Figure 5.7: Heat flux (w′θ′) profiles after applying momentum perturbation (SCPM-M) with
(a) higher amplitudes of forces, as shown in (Table 5.1), (b) lower & medium amplitudes of
forces; momentum flux (u′w′) with (c) higher amplitudes of forces, and (d) lower & medium
amplitudes of forces. In addition, these profiles are computed in a way that the heat flux
(w′θ′) and momentum flux (u′w′) are area averaged over last three quarters of the inner
domain i.e., over all y and x from 2,880m to 11,520m and are shown for top of the entire
simulation inner domain up to 1608m.

5.3.4 Turbulent kinetic energy budget

Since the sensible heat flux and momentum flux both contribute to TKE generating mech-

anisms, the components of the budget equation for the TKE are worth investigating for the

different cases being simulated. Therefore, individual terms of the TKE budget are discussed
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in this section. Figure 5.8 shows the y-averaged components of the TKE budget for the No-

SCPM (left column) and the Ktop34H case (right column). The y-averaged TKE budget

terms for other SCPM-M cases are plotted in the supplementary material (Figure D.5). The

three quarter domain averaged profiles of the TKE budget terms for all the SCPM -M cases

as well as the No-SCPM case are plotted in Figure 5.9.

The Ktop34H is chosen to be shown in Figure 5.8 among the SCPM-M cases for the combi-

nation of satisfying two criteria. The additional entrainment at the capping inversion level is

very low for the Ktop34H case compared to the other cases. Moreover, the reduction in fetch

is significant. The other high amplitude cases, while reducing the fetch, generate additional

entrainment at the CBL height, while the low amplitude and medium amplitude cases are

less efficient in the fetch reduction.

Buoyancy Term

The y-averaged buoyancy term (g/θ)w′θ′ for the No-SCPM and Ktop34H cases are plotted

in Figure 5.8(a and b).

We observe that for the No-SCPM case, the buoyancy term starts developing from the center

of the x axis (Figure 5.8a). However, the fetch for the buoyancy term is reduced significantly

for the perturbed cases (Figure 5.8(b) and Figure D.5). For Ktop54H and Ktop88H, the

fetch is reduced appreciably, however, additional entrainment can be observed near the CBL

height (Figure D.5(a-b)). It can be generally observed that lower amplitude perturbations

reduce the fetch and do not create additional entrainment. Another important point to

note is that the application of momentum perturbation (SCPM-M) is sufficient to modify

the buoyancy term, without requiring perturbing the temperature field, as demonstrated

by Mazzaro et al. [2019]. This could be explained by the fact that the force-perturbation

method generates additional w′ fluctuations in the turbulent field, which excites the vertical
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sensible heat flux w′θ′ as well.

Figure 5.8: Y-averaged TKE budget terms after applying momentum perturbation following
(Table 5.1), for the buoyancy term with (a) No-SCPM, (b) Ktop34H, for the shear production
term with (c) No-SCPM (d) Ktop34H, for the turbulent transport with (e) No-SCPM (f)
Ktop34H, and for the pressure correlation term with (g) No-SCPM, (h) Ktop34H. The color
bar corresponds to the magnitude of TKE budget terms for panels (a) to (h). These plots
are generated for TKE budget terms that are Y-averaged over the entire inner domain.
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As observed in Figure 5.9(a-b), the vertical profile of the buoyancy term follows the same

trend of the sensible heat flux profiles as shown in Figure 5.7(a-b).

Shear Term

The momentum flux u′w′ is negative as momentum is absorbed towards the ground, and

therefore the term −u′w′(∂U/∂z) is positive and a source of TKE. Without applying mo-

mentum perturbation, we find that WRF-LES is unable to generate shear production (Figure

5.8(c)) from the very beginning of the lateral boundary and thus results in a long fetch before

turbulence develops, as observed in the plan-view plots of velocities (Figure 5.4 and Figure

D.1). Since applying SCPM-M reduces the fetch in velocities as demonstrated previously, in

a similar fashion, the fetch in shear production is reduced as well, as it is a combination of

both quantities (−u′w′(∂U/∂z)).

We find that SCPM-M with higher amplitudes reduces the fetch in shear production sig-

nificantly, as shown in Figure 5.8(d). However, in Ktop54H and Ktop88H, strong shear

production is observed in the beginning of the LES domain near the lateral boundary (Fig-

ure D.6(a-b)). This can be attributed to the application of SCPM-M near and above the

CBL, which produces superfluous turbulent motions and ultimately contributes to strong

shear production above the CBL. Furthermore, we also observe an expected smaller maxi-

mum shear production near the CBL due to the contribution of a strong wind shear (∂U/∂z)

to it near the entrainment zone in all the cases when we applied SCPM-M with varying am-

plitudes of forces (Figure 5.8(d) and Figure D.6). In other SCPM-M cases with lower and

medium amplitudes (Figure D.6(c-f)), the fetch is reduced to a great extent without the

generation of spurious motions near the lateral boundary at the beginning of the innermost

domain.

Applying momentum perturbation within the LES domain contributes to maximum shear
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production near the surface in all the cases, as shown in Figure 5.9(c-d) (all other cases

are shown in Figure D.9(c-d) for context). When compared to the No-SCPM case, the

amount of maximum shear production with SCPM-M is higher below the height of 200m.

There is a small but sharp jump in the shear term near the entrainment zone, regardless of

the amplitudes of SCPM-M. Shear production reaches zero just above the CBL in all the

SCPM-M cases. They diminishes completely at 650m above the surface.

Turbulent Transport Term

The turbulent transport term in the TKE budget integrates over the domain height to null

in a planar homogeneous case without subsidence, indicating that TKE is transferred among

horizontal planes [Stull, 1988]. The w′e is the major contributor to the turbulent transport

term in the TKE budget equation. In this section, we compute the y- averaged turbulent

transport term for different SCPM-M cases.

We observe that, without momentum perturbation, w′e redistributes the TKE and generates

positive and negative turbulent transport up to the CBL height after 4,800m along the x-axis

(Figure 5.8(e)). After applying SCPM-M, redistribution of the TKE starts at the beginning

of the innermost domain, as shown in Figure 5.8(f) (Figure D.7(a-f) shows all the other cases

for the sake of completion). Therefore, the fetch in the generation of the turbulent transport

term is reduced significantly with SCPM-M.

However, the SCPM-M cases with higher amplitude produce more entrainment near the

inflow boundary as compared to the lower amplitude SCPM-M cases (Figure 5.8f) and

Figure D.7(a-f). Among the higher amplitude SCPM-M cases, Ktop34H produces lower

entrainment (Figure 5.8f and Figure D.7(a-b)). The entrainment is not produced for the

lower amplitude SCPM-M cases (Figure D.7(c-e)).
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We also compute the profiles of the turbulent transport terms that are area averaged over the

last three quarters of the domain (all y and x from 2,880m to 11,520m) for the simulations

in this section (Figure 5.9(e-f)). We find that without the SCPM-M, the turbulent transport

term increases up to 25m and then continuously decreases up to 140m, and then increases

again up to the bottom of the CBL. Finally it (w′e) sharply decreases to null at the CBL

top (Figure 5.9(e-f)).

In the case of SCPM-M with higher amplitudes, the changes are more abrupt within the

CBL and it approaches zero slightly above and below the CBL height (Figure 5.9e). Also, at

higher amplitudes, their profiles are not exactly the same but are slightly different throughout

the boundary layer up to the CBL top (Figure 5.9e). However, at the lower and medium

amplitude SCPM-M cases, the turbulent transport terms are almost similar to the No-

SCPM case above 200m (Figure 5.9f). Similar to the higher amplitude SCPM-M cases, w′e

reaches zero slightly above and below the CBL height (Figure 5.9f) for the lower and medium

amplitude SCPM-M cases.

Pressure Correlation Term

The pressure correlation term plays the role to redistribute TKE within the boundary layer.

