
UNIVERSITY OF CALIFORNIA
RIVERSIDE

The Role of Naming in Information-Centric Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Mohammad H. Jahanian

September 2021

Dissertation Committee:

Prof. K.K. Ramakrishnan, Chairperson
Prof. Jiasi Chen
Prof. Evangelos Christidis
Prof. Rajiv Gupta

Copyright by
Mohammad H. Jahanian

2021

The Dissertation of Mohammad H. Jahanian is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to take this opportunity to thank everyone who helped me throughout this

journey and complete this dissertation.

First, I would like to express my deepest gratitude to my advisor, Prof. K. K.

Ramakrishnan for his excellence guidance and support during the course of my PhD. The

completion of this dissertation would not have been possible without his mentorship and

invaluable insights. I would like to thank all the members of my dissertation committee:

Prof. Rajiv Gupta, Prof. Jiasi Chen, Prof. Evangelos Christidis, for their insightful com-

ments. I would also like to thank Prof. Srikanth Krishnamurthy and Prof. Nanpeng Yu for

their helpful directions as members of my PhD candidacy committee.

I would like to thank all the researchers that I was fortunate enough to collaborate

with in various projects during my PhD: Dr. Jiachen Chen (WINLAB, Rutgers Univer-

sity), Prof. Hulya Seferoglu and Dr. Yuxuan Xing (University of Illinois at Chicago),

Prof. Murat Yuksel (University of Central Florida), Prof. Toru Hasegawa and Prof. Yuki

Koizumi (Osaka University), Prof. Amr Magdy and Viyom Mittal (UCR), Prof. Yoshinobu

Kawabe (Aichi Institute of Technology), Prof. Masakatsu Nishigaki and Prof. Tetsushi

Ohki (Shizuoka University).

I would like to thank all former and current members of our lab who helped me and

made my PhD studies at UCR a more enjoyable one. I especially thank Ali Mohammakhan,

Aditya Dhakal, Shahryar Afzal, Sourav Panda, and Sameer G. Kulkarni.

I would like thank my family. Without their unwavering support, this journey

would not have been possible. I am deeply grateful to my entire family and friends.

iv

This dissertation includes content published in the following proceedings and jour-

nals (those marked with ‘**’ are described thoroughly while those marked with ‘*’ are

mentioned briefly in this dissertation):

1. Viyom Mittal, Mohammad Jahanian, K. K. Ramakrishnan, “FLARE: Federated Ac-

tive Learning Assisted by Naming for Responding to Emergencies”, The 8th ACM

conference on Information Centric Networking (ICN), September 2021. *

2. Mohammad Jahanian, Jiachen Chen, K. K. Ramakrishnan, “Graph-based Names-

paces and Load Sharing for Efficient Information Dissemination”, The IEEE/ACM

Transactions on Networking, 2021. **

3. Mohammad Jahanian, K. K. Ramakrishnan, “Name Space Analysis: Verification of

Named Data Network Data Planes”, The IEEE/ACM Transactions on Networking,

Volume 29, Issue 2, April 2021. **

4. Viyom Mittal, Mohammad Jahanian, K. K. Ramakrishnan, “Online Delivery of Social

Media Posts to Appropriate First Responders for Disaster Response”, The 3rd In-

ternational Workshop on Emergency Response Technologies and Services (EmeRTeS

@ ICDCN’21), January 2021. *

5. Mohammad Jahanian, K. K. Ramakrishnan, “CoNICE: Consensus in Intermittently-

Connected Environments by Exploiting Naming with Application to Emergency Re-

sponse”, The 28th IEEE International Conference on Network Protocols (ICNP), Oc-

tober 2020. **

v

6. Mohammad Jahanian, Jiachen Chen, K. K. Ramakrishnan, “Managing the Evolution

to Future Internet Architectures and Seamless Interoperation”, The 29th International

Conference on Computer Communications and Networks (ICCCN), August 2020. **

7. Mohammad Jahanian, Jiachen Chen, K. K. Ramakrishnan, “Formal Verification of

Interoperability Between Future Network Architectures Using Alloy”, The 7th Inter-

national Conference on Rigorous State-Based Methods (ABZ), May 2020. **

8. Mohammad Jahanian, Toru Hasegawa, Yoshinobu Kawabe, Yuki Koizumi, Amr Magdy,

Masakatsu Nishigaki, Tetsushi Ohki, K. K. Ramakrishnan, “DiReCT: Disaster Re-

sponse Coordination with Trusted Volunteers”, The 6th International Conference on

Information and Communication Technologies for Disaster Management (ICT-DM),

December 2019. **

9. Mohammad Jahanian, Jiachen Chen, K. K. Ramakrishnan, “Graph-based Names-

paces and Load Sharing for Efficient Information Dissemination in Disasters”, The

27th IEEE International Conference on Network Protocols (ICNP), October 2019. **

10. Mohammad Jahanian, K. K. Ramakrishnan, “Name Space Analysis: Verification of

Named Data Network Data Planes”, The 6th ACM conference on Information Centric

Networking (ICN), September 2019. **

11. Mohammad Jahanian, Yuxuan Xing, Jiachen Chen, K. K. Ramakrishnan, Hulya Se-

feroglu, Murat Yuksel, “The Evolving Nature of Disaster Management in the Inter-

net and Social Media Era”, The 24th IEEE International Symposium on Local and

Metropolitan Area Networks (LANMAN), June 2018. *

vi

12. Jiachen Chen, Mohammad Jahanian, K. K. Ramakrishnan, “Black Ice! Using Infor-

mation Centric Networks for Timely Vehicular Safety Information Dissemination”,

The 23rd IEEE International Symposium on Local and Metropolitan Area Networks

(LANMAN), June 2017. *

vii

To my father and the loving memory of my mother.

viii

ABSTRACT OF THE DISSERTATION

The Role of Naming in Information-Centric Networks

by

Mohammad H. Jahanian

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021

Prof. K.K. Ramakrishnan, Chairperson

The predominantly content-oriented use of today’s networks has led to the de-

velopment of information-Centric Networking (ICN) paradigms and network architectural

designs. At the core of such designs is naming, which organizes and guides the delivery

and dissemination of information in the network. This dissertation studies the correct-

ness of such name-based networking, improving it for better scalability, and enhancing its

functionality in real-world applications.

As a first topic, we propose Name Space Analysis (NSA), a network verification

framework to model and analyze name-based data planes of Named Data Networks. NSA

supports primitives fundamentally different from those of traditional host-centric IP network

verification, such as checking host-to-content reachability in addition to the traditional

host-to-host reachability considerations. We also design and formally analyze name-based

delivery for inter-operation of ICNs with existing IP networks.

State-of-the-art ICN designs rely on strictly-hierarchical naming frameworks and

pull-based request/response models, which can be inadequate when it comes to complex

ix

information structures and many-senders-to-many-receivers delivery. We propose POISE, a

name-based and recipient-based publish/subscribe architecture for efficient information dis-

semination that supports complex graph-based namespaces with a workload-driven names-

pace graph partitioning for multicast core migration. We demonstrate that POISE achieves

better efficiency in timely delivery and elimination of traffic concentration than existing

alternatives.

Next, we consider infrastructure-less intermittently-connected network environ-

ments, where consistency of replicated databases is especially challenging. We propose

CoNICE, a framework to ensure consistent dissemination of updates in such environments.

Our proposed name-based coordinator-less consensus method improves completeness and

the convergence latency in ordering updates, all with lower communication overhead. We

study its correctness and scalability and also demonstrate its performance benefits.

We then look at how names can be learned from the content itself. We propose

a framework that integrates Natural Language Processing techniques with Information-

Centric dissemination, considering the role of social media-based incident reporting in dis-

aster response. The framework introduces a social media engine to intelligently map social

media posts to the right names, to steer posts (content) to the most relevant first respon-

ders in a timely manner. We further show how these social media engines can be enhanced,

using active and federated learning, for better accuracy.

x

Contents

List of Figures xv

List of Tables xviii

1 Introduction 1

2 Overview: Naming and Addressing in Current and Future Internet Ar-
chitectures 10
2.1 Host-centric and Location-Dependent Addresses: Today’s Internet 11

2.1.1 Mobility . 12
2.1.2 Multihoming . 12
2.1.3 Site Renumbering . 13
2.1.4 Scalable Content Distribution . 13
2.1.5 Security . 13
2.1.6 Challenged Networks/ Disruption-Tolerance 14

2.2 Host-centric and Location-independent: Locator/ID Separation 14
2.3 Information-centric and Location-independent: Future Internet Architectures 16

3 Related Work 19
3.1 Information-Centric Networking . 19
3.2 Network Verification and NDN Diagnostics 21
3.3 ICN Interoperability . 23
3.4 Publish/Subscribe . 25
3.5 Graph-based Information Organization and Partitioning 26
3.6 Causal Consistency and Consensus . 27
3.7 Propagation in Intermittently-Connected Environments 29
3.8 Use of Social Media for Information Dissemination in Disasters 31

4 Name Space Analysis: Verification of Named Data Network Data Planes 32
4.1 Introduction . 32
4.2 NSA Design . 34

4.2.1 Modeling NDN Header Space . 34

xi

4.2.2 Modeling NDN Nodes . 37
4.2.3 Modeling Name Spaces . 41

4.3 Verification Applications in NSA . 41
4.3.1 Content Reachability Test . 43
4.3.2 Loop Detection . 49
4.3.3 Name (Space) Leakage Detection . 50
4.3.4 Cross-Snapshot Equivalence Check 52

4.4 Complexity Analysis . 56
4.5 Evaluation . 58

4.5.1 Synthetic Networks . 59
4.5.2 NDN Testbed . 63

4.6 Case Study: Name Space Conflict Detection/Resolution 65
4.6.1 Name Space Registry Guidelines . 70

5 Information-centric Interoperability for Future Network Architectures 74
5.1 Introduction . 74
5.2 Motivation and Overview . 77

5.2.1 Design Goals and Rationale . 77
5.2.2 Overview of COIN . 80
5.2.3 Addressing Challenges for Gateway-based Interoperability 81

5.3 Architecture and Design . 82
5.3.1 Preliminaries . 82
5.3.2 Service Interface . 84
5.3.3 Common Information Elements . 85
5.3.4 Naming . 85
5.3.5 Transport, Routing and Forwarding 86
5.3.6 COIN Gateways . 87
5.3.7 Object Resolution . 89
5.3.8 Protocol Exchange . 92
5.3.9 Security . 95

5.4 Experimental Results . 101
5.4.1 Forwarding Efficiency . 102
5.4.2 Scalability . 104

5.5 Formal Modeling of Information-Centric Interoperability 107
5.6 Satisfying Information-Centric Service Properties 112

5.6.1 Pull-based Retrieval: Request/Response 113
5.6.2 Push-based Retrieval: Publish/Subscribe 116

5.7 Reasoning about Failure and Mobility . 118
5.7.1 Failure . 119
5.7.2 Mobility . 121

5.8 Formal Analysis Results . 122

xii

6 POISE: Graph-based Namespaces and Load Sharing for Efficient Infor-
mation Dissemination 128
6.1 Introduction . 128
6.2 Using ICN for Timely Vehicular Safety Information Dissemination 131
6.3 Use Cases of POISE . 133

6.3.1 Disaster Management . 134
6.3.2 HVAC System: A Smart Building with IoT 135
6.3.3 Resource Management in Clouds . 136
6.3.4 Data Replica Management in Distributed File Systems 138

6.4 Overview . 139
6.5 Architecture and Design . 141

6.5.1 Information Layer and Graph Namespace 141
6.5.2 Recipient-based Pub/Sub . 145

6.6 Automatic Load Splitting . 147
6.6.1 Partitioning Namespace Graphs . 147
6.6.2 Migrating Cores . 158

6.7 Evaluation . 160
6.7.1 Evaluating the Graph Partitioning Algorithm 161
6.7.2 Overall Solution Evaluation . 165
6.7.3 Implementation . 173

7 CoNICE: Consensus in Name-based Intermittently-Connected Environ-
ments 178
7.1 Introduction . 178
7.2 Overview of CoNICE . 181
7.3 Naming and Consistency Levels . 185

7.3.1 Graph-Based Naming Framework . 185
7.3.2 Multi-level Consistency . 187

7.4 Protocols for Consistent Dissemination . 189
7.4.1 Gossiping Protocol . 190
7.4.2 Causal Ordering Protocol . 191
7.4.3 Consensus Protocol . 194

7.5 Proof of Consensus in CoNICE . 199
7.5.1 Heard-Of Model . 200
7.5.2 System Model . 201
7.5.3 Proving Property 2: Basic consensus Property 206
7.5.4 Proving Property 3: Total and Causal Ordering Property 208

7.6 Evaluation . 211
7.6.1 Experiments on Gossiping and Causal Ordering 212
7.6.2 Experiments on Consensus . 215
7.6.3 Physical Fragmentation of Shelters During Disasters 217

xiii

8 Leveraging Social Media Posts for Name-based Information Dissemina-
tion in Disasters 220
8.1 Introduction . 220
8.2 The Evolving Nature of Disaster Management in the Internet and Social

Media Era . 222
8.2.1 Keyword-Based Association of Tweets 222
8.2.2 Categorizing Tweets for Disaster Management 227

8.3 System Model for DiRECT . 228
8.4 Architectural Components . 231

8.4.1 Naming Schema . 232
8.4.2 Social Media Engine . 234

8.5 Preliminary Evaluation . 236
8.5.1 Social Media Engine . 237

8.6 Extending Social Media Engines with Federated and Active Learning 243

9 Conclusion and Future Work 245
9.1 Future Work . 248

Bibliography 250

xiv

List of Figures

2.1 Different networking models: naming and addressing 11

4.1 Propagation graph example . 43
4.2 Content reachability test . 45
4.3 Content censorship example . 48
4.4 Loop detection example . 50
4.5 Name leakage detection example . 52
4.6 Data plane state changes due to producer mobility (P serves “/a”, green

arrows: FIB entries for “/a”) . 55
4.7 Results for small grid snapshots . 58
4.8 NSA &

simulation-based check . 58
4.9 Large grids,

vary network size . 58
4.10 Large grids,

vary prefix count . 58
4.11 Propagation graph aggregation example . 59
4.12 Name leakage . 60
4.13 Rule generation (‘UCI’ node) . 60
4.14 Name space conflict example (case I: only P1 is present; case II: both P1 and

P2 are present) . 66
4.15 Name trees of the producers in Fig. 4.14 . 66
4.16 Databases at name registry . 67
4.17 Name registration procedure . 70

5.1 Layered architecture overview . 83
5.2 COIN gateway design: processing requests 88
5.3 A schematic view of object resolution and content retrieval in COIN 90
5.4 Protocol exchange across 3 domains . 93
5.5 NDN/IP/NDN encryption . 97
5.6 IP/NDN encryption . 98
5.7 NDN/IP/MF signatures . 100

xv

5.8 Latencies (static content retrieval): total response, content provider, gateway
request and response processing (logarithmic axes). Note that there are no
gateways (and thus gateway latencies) in native scenarios (b). 103

5.9 Scalability: memory consumption and number of requests 106
5.10 Information-centric interoperability (ICI): request for content 108
5.11 Example (partial) instance for ICI Alloy model (objects and relations) . . . 109
5.12 Prefix tree example . 112
5.13 Gateway failure scenario . 119
5.14 Mobility scenario example: Route 2 established after B moves and changes

its point of attachment . 124

6.1 Overall architecture of V-ICE . 132
6.2 V-ICE namespace example . 133
6.3 Graph-based namespace: incident command chain example 134
6.4 Example namespace for IoT HVAC system 135
6.5 Example namespace for containerized platforms 136
6.6 Example namespace for distributed replica management 137
6.7 A schematic overview of the architecture of POISE 139
6.8 Design choices for ICN layer . 143
6.9 Example network topology: 5 Firemen subscribe to different roles in the

namespace in Fig. 6.3 and 2 RPs share the workload 146
6.10 Partitioning impacts multicast workload weight of names 149
6.11 Weight calculation example . 154
6.12 Reliable RP splitting: RP1 relinquishing a name to RP2 159
6.13 Effectiveness of different graph partitioning approaches 162
6.14 Impact of base in adaptive stop criteria . 162
6.15 Notification latency over time in different solutions (Note the difference in

the scale of notification latency in POISE) 166
6.16 Notification latency CDF in different solutions 168
6.17 RP queue sizes for intense workload . 171
6.18 Notification latency for intense workload . 172
6.19 Data structures and data flows in the POISE implementation. Blue: up-

stream publication packet with destination=RP1; Red: downstream publi-
cation with name=G2; Green: publication with name=G1 expanded at the
RP (flow after subscription table omitted) 173

7.1 Example region-ed map with base layer (background) and data layer (pin-
s/shapes) . 184

7.2 Namespace pertaining to the map in Fig. 7.1 184
7.3 A scenario overview . 184
7.4 Architecture overview of CoNICE . 185
7.5 Example for per- name per- consistency level update queues across three

users A, B, and C . 187
7.6 Update creation and receipt in CoNICE . 193
7.7 Consensus algorithms for CoNICE protocols 195

xvi

7.8 Map of our Helsinki-based simulation scenario 210
7.9 Namespace for our Helsinki-based simulation scenario 210
7.10 Contact duration CDF . 210
7.11 Relevant replication coverage CDF . 212
7.12 Relevant delivery latency (cumulative) . 212
7.13 Buffer occupancy with level 0 . 212
7.14 Relevant causal completeness CDF . 212
7.15 Relevant causal delivery (cumulative) . 212
7.16 Buffer occupancy with levels 0 and 1 . 212
7.17 Relevant agreement completeness CDF . 215
7.18 Relevant decision latency (cumulative) . 215
7.19 Buffer occupancy with levels 0–2 . 215
7.20 Average local and global agreement completeness 217

8.1 Percentage of Harvey-related Tweets over total collected tweets 226
8.2 Percentage of Irma-related tweets during Sept. 9-11 over 3-hour periods . . 226
8.3 System model . 229
8.4 Incident management namespace . 232
8.5 Social media engine . 236
8.6 Spatial distribution of fire-related tweets for Camp Fire (a) and Woolsey Fire

(b) – (size of circles correlates with the number of tweets) 237
8.7 Temporal distribution of fire-related tweets 238
8.8 Per-class distribution of disaster-related tweets 239
8.9 Performance of the SME procedures . 240
8.10 Social media engine capable of federated and active learning 243

xvii

List of Tables

4.1 Execution Time (ms) for NDN Testbed Verification 60
4.2 Name Space Conflict Scenarios for Case II 66

5.1 Model finding . 119
5.2 Model counting . 119
5.3 Verif. scopes for ICI services properties . 125
5.4 Failure analysis results . 126
5.5 Mobility analysis results . 126

6.1 Notations for graph . 154
6.2 Solution quality of alternatives and global optimum 161
6.3 Quality of METIS vs. POISE . 162
6.4 Average notification latency & aggregate network traffic 168
6.5 Comparison of METIS and POISE’s partitioning 171

7.1 Results for level 0 . 213
7.2 Results for Level 1 . 214
7.3 Results for level 2 . 215

8.1 Tweets per category for Harvey on Aug. 27 between 5:22:52 pm and 6:59:59
pm . 223

8.2 Categories for Irma Tweets during Sept. 9th - Sept. 12th 225
8.3 Inference metrics for K=1000 . 240

xviii

Chapter 1

Introduction

Users primarily seek information over the network without necessarily wanting

to focus on its location or the underlying mechanisms used to retrieve that information.

However, the current way of using “location-based” access in IP results in a less convenient

and less efficient means for information dissemination and retrieval. Information-Centric

Networks (ICNs) [92] separate content identity from location. ICN enables access of content

based on its name, from wherever it resides, supporting mobility as well as accessing the

named content from the “best” source. Typically, ICN architectures have network layers

that operate based on names, in contrast to the current IP network that operates solely on IP

addresses (and content-related operations are moved to application layer at end hosts). This

ICN design allows for ubiquitous network wide caching to reduce access latency. There are

a number of ICN architectures – Named Data Networking (NDN) [203] and MobilityFirst

(MF) [160], XIA [145], PURSUIT [75], to mention a few. ICN enables content-oriented

1

services such as request/response (e.g., Interest/Data in NDN [203]) and publish/subscribe

(for many-to-many multicast dissemination) [49].

Information can be organized, identified and accessed in complex ways. Naming

frameworks and namespaces that identify resources, objects, services, and users, and repre-

sent their relations, are used in a variety of contexts in networks and distributed systems,

ranging from tightly controlled Distributed File Systems [59,172] to large-scale NDNs [203].

In ICNs, names guide the paths packets take, separating the notions of names and addresses.

These names get mapped to location addresses through Name Resolution Services. NRS

can be implicit (such as in NDN) or explicit (such as in MF). At the core of a name-based

delivery/dissemination framework (such as in pub/sub), is a namespace [49], that is es-

sential to direct requests/subscriptions and deliver publications/content. The traditional

hierarchical namespace (or taxonomy) is a common way of organizing information, and is

followed in traditional ICN design: in NDN, content items and their relationships are iden-

tified through hierarchical namespaces [203], i.e., a graph that follows a strict hierarchic

and is represented using prefix trees (tries).

This dissertation focuses on the role of naming in ICNs, which organizes content

and guides its delivery in the network, and aims at answering important questions such as

the following: How can we ensure the correctness of name-based networks? How can we

interoperate among various networks with different naming structures? How can we leverage

and enhance naming for efficient information organization and dissemination? How can we

generate and assign names to content in an accurate manner? How can we use naming

to ensure consistency of data delivery in disconnected environments? In order to answer

2

these questions, we use various techniques to provide solutions that are both sound and

practical. While some of the contributions focus on specific ICN architectures such as

NDN and MobilityFirst, for the most part we consider ICN as a general paradigm that

considers content items as first class citizens, thus not limited to a specific protocol stack

or architecture. We investigate the notion of naming and ICN in Future Internet, and also

particular applications such as disaster management. In particular, this dissertation makes

the following major contributions:

Contribution 1: Verification of Name-based Networks. Network Verifica-

tion aims at analyzing the correctness of a network, e.g., regarding forwarding rules [31,

107,110]. Existing network verification tools are suited for traditional host-centric networks

(e.g., IP) and not ICNs: ICNs have radically different design from IP (e.g., name-based

forwarding vs. address-based forwarding) and have different intents (e.g., host-to-content

reachability vs. host-to-host reachability).

We propose Name Space Analysis (NSA) [97], the first data plane verification

framework for NDN. NSA builds on the theory of Header Space Analysis [107] and fur-

ther includes essential NDN-specific verification applications of content reachability test (to

detect name space conflicts, content censorship-freedom, etc.), name-based loop detection,

and name leakage detection. Applied to the NDN testbed [148], we found a number of

data plane errors in it through NSA’s automatized verification. Our evaluation results on

various test cases show the effectiveness, efficiency, and scalability of NSA. Furthermore,

we propose methods so that NSA can help in error resolution as well [100]. In particular,

we add a method for resolving name space conflicts, a challenge in name-based networking

3

of NDN, by proposing a Name Registry component and protocol. This can help uncover

name space conflicts and resolve them.

Contribution 2: Interoperability of Name-based Networks. New network

architectures, such as ICNs, are continually being proposed to address specific and specific

requirements. We may end up with many ”bridges” of different architectures [24, 133].

Content may be in domains different from where the consumer is. Reachability across

domains with different architectures is important and challenging. We believe a pragmatic

approach to manage network evolution would be to design an interoperability framework

between these different domains, or in other words, “bridging the many islands”. There

have been many attempts over several decades addressing interoperability across network

architectures in the form of multi-protocol routers and gateways. We believe that the

concept needs to be revisited today, since compared to previous efforts, the architectures

we seek to support for interoperation, namely information-centric networks, are much more

different in nature than in the past.

We propose a Content-oriented Interoperability framework (COIN) [95], for con-

sumers to access content across domains in a secure manner, through translation gateways

operating at content name level. As important features, COIN induces no architectural

change, preserves architecture features (such as naming schemas, mobility recovery meth-

ods and security mechanisms), spans more than two domains interoperating, and currently

supports the three architectures of NDN, MobilityFirst, and IP. We then formally analyze

the information-centric interoperability [94], where we present an Alloy [91]-based model and

showed how model finding can be used to analyze reachability and returnability properties

4

across domains of NDN, MobilityFirst, and IP, with gateways translating at name level. We

also enhance Alloy’s model finding with a model counting approach to analyze failure and

mobility scenarios, which we utilized to prove the negative impact of certain routing poli-

cies (particularly, reverse path forwarding), and the helpfulness of certain mobility-handling

mechanisms (particularly, late binding), providing necessary confidence and guidelines for

Future Internet interoperability.

Contribution 3: Graph-based Namespaces and Load Sharing for Pub/-

Sub.

Name-based publish/subscribe (pub/sub) [49] is an information-centric design for

information dissemination and multicast, according to recipients’ (subscribers’) interest

in subsets of the namespace, such as in a system based on it for vehicular safety mes-

sage propagation [50]. There are two types of namespace design for name-based pub/sub:

topic-based and recipient-based. In topic-based pub/sub [49], a subscriber of a named

topic, e.g., “/CaliforniaWildFires”, is interested in receiving all the content published at

a finer granularity, i.e., what is under a particular topic category, e.g., “/CaliforniaWild-

Fires/WoolseyFire’. In recipient-based pub/sub [48], a subscriber of a named role, e.g.,

“/fireDepartment/fireTeam1”, must receive all messages published to a coarser granularity,

i.e., sent to everything above that role in a command chain, e.g., to “/fireDepartment”.

However, there is a shortcoming with traditional ICN namespace schema (such as in NDN):

it is strictly hierarchical [203]. This hierarchical structure falls short in efficiently modeling

complex, multi-dimensional information organizations, such as the Wikipedia knowledge

5

base, and information flow chains in disaster response (as a name node may have multiple

parent nodes).

We propose POISE [93], a framework than decouples how information is organized

(information layer), and how it is forwarded via name-based forwarding (service layer). This

way, we propose and support graph-based naming in the information layer in the network.

We load-shared namespace maintenance and multicast among multiple Rendezvous Points

(RPs) [72]. Given that the workload-per-RP distribution is non-uniform and difficult to pre-

dict, especially in disaster situations, we also proposed an automatic load splitting and core

migration protocol among RPs. At the core of this splitting procedure, we present a graph

partitioning algorithm, which involves a “complex” objective (the ”cut” itself affects the

node/edge weights) [157]. As a result, off-the-shelf graph partitioners such as METIS [103],

fall short. To overcome this, we proposed a hybrid splitting procedure consisting of a heuris-

tic (METIS) and meta-heuristic guided search refinement (using Tabu Search [162]). With

implementation and simulation experiments, we showed how our naming design, dissemi-

nation protocol, and partitioning are scalable and outperform state-of-the-art methods.

Contribution 4: Consistent Information Dissemination in Name-based

DTNs. All the works mentioned above, and most works in the ICN space, consider a

network infrastructure with fixed router and reliable links. However, in many real-world

scenarios, information must be disseminated over intermittently-connected environments,

when network infrastructure becomes damaged. An example of such scenarios is disasters in

which first responders need to exchange updates about their critical tasks. If such updates

pertain to many users and a single shared data set (e.g., adding/editing/removing pins

6

on a map), their consistent dissemination is important and challenging. Many algorithms

and techniques to ensure consistency have been proposed. Causal consistency ensures up-

dates get processed at users in accordance with their causal relations [58]. Causal ordering

provides a ‘moderate’ degree of consistency better than It is stronger than best-effort out-

of-order delivery, as it orders “orderable” updates. It is weaker than agreement-based total

order delivery, as it is ambiguous when it comes to ordering “un-orderable” updates. Con-

sensus methods, on the other hand, ensure agreement and strong consistency. Most popular

consensus methods, most notably Paxos [117] and Raft [151], are most suited for connected

environments with reliable links. These techniques achieve agreement among a number

of networked nodes, for purposes such as total ordering, by election of a leader, majority

voting, and deciding on a value, through a number of rounds. In other words, they are

coordinated consensus methods.

We propose CoNICE [98], a framework to ensure consistent dissemination of up-

dates among users in intermittently-connected, infrastructure-less environments. CoNICE

provides three levels of consistency to users’ views, namely replication (epidemic propaga-

tion), causality (causal ordering) and agreement (consensus). Our consensus is based on the

two-thirds majority rule [32]; however, it is coordinator-less and tolerates loss. To further

enhance CoNICE’s efficiency, we design and leverage namespaces, allowing users to indicate

and filter based on their task-related interests. With city-scale simulation experiments, we

show that using this namespace component, not only we increase the relevancy of content

delivery, we also limit the number of consensus participants to only the relevant users. The

7

latter effect of our naming leads to considerably higher degree of agreement completeness

as well as faster convergence, which is a novel benefit of information-centric naming.

Contribution 5: Intelligent Information Name Assignment from Free-

form Text. While name-based pub/sub allows named content to reach the right recipients,

assigning the right name for a piece of content is still an un-addressed challenge. This can

be a necessary need especially in situations where many frequent messages with free-form

content are created by users who do not necessarily have access to the namespace. One

prominent example is the extensive use of social media posting during disasters, mainly

to ask for help and report issues [54]. We studied two major and fairly recent disasters

in the US [101], namely Hurricanes Harvey and Irma in 2017, and after performing text

mining on millions of collected tweets in the affected areas, we observed the temporal/spatial

correlation of tweets collected with the real-world progression of events, and how the content

of tweets can be used for a meaningful, systematic dissemination of information.

Motivated by this study, we propose a framework that integrates social media with

Information-Centric dissemination in disaster response [96, 136]. The framework includes

a social media engine to intelligently map social media posts to the right names, using

NLP and ML techniques [35, 154], to steer social media posts towards appropriate and

relevant first responders in a name-based network. Using data from recent California wild-

fires [164], We show that with little trained data and active learning, we can achieve online

classification of tweets with high accuracy with near- real-time latency. This is also a very

effective way of dissemination, compared to traditional methods of 911 operation (which

8

gets intensely overloaded with limited availability during major disasters) and ad-hoc social

media diffusion (such as re-tweets which have too much redundancy and low accuracy).

The organization of this dissertation is as follows: We provide background material

on naming in networks in chapter 2, and go over related work in chapter 3. Chapter 4

describes Verification of Name-based Networks. In chapter 5, we present Interoperability

of Name-based Networks. We propose Graph-based Namespaces and Load Sharing for

Pub/Sub in chapter 6. Chapter 7 introduces Consistent Information Dissemination in

Name-based DTNs. In chapter 8, we discuss Intelligent Information Name Assignment

from Free-form Text. Finally, chapter 9 concludes this dissertation and describes future

work.

9

Chapter 2

Overview: Naming and Addressing

in Current and Future Internet

Architectures

In this chapter, we provide a brief overview of the fundamentals of naming and

addressing. We particularly focus on the evolution of naming and addressing and the rela-

tionship between them. We explore three networking models (Fig. 2.1): host-centric with

location-dependence (§2.1), host-centric with location-independence (§2.2), and information-

centric which is location-independent (§2.3).

10

Locator Identifier Name Name

Name

Resolution

Name

Resolution

Name-based

Routing

Name

Resolution

Location

Routing

Name

Resolution

Name Name

Location

Routing

Locator Locator

Location

Routing

Host-Centric Networking

Location-Dependent Location-Independent
Information-Centric Networking

(Location-Independent)

Figure 2.1: Different networking models: naming and addressing

2.1 Host-centric and Location-Dependent Addresses: Today’s

Internet

The current TCP/IP architecture of Internet today has been around for decades

and is ubiquitous. In this architecture, IP addresses are used for forwarding, and is centered

around a node’s location; thus IP addresses are also locators. Host names are identified

at the application layer (e.g., in HTTP requests as URLs), only understandable by end

hosts, and not routers. These host names get mapped to their corresponding location (i.e.,

their IP addresses) through a lookup-based name resolution services, namely the Domain

Name Service (DNS). This design creates problems and challenges even for today’s usage of

networks. There have been several criticisms and challenges for this design, some of which

we mention next.

11

2.1.1 Mobility

Mobility describes a situation in which a node moves from one point to another

in the network, thus changing its point of attachment, i.e., location. Since in the Internet

the address of a node has everything to do with its geographical location (i.e., which net-

work/subnet it is attached to), the locator of the node has to change. In the host-centric

design of the Internet, all routing and forwarding depends on locator. Therefore, as a result

of mobility, the new location of a node will not be discovered and all packets to/from it

will be lost/blackholed (not delivered or mis-delivered), until the node obtains the new IP

address and the network forwarding state re-converges based on it. This causes excessive

re-transmission and failures [84].

2.1.2 Multihoming

Most user devices today have multiple network interfaces and can potentially sup-

port multiple access technologies. End-host multihoming means an end-host has multiple

addresses (locators) and thus multiple paths to/from it. With location-dependence, all

those locators are seen as different end-hosts by the rest of the network (routers and other

end-hosts). This also causes challenges such as failures when switching from one path to

another, and not being able to efficiently utilize the multiple available paths. In addition

to end-host multihoming, there can also be site multihoming. Site multihoming is a case

where an end-site, such as an enterprise network, obtains IP connectivity from multiple

different ISPs [165]. Such multihoming will cause excessively large forwarding tables in the

routers, especially at the core of the network [112].

12

2.1.3 Site Renumbering

There can be situations where the IP prefix of a site changes, e.g., a change in an

ISP. Due to such renumbering, the site’s address needs to be updated in various parts of

the network, such as routing tables, DNS, and firewalls. Some of those changes may have to

rely on manual human work and may be prone to errors. Nonetheless, updating them and

invalidating the older sddresses are a challenge in location-dependant architectures [112].

2.1.4 Scalable Content Distribution

Many works have pointed out that the majority of the constantly growing Internet

traffic consists of content (especially video) [92]. Mass distribution of content and replication

in today’s architecture is quite challenging: different requests cannot be aggregated and they

cause excessive load on content servers and network resources, as every single request leads

to a separate end-to-end channel (and all of its overhead such as TCP establishment, etc.).

This problem stems from the fact that in TCP/IP, end-to-end paths for request/response are

identified by content locations [21]. Some IP overlay solutions have aimed to alleviate this

issue, namely Content Distribution Networks (CDNs) that enable geographically-distributed

content caches. However, mapping requests to nearest CDN server, complexity of control

plane management of CDNs, and the cost of deploying CDN servers are challenges of CDNs

[79]. There is also considerable dependence and load on the DNS.

2.1.5 Security

In today’s Internet, protocols such as TLS are used to secure end-end channels over

which content is exchanged. In this model, to trust the content is to trust the end node

13

that is hosting it. Therefore, the security of content is determined through the path to the

location (identified by the address) of the end node hosting it. If the content gets altered or

tampered with prior to entering the trusted channel, and loses its cryptographic protection

right after leaving the channel, then trusting the host does not directly guarantee the content

integrity [206]. Additionally, when many users request for the same content, the establishing

of the many secure channels per request poses major scalability and manageability issues.

2.1.6 Challenged Networks/ Disruption-Tolerance

In many environments, the network is sparse and/or suffers from frequent discon-

nectivity. In such a network, i.e., challenged networks, end-to-end paths are not always

present. This poses major challenges for communication and content exchange in today’s

Internet as it relies on an end-to-end path and transport sessions that stay alive for the

duration of the session over multiple hops [159]. While the challenges of such networks

are unique to host-centric networks, location-dependence makes it especially challenging to

support content exchange and dissemination in networks with high disruption.

2.2 Host-centric and Location-independent: Locator/ID Sep-

aration

To address some of the challenges, location-independent solutions over host-centric

IP architectures have been proposed. The solutions mostly focus on addressing the first three

challenges. In this paradigm, there is a decoupling/separation of host identity (ID) and IP

addresses (locator). There have been a number of solutions proposed and standardized in

14

this approach over the past two decades [112]; we describe some of the more notable ones

here.

Site Multihoming by IPv6 Intermediation (SHIM6) [150] provides a sub-(shim-)

layer above the network layer, called the upper-layer protocol (ULP). Assuming a host

has several IPv6 addresses (locators), only one will be selected by ULP to communicate

with the other host in a TCP session. This selected IPv6 address is called the upper-layer

identifier (ULID), which identifies the transport flows between the hosts. The lower layer,

i.e., IP routing sublayer, may use different IPv6 addresses for routing. This helps with

multihoming, and provides seamlessness and resiliency of the transport-layer session in case

of network failures [30].

Host Identity Protocol (HIP) [142] introduces Host Identiy (HI) and a HI (sub-)

layer that sits between transport and network layer. In HIP sockets, the HI gets dynami-

cally bound to a relevant IP address. HI is represented as an 128-bit public key, also called

Host Identiy Tage (HIT). HIP uses new DNS Resource Record (RR) types to provide map-

ping from HI to routable address. Also, rendezvous servers maintain mapping to support

mobility, which resolve HIs to addresses.

Locator/ID Separation Protocol (LISP) [67] splits the Internet’s namespace into

identifiers and locators (addresses). This particularly helps with the challenges regarding

multihoming and renumbering. LISP introduces an Endpoint Identifier (EID) and Routing

Locator (RLOC). EIDs are IP addresses (that do not depend on network topology) that

get assigned to end hosts, playing the role of identifiers. RLOCs are IP addresses that are

location-dependant (as regular IP addresses are used today), and help with routing. In other

15

words, EIDs are non-routable and RLOCs are routable IP addresses in LISP. Edge routers

near end hosts, called Ingress Tunnel Routers (ITR) and Egress Tunnel Routers (ETR),

provide the means for tunneling between source and destination points. They perform

encapsulation of packets into LISP tunnels to forward packets based on EIDs. Similar to

HIP, LISP relies on DNS: it uses it to resolve domain names to EIDs. The mapping from

EIDs to RLOCs (typically for the destination’s ETR) is achieved through LISP-specific

mapping mechanisms, such as LISP Delegated Database Tree.

Mobile IP [155, 156] is an architectural enhancement to regular IP to support

mobility. It introduces a Home Address (HA) which is the identifier and a Care-of Address

(CoA) which is the locator. Packets sent to the HA of a mobile node go to its home

network, and the home agent forwards them to CoA through tunneling (called triangular

routing). Upon further mobility, i.e. visiting additional new networks, the home agent

will be informed (through signaling protocols for registration/binding) and update the CoA

it maintains. While Mobile IP supports mobility, it introduces challenges such as latency

overheads caused by its triangular routing.

2.3 Information-centric and Location-independent: Future

Internet Architectures

While locator/identity split solutions solve some of the challenges regarding mo-

bility, multihoming and renumbering, they still do not adequately address the other three

challenges posed in §2.1. To address them, information-centric networks (ICNs) have been

introduced [92].

16

In addition to separate identity from location, ICNs treat content as first-class

entity, and enable in-network caching of content. Out of various network architectures

proposed under the framework of ICN [182], two have gained major attentions: Named

Data Networking (NDN) and MobilityFirst (MF).

NDN [203] is a network architecture made up of human-readable, hierarchical

names for content, special packets Interest/Data that carry request/response for named

content, and routers that are capable of forwarding and caching content. NDN routers

store the name of each requested data in a Pending Interest Table (PIT) together with

its incoming interface, and forward interests based on longest-prefix match in Forwarding

Interest Table (FIB). On its path back, the content (response) gets cached at every router

along the way in the router’s Content Store (CS). As there is no FIB-based forwarding

for the response and it gets downstream only based on PIT, NDN uses a Reverse Path

Forwarding (RPF) policy. For every new request that arrives, a router only forwards it

onto the proper interface based on FIB entries (longest prefix match) only if neither the

content only exists in its CS (exact match) nor an interest for the same content is pending

in PIT (exact match). For static content, i.e. content that does not change frequently or is

independent of time of request, this is a major help and largely reduces total response time.

MobilityFirst (MF) [160] uses flat Globally Unique Identifiers (GUIDs) to identify

every content, user, device, etc. A key component of MF, is a distributed Global Name

Resolution Service (GNRS) that can be contacted by routers for name-to-address resolution.

GNRS keeps a mapping between GUIDs and Network Addresses (NAs) and in that sense,

is similar to Domain Name System (DNS); but with the difference that unlike DNS, GNRS

17

is a network-layer service. MF helps a great deal when the majority of nodes are mobile,

i.e. fixed GUIDs with frequently varying NAs. It is flexible in terms of when the name-

to-address procedure takes place. It enables late binding, in which the packet is forwarded

only based on GUID for most of the path, and at some point close to the destination, the

router at that point asks the GNRS and the GNRS sends the most recently updated NA

associated with that GUID to that router, and from then on, packet gets forwarded based

on location until it reaches the destination.

ICN provides significant benefits for efficient scalable content distribution, espe-

cially when it comes to popular content. This is realized through the use of content name-

aware network layer (as opposed to IP address-based network layer in IP), in-network name-

indexed content caching at (potentially) every router (as opposed to no content caching in

vanilla IP and limited application-layer caching in CDN), and named content request ag-

gregation and multicast (as opposed to separate per-request end-to-end channel in IP). ICN

provides content-oriented security, in which named content itself gets secured, regardless of

which node is hosting/storing it and on which path it gets delivered. This de-coupling of

consumer and producer, as well as name-based content caching (and store-and-forward con-

tent forwarding), helps provide a reliable and resilient content dissemination and delivery in

delay/disruption-tolerant or challenged networks. In this thesis, we explore various aspects

of naming and content dissemination to analyze and improve some of the said benefits.

18

Chapter 3

Related Work

3.1 Information-Centric Networking

Information-Centric Networking (ICN) enables access to named objects, indepen-

dent of their locations. There have been a number of different ICN proposals in the past

decade, e.g., NDN [203], MobilityFirst (MF) [160], DONA [113], XIA [145], NetInf [57], and

PURSUIT [75]. In this paper, we mainly focus on two notable ICNs, namely NDN and MF.

There are differences between IP and ICNs [92], and also between different ICNs [15]. ICN

has several key features and aspects, which we wish to support and preserve while enabling

interoperation:

1. Naming: In ICN, the network layer is aware of names, while in IP it is only aware of

addresses. Different ICNs have different naming schemas: NDN uses human-readable

hierarchical names [203], while MF uses 20-byte flat names called GUIDs (Globally

Unique Identifiers) [160]. An important service is Name Resolution Service (NRS),

19

which maps names to locations, either implicitly (FIBs in NDN [203]). or explicitly

(DNS in IP or GNRS in MF [160]).

2. Name-based forwarding and routing: The ICN network layer makes forwarding and

routing decisions based on names, which provides benefits such as location-independence

and inherent support for mobility [92,160]. MF forwards both requests and responses

based on the source/destination network address (like IP) after late-binding of the

name to address, while NDN uses reverse path forwarding (RPF) policy for delivering

the response back to the consumer, through Pending Interest Tables (PIT) [203].

3. Connectionless transport: While there has been some work on TCP-like additions

to NDN [137] and MF [176], ICN primarily enables content request and retrieval

without establishing an end-to-end channel, in contrast to today’s HTTP/TCP/IP-

based connection-oriented communication channel-based content retrieval [92].

4. Content-oriented security: ICN secures the data itself, as opposed to IP’s channel-

based and host-based security [182]. NDN uses a trust schema [198] while MF uses

self-certifying objects [160] to ensure provenance and integrity.