However, in some cases, it also transfers energy out of the boundary layer through gravity

waves (Stull [1988]). Applying SCPM-M significantly reduces the fetch in the redistribu-

tion of TKE through the pressure correlation term, and the area averaged profiles become

smoother, as shown in Figure 5.9(g) and Figure D.8(a-f). The redistribution of TKE starts

from the beginning of the domain with higher and medium amplitude perturbations, while

it starts after x = 100m for the lower amplitude SCPM-M cases (Figure 5.8h and Figure

D.8(a-f)). In the case of Ktop54H and Ktop88H, we observe some spurious motions in the

beginning of the domain (at the inflow boundary), as shown in Figure D.8(a-b).
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We observe that applying momentum perturbation results in higher magnitude of pressure

correlation terms as compared to the No-SCPM case (Figure 5.9(g-h)). The magnitudes of

these terms are slightly higher in the case of SCPM-M with higher amplitudes as compared

to the SCPM-M cases with lower amplitudes (Figure 5.9(g-h)). The differences among higher

and lower amplitude SCPM-M cases are not significant below 100m as there are very low

magnitudes of pressure fluctuations in the surface layer (i.e., the lowest 10% of the boundary

layer).

Temporal evolution of TKE

In this subsection, we investigate the evolution of the TKE with time to examine how long

the effect of the momentum perturbation lasts after the perturbations are turned off. The

SCPM-M simulations are performed for two hours, starting from 18Z (UTC) to 20 Z (UTC).

The application of external forces creates inertia, which is present for the next half an hour

from the time when the momentum perturbation is stopped. As shown in Figure 5.10,

although the magnitude of TKE that is generated due to inertia is low, it still remains finite

from 20Z to 20:30 Z in the two cases, i.e., Ktop54H and Ktop88H (5.10(a and c)) (Ktop34H

is not shown here but similar results are expected). Comparing the results after 20:30 Z,

Figure (5.10(a and c)) and Figure (5.10(b and d)), it is clear that the TKE dissipates and

the effect of inertia is no longer present after 20:30 Z (UTC). We add a subsection on the

effects of the spatial averaging domain on fluxes and TKE budget terms in the supplementary

materials section (see subsection S4.1).
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Figure 5.9: Area averaged TKE budget terms over the last three quarters of the domain,
i.e., over all y and x from 2,880m to 11,520m after applying momentum perturbation for
the buoyancy term with (a) higher amplitudes, (b) lower and medium amplitudes; for the
shear production term with (c) higher amplitudes (d) lower and medium amplitudes; for the
turbulent transport with (e) higher amplitudes (f) lower and medium amplitudes; and for
the pressure correlation term with (g) higher amplitudes, (h) lower and medium amplitudes.
These plots from are shown for top of the simulation inner domain (up to 1,608m).
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Figure 5.10: Y and time averaged TKE (m2/s2) profiles, computed at different heights in the
atmosphere during an unstable case when momentum perturbation was turned off from (a)
20 Z to 20:30 Z (UTC) for Ktop54H, (b) 20:30 Z to 21:00 Z (UTC) for Ktop54H, (c) 20 Z to
20:30 Z (UTC) for Ktop88H, and (d) 20:30 Z to 21:00 Z (UTC) for Ktop88H in the different
panels of the figure. These profiles are generated for buoyancy terms that are area averaged
over the entire simulation inner domain.
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5.4 Conclusions

In this work, we have studied the impact of momentum perturbations to generate turbulence

in boundary-coupled LES simulations on the turbulent kinetic energy (TKE) budget terms

in an unstable boundary layer. While LES models used with periodic boundary conditions

are capable of representing realistic turbulence, turbulence representation is challenging in

models that couple the mesoscale and microscale models, or when conducting LES sim-

ulations with non-periodic conditions, such as in the presence of topography. Additional

turbulence generation techniques are needed in these instances. Several such techniques

have been developed, each with their own advantages and disadvantages. Here, we imple-

mented a recently developed stochastic cell perturbation technique in WRF-LES simulations

to study the impact of turbulence generation on the TKE budget. We used a LES domain

at 12m horizontal resolution that is nested within a mesoscale domain and applied forces in

the horizontal and vertical directions at the inflow boundaries of the boundary-coupled LES

domain. We performed a set of experiments with varying amplitudes of forces at different

heights with respect to the CBL.

We observed that applying SCPM-M accelerated turbulence generation. As a result, the

fetch, or the distance needed to fully generate turbulence from the lateral boundary, was

reduced. Reduction in the fetch in coupled mesoscale-microscale atmospheric simulations

would mean lower computational cost in numerical experiments as a smaller domain needs

to be resolved. We also observed that higher amplitude forces produced more perturbation in

the velocities near the lateral boundary, while medium and lower amplitude forces produced

slightly lower turbulence as compared to the case with higher amplitude SCPM-M.

The forced perturbations produced larger variances in the velocities as compared to the No-

SCPM up to the inversion layer. This has also contributed to the higher heat and momentum

fluxes when compared to the No-SCPM case. The magnitude of the turbulent kinetic energy
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(TKE) produced is always higher for SCPM-M cases than the No-SCPM case throughout

the boundary layer. Furthermore, the amount of TKE is higher above the boundary layer

as well for the cases where SCPM-M was applied above the boundary layer.

The forced perturbation also affected the buoyancy production in such way that for the lower

one-third of the boundary layer, SCPM-M has produced slightly higher buoyancy than the

No-SCPM case. While in the middle one-third of the boundary layer, almost same amount

of buoyancy is produced for SCPM-M cases as well as No-SCPM. In addition, in the top

one-third of the boundary layer, SCPM-M produces higher buoyancy than the No-SCPM

case.

Shear production for SCPM-M cases were higher than the No-SCPM case near the surface up

to 35m and then decreased and became equal at 200m. Near the inversion layer, the shear

production term due to SCPM-M again increased due to entrainment induced motions. The

implementation of forced perturbation also impacted TKE redistribution through turbulent

transport and pressure correlation terms.

Applying forces above the CBL generates additional turbulent structures at the top of the

boundary layer, near the inversion layer. However, this is not the case when SCPM-M was

applied near or within the CBL. Therefore, to avoid extra entrainment above the boundary

layer and obtain computational efficiency, SCPM-M should be applied below the boundary

layer or between boundary layer and the surface layer. Among the cases studied in this study,

it can be be concluded that applying momentum perturbation up to half of the boundary

layer height (the Ktop34H case) is optimal as this case is characterized by significant fetch

reduction and minimum generation of additional turbulent motions at the inversion layer.

The application of momentum perturbations to generate turbulence in boundary-coupled

LES simulations could benefit a number of disciplines/applications, including wind energy

generation, wildfire modeling, cloud top boundary layer research (applicable to off-shore
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wind) and dispersion problems. Accurate turbulence representation is also important for

UAV research and weather forecasting.
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Chapter 6

The Role of Fire-induced Turbulence

on Ember Transport

6.1 Introduction

Firebrands (also known as embers) play an important role in accelerating the rate of fire

spread in both wildland fires as well as fires in the wildland urban interface. Embers are

usually generated from burning pieces of bark, twigs and leaves during a wildland fire event.

They have the ability to ignite spot fires further away from the main fire front. They can

burn houses and damage properties located in WUI, an area where human-made structures

are present nearby or within a forest. Thus, a greater risk of damage is associated with

them to the communities living in the nearby WUI region. The process by which firebrands

ignite surface fuels after landing is known as spotting and the new fire is called a spot fire.

Firebrand ignited spot fires can be divided into three phases: (a) generation or launching;

(b) transport; and (c) landing. All of these phases are crucial to understand them well

and then parameterize accordingly to improve their predictability [Koo et al., 2012, Frediani
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et al., 2021, 2022]. In this work, we focus on investigating how much distance firebrands

could travel from the main fire front and where could they land.