5. In-network content caching: ICNs typically cache content, indexed by names, at every

router [202]. This extends the selective and limited CDN-like caching done in today’s

IP. Many studies have shown ICN caching to be very beneficial for reducing the

response time for content delivery as well as availability, especially at the edge [68,122].

20

3.2 Network Verification and NDN Diagnostics

Network verification aims at analyzing large, complicated networks in order to

find corner case errors and investigate essential properties. There have been efforts to build

models to describe and verify networks. For the purpose of building verification frameworks,

some works focus on analyzing control plane (to analyze all data planes caused by configura-

tions) and some on data plane (to analyze the current state of the network). Computational

feasibility and full verification coverage are challenges of control plane verification [31,152].

We focus on data plane verification in this paper. Some of the more notable data plane

verification tools are Anteater [128], HSA [107], VeriFlow [110], and NetPlumber [106].

These methods typically consist of snapshot-based static checking. Anteater [128] models

the data plane as a set of boolean expressions and runs a SAT solver to verify invariants.

HSA [107] uses a geometric view of packet headers, not making any presupposition about

what each packet header element represents, thus making it a flexible model for integra-

tion for new network architectures. Some verification tools additionally support real-time

checking of network policies of Software-Defined Networks (SDN) such as VeriFlow [110]

and NetPlumber [106]. These methods leverage and rely on control update messages issued

by the centralized SDN controller for fast, incremental checking of network data planes.

Thus, they can react to changes before those changes are applied to every one of the as-

sociated routers. Our proposed model is a generic one, with no assumption on how the

network is managed. However, if we have NDN integrated with SDN, real-time verifica-

tion using control update messages may be leveraged. Work in [31, 63] propose data plane

equivalence checks. While they focus on equivalence pertaining to host-centric properties,

21

NSA can check information-centric equivalence, e.g., checking if the same subset of the

content namespace of a particular content provider is reachable in two (or multiple) data

plane snapshots. This is important since we may need to have multiple snapshots each with

the desired differences, and compare them against each other, i.e., cross checks, where the

goal is not to conform to an external property, but rather to compare against a complete,

separate snapshot in time [63].

An important prerequisite of data plane verification is collecting the current state

of the data plane in the form of a snapshot. Based on how the network is managed, differ-

ent methods can be used for this collection procedure. With traditional non-SDN networks,

methods such as SNMP [132], NETCONF [89] or node-specific terminals [201], can be used

to collect FIBs and topology information. NDNconf [16] presents an NDN-ized version of

NETCONF, to collect NDN-specific FIBs. In addition to the capability of querying, ND-

Nconf allows for a push-based notification of changes in the network state to management

servers, which helps with real-time collection of up-to-date snapshots. SDN-controlled net-

works can support a more efficient snapshot collection by monitoring the forwarding rule

updates (insert, modification or deletion) on the southbound interface [124]. Snapshot

collection and verification are two logically independent procedures. NSA focuses on the

verification component, while leveraging the complementary support of these snapshot col-

lection methods.

Our work presents an NDN-specific verification framework. Diagnostic tools such

as Ping [129] and Traceroute [26,109,130,171] have been proposed and developed for NDN.

While these tools are very helpful for performance measurements and small-scale connec-

22

tivity checks, they are often limited in high-coverage checks across the network in a scalable

way, and also use network resources. Thus, a formal approach gives us a higher level of

flexibility and coverage for property checking [107].

3.3 ICN Interoperability

There have been different recent approaches for interoperability involving ICNs

(surveyed in [53]):

Tunneling (Overlay/Underlay)

Some approaches use ICN-over-IP tunneling. For example, the basic design of [168]

is an NDN-overlay: NDN packets are encapsulated into UDP, TCP or native IP packets

traversing IP routers. This enables incremental deployment of ICN over IP and has been

used as the starting point for development of software packages of most ICN architectures

[46, 57, 75, 92]. Work in [133] introduces a layer 3.5 as overlay, and this layer allows new

architectures such as NDN to run. In this approach, each new architecture would have

its own layer 3.5 protocol, having to go through the overhead of mapping from/to the

underlying layers. Similarly, each overlay has its own naming schema. However, the work

does not go into details on how the right name to use is chosen or obtained by a requesting

client. IP-over-ICN solutions, such as [137,170,183], allow legacy (HTTP/TCP) applications

function across an ICN infrastructure, where IP packets are encapsulated in NDN headers,

which get decapsulated when leaving the NDN domain. These solutions typically assume

a single ICN architecture universally deployed (e.g., NDN [203]) and build IP capabilities

23

on top of it. Also, they deal with added IP-to-ICN (and back) mapping latencies at certain

routers on the path [53].

Hybrid Approach

An approach to enable evolution to new architectures and interoperation is to add

the semantics of a new architecture into an existing one. This results in a new hybrid net-

work layer that is backward-compatible with the native version of the original architecture.

CLIP [85] uses an IPv6 subnet prefix for content to enable ICN in IP. Work in [158] pro-

poses the combination of HTTP and ICN, arguing that they both follow a content-centric

pattern. Most recently, hICN [41] proposes to encode NDN-specific components into IPv6,

and allows the coexistence of IP and ICN dual stacks at hICN-enabled routers (capable

of processing both legacy and ICN-enhanced IP packets), while also making use of regular

IP routers (capable of processing legacy IP packets). Consumers and data providers, how-

ever, still need to have the same semantic understanding, e.g., in terms of naming and how

“network” names get mapped to “application” names.

Translation

Solutions in [39,126,189] perform direct translation between HTTP and NDN/MF

traffic. Translation-based interoperability solutions bring great advantages, such as not

having to change domain-specific mechanisms. Work in [189] further optimizes the ability

to cache in the network by adding heuristic rules. Moiseenko et al. [138] modify NDN packets

to better support HTTP-like communication (e.g., uploading large data using POST). These

solutions either support only 2 domains (IP plus either NDN or MF), do not support some

24

of the key domain capabilities, and/or require heavy changes to end nodes and routers

in existing domains. Our approach overcomes these shortcomings using translation-based

stateful gateways for interoperating multiple domains with different architectures, while

preserving their key features.

3.4 Publish/Subscribe

Publish/Subscribe (pub/sub) systems has become a widely used, popular service

over the Internet, in form of RSS feeds, online social networks, etc. Most popular pub/sub

solutions today are server-based; where subscribers either poll a logically centralized server

(via HTTP), or a long-lived connection for timely delivery is maintained [167]. These ap-

proaches can be limited in scalability. Broker-based solutions (e.g., ONYX [60], TERA [29])

use an overlay network with distributed brokers, and avoid traffic concentration. However,

the dependency of these solutions on XML data and assertions to decide forwarding paths,

couples the information structure with the network layer, making the forwarding function

complex. Having pub/sub in the network can help with scalability, and has been proposed

for ICNs [49,75,144]. ICN with push-based publish/subscribe service models [49] have been

proposed. COPSS [49] enhances the query/response model of NDN by allowing consumers

to issue a long-standing request, i.e., subscription, for all content related to (subsets of)

a name, whenever they are published. It can outperform IP multicast, poll-based meth-

ods and flooding-based broadcast [49, 50], in terms of aggregate network load and latency.

CNS [48] extends COPSS by introducing recipient-based pub/sub, that can help with in-

25

formation dissemination. Our work moves a step further by relieving the strict hierarchy

restriction to enable complex free-form graph-based namespaces.

3.5 Graph-based Information Organization and Partitioning

Graph-based information organization has been gaining attention and shown to be

important because of its richness and efficiency compared to the more traditional hierarchi-

cal structures across multiple application domains. Wikipedia is a very popular and notable

example of an information organization system designed as a graph structure: each article

can belong to a number of categories, i.e., dimensions [13]. Graph structures for informa-

tion have been proposed and used in many other contexts as well, e.g., databases [25, 74],

cloud computing [12], and file systems [59]. These works have primarily focused on infor-

mation organization for storage and indexing. Our work focuses on in-network information

organization for name-based information dissemination, extending the current hierarchical

structure of NDN [203] to a graph-based one.

Graph partitioning is an important graph operation, and has been an area of re-

search for decades. Optimal graph partitioning is considered to be NP-hard [69], so solutions

based on heuristics and approximations exist. A very well-known partitioning method is

multi-level partitioning [104] (and its tool METIS [103]), which using heuristics, coarsens

the graph, does an initial partitioning, and then uncoarsens it. METIS has been widely used

for load splitting and balancing in various contexts [34,207]. The parallel version of METIS,

ParMETIS [105], achieves speedups using message passing interface (MPI)-based parallel

processing. ParMETIS also includes additional routines for adaptive re-partitioning, to en-

26

able fast incremental updates to an already-existing partitioning, in case of weight changes

in the graph, rather than complete re-partitioning from scratch. Some methods use the

streaming graph partitioning approach which is used to process partitioning a piece of data

on the fly, e.g., [175]. These algorithms are very fast but their solution quality is lower.

This approach is most suitable for extremely large graphs (in the order of trillion vertices).

There are approaches using iterative improvement methods for graph partitioning. These

methods typically provide high quality solutions. A bad choice of the iterative method and

its parameters can make the procedure slow. Work in [162] proposes a graph partitioning

algorithm using Tabu search, and shows that it outperforms another popular meta-heuristic

method, Simulated Annealing [102], regarding both solution quality and timeliness. Some-

times the objective of partitioning is more than a simple sum of weights, and can be a

complex function of the cut itself. This is characterized as the “chicken and egg problem”

in [157], as the objective function needed for partitioning decision must be calculated af-

ter the partitioning is done; ours belongs to this class. Approaches to solve this class of

problems have been proposed in works such as [36, 143, 184] for specific cases. The work

in [157] justifies the use of standard partitioning as a good starting point, and then perturb

it during the iterative refinement procedures.

3.6 Causal Consistency and Consensus

Causal consistency is a popular consistency model which ensures ordering of events

(e.g., network messages) based on their causal relationship. Works such as [111] propose the

use of physical clocks for ordering. However, physical clocks may have skews. The protocol

27

for clock synchronization may involve significant overhead, especially in a disconnected en-

vironment. Scalar logical clock [115] defines the “happened before” relation. A message

is said to be causally delivered at a recipient user, if all the causal prerequisites of that mes-

sage have been delivered at the user too [40]. The Vector clock method [73, 131] ensures

causal ordering using vectors carried as history in each message, that represent the sender’s

current state relative to every other users’ progress. Work in [173] proposes differential

clocks as an optimization to vector clocks, only sending vector differences. [28] proposes

that explicitly specifying causality, by sender, helps with scalability. Work in [58] proposes

a method for group causal ordering, and enabling causal delivery to multiple groups of

interested users. We use the notion of vector clock but extend it to enable selectiveness

through hierarchically-structured naming and a reactive mode for faster causal delivery, and

capture both implicit and explicit causality.

There has been a great deal of work on consensus, the most prominent of which is

Paxos [117]. Paxos achieves agreement among a number of networked nodes, by election of

a leader, majority voting, and deciding on a value, through a number of rounds. Raft [151]

implements Paxos, designed for strong consistency in log replication among servers in a

cluster. While such solutions work well in connected networks and (partially) synchronous

systems (i.e., known upper bound on message latency), it has been shown in [44] that

they are not suitable for disconnected environments. Their fault recovery, through Failure

Detectors [76], is typically limited to node failures rather than link failures. The Heard-

Of model [44] proposes a benign fault model, and proves that the consensus algorithms

Paxos/LastVoting (P/LV) [37] and One-Third Rule (OTR) [32] can tolerate loss and be

28

suitable for intermittently-connected and mobile environments. The model demonstrates

that rather than assuming eventual synchrony, it is more realistic to assume “good periods”

in asynchronous systems, i.e., an epoch in which nodes can hear of each other (receive their

messages). Work in [38] proves the one-third rule to reach correct consensus and possibly

finish in one round, as long as no more than one third of the consensus participants crash.

Another benefit of OTR over P/LV is that it is coordinator-less, and thus does not need

to have the overhead and complexity of leader election. We build on OTR, enhancing it

with an integration of naming and adding support for cases where decisions need to be

invalidated e.g., due to long-term network fragmentation.

3.7 Propagation in Intermittently-Connected Environments

There have been a number of works on information propagation in intermittently-

connected networks [22]. Generally, these solutions rely on nodes to store, carry, and

forward messages [66]. Most solutions rely on nodes taking advantage of opportunistic

encounters to exchange messages (i.e., gossiping), typically with high message delivery

latency due to disconnections [83,174,185]. Methods such as Bubble Rap [88], dLife [140],

SCORP [141], and EpSoc [120] use social data regarding human interactions as the basis

of such routing predictions. We use Epidemic Routing [185] in this paper because of its

simplicity for DTNs and the fact that it requires minimum assumptions about network (no

path/geography/social-connection based decisions) which suits our scenarios, has a high

delivery ratio, achieves lower delays (relatively), and is especially suitable for broadcast-

oriented messaging [22] (although we can replace it with the some of the other methods

29

mentioned if additional assumptions are reasonable and can be accommodated). Epidemic

routing uses message buffers and performs store-and-forward [185]. Apart from its benefits,

it is observed that epidemic routing has high overhead [22]. We enhance it with the use of

naming, to reduce load.

The use of network naming for systematic organization of information for better

dissemination efficiency has been introduced as the integral part [97] of the Information-

Centric paradigms, such as in Named Data Networks (NDN) [203]. Work in [187] provides

name-based DTN-like dissemination frameworks. However, extra steps are needed for en-

suring consistent dissemination. Some works [32] propose the use of interest profiling

for selective gossiping. We extend their ideas to implement the content-oriented graph-

based naming for profiling as well as proposing a flexible multi-level profiling for various

consistency levels. Methods such as NDN Sync [123] and Secure Scuttlebutt [178] propose

log replication consistency in name-based intermittently-connected environments. How-

ever, they only guarantee causal consistency, but do not provide strong consistency or total

ordering, which are important when dealing with multi-user updates on a single, shared

database. Naxos [188] proposes a name-based version of Paxos for NDN. However, Naxos

only supports request/response pull-based communication pattern, and assumes connected

environments with centralized orchestration. We integrate name-based publish/subscribe

push-based dissemination patterns, and aim at ensuring strong total order consistency by

supporting consensus in dynamic intermittently-connected environments.

30

3.8 Use of Social Media for Information Dissemination in

Disasters

There have been many studies characterizing and designing network and commu-

nication frameworks for disaster management (surveyed in [197], [64]). Disasters can have

major network-related impacts such as infrastructure damage and excessive congestion [64].

Different communication and network technologies have been proposed for disaster manage-

ment, including Cellular, P2P and Satellite [197]. In addition to technological challenges,

there are known social and organizational challenges when designing an effective and effi-

cient network architecture for disasters [197]: a common language between organizations

and citizens, as well as a structured, non-ad-hoc organization of disaster response is needed

and desired [197].

Social media has been increasingly used for information dissemination in incident

response, which can be very beneficial, especially when traditional means of communica-

tions, e.g., 911, are down or overloaded [54,101,164]. Social media server-based extensions

and plugins have been developed for help during disasters, providing users with useful in-

formation, e.g., updates, warnings, offers, maps, etc [101]. As recent examples, social media

has shown to be very useful to communicate and exchange critical disaster-related informa-

tion to request and offer help, in California Wildfires in 2018 [164]. Our work integrates

social media with name-based communication and content dissemination, to intelligently

guide social media posts to the right recipients, as opposed to the currently unstructured

ways for dissemination, e.g., in form of retweets.

31

Chapter 4

Name Space Analysis: Verification

of Named Data Network Data

Planes

4.1 Introduction

In this chapter, we present Name Space Analysis (NSA), a framework for modeling

and verification of NDN data planes. NSA is based on the theory of Header Space Analysis

(HSA) [107]. HSA uses a geometric view of packet headers, where each packet header is

generally modeled as a point in a space and network functions transform that point to

another one within that space. Additionally, the ability to analyze a “space” rather than

a “single point”, makes this an efficient analysis approach. This flexibility and efficiency

make it a good formalism for integration in the analysis of NDN. We add another geometric

32

space in NSA, namely the name space, and a new function, name space function, that

transforms a point in the header space domain to a (collection of) point(s) in the name

space domain. We extend HSA by enabling flexible atoms and variable-size wildcards to

model headers (to support NDN-specific packet formats [146]), and adding name spaces as

an essential part of the analysis. Analyzing name spaces in NDN is necessary and very

useful as they are key to accessing content. We propose NDN-specific properties that can

be checked by NSA; e.g., in NDN we are interested in verifying host-to-content reachability,

rather than the host-to-host reachability requirement expected of traditional host-centric IP

networks. NSA has a number of verification applications (to prove key properties), namely

content reachability test, name-based loop detection, and name leakage detection. We

additionally support verification applications that go across multiple snapshots to analyze

changes between multiple states (e.g., consistent producer mobility check) and report on

their equivalence. The complex structure of names in NDN may cause issues, e.g., interfering

prefix announcements by two non-coordinated data producers, which can potentially lead

to blackholes. We call this name space conflicts and show how NSA can identify them. The

importance of having a name management method in NDN has been identified in [52,179].

Using the concepts of NSA, we propose a name registration method that can catch and

resolve such conflicts in the data plane. We implemented NSA, including all the essential

components of our design: name atoms, set operations, transfer functions, state space

generation, and verification applications. We also identified a number of optimizations,

and evaluating our implementation on synthetic snapshots and real-world NDN testbed

snapshots shows that NSA is effective, efficient and scalable.

33

Overall, the contributions of this work are: 1) a framework for verification of NDN

data planes, focusing on the nature of NDN, rather than the previous tools for host-centric

architectures; 2) modeling name spaces and name space functions, as they are the main

assets required to access content in NDN; 3) specifying essential NDN-specific properties

and approaches to analyze them (content reachability test, name-based loop detection, name

(space) leakage detection, and cross-snapshot equivalence checks); 4) studying the practical

issue of name space conflicts in NDN and guidelines for a conflict detection and resolution

engine; 5) an implementation of NSA [99] with its optimizations; and 6) demonstrating

NSA’s applicability to the real-world NDN testbed [148].

4.2 NSA Design

In this section, we describe the formal foundations and building blocks of NSA,

focusing on the components that we are adding or are different from the original HSA and

demonstrate them by examples from NDN.

4.2.1 Modeling NDN Header Space

Atoms and Header Representation

The atoms of analysis in HSA are bits, since some fields can be encoded as single

bits in IP. An NDN packet, on the other hand, is a set of nested Type-Length-Value (TLV)

codes represented as octets [146]. Thus, the smallest possible atom in NSA is octets (bytes).

With byte-based atoms, NSA header representations follow NDN’s TLV octet-based encod-

ing. Other atoms could be picked as well: e.g., if checking the correctness of TLV encoding

34

is not important in a particular analysis, atoms can be NDN fields. With field atoms, NSA

header representation will be an XML-like structure. If only the name field needs to be

checked, atoms can be names. With name atoms, NSA headers are represented as a combi-

nation of name components, similar to NDN regular expressions [147]. Unlike HSA’s strict

use of bit atoms, NSA provides the flexibility of using byte, field and name atoms for header

representation. The correct atom depends on the scope of verification and the desired level

of abstraction.

Unlike IP packet headers, NDN does not have a fixed header with fixed fields at

fixed positions. Interest and Data packets have different types. Normally, an NDN Interest

has only headers; thus, we use the terms “packet” and “header” for NDN interchangeably,

throughout this chapter.

NSA can model headers of any length; however, for the sake of checking finiteness,

an upper bound L (maximum header length) has to be set. Still, headers of different lengths

can be processed together; variable-length wildcard atoms provide the necessary padding

to facilitate this.

Wildcard Expressions

In order to efficiently model and process a header space rather than a single point,

i.e., a single header, we use special wildcard elements to represent atoms that can take

any possible value. Wildcard expressions are supported by the set operation as we explain

below.

Single-atom wildcard. Similar to the original HSA, albeit using flexible atoms

rather than only bits, we sometimes use a wildcard of size one, denoted as “[?]”, and

35

defined as [?] = a1 ∪ a2 ∪ · · · ∪ an, where ai is a possible value for an atom and n is the

number of possible values for an atom; e.g., with byte atoms, we have n = 256.

Variable-length wildcard. Unlike IP headers, the NDN header has a flexible

format and there is no rule on how much information should exist between two particular

fields. To efficiently incorporate this feature into NSA, we add a new wildcard type: variable-

length wildcard, denoted by “[∗]”, which can be a wildcard of any size (zero or more atoms)

up to the size allowed for the maximum header length. Formally,

[∗] = ∅ ∪ [?] ∪ [?][?] ∪ . . . until length allowable by L.

Note that the “[∗]” wildcard is not currently part of the NDN architecture; we

use it as part of NSA headers for the model’s representation and verification efficiency, to

be used in a symbolic execution fashion, which we explain in §4.3.

Set Operations

Set operations are important for manipulating header spaces in order to model

packet processing through transfer functions. We use a similar algebra as HSA, with the

difference being that we use variable-length wildcards and flexible atoms.

Union. This is the basic operation. For header spaces h1 and h2, header space

h = h1∪h2 contains all headers in h1 and h2. Result of union may or may not be simplifiable.

Intersection. For two headers to have a non-empty intersection, they should

be of equal length and have the same values (or wildcard element) at the same position.

To convert length, “[∗]” should be converted by an appropriate number of “[?]’s”, as

explained above. At the atom-level, we have a∩ a = a, a∩ [?] = a. For two unequal atom

values, a1 ∩ a2 = [z]. Special atom “[z]” denotes an atom that has zero possible values,

36

i.e., null (empty). A header space h that has even one “[z]” is regarded as empty. Also,

intersection of any atom-string with an all-wildcard “[∗]” header will be the atom-string

itself.

Complementation. Complement of non-wildcard atom a, denoted as a, can take

any values other than that of a.

Difference. Difference of two headers is defined as h = h1 − h2 = h1 ∩ h2. For

example, with byte atoms, using these set operators, we will have:

ab? − abc = ab? ∩ (abc) = ab? ∩ (abc ∪ abc ∪ abc ∪ abc ∪ abc ∪ abc ∪ abc) =

∅ ∪∅ ∪ abc ∪∅ ∪∅ ∪∅ ∪∅ = abc

This basically means any three-byte string starting with “/a/b” but not (i.e.,

minus) “/a/b/c”.

4.2.2 Modeling NDN Nodes

Packet processing in an NDN node is modeled using Network Transfer Functions,

as

T (h, f) : T (h0, f0)→ {(h1, f1), (h2, f2), . . . }

where a function T maps header h0 coming to face f0, to all headers h1, h2, etc., going out

of faces f1, f2, etc. of the node respectively. NSA’s transfer functions are at the level of

a face, rather than being port-level as in HSA. While this does not change the algebraic

operations on the transfer functions, in practice it does enable one to write such functions

using faces, regardless of the underlying strategies associated with those faces. Domain and

range of NSA transfer functions are of the same type (both Interest or both Data headers).

37

Transitioning from Interest to Data is not a part of NSA verification as it requires changing

the state of the data plane. Depending on the functionality being modeled, function T may

or may not change h0, and may or may not depend on the incoming face f0. Any NDN

packet processing, including an NDN forwarding behavior, can be modeled using (a set of)

transfer functions.

For example, the transfer function for forwarding an Interest as a result of the

Longest Prefix Matching (LPM) on the FIB, assuming there are two entries with indexes

(prefixes) n1 and n2 in the FIB, can be written as:

TI.fwd(h, f) =

⋃
(h, fn1

i), if FIBM(name(h), n1),

∀fn1
i ∈ SF (n1)

⋃
(h, fn2

i), if FIBM(name(h), n2),

∀fn2
i ∈ SF (n2)

∅, otherwise

where the FIB is a collection of (prefix, set of faces) pairs; assuming the use of LPM, the

FIB match function FIBM() returns true for at most one FIB entry; and depending on

forwarding strategy, i.e., best route, multicast, etc., the function SF () (selected faces) will

return the appropriate corresponding outgoing faces.

In general, a typical Interest processing transfer function can be modeled as TI(.) =

TI.fwd(TI.CS(TI.P IT (.))). What elements we put into a transfer function depends on our

architecture and the purpose of the analysis. For example, if we have the assumption of

the CS and PIT being empty upon the arrival of an Interest, then we can simply have

38

TI(.) = TI.fwd(.). Additional functions can be added to the pipeline as well, including

those that modify the incoming header space, e.g., function THopLimit that decrements the

HopLimit field in the Interest [146] if it is above zero and passes it to the subsequent

transfer function in the pipeline, and drops it otherwise:

THopLimit(h, f) =

(h′, f), if HopLimit(h) > 0,

HopLimit(h′) = HopLimit(h)− 1

∅, otherwise

Using similar patterns, we can model Data forwarding or any additional Inter-

est forwarding transfer functions such as the full forwarding pipelines in the NFD spec-

ification [19] or link object processing [20], complicated forwarding strategies and Nonce

checks, etc. A packet processing pipeline can be modeled as a cascade of functions, i.e.,

Tn(Tn−1(. . . T1(.))) where each Ti is a specific function (step) in the pipeline. It can also

be a named function, performing an operation if the Interest name has a particular prefix;

this operation can involve changing the name in the header. E.g., an arbitrary Interest

anonymizer, that encrypts the name with key K and encryption algorithm Enc, and trig-

gered by the prefix “/Anon”, will have a transfer function in its Interest process pipeline, as

follows:

Tanon(h, f) =

(Enc(h,K), f), if prefix(h)="/Anon"

(h, f), otherwise

39

Generally, a condition on a header is modeled as a header space (which may or may

not have wildcard expressions) and the result depends on the output of a logic operation on

the incoming header and the condition. This depends on the process and the condition and

may in some cases be tricky. E.g., for LPM checking, for a header to be forwarded out of a

face, the FIB entry index corresponding to that face has to be a prefix of the header’s name

(non-empty intersection) in the Interest, and a longer FIB index must not be a prefix of that

header (empty intersection). For example, consider an NDN node with FIB consisting of

two rules “/a→ f1” and “/a/b→ f2”. Given an all-wildcard input header, Interest headers

coming out of face f1 are those whose names start with “/a/” (i.e., “/a/∗”) and not with

“/a/b” (i.e., “/a/b/∗”).

NSA does the conversion of the NDN FIB table to NSA transfer function. For a

FIB table with e entries, the worst case complexity of this procedure would be O(e2D2d): for

every entry ei, we need to check all other entries to find descendants, i.e., at finer granularity

of ei. For each descendant of ei, i.e., eji , 2dij corresponding NSA rules need to be generated,

where dij is the granularity distance between ei and eij . E.g., granularity distance of prefixes

e1 =“/a” and e2 =“/a/b/c” is 2, as e2 is a descendant of e1 and has two additional name

components. As a result, corresponding to e1, NSA would create rules for “/a/b/c/∗”,

“/a/b/c/∗”, and “/a/b/c/∗” for the network transfer functions (so the outcome would

be determined by the intersection of incoming header to every rule). D and d denote the

maximum number of descendants and granularity distance in the given FIB table.

40

4.2.3 Modeling Name Spaces

We add the notion of name spaces as a key component of our analysis approach.

Name spaces show relations between content names, in a content repository and across

the network. They are an important part of NDN, and NSA factors them carefully in its

analysis. As far as NSA is concerned, a name space is any structure representable by a

graph. We assume a special case of that, namely NDN-style hierarchically structured tries

(prefix trees), in this chapter.

Formally, a name space in NSA represents names and their relations, and is a

domain separate from the header space domain. A name space function, transforms a point

in the header space domain to a name space domain, i.e., its corresponding name(s). Name

space function Ω() is introduced in NSA. It transforms a (set of) header space(s) (after

parsing it to the individual name parts) to a name space. In particular, Ω() performs the

following two steps on an input header space h: 1) extracts the (prefix) names associated

with h, 2) provides the reverse construction of the prefix tree from the list of prefixes

derived in step 1. This resulting prefix tree is the name space, used in NSA verification

applications.

4.3 Verification Applications in NSA

This section explains a number of verification applications that NSA can check.

Specifically, we look at the important applications of testing content reachability, loop

detection and name leakage detection. NSA provides significant benefits both in terms of

the verification results and its efficiency compared to simulation-based tests.

41

An important part of NSA’s formal verification approach that facilitates auto-

mated checking is the generation and analysis of the state space, or propagation graph. The

graph represents all possible paths any packet can take, rather than a single trace that

a simulation-based approach would support. This provides the desired coverage we need

for verification. An example is shown in Fig. 4.1. Each node in this propagation graph

is a state, mainly consisting of a header and a face, denoting the arrival/departure of the

header to/from the face. Depending on the specific application, there can be additional

state information, such as a visited nodes list, e.g., for loop detection. We record as much

information within a state (e.g., list of visited nodes) as needed, so that checks could be

done by looking at the state only, so that extra processing on the graph would not be

necessary (e.g., checking all ancestors of a state by traversing paths). The initial states,

i.e., parent-less nodes in the graph, represent injections to the network. For example, in

Fig. 4.1, the propagation graph (Fig. 4.1(b)) implies that header h0 is injected to face A0

of node A (as shown in Fig. 4.1(a) as well). State transitions in the propagation graph can

be through network transfer functions (i.e., processing packets within a node) represented

by single arrows in Fig. 4.1(b), or topology transfer functions (i.e., moving over physical

links) shown by double arrows.

While NSA can be used for both Interest and Data packets, we focus on Interests in

the remainder of this chapter. As pointed out in [19], Interest processing is more complicated

than Data processing: it has longer, more complicated pipelines, has additional procedures

such as forwarding strategy selection, and its forwarding decisions are made through the

42

B1

B2

C1

A1
A2

A0

h0

C2

h2

(a) Topology and header

spaces (yellow boxes: header

spaces are created and trans-

ferred on links)

Header: h0

Face: A0

Visits: A

Header: h1

Face: A1

Visits: A

Header: h2

Face: A2

Visits: A

Header: h1

Face: B1

Visits: A, B

Header: h3

Face: B2

Visits: A, B

Header: h3

Face: C1

Visits: A, B, C

Header: h2

Face: C2

Visits: A, C

(b) Propagation graph (−→:

network transfer function

transitions; =⇒: topology

transfer function transitions)

Figure 4.1: Propagation graph example

result (i.e., FIB) of complicated distributed algorithms (i.e., routing protocols). All these

motivate more careful attention.

4.3.1 Content Reachability Test

Reachability analysis in HSA, and other host-based verification solutions, focuses

on host (content provider) reachability. We extend this to content (name space) reachability

in NSA, since this is a main concern in NDN. This analysis generates name spaces that can

reach content repositories, i.e., at producers or content stores. To this end, we apply a

name space function on the header space received at a content repository:

CRA→B(h, f) =
⋃

A→B paths{Ω(Tn(Γ(Tn−1(. . .Γ(T1(h, f))))))}

43

where CR denotes the content reachability function, its range being all the content names,

in form of name spaces, received at content repository B, having injected h at face f of A,

and functions Ti and Γi being switch network and topology transfer functions on the path,

respectively. Function Ω is the name space function that transforms header spaces to name

spaces.

A big part of name space reachability analysis is comparing the received name

space request, i.e., NSrcv
B = Ω(hB) with the hosted (actual) name space NShos

B at node

B, where B is a content provider (or a router equipped with a content store). Ideally, we

desire both name spaces, NSrcv
B and NShos

B to be equal. Generally, there can be three cases

possible when comparing NSrcv
B and NShos

B :

1. If part of NSrcv
B is not in NShos

B (Case 1: unsolicited names), it means B would receive

Interests for names the node does not have, i.e., those packets get blackholed.

2. If part of NShos
B is not in NSrcv

B (Case 2: unreachable names), it means part of B’s name

space is untouched, i.e., requests for them would never be received. Cases 1 and 2 need

not be disjoint.

3. If neither cases occur, verification is successful, i.e., NShos
B = NSrcv

B (Case 3).

The process is exemplified in Fig. 4.2, where header space hA injected at host A

traverses nodes (e.g., routers) with transfer functions TC and TB where the header space hB

gets transformed and compared with the content name space at B. Node B can generally

be any node in the network that has the capability of storing and serving content, be it a

content publisher or an ICN-capable router with content store.

44

A ��() ��()

ℎ� ℎ� ℎ�

�	�

�� �	�

��

Compare
�(ℎ�)

Figure 4.2: Content reachability test

Algorithm 1 specifies the application for the name space reachability test in a

network, denoted by its Network Space N , which is the collection of all name spaces, and

transfer and transform functions. Starting from an initial header space, typically of all-

wildcard elements, this application generates output headers of each node, step-by-step, by

walking through the header propagation graph. It can start from one (as shown in Algorithm

1), or any arbitrary number of consumers. The name space functions and comparisons are

applied and performed at all the nodes in the network that are considered content providers.

The application finds all case 1 and case 2 errors for each content provider and also returns

the overall verification result, as either True (verification success, no bugs found) or False

(verification failure, bugs exists), for the whole network. In the case of verification failure,

NSA can provide the counterexamples, i.e., “unsolicited” or “unreachable” names at each

content repository.

The time complexity of an NSA content reachability test for injecting a header to

a consumer that leads to a single content provider is O(dLR2s), where d, L, R, and s are

maximum network diameter (number of hops), maximum header length, maximum number

of node rules, and maximum number of paths in a trie-based content provider name space.

This analysis is based on the linear fragmentation assumption in [107], which says that

45

Algorithm 1 Content Reachability Test
1: procedure ConReach(C, h0, N) . Injecting h0, at C, network space N

2: Start with h0 at C . Typically all wildcard, i.e., [∗]

3: Calculate all hPi ’s . Headers reached at provider Pi

4: for all Pi do

5: NSrcv
Pi
← Ω(hPi)

6: NSUW
Pi
← NSrcv

Pi
−NShos

Pi
. ‘Unsolicited’ names

7: NSUR
Pi
← NShos

Pi
−NSrcv

Pi
. ‘Unreachable’ names

8: if NSUR
Pi
∪NSUW

Pi
= ∅ then

9: ResultPi ← True . Success at Pi

10: else

11: ResultPi ← False . Failure at Pi

12: end if

13: end for

14: return
∧

allPi’sResultPi . Overall verification result

15: end procedure

46

typically very few rules in a node match an incoming packet. Unlike NSA, the complexity

of a simulation-based test would be O(daLRs), where a is the maximum number of values

an atom can take; e.g., with byte-based atoms, a would be 256. This shows the huge benefit

of NSA over purely simulation-based approaches, for a content reachability analysis with

high coverage.

NSA’s content reachability application can be used to reason about various issues,

both in current NDN as well as in a more general research context, as explained in the

following examples:

• Route computation outcome correctness. We can use NSA’s content reachability

analysis to see if a particular content request reaches the nearest (or all/any) content, in

case a content resides at two repositories with the same names. This is very useful to

analyze the correctness of the computation outcome (i.e., resulting state in the FIB, and

not the routing protocol itself) of traditional routing protocols such as NLSR [86] (only

focusing on content providers) or nearest replica routing protocols [27] (focusing on both

content providers and ICN router content stores).

• Security infrastructure soundness. In NDN’s content-oriented security design, keys

that are used to perform security-related operations (authentication, etc.), are just like

any other content: they have names, their names/prefixes populate FIBs, and they

can/should be retrieved using Interests [198]. The reachability of the correct keys is

important for NDN security mechanisms to be sound. As an important case, NSA can

check if all public keys (e.g., data with “/KEY” prefix) can be reached at appropriately,

requested from all appropriate end points in the network.

47

PC
f1 f2

/democracy/* /democracy/*
P serves

“/democracy”

R drops “/democracy”

P would not receive interests for “/democracy” it serves, since R has censored it!

Figure 4.3: Content censorship example

• Content censorship-freedom. Censorship leads to content reachability errors; in the

example in Fig. 4.3, censoring node R may drop all interests for “/democracy” [114]. This

would result in (all or part of) content provider P ’s name space to be unreachable, inject-

ing headers from C. This is an undesired effect that can easily be detected by NSA. While

NSA cannot definitively deduce that such a problem is caused by content censorship, the

lack of existence of such errors would imply content censorship-freedom. Furthermore,

the effectiveness of a censorship countermeasure mechanisms can be checked using NSA.

Content neutrality. We define Content Neutrality as not favoring a content provider

over another (by not discriminating), with regards to same prefixes that they serve. With

multicast forwarding strategy at every router for every prefix, NSA can check whether

all content providers receive Interests matching their entire name space, for every ‘all-

wildcard’ injection. While NSA cannot detect if a reachability error is caused by discrim-

inatory neutrality violation or benign configuration mistakes, an error-free data plane

could be used to show if content neutrality holds.

48

4.3.2 Loop Detection

Loop freedom is an important property in networks. For NDN in particular, loop-

ing Interests is a widely known issue, which led to the addition of extra processes in the

forwarding pipelines, such as a Dead Nonce List [19]. While such reactive measures detect

looped Interests after they occur, looped Interest would not be prevented and could poten-

tially waste a large amount of network resources. Also, it is very likely that an Interest is

looping because it is not satisfied; i.e., did not reach its intended content provider(s) due

to errors in the forwarding state of the network. As a result, making a local decision at an

NDN router to discard or drop a looping Interest does not solve the problem of unsatisfi-

ability of certain Interests. Thus, it would be highly desirable to detect all potential loops

in a data plane, before they occur, with a holistic view of the network data plane.

NSA helps in identifying all Interests that might potentially loop. NSA typically

does this by injecting all-wildcard headers and looking for possible loops. Thus, we can

track every possible Interest and find all potential loops by following FIB rules established

in a given data plane. We therefore achieve a purely name-based loop detection, rather

than a nonce-based detection. NSA models the transition of all packets within a single data

plane snapshot, thus enabling a robust loop detection algorithm (as does HSA [107]). As

all FIB rules causing the loops are contained in one single snapshot and it is possible to

analyze them with transitioning packets (headers), NSA can catch all potential loops.

The loops detected can be potentially infinite or finite. Suppose node A appears

twice in a single path in the propagation graph, visiting two header spaces h and h′ (in

that order); if h′ ⊆ h, then this would be a potential infinite loop. An example is shown

49

A2

A1

/a/b

h0=“/*”

D0

FIB rule for “/prefix” and

its output face direction

(a) Topology, injected header, and

FIB rules

Header: h0 = “/*”

Face: D0

Visits: D

Header: h=“/a/*”

Face: A1

Visits: D, A

Header: h’=“/a/b/*”

Face: A2

Visits: D, A, B, C, A

…

…

Loop detected!

ℎ
�
⊆ ℎ ⇒ Infinite loop!

(b) Propagation graph (par-

tial)

Figure 4.4: Loop detection example

in Fig. 4.4, where NSA first detects a loop (as node A appears twice in one particular

path), and second, it determines the loop to be infinite, checking the header spaces h and

h′ associated with the visits, where headers with name “/a/b/∗” return back to node A.

Having h′ ∩ h = ∅ implies a certainly finite, thus non-hazardous, loop which NSA ignores.

By adding the history of each state to NSA, i.e., the sequence of headers and faces, NSA

can easily detect infinite loops by checking whether a particular header space (subset) has

been visited by a node twice or not.

4.3.3 Name (Space) Leakage Detection

What if a consumer issuing an Interest for a particular name, wishes (parts of) the

name, e.g., his ID or a particular content name, to not be visible in the network except for

50

certain authorized nodes, e.g., those in his home network? This can be a desirable property

for a variety of reasons. Works such as [181] have identified the need for Interest name

privacy.

In NSA, inspired by HSA’s slice isolation check, we can check whether or not any

confidential name leaves a particular set of nodes authorized for read-access. Let us call

this set of nodes as a zone. A zone can be a particular router, a local network, a service

provider network, etc.

Let us consider the example in Fig. 4.5: Consumer C issues Interests with header

h0, which results in headers h1, h2 and h3 leaving the authorized zone of routers, denoted

as Z1. We define all the headers going out of Z1 as hout = h1 ∪ h2 ∪ h3. NSA allows us

to define and apply access control rules on names in a number of ways, and check name

constraints on hout accordingly, e.g., the following examples:

• Headers of particular form, e.g., containing a particular name component or prefix, should

not appear in any packets leaving zone Z1. Then we should have hout ∩ hprohibited = ∅,

where the left-hand side of the equation denotes the intersection of all headers leaving

Z1 with all prohibited headers. Prohibited headers can be built using NSA’s atoms and

algebra, as described in §4.2. The “∅” on the right-hand side means that we do not want

any header in the result of the intersection to leave Z1.

• Packets associated with name space NS0 should not leave Z1; then we should have

Ω(hout) ∩ NS0 = ∅. This way of defining a rule is more efficient for constraints of a

larger set of prefix-suffix name relations representing a portion of a name space graph:

51

instead of checking many prefixes one by one, we can check once against name space NS0

comprising all those prefixes.

C

Zone Z1

Figure 4.5: Name leakage detection example

4.3.4 Cross-Snapshot Equivalence Check

The applications above focused on checking properties within a single snapshot

of the data plane, i.e., a single state. However, in many cases we may wish to check

properties across multiple snapshots. An important class of multi-snapshot checks is to do a

comparison between two (or more) separate snapshots of the network. NSA enables a Cross-

snapshot Equivalence Check. A pair of snapshots may be fed as inputs and we can check

the equivalence between the two with a custom notion of equivalence. The two snapshots

can represent two versions of a data plane, or different states of the same data planes at

two different points in time (collected at certain intervals or triggered by certain events). In

particular, our goal is to check how the point of attachment of a producer affects its content

reachability. Ideally, we want it to have no effect. While single-snapshot analysis checks

a snapshot against an external property as a reference (e.g., content reachability), cross-

snapshot analysis checks a snapshot against another snapshot, i.e., the reference snapshot,

52

and makes sure the two are equivalent. This can be defined as s1 ≡EP s2, where s1 and s2

are the two comparable snapshots and EP is the case-specific equivalence property, i.e., the

notion of equivalence we want to check, by comparing the snapshots provided. We explain

this by way of an example.

Example use case: Producer Mobility Correctness. Mobility is a major

feature of NDN. However, especially when it comes to producer mobility, handling it in a

correct way (i.e., making sure the producer’s content reachability properties stay the same

after the mobility and network re-convergence) can be quite challenging [204]. We can use

NSA’s Cross-snapshot Equivalence Check to check this correctness property.

Let us consider two snapshots s1 and s2 of an NDN network, where s1 and s2

are identical in every way except that the network point of attachment of producer P is

different in the two snapshots, as depicted in Fig. 4.6. In other words, state s1 is collected

before P ’s move and s2 is collected after P has moved. The state in the network (i.e., FIBs

in the routers) has been re-populated and routing convergence, according to the protocol,

has been partially or completely achieved.

Now Let us assume that we want to make sure that P ’s name space reachability in

s2 is exactly equal to that in s1. That would be our desired equivalence property. To check

this, we use the Content Reachability function as described in §4.3.1. We produce CRs1
x→P

and CRs2
x→P , which provide all names reached at P (from any starting node x) in s1 and

s2 respectively. If the ranges of CRs1
x→P and CRs2

x→P are equal, then we say s1 and s2 are

“equivalent in regard to reachability of P ’s name space”. Thus, the mobility of producer P

53

is handled correctly with respect to this property. In other words,

EP : Range(CRs1
x→P) = Range(CRs2

x→P)

where EP defines the equivalence property for this case. This would mean that s1 and

s2 are in the same equivalence class with respect to property EP (it is trivial to see that

the specified EP is an equivalence relation). Differences between the ranges of CRs1
x→P

and CRs2
x→P indicate incorrectness and will be reported as errors. Examining the non-

overlapping parts of CRs1
x→P and CRs2

x→P , the network manager can infer as to which

forwarding rules are causing the error. Having said that, deducing the root cause of what

aspect of the mobility handling protocol is causing the error may be difficult in more complex

scenarios (i.e., those which involve many mobility events), since NSA does not explicitly

determine the root cause.

Fig. 4.6 shows a simple mobility example, where producer P , which serves name

prefix “/a” moves from its initial point of attachment R2 (initial snapshot, s1, Fig. 4.6(a))

to R3 (finals snapshot, s2, Fig. 4.6(c)). For simplicity, we consider a naive routing-based

mobility handling solution that re-populates all FIBs with an updated announcement after

the new attachment. An intermediate state (s1.5, Fig. 4.6(b)) shows the state after P ’s

move but before full re-convergence of the network (R3 has been notified of the update,

but R1 and R2 have not yet been notified). Using the mobility equivalence property EP

defined above, we will have s1 ≡EP s2, but s1 6≡EP s1.5 since the range of CRs1
C→P and

CRs1.5
C→P do not match; in other words, interests for “/a” from C that reach P in s1, do not

do so in s1.5. Similarly, s1.5 6≡EP s2. This example shows that during the transition, the

network is temporarily incorrect. The property needs to ultimately hold for the initial and

54

C R1

R2

R3

P

(a) Initial state (s1)

C R1

R2

R3 P

(b) Intermediate (s1.5)

C R1

R2

R3 P

(c) Final state (s2)

Figure 4.6: Data plane state changes due to producer mobility (P serves “/a”, green arrows:
FIB entries for “/a”)

final snapshots. Also, a fast mobility solution, creates erroneous intermediate snapshots

that are fewer and last for shorter durations.

Furthermore, checking two different intermediate snapshots of two different mobil-

ity solutions can be helpful. E.g., suppose R2 in Fig. 4.6(b) has received an ‘invalidation’

signal from P once it moves. NSA gives us the full header space leaving R2 in the two

cases: ‘without invalidation message’ vs. ‘with invalidation message’ (as two intermediate

snapshots). The smaller size of the latter shows that fewer interests will be blackholed by

using the invalidation message.

While the toy example above only deals with one mobility event and only 3 snap-

shots, it can easily be generalized to more complex checks. Since the goal is putting different

snapshots in their respective equivalence classes, many possible snapshots may be checked

through NSA’s equivalence checks. Also, multiple producer mobility events can be sup-

ported, e.g., if multiple producers re-attach in s2. This is possible in NSA’s snapshot-based

data plane verification approach, since the impact of all the mobility events can be captured

in a single snapshot.

55

Consumer mobility can be checked for correctness in a similar manner. Cross-

snapshot equivalence check application can be very useful to check the outcome (not the pro-

tocol itself, per se) of mobility handling protocols on the data plane, especially with regard

to how they re-populate the network FIB or re-direct requests. This may be complimentary

to other protocol verification methods used for specific mobility handling protocols [204].

4.4 Complexity Analysis

First, we analyze the complexity of transfer function generation, which is an im-

portant step where NSA converts the NDN FIB table to NSA transfer functions that capture

those rules (as described in §4.2.2). We now look at its time complexity. For a FIB table

with e entries, the worst-case complexity of this conversion would be O(e2D2d): for every

entry ei, we need to check all other entries to find its descendants, i.e., at finer granularity

of ei. For each descendant of ei, which we represent as eji , there would be 2dij corresponding

NSA rules that need to be generated, where dij is the granularity distance between ei and

eji . For example, granularity distance of prefixes e1 =“/a” and e2 =“/a/b/c” is 2, as e2 is

a descendant of e1 and has two additional name components. As a result, corresponding to

e1, NSA would create rules for “/a/b/c/∗”, “/a/b/c/∗”, and “/a/b/c/∗” for the network

transfer functions (so the outcome would be determined by the intersection of incoming

header to every rule). Also in the complexity formula, D and d denote the maximum

number of descendants, and granularity distance in the given FIB table, respectively.

Next, we analyze the time complexity of the execution of the verification proce-

dures on prepared network space, starting with content reachability (§4.3.1). Let us assume

56

we have an injection of a header at one consumer, that leads to one content provider through

a single path. Let us also define d, L, R, and s as maximum network diameter (number of

hops), maximum header length, maximum number of node rules, and maximum number of

paths in a trie-based content provider name space, respectively. The time complexity of the

NSA content reachability test will then be O(dLR2s). This analysis is based on the linear

fragmentation assumption in [107], which says that typically very few rules in a node match

an incoming packet. On the other hand, the complexity of a simulation-based test (as well

as ping or traceroute) would be O(daLRs), where a is the maximum number of values an

atom can take; e.g., with byte-based atoms, a would be 256. NDN headers have no specific

upper bound; however, it is recommended that a reasonable MTU (which can be thousands

of bytes) be conformed to by NDN applications [17]. This will make aL very large. This

way, the simulation approach will reach a very large and exponentially growing complexity.

This shows the huge benefit of NSA for a content reachability analysis with high coverage.

Using the same similar method and the linear fragmentation assumption, we can

analyze other NSA applications as well. NSA completes loop detection (§4.3.2), in particular

to check if a header injected at a node A returns to A, in O(max(c, d) × LR2), where c is

the length of the longest cycle (loop, in terms of number of hops) in the network. Loop

detection only checks the forwarding rules, and not the content available at nodes (hence

the removal of s from the complexity expression). NSA’s name leakage detection (§4.3.3),

in particular to check if an injected header at node A in zone Z1 will cause a name leakage

at node B in zone Z2, has the complexity of O(dLR2 × P), where P is the maximum

number of prohibited names per zone. For multi-snapshot checks (§4.3.4) with n snapshots,

57

 0

 20

 40

 60

 80

 100

 120

 140

2x2 3x3 4x4 5x5

E
xe

cu
ti

on
 ti

m
e

(m
s)

Network size (grid dimensions)

Content reachability - All faces
Content reachability - One face
Content reachability w/ hdr. aggregation - All faces
Content reachability w/ hdr. aggregation - One face
Loop detection - All faces
Loop detection - One face

Figure 4.7: Results for small grid snapshots

if the check’s complexity within a snapshot is O(f), then the total worst-case complexity is

O(n2f), as every snapshot will have to be compared and put in the right equivalence class.

4.5 Evaluation

10

100

1000

10000

100000

1000000

NSA Sim.
 L=1

Sim.
 L=2

Sim.
 L=3

Sim.
 L=4

E
xe

cu
ti

on
 ti

m
e

(s
)

Verification method

Figure 4.8: NSA &
simulation-based check

 0.1

 1

 10

 100

 1000

 10000

25x25 50x50 75x75 100x100

E
xe

cu
ti

on
 ti

m
e

(s
)

Network size (grid dimensions)

0.36

4.57

42.92

217.45

Figure 4.9: Large grids,
vary network size

 0.1

 1

 10

 100

 1000

 10000

1 10 100 1000

E
xe

cu
ti

on
 ti

m
e

(s
)

No. of prefixes per provider

0.06
0.46

15.87

1504.83

Figure 4.10: Large grids,
vary prefix count

58

Header: h3

Face: A2

Visits: A

Header: h3

Face: C1

Visits: A, C

Header: h4

Face: B2

Visits: B

Header: h4

Face: C1

Visits: B, C

… …

… …

(a) Original propa-

gation graph

Header: h3

Face: A2

Visits: A

Header: h7 = h3 ꓴ h4

Face: C1

Visits: (A | B), C

Header: h4

Face: B2

Visits: B

… …

…

(b) Aggregated prop-

agation graph

Figure 4.11: Propagation graph aggrega-
tion example

We have implemented NSA, including its main components and modules, in Java;

the source code is available at [99]. We start by evaluating the performance of NSA using

synthetic grid and ring topologies, and then apply it to the NDN testbed topology for eval-

uating a network that is actively used [148]. All evaluations have been done on a machine

with Ubuntu 14.04.6 LTS using Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz dual-socket

with 14 cores each with hyper-threading enabled, and 252GB RAM. We do not utilize the

whole RAM capacity though; we set the maximum memory heap size of our Java Virtual

Machine (JVM) to 10GB only. For each verification application, all wildcard headers, i.e.,

“/∗” is injected to all faces or nodes. While reporting our evaluation results, we identify

and present optimizations that further improves NSA’s performance.

4.5.1 Synthetic Networks

Content Reachability Analysis and Loop Detection

To evaluate NSA’s content reachability analysis and loop detection we use cus-

tomized n×n grid topologies (to allow many branches in the propagation graph), with n pub-

59

 0

 5

 10

 15

 20

 25

 30

2x2 2x3 2x4 2x5

E
xe

cu
tio

n
tim

e
(m

s)

Network size (ring sizes)

All faces
One face per node

Figure 4.12: Name leakage

 20

 40

 60

 80

 100

 120

 140

 40 80 120 160 200 240

E
xe

cu
tio

n
tim

e
(m

s)

FIB size (# of FIB rules)

Figure 4.13: Rule generation (‘UCI’ node)

Table 4.1: Execution Time (ms) for NDN Testbed Verification

Application Best-route Multicast

Content Reachability Analysis 196 2,481

Content Reachability Analysis (w/ header aggregation) 75 342

Loop Detection 190 2,416

lishers in each case, each serving one distinct prefix; these prefixes are advertised and popu-

lated in every node’s FIB in the snapshot being verified. Verification performance results for

these grid networks are presented in Fig. 4.7, in terms of execution times, in milliseconds.

First, Fig. 4.7 shows the execution time of content reachability on the grid net-

works. This verification, as explained in §4.3.1, checks both unreachable and unsolicited

names. Typically, NSA injects all-wildcard headers into all faces, since some node rules

may depend on the incoming faces (‘All faces’ in Fig. 4.7. As seen in the Fig., the growth

of execution time for ‘All faces’ injection mode is linear with respect to the input network

size growth (note the input growth on x-axis is n2). Since we are only dealing with FIB

rules that do not depend on the incoming face, we can limit our injection to ‘One face per

60

node’ injection only. This would not change the outcome of the verification results. Fig. 4.7

shows that this optimization significantly improves the performance of NSA, which is due

to the fact that its fewer number of injections leads to smaller propagation graph.

For the full reachability check, we need to go through a separate propagation graph

fragment, built and checked for each injection, to check both unsolicited and unreachable

names. If our goal is to only check unsolicited names (and not unreachable names), we can

make all injections at once into a single propagation graph fragment, aggregating the headers

(Fig. 4.11). This way, we preserve all reached header spaces, but not their exact paths from

origin in the visited list. Fig. 4.7 also shows the significant performance enhancement of this

optimization, compared to full reachability analysis, if our goal is only to detect unsolicited

names.

The use of wildcards is an important benefit of NSA (and HSA), compared to

simulation-based methods (which have to generate all possible packets within a range). We

show the empirical results for the use of wildcards in Fig. 4.8. Each simulation scenario

(‘Sim’) is a typical simulation-based content reachability analysis (using the aggregation

optimization with the sole purpose of detecting misdirected packets) that injects Interests

with L name components, each being a single alphabetical letter. Using diagnostic tests

through ICN/NDN ping and traceroute tools has the same theoretical complexity as the

simulation-based approach, with the additional disadvantage of using too much network

resources (as every test packet injected will have to actually traverse the network). Fig. 4.8

shows the large benefit, in terms of performance and scalability, of NSA compared to these

simulation-based verifications.

61

To demonstrate NSA’s performance and scalability, we examine its utility with

larger test cases, with n×n grids. The results are shown in Figs. 4.9 and 4.10. Each node’s

FIB is populated with entries (rules) for all prefixes, with random outgoing faces. We only

show the results for the reachability test with aggregation optimizations, with all-wildcard

injections at all nodes, one face per node. Fig. 4.9 shows the execution times (shown in

seconds in log scale) when increasing the grid dimensions. The largest case (100×100) has

a total of 100×100×100×1=1 million rules in the network, which is similar with the largest

test case considered in HSA’s performance evaluation [107]. Thus, NSA’s performance is in

the same order of that of HSA, even though NSA adds the significant feature of checking

name-based (information-centric) reachability. Further, note that our grid topology yields

much higher number of paths compared to HSA’s simpler backbone topology [107]. The

growth rates in Fig. 4.9 is reasonable: note that along the x-axis, each scenario exponentially

increases the number of paths, where an n × n grid has O(n!) paths between two nodes,

leading to much higher length and number of paths in the propagation graph. Next, we

pick a 10×10 grid (with 10 providers), and gradually increase the per-provider number of

prefixes. The largest case (e.g., “1000”) leads to a total of 10×10×10×1000=1 million rules

in the whole network. Again, the performance and scalability of NSA with these large

test cases is reasonable (both compared to the absolute values for HSA, and comparing

the relative growth in execution time). This is especially compelling, considering the high

complexity of these test cases and how they affect the runtime.

We also evaluated the performance of NSA’s loop detection on the same grid

networks, injecting all-wildcard headers. Fig. 4.7 shows the results for both cases of ‘All

62

faces’ and ‘One face per node’ injection. The complexities, growth rates and optimization

benefit of face selection in loop detection are similar to those of full content reachability

analysis. Also, compared to NDN’s built-in loop detection mechanisms, NSA can prevent

all possible loops caused by forwarding rules, without using network resources, and allowing

for hints on how to resolve the loop errors.

Name Leakage Detection

To verify name leakage-freedom, we use two-ring topologies; where two rings of size

n are connected by one node, i.e., is a gateway between the rings. Each ring is considered

its own zone, and has one publisher serving (and advertising) two prefixes, one prefix visible

to everyone, and one prefix visible only to the nodes within the local zone. Thus, each NDN

node has rules for the three prefixes (that are visible to it): two prefixes of its own zone,

and one prefix that is public from the other zone. In each of its rounds, NSA’s name leakage

detection application injects all-wildcard headers to the faces/nodes of one zone, generates

headers that reach the other zones, and checks whether or not they violate each zone’s

name privacy requirements. The performance of name leakage on the two-ring topologies

are shown in Fig. 4.12, indicating its scalability (showing a linear growth) with the increase

in network size.

4.5.2 NDN Testbed

To evaluate NSA’s performance on an operational, practical NDN, we considered

the NDN testbed [148]. This is the largest real-world NDN with publicly available forward-

ing state, with relatively large forwarding tables (of the order of hundreds of entries per

63

node). We captured a snapshot of the testbed on 2019/03/09 14:43:16 CST. We use the

globally available topology. Each node in the testbed provides its (near-)real-time local

status (FIBs, etc.) through a separate webpage. We collected the full network status by

crawling these individual local status pages. Some nodes were offline or unresponsive and

we removed them from our analysis.

An important pre-processing step for NSA verification is generation of the transfer

functions. We have implemented these components in NSA. The topology transfer function

generation is trivial. For network transfer function generation for LPM-based forwarding

rules in NDN nodes, additional processing needs to be done: for each FIB entry, all other

rules (i.e., FIB entries) have to be visited. To show this empirically, we picked one particu-

lar node from the testbed, the ‘UCI’ node. It has 214 FIB entries in our selected snapshot.

We randomly pick 50, 100, 150 and 200 FIB rules from it and perform the network transfer

function generation. The execution time (including the case with all 214 entries) is shown

in Fig. 4.13. These results show that NSA’s transfer function generation for this particular

real-world case is reasonably efficient and scales well with number of FIB rules.

We performed content reachability (both full and aggregated) and loop detection

on the snapshot (we did not perform name leakage detection on it since the name leakage-

freedom is not one of the properties of the NDN testbed) using two forwarding strategy

modes (for all), namely the best-route and multicast, and found several errors. In the best-

route mode, we found 450 content reachability errors, either caused by forwarding state

errors or physically unavailable/offline nodes. For example, the name “/kr/re/kisti” is

reachable only in 31% of injections. Also, 704 loop-freedom violations were found; note

64

that this is not the number of loops (cycles) per se, but rather the total number of looped

Interests detected as a result of injections. For example, for the prefix “/kr/re/kisti”, a

loop was found between the two nodes ‘TNO’ and ‘GOETTINGEN’. In the multicast mode,

we found hundreds of errors too. The performance results of our verifications (execution

times in milliseconds) are shown in Table 4.1, showing its latency is reasonable.

From a practical standpoint, our experiments and results show that it is feasible

to have NSA integrated into the NDN testbed (in one of its nodes), and periodically check

for data plane errors, and checking various states of the data plane. Given that these checks

only take seconds in total, including transfer function generation and the analysis, it would

be quite reasonable to have new NDN snapshots (which can be generated every few minutes

or seconds) be verified. The network administrator can run NSA on one of the nodes (a con-

troller or any router) on the testbed, periodically collect snapshots at that node (using meth-

ods such as NDNconf [16]) and provide continuous verification results of the network. This

would be very helpful for the users of the NDN testbed, and for their research experiments.

4.6 Case Study: Name Space Conflict Detection/Resolution

As an important case study, in this section, we explain name space conflicts, and

how NSA can detect and help resolve it.

NSA can be used to investigate and catch a wide variety of corner cases that may

result in errors. In this section we explore as an example, property violations caused by

name space conflicts across different content providers. In NDN, different content providers,

65

f0

f2

f1

P2

C

P1

P2’s announcement

P1’s announcement

Figure 4.14: Name space conflict example (case I: only
P1 is present; case II: both P1 and P2 are present)

sports

football basketball baseball

news

(a) P1’s name tree

sports

xbox

news

politics economics

(b) P2’s name tree

Figure 4.15: Name trees of the
producers in Fig. 4.14

Table 4.2: Name Space Conflict Scenarios for Case II

Scenario P1 announcement P2 announcement FIB at R Result Comments

II-1 /news/sports /news /news/sports → f1 fail P2 requests reach P1

/news → f2 (blackhole)

II-2 /news/sports /news/politics /news/sports → f1 success relatively large FIB

/news/economics /news/politics → f2 (4 entries)

/news/sports/xbox /news/economics → f2

/news/sports/xbox → f2

II-3 /news/sports/football /news /news/sports/football → f1 success relatively large FIB

/news/sports/basketball /news/sports/basketball → f1 (4 entries)

/news/sports/baseball /news/sports/baseball → f1

/news → f2

II-4 /news/sports/football /news/politics /news/sports/football → f1 success relatively huge FIB

/news/sports/basketball /news/economics /news/sports/basketball → f1 (6 entries)

/news/sports/baseball /news/sports/xbox /news/sports/baseball → f1

/news/politics → f2

/news/economics → f2

/news/sports/xbox → f2

66

Prod. ID Name Space

P1

P2

sports

football basketball baseball

news

* * *

sports

xbox

news

politics economics

* *

*

(a) Global name space

Prod. ID Routable Prefixes

P1 “/news/sports”

P2 “/news”

(b) Global routable prefixes

Figure 4.16: Databases at name registry

potentially with different subsets of content in the name hierarchy, can use and announce

the same prefixes. This can be true especially when the names are topic-based. No content

provider has sole ownership or authority to announce a certain prefix. While this allows

for the democratization of content and better efficiency, it can cause conflicts that can lead

to blackholed interests. We illustrate this using an example. In addition to checking with

NSA, we also ran these scenarios in ndnSIM [149] and observed that the blackhole effect in

question indeed does occur.

Fig. 4.14 shows a simple network topology. Suppose in the beginning, there exists

only one producer P1 (case (I)), with the name tree depicted in the Fig. 4.15(a) and cre-

ates a name announcement for “/news/sports”. The announcement is used to populate

the router R’s FIB in accordance with NDN policies. Announcing “/news/sports” implies

that P1 claims that it has ‘everything’ under “/news/sports”, which is correct from the

network layer’s perspective. In reality, a producer may not have ‘everything’ under a par-

67

ticular name prefix it announces, i.e., there may be a possible suffix not covered in this

announced ‘everything’ set. However, since there is no other producer to ‘challenge’ P1’s

claim, P1’s announcement stating that requests for anything under “/news/sports” will

be available at P1 does not cause any conflict.

Now let us assume the same network but with two producers P1 and P2, as

shown in Fig. 4.14 (case (II)), with P2’s name tree shown in Fig. 4.15(b). The subset of

P2’s name tree that is interesting for this discussion is “/news/sports/xbox”. Note that

there is no malicious intent on P2’s part; evidently, P1 does not recognize video games

as ‘sport’; however P2 does (with the sport being ‘xbox’). P2, unaware of this conflict,

announces his prefix also at the coarsest granularity, announcing “/news” (Scenario II-1 in

Table 4.2). Using NSA’s content reachability test, we can show that this scenario is erro-

neous: requests for “/news/sports/xbox/1” reach P1 instead of P2. P2 is this Interest’s

(most) relevant provider. Formally, header space of form “/news/sports/xbox/∗” reach-

ing R at f0, has a non-empty intersection with R’s FIB rule at f1 (“/news/sports/∗”)

rather than that of f2 (“/news/∗”), assuming a best-route forwarding strategy at R. Thus,

“/news/sports/xbox/” will be a name reaching P1 and not P2:

“/news/sports/xbox/” ∈ Range(CRC→P1)

“/news/sports/xbox/” /∈ Range(CRC→P2)

This undesirable effect can be remedied by changes in the prefix announcement. In partic-

ular, we can change the granularity of the prefix announced by P1 or P2, or both. While

NSA does not ‘directly’ resolve errors, the counterexamples it provides can give us guidance

on how certain bugs can be resolved. For scenario II-1, comparing unsolicited names at

P1 with unreachable names at P2, e.g., observing that the name “/news/sports/xbox” is

68

part of NUW
P1 and also NUR

P2 (as given by Algorithm 1) suggests that with more fine-grained

announcements, i.e., announcing names at lower levels in the name tree, interests have a

better chance of reaching their most relevant producers. Table 4.2 shows three examples

of these alternative announcements (which we call scenarios II-2, II-3 and II-4), making

the NSA verification of each example successful. However, we see their costs, in terms of

scalability and FIB size are different An important takeaway from the results in Table 4.2

is the (possibly) inverse relation between correctness (absence of name space conflicts) and

FIB size. We can say that finer granularity of prefix announcements, leads to less conflict

but larger FIB sizes. In scenario II-2, P1 announces one prefix at a coarse granularity

of “/news/sports”, while P2 announces three prefixes at different granularities, namely

“/news/politics”, “/news/economics” and “/news/sports/xbox”. This will populate R

with 4 prefixes, as shown in Table 4.2. Using NSA, we can see that an Interest of form

“/news/sports/xbox/∗” reaching R at fact f0 will leave R on face f2 (rather than f1), thus

reaching its intended producer, P2. Therefore, this makes the verification successful. In

scenario II-3, P1 announces three fine-grained prefixes, namely “/news/sports/football”,

“/news/sports/basketball” and “/news/sports/baseball” and P2 announces one coarse

grained prefix, namely “/news”. NSA in this scenario shows that “/news/sports/xbox/∗”

goes out of face f2 since it has an empty intersection with all of the forwarding rules leading

to f1 (towards P1). In scenario II-4, both P1 and P2 announce prefixes at fine granularity.

While R’s FIB size in scenarios II-2 and II-3 are 4, that for scenario II-4 is 6. All these

three are correct, i.e., absent of name space conflicts.

69

Producer

(requester)
Name Space

Registry

Global

Routable

Prefixes

Global

Name

Space

Request for permission to

announce prefix “/p”
Find and retrieve potential

conflicts

Find name space conflicts
‘Granted’

OR

‘Denied’ + conflict-free prefixes

Update databases if ‘granted’

Figure 4.17: Name registration procedure

This case study shows that achieving correctness has a cost. It may be important

to find the most efficient refinement to the name space announcement so as to keep the FIB

size manageable. There is a need for an approach to detect and perhaps resolve conflicts,

before they happen. We provide some guidelines for the design of such an approach next.

4.6.1 Name Space Registry Guidelines

The name space conflict observed in the case study in §4.6 may be quite common.

While NSA is useful in finding conflicts, an automatic approach, or protocol, for conflict

detection/resolution can be very beneficial in NDN. To prevent content provider name

space conflicts, a Name Registration protocol may be such a solution. The idea of name

registration in NDN has been suggested in previous works, such as in [52], mainly to prevent

prefix hijacking. Our case study however shows it is important for non-malicious Scenarios

as well.

A name space registry can be implemented as a distributed or centralized engine to

be contacted by producers whenever they want to announce a prefix. The producer sends his

70

requested announcement prefix and (a pointer to) his content name tree. The response data

from name registry would be a signed packet containing the prefix announcement permission

result, i.e., ‘granted’ or ‘denied’, plus possibly new prefix announcements suggested by the

name registry that are conflict-free. The name registry’s decision is based on an analysis of

name spaces across different providers, which are in its database, called a global name space

(Fig. 4.16(a)). The name registry may have another database of global routable prefixes

(Fig. 4.16(b)). Both databases are indexed by Producer ID which can be a real ID or a

locally generated (but unique) ID. If permission is granted, the new prefix announced will

be added to the global routable prefix list, and the producer’s name space will be added to

the global name space database. If the request is denied, the requester needs to pick another

high-level name for the prefix announcement (just as in today’s IP network, domain names

have to be tried one after another, until one is available) or use suggestions provided by the

name registry. The suggestions for the prefix announcement can be provided at different

granularity levels to help manage the growth of the FIBs. While we describe it as a logically

separate entity, the name registry can be integrated with possible existing name resolvers,

such as NDNS [18]. An overview of the name registration procedure is depicted in Fig. 4.17.

Upon receiving a request for permission to announce a prefix “/p” from a producer, the

name registry performs the following steps:

1) Examine the global routable prefixes list to find potential conflicts. Two an-

nouncements can cause potential conflict if one is the “prefix” of the other (i.e., their

intersection is non-empty). An example for potential conflicts between names is P2’s an-

71

nouncement “/news” that is a prefix of P1’s announcement “/news/sports” in Scenario

II-1 in Table 4.2. The name registry returns the indices, which are producer IDs.

2) Retrieve every individual name space associated with the previously found pro-

ducer IDs. These are potentially conflicting name spaces. 3) The name registry compares

the requester’s name space against any other potentially conflicting name space. If a con-

flict is found, it will follow the steps outlined in step (4) onwards; otherwise follow step (6)

onwards. A conflict is found if starting from the root on any of the two name spaces, the

announcement prefix exists on any of the other name spaces, but at least one descendant

does not. For example, in Scenario II-1 in Table 4.2, “/news/sports” on P2’s name space

exists in P1’s as well, but it leads to the name “xbox” that does not exist on P1’s name

space. The condition for announcement prefixes pr1 and pr2 (associated with producers

P1 and P2 respectively) to be conflict-free, can be specified by the following assertion:

(pr1 is a prefix of pr2)
∧

(pr2 ⊆ NSP1)

=⇒ ∀ non-wildcard sequence of name components X :

“/pr2/X ′′ ⊆ NSP1 ⇐⇒ “/pr2/X ′′ ⊆ NSP2

4) Generate conflict-free announcement prefixes for the requester. This can be

done by checking finer granularities on the name space; e.g., Scenario II-2 in Table 4.2. A

more fine-grained prefix includes more detail about a category of content items, and has

a lower chance of conflicting with other prefixes. Conflict-freedom of alternatives that are

found can be checked using the assertion in (3). Note that a conflict-free alternative may not

exist; in that case the requester has to pick another, different, high-level name. Otherwise,

some of previous producer announcements need to change, which can lead to much more

complexity.

72

5) Respond to the requester with a signed data stating ‘denied’; possibly together

with prefix suggestions. Stop.

6) Send a signed response to the requester stating ‘granted’.

7) Add the requester’s announced prefix and name space to the associated local

databases at the name registry.

Our case study shows, that having a conflict detection and resolution engine (name

registry) in NDN is necessary to prevent the occurrence of name space conflicts, and subse-

quent blackholing of Interests. NSA can be used to analyze the correctness of the outcome

of such a mechanism. While we outlined design guidelines and principles of such an engine,

space limitations preclude a detailed specification.

73

Chapter 5

Information-centric

Interoperability for Future

Network Architectures

5.1 Introduction

In this chapter, we propose COIN, a framework for interoperability between legacy

and future Internet architectures, focusing on the important class of ICNs, which are sig-

nificantly different from today’s IP architecture. COIN does not require any change in

existing individual domain architectures and preserves their key features and mechanisms.

Additionally, COIN does not require content to be moved or replicated to allow access to it

from users and end-systems that are in a different network domain. It also does not require

the identity/name of a content item to be replicated for each existing domain and end host’s

74

understandable semantics. For content-oriented interoperability, it is key that naming is

harmonized across different domains. An integral part of this harmonization is that the

native naming schema of each domain type (e.g., hierarchical structure of NDN [203]) is

retained while enabling access and retrieval of content across domains with different naming

schema. This goal would be very difficult to achieve with an overlay approach, especially

for traversals across multiple domains of different architectures [133]. On the other hand,

an efficient translation of content requests and responses between domains can support this

interoperability. To this end, rather than creating a new universal layer or overlay, COIN

provides translation-based interoperation across multiple domains, with the use of gateways

that process requests/responses and retain state information. COIN supports both static

and dynamic content requests. Using encryption/decryption as well as iterative signatures

performed as we cross from one domain to another domain, COIN ensures confidentiality,

integrity and provenance. To obtain content names in a foreign domain, COIN incorporates

an Object Resolution Service (ORS) [14]. ORS is an important capability that enables

cross-domain name retrieval and usage through a systematic, application-layer procedure.

Our ORS design, importantly, relieves the interoperability framework and content providers

from re-naming content for each domain, and consumers from having to understand new

name formats foreign to them. Focusing on the candidate cases of IP, Named Data Network

(NDN) [203] and MobilityFirst (MF) [160], we implement and experiment with our design

for interoperation. We focus on NDN and MF for two reasons: 1) The Future Internet

Architecture (FIA) community treats these as two prominent ICN projects [9], with contin-

uing research efforts and community involvement. 2) The two architectures have significant

75

differences and represent two different “sub-classes” of ICN architectures: NDN supports

hierarchical naming with implicit name resolution in the network, while MF supports flat

names with explicit name resolution. Taking these differences into account, we evaluate

COIN and show that it is effective and efficient.

The contributions of this part are: 1) a generic interoperability framework among

ICN and IP domains for secure static and dynamic content retrieval that preserves key fea-

tures of domains, thus managing evolution in a flexible manner; 2) an implementation of the

framework [6] for interoperability among IP/HTTP, NDN and MF; and 3) measurements

based on the implementation of the framework across different domains to demonstrate its

utility from a performance perspective.

We present an Alloy [91]-based formalization of Information-Cetric Interoperability

(ICI), to analyze interoperability correctness. We cover both pull-based (request/response)

and push-based (publish/subscribe) [49] content retrieval services, and their most essential

properties such as content reachability and returnability. To analyze content-oriented ser-

vices, we distinguish between static and dynamic content, justifying their differences, and

specifying no-conflict properties, especially for dynamic content retrieval. For verification of

these properties, we use Alloy Analyzer’s built-in SAT solver-based model finding engine [4].

We also consider failure and mobility; to analyze them, mere model finding is not sufficient,

as failure and mobility, when severe, can cause any network protocol to become “incorrect”

(and raise counterexamples). Thus, for such analysis, we resort to model counting (to count

and compare the number of satisfying instances and counterexamples) to assess “how well”

a particular domain or architecture is doing under failure and mobility.

76

The major contributions of this part are: 1) a model finding method to analyze

basic properties (mainly reachability and returnability) of information-centric interoperabil-

ity (ICI); 2) a formally-verified ICI framework; and 3) a model counting method to analyze

gateway failure and mobility.

5.2 Motivation and Overview

5.2.1 Design Goals and Rationale

COIN provides interoperability between legacy (current) and future architectures

guided by these requirements:

• It should support host-centric (e.g., IP) and information-centric (e.g., NDN and MF)

networks.

• It should add no architecture/protocol change to the existing individual domains (i.e.,

no new layer or protocol change).

• Introduce minimal change to end host logic, so clients in one domain use native

mechanisms to seamlessly exchange information with another domain.

• Support request for both static (e.g., find a movie) and dynamic content (e.g., query

for current weather information), potentially across multiple (≥2) domains.

• Preserve ICN’s domain-specific features; i.e., interoperate between different naming

schema, between connection-oriented and connectionless transport, between stateless

and stateful forwarding, between channel-based security and content-oriented security,

and support in-network caching.

77

• Each domain’s content namespace should be limited only to include the objects in

that domains.

• Inter-domain message exchanges must be secure (i.e., provenance, confidentiality, and

integrity ensured).

To satisfy the above requirements, we use a translation-based approach primarily

to retain each domain independently (and preserve their key features), without changes to

existing architectures (thus allowing for easier deployability and evolution). This approach

overcomes some of the shortcomings and challenges of alternative approaches:

• Tunneling (overlay/underlay) and hybrid approaches require both the consumer and

content provider to have the same semantics and formats, including components such

as the naming schema [41, 133]. Translation can achieve the goal of every end host

only having to “speak its own language”.

• Overlays cannot take advantage of all the capabilities in the underlying domain since

the underlay usually does not understand the semantics of the overlay; e.g., in ICN-

over-IP [168], IP does not provide many of the advantages that would be obtained

from ICN, such as content caching or stateful forwarding. Hybrid approaches are also

limited in terms of satisfying all key ICN features through their integrated protocols

[41, 53]. With translation, we can retain domain-specific features as well as essential

ICN features across domains.

• Overlay approaches introduce considerable overhead and complexity at the overlay-

enabled routers, having to perform the mapping between the different decoupled lay-

78

ers; this may be encountered at (potentially) many routers on the path [53]. With

translation gateways, routers retain their native domain-specific designs and imple-

mentations.

• The addition of new architectures requires significant changes to the overlay at tunnel

end-points, both in terms of standardization and deployment. The same is true with

hybrid approaches, which requires the embedding of domain-specific components of

the new architecture into the integrated network layer protocol. With translation, we

can add any number of new network types and attach them to existing domains via

gateways supporting them.

• The above challenges become even more severe when dealing with a multitude of

interoperating domain types (more than two). We alleviate this in COIN.

It is sometimes noted that translation-based interoperation is counter to the end-

to-end principle of the Internet, as argued in [133]. However, we believe that new ar-

chitectures (mainly ICNs) already challenge the pure end-to-end principle; e.g., in NDN,

the procedure for requesting and receiving content is asynchronous, with routers manag-

ing transport on a hop-by-hop basis, without necessarily having a complete end-to-end

communication [203]. Also, in today’s Internet, middleboxes such as NATs add additional

indirection in the network [55]. We believe a translation-based approach is suitable and

pragmatic for interoperability between current and future networks.

With a focus on content-oriented services, our translation is performed at the “con-

tent name level”, i.e., in the layer that identifies content names, be it the application layer

in legacy IP domains (e.g., URLs to identify content in HTTP) or network layer in NDN do-

79

mains (in form of hierarchical human-readable names). This provides a significantly higher

abstraction than the address-based design of legacy interoperation and is important since

names are “first-class” entities in information-centric paradigms. In such environments, it

is also important for consumers to pick “the right name” for a content request, and receive

that content. Recent works such as [41, 133] allude to the importance and challenges of

such mechanisms, although they do not provide a solution for it. We propose a protocol for

Object Resolution, to enable the retrieval of the necessary names.

5.2.2 Overview of COIN

COIN provides interoperability among any number of domains, each having a

distinct network design and architecture, including legacy (IP) or future (ICN) Internet

architectures. COIN gateways provide this interoperability through translation and state

maintenance. A client in one domain can request for content (static or dynamic) multi-

ple domains away, and receive the corresponding content in the response. COIN makes

no change to existing domain-specific architectures, and preserves key domain features, in-

cluding domain-specific security models and mechanisms. Most notably, COIN preserves

namespace size and structure of each domain, and does not create a new naming schema.

Content can be universally identified using its domain-specific (i.e., native) name, plus its

domain ID. A client requesting content from another domain, uses the content’s native name

and its domain ID. To acquire that information, COIN uses an Object Resolution Service

(ORS), which is an application-layer search engine-like service providing names as response

to keyword queries. The foreign name provided to consumers are not distinguishable from

native ones, thus making the consumer’s request for content seamless.

80

5.2.3 Addressing Challenges for Gateway-based Interoperability

While our solution helps achieve our design goals, there are additional concerns to

be addressed. Most of these challenges exist for other translation-based approaches as well.

We explain how COIN overcomes them.

Evolution flexibility; Too many pair-wise translators? Typically, in a translation-

based interoperability solution, for n different network architectural designs, one might end

up needing n2 translators [133]. Not only would it be too complex to design so many

translators, it also can make it very inflexible for adding a new domain architecture: n

additional translators would need to be implemented. COIN overcomes this by having an

internal canonical form at the gateways, and adapters that convert domain-specific packets

to/from this canonical form. This way, for n different network designs, we will only have

n adapters at the gateway (rather than n2 individual translators), and one canonical form

that is consistent across all gateways. Note that this canonical form is not ‘yet another

network layer’; it is only an internal design component inside the gateway.

Too many requests going through gateways? Only the requests going across a do-

main to another domain need to go through a gateway. However, this may still end up

resulting in an excessive number of requests that a gateway has to process. This can make

the gateway un-responsive and be a single point of failure. This is a general problem of

gateway-based interoperation. To overcome this, COIN leverages in-network caching, a

key domain-specific feature that COIN preserves, because of its use of the native naming

schema of the domain. Content coming from another domain through a gateway can still be

cached in the consumer domain. Many works have shown that in-network caching is very

81

beneficial since the content demand in the Internet follows a Zipfian distribution [68]. Work

in [122] has shown that with a proper caching scheme, in-network caching for a typical web

workload can achieve up to 70% hit rate even with cache capacities as little as 2% to 7%

percent of the whole content space. With caching enabled, and assuming Zipfian workload,

the majority of the requests in COIN would be satisfied in the consumer domain, thus not

having to necessarily go to gateway to be processed.

Storage overhead at gateways? Gateways have to keep a small amount of informa-

tion as state for every incoming request. While in-network caching can dramatically reduce

the number of requests the gateway has to process, storing state associated with each of

them may still be a challenge. To overcome this, gateways in COIN leverage request aggre-

gation for requests for the same content (typically static content). Only the first request is

forwarded, while the subsequent identical ones get aggregated (similar to NDN PIT [203]).

In addition, COIN gateways can cache content themselves, thus enabling them to respond

without having to issue a new request (and thus store associated state) in the next do-

main. These methods, combined, greatly reduce the amount of memory consumption at

the gateways as well as the number of requests going out of them.

5.3 Architecture and Design

5.3.1 Preliminaries

COIN’s network environment may be made up of a number of different domains

(e.g., IP, NDN, and MF) with gateways connecting pairs of domains, in addition to clients,

82

ORS

Information

Layer

Service

Layer

Routing

Layer

NRS

Object

Resolution

Name

Resolution

MFNDNIP

A football match highlightA movie

Any sports item

Current weather in Riverside, CA A paper

http://a.com/

movie.mp4

/weather/ca/riverside/

201812022315

/sports/football/

match11/seq01

/sports

Paper GUID

A video with two

segments

Video segment 1 GUID

Video segment 2 GUID

Flat IDsHierarchical namesURLs

/sports/football /sports/golf

GW GW

Figure 5.1: Layered architecture overview

servers, publishers, and content repositories that can reside in any of the domains. A high-

level, layered architecture view is shown in Fig. 5.1. We identify three layers (similar to [93]),

each characterizing an important aspect of COIN’s content-centric view. The Information

layer captures accessible objects and content items in various applications. A Service layer

shows in what format (hierarchical format, etc.) each object in an Information layer is

named and identified. The Routing layer takes care of transmitting packets to an appropri-

ate (one or more) recipient(s) using routing/forwarding protocols within that domain. It is

important to note that we are not adding any new layers; rather, we are recognizing the log-

ical layers that represent functionality that is common in the domain-specific architectures.

For example, the service layer is part of the network layer in NDN and MF, and part of the

application layer in IP. The Object Resolution Service (ORS) generates names understand-

able by the corresponding domain’s service layer and the domain-specific Name Resolution

83

Service (e.g., DNS in IP and GNRS in MF). It helps names to be mapped to location infor-

mation in each domain for routing. The figure also shows that each domain (and producers

and consumers in the domain) only needs to understand its own naming structures (whether

hierarchical or flat). Gateways facilitate appropriate translations and bridging between dif-

ferent network architectures, preserving their key features and internal mechanisms.

5.3.2 Service Interface

The primary services supported by COIN are static and dynamic content retrieval.

Both follow a query/response model, a very popular model in today’s Internet as well as

in ICNs [92]. This distinction between static and dynamic content requests is important,

since they need to be treated differently: The response for a dynamic content request

might depend both on consumer’s input and the current state of the server (such as a

keyword-based search that may depend on time, location, or server policies). Thus, the

response cannot be from a cache, since the current server-generated response is desired.

Static content requests, on the other hand, have no such restriction. Cached content, in

routers or Content Delivery Networks (CDNs), can be returned to consumers, as long as

it has the right version. Note that other possible services, e.g., publish/subscribe [49] are

not the focus of COIN’s current design. However, with additional modules for processing

those other services, e.g., push-based multicast or repetitive poll-based request generation

component implementation for publish/subscribe with the capability to translate to/from

an internal canonical format, COIN can support them as well.

84

5.3.3 Common Information Elements

These are common elements on which the translation between different formats

have to be performed and are primary parts of a COIN gateway’s canonical form. COIN

supports all protocols that have these common elements (e.g., HTTP/IP, NDN, MF, XIA,

NetInf, and even FTP):

• Request type (to distinguish between dynamic and static content requests; request

type can be a pre-existing field in the packet header or body based on implementation

choice);

• Destination domain and content name (generally as “DstDomain/ContentName” to

identify content and target domain);

• Content version (as content may have different versions);

• Exclude for static content request (to allow consumers to get the latest version of a

content item);

• Input for dynamic data request (to allow a consumer to pass parameters to a dynamic

data provider); and,

• Demultiplexing key (to identify a corresponding request when the response data comes

back to a gateway).

5.3.4 Naming

Naming is key to enabling content-oriented interoperability. COIN primarily per-

forms translations at name level. This principle brings important benefits: 1) Each domain

85

keeps its naming schema (e.g., NDN’s hierarchical naming [203] or MF’s flat IDs [160]),

which helps with evolvability. While consumers have to use a globally unique expression for

each content as “ContentDomain+ContentName”, they do not have to understand such a

syntax. It will look seamless to users, as if they are using a native name. This is facilitated

by the ORS, as described in §5.3.7. For example, a consumer in an IP domain requesting

for content named “/ICCCN/papers/COIN.pdf” in an NDN repository, will send an HTTP

request for “http://NDN/ICCCN/papers/COIN.pdf”, which is just like any other HTTP

request. After going through gateway processing, the NDN repository receives the request

as an NDN Interest with name “/ICCCN/papers/COIN.pdf”, just like any other NDN In-

terest. 2) Each domain keeps its namespace size, which helps with scalability. No domain

has to keep track of, or maintain, another domain’s content namespace (just needs the IDs

of other domains). 3) The name-to-location mapping in each domain, utilized in order to

deliver to/from gateway, consumer, or producer, is handled by the domain’s already existing

name resolution service (e.g., GNRS in MF).