In a wildfire event, there are several processes occurring at different scales that connect fuel,

weather, and topography in all three stages, i.e., pre-fire, during fire, and post-fire. Some

of these processes are not well parameterized in fire behavior models, adding uncertainty

to the prediction of fire intensity, total burned area, and size of a wildfire. In addition, it

becomes even more difficult if the wildfire occurs on complex terrain and the models usually

result in higher bias and poorer prediction [Lu et al., 2012, Linn et al., 2002, Nakata et al.,

2022]. One such component is spotting fire behavior [Frediani et al., 2021], which is either

missing or poorly captured in the existing fire behavior models. One major factor for poor

spotting fire behavior is the lack of actual observational data on firebrands as spotting is

a fairly complex process. The physical shape, size, and decomposition of firebrands is also

very difficult to assume in the model without any observation. Some of the existing models

assume firebrands shape to be cylindrical (WRF-Fire) [Frediani et al., 2021] or disk-shaped

(FIRETEC) [Koo et al., 2012]. Another limitation is that we do not have infomation on

what kind of forest or tree would produce which kind of shape and size of the firebrands after

burning. However, in some of the models, such as in FIRETEC, firebrands are assumed to

have the AA size and decompose as BB. On the other hand, in WRF-Fire, the assumption

is that they have XX size and decompose as XX. [What about other models - WFDS &

others].

Some of the previous studies and field experiments quantified the fire-induced turbulence

during a low intensity wildland fire [Heilman et al., 2015, 2017, Banerjee et al., 2020, Clements

et al., 2007], the role of fire-induced turbulence in spotting behavior during a high intensity

wildfire is not yet clear. The wind gustiness and turbulence induced by wildland fires play

a vital role in the firebrand transport. The high intensity fires can cause more risk to

firefighters due to intense spotting, which also changes the predictability of fire behavior and
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makes suppression and containment attempts more difficult.

The new advances in the mesoscale fire-atmosphere coupled model (WRF-Fire) with a fire-

brand module provides improved predictability of fire perimeter, fire spotting likelihood,

and fire spread [Frediani et al., 2021, 2022] by parameterizing the effects of fire-atmosphere

interaction. This provides an opportunity to address the research gap by testing the capabil-

ity of WRF-Fire model in capturing fire-induced turbulence during an intense wind driven

fire, such as the 2021 Marshall Fire. Moreover, building upon this experiment, we further

investigate the role of fire-induced turbulence in firebrand transport and spotting using the

WRF-Fire model.

We have the following goals in this work: (1) to quantify difference in the turbulence statistics

with and without fire ignition(2) to find out how much distance embers are traveling on a

statistical basis during an intense wind driven fire; and (3) to evaluate the role of fire-induced

turbulence on ember transport. We use the Weather Research and Forecasting (WRF)

Fire model to simulate the 2021 Marshall Fire in this study. Our results will advance

the understanding of fire behavior at the fire-atmosphere interface, resolving the role of

turbulence in ember transport during a strong wind-driven fire.

6.2 Data and Methodology

6.2.1 Data

We use the High Resolution Rapid Refresh (HRRR) data [Benjamin et al., 2016], available at

3 km horizontal grid resolution over a 1-hr period from the National Oceanic & Atmospheric

Administration (NOAA) (https://rapidrefresh.noaa.gov/hrrr/) to perform the simulations

of this study.
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The fuel data is provided by the Anderson 13 class fuel model [Anderson, 1981]. In addition,

the topography data is used in this study from the 3-arc second Shuttle Radar Topography

Mission terrain data.

In this study, we run the model for 5 hours, i.e., 18 Z UTC (11 a.m. Mountain time) on

December 30th to 23 Z UTC (4 p.m. Mountain time) on December 30th 2021. Therefore, we

use the HRRR data for the same period at 1-hourly intervals for a total of two simulations

as shown in Table 6.1.

6.2.2 Methodology

Figure 6.1: The WRF-Fire Preprocessing configuration is shown in panel a with three dif-
ferent two-way nested domains, d01, d02, and d03 with horizontal grid resolution of 480m,
120m, and 30m respectively. Terrain height in meters for domain 3 (d03) and Marshall Fire
perimeter (pink color) from domain 2 (d02) are shown in panels b and c respectively. All
the results in this study are shown from d03 only.
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Model configuration and initialization

In this study, we use the WRF-Fire model version 4.4 [Skamarock et al., 2019, Coen et al.,

2013, Clark et al., 2004] with three two-way nested domains to simulate the 2021 Marshall

Fire. The WRF-Fire model is a coupled fire-atmosphere model, where the components

of a fire model, Coupled Atmosphere-Wildland Fire Environment (CAWFE) model [Coen

et al., 2013, Clark et al., 2004] is coupled with a community mesoscale numerical weather

prediction (NWP) model, called weather research and forecasting (WRF) model [Skamarock

et al., 2019].

During the model simulation, the fire rate of spread is governed by the Rothermel [1972]

model, which is controlled by topography, fuel properties, and wind conditions. For a WRF-

Fire simulation, a fire grid is also required in addition to the meteorological grid that is

specified in a standard WRF simulation. The fire grid is four times more refined than the

meteorological grid (x = y = 30m) in order to compute small-scale changes in fuel charac-

teristics and fire spread. A recently developed, an accurate level-set method, parameterized

by Muñoz-Esparza et al. [2018] is used to track the changes in the fire area/perimeter.

We perform two sets of simulations (Table 6.1) to evaluate the turbulence characteristics

in both scenarios, when the fire ignition is active and when it is not active in the model.

The horizontal grid resolutions are 480m, 120m, and 40m for the outermost, middle, and

innermost domains respectively for both set of experiments. We used 44 vertical pressure

levels for the WRF-Fire simulations. The initial and boundary condition for the model were

provided from HRRR which has a horizontal grid resolution of 3 km and is available 1-hourly.

All the simulations are initialized at the same time and run from 18Z UTC (11 a.m. Mountain

time) on December 30th to 23 Z UTC (4 p.m. Mountain time) on December 30th 2021,

allowing 1 hour for model spin-up and 4 hours for the simulations. Only one set of horizontal

grid resolution is used for the model set-up in our study: 480m, 120m, and 30m for the
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outermost (d01), middle (d02), and innermost domain (d03) respectively. We use 44 vertical

pressure levels with the top level at 13,706.5m for all WRF-Fire simulations.

In both the experiments (fire & no-fire), the mesoscale domain (d01) has a horizontal extent

of 92.64 km by 78.72 km, with 193 grid cells in X and 164 grid cells Y directions, while

domain 2 (d02) has 165 grids X and 153 grids Y directions with a domain size of 19.8 km by

18.36 km, and domain 3 (d03) has a horizontal extent of 9.15 km by 6.75 km, with 305 grid

cells in X and 225 grid cells Y directions. The time step for integration is 1 second for d01

in the coarser grid simulation. The outputs for innermost domain (d03) are stored at every

second and the parent time step ratio is 4 for all simulations.

We choose the Yonsei University (abbreviated as YSU throughout this manuscript) [Hong

et al., 2006] PBL scheme for d01 and d02, while the d03 domain is turbulence-resolving.

We use the rapid radiative transfer model (RRTM) [Mlawer et al., 1997] for the longwave

radiation schemes and the Dudhia scheme [Dudhia, 1989] for the shortwave radiation scheme

throughout the three domains for both simulations. For the surface physics, we use the

Revised MM5 Scheme [Jiménez et al., 2012] throughout the three domains for all simulations.

Furthermore, we use the Unified NOAH land-surface model [Mukul Tewari et al., 2004] as the

land surface scheme throughout the three domains for both simulations. For the microphysics

parameterization, we use the WRF Single–moment 6–class scheme (WSM6) [Hong and Lim,

2006] for all simulations and in all domains. We do not use cumulus parameterizations in

any of the domains during these experiments.

6.3 Results and Discussions

Firebrands are released at several locations along the fire front, from grid points with a high

fire rate of spread and denser fuel loads [Frediani et al., 2021]. Multiple heights are used to
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WRF-FIRE Fire module Simulation Start Simulation End
experiment d03 time in UTC time in UTC

Fire active 18:00 23:00
No-Fire not active 18:00 23:00

Table 6.1: The table shows the list of simulations performed for this study with fire an active
fire module and without an active fire module, at the horizontal grid resolution of 480m,
120m, 30m in the WRF-Fire model. The results in this manuscript is presented from the
model outputs at 30m horizontal grid resolution, i.e., from the inner-most domain (d03)
only.

discharge firebrands, which are then carried by the atmosphere and consumed by combustion

[Frediani et al., 2021, 2022, Juliano et al., 2022].