5.3.5 Transport, Routing and Forwarding

Motivated by its design principle, COIN allows the composition of connection-

oriented and connectionless transport across domains. For example, if a consumer using

HTTP/TCP/IP is requesting content from a producer in NDN, the gateway acts as the

second end of the TCP connection (i.e., similar to a proxy server listening on an HTTP

port) to the consumer (establishing sessions, etc.), while acting as a typical NDN client

(sending a content Interest in a connectionless manner) towards the NDN side. When the

86

data comes back, the gateway sends the data to the consumer, using the stored IP address

and source port information of the consumer.

Similar to today’s Internet, COIN decouples intra- and inter-domain routing [133].

Domain-specific routing mechanisms can be leveraged, and be stitched at gateways. In

the case of multiple gateways between two domains, inter-domain routing can be used to

connect one gateway to the nearest other gateway. Existing architectures need not know

or implement these inter-domain algorithms. As for state, gateways connecting the same

domains on either side can exchange and share state information, so any gateway can process

the response.

COIN gateways process requests and responses differently, with an important dis-

tinction being that response forwarding is stateful (§5.3.6). Importantly, gateway forwarding

conforms to domain-specific forwarding policies; e.g., NDN has a reverse path forwarding

(RPF) policy where every node traversed by the request has to be in the responses path [203].

Other architectures, such as MF, may not have such a restriction, thus allowing secondary

gateways to route the response back towards the consumer. Conforming to such forwarding

policies, COIN can provide a seamless interoperation across domains, without having to

change existing infrastructures.

5.3.6 COIN Gateways

A COIN gateway translates requests for information received from one domain to

a request meaningful in the adjacent domain (and similarly for responses). We design and

implement the interface to each distinct domain as a “pluggable adapter” on the gateway in

87

C.IP:port→GW.IP:port

POST <NAME>
HTTP/1.1
Host: <DstDomain>

<INPUT>

C.GUID→TargetGUID

POST <reqID>/<NAME>

<INPUT>

Sw
it

ch
in

g
F

ab
ri

cN
D

N
C

an
A

d
ap

te
r

M
F

C
an

A
d

ap
te

r
H

T
T

P
C

an
A

d
ap

te
r

N
D

N
In

co
m

in
g

M
F

In
co

m
in

g
H

T
T

P
In

co
m

in
g

N
D

N
O

u
tg

o
in

g
M

F
O

u
tg

o
in

g
H

T
T

P
O

u
tg

o
in

g

[/DstDomain]/<NAME>
/<INPUT>/<reqID>

C
an

N
D

N
A

d
ap

te
r

C
an

M
F

A
d

ap
te

r
C

an
H

T
T

P
A

d
ap

te
r

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Figure 5.2: COIN gateway design: processing requests

each direction. We choose to translate the incoming request or the headers of the response

to an “internal” canonical form (5.3.3).

Incoming request processing involves recognizing whether the request is for static

or dynamic content. For NDN, a request with a specific version is seen as a request for

dynamic content while a request with just a prefix (and exclude) is for static content. For

HTTP, we use POST and GET methods as dynamic and static content respectively. It

also determines the destination domain based on the “Host” field in case of HTTP, the

destination GUID in MF, and the domain prefix in NDN. The opaque string (from the

originating domain’s perspective) that is the name on the destination domain will be ex-

tracted from the request (marked as the field “<Name>” in Fig.5.2. For dynamic requests,

the incoming request processing recognizes the body of the POST in MF and HTTP, and

the penultimate component of NDN name, as the request input. The demultiplexing en-

88

tity (“<Demux>”) depends on the different cases. For static content requests, we use

the tuple <domainName, contentName, exclude>. For dynamic content requests, we use

client <IPaddress, port> (socket) for HTTP case, client <GUID, reqID> in MF case and

<clientID, reqID> in NDN case.

The incoming request processing results in an internal canonical request (orange

boxes in Fig. 5.2). The gateway can respond to requests for static content from the local

cache, aggregate requests for the same static content (with same exclude) or consume them.

The remaining requests (in canonical form) are sent to the “switching fabric”, where inter-

domain routing determines the forwarding to the proper outgoing request processor. The

outgoing request processing forms a domain-specific outgoing request.

When the response returns, the gateway matches it based on the state informa-

tion and forwards the content to all the pending requests waiting on this key (similar to

matching a PIT entry in NDN). This enables native multicast, similar to NDN. We use

the “Last-modified” field in HTTP and MF and the version field in the NDN name as the

version of the response. The gateway sends the version using the domain-specific format.

5.3.7 Object Resolution

In COIN, an important step in requesting a piece of content residing in another

domain is to acquire the content’s name and the ID of the domain it is in. This is achieved

using an Object Resolution Service (ORS). ORS is an application-layer search engine that:

1) returns names for keyword queries, and 2) leverages a combination of crawling, registra-

tion and indexing methods to gain and store knowledge of content names. This way, ORS

plays the same role that today’s popular search engines, e.g., Google or Bing do. More

89

GW3

GW1

GW2

To O in D2

Want K

I’m in D1

Format for D1

Result: D3+N

Request: D3+N

Response: C

D1

D2

D3

Repository

Domain

Native-form

Content Name

D3 N

…

K
hit

Name: N

C

….

Consumer

Content

Producer

Repository

ORS Server O

1

2

3

4

Figure 5.3: A schematic view of object resolution and content retrieval in COIN

specifically, today’s single-domain search engines could be considered as a special case of

ORS. ORS has to additionally take both the content’s and consumer’s domain(s) into ac-

count: it has to provide the content domain ID in its query result, presented in a format

understandable in the consumer domain (and thereby by the consumer). This is an im-

portant design choice, as having ORS servers that understand multiple domain languages

avoids having all data providers/servers in the world learn the other domains’ languages.

There has been prior work on ORS in ORICE [14], which we use and extend in COIN.

Fig. 5.3 shows a high-level schematic view of the object resolution procedure. There

are three domains with different network architectures D1, D2, and D3, with three COIN

gateways stitching them together. The consumer, object resolution server O, and content

repository for content C reside in D1, D2, and D3 respectively. We put the consumer and

90

the ORS server O in two different domains to show a more complicated scenario; normally,

D1 could have an ORS server too which the consumer can ask without having to go across

domains. The consumer generates a query for keyword (phrase) K, asking ORS O in D2.

Identifying the ORS’s name and its domain are important to make sure that the query goes

to the right gateway. Although the figure only shows the information at a high level, the

specific formats depend on what the domain is. For example, if the consumer is in an IP

domain, he will perform a DNS lookup on “D2”, obtaining the IP address of GW1. In

NDN, the consumer will send a packet with prefix “/D2/O/”, which will be directed to

GW1 (GW1 has already announced and registered itself as “D2” in D1). The consumer

also specifies that he is in D1; so O generates the result in a format understandable to a user

in D1. With the help of GW1’s translation and state-maintenance, the query can reach O

and its result sent back to the consumer. Some packet-level details, such as demultiplexing

keys are omitted in the figure. More on protocol exchange details are in §5.3.8 (ORS query

is an example of a dynamic content retrieval).

Upon receiving the consumer’s query, O searches for K in its database of indexed

content names and their domains (including content in D3). The way this database is

managed is similar to today’s search engines’ crawling and registration methods; more

details are provided in [14]. Assume K hits one entry with a content named N in domain

D3 (for presentation simplicity, we assume only one item in the result, while in practice

there can be many more). O generates a result combining D3 and N (“D3+N” in Fig. 5.3),

formatted for D1. What N looks like depends on the naming structure of D3; but the

formatting of the result depends on the semantics of D1. For example, if both D1 and

91

D3 are in an HTTP/IP domain (as in today’s Google search), then N would be a URL

(e.g., “abc.com/def”), formatted and presented to the consumer as “http://abc.com/def”

(no indication of D3 is needed for same-domain pairs). As another example, if D3 is MF,

then N would be a content GUID (e.g., “1234”). If D1 is NDN, then the result would be

the enriched name “/MF/1234”.

After gathering the result, the consumer generates a request for the content itself,

using the acquired name N combined with D3, getting routed to GW2. Note that for this

purpose, the consumer’s own domain ID is not needed, since the repository returns content

C (named N), not knowing (and not needing to know) where the consumer resides.

While at first glance, it may seem a burdensome task to acquire names through

the ORS for content requests, it follows the pattern that users use on the Internet today in

practice [14]. For example, most often, retrieving a webpage for the music video of the 2017

song “Despacito”, is proceeded by a (Google) search such as for “Despacito music video”.

ORS in COIN plays the same essential role as the search engine. It is also worth mentioning

that ORS is a service which can be provided by many entities (as we have Google, Bing,

etc.) and each can have many physical servers. We believe ORS is an important, convenient

service to deploy by ISPs or third-party entities, and provides benefits for interoperability.

5.3.8 Protocol Exchange

To illustrate the translation-based exchange for interoperating across multiple do-

mains, we use a 3-domain setting where a consumer residing in an NDN domain wishes to

receive content from a server/producer residing in an MF domain, with an IP domain in

92

Consumer C GW1 GW2 ORS
NDN IP/HTTP MF

INTEREST. /MF/ORS/C.ID/ReqID
Keywords=icn&Domain=NDN

+ (C.ID, ReqID) ↔ GW1.Port

Src: GW1.IP, GW1.Port,
Dst: GW2.IP, GW2.Port
POST /ORS Host: MF
Keywords=icn&Domain=NDN

+ (GW1.IP, GW1.Port) ↔ ReqID’

Src: GW2.GUID, Dst: ORS.GUID
POST /ORS
Host: MF
Keywords=icn&Domain=NDN
&ReqID’

Generate query results for C

Src: ORS.GUID, Dst: GW2.GUID
HTTP 200 OK
Last-modified: 2019-08-30…
ReqID’
<ip> ccnx://IP/Con.URL </ip>
<ndn> ccnx://Con.Name </ndn>
<mf> ccnx://MF/Con.GUID </mf>

Matches to GW1’s query

Src: GW2.IP, GW2.Port,
Dst: GW1.IP, GW1.Port
HTTP 200 OK
Last-modified: 2019-08-30…
<ip> ccnx://IP/Con.URL </ip>
<ndn> ccnx://Con.Name </ndn>
<mf> ccnx://MF/Con.GUID </mf>

Matches to C’s query

DATA: /MF/ORS/C.ID/ReqID/=00
<ip> ccnx://IP/Con.URL </ip>
<ndn> ccnx://Con.Name </ndn>
<mf> ccnx://MF/Con.GUID </mf>

(a) Dynamic content retrieval (object resolution example)

Consumer C GW1 GW2 Producer P
NDN IP/HTTP MF

INTEREST: /MF/Con.GUID
Ex (B,=FD0590EB370000,
=FE000000000000,B)

+ IntName+Ex…↔ GW1.Port

Src: GW1.IP, GW1.Port,
Dst: GW2.IP, GW2.Port
GET /MF/Con.GUID
If-modified-since: 2019-08-30
20:00:00

+ (GW1.IP, GW1.Port) ↔ Con.GUID

Src: GW2.GUID, Dst: Con.GUID
GET /ReqID
Host: MF
If-modified-since: 2019-08-30
20:00:00

Generate data response for C

Src: Con.GUID, Dst: GW2.GUID
HTTP 200 OK
Last-modified: 2019-08-30
23:59:00
ID: ReqID
DATA

Matches to GW1’s request

Src: GW2.IP, GW2.Port,
Dst: GW1.IP, GW1.Port
HTTP 200 OK
Last-modified: 2019-08-30
23:59:00
DATA

Matches to C’s request

DATA: /MF/Con.GUID/
==FD059…/=00
DATA

(b) Static content retrieval

Figure 5.4: Protocol exchange across 3 domains

93

the middle (Fig. 5.4). We examine two cases: dynamic content retrieval (DCR) using the

example of ORS (Fig. 5.4(a)); and static content retrieval (SCR, Fig. 5.4(b)).

The three different architectures take care of content naming at different domain-

specific layers: the HTTP application layer, in IP; network layer in NDN; and either HTTP

or network layer in MF. When a client generates an NDN Interest, to enable correct trans-

lation, we use the destination domain ID in the name. To distinguish between DCR and

SCR, we use POST and GET methods in HTTP respectively; we check the existence of

Exclude or Input in NDN Interests. For DCR (Fig. 5.4(a)), the retrieved response should

not be from a cache, since the current server-generated response is desired. This requires

individual requests to be distinguishable (globally unique), to have the correct response-to-

request mapping at the servers and gateways, including even those made by the same client.

In TCP/IP, client IP and port numbers provide this demultiplexing capability. For NDN

and MF, we introduce a unique Request ID (ReqID) generated by the consumer or gate-

way. The ReqID can be a component of the DCR Interest name in NDN, and part of the

request payload in MF. Gateways create state (marked as ‘+’ in the Fig.) associated with

each outgoing request, and maintain state for demultiplexing. For example, in Fig. 5.4(a),

the mapping on an NDN-to-IP gateway is a 3-tuple of <Client ID, Request ID, GW1 port

number>. When the response data is returned, the gateway can find the corresponding

request based on its port number (which is the source port number that was previously

used to connect to GW2) in the response. As can be seen in Fig .5.4, using domain-specific

naming, in-network caching can be supported and provide benefits, in COIN.

94

5.3.9 Security

Securely bridging communication across different network architectures that have

different security models and mechanisms seamlessly, without significant changes to the in-

dividual architectures is challenging. We aim to unify different security models across the

architectures. They may be classified as being either channel-based (for host-centric net-

working e.g., IP), or content-oriented (for ICNs). The fundamental distinction between the

two security models lies in the relationship between the “name” layer (content retrieval func-

tionality) and security layer (ensuring confidentiality, provenance, integrity, etc.) function-

ality in the service layer. With connection-oriented security the security layer (TLS/SSL)

operates below the name layer (HTTP). Interoperability gateways do not have access to

information such as keys, as they are encrypted. For interoperability, the gateways have to

decrypt the information exchanged to get the name and other features required for content

retrieval. In contrast, content-oriented security may just encrypt the data (payload) and

leave the content-retrieval headers (e.g., NDN/MF headers, including content names) in

the clear. Thus, gateways can reformat the headers without modifying or having to access

the payload. COIN supports a number of mechanisms to unify access to information across

these two security models. We focus on two important security use cases of COIN: En-

cryption (to ensure confidentiality); and Signatures (to ensure provenance and integrity).

The mechanisms presented here are security-enhancements to protocol exchange presented

in §5.3.8.

95

Encryption

Encryption prevents unauthorized network nodes (including eavesdroppers) from

accessing confidential content. The common approach to achieve this is to encrypt the data

(e.g., RSA and ECC [134]) or encrypt the channel between the data consumer and producer

(e.g., HTTPS). The producer and a (set of) predefined (authorized) consumer(s) have to

agree on a common encryption mechanism. We focus on content retrieval across compo-

sitions of content-oriented (ICN) and channel-based (IP) security models, with endpoints

having the same security model, and when they are different.

Case 1: Both endpoints with content-oriented security model, and inter-

vening domains with channel-based security. We consider a scenario with a consumer

and producer in two separate NDN domains using content-oriented security, and an IP do-

main in between using channel-based security. Fig. 5.5 shows COIN’s encryption-enhanced

protocol exchange for this case. With both the consumer and producer using content-

oriented encryption, the authorization information (authC) and Data would be encrypted

when traversing the gateways. The authorization information can be the consumer’s public

key (pubC), following a priori consumer-producer consensus on the authorization mech-

anism. The gateways simply translate between NDN names and HTTP/HTTPS URLs,

without needing to decrypt and/or re-encrypt authC or Data. Thus, COIN ensures end-to-

end confidentiality.

Case 2: Either endpoint with channel-based security When at least one of

the two endpoints (consumer and/or producer) uses channel-based security (e.g., HTTPS)

and the other(s) use content-based security, gateways would then need to re-encrypt the

96

Consumer C GW1 GW2 Producer P
NDN IP/HTTP(S) NDN

INTEREST:
/<Con.Name>/<authC>

INTEREST: /<Con.Name>/<authC>

200 OK
Enc(Data, authC)

DATA: /<Con.Name>/<authC>
Enc(Data, authC)

DATA: /<Con.Name>/<authC>
Enc(Data, authC)

Verify authC,
and Encrypt Data

Decrypt Data

GET https://<Con.Name>
Authorization=<authC>1

2

3

4

5

6

7

8

Figure 5.5: NDN/IP/NDN encryption

data retrieved in one domain to provide confidentiality while delivering the content to the

other domain. COIN’s gateways borrow ideas from the popular state-of-the-art solution of

HTTPS proxies. The gateway has to decrypt the HTTP header inside a TLS connection,

in order to discover the content name (URL). The gateway acts as a proxy, trusted by both

consumer and producer. We believe this is acceptable, as it is a well-established practice to

trust HTTPS proxies.

Unlike Case 1, COIN’s mechanism in Case 2 decouples encryption and authoriza-

tion, to allow composition of two different security models of the end points: An HTTP/IP

end point achieves this by using the HTTP header “Authorization” field, or Web-based

authorization (the consumer provides the username and password, which are carried in the

HTTP request body). The producer can then verify the authorization.

Fig. 5.6 shows an example for this case with a gateway between HTTPS/IP and

NDN. The consumer in the IP domain requests the content as if the gateway is an HTTPS

proxy, by establishing a secure connection to the gateway using the public key of its own

97

Consumer C GW Producer P
IP NDN

INTEREST:/<Con.Name>/Enc(“ID
:abc&Pass:def”, pubP)/pub’GW

200 OK
TLS(pubC, pubGW)
Enc(Data, authC)

DATA:/<Con.Name>/Enc(“ID
:abc&Pass:def”, pubP)/pub’GW

Enc(Data, pub’GW)

Decrypt with its private key priP,
And verify ID, Pass

Decrypt Data

GET <Con.Name> HTTP/1.1
Authorization = ID:abc, Pass:def

TLS(pubC, pubGW)

Decrypt with pri’GW,
and re-encrypt

1
2

3

4

56

7

Figure 5.6: IP/NDN encryption

(pubC) and the gateway (pubGW) (Diffie-Hellman key exchange in TLS). In the HTTP

header (or body) over the TLS connection, the consumer sends the content name and the

authorization information (username and password in step 1 in the Fig., or alternately the

public key of the consumer). The gateway creates an Interest in the NDN domain. We

make minor modifications to the name in NDN (to provide the authorization), using the

format “/name/authC/encrypt”, to provide the producer with the needed information for

authorization and encryption. In the Fig., the gateway encrypts the authorization informa-

tion with the public key of the producer (pubP) and uses its own public key (pub′GW). The

gateway could use different key pairs (e.g., pub′GW and pubGW) for the two different domains

(step 2). For MF, the request packet format would include a new field for the authorization

information. When the field is not set, authorization information is used as encryption

information, as in Case 1. On receiving the request, the producer will decrypt it using its

98

own private key and verify the authorization information (step 3). Upon verification, the

producer sends the NDN Data packet (to the gateway) whose payload is Data, encrypted

by pub′GW (step 4). The gateway decrypts the data with its own private key pri′GW (step

5) and sends the data over the TLS connection to the consumer (step 6). The consumer

can then decrypt and access the data (step 7). The reverse, ICN-IP scenario, would follow

a similar pattern.

Signatures

In the scenario where the producer allows the content to be shared with anyone

in the network. The consumers need to verify that: 1) the data is coming from a trusted

producer (provenance) and 2) no one on the path has tampered with the content (integrity).

To ensure the integrity of the content, a cryptographic hash function (e.g., MD5, SHA-1,

SHA-256) can be applied to the data and announced to the consumer. Provenance is verified

by a digital signature: the hash encrypted by the private key of the producer (e.g., RSA

signing, ECDSA, EdDSA [186]). The consumer can decrypt the signature with the public

key of the producer, and compare the result with the hash of the content, possibly followed

by some trust schema [198]. For interoperability across different domains, it is highly likely

that the consumer may not understand the producer’s signature algorithm or the trust

schema (or both). To overcome this, COIN takes advantage of transitive trust [161] with

domain-by-domain signatures: the gateway on the producer side verifies the provenance

and integrity of the data on behalf of the consumer and re-signs data with its own private

key for the next domain. The consumer verifies (and trusts) the last hop gateway.

99

Consumer C GW1 GW2 Producer P
NDN IP/HTTP(S) MF

INTEREST: /MF/<Con.GUID> Src: GW2.GUID, Dst: Con.GUID

200 OK
data: D, sig: Sig(priGW2, D, SAHTTPS)

Src: Con.GUID, dst: GW2,
data: D, sig: Sig(priP, D, SAMF)

DATA: /MF/<Con.GUID>
data: D, sig: Sig(priGW1, D, SANDN)

Sign data D with producer
private key priP using

domain-specific signature
algorithm (SA) of MF

GET /MF/<Con.GUID>
HTTP/1.11

2

3

4

5

7

9

Verify sig on D using
public key of P

6

Verify sig on D using
public key of GW2

8

Verify sig on D using
public key of GW1

10

Figure 5.7: NDN/IP/MF signatures

Fig. 5.7 shows an example of our solution spanning 3 domains. After receiving

the request, the producer will sign the data (D) with its own private key (priP) based on

the signature algorithm in the domain (SAMF). On receiving the content, GW2 will verify

the provenance and integrity using the public key of the producer (pubP) on behalf of the

consumer, since it understands the signature algorithm and can also utilize local certificate

authorities (CAs) to check its trustworthiness. Once GW2 confirms that the content is

trustworthy, it will re-sign the data with its own private key (priGW2) using the signature

algorithm in the IP domain. GW1 will thus trust the producer, since it trusts GW2 (due to

transitive trust). Once the signature is verified using GW2’s public key, GW1 will forward

the data to the NDN domain and sign the content using its own private key. Since the

consumer trusts GW1, it concludes that the content is trustworthy.

100

Denial of Service (DoS) Attacks

While request aggregation and content caching alleviate COIN from some nega-

tive impacts of excessive request and response processing load (that is benign) on gateways,

malicious DoS (and DDoS) attacks can impact gateways’ availability. IP and ICN do-

mains, with different security models, can be the source of different DoS attacks, such as

bandwidth depletion and reflection attacks in legacy IP domains [62]. With ICN’s content-

oriented security models, DoS attacks manifest themselves mainly as Interest flooding (too

many malicious requests for non-existing content) and content/cache poisoning (responding

with fake or corrupted content) [77]. In COIN, each domain retains its own security model

and mechanisms, to allow development of countermeasures for attacks meaningful in its

own domain. Thus, in COIN, DoS attacks in a domain are contained within that domain.

For example, with Interest flooding, excessive requests will be dropped at or before the

ICN-border gateway (through mechanisms such as statistic-based rate limiting [51, 77]).

Similarly for content poisoning, with the proper use of content-oriented signature valida-

tions, fake or corrupted content will be detected and discarded at or before the first gateways

it encounters.

5.4 Experimental Results

For evaluation, we use a representative implementation for each domain: CCNx

v0.8.0 (it contains all the essential components of NDN needed for our framework); the latest

version of MobilityFirst project [8] for MF domain; and a basic Linux implementation of

IP forwarding. The implementation of COIN, including all its essential components such as

101

gateway and adapter modules are available in [6] as proof of concept. We experimented on

various combinations and settings, and observed COIN’s ability to satisfy its design goals,

especially its ability to preserve each domain’s key features. While there are a number of

aspects to consider including correctness, user convenience, deployment flexibility etc., we

focus on the performance of COIN here (we have proved the correctness of the proposed

translation procedures in [94]).

5.4.1 Forwarding Efficiency

To evaluate the forwarding efficiency of the implementation, we set up a testbed

with five VMs with the topology as “C↔R1↔GW↔R2↔P”, in which client C and router

R1 are in domainD1, and content provider P and router R2 are in domainD2. NodeGW , an

implementation of COIN gateway, is in between the two domains and performs translation.

Each VM has 1GB memory and runs Ubuntu 14.04. With cases of domains D1 and D2 being

both distinct (i.e., interoperation scenarios) and same (i.e., native scenarios), we evaluated

all 9 combinations (each being IP, NDN, MF). In native scenarios, GW is replaced by a

regular router, with the same configuration as R1 and R2. We tested functionality with a

client asking for content residing in a remote domain of a potentially different architecture,

and getting the content back.

Fig. 5.8 shows the latencies measured for requests for static content. The over-

all content retrieval time (response time) at the consumer, the provider’s service time and

gateway processing time for request and response (averaged over several runs, discarding

outliers), are shown. Note the difference in the y-axes of the different bars in the figure.

102

3
6

7
.5

0

3
6

3
.2

5

7
2

.7
5

6
4

.5
0 3

5
6

.5
0

3
5

0
.7

5

8
.2

5

0
.1

0

1
0

.5
0

5
.5

0

2
.5

0

0
.1

8

2
.5

0

1
2

.2
5

1
1

.5
0

9
.7

5

1
0

.2
5

6
.0

0

1
.7

5

2
.0

0 5
.0

0

5
.7

5

9
.5

0

5
.2

5

0.1

1

10

100

1000

NDN-MF MF-NDN IP-MF MF-IP NDN-IP IP-NDN

L
at

en
cy

 (
m

s)

Scenarios

Overal Response Provider Service

GW Request Processing GW Response Processing

(a) Interoperation scenarios (different domain types for D1 and D2)

37.00

324.00
155.25

3.75

0.10

22.00

0.1

1

10

100

1000

IP-IP NDN-NDN MF-MF

L
at

en
cy

 (
m

s)

Scenarios

Overal Response Provider Service

(b) Native scenarios (same domain types for D1 and D2)

Figure 5.8: Latencies (static content retrieval): total response, content provider, gateway
request and response processing (logarithmic axes). Note that there are no gateways (and
thus gateway latencies) in native scenarios (b).

103

As shown in Fig. 5.8(a), the processing time at the gateway in interoperation scenarios, in-

cluding reformatting and maintaining state between the two domains, while not negligible,

is reasonable for an initial software implementation. The gateway contributes between 4-19

ms of processing delay, compared to the total response time of 60-360 ms, in this small-scale

topology. The gateway contributes a relatively small portion of the overall response time,

especially in the ICN cases. It should be noted that the higher response time observed

whenever one side is NDN, is not due to the interoperability gateway, but rather the NDN

logic itself: the client waits for sending a second query to ensure it has received the latest

piece of content. In fact, we observed a response time of ∼300 ms for NDN→NDN on our

testbed. This is seen in Fig. 5.8(b) as well, which shows the latencies for native scenarios,

i.e., those with same domain types throughout the topology, with no COIN gateways. Our

results show that the overhead of COIN’s forwarding is reasonably small.

5.4.2 Scalability

We use the ORBIT testbed [10] to evaluate the scalability of COIN. ORBIT is a

network of 400 nodes in a grid topology. Each machine has 4GB memory and runs Ubuntu

14.04. We run each router (forwarding engine), provider, consumer and gateway on separate

physical nodes. In our topology, we included 50 consumers (in one domain), 1 provider (in

another domain) and 1 gateway. The consumers are connected to the gateway via a pre-

configured access network. Our server stalls the response to each request for 3 seconds to

batch more requests on the gateway (especially for NDN, and 3 sec. because the request

timeout time in NDN is ∼4 sec.)

104

We measure the amount of state stored in the gateway (memory consumption)

vs. different numbers of requests from consumers. The implementation is in Java, which

has automated memory management. We call garbage collection very frequently during

run-time to get a better estimate of memory consumption. This would make our gateway

slightly slower compared to production use. We evaluate the requests to static and dynamic

content separately. Only the results of the experiments for IP→NDN is shown in Fig. 5.9.

Evaluation for dynamic content: We have 50 clients sending 328 dynamic

content requests simultaneously. Fig. 5.9(a) shows the instantaneous memory consumption

(and moving average over 20 values) vs. the number of incoming and outgoing requests for

this scenario.

Since consumers request dynamic content, we do not see any aggregation at the

gateway – each request from the client results in a distinct request to the provider. There-

fore, the incoming and outgoing request values are very close to each other in the Fig. We

observe that the memory consumption grows linearly with the number of incoming requests

since we keep the states for each request.

Evaluation for static content: Clients make 328 requests spread across 100

static content items simultaneously. The popularity of the content follows a Zipf distribu-

tion with α=0.81. [121] shows that this is a realistic content demand model. The server still

waits 3 seconds before sending the response to allow request accumulation. Fig. 5.9(b) shows

the results. Since we keep the state on the gateway, we can aggregate multiple requests

for the same content (name). Therefore, the number of requests arriving at the provider is

smaller than the number of requests generated by the consumers. The memory consump-

105

0

5

10

15

0

100

200

300

400

500

0 1 2 M
em

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

#
 o

f
re

q
u

es
ts

Time (s)

Req. from Consumer

Req. to Provider

Memory consumption

20 per. Mov. Avg. (Memory consumption)

(a) Dynamic content retrieval

0

5

10

15

0

100

200

300

400

500

0 0.5 1 1.5 2 M
em

o
ry

 c
o

n
su

m
p

ti
o

n
 (

M
B

)

#
 o

f
re

q
u

es
ts

Time (s)

(b) Static content retrieval

Figure 5.9: Scalability: memory consumption and number of requests

106

tion grows sub-linearly relative to the incoming requests. The memory consumption is also

lower, compared to that of dynamic content for the same number of requests.

We ran the same experiments in other domain combinations (NDN→IP, MF→NDN,

etc.) and saw similar results. Although keeping per-session state puts additional burden on

the gateways (state grows with number of flows), it is analogous (and no worse than) main-

taining PIT state at an NDN router. Since COIN allows request aggregation and content

caching at the gateways, this interoperability framework scales better.

5.5 Formal Modeling of Information-Centric Interoperability

We now describe the basics of our formal model1. First and foremost, let us define

information-centric interoperability (ICI):

Definition 1 A sequence of interconnected domains in a network are information-centrically

interoperable if and only if any client in any of the domains can access information-centric

services provided in any other domain.

Throughout this paper, we use the term “network” to mean “a composition of

multiple network domains”, each domain being a different type of standalone architecture

(e.g., IP, NDN, or MF). An interoperability framework (such as [41]) is a set of protocols

and architectural components that allow interconnected networks of different types to inter-

operate. Information-centric services are broadly sub-categorized as: 1) requesting for and

retrieving content (pull-based), and 2) subscribing to and receiving content (push-based).

Both of these may be based on namespaces defined by content producers. An example 3-

1Full source files are available in [1].

107

C

R1

GW1 GW2
Interest
name=/MF/175

HTTP GET /MF/175
source IP= GW1.IP
destination IP= GW2.IP

destination
GUID= 175

W
an

ts
 t

o
 r

et
ri

ev
e

co
n

te
n

t
w

it
h

G

U
ID

=1
7

5
 in

 M
F NDN IP MF

R2

A
n

y
re

p
o

si
to

ry
 o

r
ro

u
te

r
ca

ch
e

th
at

h

as
 ‘1

7
5

’

Figure 5.10: Information-centric interoperability (ICI): request for content

domain ICI scenario is depicted in Fig. 5.10. As shown, ICI accesses content by name, rather

than an address. Also, requests can be satisfied at any cache node, not just the original

server. As for formal analysis, in ICI, the main property we care about is node-to-content

reachability [100], while in traditional host-centric interoperability (HCI) analysis [199], the

focus is on node-to-node reachability.

We model our networked environment using Alloy’s relational and logical atoms.

We have Domains (as abstract signatures), each of which can be an IP, NDN, or MF type

(extended signatures) (Listing 5.1). A Node is at least in one Domain and has at least

one NodeID . A Node can be either a Client, Repos (repository/server), or GW (gateway).

A gateway is associated with exactly two Domains (constrained using facts), that it is

stitching together (Listing 5.2.)

Listing 5.1: Domains

abstract sig Domain{}
sig IPdomain extends Domain{}
sig NDNdomain extends Domain{}
sig MFdomain extends Domain{}

Listing 5.2: Nodes

abstract sig Node{domains: some Domain, id: some NodeID}
sig Client extends Node{...}{...}
sig Repos extends Node{...}{...}
sig GW extends Node{...}{#domains=2 && ...}

Our declarations specify a network meta-model [91], which maps to a number

of instances (models) each being a network configuration (i.e., with their own topology,

content, namespace, etc.). An example 2-domain instance is depicted in Fig. 5.11, as a

high-level schematic, showing objects and their inter-relations. The Client here wishes

108

Client0

RevRoute0 RevRoute1

Route1Route0

Domain0

GW0

Domain1

Keyword0,

ContentID0

or Prefix0

w
a
n

ts

Group0 Group1

ContentID0

Content0

Server0

Repos0 or

Publisher0

map[Keyword0]

domains

initiator

acceptor

Figure 5.11: Example (partial) instance for ICI Alloy model (objects and relations)

to retrieve some Content using its ContentID or a (set of) Keyword(s). Objects of type

Route and RevRoute (reverse route) couple the notion of “a series of links” and “pack-

ets carried over them”, the packet carrying content request and response, respectively. A

Route has attributes such as initiator, acceptor, and a request for ContentID . We also

extend signatures to add more fine-grained, domain-specific characteristics. One of Route’s

extended object types, namely IPRoute, inherits its attributes and constraints, and also

has additional attributes such as srcIPaddress and destIPaddress, and constraints saying

that source and destination IP addresses must correctly correspond to initiator and accep-

tor nodes. Gateways perform translation for forwarding requests (over a composition of

Routes), and retain state information which they use to forward the content back to the

client (over composition of RevRoutes). We also add a number of additional facts, such

as uniqueness of node ID, absence of self-looping routes, and the existence of one-to-one

mapping between NDN’s forward and reverse routes (to reflect NDN’s RPF policy [203]).

We define a global-state relation C that captures routes to/from gateways. To

model connectivity, we use the transitive closure of the route-connections relation C where

(r1, r2) ∈ C if and only if there exists a gateway between two domains that connects

routes r1 and r2. E.g., if we have C={(r1, r2), (r2, r3)}, then its transitive closure

109

C+={(r1, r2), (r2, r3), (r1, r3)} will represent existing paths of any length (i.e., number

of routes). We define object type Connections (as a singleton) to capture these connec-

tions (i.e., relation C); it has attributes being relations themselves, primarily connected

and revconnected, to capture connection relations of Routes and RevRoutes respectively.

Relation revconnected has an additional constraint, which says that for two reverse routes

rr1 and rr2 connected at gateway gw, corresponding state information (associated with

the ContentID or other multiplexing/demultiplexing values in rr1 and rr2) must be stored

on gw, so that the content can be carried over this cascade of reverse routes towards the

consumer (Listing 5.3). Additionally, we define a fact (path exists, Listing 5.4) that ensures

any two nodes are connected (through one or multiple Routes or RevRoutes), to reduce our

instance space to only the ones with strongly connected topology.

Listing 5.3: Connections

one sig Connections{connected: Route->Route, revconnected: RevRoute->RevRoute, chain: Group->Group,
revchain: Group->Group}

fact connectivity{ -- conditions for two (reverse) routes being ‘‘connected’’
all r1,r2:sRoute, c:Connections |

(r1->r2) in c.connected <=>
r1.acceptor = r2.initiator && r1.contentID = r2.contentID && r1.reposdomain = r2.reposdomain

-- requests for same content
-- similar condition for RevRoute paths (with extra criteria: gateway state information should

match for the two connecting reverse routes) ...
}

Listing 5.4: All paths existence constraint

fact path_exists{
all co:Connections, disj n1,n2:Node, cid:ContentID, rd: Domain |

(some r:Repos | rd in r.domains =>
(some r1,r2:Route | (r1->r2) in ^(co.connected) && r1.initiator = n1 && r2.acceptor = n2 &&

r1.contentID = cid && r2.contentID = cid && r1.reposdomain = rd && r2.reposdomain = rd))
-- similar condition for RevRoute paths ...

}

While Routes represent unicast exchange paths, we define Groups to denote mul-

ticast groups (one-to-many communication), enabling push-based notification models. Fol-

lowing the principles of ICN, each group is associated with a content name Prefix [49] and

can be used for publish/subscribe exchanges regarding that prefix. Each group belongs to

110

one domain. To model a connection of groups across multiple domains, we add relation at-

tributes chain and revchain to Connections (Listing 5.3), to capture connectivity of groups

(as a chain) for subscription and publication respectively. To ensure strong connectivity,

we add a fact that says any two groups serving the same prefix are chained (Listing 5.5).

Listing 5.5: Group rules constraints

fact GroupRules{
all disj g1,g2:Group, co:Connections | -- group chain conditions

(g1->g2) in co.chain <=>
(g1.prefix = g2.prefix &&
(some gw:GW| g1.domain in gw.domains && g2.domain in gw.domains))

all disj d1,d2:Domain, co:Connections, p:Prefix | -- chains for each prefix
some disj g1,g2:Group |

g1.domain = d1 && g2.domain = d2 && (g1->g2) in ^(co.chain) &&
g1.prefix = p && g2.prefix = p

-- similiar conditions for revchain ...
}

Content naming is integral in ICI. We define names, i.e., ContentID objects for

each Content. Based on domain type, ContentID can be either URL (in IP), NDNName

(in NDN) or ContentGUID (in MF) (Listing 5.6). Each ContentID is a leaf node under

a Prefix in the prefix tree (PTree). An example prefix tree is shown in Fig. 5.12, which

represents the network’s content namespace. PTree may contain a number of fragmented

sub-trees (i.e., as a forest), each sub-tree representing the namespace of a different (set of)

content provider(s) in different domains. To represent the structure of hierarchical prefixes,

we use binary relations to model the immediate parent-child relationship between prefixes

in PTree. In Fig. 5.12, the relation P = {(P1, P2), (P1, P3), (P2, P4), (P2, P5)} represents

such relationships, and is captured in the prefix-to-prefix relationmap in PTree (Listing 5.6).

We also use its transitive closure to model the ancestor-descendant relationships. We add

additional facts to ensure basic constraints on the tree, such as the non-existence of loops.

111

Listing 5.6: Content IDs and Prefix Tree

abstract sig ContentID{prefix: Prefix}
sig URL extends ContentID{} -- if in IP
sig NDNName extends ContentID{} -- if in NDN
sig ContentGUID extends ContentID{} --if in MF
sig Prefix{parent: lone Prefix, domains: some Domain} -- each Prefix has exactly one parent and is at

least in one domain
one sig PTree {map: Prefix set -> set Prefix}

“/”

“/news”“/sports”

“/sports/football” “/sports/basketball”

P1

P2 P3

P4 P5

Figure 5.12: Prefix tree example

5.6 Satisfying Information-Centric Service Properties

There are a number of important properties that are required from the framework,

to ensure interoperability as defined in Definition 1. We consider properties of two classes

of information-centric services here: pull-based (for unicast request/response), and push-

based (for multicast publish/subscribe) content retrieval. We further divide the pull-based

services into two categories: static content retrieval (SCR) and dynamic content retrieval

(DCR). This distinction is important as the nature, protocol for retrieval, and thus formal

properties of the two are different: static content is one that does not change in a long time

(e.g., a movie) and can be retrieved from its original producer as well as a cache, while

dynamic content is created once on demand (e.g., result of a Google search), and must

be retrieved from its original server (not from a cache). Additionally, we assume content

requests are assumed to be genuine and correct, i.e., false and bogus content requests are

not our focus here.

112

We study essential invariant properties, guaranteed to hold at all times. These

properties are primarily associated with content-oriented reachability and returnability. We

formally specify these properties, using Alloy predicates and assertions. For verification,

Alloy’s built-in model finding engine is used to find satisfying instances and counterexam-

ples. Any counterexample found indicates interoperability violations: e.g., a client cannot

generate a request native to its domain, or the gateway does not know what to do with a

returned response.

5.6.1 Pull-based Retrieval: Request/Response

Static Content Retrieval.

In the static content retrieval (SCR) service, the request packets carry content IDs

which the client requests, and the response packets produced by repositories (can be content

producers or router caches) carry the data associated with that content ID. We describe

two of SCR’s essential content-oriented properties using Alloy (Listings 5.7 and 5.8).

Property 1.1. SCR Reachability: For every client that wants to retrieve content

associated with a content ID and has a direct route to a gateway, there is a repository with

content having that ID reachable from that gateway.

Property 1.2. SCR Returnability: For every client that reaches a repository with

a request, there is a path back to the client for the response with the content.

113

Listing 5.7: SCR reachability property

pred reach[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- reachability predicate
all co: Connections | cid in c.want => -- if requested

(some r:Route, con:Content | r.initiator = c && r.acceptor = gw &&
r.contentID = cid && (cid->con) in re.map =>

some r1,r2:Route | (r1->r2) in ^(co.connected) && r1.initiator = gw &&
r2.acceptor = re && r1.contentID = cid && r2.contentID = cid &&
r1.reposdomain in re.domains && r2.reposdomain in re.domains)}

assert reach{ -- reachability assertion
all c:Client, cid:ContentID| some re:Repos, gw:GW | reach[c,cid,re,gw]}

Listing 5.8: SCR returnability property

pred return[c:Client, cid:ContentID, re:Repos, gw:GW]{ -- returnability predicate
all co:Connections | some gw1:GW | reach[c,cid,re,gw1] => -- if reachable
(some r,r1,r2:RevRoute | (r1->r2) in ^(co.revconnected) &&
r1.initiator = re && r2.acceptor = gw &&
r1.content = re.map[cid] && r2.content = re.map[cid] &&
r.initiator = gw && r.acceptor = c && r.content = re.map[cid])}

assert return{ -- returnability assertion
all c:Client, cid:ContentID, re:Repos | some gw:GW | return[c,cid,re,gw]}

Dynamic Content Retrieval.

In DCR, every request has to be mapped to a unique response, as opposed to

SCR. To facilitate this, having a demux value (for multiplexing/demultiplexing) is essential

for DCR, to provide the correct mapping of responses to requests; since every generated

response is specific to not just the request’s name, but also its input parameters. To access

dynamic content from a server, a client generates a query for which the gateway keeps state

as <nodeID, demux> of the requesting side and <demux> for the serving side. Reacha-

bility and returnability are still important in DCR (Properties 2.1–2.2). However, if the

same SCR protocol is used for DCR, there can be conflicts between multiple requests,

e.g., a cached content may get sent back to multiple distinct clients. Therefore, we define

no-conflict properties for DCR (Property 2.3).

Property 2.1-2.2. DCR Reachability and Returnability: These two properties are

similar to those of SCR; with the difference being additional constraints regarding elements

114

of DCR requests, i.e., including generation and verification of the correct demux values at

gateways (i.e., in addition to contentID, etc.).

Property 2.3. No-conflict between distinct requests/clients: For every client that

searches for two distinct content items (no-conflict-A, Listing 5.9), or a dynamic content

requested by two different clients (no-conflict-B, Listing 5.10), two distinct, appropriately

associated responses, should be received back. In no-conflict-A, the focus is on the dis-

tinction between two return-ed contents, associated with two distinct requests made by a

given Client for distinct Keywords k1 and k2. On the other hand, no-conflict-B focuses on

the distinction between two return-ed contents, associated with requests for a particular

Keyword initiated by two distinct Clients c1 and c2.

This property shows the importance of having two separate demux values in pack-

ets, namely both the request ID (required for Property 2.3.a) and client ID (required for

Property 2.3.b), to make each dynamic request globally unique, for correct multiplexing/de-

multiplexing. If we remove either of those two elements, this property will be violated and

counterexamples will arise; i.e., the gateway would not know how to demultiplex incoming

response data to serve the correct, corresponding requesting client.

115

Listing 5.9: DCR - No conflict between 2 distinct requests from the same client

assert no-conflict-A{ -- Property 2.3.a
all c:Client, disj k1,k2:Keyword | some s1,s2:Server, gw1,gw2:GW |

return[c,k1,s1,gw1] && return[c,k2,s2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux |

(n1->d1->d2) in gw1.state && (n2->d3->d4) in gw2.state &&
n1 in c.id && d1 in c.demux && d2 in gw1.demux &&
n2 in c.id && d3 in c.demux && d4 in gw2.demux &&
!(n1 = n2 && d1 = d3 && d2 = d4) && (some disj r1,r2:RevRoute |

r1.initiator = gw1 && r1.acceptor = c && r1.contentID = s1.map[k1]
&& r1.demux = d1 && r2.initiator = gw2 && r2.acceptor = c
&& r2.contentID = s2.map[k2] && r2.demux = d3)}

Listing 5.10: DCR - No conflict between 2 identical requests from two distinct clients

assert no-conflict-B{ -- Property 2.3.b
all c1,c2:Client, k:Keyword | some s1,s2:Server, gw1,gw2:GW |

return[c1,k,s1,gw1] && return[c2,k,s2,gw2] => some n1,n2: NodeID,
d1,d2,d3,d4:Demux |

(n1->d1->d2) in gw1.state && (n2->d3->d4) in gw2.state &&
n1 in c1.id && d1 in c1.demux && d2 in gw1.demux &&
n2 in c2.id && d3 in c2.demux && d4 in gw2.demux &&
!(n1 = n2 && d1 = d3 && d2 = d4) && (some disj r1,r2:RevRoute |

r1.initiator = gw1 && r1.acceptor = c1 && r1.contentID = s1.map[k]
&& r1.demux = d1 && r2.initiator = gw2 && r2.acceptor = c2
&& r2.contentID = s2.map[k] && r2.demux = d3)}

5.6.2 Push-based Retrieval: Publish/Subscribe

In pub/sub, we have domain-specific multicast groups that are associated with

prefixes [49]. We want a client to be able to subscribe to and receive all relevant publications

in accordance with the prefix tree of the namespace over “chain” of groups across domains.

Groups G1 and G2 form a chain if and only if the publisher of G1 can be a subscriber of

G2, and is then able to relay data received from G2 to his subscribers in G1.

Property 3.1. Ability to subscribe to any prefix. For every client that wants to

retrieve future publications under/associated with an existing prefix and has a direct route

to a gateway, if there is some publisher that will publish content under that prefix, then

that publisher is accessible through a chain of groups.

Property 3.2. Ability to receive any content published directly associated with the

subscribed prefix. For every client who is subscribed to a prefix and can reach the associated

116

publisher, there is a path back to the client to carry any content with a content ID belonging

to that prefix. For example, a subscriber of P2 in Fig. 5.12 should receive publications

pertaining to P2 across domains.

Property 3.3. Ability to receive all content published that is associated with prefixes

under the subscribed prefix. This property says that for every client that has subscribed

to a prefix and has reached the associated publisher, there is a path back to the client

to carry any content with content ID either directly belonging to that prefix or under it

in the hierarchy on the prefix tree. For example, a subscriber of P2 in Fig. 5.12 should

receive publications pertaining to P2 and also P4 across domains. The assertion rcvall

in Listing 5.11 depends on how relationships among groups and also between content IDs

and prefixes are represented by Connections and PTree. For a domain with a namespace

that does not capture relationships between prefixes, i.e., does not map a prefix to a set of

multiple relevant prefixes according to a graph, then rcvall would be equivalent to receiv-

ing a single content element (Property 3.2). Properties 3.1-3 collectively model and verify

properties of a service offering hierarchical pub/sub.

Listing 5.11: Pub/Sub - receiving all relevant publications

assert rcvall{ -- all relevant publications in accordance with the prefix tree
all pub:Publisher, con:Content, cid:ContentID |

all co:Connections, pt:PTree | (cid->con) in pub.map =>
((some c:Client, p:Prefix | (p in c.want || (all p1:Prefix |
(p1->p) in ^(pt.map) && p1 in c.want)) && cid.prefix = p =>

(some r1,r2:Route | r1.initiator = pub && r2.acceptor = c &&
(r1>r2) in ^(co.connected) && some g1,g2:Group |

g1.domain = pub.domain && g2.domain = c.domain &&
g1.prefix = p && g2.prefix = p && (g1->g2) in ^(co.revchain)))}

117

5.7 Reasoning about Failure and Mobility

In addition to the basic invariants, there are other important aspects of formal

analysis of networks that warrant a more quantitative analysis; among them are failure and

mobility analysis. Failures and mobility of nodes can occur in a network, causing disruption

and lack of content availability. To better compare how different network architectural com-

ponents, e.g., routing, impact the number of success and violation scenarios, we perform

model counting [80]. While we can consider the probability for all instances as being equal,

we can also calculate each instance’s probability by additionally factoring in the real-world

probability of individual elements causing failures and mobility, provided as external in-

formation (e.g., the probability of a gateway failing when processing a content request, a

route disconnecting while carrying a packet, etc.). Thus, we can provide a more realistic

probabilistic analysis for the effect of failures and mobility using weighted model counting

methods [45].

While the Alloy Analyzer (v4.20) [4] allows for a limited, graphical iteration over

instances, it does not enable an explicit counting of instances in an efficient manner. To

perform model counting, we wrote an application [1] that counts all SAT solutions, using

the SAT4J solver [118] (SAT4J can be replaced by any off-the-shelf SAT solver). We feed

the Alloy model and properties, in Kodkod format [180], to our application. Predicates and

assertions are used for counting instances that satisfy or violate (counterexamples) respec-

tively. Through this counting, we can also look into the details (relations and values) within

each instance, and gain insight such as possible cause of violations (in case of counterexam-

ples) and calculate the probability of occurrence of each instance in real-world scenarios.

118

Serve
rClien

t

Domain1 Domainn-1 Domainn

p1

p2

p3

…

Primary

Secondary

Secondary

Up/Down

Up/Down

Up/Down
GW
3

GW
2

GW1

shared state

GW3

GW2
Server

Client

Figure 5.13: Gateway failure sce-
nario

Table 5.1: Model finding

Domain n

constraints

Return-

ability

Const. 1 X

Const. 2 X

Table 5.2: Model counting

Domainn

constraints

Returnability

I C R

Const. 1 x1 y1 x1/(x1+y1)

Const. 2 x2 y2 x2/(x2+y2)

While we do not focus on the performance aspects of model counting in this paper, opti-

mizations of this procedure can be leveraged for enhancing the scalability of our approach in

case of very large problem sizes. At a minimum, our approach can provide a rough estimate

of failure probabilities. Even if the model counting provided by the SAT solver is through

“approximate” model counting (e.g., using repetitive halving procedures) [43] rather than

an “exact” one, it still gives us a good enough assessment of the degree of success and

violation of properties.

5.7.1 Failure

Our interoperability framework depends on gateways that retain state information.

What would happen to a response packet if that state is lost at the gateway for any reason?

For reliability, we consider state sharing between redundant gateways that have the same

domains on either side. Fig. 5.13 depicts an example for this. Consider the gateway that

received the request and created the state as the primary gateway for the request (GW1 in

the Fig.), and the replicas that have the shared state as the secondary gateways (GW2 and

GW3). Formally, we add an extra condition to our reachability and returnability properties

such that, for two routes to connect, the gateway attaching them must be up and running

119

at the time the packet is received. Additionally, for returnability, the state information

must be present at the gateway. If any gateway goes down, the corresponding potential

path going through it (p1–3) back for the content cannot be leveraged. If the gateway is

neighboring an NDN domain (e.g., in Domainn or Domainn−1), then the gateway has to

be the primary only, for correct operation with the NDN reverse-path-forwarding (RPF)

policy [203]. For other domain types, a secondary gateway that is active and has the shared

state information is adequate to forward the response data back. We model the conditions

representing this in Alloy as shown in Listing 5.12.

Listing 5.12: Failure scenario constraints

all r1,r2: Route, c:Connections | -- forward routes (request) condition
(r1->r2) in c.connected <=> r1.acceptor = r2.initiator &&
r1.initiator.status1 in Up && r2.initiator.status1 in Up

all r1,r2: RevRoute, c:Connections | -- reverse routes (response) condition
(r1->r2) in c.connectedR <=> r1.acceptor = r2.initiator &&
r1.initiator.status1 in Up && r2.initiator.status1 in Up &&
((r1.domain in NDNdomain || r2.domain in NDNdomain) =>

r1.acceptor.type in Primary) -- NDNdomain enforces RPF policy

Gateways can go down due to various reasons such as completely failing or just

losing state information due to a software failure. Our method can be used to reason about

various scenarios and measure failure probability given an input configuration space, i.e.,

a set of Alloy facts that set constraints on some objects or variables while relaxing others.

As Table 5.1 shows, a simple model finding analysis does not provide a helpful comparison

between different such constraints: it will say that both cases lead to counterexamples

raised (e.g., for the case that all gateways go down). To gain a better assessment of which

constraint does better, we resort to model counting (Table 5.2). Using model counting,

we can count (satisfying) instances (I) and counterexamples (C), and calculate (even if

approximately [80]) the probability of reliability (R = I/(I +C)). This reliability indicates

120

to what degree interoperability is impacted in presence of failure, given certain conditions

(i.e., choice of domain policies, etc.).

5.7.2 Mobility

To model and analyze mobility (Fig. 4.6), we add the notion of “time” to our model.

In particular, we associate timeout values to state entries at gateways and birthT ime and

deathT ime to routes (and similarly for reverse routes). We assume gateways are stationary,

but other nodes can move, causing the “death” of their route (route1) to/from their closest

gateway. A new route to the gateway is “born” (route2) after some time, assuming the

existence of a domain-specific method to handle mobility. Temporal conditions must be

incorporated into reachability/returnability properties. The most critical case is when a

mobility event occurs while the packet is in-flight [205]. At high-level, the sum total latency

formulated as firstDeliveryAttempt+ recovery+ secondDeliveryAttempt, must be below

a certain expiration threshold (at every gateway and consumer). firstDeliveryAttempt is

the incomplete partial delivery latency via route1 and secondDeliveryAttempt is the de-

livery via route2 (continuation in MF, and complete retransmission in IP and NDN). The

recovery delay is the time it takes for the packet to be transmitted back on the new path

again; it includes re-registration (MF and IP), FIB re-population (IP and NDN in case of

provider mobility) and/or PIT re-population (for NDN in the case of consumer mobility)

delays [160, 203, 205]. Using this formal method, we check properties in the presence of

mobility, find appropriate values for a timeout threshold on gateways and investigate the

effect of domain-specific mobility handling methods on interoperability. Listing 5.13 gen-

erally specifies how the reachability property (to deliver a named request) depends on the

121

condition of mobility (stationary or mobile) and the domain policy on handling mobility

(early binding or late binding). Returnability is similarly specified (for content). Predicates

stationary, mobileEarlyBinding, and mobileLateBinding specify timing conditions for

successful delivery assuming their corresponding conditions (details of the three properties

are omitted here due to space but are in [1]). As shown in Fig. 4.6, we only consider intra-

domain mobility here, i.e., the mobile node changes its location and point of attachment,

but stays within its domain.

Listing 5.13: Reachability in presence of mobility

pred reach[c:Client, p:Producer, cid:ContentID]{ -- a client and content producer
(stationary[c,p,cid] && p.mobility in Stationary) -- producer p stationary
|| (mobileLateBinding[c,p,cid] && p.mobility in Mobility

&& Domain.binding in LateBinding) -- p mobile, domain does late binding
|| (mobileEarlyBinding[c,p,cid] && p.mobility in Mobility

&& Domain.binding in EarlyBinding)} -- p mobile, domain does early binding

5.8 Formal Analysis Results

We implemented the ICI framework discussed in our model, with gateways for

interoperation among IP, NDN, and MF (Fig. 5.10 as an example) in a software testbed

(implementation details in §5.3). This section provides the description and results of our

analysis of the ICI framework (our Alloy source code is approximately 800 lines of code in

total [1]).

To check for correctness, we performed verification (supported by Alloy Analyzer’s

model finding engine) of our ICI framework model, against the information-centric services

properties. In order to reach convincing proofs (as advised in [200]), we pick the scopes

for verification in Alloy that are large enough to contain all necessary cases (i.e., minimum

number of actors and objects for each service), and small enough so that we do not en-

122

counter model explosion. The scopes, i.e., upper bounds on the number of key objects, are

provided in Table 5.3. For most properties, we consider 1 Client, 1 Server, 1 Content, and

1 ContentID . That is, different <client, request> pairs are considered independent of each

other. However, for Properties 2.3.a/b, such a dependency matters, and we want to show

lack of conflicts. For Property 2.3.a, we set 1 Client and 2 Contents (to generate scenarios

where one client makes two separate request for two different contents), and for Property

2.3.b, we set 2 Clients and 1 Content (to look for conflicts between request for one content

but by two clients). We use 3 Domains for most properties, as it contains all cases with 1,

2, or 3 domains of any type, i.e., IP, NDN, or MF. Also, with upper bound n on the total

number of Nodes, i.e., sum of Clients, Servers, and GW s, we specify the upper bound

on the number of Routes (as well as RevRoutes) to be n(n − 1), enabling the existence of

any possible (uni-directional) route. For pub/sub services (i.e., Properties 3.1–3), we set 3

Prefixes, ContentIDs, and Contents, to capture inter-relationship of content IDs in a large

enough namespace. Additionally, with the upper bound on Domains and ContentIDs both

set at 3, we set the upper bound on total number of Groups (and GroupIDs) to be 3×3=9,

so as to contain cases with one group per content ID per domain. The blank cells in Table

5.3 indicate either “N/A” or “no particular upper bound set”, in which case Alloy picks

a default value. Within this scope, our verification passes successfully for each property,

showing that the stated properties are invariants of our ICI framework. In other words, the

framework design ensures that any sequence of interconnected IP, NDN, and MF domains

are information-centrically interoperable.

123

Route1

RecoverA

B

BRoute2

Requester
(Client or GW)

Server
(Producer)

Figure 5.14: Mobility scenario example: Route 2 established after B moves and
changes its point of attachment

We use our proposed model counting approach to analyze scenarios with the failure

of one or multiple gateways. The most important factor affecting returnability in scenarios

with the possibility of failure, is domain-specific routing policies, in particular, whether or

not it allows for a secondary (backup) gateway to relay the returning response content.

Different domains have different policies; MF and IP decouple the forward (request) and

return (response) paths, and they can be delivered through different gateways, while NDN

strictly requires the two paths to be the same, due to RPF policy. To investigate the

impact of that policy, we considered a scenario of two domains, with two gateways between

them (one primary and one secondary), sharing state. Both gateways are Up (working)

when the request is forwarded, and either may go Down (failing) when the response is one

its way back. Table 5.4 shows different scenarios for reachability and returnability, with

different domain constraints (with different routing policies). In particular, the two domain

constraints we consider are the following: 1) no constraint on what any of the domains

are; and 2) one domain is definitely NDN. The table shows the values of I (instances),

C (counterexample), and R (reliability) for each scenario. Our results for R in Table

5.4 prove that having an NDN domain on one side dramatically reduces the returnability

124

Table 5.3: Verif. scopes for ICI services properties

P
r
o
p
e
r
ty

C
li
en

t

G
W

R
ep

o
s/

S
er

v
er

/
P

u
b

li
sh

er

D
o
m

a
in

C
o
n
te

n
tI

D
/

K
ey

w
o
rd

P
re

fi
x

P
T

re
e

C
o
n
te

n
t

C
o
n

n
ec

ti
o
n

s

R
o
u

te

R
ev

R
o
u

te

N
o
d

eI
D

P
o
rt

N
D

N
re

q
ID

M
F

re
q
ID

G
ro

u
p

G
ro

u
p

ID

V
e
r
if
.
R
e
su

lt

1.1 1 2 1 3 1 1 1 12 12 6 X

1.2 1 2 1 3 1 1 1 12 12 6 X

2.1 1 2 1 3 1 1 1 12 12 6 6 3 3 X

2.2 1 2 1 3 1 1 1 12 12 6 6 3 3 X

2.3.a 1 1 1 2 2 2 1 8 8 4 4 4 4 X

2.3.b 2 1 1 2 1 1 1 8 8 5 4 4 4 X

3.1 1 2 1 3 3 3 1 3 1 12 12 9 9 X

3.2 1 2 1 3 3 3 1 3 1 12 12 9 9 X

3.3 1 2 1 3 3 3 1 3 1 12 12 9 9 X

reliability ratio, since basic NDN forwarding strictly forbids data coming back on a different

path than the original path taken by the request.

When a content producer (server) moves while a content request is in-flight (Fig. 5.14),

the domain’s handling of mobility recovery determines the reachability probability. NDN

and IP use early binding with retransmissions, while MF supports late binding with rerout-

ing. We compare the impact of these mechanisms and techniques using our model counting

method, with results shown in Table 5.5. Our modeled scenario consists of two nodes in

a domain, one requester (client or gateway) and one server (producer) with a route estab-

lished among them. The ‘Stationary’ columns in the table show reachability results in

the stationary server case. With ‘Mobile’, the route dies due to a server mobility event

(at time t=10), leading to the birth of the second route. We set the re-registration and

125

Table 5.4: Failure analysis results

Cases
Reachability Returnability

I C R I C R

No domain constraints 290 0 1.00 56 210 0.21

One NDN domain 176 0 1.00 8 168 0.04

Table 5.5: Mobility analysis results

Cases Stationary
Mobile

Late Binding Early Binding

DL range I C R I C R I C R

[0,20] 100 8 0.92 72 24 0.75 92 64 0.58

[0,18] 96 0 1.00 72 8 0.90 92 48 0.65

[0,15] 84 0 1.00 64 0 1.00 92 24 0.79

[0,10] 64 0 1.00 44 0 1.00 84 0 1.00

re-population delays to 1 each. Also, a retransmission is initiated 1 time unit after the

mobility event. Different binding techniques for mobility, i.e., late and early binding, are

also shown in Table 5.5. We compare cases with different ranges for Delivery Latency (DL),

which is time approximately needed for a packet to travel from requester to server. For a

delivery latency range of [0, 20], we see a higher R for stationary vs. mobility cases. The

reason is that when the server does not move, the original route stays active, thus providing

a higher chance for requests to reach the server. Comparing the two binding techniques,

late binding leads to higher chance of reachability compared to early binding, as it allows

for packets to be re-routed on the newly-born route, rather than retransmitting from the

original requester. These results serve as proof that under similar scenarios, late binding

outperforms early binding in ICI. Also, changing the delivery latency ranges, we can find

out at what points, reachability is an invariant (if ever) under mobility conditions. As the

126

table shows, with ranges within [0, 18], [0, 15], and [0, 10] (rows in Table 5.5 labeled in first

column accordingly), reachability becomes an invariant in cases of Stationary, Late Binding,

and Early Binding, respectively; as zero counterexamples are raised. With a small enough

delivery latency ranges, namely [0, 10], reachability becomes an invariant, no matter the

mobility conditions or binding techniques. Our approach can be used to find such points of

invariance, comparing different techniques, and prove them.

127

Chapter 6

POISE: Graph-based Namespaces

and Load Sharing for Efficient

Information Dissemination

6.1 Introduction

This chapter presents POISE, designing dynamic graph-based namespaces for in-

network name-based pub/sub, with the introduction of an information layer to manage

it. Although POISE supports both topic-based and recipient-based pub/sub, our particular

focus here is on recipient-based pub/sub. Additionally, we propose a rendezvous point (RP)-

based pub/sub protocol, with the dissemination logic following the graph-based namespaces,

to deliver all relevant information to their intended/required recipients (mainly first respon-

ders) in a timely manner using push-based multicast. POISE handles possible cycles in the

128

graph through preventive DFS-based cycle detection in the graph, as well as data plane

nonce-based loop detection [19]. We share the workload among multiple RPs, where each

RP is responsible for managing a subset of the namespace graph and functions as the core

of the subscription trees associated with those names. Often in many real-world scenarios,

the workload-per-RP distribution is non-uniform and difficult to predict. In an RP-based

pub/sub, this could cause an excessive load on one RP managing names corresponding to

those more intense workloads, thus making it a “hot spot”; an example of this may be in a

multi-player online gaming environment, as in [47]. While it is practically infeasible to op-

timally balance the load across the whole network (due to the amount of frequent periodic

communication needed which is especially difficult with large and/or bandwidth-limited

networks), we eliminate the traffic concentration by automatically splitting a congested

RP’s (i.e., hot spot’s) workload: the RP partitions its namespace (sub-)graph with the ob-

jective of finding two balanced segments while minimizing inter-RP communication, decides

which names to relinquish, and triggers the migration of subscription tree cores related to

those names to a new RP or an existing under-loaded RP. Our graph partitioning problem

involves calculation of weights for vertices and edges. However, due to the nature of our

partitioning formulation, these weights depend on the cut itself; thus making our objective

function a “complex” one [157]. As a result, off-the-shelf graph partitioners such as the

popular tool METIS [103] (as well as its parallelized version, ParMETIS [105]) fall short.

To overcome this, we propose a hybrid splitting procedure consisting of a heuristic (METIS)

and meta-heuristic guided search refinements (using Tabu Search [194]). Our results show

the effectiveness of our design. While we consider a number of example use cases of POISE

129

in different environments, we primarily focus on the application of POISE to information

dissemination among first responders in disaster scenarios, an application that requires

timely information delivery.

The key contributions of POISE are the following:

1. A recipient-based pub/sub framework with automatic load splitting for efficient infor-

mation dissemination.

2. Support for free-form, i.e., not limited to a particular structure such as hierarchy, graph-

based namespaces. Prior to describing POISE, we provide a brief example of name-based

pub/sub with hierarchical namespaces in §6.2. Additionally, POISE proposes an infor-

mation layer to capture rich information organization structures; our simulation results

show that this is more efficient than using state-of-the-art hierarchical namespaces.

3. An automatic name-based and workload-driven, novel hybrid graph partitioning proce-

dure and load splitting along with a seamless and lossless core migration mechanism;

our results show the effectiveness and correctness of our core migration, and improved

quality and resulting network efficiency of our partitioning procedure, compared to pop-

ular off-the-shelf graph partitioning tools. We further demonstrate the benefit of using

our Tabu search-based refinement compared to an iterative implementation of METIS,

as well as ParMETIS with Adaptive Repartitioning.

4. An implementation of a POISE RP including its graph-related operations on a DPDK-

based platform; our micro-benchmarking shows that the overhead of graph-based oper-

ations justifies using our RP-based solution rather than name-expansion at every hop.

130

6.2 Using ICN for Timely Vehicular Safety Information Dis-

semination

In this chapter, we briefly overview and example of an information-centric pub/sub

framework using hierarchical namespaces. Vehicles are increasingly equipped with special

purpose sensors and Global Positioning System (GPS) for use in safety applications. Be-

yond using these sensors, sharing information among vehicles can substantially improve the

safety of the overall transportation environment. Enabling each vehicle to get the “right

information at the right time”, to avoid potentially dangerous situations can be valuable.

Information-Centric Networks (ICN) that uses the notion of “named-object” enable infor-

mation retrieval and delivery regardless of its location, publisher or requester. Using ICN,

especially supporting publish/subscribe can provide timely delivery of relevant vehicular

safety information.

Our V-ICE architecture (Fig. 6.1) utilizes Roadside Units (RSUs) to act as infrastructure-

based information aggregators to communicate with vehicles that generate notifications of

safety-related information. RSUs also disseminate this information to the right vehicles who

subscribe to the information relevant to the path they are traveling on.

A use case that we used to evaluate the benefit of V-ICE, is its use in propagating

“black ice” warnings to vehicles that will likely be affected by the black ice event on their

routes. The critical need is for the information to be delivered in a timely manner, compared

to a server-based infrastructure. This provides other cars sufficient time to react.

131

Figure 6.1: Overall architecture of V-ICE

We build V-ICE’s namespace (Fig. 6.2) and architecture based on a representative

city environment, using the roadways of Luxembourg as an example, and evaluate our

approach using a 4-hour traffic trace generated by the SUMO synthetic traffic generator.

The work shows that V-ICE scales and performs better than a server-based approach or

V2V broadcast, in terms of timeliness, relevance, and network traffic.

A key component of V-ICE’s architecture is the name space that enables identi-

fication of the geographical location of the black ice events, along with a time interval for

the event. The name space is organized as a hierarchy, to allow for aggregation of events

that occur in a wider region. Subscriptions from vehicles (possibly an application such as

a route planner with a GPS) will be for a number of names, corresponding to the road

segments the vehicle will travel, along with the approximate time period it expects to be

on that segment. The application can update or generate new subscriptions as the vehicle

132

Black Ice Luxembourg Canton

BertrangeLuxembourg City StrassenHesperange …

Gronn Clausen Uewerstad Limpertsberg …

Rue des CapucinsRue Philippe II Rue des Bains …

Seg.1 Seg.2 Seg.3 Seg.4 …

T 6:00 T 6:05 T 6:10 T 6:15 ……

L
o

ca
ti

o
n

Time

Figure 6.2: V-ICE namespace example

travels, based on the route, current position and speed. With the rich naming framework

that supports hierarchies, subscriptions can use an aggregated name. Thus, a black ice

event on any road segment within a region will result in that notification being delivered to

a vehicle subscribed to events in the region. This will assist in re-routing the vehicle without

selecting any road segments with black ice in that region. More details on the design and

experiments on V-ICE are provided in [].

6.3 Use Cases of POISE

POISE is applicable in a variety of different contexts, where a pub/sub commu-

nication model is needed. Its biggest benefit is in cases where the dissemination is done

according to a complex, multi-dimensional namespace, and timely delivery of relevant in-

formation to all intended recipients is required. In this section, we illustrate how POISE

can specifically help with managing sample namespaces for several use cases.

133

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

Figure 6.3: Graph-based namespace: incident command chain example

6.3.1 Disaster Management

During disasters, a large amount of information is disseminated, and it involves

distributing it to many participants such as incident commanders, first responders, volun-

teers and civilians. ICN and name-based pub/sub have been shown to be very suitable

and beneficial for disaster scenarios [48, 177]. Furthermore, due to the complex nature of

today’s command chains of first responders, a graph-based naming framework (an example

disaster management namespace is shown in Fig. 6.3, is needed to represent the multiple

reporting hierarchies. Furthermore, in an RP-based framework for name-based pub/sub

for disaster management, overload and hot spots are highly likely to occur. In a given

disaster, particular roles (i.e., names) may receive much higher demands than other roles

(e.g., ‘firefighting’ roles in a wildfire incident). This motivates our RP splitting and graph

partitioning to eliminate traffic concentration. Furthermore, a major problem often caused

by disasters (especially natural disasters), is that the network and servers can experience

excessive load and congestion, making many services unavailable [48]. Our work addresses

this by creating an efficient information organization and load sharing framework that dra-

matically reduces network load during disasters. Works such as [90,139] have been proposed

134

Inside Building Outside Building City of LA

Room A Room B Inside Temp

Room A Temp

Temp Sensor S1 Temp Sensor S2

S1 Temperature S2 Temperature

Room B Temp

Outside Temp LA Temp

Humidity

Local Temp

S2 Humidity

Temperature

Figure 6.4: Example namespace for IoT HVAC system

to leverage delay/disruption-tolerant routing with ICN in disasters in case of complete or

partial infrastructure failures. These works, while orthogonal to ours, can be leveraged

by POISE. POISE’s information layer can run on top of such delay-tolerant protocols in

disconnected environments.

6.3.2 HVAC System: A Smart Building with IoT

The use of Internet of Things (IoT) for building smart cities, buildings and homes

is becoming increasingly more popular. The interactions between different elements in an

IoT environment, i.e., sensors, actuators, etc., can be complex. Fig. 6.4 shows a small

(partial) namespace for a HVAC (Heating, Ventilation, and Air Conditioning) system in a

building as an example use case for POISE. Information can have multiple dimensions: type

of information (e.g., temperature or humidity), location of the information (e.g., inside the

building or room A), etc. The naming schema used in current name-based architectures for

IoT (such as NDN RIOT [82]) use strictly hierarchical structures, which falls short in effi-

ciently capturing such complex multi-dimensional structures. Using POISE’s graph-based

135

Pod 1 Ingress Pod 3 Database Pod 2

Project C

Project A Project B

Staging A Development A Prod. Blue B Prod. Green B

Figure 6.5: Example namespace for containerized platforms

namespace (such as in Fig. 6.4), we can support a publish/subscribe (topic-based) capa-

bility to support many-to-many delivery from sources (sensors) to destinations (actuators).

Sensors publish to names; a new publication can be generated periodically, or if there is a

substantial update to report. All subscribers of that name and all the names reachable from

it will receive it. Different actuators (e.g., heating or cooling) can choose different granular-

ity levels based on their settings, subscribing to “Temperature” (to get every temperature

reading from any source: its own sensor, inside building, outside building, and externally

from city of LA news report), subscribing to “Room B” (to get any information in Room B:

temperature, humidity, etc.). By subscribing to “Inside Temperature”, an actuator will

receive all temperature readings recorded in Room A or B, whenever they are published.

6.3.3 Resource Management in Clouds

The use of virtualized container environments for cloud services have become pop-

ular in the past decade. In large-scale systems, they can involve the interaction across

many users and resources, warranting a scalable data structure and communication system

of managing their orchestration. Kubernetes [12], as a prominent example, defines names-

paces for resource orchestration. With POISE, we can have a generalized graph-based

136

UC

Campuses

UCLA UCR

Faculty

Prof. Alice Prof. Bob

Courses

physicschemistry

1.Pdf
UCLA chemistry

syllabus

2.Pdf
UC course

catalog

3.Pdf
UCR physics

syllabus

Figure 6.6: Example namespace for distributed replica management

namespace (with nesting) that captures all the different resources and components such as

clusters, projects, and libraries, while allowing a systematic push-based pub/sub notifica-

tion of changes to relevant users. Fig. 6.5 shows a (partial) POISE namespace as an example

for such environment. The edge directions denote the flow of information. For example,

upon any change in “Database”, an immediate notification will be sent to all subscribers of

“Development A” (as well as other ancestors of “Database”), which are members of a team

working on the development of “Project A”, and using the “Database” cluster. This is

especially helpful at an enterprise-level with a large complex namespace. The authorization

and access can be captured with the directed edges. Any publication made to a name can

be generated by any user that has the authorization to make changes (e.g., modification

of data or code) to the resource(s) associated with that name. The POISE namespace

captures a flexible integration of isolation and sharing; e.g., in Fig. 6.5, “Pod 1” is hidden

from anyone not associated with “Project A”, while “Pod 3” is visible to members of both

“Project A” and “Project B”.

137

6.3.4 Data Replica Management in Distributed File Systems

Distributed file systems are widely used in cloud systems, where each server in the

datacenter hosts files belonging to parts of the overall directory. Work in [208] shows the

benefit of using ICN for distributed file systems in a datacenter. A graph-based namespace

for the directory system can be more efficient than just a hierarchical tree structure. Fig. 6.6

shows a small example of such a namespace for a university system’s distributed file sys-

tem. A strictly hierarchical version of the namespace graph would lead to a large number

of duplicate nodes; for example the file “1.pdf” would have at least three name hierarchies,

one for “/UC/Campuses/UCLA/1.pdf/”, one for “/UC/Courses/chemistry/1.pdf”, and one

for “/UC/Faculty/Prof.Alice/1.pdf’. For scalability and reliability, distributed file sys-

tems typically require replicas of files in different data servers. For example, the Hadoop

Distributed File System (HDFS) [172] requires exactly 3 replicas of a given file chunk (in

default mode). As files can be modified, consistency of data among replicas becomes an

issue. POISE can make the management of data replicas quite convenient and efficient.

For example, server D1 hosting all the files under the courses category, will subscribe to

“Courses”. Server D2 hosting all the physics files, will subscribe to “physics” (which is

under “Courses”). Any modifications to a file belonging to physics, e.g., file “3.pdf” will

be published to the name “physics”, thus both D1 and D2 will receive the notification,

because the published update will be propagated along the name paths in the namespace,

and will apply the changes to their stored replica files (or caches). This will provide flexi-

bility for replica management, enabling multiple ways for different replicas’ sub-directories

to overlap.

138

A

1

A

2

A

3

C

1

C

2

C

3

B

1

B

4

B

2

B

3
Cut

(partitioning)

RP1

RP2

RP3

(a) Namespace structure

RP

1

RP

2

RP

3

RP

4

ST(A1)

ST(A3)

ST(A2)

ST(B1)

ST(B3)

ST(B2)

ST(B4)
ST(C1)

ST(C2)

ST(C3)

SUB(C1)

PUB(A1, m)

Migrate ST(B1)

Migrate ST(B3)

U1

U2

U3

U4

R2

R1

(b) Information dissemination architecture

Figure 6.7: A schematic overview of the architecture of POISE

6.4 Overview

An overview of POISE’s architecture is shown schematically in Fig. 6.7. POISE’s

namespace supports free-form graph structures, as shown in Fig. 6.7(a), rather than being

restricted to the state-of-the-art hierarchical namespaces [100, 169]. This enhancement is

possible through decoupling of information layer (which manages names and their relations

in their natural form, supporting complex graphs) and the service layer (which manages the

names used for name-based forwarding at every ICN router), which are coupled together

in current Named Data Networks [203]. Each vertex in the graph in Fig. 6.7(a) is a name,

i.e., a role or attribute, and the edges show relations among them. POISE’s information

dissemination framework is a name-based pub/sub [48] with the support of name-oriented

core-based multicast, with rendezvous points (RPs) being the cores for groups; each name

also identifies a multicast group. In addition to being the core for the multicast tree (similar

139

to traditional PIM-SM [72], NDN COPSS [49], or MF multicast [144]), POISE’s RPs oper-

ate at the information layer; in other words, they are information-layer-enhanced RPs. As

shown in Fig. 6.7(a) and Fig. 6.7(b), the namespace is shared among three RPs (i.e., RP1,

RP2, and RP3), each RP managing the sub-graph it is responsible for, and maintaining the

subscription trees associated with each of the names (groups) it is hosting; e.g., RP1 is the

core for the subscription tree (ST) for A1, A2, and A3. A name-to-RP mapping resolution

service resolves a name in the namespace to the RP it is hosting; e.g., the name C1 would

be mapped to RP3.

The subscription path is shown in Fig. 6.7(b) (in red); user U1 wants to subscribe

to C1 (which implicitly means subscribing to all ancestors of C1 in the namespace as well).

U1 sends this request as SUB(C1), without the need to know which is the associated RP or

where it resides. U1’s first hop router R1 performs the resolution and relays the request as

a unicast (U) message to the correct RP, i.e., RP3; thus, U1 joins ST (C1). The publication

path is also shown (in green); U2 wants to publish message m to all subscribers of name A1

(which implicitly means publishing to subscribers of all descendants of A1 as well). U2’s

first hop router relays this publication as a unicast message to its corresponding RP, namely

RP1. Expanding A1 to its descendants (i.e., name expansion), it sends m as a multicast

(M) downstream to ST (A1) as well as ST (A2). Additionally, RP1 recognizes that there is

an edge leading from A1 towards a name outside RP1. Thus, RP1 sends a unicast message

for this name, B1 to its RP, RP2. Note that RP1 only has visibility of namespace up

until B1 and not further. Performing a similar name expansion, RP2 processes the received

request by going through its namespace, which leads to multicasting m downstream along

140

ST (B1) and ST (B2). Thus, users for both subscription and publication scenarios need

only send one packet, destined to only one name; the network takes care of expanding the

packet to additional names, if needed.

Each RP’s workload has a correlation with the part of the namespace it is man-

aging. However, additionally, the load-per-name distribution is likely to be non-uniform,

and hard to predict. To address this, another important feature of POISE, automatic load

splitting is performed to eliminate traffic concentration. Consider the case when RP2 en-

counters a large amount of workload exceeding its threshold, thus making it a hot spot.

Triggered by this, RP2 will perform a partitioning procedure on its own sub-graph, to pro-

vide two balanced segments, shown as Cut in Fig. 6.7(a). It thus decides to keep B2 and

B4, and relinquish B1 and B3 to another RP (e.g., RP4), which can be a regular ICN

router configured to be a new RP for this environment. As a result, the subscription trees

for B1 and B3 will be migrated to RP4, via a core migration procedure. The name-to-RP

mapping will then be updated accordingly.

6.5 Architecture and Design

6.5.1 Information Layer and Graph Namespace

POISE supports free-form graph namespaces with their natural structure for in-

network information-centric dissemination, without the need to restrict them to any partic-

ular data structure, such as a hierarchy or prefix tree as NDN [203], or NDN-based solutions

such as CNS [48] do. Using the disaster management use case as example, let us consider

Fig. 6.3, a simple namespace of an incident management command structure. As we can

141

see, it does not follow a strict hierarchy. The incident management structure is a directed

graph, with each node in the graph being a name that denotes a role. The higher levels

denote coarser granularity (e.g., “Fire” is a broad organizational role for everyone having

something to do with fire-related issues), while the lower levels denote finer granularity

(e.g., “NJ FE1” denotes a specific fire engine dealing with a fire-related task in New Jersey).

Edges in the graph represent name relationships and the direction of the edges show the

flow of control in the command chain; e.g., “NJ FE1” (NJ fire engine 1) is a higher-level au-

thority than “F.Fighter2” (fire fighter 2). This representation of the namespace captures

the different dimensions in one graph, i.e., time, region, department, etc. Modification of

the namespace is achieved through addition, modification and/or deletion of nodes and/or

edges in the graph. In the namespace graph shown in Fig. 6.3, two sub-namespaces, one

organizational, on the left-hand side, and one incident-specific, on the right-hand side, are

connected through the two edges shown in red. These two red edges represent the fact that

the incident commander has dispatched “NJ FE2” and “F.Fighter2” roles to take care of

Incident X’s “FireFighting” tasks, shortly after it occurred.

Support for graph namespaces in information dissemination is made possible in

POISE through a decoupling in the ICN layer and the introduction of information layer.

Fig. 6.8 shows the two designs with regard to the ICN layering. In current name-based

network architectures, in particular NDN, the information layer and service layer function-

alities are coupled together in the ICN layer, supported at every ICN router, as shown

in Fig. 6.8(a). This restricts the in-network namespace to one particular structure. This

means every command structure of the organizations (e.g., namespace in Fig. 6.3) needs to

142

Geo-Location

C

A

N

J

NJ

Fir
e

First Response

Po

lic
e

F

i
r

e

Fire Fighting Survival Search

Inc. X Fire
Inc. X

EMS

Incident X

NJ

FE
1

NJ

FE
2

NJ

FE
3

F. Fighter 2
Driv

er 1
F. Fighter 1

NJ

Fir
e

NJ

FE
1

NJ

FE
2

NJ

FE
3

F. Fighter 2
Driv

er 1
F. Fighter 1

NJ

FE
2

Driv

er 1
F. Fighter 1

F. Fighter 2

r

o
o

tConvert to

hierarchy

H
ie

ra
rch

ica
l

e
q

u
iva

le
n

t o
f in

cid
e

n
t

co
m

m
a

n
d

 ch
a

in

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

F
re

e
-f

o
rm

 g
ra

p
h

n
a

m
es

p
a

ce
 f

o
r

in
ci

d
e

n
t

co
m

m
a

n
d

 c
h

a
in

FIIB entries

/IncidentX/Inc.XFire/F.Fighting/F.Fighter2

/FirstResponse/Fire/NJFire/NJFE1/F.Fighter2

/Geo-Location/NJ/NJFire/NJFE1/F.Fighter2

…

Strictly

hierarchical

namespace

Hierarchical

name-based

forwarding

(a) State-of-the-art NDN

Graph-based

namespace

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

F
re

e
-f

o
rm

 g
ra

p
h

n
a

m
es

p
a

ce
 f

o
r

in
ci

d
e

n
t

co
m

m
a

n
d

 c
h

a
in

FIB entries

F.Fighter2

…

Flat

name-based

forwarding

(b) POISE’s design

Figure 6.8: Design choices for ICN layer

143

be converted to a strict hierarchy. As can be seen, this conversion makes the namespace

unnecessarily larger and more complex to manage and use; i.e., the “F.Fighter2” node in

Fig. 6.3 will appear 3 times in the hierarchical equivalent on each reachable path, and will

populate 3 entries in the FIB tables, with a separate entry for each (in this case, 3) different

path leading from any root to node “F.Fighter2”. The FIB table provides the name-based

forwarding functionality leveraging the lower layer routing mechanism used for navigating

the packet to its relevant locations. In contrast, in POISE (Fig. 6.8(b)), we decouple in-

formation and service layer functionalities of the ICN layer. Only RPs (designated ICN

routers that perform name expansion) need to understand and maintain name relationships

in the graph. As can be seen by comparing Fig. 6.8(a) and Fig. 6.8(b), our design choice in

POISE (Fig. 6.8(b)) brings a number of significant benefits: it makes the ICN-layer names-

pace simpler and smaller, leads to smaller FIB tables, and eliminates redundant messages

used for subscription and publication. This design choice in POISE (Fig. 6.8(b)) brings a

number of great benefits compared to the state-of-the-art solution (Fig. 6.8(a)):

1) The ICN-layer namespace in Fig. 6.8(b) is more natural, and thus simpler and

smaller than its converted equivalent in Fig. 6.8(a). Each name appears once rather than

multiple times. This makes managing the namespace more efficient and scalable, as well as

its modification less costly, which is important in the highly dynamic disaster scenario.

2) Complicated role relationships, which is prevalent in disaster management,

leads to larger FIB tables in Fig. 6.8(a) compared to Fig. 6.8(b). As seen in the Fig.,

“F.Fighter2” appears 3 times in Fig. 6.8(a)’s FIB tables vs. once in Fig. 6.8(b)’s. Thus,

POISE consumes less ICN router memory.

144

3) The above difference also leads to higher number of subscription and publication

messages in Fig. 6.8(a), when it comes to recipient-based pub/sub, which we use here.

Subscribing (publishing) to role “F.Fighter2” would result in 3 subscription (publication)

messages in NDN’s hierarchical naming framework as seen in Fig. 6.8(a), while it leads to

only one message in Fig. 6.8(b). This makes POISE more efficient in a disaster scenario for

pub/sub as it reduces the number of messages, thus reducing the network/user load.

6.5.2 Recipient-based Pub/Sub

POISE enables recipient-based pub/sub [48], enhanced with an information layer

supporting graph-based namespaces. In this name-based pub/sub, subscribing to a name

means implicitly also subscribing to a set of names related to that specific name, in accor-

dance with the namespace. POISE’s pub/sub logic follows the command chain graph-based

namespace. In the case of disaster management, first responders and volunteers subscribe

to (listen to) names, and civilians and incident commanders publish to names. Given the

namespace in Fig. 6.3, subscribing to “F.Fighter2”, implicitly means also subscribing to all

of its ancestors, i.e., “NJ FE1”, “FireFighting”, “NJ Fire”, etc. Conversely, publishing

to “NJ Fire”, implicitly means also publishing to all of its descendants, i.e., “NJ FE1”, “NJ

FE2”, “F.Fighter2”, etc. Expanding a name to all of its descendants on the publication

path according to the namespace graph, is performed by the RPs, in a load-shared way. This

design is beneficial where dynamically-formed interacting groups and individuals involved

need to be notified with messages relevant to their tasks in a timely manner, whenever they

are published or available, making sure maximum coverage and accuracy is achieved.