6.3.1 Fire Area

To evaluate the capability of the WRF-Fire model, we compute the fire area at 21:30:00

UTC (3:30:00 p.m. local time), i.e., after 3 hrs of the fire ignition/start time (18:30:00 UTC

or 11:30:00 a.m. local time). Since the fire ignition point lies inside d03, we use it for

computing the simulated fire area after the fire ignition period. We observe that WRF-Fire

is able to capture the fire perimeter during the 2021 Marshall Fire, as shown Figure 6.2a at

Figure 6.2: The fire area from the d03: (a) fire area at 21:25:00 UTC;(b) fire area at 21:29:00
UTC. The limits of color bar is same for all these plots from a to b.
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30th December 21:25:00 UTC (3:25:00 p.m. local time) and Figure 6.2b at 30th December

21:29:00 UTC (3:29:00 p.m. local time).

However, the simulated fire perimeter as shown in Figure 6.2(a-b) does not reflect the im-

pact of firebrand transport as the the spotting parameterization has not been used in this

experiment so far.

6.3.2 W component of velocity

In this study, we plan to launch embers at a height of 10m above ground level (AGL) and

from those locations where the W component of velocity is positive. We choose only those

Figure 6.3: The W component of velocity is computed at at two time instants at level=2,
z=1741m (AGL) from d03 in such a way that the panels from a to d in this figure show:
(a) W with no fire at 21:30 UTC;(b) W with fire at 21:30 UTC;(c) W with no fire at 22:00
UTC;(d) W with fire at 22:00 UTC. The limits of color bar is same for all these plots from
a to d.
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locations with a positive W for launching embers as this would ensure a positive ejection

velocity and the embers would not fall off at the instants when they are launched.

We observe that an active fire in the model creates a higher magnitude of W (instantaneous)

than when the fire is not active as shown in Figure 6.3(a-d). The result for the instantaneous

W, spatial plot is directly shown from from the d03.

6.4 Conclusion and Future Work

This study uses the WRF-Fire model to evaluate the impact of active fire ignition during

fire spread on turbulence statistics and related meteorological conditions. We use two sets of

simulations with similar model set-up, initial condition, and design, with the only difference

being an active fire ignition in one and not in the other.

With an active fire, WRF-Fire is able to capture the evolution of the fire perimeter. The

simulation yields stronger vertical components of instantaneous velocities with the fire mod-

ule activated compared to one without an active fire. The mean and variations of the vertical

velocity component will provide the initial conditions for ember transport.

Based on the preliminary results of this study, we will continue to compare the components

of turbulence statistics, and use TKE to quantify turbulence during a high intensity fire,

driven by heavy wind. In addition to that, we will also explore the impact of the resulting

turbulence on the distance that embers travel when the fire is active/inactive in the model.
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Chapter 7

Conclusion

This dissertation has developed a framework for the mapping and modeling of fires in the

wildland-urban interface (WUI) using remote sensing data and regional models with land-

atmosphere-fire interaction capability.

Chapter 1 has provided the general idea about the wildland-urban interface (WUI) and

different factors that inform wildland fire behavior, such as, fuel, weather, and topography.

In chapter 2, I examine and revisit the existing definitions of WUI for California. In this

chapter, I have reported the occurrences of wildfires with respect to the WUI and quantified

how much of the WUI is on complex topography in California (CA), which intensifies fire

behavior and complicates fire suppression. I have additionally analyzed the relative impor-

tance of WUI related parameters such as housing density, vegetation density, and distance to

wildfires, as well as topographic factors such as slope, elevation, aspect, and surface rough-

ness, on the occurrence of large and small wildfires and the burned area of large wildfires

near the WUI. I found that a very small percentage of wildfire ignition points and large

wildfire burned areas (> 400 hectares or 1,000 acres) were located in the WUI areas. A

small percentage of large wildfires encountered in WUI (3%) and the WUI area accounted
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for only 4% of the area burned, which increased to 5% and 56% respectively outside WUI

(5 km buffer from WUI). Similarly, 66% of fires ignited outside WUI, whereas only 3.6%

ignited within WUI. Results from this study have implications for fuel management and

infrastructure hardening, as well as for fire suppression and community response.

The chapter 3 proposes a novel WUI definition of WUI using vector-based edge intersec-

tion. Herein, I mapped a finer-scale, novel vector-based WUI for California (CA) based on

the intersection of boundaries of wildland vegetation and building footprints. The direct

intersection is referred to as a direct WUI, whereas the intersection at 100-m buffer radius

is known as an indirect WUI. The direct WUI was found to have a higher total segment

length compared to the indirect WUI and found to be less fragmented as well. More fires

were ignited closer to direct WUI than indirect WUI due to their proximity to communities.

However, the overlap of past fire perimeters with the indirect WUI was found to be greater

than that with the direct WUI, which shows that more areas were burned in the indirect

WUI. This new approach may help land managers and policymakers in land-use planning,

reducing threats to fire-prone communities.

The intensity and frequency of wildfires in California (CA) have increased in recent years,

causing significant damage to human health and property. In October 2007 a number of small

fire events, collectively referred to as the Witch Creek Fire or Witch Fire, started in southern

CA and intensified under strong Santa Ana winds. The Witch Fire remains one of top ten

largest wildfires in modern California history. In chapter 4, I evaluated the performance

of the Weather Research and Forecasting (WRF) model to simulate a 2007 wildfire event

(Witch Creek Fire) in terms of meteorological parameters at different geographical locations.

As a test of current mesoscale modeling capabilities, I use the WRF model to simulate the

2007 wildfire event in terms of meteorological parameters and smoke propagation. The main

objectives of the present study was to investigate the impact of choice of horizontal grid

resolution and PBL schemes, in capturing meteorological conditions during a Mega fire. I
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evaluated the predictive capability of the WRF model with respect to key meteorological and

fire-weather forecast parameters such as wind, moisture and temperature. Three two-way

nested domain sets with horizontal resolutions of 36 km, 12 km and 4 km and 9 km, 3 km, and

1 km were used along with the North American Regional Reanalysis (NARR) data (Mesinger

et al. [2006]) at 12 km resolution to provide initial and boundary conditions for the simulation.

Results were validated using the Wyoming radiosonde, surface weather station datasets, as

well as Ameriflux datasets for the innermost domain of the model. I found that the model

can capture fire-weather associated with the fire event close to the surface. The spatial

and temporal variability of different meteorological parameters in the model, on the other

hand, was highly dependent on grid resolutions and PBL scheme selection. In summary, the

results of this study with four simulations indicated that finer grid resolution simulations

improved the model’s ability to predict near surface meteorological conditions more than

coarser resolution simulations. The results also showed that wind is more difficult to capture

than temperature and relative humidity, even at a finer resolution of 1,km. Furthermore,

the MYNN scheme is found to perform better than the YSU scheme in general.

The chapter 5 validates the impact of a simple and computationally efficient Stochastic

Cell Perturbation method using momentum perturbation (SCPM-M) to accelerate the gen-

eration of turbulence in boundary-coupled large-eddy simulation (LES) simulations using

the Weather Research and Forecasting (WRF) model. Mesoscale-to-microscale coupling is

an important tool to conduct turbulence-resolving multiscale simulations of realistic atmo-

spheric flows, which are crucial for applications ranging from wind energy to wildfire spread

studies. Different techniques are used to facilitate the development of realistic turbulence in

the LES domain while minimizing computational cost. In chapter 5, I simulate a convective

boundary layer (CBL) in order to characterize the production and dissipation of turbulent

kinetic energy (TKE) and the variation of the TKE budget terms. The WRF-LES domain

is one-way nested within an idealized mesoscale domain. I quantify TKE budget terms

associated with shear production, buoyant production, dissipation, and transport of TKE
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throughout the simulation domain. Furthermore, I evaluate the impact of the magnitude

and the vertical extent of momentum perturbations on TKE budget terms by applying mo-

mentum perturbations of three magnitudes below, up to, and above the CBL. Application

of momentum perturbation results in the reduction of fetch in turbulence generation to a

great extent. It also produces an adequate amount of turbulence when applied at the half of

the CBL (Ktop34H); while when applied above the CBL, it generates additional structures

at the top of the CBL, near the inversion layer. In addition, applying SCPM-M over varying

heights with different amplitudes of forces produces different patterns of TKE budgets and

their contribution to the TKE. The findings of this study provide a better understanding of

how different budget terms contribute to TKE in a boundary-coupled LES simulation.

In chapter 6, I have performed simulations using a newly developed fire-spotting parame-

terization in the coupled atmosphere-fire, WRF-Fire model. Based on the initial simulations,

I have found that in case of an active fire in the model, it resulted in stronger vertical com-

ponents of instantaneous velocity as compared to the case without an active fire. This can

lead to larger distance travelled by embers during a wildfire event near WUI areas, resulting

more damages to the communities living in the WUI even when the fires do not ignite in

it. In the future, I will analyze the role of turbulence generated by Santa Ana winds during

a wildfire event. Furthermore, I would evaluate the distance embers can statistically travel

during a wildfire fueled by strong gusts over complex terrain. Results from this study would

help in validating and mapping WUI, fuel management, land-use planning, better evaluation

plans, etc.

Overall, this dissertation can provide us with a deeper understanding of some of the impor-

tant issues that have wide-ranging practical implications for forest managers, meteorologists,

policymakers, communities, and researchers. Consideration of the factors like buffer distance,

topography, etc. are crucial for a more adequate definition of WUI. It would help in plan-

ning fuel treatment and home hardening projects as well as in resource allocation for wildfire
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preparedness in WUIs. In terms of short term benefits, this study would enhance the early

warning and better prediction of fire-weather and ember travel distance which would further

help in evacuation plans. In terms of long term advantages, the high-resolution WUI map

would help in land-use planning, fuel management with a better storage and utilization of

data in a simpler format. The application of SCPM-M to generate adequate turbulence could

benefit a number of disciplines and applications, including wind energy generation, wildfire

modeling, weather forecasting, cloud top boundary layer research (applicable to off-shore

wind) and dispersion problems. Results of this study will help foresters, land managers,

fire risk-prone communities, and government at all levels in developing techniques, models,

policies & adapting to live with wildfires in a changing climate. This dissertation would

provide the future research directions, such as, developing a dynamic WUI map for the

globe, improving the fire-behavior models, quantifying the role of small and large scale ed-

dies in the ember transport, and the modeling short and long distance ember for a complex

environment.
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D. Muñoz-Esparza, B. Kosović, P. A. Jiménez, and J. L. Coen. An accurate fire-spread algo-
rithm in the weather research and forecasting model using the level-set method. Journal
of Advances in Modeling Earth Systems, 10(4):908–926, 2018.

M. Nakanishi and H. Niino. An improved mellor–yamada level-3 model with condensation
physics: Its design and verification. Boundary-layer meteorology, 112(1):1–31, 2004.

137



M. Nakanishi and H. Niino. An improved mellor–yamada level-3 model: Its numerical stabil-
ity and application to a regional prediction of advection fog. Boundary-Layer Meteorology,
119(2):397–407, 2006.

M. Nakata, I. Sano, S. Mukai, and A. Kokhanovsky. Characterization of wildfire smoke over
complex terrain using satellite observations, ground-based observations, and meteorologi-
cal models. Remote Sensing, 14(10):2344, 2022.

D. G. Neary. Recent megafires provide a tipping point for desertification of conifer ecosys-
tems. In Conifers-Recent Advances. IntechOpen, 2022.

S. M. Njuki, C. M. Mannaerts, and Z. Su. Influence of planetary boundary layer (pbl)
parameterizations in the weather research and forecasting (wrf) model on the retrieval of
surface meteorological variables over the kenyan highlands. Atmosphere, 13(2):169, 2022.

M. Pamiès, P.-E. Weiss, E. Garnier, S. Deck, and P. Sagaut. Generation of synthetic turbu-
lent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Physics
of fluids, 21(4):045103, 2009.

J. Pereira, P. M. Alexandre, M. L. Campagnolo, A. Bar-Massada, V. C. Radeloff, and P. C.
Silva. Defining and mapping the wildland-urban interface in portugal. Parte: http://hdl.
handle. net/10316.2/44517, 2018.

R. V. Platt. The wildland–urban interface: evaluating the definition effect. Journal of
Forestry, 108(1):9–15, 2010.

V. C. Radeloff, R. B. Hammer, P. R. Voss, A. E. Hagen, D. R. Field, and D. J. Mlade-
noff. Human demographic trends and landscape level forest management in the northwest
wisconsin pine barrens. Forest Science, 47(2):229–241, 2001.

V. C. Radeloff, R. B. Hammer, and S. I. Stewart. Rural and suburban sprawl in the us
midwest from 1940 to 2000 and its relation to forest fragmentation. Conservation biology,
19(3):793–805, 2005a.

V. C. Radeloff, R. B. Hammer, S. I. Stewart, J. S. Fried, S. S. Holcomb, and J. F. McKeefry.
The wildland–urban interface in the united states. Ecological applications, 15(3):799–805,
2005b.

V. C. Radeloff, D. P. Helmers, H. A. Kramer, M. H. Mockrin, P. M. Alexandre, A. Bar-
Massada, V. Butsic, T. J. Hawbaker, S. Martinuzzi, A. D. Syphard, et al. Rapid growth of
the us wildland-urban interface raises wildfire risk. Proceedings of the National Academy
of Sciences, 115(13):3314–3319, 2018.

M. Raphael. The santa ana winds of california. Earth Interactions, 7(8):1–13, 2003.

R. C. Rothermel. A mathematical model for predicting fire spread in wildland fuels, volume
115. Intermountain Forest & Range Experiment Station, Forest Service, US . . . , 1972.

138



J. H. Scott, M. P. Thompson, and J. W. Gilbertson-Day. Examining alternative fuel man-
agement strategies and the relative contribution of national forest system land to wildfire
risk to adjacent homes–a pilot assessment on the sierra national forest, california, usa.
Forest Ecology and Management, 362:29–37, 2016.

K. C. Short. Spatial wildfire occurrence data for the united states, 1992-2015
[fpa fod 20170508]. fort collins, co: Forest service research data archive, 2017.

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G.
Powers. A description of the advanced research wrf version 2. Technical report, National
Center For Atmospheric Research Boulder Co Mesoscale and Microscale . . . , 2005.

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G.
Powers. A description of the advanced research wrf version 3. ncar technical note-475+
str. National Center for Atmospheric Research: Boulder, CO, USA, 2008.

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G.
Powers, M. G. Duda, D. M. Barker, et al. A description of the advanced research wrf
model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145:145,
2019.

A. Spille-Kohoff and H.-J. Kaltenbach. Generation of turbulent inflow data with a pre-
scribed shear-stress profile. Technical report, TECHNISCHE UNIV BERLIN (GER-
MANY) HERMANN-FOTTINGER INST FUR STROMUNGSMECHANIK, 2001.

S. L. Stephens and L. W. Ruth. Federal forest-fire policy in the united states. Ecological
applications, 15(2):532–542, 2005.