145

RP1

R1

R5

R2

R4

R6

R3

FM1

FM2 FM3

FM4

Tree for F. Fighter 1

Commander

RP2

FM5

R
P

1
 N

a
m

e
 T

a
b

le

Name Children

NJ FE2 Driver 1, F. Fighter 1

Driver 1 —

F. Fighter 1 —

F. Fighter 2 —

R
P

2
 N

a
m

e
 T

a
b

le Name Children

Inc. X Fire F. Fighting, Survival S.

F. Fighting NJ FE2, F. Fighter 2

Figure 6.9: Example network topology: 5 Firemen subscribe to different roles in the names-
pace in Fig. 6.3 and 2 RPs share the workload

To demonstrate the protocol exchange for information dissemination in POISE,

we use a small example: consider the namespace graph in Fig. 6.3, and the topology in

Fig. 6.9, where we have 5 firemen (FM1—FM5), and one commander, all connected to the

network via routers R1-–R6. These firemen subscribe to different names: FM1→“NJ FE2”,

FM2→“Driver1”, FM3 and FM4→“F.Fighter1”, and FM5→“FireFighting”. There are

two RPs, with each of their name tables shown (partially) in Fig. 6.9. The commander

wishes to send a message to the name “FireFighting”, for it to be received by all relevant

firemen. When a publication is sent to “FireFighting”, the message will be sent to the

RP serving it, namely RP2. RP2 searches its name table to find out the reachable sub-

graph visible to it under “FireFighting”, using BFS/DFS traversal. It sees that it needs

to forward the message to “FireFighting”, “NJ FE2” and “F.Fighter2”. Although the

name should be further expanded under “NJ FE2”, we do not require RP2 to do this. RP2

would forward the message as a multicast to “FireFighting” based on the subscription,

since “FireFighting” is served by itself. It then sends 2 publications to “NJ FE2” and

146

“F.Fighter2” since it cannot find the entries for these names in the name table. These

messages will reach RP1 based on the underlying network performing the lookup (e.g.,

NDNS lookup in NDN [18] or GNRS lookup in MF [160]) to find that RP1 is responsible

for these names. It will then get expanded at RP1.

An important difference between graphs and (hierarchical) trees is the potential

existence of cycles in graphs, which needs to be addressed with graph-based namespaces.

While semantically it is a poor design to have cycles in the namespace graph, it is possible

that frequent changes in the namespace result in (possibly transient) cycles. These loops in

the publication dissemination path can have significant performance impact. ICN routers,

as in NDN, have inherent support for detecting and discarding looped packets with the use

of Nonces [19]. POISE uses a similar data plane approach for resiliency against namespace

graph cycles: fresh Nonces are used for each new end-user-generated publication and is

carried in all its subsequently expanded packets. RPs maintain a list of <name, Nonce>

pair for (publication) packets they have seen; if an RP encounters a packet with name and

Nonce matching any entry in the list, it will discard it, thus breaking the loop.

6.6 Automatic Load Splitting

6.6.1 Partitioning Namespace Graphs

POISE’s namespace graph partitioning aims at distributing the load among RPs if

traffic concentration overloads an RP. Partitioning is performed locally on the congested RP,

only on the (sub-)namespace that it is hosting, dynamically. We mainly use the monitoring

147

of the recent queue size at RPs to measure its load, and use the recent multicast and unicast

workloads (explained below) to label the graph for partitioning.

Problem Description and Solution Overview

We leverage graph partitioning algorithms to determine which part of the names-

pace should reside at which RP for load splitting. We treat the namespace as a directed

graph with weights (labels) on vertices (i.e., names) and edges. The initial (input) vertex

weights represent messages sent to each name explicitly from publishers (we call it incoming

unicast load). To determine the number of messages multicast from a node (called mul-

ticast workload), we need to consider the incoming unicast load from all of its ancestors.

The weight of the edges going out of a name are set to be the multicast workload of that

name. The total weight of the edges going out of an RP to other RPs represents the total

amount of outgoing inter-RP communication (which we call outgoing unicast load). We try

to balance the sum of multicast workload and outgoing unicast load, in the two partitioned

segments and seek to minimize the cut cost. A complexity here is that the decision of the

partitioning can alter the weights, i.e., “the chicken and egg problem” [157], thus making

the off-the-shelf graph partitioners inadequate; we explain this with an example.

Fig. 6.10 shows a simple namespace graph at different stages. Let us denote the

incoming unicast load of each name (node) as a, b, c, etc. Assuming no partitioning (i.e.,

whole namespace in same RP), the multicast workload of each name is shown in Fig. 6.10(a)

(blue labels next to each name). E.g., name C has to send out publications related to itself,

A, and B to its subscribers; thus making its multicast workload a+b+c. Edge weights in

148

A

D

E

B

C

a

a+d

a+d+e

a+b

a+b+c

a+d

a

a

a+b

a

(a) Before partitioning

A

D

E

B

C

P1
P2

a

a+d

a+d+e

a+b

a+b+c

a+d

a

a

a+b

a

(b) Partitioning 1

A

D

E

B

C

P1
P2

a

a+d

a+d+e

a+b

2a+b+c

a+d

a
a

a+b

a

(c) Partitioning 2

Figure 6.10: Partitioning impacts multicast workload weight of names

Fig. 6.10, denoting the RP-to-RP communication on that link, in case it gets cut, is shown

in red and is underlined.

Considering the graph shown in Fig. 6.10(a), there may be multiple ways to par-

tition a graph. Two examples are depicted in Fig. 6.10(b) and Fig. 6.10(c). As seen in the

figures, the result of multicast workload of name C (and thus the total cost of the resulting

graph) differs in the two figures; it is a+b+c in Fig. 6.10(b) and 2a+b+c in Fig. 6.10(c).

The one extra message C receives from A in Fig. 6.10(c) is due to the fact that in this

scenario, B relays what it has received from A to C, not knowing that A is also a parent of

C; while in Fig. 6.10(b) the graph cut is in a way that it does not cause such duplication.

This shows that the graph’s multicast workload weight values are a function of partitioning

itself; thus, a standard partitioning tool with fixed weights is not sufficient to solve our

partitioning problem. While such static methods can provide a fast, scalable partitioning

solution, they do not achieve a sufficiently high-quality and come close to optimality, as

they do not take into account the weight changes due to the cut. To address this, we pro-

pose the use of a hybrid approach of heuristics (classic static graph partitioning) followed

by a refinement period. This refinement is an iterative procedure that dynamically adapts

149

to weight changes as it progresses. One possible approach for it is to devise an iterative

approach with successive runs of METIS, where at each iteration, the new weights based

on the previous cut is fed back to METIS. Thus, at each iteration the best partitioning so

far is returned as the solution of that iteration. A more efficient variation of this approach

is to use ParMETIS’s adaptive re-partitioning routine [105] at each iteration, rather than

running METIS from scratch each time. While both these approaches may improve upon

the solution quality of METIS, they are prone to getting stuck at local optima at an early

stage, and also in not exploring the best possible search paths. To address this issue, we

use Tabu search for the refinement period in POISE, as it provides a more thorough, but

guided search as a meta-heuristic, to iteratively improve on the initial result provided by

METIS.

Our algorithm supports bi-partitioning as well as k-way partitioning (with k >

2). Typically, bi-partitioning is preferred over k-way partitioning in POISE, since: 1) it

is computationally less complex, and more importantly, 2) starting from one RP in the

beginning, it results in having fewer RPs (which means less inter-RP communication).

Additionally, POISE does a local partitioning, using only the information at the triggered

RP. However, additional information from neighboring RP’s can be added and considered

for the partitioning decision if needed. An extreme case of that, however, meaning a global

partitioning and placement using all the information in the network, while theoretically

possible in our graph partitioning approach, is practically not feasible as it requires too

much communication to exchange data, which is not desirable in our network environment.

Thus, we focus on local, bi-partitioning.

150

As described earlier, we pay special attention to the quality of the partitioning so-

lution, as a high-quality partition significantly reduces the resulting network traffic overhead

and latency in POISE. Given that:

1. our partitioning is only performed occasionally and only upon RP overload (instead of

all the time),

2. is run locally (rather than coordinating across multiple RPs),

3. concerns itself with balance among the two graph segments within an RP (rather than

across the whole network), and,

4. deals with graph sizes of moderate sizes (in the order of hundreds or thousands of vertices,

rather than millions, for each separate graph connected component, that is input to a

partitioning pipeline),

we believe it is reasonable to favor partitioning quality more over scalability. That said, we

refrain from using brute-force approaches and instead use the parameters of our proposed

algorithm in a way that produces high-quality results with the least amount of processing

overhead. Also, in cases where the graph namespace consists of a number of separate con-

nected components, each connected component sub-graph can be processed for partitioning

independently and concurrently, thus enabling faster and more scalable computation in

POISE.

151

Theoretical Foundations

In this sub-section, we formally define and mathematically represent the weighted

namespace graph for partitioning, and how weights are calculated. Assuming we are dealing

with graph G(V,E), some notations we use are defined in Table 6.1.

Multicast Workload (MW). An important part of our weight calculation, is

calculating MW (vj) for each vertex vj . Its value contains the aggregation of the vertex’s

ancestors’ incoming unicast loads, reaching vertex vj over all possible paths. When travers-

ing within an RP for propagation, e.g., using DFS traversal, only one path needs to be

counted for multicast. On the contrary, if traversing across graph cuts (inter-RP), every

path with a unique input-output pair of vertices needs to be counted. The value of MW (vj)

depends upon the amount of load that vj experiences, caused by every other vertex. Thus,

we need to solve “how many times the incoming unicast load from vi is received at vj”,

which we call the duplication factor. We describe these in further detail.

Let us define a simple path as a path between two vertices that does not include a

cycle fully contained in one segment. We then define Pij as all simple paths from vi to vj :

Pij = {p1
ij , p

2
ij , . . . } (6.1)

where pkij is the k-th simple path from vi to vj , and is an ordered tuple of vertices, formed

as pkij = (vi, . . . , vj).

In a partitioned, i.e., cut graph, we define a Cut C as the multi-set of edges cut

by partitioning:

C = {(vi, vj) | part(vi) 6= part(vj)} (6.2)

152

where part(vi) denotes which graph part (segment) the vertex vi belongs to, after parti-

tioning.

In order to avoid over-counting, we need to find how many of pkij ’s need to be

counted. We define border portions of pkij as the ordered tuple of (vm1, vm2) pairs, a subset

of pkij , where (vm1, vm2) ∈ C. We define Borders as:

Borders(pkij) = ((vm1, vm2), (vm3, vm4), . . .)

= {(vm, vn) | (vm, vn) ⊆ pkij ∧ (vm, vn) ∈ C}
(6.3)

Each border element (vm, vn) consists of an exit point (vm) and an entry point

(vn). We define entry points (EP) as:

EP (Borders(pkij)) = ((vm2), (vm4), . . .)

= {(vn) | ∃ vm s.t.(vm, vn) ⊆ pkij ∧ (vm, vn) ∈ C}
(6.4)

The main part of a border tuple impacting the result, is the entry point to the

next sub-graph. We define two paths are related by R if and only if they have border nodes

with same entry points (with same order):

pk1
ij Rp

k2
ij ⇐⇒ EP (Borders(pk1

ij))=EP (Borders(pk2
ij)) (6.5)

RelationR is an equivalence relation: it is reflexive (p1 R p1), symmetric (p1 R p2 =⇒

p2 R p1) and transitive (p1 R p2 ∧ p2 R p3 =⇒ p1 R p3). Thus, R divides Pij into disjoint

sets. All paths inside the same equivalence class are similar paths and together, they carry

the load from vi to vj only once. Thus, the duplication factor nij is defined as the number

of dissimilar paths from vi to vj , which is the cardinality of the equivalence class:

nij = |Pij/R| (6.6)

153

Table 6.1: Notations for graph

Notation Definition

IW (v) Incoming unicast load

MW (v) Multicast workload

UW (v) Outgoing unicast load

A B C

D

F
E

G

Figure 6.11: Weight calculation example

Using the definition of duplication factor in Eq. 6.6, the multicast workload of a

vertex u will be:

MW (u) =
∑
v∈V

nij .IW (v) (6.7)

Using the example in Fig. 6.11 (cut denoted by the dashed line) and following the

aforementioned equations, the duplication factor of ‘A’ to ‘C’, i.e., the number of times

every message to ‘A’ needs to be eventually multicasted at ‘C’ as well, is 3. Using this and

Eq. 6.7 we will have: MWA(C) = 3 × IW (A) showing the number of outgoing multicast

messages out of ‘C’ caused by explicit incoming load at ‘A’.

Outgoing Unicast Load (UW). Outgoing Unicast Load (or unicast workload)

of a name denotes the number of messages that leave one RP, and enter the other RP,

because of that name. If a node vk has no edge towards the other RP, its UW would be

0. Otherwise, it would be related to the number of its outgoing effective edges for every

IW (vi) it receives:

UW vi(vk) = nik × eevik × IW (vi) (6.8)

where UW vi(vk) is the additional unicast load of vk that is caused by incoming unicast

load at vi. The number of effective edges out of vk because of vi is the number of edges

that carry data from vk to the other RP, e.g., to a node vj in the other RP. If vj has more

than one edge coming to it from the other RP, only one of them will be used, due to DFS’s

154

single-visit traversal. The total outgoing unicast load of vk would be:

UW (vk) =
∑

∀vi∈V,vi 6=vk

UW vi(vk) (6.9)

Algorithm

While we can design an algorithm that strictly follows the formulas mentioned

previously for weight calculation, we can design more efficient algorithms that consume

less memory. The mathematical representation presented previously is used to prove and

cross-validate the algorithm, as an alternative way of arriving at the final result. The

calculation of these weights are done through an iterative diffusion algorithm which follows

our propagation logic described. Algorithm 2 calculates the two weight values of each vertex,

namely MW and UW (stored in maps ‘multicastLoad’ and ‘unicastLoad’ respectively)

using propagation from each source vertex (that has incoming unicast load ‘iLoad’) to any

reachable ancestor vertex, be it in the same or different sub-graph (part). Starting from the

vertex ‘nodeName’, the algorithm traverses the graph and finds all the traversed vertices,

using a modified DFS algorithm (Algorithm 3). Final weights of any traversed vertex within

the same sub-graph as ‘nodeName’ will be incremented accordingly (by ‘iLoad’). For any

traversed vertex ‘u’ that is not in the same sub-graph as ‘nodeName’, i.e., pointing to

another RP, the procedure is recursively called, starting propagation from ‘u’, with ‘iLoad’

in the other sub-graph. Any vertex ‘pu’ having a link to another sub-graph will have its

UW updated accordingly.

Algorithm 3 describes the modified DFS for traversal of two connected subgraphs

G1 and G2 according to our protocol, used for propagation and calculation of graph weights.

155

The ‘modifiedDFS’ function and its helper function, ‘modifiedDFS util’ carry the source

vertex ‘name’, as well as the original source vertex name ‘origName’. The ‘originality’

argument can be either 1 (the call has been made by the original source) or 0 (otherwise).

If ‘name’ and ‘origName’ are equal, and also ‘originality’ is 0, then the procedure terminates.

This distinction is important in order to catch loops and prevent a message from indefinitely

circling in case of cycle.

Graph Partitioning Procedure

To prepare the graph for partitioning, the RP labels its local namespace sub-graph,

which mainly consists of calculating and assigning appropriate weights explained earlier.

The weights are calculated for each solution instance, including an initial solution provided

by METIS [103]. We use Tabu search for iterative refinement of our graph partitioning

solutions [162,194], as described in Algorithm 4. Each solution (candidate) of the procedure

provides a cut, which partitions the RP’s namespace sub-graph into two segments (assuming

bi-partitioning).

Initial solution: Tabu search typically starts with a random initial solution and improves

it. To get a better initial partition [157], we try to use the result from the problem closest

to ours – the (static) multi-criteria graph partitioning where the weights will not change

according to the partition decisions. We use METIS for this stage as it is a highly popular

tool that has been shown to be fast, while providing high quality solutions.

Objective Function: As mentioned, to reduce the search space, we adopt a bi-partitioning

approach, where the heavily loaded RP’s namespace is partitioned to be split between

156

two RPs, i.e., the current RP and the new RP. The objective (fitness) function we use

to evaluate our partitioning solution, takes into account the cost of both segments (sub-

namespaces managed by the two RPs) and provides a combined measurement of ‘minimizing

the imbalance between the two RPs’, ‘minimizing the maximum single segment load’, and

‘minimizing the inter-RP communication’ (G1 and G2 are the two segments, associated with

the two RPs):

F (G1, G2) = α · |TC(G1)− TC(G2)|+

β ·max(TC(G1), TC(G2)) + γ · (UC(G1) + UC(G2))

(6.10)

where α, β, and γ are optimization coefficients. Setting higher coefficients for some of the

terms would result in the final solution being impacted more by those terms. However, the

coefficients can be adjusted. We set all of them to 1 in our test cases, since these values

appeared to provide reasonably good benefit, in our experiments. The aim is to minimize

F . Function UC(Gi) (segment total unicast cost) is the sum of cut edge weights initiated

in Gi, and MC(Gi) (segment total multicast cost) is the sum of all vertex weights in Gi.

Furthermore, total load cost of a segment would be:

TC(Gi) = UC(Gi) +MC(Gi) (6.11)

Stopping criterion: We allow both fixed and adaptive stop criteria. If fixed, a parameter

Max Iterations i is pre-defined, and Tabu search stops when i is reached. Our adaptive

stopping criterion, on the other hand, starts with an Iteration Base b, and any time the ‘so

far found best solution’ is changed, b gets added to the current iteration number and makes

up the new final iteration number. This ensures that our Tabu search procedure stops only

after running with b iterations of no improvement. To prevent the Tabu procedure to keep

157

iterating indefinitely, with this adaptive stopping criterion, an upper bound on the number

of iterations is also specified.

6.6.2 Migrating Cores

Once the graph partitioning is done, the names in one segment need to be migrated

to another core. The RP selection function is similar to that in IP multicast [125]. It may

be performed by a network manager or calculated by a Network Coordinate function such

as [56]. Once the RP is selected, the process essentially migrates the names in the partitioned

subspace to the other RP. However, this has to be done carefully because if a router discards

the original subscriptions before it receives all the publications that are in-flight (before the

original ‘pipe’ is drained), these publications will be lost.

To address this issue, we propose a 3-stage (make-before-break) solution to ensure

reliable delivery during migration, as shown in Fig. 6.12. Before migration, we assume

there is a multicast tree rooted at RP1 (Fig. 6.12(a)). When RP1 decides to move a name

to RP2, in stage 1 (Fig. 6.12(b)), it notifies RP2 and also subscribes to RP2 (creating

new green line). Meanwhile, it notifies the network that RP2 is now serving that name

(routing update in IP, FIB propagation in NDN, or a GNRS update in MobilityFirst). RP2

now becomes the RP for the name, and routers with the new RP information will send

publications to RP2. However, reusing the original multicast tree, we continue to make

sure that the publications are delivered during the transient phase. Routers may have not

yet updated the name-to-RP mapping, and there can be publications in-flight during the

mapping update. Thus, some publications to those names will still reach RP1. We adopt

the late-binding concept of MobilityFirst: when an RP receives a publication that is not

158

RP1 RP2

(a) Before

RP1 RP2

(b) Init

RP1 RP2

(c) After M1

RP1 RP2

(d) After M2

Figure 6.12: Reliable RP splitting: RP1 relinquishing a name to RP2

served by itself. It hands the publication back to the network to then be forwarded to the

correct RP accordingly.

Then, at stage 2 (the ‘make’ stage), RP1 sends out a special marker packet (we

call it M1) to all the nodes in the subscription tree. M1 is treated just as a normal multicast

packet. To make sure that all the subscribers in the tree receive the M1 marker packet,

RP1 has to send that packet after it is sure that the new mapping has propagated into the

network and the subscriptions based on the old mapping have joined the tree. On receiv-

ing M1, routers subscribe towards the new RP and mark the original ones as ‘stale’ if the

original entry in the subscription table is different from the new entry. Fig. 6.12(c) shows

the subscription after M1 is propagated to the network. The green arrows are the new sub-

scriptions and red arrows are the ‘stale’ ones. Note that while we mark the subscriptions

as stale, we do not delete them. When RP2 sends publications, it sends them along all

the subscription links, to ensure delivery. A nonce can be used in the packets to eliminate

redundant traffic during this transient phase.

After all the nodes subscribe to the new RP, RP1 can send a second marker

packet (we call it M2) to start the third and final stage (the ‘break’ stage). On receiving

this marker packet, the intermediate nodes clean up the ‘stale’ subscriptions (as is shown

159

in Fig. 6.12(d)). When a node has no downstream subscriptions (e.g., RP1 in the Fig.), it

will unsubscribe from the upstream naturally. Since all the nodes have subscribed to the

new RP, the M2 marker packet acts as the last packet in the pipe. Thus, we will not lose

packets if we close the ‘pipe’ (unsubscribe) after we receive M2.

It is also important to provide resiliency to RP failures. POISE’s RP splitting

mechanism can be used for recovery. The namespace managed by an RP would have to be

backed up and replicated (possibly pro-actively) at a backup router. On detecting an RP

failure, the backup router can become active and using the above protocol, the subscription

trees for that part of the namespace would be shifted to the backup RP. This would be

transparent to publishers and the protocol minimizes loss of in-transit packets.

6.7 Evaluation

To evaluate POISE, we compare it to a number of existing and theoretical al-

ternatives. In terms of overall architectures, we compare POISE to NDN/CNS [48], a

recipient-based push-based pub/sub architecture for notification systems, which is the clos-

est architecture to ours. For namespaces, we compare POISE’s graph-based naming with

the most advanced state-of-the-art ICN naming, which is NDN’s hierarchical naming (as in

CNS as well). For load-splitting, we compare POISE to the most popular graph partitioning

tool METIS [103]. We use the same design principles of the simulator in [48], while adding

the functionality of our information layer graph namespace design and splitting procedures.

Our simulator is open-sourced and available in [11]. For the partitioning component, we

use the current implementation of METIS (and ParMETIS [105]), plus our refinement and

160

Table 6.2: Solution quality of alternatives and global optimum

VerticesEdges Optimum METIS POISE Solution itr Final itr

10 14 1,916 2,093 1,916 12 22

10 20 2,434 2,736 2,434 14 24

15 19 1,400 1,763 1,400 6 21

15 21 4,744 5,876 4,744 5 20

15 26 6,753 10,460 6,753 28 43

15 65 6,119 16,271 6,119 6 21

20 29 2,594 3,162 2,856 20 40

20 42 9,342 18,905 9,342 10 30

20 89 7,689 15,587 10,480 10 30

25 44 5,966 7,230 5,966 27 52

weight/objective calculation procedures. We also describe our POISE RP implementation

on DPDK, and provide micro-benchmarking results to justify POISE.

6.7.1 Evaluating the Graph Partitioning Algorithm

In this section, we evaluate the quality of POISE’s graph partitioning, i.e., the

hybrid “METIS+Tabu” algorithm. To compare the quality of solutions provided by METIS,

and METIS+Tabu (starting from METIS and then doing a Tabu search) with the global

optimum (using exhaustive search), we use 10 relatively small graphs, randomly picked

and labelled with weights (taken from [78]), as described in Table 6.2. METIS+Tabu uses

v iterations with Tabu tenure of
√
v for a graph with v vertices. For finding the global

optimum (i.e., the optimal solution), we generated all possible solutions using a brute-

force (exhaustive search) approach. For the METIS+Tabu (POISE) case, Table 6.2 also

shows the Tabu iteration at which the best solution was found (‘Solution itr’) as well as

161

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

O
b
je

ct
iv

e
F

u
n
ct

io
n
 (
⨯

1
0
k
)

of Iterations

Random METIS Tabu Iterative METIS ParMETIS Adaptive Repart METIS+Tabu (POISE)

5.79

6.29

7.01

7.75

4.5

6.5

8.5

10.5

12.5

0 10 20 30 40 50

O
b
je

ct
iv

e
F

u
n
ct

io
n
 (
⨯

1
0
k
)

of Iterations

Figure 6.13: Effectiveness of different graph partitioning ap-
proaches

5.80
5.79

0

2

4

6

8

10

12

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

O
b

je
ct

iv
e

F
u

n
ct

io
n

 (
⨯

1
0

k
)

It
er

at
io

n
 C

o
u

n
t

Base

Solution Iteration # # of Iterations

Quality of Solution

Figure 6.14: Impact of base in
adaptive stop criteria
Table 6.3: Quality of METIS vs.
POISE

Vertices Edges METIS POISE

50 75 4,639 4,042

50 84 99,292 57,897

100 191 23,030 18,980

489 731 47,904 40,745

the number of the last iteration (‘Final itr’). For the cases in Table 6.2, METIS+Tabu (the

approach in POISE) finds the optimal solution most of the time (e.g., in 8 out of the 10 cases

considered). It also reaches the global optimum within a reasonable number of iterations.

Comparing the complexity of the Tabu search and the brute-force approaches, we see a

significant benefit of using our Tabu search approach. While the brute-force approach finds

the global optimum by checking 2n−1 − 2 solutions (assuming bi-partitioning and filtering

out of duplicate permutations and no-cut solutions), Tabu search finds that solution or one

reasonably close to it by checking O(iv) candidate solutions, which in our case is O(v2),

since we set the number of iterations i to be O(v) and at each iteration, O(v) neighboring

solutions are visited and evaluated. Even though in Table 6.2, POISE found the exact

global optimum for most of the cases, this does not necessarily have be to the case for all

input graphs. In particular, for two graphs, namely G=(20, 29) and G=(20, 89), POISE

did not reach the global optimum. For these two cases, increasing the Tabu iterations by

a factor of 10 did not improve the solution either. However, as Table 6.2 shows, POISE’s

162

meta-heuristic guided search-based partitioning does find the global optimum for a majority

of times, and reaches a near-optimal (at least nearer compared to METIS) solution in all

cases. Additionally, as the table also shows, POISE consistently achieves better solutions,

i.e., closer to the optimum, compared to the state-of-the-art METIS, further showing the

benefit of POISE’s partitioning.

Finding the global optimum through brute-force search is not computationally

feasible for large graphs, as the number of candidate solutions to visit grows rapidly expo-

nentially. For larger graphs, we only need to do a comparative evaluation, showing that

METIS+Tabu finds relatively better, and in most cases, significantly better solutions, than

alternative approaches. To show this comparison, we use one of the graphs available online

in the repository in [78] (from its “AT&T graphs” package). It is a directed graph with

50 vertices and 84 edges. The graph is unweighted, so we assign random values between 0

and 100 to each vertex, to denote the incoming unicast load for each name. Fig. 6.13 shows

the comparison across different alternatives, in terms of the quality of solution (objective

function) for this graph. The following scenarios are used: Random (average of three ran-

domly generated solutions), METIS, Tabu (average of three runs of Tabu-only starting from

random initial solution), Iterative METIS, ParMETIS with Adaptive Repartitioning (par-

allelized on two processors, with the ‘coupling’ of sub-graphs with processors for the best

performance [105]), and METIS+Tabu (POISE). Note that the “Random” and “METIS”

scenarios are not iterative procedures therefore achieve a fixed solution quality. We vary

the number of iterations for the solutions that support refinement (i.e., dynamic solutions),

163

with a fixed stop criterion, to show how quickly the search-based approaches converge to a

good quality solution.

Fig. 6.13 shows that METIS+Tabu outperforms the rest. Using METIS as initial

solution (METIS+Tabu) vs. starting from a random initial point (Tabu) is very effective

as the algorithm reaches its convergence point (for the range of iterations we examined)

much faster (with fewer iterations). The Tabu-only method outperforms METIS, Iterative

METIS, and ParMETIS Adaptive Repart only after a relatively large (above 40) number

of iterations. The METIS+Tabu approach outperforms METIS very early, after just 5

iterations. It also outperforms Iterative METIS and ParMETIS Adaptive Repartitioning

early, before the 10th iteration. This shows that the Tabu search is the preferred refine-

ment approach.The random partitioning solution is much worse than the other alternatives.

Fig. 6.13 also shows the importance of choosing an appropriate stop criterion. The number

of iterations being too small precludes reaching a good solution, and it being excessively

large results in waste of time and compute resources.

We also examine using an adaptive stop criterion. Fig. 6.14 shows the impact of

the base parameter on the quality of solution found by our graph partitioning (yellow line)

in terms of objective function (right-side y-axis). This shows that the base parameter in an

adaptive stop criterion needs to be selected carefully as well; i.e., not too small or too large.

The jump between base values of 13 and 14 indicates that a new solution is found with base

of 14 that would not have been found with smaller base values, showing an example of how

Tabu search escapes local optima. Fig. 6.14 also shows the resulting number of iterations

(gray line) and the iteration where the last improvement was found (red line), for each

164

base value, in terms of count/number (left-side y-axis). The difference between these two

last numbers shows the number of wasted iterations for that setting of base value. In this

example, we see that with a base of higher than 15, increasingly more and more iterations

are wasted.

We have also tried our algorithm on a number of different graphs, including larger

graphs. Table 6.3 summarizes results for several of those graphs. For these cases we use

the adaptive stop criterion. For each graph with v vertices, we choose the base iteration

number to be v, Tabu tenure to be
√
v and upper limit on iterations to be 10v. The first

three graphs are taken from [78], with randomly-assigned initial weights between 0 and

100. The last graph, namely G=(489, 731), is the graph-based “Disaster Management”

category namespace from the Wikipedia database [191], with the number of content items

under each category as vertex weights. This is a reasonable namespace size scale (i.e.,

generally in the order of hundreds or thousands of vertices [207]), and our Tabu search-

based partitioning works well on. We use this G=(489, 731) graph as our namespace in

our network simulation scenarios as well. Comparing the quality of solution shows that our

approach (METIS+Tabu) achieves better solutions.

6.7.2 Overall Solution Evaluation

To evaluate the performance of POISE, we implemented an event-driven, packet-

level simulator. The simulator supports name-based pub/sub, exploring different alterna-

tives within that paradigm, using any type of multicast network layer underneath. We can

compare name-based multicast to alternatives such as pull-based pub/sub, IP multicast-

based pub/sub, and broadcast-based pub/sub such as those examined in [49]. To evaluate

165

(a) Hierarchical & Graph - 1RP (b) Graph - Random Split

(c) POISE

Figure 6.15: Notification latency over time in different solutions (Note the difference in the
scale of notification latency in POISE)

166

the behavior, we needed a realistic network environment with a number of forwarding

routers and end-points that are publishers and subscribers. For this, the network topology

we use to evaluate POISE and compare with various alternatives is the Rocketfuel 1221 Tel-

stra [127] with some modification for a state-wide disaster scenario. Our topology contains

46 core routers, with additional 231 routers placed at the edge each linking to 2 core routers

closest to them. We use the graph-based “Disaster Management” category namespace from

the Wikipedia database as our namespace [191]. Exploring 6 levels below that category,

we obtain 489 categories and 732 relationships. If we seek to extract a set of hierarchies

based on the approach in [15], we obtain 1,468 hierarchical names. We use the associated

pages and files from the Wikipedia database (8,577 items total, 436 per category maximum,

17.49 on average per category) as the publications. We duplicated each content 60 times

(514,620 publications) and ordered their publication randomly to load the network. While

the namespace is static in our experiments, the publication workloads are dynamic and vary.

Publications are generated using a Poisson distribution (to model human behaviors such as

calling for, or offering to, help) with a monotonically increasing arrival rate over time (to

model the increasing nature of such publications, as the disaster unfolds and more people

become aware and get involved). We experiment with two example publication workloads:

1) moderate (average arrival rate varying from 1,500 pkt/s to 2,000 pkt/s) and 2) intense

(arrival rate varying from 1,500 pkt/s to 3,500 pkt/s). We create 6 subscribers for each

category (2,934 in total), distributed randomly on the 231 edge routers in the network.

Eventually we generate 20,022,480 delivery events.

167

Table 6.4: Average notification latency & aggregate network traffic

Solution Notification Latency (s) Network Traffic (Gb)

POISE 0.018 492.39

Graph - 1RP 2.741 483.08

Graph - Random Split 4.725 625.69

Hierarchical (CNS) 247.742 866.27

0

0.2

0.4

0.6

0.8

1

0.003 0.03 0.3 3 30 300

C
D

F

Notification Latency (s)

POISE Graph - 1RP Graph - Random Split Hierarchical (CNS)

Figure 6.16: Notification latency CDF in different solutions

Experiments with moderate workload: We first consider the notification

latency, to deliver a publication to all recipients. This reflects the impact of queuing in the

network that arises from having to route through an RP, the selection of an appropriate

number of RPs at the correct point in the network topology, adapting to the namespace

and workload. We also look at the total network traffic to understand scalability.

We compare the performance of POISE with a number of alternatives. First, is the

use of a strict hierarchical namespace (as in NDN/CNS). To be liberal to the hierarchical

alternative, we avoid each subscriber having to subscribe to every name. Therefore, when

there are multiple hierarchical names for a category, he subscribes to any one of the names.

The publisher publishes to all the hierarchical names of the category. We also compare with

having a single RP (no splitting), as well as a simple random splitting of the RP to one of

168

the nodes in the network. The latter is used to demonstrate the need to use a near-optimal

splitting of the RPs and load balancing in POISE.

From the CDF of the notification latency in Fig. 6.16 (and the average reported in

Table 6.4), we see that due to the high workload on the RP caused by hierarchical names,

the notification latency is excessive. Having only 1 RP (graph-1RP) as well as random

splitting of RPs perform reasonably at lower loads (for rates <1700 pkt/s) and are even

better than using hierarchical names at low loads. However, at higher workloads, random

split and hierarchical names perform poorly compared to POISE as well as even having just

one RP.

Fig. 6.15 shows the notification latency as the load gradually increases, for all

the solutions. With a random split, Fig. 6.15(b)), the notification latency goes up very

rapidly after the split, because the entire system is overloaded by packets sent back and

forth between RPs. It is even worse than having a single RP, with no splitting (blue line in

Fig. 6.15(a)). This shows the importance of a sensible partitioning algorithm. For the same

workload, the latency of POISE (with METIS+Tabu, Fig. 6.15(c)) is dramatically better

(by 2-orders of magnitude). As the load goes up, RP partitioning is triggered. For a short

transient period, queuing causes a relatively small (compared to other alternatives) increase

in latency. But congestion is immediately relieved by RP splitting and the latency drops

back down. The maximum transient latency is 400 ms with POISE, compared to multiple

seconds with other alternatives.

Next, we look at the total network traffic, summarized in Table 6.4. Splitting

the RP in POISE results in slightly higher traffic (∼1%) due to the unicast between RPs,

169

compared to having only a single RP. Yet by doing so, we avoid the significant latency

impact of congestion. Random splitting of the RP performs much worse (and causing 27%

more traffic compared to sensible splitting). In fact, if one were to just consider the relative

increase in the amount of traffic because of RP splitting (compared to having just one RP

and not having any RP splitting), then random splitting with 133.3 Gb of extra traffic

results in 14.3 times more than POISE (9.3 Gb) in terms of extra traffic. Compared to the

hierarchical solution, the graph-based solution of POISE reduces the amount of network

traffic dramatically (by 75.9%) since we do not have to deal with the extra names and

publications.

To dig a little deeper into the impact of the partitioning method used, we pro-

vide more detailed metrics in Table 6.5 to compare the use of METIS and METIS+Tabu

(POISE). For the moderate input workload, using METIS+Tabu leads to slightly (24µs)

improved average notification latency (per delivery), while adding 0.002% total traffic. The

reason for this better latency is better balance, and thus less queuing delay, even at the cost

of slightly more traffic (just like a single RP having the least total traffic in Table 6.4). The

load metrics (in terms of # of messages) measure the RP load from the time of the split

until the end of simulation (i.e. during the time the system has 2 RPs; labeled with ‘-2RP’).

The table shows the values for the three terms in Eq.6.10. For METIS+Tabu, maximum RP

load and load imbalance are significantly better, while for METIS, the # inter-RP messages

is lower (leading to slightly less traffic). These combined, make METIS+Tabu’s solution

170

Table 6.5: Comparison of METIS and POISE’s partitioning

Metric METIS POISE

Moderate workload

Average latency (s) 0.018171 0.018147

Aggregated traffic (Gb) 491.242 492.392

Max Load - 2RP (#msgs) 1,321,220 1,230,533

Load imbalance - 2RP (#msgs) 360,693 633

Inter-RP messages - 2RP (#msgs) 136,571 314,139

Objective - 2RP 1,818,484 1,545,305

Intense workload

First split time (s) 40.868

Second split time (s) 150.388 174.252

Average latency in [0,170s] (s) 0.049686 0.020387

(a) METIS (b) METIS+Tabu (POISE)

Figure 6.17: RP queue sizes for intense workload

more balanced with a lower peak, as confirmed by the ‘Objective’ (sum of the above three

terms), validating the effectiveness of our partitioning approach.

Experiments with intense workload: The benefit of METIS+Tabu over METIS

is even more significant when we generate a higher intensity workload. The same publi-

cation trace (for ∼300s) was generated over a shorter duration (∼217s) by increasing the

average inter-arrival rate. We also increase the RP splitting threshold. Table 6.5 shows the

time at which the first and the second RP splits occur; the first split is same for both (i.e.,

171

(a) METIS (b) METIS+Tabu (POISE)

Figure 6.18: Notification latency for intense workload

40.868s) while the second split occurs ∼24s later with METIS+Tabu compared to METIS

(174s vs. 150s). The better balance with METIS+Tabu helps the single RP maintain the

namespace for a longer time with lower dissemination latency; the same RP is used for

21% longer than the case of METIS. This is important, since the splitting procedure intro-

duces protocol overhead, with additional notification latency for a short period, as shown

in Fig. 6.15(c). Therefore, postponing splitting and reducing its frequency during the life-

time of the overall system is beneficial. However, if the split is postponed for too long,

this latency would increase significantly, as seen in Table 6.5. For the period of [0,170s],

the average notification latency of METIS is more than twice the latency of METIS+Tabu.

Fig. 6.17 shows the instantaneous queue size of each RP in the two cases, for the period

of [0,175s]. Most importantly, it shows the better balance between the two RPs in case of

POISE (METIS+Tabu, Fig. 6.17(b)) than METIS (Fig. 6.17(a)). We also see that the size

of the queue in RP2 for METIS goes up above 3,000 during that period, much larger than

METIS+Tabu, which only goes up to 140 for the same time. As the figure shows, RP1’s

queue size is a little higher in POISE than METIS. However, the queue grows much more

172

Name Next Hop Addr

RP1 NA1

RP2

… …

Next Hop Addr Port/MAC

NA1 1/9B:29:48:0A:B4:A9

NA2 2/8A:D7:34:8A:7D:3E

NA3 1/CB:CB:84:2:6A:5E

… …

Name Next Hop Addr

G1 NA1, NA2

G2 NA2, NA3

… …

Name Children

G1 G2, G3

G2

… …

Routing Table

Subscription Table

Name Expansion Table
(RP only)

Neighbor Table

Figure 6.19: Data structures and data flows in the POISE implementation. Blue: upstream
publication packet with destination=RP1; Red: downstream publication with name=G2;
Green: publication with name=G1 expanded at the RP (flow after subscription table omit-
ted)

at RP2 in METIS than with POISE. This is the tradeoff that POISE makes, producing a

better balance between the two RPs, thus helping prolong the need for splitting the RPs.

The latency per publication for the intense workload is also shown in Fig. 6.18, indicating

a much higher increase for METIS (Fig. 6.18(a), seeing congestion after 150s) compared to

METIS+Tabu (POISE, Fig. 6.18(b), which stays low throughout, until 175s).

6.7.3 Implementation

We implement POISE in C to demonstrate the feasibility and efficiency of the

protocol. To eliminate the performance impact of handling kernel interrupts, we take ad-

vantage of Data Plane Development Kit (DPDK) [7] poll-mode driver so that our user-space

program can receive/send data directly from/to the NIC. We implement a routing table, a

subscription table and a neighbor table (similar to ARP tables) on every forwarding engine

to route packets to the RP and multicast data to the subscribers (see Fig. 6.19). On the RPs,

173

we also add logic for expansion based on the graph-based namespace. The graph is imple-

mented using a hash table whose key is the parent name and the value is a list of descendant

names. A breadth-first search (BFS) is performed for each packet reaching the RP. To max-

imize throughput, we use lock-free data structures [2] and use read-copy-update (RCU) [3]

on the data entries. To further reduce the latency for multiple hash calculations, we adopt

the technique of “chasing pointers”. For example, in the routing table in Fig. 6.19, the

value of name RP1 is NA1. When a data packet with destination=RP1 reaches the forward-

ing engine, the forwarding engine has to perform a hash lookup for RP1 in the routing table

and another hash lookup for NA1 in the neighbor table to determine the outgoing interface

and the MAC address to encapsulate the packet (the blue flow in the figure). This involves

2 hash lookups. In our implementation, instead of writing the value of NA1 in the routing

table, we have a pointer pointing to the neighbor table entry of NA1. When the data packet

reaches the forwarding engine, we only need to perform 1 lookup (in the routing table) and

follow the pointer to get the outgoing port and MAC address. We thus save the second

hash calculation and table lookup. This technique reduces the overhead dramatically on

the RPs where multiple lookups have to be performed for the name expansion table in BFS.

We perform micro-benchmarks on the implementation using servers in the OR-

BIT testbed [10]. The machines use Intel Xeon E5-2640 CPU @2.4GHz (20-cores, hyper-

threading turned off) with 256GB of memory, and a Mellanox MT27710 25 Gbps NIC that

supports DPDK. We schedule our program on cores 10-19 to prevent cross-NUMA node ac-

cesses. We are able to forward ∼15.3 million packets per second (Mpps) when dealing with

upstream packets (of 64 Bytes in size). For downstream packets, we are able to achieve simi-

174

lar performance when there is only a single next-hop downstream. When there are additional

next-hops downstream, the performance drops dramatically (down to serving ∼4.1Mpps in-

coming packets for 2 next-hops, and ∼3.2Mpps incoming packet for 3 next-hops). This is

mainly due to the overhead of DPDK copying packets or the use of multi-segment pack-

ets depending on the replication solution we choose. In comparison, the overhead for name

expansion, which we observe on the RP module is much higher. Performing the name expan-

sion on a random graph with 128 names, the processing rate only achieves ∼0.8Mpps, even

with only 1 next-hop. This demonstrates the necessity of limiting the namespace expan-

sion only to the information layer (otherwise, every single forwarding engine has to behave

like the RP module and suffer the performance penalty). Then, with the approach such as

POISE, we can have multiple RPs in the network to share the load, as needed, dynamically.