S. L. Stephens, B. M. Collins, E. Biber, and P. Z. Fulé. Us federal fire and forest policy:
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Appendix A

Examining the existing definitions of

wildland-urban interface for California
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Site type BR WBA OA POWB POAW

WUI-A

0 19,517.675 796.500 4.08 2.95
1 32,373.264 1,851.402 5.72 6.85
2 45,477.682 2,998.147 6.59 11.09
3 60,238.204 4,319.187 7.17 15.98
4 76,904.458 5,858.389 7.62 21.68
5 95,529.777 7,580.403 7.94 28.05

WUI-B

0 19,517.675 153.604 0.79 1.60
1 32,373.264 555.739 1.72 5.80
2 45,477.682 934.399 2.06 9.75
3 60,238.204 71,380.736 2.29 14.41
4 76,904.458 1,874.200 2.44 19.56
5 95,529.777 2,447.613 2.56 25.55

Table A.1: Percentage overlap of wildfire burned area and WUI-A and WUI-B with varying
buffer distances from wildfire perimeter. Here, BR - buffer radius in km; WBA - Wildfire
Buffer Area (km2); OA - Overlapping Area (km2); POWB - Percentage of Overlap in Wildfire
Buffers (%); POAW - Percentage of Overlapped area in WUI (%)

Site type BR WBA OA IPWB POWBA POWB

WUI-A

0 27,025.683 796.500 3.65(12/329) 4.08 2.95
1 80,066.343 3,372.233 21.88(72/329) 17.28 4.21
2 122,611.267 5,732.952 37.99(125/329) 29.37 4.68
3 159,640.146 7,757.174 48.33(159/329) 39.74 4.86
4 192,297.277 9,467.068 57.14(188/329) 48.50 4.92
5 221,335.796 10,984.716 65.96(217/329) 56.28 4.96

WUI-B

0 9,606.273 153.604 1.21(4/329) 0.79 1.60
1 54,204.707 1,706.335 8.81(29/329) 8.74 3.15
2 87,920.876 3,316.826 22.19(73/329) 16.99 3.77
3 117,422.931 4,727.220 31.61(104/329) 24.22 4.03
4 143,964.111 5,925.639 40.12(132/329) 30.36 4.12
5 168,252.547 7,017.430 45.59(150/329) 35.95 4.17

Table A.2: The overlap of wildfire burned area (19,517.675 km2) and wildfire ignition points
with different buffer distances from WUI-A and WUI-B. Here, BR - Buffer Radius (km);
WBA - WUI Buffer Area (km2); OA - Overlapping Area (km2); IPWB - Ignition Points
within WUI Buffers (%); POWBA - Percentage of Overlap in Wildfire Burned Areas (%);
POWB - Percentage of Overlap in WUI Buffers (%)
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Elevation(m) 1 2 3 4 5 6 7 8 9
0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-4410

WUI-A 18.50 15.70 10.40 7.70 9.20 6.30 5.40 5.40 21.40
WUI-B 20.17 18.37 12.36 8.74 10.04 5.84 4.28 4.61 15.59

Table A.3: Percentage overlap of WUI on different elevation ranges (classes) over California
(CA) at 30m resolution.

Rugosity 1.0 1.0 - 1.1 1.1 - 1.3 1.3 - 1.5 1.5 - 2.0 >2.0
WUI-A (%) 0.40 92.71 6.73 0.16 0.01 0.00
WUI-B (%) 0.20 97.16 2.60 0.027 0.00 0.00

Table A.4: Overlap of WUI and rugosity for CA.

Slope (degree) 0-30 30-60 60-86
WUI-A (%) 92.72 2.27 0.00
WUI-B (%) 99.4 0.60 0.00

Table A.5: Overlap of WUI and slope for CA.

Aspect (direction) 0-90 90-180 180-270 270-360
WUI-A (%) 23.82 23.61 29.17 23.40
WUI-B (%) 23.40 30.00 23.40 23.20

Table A.6: Overlap of WUI and aspect for CA.
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Site type BR WBA IPWB PIPWB

WUI-A

0 27025.683 20656 32.42
1 80066.343 38341 60.17
2 122611.267 44535 69.89
3 159640.146 48737 76.48
4 192297.277 51885 81.42
5 221335.796 54235 85.11

WUI-B

0 9606.273 11792 18.51
1 54204.707 32474 50.96
2 87920.876 39912 62.63
3 117422.931 44559 69.93
4 143964.111 48211 75.66
5 168252.547 50785 79.70

Table A.7: The overlap of small wildfire ignition points with different buffer distances sur-
rounding WUI-A and WUI-B. Here, BR - Buffer Radius (km); WBA - WUI Buffer Area
(km2); IPWB - Ignition Points within WUI Buffers; PIPWB - Percentage of Ignition Points
within WUI Buffers (%)

Figure A.1: Percentage of different elevation (30m) ranges over California. It shows the
percentage of different elevation ranges over CA are maximum in 0-200 m followed by 200-
400m. More than half of the regions in CA are on complex topography having elevation
values greater than 600m and only 46.36 % of landforms lie within 600m of elevation.
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Figure A.2: The figure on the top left panel (a) shows spatial variation of topography with
different elevation ranges. The legend shows different ranges of elevation for the entire
landform over CA and the magnitude of these values lie between 0m to 4410m, and also
represented with different classes from 1 to 9 as can be referred to Table A.4, top left panel
(b) shows the spatial distribution of rugosity (surface roughness) over California at 30m
resolution. Legend shows the values of rugosity from 1 to more than 2. Spatial distribution
of slope has been shown in the bottom left panel (c) and was calculated using 4-cell method
over California at 30m resolution. Here, legend represents the value of slope in degrees.
The Figure 2.8d on the bottom right panel (d) shows the spatial distribution of the aspect
calculated using 4-cell method over California at 30m resolution. Legend shows the values
of aspect lying in the four quadrants.
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Figure A.3: Pairs plot of current parameters in WUI definition: large wildfires: Fire Index
(FireIdx) represents the presence/absence of large wildfires; distance to WUI-A (D2WUIA)
and distance to WUI-B (D2WUIB) represent the distance from fire and random points to
WUI areas; housing density (RhoHou) represents the number of houses per km2 in each
Census blocks; fuel vegetation cover (FVC) represents the percentage cover of vegetation.
The red points represent large wildfire centroid points and clack points represent the random
non-fire points.
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Figure A.4: Pairs plot of current parameters in WUI definition: small wildfires: Fire Index
(FireIdx) represents the presence/absence of large wildfires; distance to WUI-A (D2WUIA)
and distance to WUI-B (D2WUIB) represent the distance from fire and random points to
WUI areas; housing density (RhoHou) represents the number of houses per km2 in each
Census blocks; fuel vegetation cover (FVC) represents the percentage cover of vegetation.
The red points represent large wildfire centroid points and clack points represent the random
non-fire points.
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Appendix B

Mapping the wildland-urban interface

in California using a vector-based

edge approach

B.1 Additional information on fire occurrence and veg-

etation data used in this study

We observe that fire occurrence is highest in the northern part of the state and in southern

California (Figure 3.2, left panel). Notably, in southern California, the counties of San

Diego (SDG) and Kern (KER) each had more than 27 fires from 2010 to 2020. While in the

northern part of California, Siskiyou (SIS) County had more than 24 fires during the same

period. Strong wind events, more specifically Diablo winds in northern California and Santa

Ana winds in southern California, are the main drivers for the larger and more devastating

wildfires. Furthermore, human ignition is one of the most significant factors in the last few

decades for a majority of the deadliest fires. A few counties had no or very few wildfire
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events during 2010-2020. This map clearly shows that the majority of southern California

is covered by shrubland vegetation, whereas the dominant land cover type in the north is

evergreen forest and shrubland. Furthermore, the variability in land cover type is greater

in the northern counties of California than in the southern regions. Overall, shrubland is

the most common type of vegetation in California. Shrublands are defined as ecosystems

with a minimum of 30 % shrub or sub-shrub cover and tree densities of up to 10 trees per

hectare (USDA). They are one of the regions where wildfire season lasts the longest [Jolly

et al., 2015]. Although characterized by a low fuel density, those available fuels are very dry

and therefore, fire spreads fast in shrublands [Bond and Keane, 2017]. The white color bar

in the right panel of Figure 3.2 also reflects water and other land cover types that are not

classified as wildland vegetation while mapping vector-based WUI.