175

Algorithm 2 Weight calculation in the graph
1: procedure calculate(Node nodeName, int iLoad, Graph G, Graph G0, Graph G1, Map <Node, Boolean> done)

2: . multicastLoad<Node, int> and unicastLoad <Node, int> are maps that store MW and UW values for each vertex

(node)

3: if nodeName in G0 then

4: thisG←G0, otherG←G1

5: else

6: thisG←G1, otherG←G0

7: end if

8: for all Node u in thisG.modifiedDFS(nodeName, nodeName) do

9: if u in thisG then

10: thisG.multicastLoad.put(u, thisG.multicastLoad.get(u)+iLoad)

11: G.multicastLoad.put(u, G.multicastLoad.get(u)+iLoad)

12: else

13: initialize Boolean todo←TRUE, Node pu ← “” . empty string

14: initialize Map <Node, Boolean> done2 to all <v, FALSE>

15: for all pu in thisG.adj.keyset do

16: if u in thisG.adj.get(pu) AND

17: pu in thisG.modifiedDFS(nodeName,nodeName) then

18: if u NOT in thisG then

19: pu1 ← pu

20: if done2.get(pu)=TRUE then

21: todo←FALSE

22: end if

23: end if

24: end if

25: end for

26: if todo=TRUE AND pu1 6= “” then

27: done2.put(pu1, TRUE)

28: thisG.unicastLoad.put(pu1, thisG.unicastLoad.get(pu1)+iLoad)

29: G.unicastLoad.put(pu1, G.unicastLoad.get(pu1)+iLoad)

30: calculate(u, iLoad, G, G0, G1, done2)

31: end if

32: end if

33: end for

34: end procedure

176

Algorithm 3 Modified DFS for graph traversal
1: procedure modifiedDFS(Node name, Node origName)

2: initialize traversedNodes←{}
3: for all Node v in G do visited(n)←FALSE

4: end for

5: modifiedDFS util(name, origName, 1)

6: return traversedNodes

7: end procedure

8: procedure modifiedDFS util(Node name, Node origName, Boolean originality)

9: if name=origName and originality=FALSE then return

10: end if

11: visited(name) ← TRUE

12: traversedNodes.add(name)

13: if name not in G then return

14: end if

15: for all v in adjacency(name) do

16: if visited[v]=FALSE then

17: modifiedDFS util(v, origName, FALSE)

18: end if

19: end for

20: end procedure

Algorithm 4 Graph partitioning procedure of POISE
1: Start with an initial solution (a partitioning solution),

2: Calculate the neighborhood solutions by picking vertices to move.

3: Calculate the objective function of all neighbors.

4: Filter out the moves in the Tabu list, unless the Tabu move satisfies the aspiration criteria, i.e., if it is better that the

best solution so far.

5: Pick the neighbor with lowest objective function, as next move candidate.

6: Tabu the picked move for a number (Tabu tenure) of iterations.

7: Go to 2 if stop criteria has not been met.

8: Report minimal objective and the corresponding partition.

177

Chapter 7

CoNICE: Consensus in

Name-based

Intermittently-Connected

Environments

7.1 Introduction

We propose CoNICE (Consensus in Name-based Intermittently-Connected Envi-

ronments), a framework for consistent dissemination of updates of a shared database among

mobile users, in an intermittently-connected environment. We assume no networking in-

frastructure, no geographical routing or synchronized physical clocks. CoNICE uses graph-

based naming [93] to systematically divide the physical space (through region-ing) and the

178

consensus space (through user subscriptions) into hierarchically structured subsets, optimiz-

ing the consensus participation to get higher completion rate and faster completion times.

CoNICE extends existing name-based information dissemination schemes (such as [93,203])

by ensuring consistency, and resiliency in infrastructure-less environments. CoNICE is in-

herently failure-resilient, where disconnection is not just a corner case scenario, but is rather

a common case. Inspired by the multi-level consistency requirements provided by cloud and

database systems [87, 153], CoNICE provides the coexistence and flexibility of the follow-

ing three incremental consistency levels for the network: replication (weakest consistency,

lowest complexity), causality, and agreement (strongest consistency, highest complexity).

All these consistency levels are integrated with a topic-based hierarchical naming schema,

through Name-based Interest Profiles (NBIP). The consensus protocol of CoNICE (running

on top of D2D propagation protocols), provides users with a strongly-consistent view that

respects both agreement and causality. CoNICE extends OTR with naming and decision

invalidation handling procedures, for a total and causal ordering of updates. Its decision

invalidation helps with overcoming the consensus property violations in case of long-term

physical fragmentation in the network, mainly since we define the complementary notions of

local and global consensus sessions, pertaining to being within and across fragments, respec-

tively. This invalidation is an important novelty of CoNICE, as it allows the consistency to

be achieved even when many fragmented users connect after a long time (such as users from

disjoint and remote shelters, in the aftermath of a natural disaster). An important part of

the study of consensus algorithms has been proving their correctness [117]; while existing

proof methods for asynchronous consensus algorithms assume good periods throughout the

179

whole network (such as in [44]), we take a step further and assume good periods inside frag-

ments that are disconnected for a long time, thus expanding the scope of the asynchronous

consensus problem and also making it fit our application scenario of emergency response.

A key novelty of CoNICE is its integration of consistency and dissemination

through naming. In other words, the graph-based namespace works as a common inter-

face across the modules that take care of multiple levels of consistency, as well as the

protocols for content dissemination throughout the users in the network. The benefit of

this use of naming is twofold: 1) it enhances the relevance of information dissemination

(i.e., recipients can identify relevant content with respect to their interests) in a decoupled

pub/sub manner (i.e., publishers and subscribers do not need to keep track of each other);

2) it enhances the degree of information consistency among relevant users (i.e., optimized

by related name-based groups, consensus can be reached faster, and to a higher degree).

We will demonstrate these benefits through our results.

The major contributions of this work are:

1. A framework for consistent information dissemination in intermittently-connected en-

vironments, considering the important case of emergency response (our source code

and data are available GitHub1);

2. Enabling different incremental consistency levels (replication, causality, and agree-

ment) for information updates in intermittently-connected networks;

3. A systematic coupling of information flow organization with various consistency preser-

vation procedures, using naming graphs;

1https://github.com/mjaha/CoNICE

180

4. Extending the OTR consensus with a protocol that leverages naming and supports

recovery from invalidated decisions;

5. A rigorous proof of CoNICE’s consensus protocol using the Heard-Of model formalism,

extending the classic OTR proof to cases supporting long-term fragmentation and

decision invalidations.

6. Simulation results that show our enhancement leads to a higher degree of agreement

among users, with lower overhead;

7. Simulation experiments that demonstrate how CoNICE is resilient to long-term frag-

mentation scenarios through an effective procedure for decision invalidation, extending

existing work on asynchronous consensus solutions.

7.2 Overview of CoNICE

Emergency Response Scenario. We outline an example use case for emergency

response where first responders seek to individually update map tags on their devices and

then need to arrive at a consistent, coherent view across users as they opportunistically

connect with each other. The map in CoNICE is made up of a base layer and data layer,

as shown in the example in Fig. 7.1. The base layer is the map background, available

offline to each user. Informed by the geography pertaining to the map, it is divided into

hierarchically-structured regions (e.g., county, city, etc.). For example, region R11 is part

of R1, and is made up of R111, R112, and R113. This hierarchical structure is captured

in a namespace, as shown in Fig. 7.2. Users dynamically create updates on the map (i.e.,

pins or other shapes with data on them), which updates the map data layer; e.g., update

181

‘a’ as a point in R111, or ‘b’ as a shape spanning regions R122 and R123 in Fig. 7.1. Users

create and are interested in receiving updates related to the regions they are dealing with

(or to a part of the region they are interested in). As shown in Fig. 7.3, the environment

we consider is one without infrastructure-based communication and users rely on D2D [61]

communications, with frequent disconnections. Users are equipped with mobile devices

capable of D2D wireless communication (e.g., Bluetooth or WiFi-Direct), and have the

CoNICE application on their device. In the example scenario (Fig. 7.3), user A (a first

responder) creates a pin on region R111 and propagates it at time t1. Users C and D,

who are both interested in R111 (through subscribed interest in regions R11 and R111

respectively), have no path to A at t1. However, thanks to user B moving between the

two fragments and acting as a mule doing store-carry-and-forward [66], the update gets

propagated to C and D, and they can add it to their view of the map. Different users can

create updates (on top of their accumulated ’view’ of the data layer) and disseminate them

at any time, without any coordination. Considering the example in Fig. 7.1, let us assume

update ‘a’ has been (at least partially) propagated among interested recipients of region

R111. If now two different users simultaneously create new updates that modify ‘a’, they

would both consider that as ”the next update in R111”. This may cause discrepancy and

differences in the order in which different users apply the updates. This is an important issue

that we need to address for the effectiveness and correct functionality of CoNICE in critical

scenarios, such as disaster management. Thus, our primary goal is to make sure all the

users converge to a consistent view of updates on the map data layer, in this environment,

as much as possible.

182

CoNICE Overview. An overview of the architecture of CoNICE is depicted in

Fig. 7.4. It consists of the integration of multi-level consistency and multi-level naming.

There are three incremental levels of consistency. Consistency level 0, namely Replication,

suggests how much of the generated updates have been delivered to individual users. The

Gossiping component in each user’s device is responsible for this function, using Epidemic

Routing [185]. Consistency level 1, namely Causality, ensures that orderable updates are ap-

plied according to their causal relationships and precedence. This is provided by the Causal

Ordering component, which provides a moderately-consistent view (Moderate View) of the

map to the user in the application. CoNICE uses a Vector Clock-based approach [73, 131],

extended by a selective and reactive repair mode for causal ordering. Consistency level

2, namely Agreement, deals with achieving agreement between different users’ views, even

for un-orderable updates. The Consensus component enables this, and provides the user

with a strongly-consistent view (Strong View). For this component, CoNICE implements

a solution based on the One-Third Rule (OTR) consensus algorithm [32], extending it by

supporting selective participation and decision invalidations for highly fragmented and in-

termittently connected scenarios. Every user is equipped with a single, unified namespace;

a hierarchically structured graph pertaining to the regions in the map. This namespace

drives the various consistency level components, achieved by Name-Based Interest Profiles

(NBIP) in CoNICE. There is a NBIP for every consistency level, each pointing (as a sub-

scription) to a particular subset of the namespace. The use of NBIPs allows the various

components to achieve better efficiency and accuracy in dissemination.

183

R111 R112 R113

R121 R122 R123

R11

R12

R1

a

b

c
d

Figure 7.1: Example region-ed map with
base layer (background) and data layer
(pins/shapes)

R1

R11 R12

R111 R112 R113 R121 R122 R123

R11

R111

Figure 7.2: Namespace pertaining to the
map in Fig. 7.1

A

B B

C

D

R111

R111

R111

Dealing with R111

Dealing

with R111

Dealing

with R11

B starts move

at time t2

A creates pin

on R111 at

t1<t2

C receives

the pin at

t3>t2

D receives

the pin at

t3>t2

Figure 7.3: A scenario overview

While we recognize security is important to make CoNICE’s design robust and

usable, we have to address it in detail in a separate work complementary to this work. Here

we address the basic protocol of CoNICE and its properties. To ensure authentication and

integrity, we can use hash chains [116], similar to [178]; it complements CoNICE’s design,

since it is based on sequential updates, each update depending on (and cryptographically

linked to) the previous one. Further, to ensure fine-grained access control, attribute-based

encryption [33] can be leveraged, similar to [119]; it fits well with CoNICE, since it incor-

porates a namespace, and each user’s access privileges corresponding to their role-based

184

NBIP

2

NBIP

1

NBIP

0

Level 0

(root)

Level 1

Level n

(leaves)

.

.

.

.

.

.

Consistency

Level 2:

Agreement

Consistency

Level 1:

Causality

Consistency

Level 0:

Replication

Name-based

Interest

Profiles
Namespace

Strong

View

Moderate

View
Map

Application

Causal Ordering

Gossiping

Name Levels

Consistency

Levels

S
u

b
sc

ri
p

ti
o

n
s

Deliver causally

ordered updates (�1)

Deliver totally

ordered updates (�2)

Consensus

Deliver un-ordered

updates (�0)

Figure 7.4: Architecture overview of CoNICE

subscription. Thus, CoNICE can prevent malicious attacks such as impersonation and

forgery, via information-centric security [182], which secures content itself, rather than the

channel used for delivery. Additionally, Machine Learning-based solutions, such as those

proposed in [196] can be used for malware detection and privacy protection.

7.3 Naming and Consistency Levels

7.3.1 Graph-Based Naming Framework

The naming schema in CoNICE is designed and represented as a graph structure

(e.g., Fig. 7.2), according to the hierarchical structure of map region-ing: the higher levels in

the hierarchy correspond to larger regions. An example of the namespace may be something

like “County→City→etc.” For mere representation simplicity, we assume each node in the

namespace graph has a unique name, so that we do not need to identify a node by mentioning

its whole prefix path; e.g., we use ”R111” instead of “/R1/R11/R111”.

185

Region-bound Messages (Publishing). Creation of a message (e.g., an up-

date) that needs to reach interested recipients is a publication in which the region that

the message relates to is specified. The region is a name in the namespace and helps with

relevancy and selectiveness of dissemination and consistency preservation procedures. A

message belongs to exactly one region; namely the smallest region large enough to contain

that message. For example in Fig. 7.1, update ‘a’ belongs to R111 while update ‘b’ belongs

to R12. To ensure higher coverage during dissemination, we define that an update covers

region set {Ri}, containing all leaf-level regions that contain that update. For example,

update ‘a’ covers R111 (same region it belongs to) while ‘b’ covers R122 and R123. The

relevance follows the namespace hierarchy. A message that belongs to region Ri is relevant

to subscribers of Ri and the ancestors of Ri in the namespace. For example, for the names-

pace in Fig. 7.2, update ‘a’ (specified to be in R111) should be consistently delivered to all

subscribers of R111, R11 and R1.

Name-based Interest Profiles (Subscribing). NBIPs capture the subscrip-

tions of a user locally on their devices. Each NBIP points to one or more nodes (names) in

the namespace, and includes the sub-namespaces (as a set of names) below in the hierarchy,

rooted at the pointed names. There are three NBIPs: NBIP0 specifies the scope of the

user’s involvement in the gossiping procedure, NBIP1 for causal ordering procedures, and

NBIP2 for consensus sessions. We have NBIP2 ⊆ NBIP1 ⊆ NBIP0 for every user.

186

b
─
a

a
─

c g
─
c,f

e
─
c

d
─
a

a b
─
a

c d
─
a

e
─
c

a b
─
a

c d
─
a

e
─
c

��
�(��):

User A 0 1 2 3 4 5

0 1 2 3 4

0 1 2 3 4

��
�(��):

�	
�(��):

a cg
─
c,f

e
─
c

d
─
a

a cd
─
a

e
─
c

a b
─
a

c d
─
a

e
─
c

0 1 2 3 4

0 1 2 3

0 1 2 3 4

��
�(��):

��
�(��):

�	
�(��):

User B
b
─
a

a f
─
b

a b
─
a

a b
─
a

c d
─
a

e
─
c

f
─
b

0 1 2

0 1 2

0 1 2 3 4

��
�(��):

��
�(��):

�	
�(��):

User C

Figure 7.5: Example for per- name per- consistency level update queues across three users
A, B, and C

7.3.2 Multi-level Consistency

There are three consistency levels in CoNICE. Users maintain a queue for each

region (name) they are interested in for each consistency level, as shown in the example

in Fig. 7.5. All three users A, B, and C in the Fig. are interested in region Ri (we just

focus on Ri here, so queues related to other possible regions of the users’ interest are not

shown). QU
i (Ri) denotes the level i queue at user U , and its slot number 0, i.e., QU

i (Ri, 0),

is the first element. The consistency levels are incremental, each feeding the level above it

(Fig. 7.4); elements in Q0 serve as input for Q1, and Q1 serves as input for Q2.

The level 0 (replication) queue (Q0) shows the received updates in the order in

which they have been received and entered the message buffer (cache) used by the gossiping

component. The updates in Q0 in the Fig, are marked by the update content (‘a’, ‘b’,

etc. shown in bold) and can contain dependencies (e.g., b
a indicates that ‘b’ depends on

‘a’). As seen in Fig. 7.5, different users can receive the updates, each in different order,

causing potential loss or out-of-order delivery because of the use of flooding or other D2D

propagation methods, such as [185], as their connectivity is intermittent and there may

be no established path between users. In addition to epidemic buffering, this consistency

is important as it is the starting point for the next level of consistency and for making

187

sure messages are replicated sufficiently to all users in the network, despite the challenging

nature of the connectivity.

The level 1 (causality) queue (Q1) contains the causally ordered updates, respect-

ing the order for the causally orderable updates. It leverages the dependency information,

contained as “meta-data” in each update message. As seen in Fig. 7.5, updates are only

added to Q1 only after all their dependencies have also been added. For example, for QA
1 ,

‘b’ appears after ‘a’, ‘e’ appears after ‘c’. But, ‘g’ does not appear at all, since one of its

dependencies ‘f ’ has not been received at A yet (even though it has reached user C, as seen

by event 2 for user C). This is consistently true across all users. However, for un-orderable

updates (i.e., those with no causality relation), different users can put them in their Q1

according to the order with which they were received. For example, updates ‘c’ and ‘d’ have

no causal relation in the figure and are thus un-orderable; in QA
1 , ‘d’ comes after ‘c’ while

in QB
1 , the reverse is true. Despite the difference, neither ordering is incorrect, as they do

not violate causal ordering. Q1 provides users with a Moderate View, which is useful as it

provides a causal, meaningful, and “a correct” (rather than “the correct”) view of the map,

even though it might be different from another user’s “also correct” Moderate View.

The level 2 (agreement) queue (Q2) shows the updates in the agreed (by all users)

order, provided by the consensus procedure. It resolves the differences of different users’

Moderate Views regarding un-orderable updates, and provides users with a Strong View in

the map that: a) honors the causal ordering, and b) is the same across all different users,

as seen in Fig. 7.5. Each slot in Q2 is filled via the result of a distinct consensus session.

CoNICE first computes Q1 and then feeds it to the consensus component as initial consensus

188

contributions (i.e., vote values). For example, user B’s contribution for the second slot of

Q2 is ‘d’ , while users A and C vote for ‘b’. Eventually, the majority value (‘b’ for slot 1) is

decided and disseminated to everyone. This incremental approach to arriving at consensus

provides several benefits:

1. Consensus starts from a point with potentially more nodes converged on the ordering of

a larger number of events, compared to the alternative of jumping from Q0 to Q2.

2. Users are eventually provided with a Strong View that respects causal ordering (to

perform a meaningful application order of updates), compared to the alternative of com-

pletely bypassing and ignoring causal ordering.

3. Users are provided with a useful, causally ordered Moderate View, while waiting for

consensus sessions to be completed, compared to the alternative of arriving at a causal

ordering after consensus. This is practically important in scenarios such as emergency

response, since causal ordering is much less complex and less time-consuming (user-

driven) than consensus (community-driven across multiple nodes).

7.4 Protocols for Consistent Dissemination

In CoNICE, three components, each with their own set of protocols, handle its

three consistency levels (Fig. 7.4), all integrated with naming. The gossiping protocol

propagates and replicates messages among users, the causal ordering protocol takes care

of causal consistency of delivered updates, and consensus protocol ensures agreement and

strong consistency.

189

7.4.1 Gossiping Protocol

We use epidemic propagation [185] for gossiping; note that it can be replaced

with other information propagation methods given particular system assumptions, as long

as they allow anycast propagation. Our assumption in CoNICE is that each user has a

unique user ID (UID), which can be the mobile device’s IMEI or a number provided by the

CoNICE application at the time of installation. In CoNICE, each message has a tag, speci-

fying its type. Each message has a message ID (MID) which is used to uniquely identify it in

the network. Users buffer messages for epidemic propagation indexed by their MIDs. Users

can create, relay (i.e., store, carry, and forward), and receive messages. CoNICE makes this

propagation selective via interest profiling, namely NBIP0 for gossiping. Typically, benev-

olent data mules help with relaying any message, regardless of what they are about, while

other users (e.g., first responders) can have a more fine-grained NBIP0 and only receive and

relay messages matching their interest, while discarding others. Updates contain the ID of

the region they belong to (RB) and the (set of) regions they cover (RC). RB is integral

across all levels, while RC is only used at level 0 (i.e., can be compared against NBIP0), and

its purpose is to increase coverage. A user receiving a message based on its RC , the RB of

which he is not subscribed to, can be considered to have subscribed to the RB in the names-

pace hierarchy, to be able to also participate in its level 1 and level 2 procedures. This

epidemic propagation can potentially cause excessive overheads, causing two challenges: 1)

a message may keep travelling too many hops, causing unnecessary network and queuing

overhead (e.g., a user may receive the same content many times from multiple paths), and

2) too many messages will stay in user device buffers for excessive periods, causing unnec-

190

essary storage and processing overhead. To remedy these challenges, CoNICE uses hop

count limits and cleaning buffers of obsolete messages (similar to [32,185]).

7.4.2 Causal Ordering Protocol

Different updates that belong to the same region can potentially depend on each

other. As an example, in Fig. 7.1, update ‘d’ may depend on ‘c’, as they both belong to

R121, and the creator of ‘d’ has seen ‘c’ (may be the same creator); e.g., ‘d’ may remove

some data that ‘c’ has added, or modify the information provided by ‘c’ about a particular

disaster site. These dependencies need to be specified and considered both when it comes to

creating and publishing updates, and receiving and processing them. The causal ordering

component in CoNICE takes care of this, which helps with consistency level 1 (causality).

We restrict Lamport’s “happened before” relation [115] to only messages that belong to the

same region, calling it “happened before in the same region”, to capture causality. This is

possible since the region ID is already carried in updates in CoNICE. Formally, we define

it as the following:

Definition 2 For updates u1 and u2, belonging to the same region, u1 causally precedes u2

(u1 → u2) if and only if one of the following three conditions are true: 1) Some user U

creates and publishes u1, and then creates and publishes u2 (FIFO order), 2) Some user U

receives and delivers u1, and then creates and publishes u2 of the same region (local order

or network order). 3) There is an update u3 such that u1 → u3 and u3 → u2 (transitivity).

We will now explain our protocol and how it ensures the aforementioned causality conditions.

191

The procedure for update creation is shown in Fig. 7.6(a). An update message in

CoNICE is of the form shown in line 13. The update ID (UpID) consists of UIDA (user ID

of update creator A), RB (the region the update ‘belongs to’), seqNum (sequence number),

RC (set of leaf-node regions ‘covered’ by the update), and UpIDR (set of references for this

update, which we explain later). The data element contains the map-related instruction for

the update (e.g., “mark house #1 as searched” or “need teams at building #2”). It is im-

portant to also include dependency information in the update, on top of basic gossiping, so

that recipient will be able to order the received updates (which can be potentially delivered

out-of-order), and achieve a consistent view across different mobile users. CoNICE updates

contain dependencies in two ways: implicit dependency and explicit dependency. Implicit

dependency pertains to the dependency of the update on its creator’s previous updates on

the same region (thus ensuring the FIFO ordering [40]). For a new update in region RB,

the creating user looks for the highest seqNum it has used for RB so far, and assigns the

next number to the update (line 8). Explicit dependency pertains to the dependency of the

update on other users’ previous updates on the same region (lines 9–12), that creator A has

already causally delivered to higher layers The helper function creators() (line 9) traverses

through A’s level 1 queue and returns all the users who have contributed to it. (thus ensuring

the local ordering [40]). For each <user ,RB> pair, only the update ID with the highest se-

quence number is picked (line 10). To further reduce the message overhead, all those updates

u in UpIDR that precede an update u′ existing in UpIDR, are removed from the references

list (line 12). As a result, the reference list in CoNICE updates will be more compact than

the full vector of VC, and also relieves users from having to maintain a global vector of

192

IEEE/ACM TRANSACTIONS ON NETWORKING 7

Algorithm 1: Update Creation with Causality
1 input:
2 RB : belongs-to region; RC : set of regions covered; data: update data
3 initialization:
4 UIDA ← id of this user A
5 MA ← set of updates created by A
6 MQ1 ← set of all updates at level 1 queues at A
7 UpIDR ← {} /* set of reference updates to be included */
8 seqNum← nextSeqNum(RB ,MA)
9 foreach user B in creators(MQ1) do /* identify references */

10 UpIDR ← UpIDR ∪ latestUpdate(B)

11 foreach u ∈ UpIDR do /* make reference list more compact */
12 if ∃u′ ∈ UpIDR : u→ u′ then UpIDR ← UpIDR − {u}
13 msg ← 〈UPDATE ,UIDA, RB , seqNum, RC ,UpIDR, data〉
14 publishmsg /* send to gossiping module */
15 MA ←MA ∪msg
16 MQ1 ←MQ1 ∪msg

Algorithm 2: Update Receiving and Causal Ordering
1 input:
2 RB , RC , data: as in Alg. 1; UIDC : user id of the update creator;
3 seqNum: update sequence number; UpIDR : set of update references;
4 UIDR : user id of requestor in the response msg
5 initialization:
6 UIDA ← id of this user A
7 MQ0 ← set of all updates at level 0 queue at A
8 MQ1 ← set of all updates at level 1 queues at A
9 missing ← {} /* update IDs of missing prerequisites */

10 Upon receive
(msg=〈UPDATE ,UIDC , RB , seqNum, RC ,UpIDR, data〉) do

11 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)

12 Procedure procUpdate(UIDC ,RB , seqNum,RC ,UpIDR, data)
13 if RB ∈ NBIP1A then
14 foreach u′ ∈MQ0 ∧ u′ /∈MQ1 do
15 if dependencies(u′) satisfied then MQ1←MQ1∪{u′}
16 missing ← missing ∪missingImplicit(u,MQ1)
17 missing ← missing ∪missingExplicit(u,MQ1)
18 if missing = {} then MQ1 ←MQ1 ∪ {u}
19 foreach UpIDi∈missing do publish〈REQUEST ,UpIDi〉

20 Upon receive (msg=〈RESPONSE ,UIDR,UIDC ,RB , seqNum,
RC ,UpIDR, data〉) do

21 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)
22 if UIDR = UIDA then cancelmsg

[5]). For each <user ,RB> pair, only the update ID with the
highest sequence number is picked (line 10). To further reduce
the message overhead, all those updates u in UpIDR that
precede an update u′ existing in UpIDR, are removed from
the references list (line 12). As a result, the reference list in
CoNICE updates will be more compact than the full vector of
VC, and also relieves users from having to maintain a global
vector of every user in the network. Finally, the created update
will be published by sending it to the gossiping module, and
will be added to the creating user’s level 1 queue (lines 13–16).

The procedure for handling the receipt of updates and
causally delivering them is described in Alg. 2. The processing
of the incoming update u only proceeds at user A if the RB

‘belongs’ to its NBIP1 (line 13). Pending updates that get
satisfied, will be added to Q1 (lines 14–15), and all (implicit
and explicit) missing prerequisites of u will be collected in
missing (lines 16–17). If there are no missing prerequisites,
u will be causally delivered and applied to its ‘Moderate
View’ (line 18). In case of outstanding missing prerequisites,
the VC algorithm typically waits till they are received. In a
disconnected environment with gossiping, this may lead to
starvation and indefinite waiting, since “gossips may die out”
[26]. To remedy this, CoNICE adds a reactive recipient-driven
procedure of requesting for those missing updates (line 19). The
REQUEST message identifies the update ID requested for,
and the requester’s ID (UIDR). Any user, not necessarily the
creator of the update, who has that update buffered, can respond
with a RESPONSE message, sent for the requester. When

receiving a response, user A processes it in a similar manner
to a normal UPDATE message, with one difference that if
the response was meant for A, A will cancel the update and
not propagate it in the network further (lines 20–22). CoNICE
ensures the following key property (proof in §VI):

Property 1. Causal Order of Moderate View. If user A
applies (and delivers) update u to its moderate view, then A
must apply every update causally preceding u before u.

Proof of Property 1. We can prove this property using
induction. Basis: If A applies (to its moderate view) no updates,
the property holds. If it applies only one update u1 belonging
to RB , per Alg. 1 and 2, u1 had no implicit references (i.e.,
first update created by its creator B for RB) and no explicit
references (i.e., no other user C has created an update for RB

that B had applied before creating u1). Inductive step: Let us
assume A has applied n updates u1, u2, . . . , un, preserving the
causal ordering property. An additional update un+1 will only
be applied at A, if and only if all causal prerequisites of un+1

are already in u1, u2, . . . , un and there are no missing updates
(per lines 14–19 in Alg. 2), thus ensuring that Property 1 holds.

C. Consensus Protocol

CoNICE provides a consensus procedure with the goal of
achieving agreement, so that users (e.g., first responders) have
the same consistent ‘Strong View’ of the situation (e.g., map).
The consensus solution in CoNICE builds on the One-Third
Rule (OTR) algorithm [12]. We extend OTR in several ways,
mainly with regards to naming and decision invalidations. The
naming integration in CoNICE, makes sure all the interested
users (even with overlapping interests) are involved in every
consensus session relevant to them, which also systematically
reduces the consensus participants to the interested ones,
helping with faster reaching of decisions. CoNICE’s decision
invalidation procedures make sure to repair decisions if long-
term fragmentation cases happen in the network, and also if
the total and causal order of the final strong view are violated
even after the OTR-based agreement is reached.

The initialization and contribution procedures of CoNICE’s
consensus are described in Alg. 3. Each consensus session
is associated with a region-slot pair (<RS , sS>), deciding
the value v (i.e., the update to be placed at the slot) to be
inserted to Q2(RS , sS). To avoid scheduling complexities and
overhead, we run consensus sessions for individual slots rather
than the entire Q2 content. Each session comprises multiple
attempts, and each attempt comprises one or more rounds.
We add the notion of attempt, because we may need to run
another attempt of an already decided consensus session, due
to the nature of our environment. Users initiate consensus with
initial values (vI) equal to their Q1(RS , sS) content (lines
11–12). If user A has no such content, its initial contribution
will be a ‘Noop’ (or null). Any non-‘Noop’ contribution will
be sent for round 1, containing the value (lines 13–20). The
CONTRIBUTION message identifies the region, which will
enable the subscribers of the region to participate in the
consensus. Most consensus algorithms (including OTR), depend
on knowing the consensus population (nS) a priori. We enable
a bootstrapping mechanism based on reachability beaconing

(a) Update Creation with Causality

IEEE/ACM TRANSACTIONS ON NETWORKING 7

Algorithm 1: Update Creation with Causality
1 input:
2 RB : belongs-to region; RC : set of regions covered; data: update data
3 initialization:
4 UIDA ← id of this user A
5 MA ← set of updates created by A
6 MQ1 ← set of all updates at level 1 queues at A
7 UpIDR ← {} /* set of reference updates to be included */
8 seqNum← nextSeqNum(RB ,MA)
9 foreach user B in creators(MQ1) do /* identify references */

10 UpIDR ← UpIDR ∪ latestUpdate(B)

11 foreach u ∈ UpIDR do /* make reference list more compact */
12 if ∃u′ ∈ UpIDR : u→ u′ then UpIDR ← UpIDR − {u}
13 msg ← 〈UPDATE ,UIDA, RB , seqNum, RC ,UpIDR, data〉
14 publishmsg /* send to gossiping module */
15 MA ←MA ∪msg
16 MQ1 ←MQ1 ∪msg

Algorithm 2: Update Receiving and Causal Ordering
1 input:
2 RB , RC , data: as in Alg. 1; UIDC : user id of the update creator;
3 seqNum: update sequence number; UpIDR : set of update references;
4 UIDR : user id of requestor in the response msg
5 initialization:
6 UIDA ← id of this user A
7 MQ0 ← set of all updates at level 0 queue at A
8 MQ1 ← set of all updates at level 1 queues at A
9 missing ← {} /* update IDs of missing prerequisites */

10 Upon receive
(msg=〈UPDATE ,UIDC , RB , seqNum, RC ,UpIDR, data〉) do

11 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)

12 Procedure procUpdate(UIDC ,RB , seqNum,RC ,UpIDR, data)
13 if RB ∈ NBIP1A then
14 foreach u′ ∈MQ0 ∧ u′ /∈MQ1 do
15 if dependencies(u′) satisfied then MQ1←MQ1∪{u′}
16 missing ← missing ∪missingImplicit(u,MQ1)
17 missing ← missing ∪missingExplicit(u,MQ1)
18 if missing = {} then MQ1 ←MQ1 ∪ {u}
19 foreach UpIDi∈missing do publish〈REQUEST ,UpIDi〉

20 Upon receive (msg=〈RESPONSE ,UIDR,UIDC ,RB , seqNum,
RC ,UpIDR, data〉) do

21 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)
22 if UIDR = UIDA then cancelmsg

[5]). For each <user ,RB> pair, only the update ID with the
highest sequence number is picked (line 10). To further reduce
the message overhead, all those updates u in UpIDR that
precede an update u′ existing in UpIDR, are removed from
the references list (line 12). As a result, the reference list in
CoNICE updates will be more compact than the full vector of
VC, and also relieves users from having to maintain a global
vector of every user in the network. Finally, the created update
will be published by sending it to the gossiping module, and
will be added to the creating user’s level 1 queue (lines 13–16).

The procedure for handling the receipt of updates and
causally delivering them is described in Alg. 2. The processing
of the incoming update u only proceeds at user A if the RB

‘belongs’ to its NBIP1 (line 13). Pending updates that get
satisfied, will be added to Q1 (lines 14–15), and all (implicit
and explicit) missing prerequisites of u will be collected in
missing (lines 16–17). If there are no missing prerequisites,
u will be causally delivered and applied to its ‘Moderate
View’ (line 18). In case of outstanding missing prerequisites,
the VC algorithm typically waits till they are received. In a
disconnected environment with gossiping, this may lead to
starvation and indefinite waiting, since “gossips may die out”
[26]. To remedy this, CoNICE adds a reactive recipient-driven
procedure of requesting for those missing updates (line 19). The
REQUEST message identifies the update ID requested for,
and the requester’s ID (UIDR). Any user, not necessarily the
creator of the update, who has that update buffered, can respond
with a RESPONSE message, sent for the requester. When

receiving a response, user A processes it in a similar manner
to a normal UPDATE message, with one difference that if
the response was meant for A, A will cancel the update and
not propagate it in the network further (lines 20–22). CoNICE
ensures the following key property (proof in §VI):

Property 1. Causal Order of Moderate View. If user A
applies (and delivers) update u to its moderate view, then A
must apply every update causally preceding u before u.

Proof of Property 1. We can prove this property using
induction. Basis: If A applies (to its moderate view) no updates,
the property holds. If it applies only one update u1 belonging
to RB , per Alg. 1 and 2, u1 had no implicit references (i.e.,
first update created by its creator B for RB) and no explicit
references (i.e., no other user C has created an update for RB

that B had applied before creating u1). Inductive step: Let us
assume A has applied n updates u1, u2, . . . , un, preserving the
causal ordering property. An additional update un+1 will only
be applied at A, if and only if all causal prerequisites of un+1

are already in u1, u2, . . . , un and there are no missing updates
(per lines 14–19 in Alg. 2), thus ensuring that Property 1 holds.

C. Consensus Protocol

CoNICE provides a consensus procedure with the goal of
achieving agreement, so that users (e.g., first responders) have
the same consistent ‘Strong View’ of the situation (e.g., map).
The consensus solution in CoNICE builds on the One-Third
Rule (OTR) algorithm [12]. We extend OTR in several ways,
mainly with regards to naming and decision invalidations. The
naming integration in CoNICE, makes sure all the interested
users (even with overlapping interests) are involved in every
consensus session relevant to them, which also systematically
reduces the consensus participants to the interested ones,
helping with faster reaching of decisions. CoNICE’s decision
invalidation procedures make sure to repair decisions if long-
term fragmentation cases happen in the network, and also if
the total and causal order of the final strong view are violated
even after the OTR-based agreement is reached.

The initialization and contribution procedures of CoNICE’s
consensus are described in Alg. 3. Each consensus session
is associated with a region-slot pair (<RS , sS>), deciding
the value v (i.e., the update to be placed at the slot) to be
inserted to Q2(RS , sS). To avoid scheduling complexities and
overhead, we run consensus sessions for individual slots rather
than the entire Q2 content. Each session comprises multiple
attempts, and each attempt comprises one or more rounds.
We add the notion of attempt, because we may need to run
another attempt of an already decided consensus session, due
to the nature of our environment. Users initiate consensus with
initial values (vI) equal to their Q1(RS , sS) content (lines
11–12). If user A has no such content, its initial contribution
will be a ‘Noop’ (or null). Any non-‘Noop’ contribution will
be sent for round 1, containing the value (lines 13–20). The
CONTRIBUTION message identifies the region, which will
enable the subscribers of the region to participate in the
consensus. Most consensus algorithms (including OTR), depend
on knowing the consensus population (nS) a priori. We enable
a bootstrapping mechanism based on reachability beaconing

(b) Update Receiving and Causal Ordering

Figure 7.6: Update creation and receipt in CoNICE

every user in the network. Finally, the created update will be published by sending it to

the gossiping module, and will be added to the creating user’s level 1 queue (lines 13–16).

The procedure for handling the receipt of updates and causally delivering them is

described in Fig. 7.6(b). The processing of the incoming update u only proceeds at user A

if the RB ‘belongs’ to its NBIP1 (line 13). Pending updates that get satisfied, will be added

to Q1 (lines 14–15), and all (implicit and explicit) missing prerequisites of u will be collected

in missing (lines 16–17). If there are no missing prerequisites, u will be causally delivered

and applied to its ‘Moderate View’ (line 18). In case of outstanding missing prerequisites,

the VC algorithm typically waits till they are received. In a disconnected environment with

gossiping, this may lead to starvation and indefinite waiting, since “gossips may die out” [83].

To remedy this, CoNICE adds a reactive recipient-driven procedure of requesting for those

missing updates (line 19). The REQUEST message identifies the update ID requested for,

and the requester’s ID (UIDR). Any user, not necessarily the creator of the update, who

193

has that update buffered, can respond with a RESPONSE message, sent for the requester.

When receiving a response, user A processes it in a similar manner to a normal UPDATE

message, with one difference that if the response was meant for A, A will cancel the update

and not propagate it in the network further (lines 20–22). CoNICE ensures the following

key property:

Property 1. Causal Order of Moderate View. If user A applies (and delivers)

update u to its moderate view, then A must apply every update causally preceding u before

u.

Proof of Property 1. We can prove this property using induction. Basis: If A

applies (to its moderate view) no updates, the property holds. If it applies only one update

u1 belonging to RB, per Fig. 7.6(a) and 7.6(b), u1 had no implicit references (i.e., first

update created by its creator B for RB) and no explicit references (i.e., no other user C

has created an update for RB that B had applied before creating u1). Inductive step: Let

us assume A has applied n updates u1, u2, . . . , un, preserving the causal ordering property.

An additional update un+1 will only be applied at A, if and only if all causal prerequisites

of un+1 are already in u1, u2, . . . , un and there are no missing updates (per lines 14–19 in

Fig. 7.6(b)), thus ensuring that Property 1 holds.

7.4.3 Consensus Protocol

CoNICE provides a consensus procedure with the goal of achieving agreement, so

that users (e.g., first responders) have the same consistent ‘Strong View’ of the situation

(e.g., map). The consensus solution in CoNICE builds on the One-Third Rule (OTR)

algorithm [32]. We extend OTR in several ways, mainly with regards to naming and decision

194

IEEE/ACM TRANSACTIONS ON NETWORKING 15

1 input:
2 RS : region for this session S; sS : slot number to be decided for S;
3 nS : user A’s estimation of population for S
4 initialization:
5 QA

1 ← user A’s current level 1 queue
6 QA

2 ← user A’s current level 2 queue
7 UIDA ← id of this user A
8 contribss ← {} /* contributions multiset at A */
9 decS = 〈DECISION ,UIDD , RS , sS , aD, nD, vD〉 ← {}

10 solvedS ← false /* as decS is empty initially */

11 vI ← QA
1 (RS , sS) /* Noop if null */

12 if vI 6= Noop then startAttempt(1, 1, vI)
13 Procedure startAttempt(a, r, v)
14 vS ← v
15 aS ← a
16 startRound(aS , r)

17 Procedure startRound(r)
18 rS ← r
19 publishmsg=〈CONTRIBUTION ,UIDA, RS , sS , aS , rS , ns, vs〉
20 contribsS ← contribsS ∪msg

21 Upon receive (msg=〈CONTRIBUTION ,UID,RS , sS , a, r ,n, v〉)
do

22 if RS /∈ NBIP2A then cancelmsg
23 switch a do
24 case a > aS do
25 foreach m ∈ contribsS do cancel and deletem
26 nS ← max(nS , n)
27 contribsS ← {msg}
28 startAttempt(a, r)

29 case a < aS do publishDS

30 if solvedS then
31 publishDS
32 cancel and deletemsg

33 switch r do
34 case r > rS do
35 foreach m ∈ contribsS do cancel and deletem
36 ns ← max(nS , n)
37 contribsS ← {msg}
38 startRound(r)

39 case r < rS do cancel and deletemsg
40 case r = rS do
41 contribsS ← contribsS ∪msg
42 ns ← max(nS , n)
43 if |contribsS | > (2/3)× nS then
44 vS ← smallest most frequent non-

Noop in contribsS
45 if all equal to V in contribsS excluding Noop

then decide(RS , sS , aS , vS)

1 Procedure decide(UID,RS , sS , a, n, v)
2 if ¬solvedS then
3 if ∃s′ 6= sS ∧QA

2 (RS , s′) = v then
/* conflict with earlier existing decision */

4 if vI = v then startAttempt(aS + 1, 1, Noop)
5 else startAttempt(aS + 1, 1, vI)

6 solvedS ← true
7 vS ← v
8 foreach m ∈ contribsS do cancel and deletem
9 contribsS ← {}

10 publishmsg = 〈DECISION ,UIDA, RS , sS , a, n, vS〉
11 DS ← msg

12 else /* need to invalidate */
13 if msg 6= DS then
14 if a = aD then
15 if n > nD then v′

D ← v
16 else if n < nD then v′

D ← vD
17 else if n = nD then
18 if UID ≥ UIDA then v′

D ← v
19 else if UID < UIDD then v′

D ← vD

20 decide(max(UIDD, UID), RS , sS , a, n, v′
D)

21 if a > aD then
22 startAttempt(a, 1, vI)
23 decide(UID,RS , sS , a, n, v)

24 QA
2 (RS , sS)← v

25 foreach v′ ∈ QA
2 (RS) that violates causality with v do

26 reorder locally through deterministic sort

27 Upon receive (msg = 〈DECISION ,UID, RS , sS , a, n, v〉)do
28 if RS /∈ NBIP2A then cancel
29 decide(UID, RS , sS , a, n, v)

(a) Consensus: Contributions

IEEE/ACM TRANSACTIONS ON NETWORKING 15

1 input:
2 RS : region for this session S; sS : slot number to be decided for S;
3 nS : user A’s estimation of population for S
4 initialization:
5 QA

1 ← user A’s current level 1 queue
6 QA

2 ← user A’s current level 2 queue
7 UIDA ← id of this user A
8 contribss ← {} /* contributions multiset at A */
9 decS = 〈DECISION ,UIDD , RS , sS , aD, nD, vD〉 ← {}

10 solvedS ← false /* as decS is empty initially */

11 vI ← QA
1 (RS , sS) /* Noop if null */

12 if vI 6= Noop then startAttempt(1, 1, vI)
13 Procedure startAttempt(a, r, v)
14 vS ← v
15 aS ← a
16 startRound(aS , r)

17 Procedure startRound(r)
18 rS ← r
19 publishmsg=〈CONTRIBUTION ,UIDA, RS , sS , aS , rS , ns, vs〉
20 contribsS ← contribsS ∪msg

21 Upon receive (msg=〈CONTRIBUTION ,UID,RS , sS , a, r ,n, v〉)
do

22 if RS /∈ NBIP2A then cancelmsg
23 switch a do
24 case a > aS do
25 foreach m ∈ contribsS do cancel and deletem
26 nS ← max(nS , n)
27 contribsS ← {msg}
28 startAttempt(a, r)

29 case a < aS do publishDS

30 if solvedS then
31 publishDS
32 cancel and deletemsg

33 switch r do
34 case r > rS do
35 foreach m ∈ contribsS do cancel and deletem
36 ns ← max(nS , n)
37 contribsS ← {msg}
38 startRound(r)

39 case r < rS do cancel and deletemsg
40 case r = rS do
41 contribsS ← contribsS ∪msg
42 ns ← max(nS , n)
43 if |contribsS | > (2/3)× nS then
44 vS ← smallest most frequent non-

Noop in contribsS
45 if all equal to V in contribsS excluding Noop

then decide(RS , sS , aS , vS)

1 Procedure decide(UID,RS , sS , a, n, v)
2 if ¬solvedS then
3 if ∃s′ 6= sS ∧QA

2 (RS , s′) = v then
/* conflict with earlier existing decision */

4 if vI = v then startAttempt(aS + 1, 1, Noop)
5 else startAttempt(aS + 1, 1, vI)

6 solvedS ← true
7 vS ← v
8 foreach m ∈ contribsS do cancel and deletem
9 contribsS ← {}

10 publishmsg = 〈DECISION ,UIDA, RS , sS , a, n, vS〉
11 DS ← msg

12 else /* need to invalidate */
13 if msg 6= DS then
14 if a = aD then
15 if n > nD then v′

D ← v
16 else if n < nD then v′

D ← vD
17 else if n = nD then
18 if UID ≥ UIDA then v′

D ← v
19 else if UID < UIDD then v′

D ← vD

20 decide(max(UIDD, UID), RS , sS , a, n, v′
D)

21 if a > aD then
22 startAttempt(a, 1, vI)
23 decide(UID,RS , sS , a, n, v)

24 QA
2 (RS , sS)← v

25 foreach v′ ∈ QA
2 (RS) that violates causality with v do

26 reorder locally through deterministic sort

27 Upon receive (msg = 〈DECISION ,UID, RS , sS , a, n, v〉)do
28 if RS /∈ NBIP2A then cancel
29 decide(UID, RS , sS , a, n, v)

(b) Consensus: Decision

Figure 7.7: Consensus algorithms for CoNICE protocols

invalidations. The naming integration in CoNICE, makes sure all the interested users (even

with overlapping interests) are involved in every consensus session relevant to them, which

also systematically reduces the consensus participants to the interested ones, helping with

faster reaching of decisions. CoNICE’s decision invalidation procedures make sure to repair

decisions if long-term fragmentation cases happen in the network, and also if the total and

causal order of the final strong view are violated even after the OTR-based agreement is

reached.