B.2 Additional information on statistical analysis

In this approach the null hypothesis is that the dataset is sampled from the chosen distribu-

tion and a p-value larger than the significance level 0.05 indicates that the null hypothesis

cannot be rejected in favor of the alternate hypothesis. Apart from p-value, there are other

parameters that can be used to check whether or not the results of a statistical analysis are

adequate. For example, the location and scale of a distribution also tells us about the data

structure. The scale parameter describes how spread out the data values are, while the loca-

tion parameter describes how large the data values are. However, some of the distributions

like ‘weibull’ and ‘gamma’ do not have these parameters (see Table B.2 and Table B.3 in

supplementary materials). Therefore, we must check for the ‘shape’ parameter, which is an

outcome of these distributions. The shape parameter describes how the data is spread. In

general, a larger scale results in a more spread-out distribution. In this study, we used a suit-

able number of datasets (492 fires between 2010 and 2020) to perform the statistical analysis
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in both direct and indirect WUI (see Table B.2 and Table B.3 in supplementary materials).

Therefore, the conclusion of our results based on p-value is adequate and acceptable. As we

can see in the bottom panel of Figure 3.7, lognormal with three parameters is also the best

fit curve in the case of indirect WUI.

Distance No.(2010-2020) Percentage(%)

- Indirect Direct Direct Direct

0-1 75 157 15.2 31.9

1-2 103 161 20.9 32.7

2-3 79 72 16.1 14.6

3-4 50 52 10.2 10.6

4-5 46 19 9.4 3.9

>5 139 31 28.3 6.3

Table B.1: Statistical summary table showing distance of fire ignition points with respect to
direct and indirect WUI in California.
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Descriptive Statistics and curve fitting summary table for direct WUI
Count Mean StDev Median Min Max Skew Kurt
492 1.982 1.759 1.545 0.00540 13.46 2.346 9.249

Distribution Loc Shap Sca Thres LogLike AD p-Val LRT AIC
Gamma 1.381 1.435 -814.2 0.529 0.212 1632.4

Gamma-3P 1.387 1.430 -814.2 0.515 0.225 0.893 1634.4
Weibull 1.198 2.110 -0.00139 -815.9 0.846 0.031 1635.8

Weibull-3P 1.191 2.102 -815.7 0.859 0.029 0.542 1637.4
LogNormal-3P 0.583 0.713 0.00367 -818.5 0.535 0.170 0.000 1643.1
LogLogistic-3P 0.512 0.451 -0.311 -825.1 1.125 <0.005 0.000 1656.1
Exponential-2P 1.977 -0.187 -827.2 7.201 <0.001 0.101 1658.4
Exponential 1.982 -828.6 7.140 <0.001 1659.1
LogLogistic 0.366 0.551 -833.3 2.674 <0.005 1670.6
LogNormal 0.280 1.033 -852.1 5.978 0.000 1708.3
Largest-EV 1.279 1.099 -853.1 3.964 <0.01 1710.3
Logistic 1.735 0.860 -923.8 10.64 <0.005 1851.5
Normal 1.982 1.757 -975.5 19.23 0.000 1955.1

Smallest-EV 3.012 2.926 -1193.4 57.42 <0.01 2390.7

Table B.2: Statistical analysis using 14 different curve fittings to choose the best fit curve for
the distribution of the distance between wildfire ignition points and direct WUI line segments
(fires from 2010-2020). Here, Loc-location; Shap-shape; Sca-scale; Thres-threshold; LogLike-
log likelihood; EV-extreme value; 3P-three parameter.
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Descriptive Statistics and curve fitting summary table for indirect WUI
Count Mean StDev Median Min Max Skew Kurt
492 4.251 4.546 2.792 0.00729 36.66 2.818 11.21

Distribution Loc Shap Sca Thres LogLike AD p-Val LRT AIC
Gamma 1.210 3.512 -1198.6 2.449 <0.005 2401.3

Gamma-3P 1.201 3.535 0.00444 -1198.5 2.413 <0.005 0.626 2403.1
Weibull 1.069 4.373 -1202.0 3.024 <0.01 2408.1

LogNormal-3P 1.107 0.892 -0.215 -1186.8 0.155 0.956 0.000 2379.5
LogLogistic-3P 1.050 0.550 -0.0677 -1191.1 0.544 0.120 0.087 2388.2
Exponential-2P 4.243 0.00729 -1203.1 4.176 <0.001 0.194 2410.2
Exponential 4.251 -1204.0 4.082 <0.001 2409.9
LogLogistic 1.050 0.550 -0.0677 -1191.1 0.544 0.120 0.087 2388.2
LogNormal 0.980 1.043 -1201.2 1.281 0.002 2406.5
Largest-EV 2.571 2.464 -1271.1 10.76 <0.01 2546.1
Logistic 3.478 2.035 -1362.9 18.61 <0.005 2729.8
Normal 4.251 4.542 -1442.7 34.09 0.000 2889.3

Smallest-EV 6.979 7.798 -1674.6 71.63 <0.01 3353.3

Table B.3: Statistical analysis using 14 different curve fittings to choose the best fit curve
for the distribution of the distance between wildfire ignition points and indirect WUI line
segments (fires from 2010-2020). The Weibull - Three Parameter distribution did not con-
verge on a solution and therefore not included in this table. Here, Loc-location; Shap-shape;
Sca-scale; Thres-threshold; LogLike-log likelihood; EV-extreme value; 3P-three parameter.
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Figure B.1: Zoomed in image of Figure 2, highlight the empty areas near indirect WUI where
there is neither vegetation nor building.
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Appendix C

Evaluating the performance of the

WRF model in simulating winds and

surface meteorology during a

Southern California wildfire event
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Figure C.1: Timeseries of sensible and latent heat flux [Wm−2] at site 6001 (also abbreviated
as San Diego in this chapter) are shown in the top and bottom panels respectively.
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Figure C.2: Same as Figure C.1 for specific humidity at 2m.

Figure C.3: Same as Figure C.1 for vapor pressure deficit (VPD) at 2m.
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Figure C.4: Same as Figure C.1 for hot dry windy index (HDWI)
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Appendix D

Impact of momentum perturbation on

convective boundary layer turbulence

D.1 Effects of the spatial averaging domain

D.1.1 Effects of the spatial averaging domain

Heat flux (w′θ′) profiles are not similar in all the cases when we apply SCPM-M with higher

amplitudes of forces. As it is shown in Figure 5.7(a and b), the Ktop34H starts diverging

from other SCPM-M cases at 75m and continued to do so all the way to the inversion

layer. Also, the Ktop34H produces highest entrainment (around 27 kKms−1) at the capping

inversion (600m) as compared to Ktop54H, Ktop88H, and No-SCPM.

Heat fluxes (w′θ′) are same up to the inversion layer (600m) for all the simulations with lower

and medium amplitude SCPM-M cases (Figure 5.7(c)). At the inversion layer, entrainment

is highest (around 25 kKms−1) for the Ktop88H and the same holds true for the Ktop54. In
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the case of Ktop34H, when we apply SCPM-M at the half of the boundary layer (303m),

entrainment is higher (around 20 kKms−1) than the Ktop54H and Ktop88H, but lower than

the No-SCPM. However, heat fluxes (w′θ′) from the surface up to 200m are almost equal

in all the SCPM-M cases when we apply it with lower amplitude for Ktop34L, Ktop54L,

and Ktop88L. Therefore, when comparing the top and bottom panels, we can see that

while applying SCPM-M with higher forcing amplitudes below the boundary layer, Ktop34H

produces highest heat flux (w′θ′) and is suitable for several applications.

Similar to the heat flux (w′θ′) profiles, we compute the momentum flux (u′w′) profiles as

shown in Figure 5.7 for the different simulations. The momentum flux (u′w′), a flow property,

is lost to the ground in the boundary layer and therefore, is negative in the boundary layer

in all cases Stull [1988] of the simulations. Consequently, when it is multiplied by a negative

sign, results in a positive contribution to the variance and TKE. The top left panel shows that

when we apply momentum perturbation near (Ktop54H) or below (Ktop34H) the boundary

layer, it produces a higher momentum flux (u′w′) as compared to the case where SCPM-M is

applied above (Ktop88H) the boundary layer. Therefore, the turbulent motions are generated

and significantly well resolved when SCPM-M is applied within the boundary layer. However,

in the case of No-SCPM, we observe highest momentum flux (u′w′) within 200m. This was

due to the way we performed area averaging in these profiles. More specifically, this is a result

of the fact that No-SCPM is unable to capture turbulence generation at the beginning of

the inflow boundary and create a fetch, while generating extra turbulence afterwards (above

x values of around 6,000m). Since we are taking the area average over that specific values

over the x axis (6,000m to the end of the domain), it is expected that we would observe a

large momentum flux (u′w′).

On comparing top and bottom panels while we implement SCPM-M with higher and lower

amplitudes, we observe that at the lower and medium amplitudes, SCPM-M produces similar

profiles of momentum flux (u′w′) in the convective boundary layer (5.7(d)). At the higher
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amplitudes, the SCPM-M generates slightly different momentum fluxes (u′w′) especially

in the lower atmosphere, closer to the surface (i.e., up to 200m). We also find that the

Ktop34H loses the maximum momentum flux (negative) as compared to the Ktop54H and

Ktop88H. Therefore, we can observe that applying SCPM-M with higher amplitude below

the boundary layer produces turbulence structures that could sufficiently represent the flow

characteristics in the lower atmosphere.

We find that the No-SCPM generates extra TKE in the lower atmosphere up to 200m (5.3

(a and b)) as it produces additional variances and turbulence structures through momentum

fluxes (u′w′) as discussed previously. Furthermore, it starts decreasing above 200m and its

value is decreased by 60% from 200m to 400m. It reaches close to zero at 800m. In addition,

it crosses all the SCPM-M cases at 200m and decreases at the highest rate as compared to

all of the other cases (D.4(c and d)).

We find that TKE is different in Ktop34H, Ktop54H, and Ktop88H up to 350m. In addition,

we observe that the Ktop34H produces highest TKE while the Ktop88H produces lowest

TKE and Ktop54H generates the TKE that is somewhere between Ktop34H and Ktop88H

(D.4(c)). The value of TKE for Ktop34H decreases at a lower rate as compared with the

No-SCPM case and it decreases by 60% from 200m to 600m where the inversion layer was.

Its value decreases at a faster rate above 600m and it decreases to close to zero at the

different heights in the chosen cases of SCPM-M. For instance, it decreases to zero at around

900m for Ktop34H, while reaches zero at 1,100m and 1,300m for Ktop54H and Ktop88H

respectively (D.4(c)). On the other hand, in case of SCPM-M with lower amplitudes, a

practically equivalent TKE is generated up to 150m (D.4(b)). Also, from 200m to 600m

(i.e., within the boundary layer), Ktop34L, Ktop54L, Ktop88L, and Ktop88M dominate

the TKE generation (D.4(d)). Furthermore, while observing the TKE profiles above the

inversion layer (600m), we find that the TKE decreases sharply just after 600m and its

value reaches zero at 800m for all the cases (D.4(d)).
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Figure D.1: W component of velocities (ms−1) at two different heights that is at half
(level=27, z=211m) and at two-third (level=37, z=391m) of the boundary layer height
for (a-b) No-SCPM, (c-d) Ktop54H (e-f) Ktop54H (g-h) Ktop88H. Color bar corresponds to
the velocity for panels (a) to (h). The domain shown is the inner LES domain used in this
study.
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Figure D.2: Heat flux (w′θ′) profiles after applying momentum perturbation (SCPM-M)
with higher amplitudes of forces (Table 5.1) in the top panels and with lower & medium
amplitudes of forces in the bottom panels respectively. Right panels show heat flux (w′θ′)
profiles up to top of the simulation domain, while left panels represent the same for only up
to 216m. In addition, these profiles are produced in a way that the heat flux (w′θ′) are area
averaged over entire inner LES domain.
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Figure D.3: Heat flux (w′θ′) profiles after applying momentum perturbation (SCPM-M)
with higher amplitudes of forces (Table 5.1) in the top panels and with lower & medium
amplitudes of forces in the bottom panels respectively. Right panels show heat flux (w′θ′)
profiles up to top of the simulation domain, while left s represent the same for only up to
216m. In addition, these profiles are produced in a way that the heat flux (w′θ′) are area
averaged over entire inner LES domain.
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Figure D.4: Turbulence kinetic energy (TKE) profile after applying momentum perturbation
with higher amplitude (Table 5.1) in the right panels and lower & medium amplitudes in the
left panels respectively. These profiles are generated for TKE that are area averaged over
last three quarters of the domain, i.e., all y and x from 2,880m to 11,520m with (a) high
amplitude SCPM-M up to 216m, (b) low and medium amplitude SCPM-M up to 216m,
(c) high amplitude SCPM-M up to the top of the inner domain, and (d) low and medium
amplitude SCPM-M up to the top the inner domain.
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Figure D.5: Y averaged buoyancy term after applying momentum perturbation with higher
amplitudes (Table 5.1) with (a) Ktop54H, (b) Ktop88H, (c) Ktop34L, (d) Ktop54L, (e)
Ktop88L, and (f) Ktop88M. The color bar corresponds to the magnitude of buoyancy term
for panels (a) to (f). These plots are generated for buoyancy terms that are Y averaged over
the entire inner domain.
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Figure D.6: Y averaged shear term after applying momentum perturbation with higher
amplitudes (Table 5.1) with (a) Ktop54H, (b) Ktop88H, (c) Ktop34L, (d) Ktop54L, (e)
Ktop88L, and (f) Ktop88M. The color bar corresponds to the magnitude of shear term for
panels (a) to (f). These plots are generated for shear terms that are Y averaged over the
entire inner domain.
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Figure D.7: Y averaged transport term after applying momentum perturbation with higher
amplitudes (Table 5.1) with (a) Ktop54H, (b) Ktop88H, (c) Ktop34L, (d) Ktop54L, (e)
Ktop88L, and (f) Ktop88M. The color bar corresponds to the magnitude of transport term
for panels (a) to (f). These plots are generated for transport terms that are Y averaged over
the entire inner domain.
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Figure D.8: Y averaged pressure correlation term after applying momentum perturbation
with higher amplitudes (Table 5.1) with (a) Ktop54H, (b) Ktop88H, (c) Ktop34L, (d)
Ktop54L, (e) Ktop88L, and (f) Ktop88M. The color bar corresponds to the magnitude of
pressure correlation term for panels (a) to (f). These plots are generated for pressure corre-
lation terms that are Y averaged over the entire inner domain.
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Figure D.9: Area averaged TKE budget terms after applying momentum perturbation fol-
lowing (Table 5.1), for the buoyancy term with (a) higher amplitudes, (b) lower and medium
amplitudes; for the shear production term with (c) higher amplitudes (d) lower and medium
amplitudes; for the turbulent transport with (e) higher amplitudes (f) lower and medium
amplitudes; and for the pressure correlation term with (g) higher amplitudes, (h) lower and
medium amplitudes. The plots from (a) to (h) are shown for the entire simulation domain
up to 216m. These profiles are generated for TKE budget terms that are area averaged over
the entire inner domain.
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Figure D.10: Area averaged TKE budget terms after applying momentum perturbation
following (Table 5.1), for the buoyancy term with (a) higher amplitudes, (b) lower and
medium amplitudes; for the shear production term with (c) higher amplitudes (d) lower
and medium amplitudes; for the turbulent transport with (e) higher amplitudes (f) lower
and medium amplitudes; and for the pressure correlation term with (g) higher amplitudes,
(h) lower and medium amplitudes. The plots from (a) to (h) are shown for the entire
simulation domain up to 216m. These profiles are generated for TKE budget terms that are
area averaged over last three quarters of the domain i.e., over all y and x from 2,880m to
11,520m.
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Figure D.11: XY-averaged (a) σ2
u, (b) σ

2
v , and (c) σ2

w for all the cases shown in Table 5.1 for
No-SCPM, lower, and medium amplitude simulations i.e., No-SCPM, Ktop34L, Ktop54L,
Ktop88L, & Ktop88M. These results are shown from the last simulation period at 20 Z.
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