195

The initialization and contribution procedures of CoNICE’s consensus are de-

scribed in Fig. 7.7(a). Each consensus session is associated with a region-slot pair (<RS , sS>),

deciding the value v (i.e., the update to be placed at the slot) to be inserted to Q2(RS , sS).

To avoid scheduling complexities and overhead, we run consensus sessions for individual

slots rather than the entire Q2 content. Each session comprises multiple attempts, and each

attempt comprises one or more rounds. We add the notion of attempt, because we may need

to run another attempt of an already decided consensus session, due to the nature of our

environment. Users initiate consensus with initial values (vI) equal to their Q1(RS , sS) con-

tent (lines 11–12). If user A has no such content, its initial contribution will be a ‘Noop’ (or

null). Any non-‘Noop’ contribution will be sent for round 1, containing the value (lines 13–

20). The CONTRIBUTION message identifies the region, which will enable the subscribers

of the region to participate in the consensus. Most consensus algorithms (including OTR),

depend on knowing the consensus population (nS) a priori. We enable a bootstrapping

mechanism based on reachability beaconing (similar to [42]), for a user to get an estimate

of the population; the number of users eligible to participate for RS , are the number of total

subscribers of RS and its ancestor nodes in accordance with the namespace hierarchy, e.g.,

Fig. 7.2. In a highly fragmented network environment that we consider, there is a chance

this estimation will be incorrect. To remedy this, we allow the user to update its estimation

of nS , from the contributions it receives, to have an upper bound estimate of nS .

It is important that users synchronize to be in the same attempt and round as

much as possible. Upon receiving a contribution (lines 21–45), the user jumps to the at-

tempt and round number of the contribution message if it is larger than its own (lines

196

24–28, 36–40). This helps users use the good period fuller when it occurs. Users remove

obsolete contributions from the buffer, which helps with scalability and reduces the number

of messages circulating in the network. Received contributions from older attempts and

rounds will be discarded, with a possible response providing the decision that was already

made. When the contribution is in the same attempt and round that the user is in (line

40), the user adds it to its contribution list (line 41). When user’s received contribution set

reaches the cardinality equal to 2/3 × nS (one-third rule, line 43), the user will either: 1)

start a new round, sending a contribution with the value equal to the smallest (i.e., earliest

in terms of causality) most frequently received value (line 44), or 2) decided on a value, if all

values in the set are the same (line 45). The decision procedure is described in Fig. 7.7(b).

A decision message will be published as a result of reaching a decision (line 10). The value

in the decision message, determines what value (update) should be inserted into everyone’s

Q2 in that particular region’s slot (lines 24–26). Another way of reaching a decision is to

receive a decision message from someone who has already decided (lines 27–29). CoNICE’s

consensus protocol satisfies the following properties:

Property 2. Consensus. Every consensus session for a <R, slot> pair in the

Strong Views preserves the following: 1. C1: Termination. Every correct user (i.e., that

does not permanently crash or become unreachable) eventually decides. 2. C2: Agreement.

No two users decide differently. 3. C3: Validity. Any value decided is some user’s initial

value. 4. C4: Update Validity. Any value decided is a valid update that was created. 5.

C5: Integrity. No user decides twice.

197

Property 3. Total and Causal Order of the Strong View. If users A and B apply

region R-bound updates u and u′ to their strong views, the order of u and u′ is the same

in both A and B. This order also respect causality.

In normal situation, supported by basic OTR, the above properties are easy to

prove [44]. Due to the nature of the environment and extended assumptions we consider,

there are additional cases where the properties may get violated, which we provide remedies

for in Fig. 7.7(b):

1. Loss of causality. Due to the lack of central orchestration and coordination in

CoNICE, there may be cases that decided values for Q2 may not respect causality; e.g.,

having vi for <R, si> and v′i for <R, si+k> while v′i→vi (i.e., vi depends on v′i). We can

completely prevent this by running consensus sessions one by one, sequentially. However,

this is not efficient and can lead to starvation, especially considering how time-consuming a

consensus session can be. Thus, we provide a pragmatic solution to recover from this viola-

tion. In case this happens, the user swaps the values between slots, through a deterministic

sorting algorithm (lines 25–26). This invalidation can be repaired entirely locally, without

further messages.

2. Long-term physical fragmentation. Sometimes, more “intense” cases of frag-

mentation can occur, going beyond the “good periods” assumption of OTR: assume two

disconnected shelters in a region, each with a number of users trapped in them, with no

mules or paths between the two shelters for a very long time (much longer than consen-

sus durations). As a result of such “long-term” fragmentation, users independently beacon,

create, disseminate, and solve consensus within their partitions. In case a path appears sub-

198

sequently between the two shelters (i.e., by a mule), and messages get exchanged between

the two, the network will include two decisions with different values for the same <R, s>

pair. This will violate the correctness of consensus. To remedy this, we make use of UID and

n fields of decision messages to invalidate decisions already-made (lines 12–23), and upgrade

the decisions of users to one from the fragment with the higher population (and in case of tie,

the one with a higher user ID). This invalidation can be repaired within the same attempt.

3. Duplicate decisions. There may be cases where the same value is picked for

two different slots; e.g., having vi for <R, si> and vi for <R, si+k>. This shows that for

some reason, one value was picked for two slots. This can be caused by divergences in users’

initial values and is not fixed by the basic OTR. Thus, there will be a value that was missed

during the consensus rounds, and got replaced by the same value picked in another session.

As a result, consensus has to restart, albeit as the next attempt. The user detecting the

two duplicates, will keep the first one (in this example, si), and starts a new session to re-do

consensus for the second slot (si+k). The only catch is, if the initial value of the user for

si+k (i.e., from its Q1) is vi, it will pick ‘Noop’. Otherwise, that user will pick Q1(R, si+k).

This way, the consensus will be performed again, giving vi less chance to be picked for si+k

at the end (lines 3–5). This invalidation can be repaired with a new attempt.

7.5 Proof of Consensus in CoNICE

In this section, we provide proof for CoNICE’s consensus protocol against its prop-

erties, using the formalism of Heard-of model [44]. Since Property 1 is about basic causal

ordering and not directly on consensus. This section only focuses on consensus-related

199

properties. Note that agreement is the goal, and consensus is the procedure to provide it.

The major novelty of our proof is extending the earlier proof methods for asynchronous

consensus algorithms [44] to cases by also including long-term fragmentation among the

users participating in the consensus.

7.5.1 Heard-Of Model

We use the Heard-Of (HO) model [44] for our proof formalism, as it allows for

both node and link failures in asynchronous environments, which is appropriate for our

system model. The HO model evolves from one communication-closed round to the next,

where messages sent in each round are received and used in the same round. A Heard-Of set,

denoted by HO(π, r), represents the set of users (or processes) from whom user π “hears of”

(i.e., receives messages that were originated from) in round r. Communication predicates

specify the features and requirements of a system under the HO model. A consensus problem

is solved in the HO model by a Heard-Of machine defined as M = (Λ, P), where Λ is

an algorithm and P is a communication predicate. Work in [32] uses the HO model to

prove the correctness of classic OTR in DTN environments; we extend that to also address

invalidations and long-term fragmentation in CoNICE.

The procedure to prove a consensus protocol in the HO model is as follows: We

first start by defining the system model and basic assumptions in the environment. We

then formally specify communication predicates for network conditions that are necessary

and/or sufficient for the specific protocol to work. Using various deductive or inductive

reasoning methods, we prove the theorem of the form “under the given predicate, the given

protocol solves consensus”.

200

7.5.2 System Model

Each run (i.e., attempt) of our consensus protocol pertains to a particular region

RS and a slot number sS (for a consensus session S). The slot number for an update is the

next available empty slot in the queue associated with RS across different users. Its partic-

ipants are the subscribers of region RS , in accordance with the namespace. An important

novelty of CoNICE is that it can solve consensus even in the case of long-term fragmenta-

tion, within the same run of the algorithm. Thus, we define two types of consensus solutions

for each user within the same run: 1) local consensus (to reach local agreement), and 2)

global consensus (to reach global agreement). Users constrained within the same long-term

fragment (e.g., trapped in a shelter during disaster) can reach local agreement amongst

themselves for a <RS , sS> pair through the one-third rule. Upon re-connecting of the shel-

ter to the rest of the network after some time, if there are conflicts between the different

values decided based on local agreements and as a result of invalidations of all but one of

the values, users can reach global agreement throughout the whole network.

The basic assumptions of our system model are as follows:

• We assume each user in the network is equipped with the CoNICE protocol stack and

follows the protocols honestly and correctly (performs reachability beaconing, counts

group population per region, etc.).

• In a network without long-term fragments, proving our consensus is similar to that of [32].

Thus, we only focus on the fragmented scenarios here.

201

• We assume that we have multiple disjoint long-term fragments where each fragment ∆i

includes a set of users Πi with ni members who are subscribers of RS . Π is the set of all

subscribers of RS throughout the whole network.

• No more that ni
3 of users permanently crash. Also, in each round, at least one user hears

from at least 2
3 of the other users in the fragment:

∀r, ∃π ∈ Πi s.t. |HO(π, r)| ≥ 2ni/3 (7.1)

This is reasonable to assume for our environment, as we use the gossiping protocol that

leverages mobility and buffering at users, and mules, to deliver messages with a high de-

livery probability, especially within a shelter. Furthermore, CoNICE’s reachability bea-

coning and exchange of population counts makes sure that each user has a good enough

approximation of ni, which is needed for the OTR-based calculations.

• After a significant period of time, paths (and connections) appear among some of the

fragments,

We first focus on solving local consensus within a fragment (i.e., before there

appears any paths between fragments). In that fragment, there is a set of participants Πi

running CoNICE’s OTR-based algorithm for <RS , sS>:

Πi = {πi|πi ∈ ∆i ∧ πi ∈ sub(RS)} (7.2)

We specify the following communication predicate Potr:

Potr : ∀r > 0, ∃r0 ≥ r : ∃Π0 ∈ Πi s.t. |Π0| ≥ 2ni/3

∧∀π ∈ Πi : HO(π, r0) = Π0

(7.3)

202

which says that infinitely often, there will be rounds in which all the users will hear from a

two-third majority subset of members, which is Π0. If Potr holds, CoNICE solves consensus

since after several rounds, all users will deterministically converge their contribution to the

same value (lines 40–45 in Alg. 7.7(a)) and eventually agree on a value and decide. Similar

to what is discussed in [32], predicate Potr is a sufficient condition to solve our consensus.

Here, we complement that specification, i.e., Potr, by specifying a simpler predicate PL1

which is the necessary condition to achieve agreement in CoNICE:

PL1 : ∃r0, v s.t. ∀πi ∈ Πi : |HO(πi, r0)| ≥ 2ni/3 ∧ vr0i = v (7.4)

where vr0i is the value picked for either contribution or decision at the end of round r0 at

user πi. Predicate PL1 says that in at least one round, all users will pick the same value, and

they hear it from at least 2
3 of the users, even if it is not the same 2

3 subset across everyone.

If v is the smallest most frequent non-‘Noop’ value from received contributions (line 44 in

Alg. 7.7(a)), but not V (as defined in line 45), another predicate is needed (PL2) so that

in the immediate next round, all non-crashed users could exchange their contributions and

hear from a 2
3 set:

PL2 : ∃r1 > r0 s.t. ∀πi ∈ Πi : |HO(πi, r1)| ≥ 2ni/3 (7.5)

We will show that with PL = PL1∧PL2, CoNICE solves consensus in this case. Alternately, if

v is the received decision value (lines 2–11 in Alg. 7.7(b)), CoNICE will also solve consensus.

To investigate global consensus, let us now assume that after a significant period

of time, paths appear among some of the fragments, some of those ∆i’s have potentially

reached their local decisions at round rdi on their respective value vdi . To follow the model’s

203

round-based specification, we define a special round r∞, which involves every message ex-

change after the re-connection of all these fragments (which have reached local agreement),

for <RS , sS> for the rest of the lifetime of the whole network. All the invalidation proce-

dures of decisions previously reached within the same attempt (line 13–20 in Alg. 7.7(b))

occur in r∞. With respect to rdi and r∞, each user in ∆i can be in one of the following four

categories, which determines their status of whether or not they can decide for local and/or

global consensus:

1. user enters rdi , and then enters r∞.

2. user never enters rdi , but enters r∞.

3. user enters rdi , but never enters r∞.

4. user neither enters rdi nor r∞.

CoNICE’s global agreement only involves users in categories 1 and 2, i.e., those

that enter r∞, as interaction and contention between different decisions from different frag-

ments is needed, i.e., to further resolve to reach agreement. Users in categories 3 and 4

are permanently isolated in their fragments, and thus not relevant for global consensus,

with the relative advantage of users in category 3 over those in category 4 being that the

achievement of local consensus can be locally useful, e.g., within a shelter, in category 3.

Among the different fragments that have reached local agreement and entered r∞,

let us define ∆max to be the fragment with the highest population, namely nmax, i.e., the

“winning” fragment (line 15–16 in Alg. 7.7(b)). The decided value for ∆max’s local consen-

sus is denoted by vdmax. If there is more than one fragment with the highest population,

204

i.e., “tie” situations (lines 17–19 in Alg. 7.7(b)), ∆max is the fragment with the highest

population and includes the non-crashed user with highest UID , denoted by Umax. We

define the following predicates:

PG1 : ∀∆j 6= ∆max : nj < nmax =⇒

∀π ∈ Π : ∃π′ ∈ ∆max s.t. π
′ ∈ HO(π, r∞)

(7.6)

PG2 : ∃∆j 6= ∆max s.t. nj = nmax =⇒

∀π ∈ Π : Umax ∈ HO(π, r∞)

(7.7)

Predicate PG1 says that if ∆max is the uniquely most populated fragment, every

other user will hear from some user in ∆max in r∞. Predicate PG2 says that if population of

∆max is tied, all users hear from Umax in r∞. It is worth noting that PG2 does not necessitate

the permanent existence of the user Umax in the network; as long as Umax stays in the round

r∞ long enough to send its local decided value to some other user, the gossiping protocol

enables that message to reach others through D2D relaying. As per Alg. 7.7(b), users who

receive a message, first check the population count, and then the user ID carried in the

decision message, to converge towards the correct global decision value. Also, no additional

majority check or additional rounds are needed in the global agreement phase (due to pair-

wise comparison in lines 14–20 in Alg. 7.7(b)). Thus, the communication predicate built by

the conjunction of the two, namely PG = PG1∧PG2, is necessary and sufficient for CoNICE

to ensure global agreement.

205

7.5.3 Proving Property 2: Basic consensus Property

We now investigate if CoNICE’s consensus protocol, in particular Alg. 7.7(a) and

7.7(b), satisfy the consensus property 2, and its sub-properties C1–5, under the communi-

cation predicates explained previously.

C1: Termination. For local consensus, assuming PL1 stands: 1) if all values v

are mere contributions, then Alg. 7.7(a) ensures that each user reaches the decision mode

in the next round (assuming PL2), decides and terminates; 2) if at least one of those v’s is a

decision message, Alg. 7.7(b) (for the same and different attempt, respectively) ensures that

the user jumps to the decision mode and terminates. For global consensus, if PG stands and

users do not permanently crash, Alg. 7.7(b) ensures that CoNICE always favors the decision

received from the winning fragment/user; thus global consensus will eventually terminate

since PG ensures that the winning decision will be eventually heard of in r∞ by all users.

C2: Agreement. Local agreement specifies that after some round rdi at ∆i, the

value for <RS , sS> at each user in ∆i (i.e., set of users Πi), will be the same, namely

vdi = v. We assume PL holds in our environment at some round r0. We aim to prove local

agreement is preserved at any round r after r0. We prove that proposition using induction

on the value of r−r0:

Basis: r = r0 + 1. In this case, all users have picked value v at r0; if v is the next

contribution value that all users pick, then in the next immediate round (r0 + 1), as long

as a user hears of “any” 2
3 set of users, the conditions in both lines 43 and 45 in Alg. 7.7(a)

will be true. Thus, it ensures all users go to decision, with value v; so at round r, all users

will agree on v.

206

Inductive step: Suppose that at r = r0 +n, all users agree on value v. In round r =

r0 +n+1, we assume users hear of each other. Given that users receive a duplicate decision

value v in the same attempt, their decision does not change, ensured by condition of line 13

in Alg. 7.7(b) not being met. If users receive v as a contribution message, given that they

already made a decision, then the decision status does not change, ensured by lines 30-32 in

Alg. 7.7(a). As a result, in both cases, the decision value v within the same attempt remains

unchanged, which proves the induction for r = r0+n+1, proving CoNICE’s local agreement.

For global consensus, we assume predicate PG holds. As C1 shows, every user

in the network terminates with the correct final value v, which is vdmax, albeit possibly

going through the incremental changes, based on the “highest winner seen so far” by a

user (Alg. 7.7(b)). Since all users converge to termination on the same value (shown by

C1), eventually every user in Π will agree on vdmax. Any user that has not yet reached

vdmax is a user that has not yet terminated. Similarly, one that crashes permanently is not

considered in the agreement requirement. This proves CoNICE’s global agreement property.

Therefore, any consensus run according to CoNICE’s protocol, i.e., all consensus steps that

do not require a new attempt or a whole new session, preserves agreement.

C3: Validity. Alg. 7.7(a) ensures that every user starts a consensus session with

an initial value. If it is not ‘Noop’, line 12 ensures that the initial value is then used to

create contributions that are disseminated. As we can see in Alg. 7.7(a), no new value is

created during the message exchange among users; thus the final value picked for a decision

is necessarily some user’s initial value, guaranteeing the validity property.

207

C4: Update Validity. For update validity, every user starts with an initial

value that he has delivered in level 1, and thus is a valid update. It can also be a ‘Noop’.

Alg. 7.7(a) makes sure that ‘Noop’ would never pass the one-third rule test and proceed to

the decision. With this fact and also considering C3, CoNICE ensures that update validity

holds.

C5: Integrity. When there is no decision invalidation, C1 ensures integrity is

also guaranteed, as no user will make a duplicate decision. In the case of invalidation, this

property still holds, since at any point in time, only one decision is valid, even for the case

of multiple attempts for a consensus session. This is ensured by line 9 in Alg. 7.7(a), as the

variable decS by a user, only holds at most one value at a time, which is its latest valid value.

7.5.4 Proving Property 3: Total and Causal Ordering Property

In Property 2, we proved the consensus properties of CoNICE, regrading individual

consensus sessions. Property 3 has two separate parts, both of which we will consider. The

first part of property 3 specifies total order. Suppose two users π1 and π2 have established

their final sequences of updates for region R in their strong views, without any holes in the

sequence. By way of proof by contradiction, let us also suppose that π1 has placed updates

u and u′ in slots s1 and s2 respectively (with s1 < s2), and user π2 has placed updates u′

and u in slots s3 and s4 respectively (with s3 < s4). In other words, we are supposing π1

placed u before u′, while π2 placed u′ before u, thus violating total ordering. We consider

the following possible cases:

1. No invalidations are needed: This case would entail that π1 decided u for

<R, s1> while π2 decided some update u′′ 6= u for <R, s1> (with similar situation for u′).

208

This would mean that the consensus protocol reached two different decisions u and u′′ for

the same session <R, s1>, violating the agreement property. Since there is no need for

invalidation and CoNICE ensures agreement, this case is impossible.

2. There has been loss of causality, thus invoking the re-ordering procedure (inval-

idation case 1): This case would entail that update u was initially inserted into some slot s5

at both π1 and π2 (with similar situation for u′), but the re-ordering due to loss of causality

changed that. This would mean that the local re-ordering step (lines 25–26 in Alg. 7.7(b))

performed two different ordering outcomes at π1 and π2. As the re-ordering module used

in Alg. 7.7(b) is deterministic (i.e., same input necessarily leads to same output), this is

impossible.

3. There has been long-term fragmentation, thus invoking the contention-breaking

procedure for contention between fragments (invalidation case 2): This would mean that the

consensus protocol reached two different decisions u and u′′ for the same session <R, s1>,

after the re-connection of fragments, violating the agreement property. Since the invalida-

tion procedure for long-term fragmentation picks one single value to eventually converge to

(i.e., value from the winning fragment/user), and CoNICE ensures agreement even in case

of global consensus, this case is impossible.

4. There has been duplicate decisions and thus a new attempt procedure is invoked

(invalidation case 3): Similar to the previous case, this would require that the consensus

session for <R, s1> reach two different values u and u′′ (with similar situation for u′), after

a new attempt. Given that CoNICE ensures agreement in each of its attempts (no matter

how many re-attempts happen), this is impossible.

209

Figure 7.8: Map of our Helsinki-based
simulation scenario

Helsinki

Helsinki southern

major district

Helsinki western

major district

Helsinki central

major district

Vironniemi Kampinmalmi Ullanlinna Taka-Töölö Lauttasaari

K
lu

u
v

i

K
ru

u
n

u
n

h
ak

a

K
aa

rt
in

k
au

p
u

n
k

i

E
tu

-T
ö

ö
lö

L
ap

in
la

h
ti

R
u

o
h

o
la

h
ti

K
am

p
p

i

Jä
tk

äs
aa

ri

K
aa

rt
in

k
au

p
u

n
k

i

P
u

n
av

u
o

ri

U
ll

an
li

n
n

a

K
ai

v
o

p
u

is
to

E
ir

a

M
u

n
k

k
is

aa
ri

…

…

…

City

Major

Districts

Districts

Neighbor-

hoods

Vironniemi

K
lu

u
v

i

Kampinmalmi

E
tu

-T
ö

ö
lö

L
ap

in
la

h
ti

Figure 7.9: Namespace for our Helsinki-
based simulation scenario

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60

F
ra

ct
io

n
of

 c
on

ta
ct

s

Duration (s)

Figure 7.10: Contact duration CDF

Therefore, the initial hypothesis about lack of total order is contradicted, and

CoNICE’s total ordering is proved. As for causal order, since the outcome of the decided

sequences get deterministically sorted (by the aforementioned sorting method in case 2

above) and re-ordered for causal order if necessary, causal order of the Strong view is also

guaranteed.

210

7.6 Evaluation

To evaluate CoNICE, we perform a simulation based on a partial map of the city

of Helsinki (Fig. 7.8, [192]) using the ONE simulator [108]. The associated hierarchically-

structured namespace (Fig. 7.9) follows the “City→Major districts→Districts→Neighborhoods”

structure. Our simulation environment consists of the three districts (and hierarchically,

the neighborhoods in them) highlighted in Fig. 7.8, and is 4500×3400 meters large. We

model an emergency response scenario where there are 30 pedestrian first responder users

(F-users), each dealing with one of the three districts: they are moving in the area, indicate

an interest in events in them, and publishing updates for them. There is no networking

infrastructure, but all users are equipped with D2D wireless capability. To increase message

delivery, we place additional benevolent mules, namely 500 pedestrian civilians (C-users)

and patrol vehicles (V-users). V-users move faster, have higher buffer capacity and wireless

range than pedestrian users. Benevolent mules participate in relaying and causal delivery

of every message they receive (regardless of region). However, they do not participate in

any consensus sessions. We assume all users in these scenarios, i.e., F-users, C-users, and

V-users, behave honestly and non-maliciously. Mobility is based on map routes, with wait-

ing times of at most 2 min. Each F-user creates three updates in the first half hour of the

simulation (thus, total of 90 uniquely created updates), randomly belonging to one of the

neighborhoods in their respective district. All messages are 1 KB. We report on two sets of

scenarios, one with 1 hour in simulated time and another for 12 hours.

211

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of updates

EpidemicRouting+NR
EpidemicRouting+NR+NBIP (CoNICE)

Figure 7.11: Relevant repli-
cation coverage CDF

 0

 150

 300

 450

 600

 750

 900

 0 500 1000 1500 2000 2500 3000

of

 d
el

iv
er

ie
s

Latency (s)

EpidemicRouting+NR
EpidemicRouting+NR+NBIP (CoNICE)

Figure 7.12: Relevant de-
livery latency (cumulative)

 0

 0.25

 0.5

 0.75

 1

 0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

EpidemicRouting
EpidemicRouting+NR

EpidemicRouting+NR+NBIP (CoNICE)

Figure 7.13: Buffer occu-
pancy with level 0

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of updates

VectorClock+NR+NBIP
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Figure 7.14: Relevant
causal completeness CDF

 0

 150

 300

 450

 600

 750

 900

 0 500 1000 1500 2000 2500 3000

of

 c
au

sa
l d

el
iv

er
ie

s

Latency (s)

VectorClock+NR+NBIP
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Figure 7.15: Relevant
causal delivery (cumula-
tive)

 0

 0.25

 0.5

 0.75

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

VectorClock
VectorClock+NR+NBIP

VectorClock+R
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Figure 7.16: Buffer occu-
pancy with levels 0 and 1

7.6.1 Experiments on Gossiping and Causal Ordering

To investigate level 0 and level 1 consistency, we use the 1-hour simulation scenario.

There are a total of 59,558 D2D contacts during this time, and the cumulative distribution

of contact durations is (partially) shown in Fig. 7.10. As Fig. 7.10 shows, 95 percent of

contacts lasted less than 1 minute and 70 percent less than 10 seconds, which demonstrates

the highly dynamic nature of the environment. The mobility and contact distribution is

the same for all experiments in this sub-section.

212

Table 7.1: Results for level 0

Metric/Approach
Epidemic

Routing

Epidemic

Routing+NR

EpidemicRouting+

NR+NBIP (CoNICE)

F-

users

Average RCrel N/A 28.40 29.53

Average RCtot 73.60 74.76 29.53

Average RLrel (s) N/A 852.25 758.89

Average RLtot (s) 1,080.07 1,084.17 758.89

Average Buffer

Occupancy (MB)
0.07 0.07 0.02

Net-

work

Total Relays 49,612 50,123 48,612

Irrelevant Relays N/A 1,393 0

First, we focus on gossiping only (i.e., no causal ordering or consensus). We

define replication coverage (RC) as a metric that shows how many of updates each node

has received (albeit out of order). Total RC (RCtot) denotes all updates a user received,

while relevant RC (RCrel) only considers the relevant ones pertaining to the F-user’s tasks

(can be at most 30). Note that always RCrel≤RCtot, and with the right interest profiling,

it is expected that RCrel=RCtot. CoNICE’s gossiping enhances epidemic routing. As

Table 7.1 shows, CoNICE achieves better RCrel than ‘epidemic routing+NR’ (NR is name-

based region-ing for publications), as it adds name-based interest profiling (NBIP). It

also achieves better latency with more relevant deliveries (RLrel), (at most can reach

30×30=900). This is due to naming which makes relays and queued messages more useful

and relevant. Also, basic epidemic routing that uses no naming (thus, the notion of

‘relevancy’ is not applicable), receives lower RCtot than when enhanced with NR. Its total

relays value is similar to the rest while achieving less. CoNICE achieves higher coverage

with lower buffer and network cost.

213

Table 7.2: Results for Level 1

Metric/Approach
Vector

Clock

Vector

Clock+

NR+NBIP

Vector

Clock

+R

Vector

Clock+

NR+R

VectorClock+

NR+NBIP+

R (CoNICE)

F-

users

Average CCrel N/A 25.73 N/A 28.30 28.70

Average CCtot 39.86 25.73 68.30 71.16 28.70

Average CLrel (s) N/A 693.23 1088.16 800.18 729.31

Average CLtot (s) 1,093.01 693.23 1,119.02 1,084.79 729.31

Average Buffer

Occupancy (MB)
0.07 0.02 0.17 0.13 0.05

Net-

work

Total Relays 49,612 98,485 108,289 88,134 89,792

Irrelevant Relays N/A 0 N/A 2,648 0

We then bring causal ordering into play. CoNICE’s causal ordering enhances Vec-

tor Clock with the use of NR, NBIP, and Reactive mode (R), in addition to other minor

optimizations such as variable-length vectors. Table 7.2 provides a comparison summary.

Fig. 7.14 shows the CDF of relevant causal completeness (CCrel), which denotes how many

of updates have been causally applied at F-users. As Fig. 7.14 shows, CoNICE achieves bet-

ter CCrel compared to alternatives that enable NR, since CoNICE allows more selective use

of causal ordering overhead (through NBIP) and requesting for unfulfilled prerequisites on

demand using the reactive mode rather than waiting. It also achieves better causal latency

(CLrel) as Fig. 7.15 shows, and reasonable network overhead in terms of the number of re-

lays (Table 7.2). For cases without NR, Table 7.2 shows that pure Vector Clock achieves the

lowest RCtot. This is because without name-based region-ing, every update can potentially

depend on all others, which results in an extremely high number of references that have to

be fulfilled and processed. Name-based region-ing makes appendices more selective, having

to only depend on relevant updates. Fig. 7.16 shows CoNICE achieves better buffer usage

than most of the alternatives, except ‘VC+NR+NBIP’ which does not use reactive mode

214

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of agreed updates

OTR+NR
OTR+NR+NBIP (CoNICE)

Figure 7.17: Relevant
agreement completeness
CDF

 0

 150

 300

 450

 600

 750

 900

 0 2 4 6 8 10 12

of

 d
ec

is
io

ns

Latency (h)

OTR+NR
OTR+NR+NBIP (CoNICE)

Figure 7.18: Relevant deci-
sion latency (cumulative)

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

OTR
OTR+NR

OTR+NR+NBIP (CoNICE)

Figure 7.19: Buffer occu-
pancy with levels 0–2

Table 7.3: Results for level 2

Metric/Approach OTR OTR+NR OTR+NR+NBIP (CoNICE)

F-

users

Average ACrel N/A 0.26 28.60

Average ACtot 0 0.93 28.60

Average ALrel (h) N/A 8.29 4.91

Average ALtot (h) None 7.51 4.91

Average Buffer

Occupancy (MB)
1.01 1.14 0.18

Net-

work

Total Relays 3,489,035 3,512,598 3,504,557

Irrelevant Relays N/A 77,086 0

Consensus Initiations 2,049 2,101 853

Consensus Decisions 0 28 858

and achieves lower completeness. As seen, using causal ordering leads to slightly higher

latency and buffer usage than pure level 0, but achieves causal order consistency.

7.6.2 Experiments on Consensus

To investigate consensus, we extend our scenario to 12 hours with the total of

683,876 D2D contacts. We now enable level 2, i.e., consensus, on top of levels 0 and 1.

After the passage of approximately one hour, users start to initiate consensus sessions for

215

the slots they have content for. We compare CoNICE with the basic OTR, and show the

impact of adding NR and NBIP. The agreement completeness (AC) metric shows how many

of level 2 queue slots of users have been filled with agreed-upon updates. Just as before,

we have ACrel and ACtot. As Table 7.3 shows, basic OTR fails to reach any decisions, and

thus has zero AC. ‘OTR+NR’ is slightly better but is still not satisfactory. As the Table,

and Fig. 7.17 (CDF of ACrel) show, CoNICE achieves a dramatically better agreement

completeness. Fig. 7.17 shows that with CoNICE, 90% of F-users agree on 26 or more

updates, while with ‘OTR+NR’, 75% of F-users agree on zero updates, in the entire 12-

hour simulation period. This is due to the fact that CoNICE uses NBIP, which limits

the consensus participants only to those that are relevant, namely F-users dealing with

neighborhoods within the same district. Table 7.3 also shows that OTR and ‘OTR+NR’

initiate much higher consensus sessions than CoNICE (2,049 and 2,101 vs. 853), but reach

significantly fewer decisions (0 and 28 vs. 858). CoNICE even reaches more decisions

than it initiates, which shows the improvement contributed by level 2 over level 1. This is

because due to CoNICE’s faster consensus convergence, some F-users can fill their slots in

Q2 the corresponding of which they do not have in Q1 (as example in Fig. 7.5). Fig. 7.18

shows the cumulative latency of reaching relevant agreement decisions (ALrel) across all

F-users. As shown, CoNICE achieves considerably more. As can be seen (and previously

shown in [32]), the latency of reaching consensus decisions is on the scale of hours in an

intermittently-connected network, while CoNICE’s causal order delivery is in the order of

minutes (Table 7.2). This shows yet another benefit of going through level 1 first and then

level 2: users will have a somewhat useful moderate view in the order of minutes while

216

 0

 5

 10

 15

 0 4 8 12

of

 u
pd

at
es

Time (h)

Local Agreement Completeness
Global Agreement Completeness

(a) Basic OTR (no invalidations)

 0

 5

 10

 15

 0 4 8 12

of

 u
pd

at
es

Time (h)

Local Agreement Completeness
Global Agreement Completeness

(b) CoNICE (OTR + invalidations)

Figure 7.20: Average local and global agreement completeness

dealing with the incident, while waiting for possibly hours to reach consensus and build a

strong view. CoNICE achieves far better agreement completeness, using the same level of

relays as other alternatives (Table 7.3), and using much less buffer at F-users as shown in

Fig. 7.19. These results show that CoNICE significantly improves on OTR, for achieving

higher agreement completeness among users, while also using less buffer capacity. These

improvements of CoNICE are greatly beneficial in practical situations such as geo-tagging

in emergency response, as first responders can build their consistent strong views much

faster and be able to deal with their critical tasks more effectively and efficiently.

7.6.3 Physical Fragmentation of Shelters During Disasters

We now conduct experiments to investigate the effect of long-term fragmentation.

For this, we have two long-term fragmented shelters each circular with radius of 50 meters,

with 500 meters distance between them. Each shelter contains 5 first responders (F-users),

all dealing with the disaster in the ‘Vironniemi’ district. These F-users are constrained (or

217

trapped) with very limited mobility within their respected shelters. Every F-user creates 3

updates. Thus, we will have a total of 30 updates. All benevolent mule activity is disabled

during the first 8 hours of the experiment, with no connection between members of the two

shelters. Due to this long-term fragmentation, the two shelters do not hear from each other

for the 8-hour period, and we end up with 15 pairwise contentious consensus sessions, i.e.,

same region-slot pair, from the two shelters.

Fig. 7.20 compares the use of basic OTR (without invalidation), (a), and CoNICE

(OTR with invalidation), (b), for achieving both local and global agreement. Local agree-

ment completeness indicates to what extent an average F-user reaches the same decision for

an update as the others in the same shelter. Global agreement completeness, on the other

hand, represents to what extent an average F-user reaches the “winning” global decision

for an update just like the others in the whole network. Both local and global agreement

completeness are shown as per-user average, and each can be at most 15.

As Fig. 7.20(a) shows for the basic OTR approach, it is easy for all the F-users

to gradually reach complete local agreement before the 8th hour. Since one shelter has the

winning advantage, at most half global agreement is reached (i.e., those who are already

in the winning shelter), without any invalidation procedure. We also observe the same

outcome if we restart the whole consensus procedure with all 10 participants. This occurs

because there is insufficient time to reach global agreement among all users. Thus, we do

not make progress in achieving global agreement even after 12 hours. Alternatively, as

Fig. 7.20(b) shows, with the addition of decision invalidation procedure, CoNICE achieves

complete global consensus among all F-users in the network, gradually starting from the

218

8th hour, which is the time paths start to appear between shelters. This feature of CoNICE

helps ensure that all first responders can get a chance to eventually get on the same page

regarding the ordering of updates for their respective tasks, in a strongly consistent manner,

even if they have been isolated in separate shelters for a long time.

219

Chapter 8

Leveraging Social Media Posts for

Name-based Information

Dissemination in Disasters

8.1 Introduction

In this chapter, we explore our work in the integration of social media into man-

aging the disaster response. People (especially common citizens) use the normal forms of

social media communications (Twitter, Facebook, etc.) to send and get information during

disaster situations, since that is what they are familiar with. This was observed across

different parts of the world. We first present an analysis of how people use social media

during disasters, using the examples of Hurricanes Harvey and Irma in 2017.

220

We showed in previous chapters that name-based pub/sub can be quite useful for

information dissemination during disasters. However, people are likely to have little knowl-

edge or understanding of the notions of a structured namespace to determine where to

publish information or ask for information (e.g., generate an Interest in NDN). It would be

ideal to allow the use of these social media platforms in the manner people are used to, with

free-form text, possibly enhanced with pull-down menus to determine key meta-information

to associate with the message. This then would require mapping individual messages to

the namespace for publishing, expressing interest or creating subscriptions. The approach

we explore is to process the natural language in the social media posts (Tweets, Facebook

posts, etc.) and map it to appropriate names in the namespace. This allows messages to

be delivered to the correct entity (such as first responder or incident commander) based on

the derived names. Additional handling of the message may be based on the decisions by

those individuals (e.g., handling false positives).

We evaluate the applicability of our use of social media information using Tweets

collected during (and just after) two recent wildfires in the state of California in the United

States. DiRECT uses Natural Language Processing (NLP) to map the tweets to the right

first responder(s) automatically. We demonstrate that it does so accurately up to 96% of

the time. Even for the ones that are inaccurate (4%), they can be recovered by the help of

the first responder, manually forwarding it to the correct recipient.

The contributions of this work are: 1) an analysis of the correlation between so-

cial media posts and real-time events during disasters; 2) a system that integrates critical

components and actors in disaster scenarios, i.e., first responders, volunteers and social

221

media, in a name-based, information dissemination model; 3) a social media engine that

intelligently and automatically maps free-form social media posts to the right names for

publication in a pub/sub framework, and 4) demonstration of the effectiveness of our social

media engine through measurements from our evaluations.

8.2 The Evolving Nature of Disaster Management in the In-

ternet and Social Media Era

First we analyze social media usage by people during disasters. Data collected

from social media (in particular, Twitter) can be very informative about disaster-related

issues as it has been widely used for asking and offering help, by government, volunteers,

civilians, etc. This was observed anecdotally in several news articles soon after Harvey.

We crawled the Tweets sent during and just after the hurricanes Harvey and Irma and

see if they can potentially answer many useful questions such as what, when and where

the need/offer for help occurs. Analyzing this data both qualitatively and quantitatively,

we can get insights for the design of communication capabilities to complement traditional

emergency service communication.

8.2.1 Keyword-Based Association of Tweets

We implemented an early-stage tweet processing algorithm that:

1. parses large collections of raw crawled tweets, and

2. identifies keywords and performs a phrase-based classification of tweets.

222

Table 8.1: Tweets per category for Harvey on Aug. 27 between 5:22:52 pm and 6:59:59 pm

Category Query phrase #

Total 561,187

Harvey-related harvey* hurricane* 50,140

Deaths death* dead 6,012

Shelter shelter* 3,552

Damage damage* 1,067

Search & Rescue (search)AND(rescue) 852

Fire Fire 736

Missing Persons Missing 522

Collapsed Infrastructure collaps* 876

Trapped Trapped 382

Forward This Message (please this)AND(forward retweet) 337

Outage ((electricity power) AND (no out without outage* blackout*)) 301

outage* blackout*

Shortage shortage* suffic* insuffic* ((run* ran are)AND(short low out)) 248

Distribution distribut* 181

Earthquake & Aftershocks aftershocks AND earthquake* aftershock* 157

Need Medical Equipment & Supplies (need*)AND(medic* suppl*) 146

Human Remains remains bodies 114

Looting loot* 84

223

For the first phase, we use Java JSON Parser to extract those attributes of a tweet that we

are most interested in, i.e., mainly createdAt showing the time of the tweet, text showing

the content of the tweet, and geolocation field of the tweet as a (latitude, longitude) pair.

For the second phase, we use the Lucene [5] library, an open-source text mining engine to

determine whether or not a tweet is associated to the disaster. We mine the text field of

the tweets to get an understanding of what a tweet is about. Additionally, a dictionary

construction program on the tweet pool gives us the frequency of each word and also the

top k most frequent words, thus allowing us to learn what words are most popular in a

tweet collection.

We analyze temporal and spatial distribution of incident-related tweets. For the

tweets we crawled from the approximate one-week duration of Harvey, we identified Harvey-

related tweets by counting the results of the harvey* hurricane* query (similarly for Irma,

with the keyword irma*). We used the createdAt and geoLocation fields to plot the

temporal and spatial distribution of the hurricane-related tweets.

Fig. 8.1 shows the percentage of the Harvey-related tweets during the crawling

periods on Twitter, showing how the ratio of tweets related to Harvey was higher during

the peak of the incident. Aug. 25th was the day Harvey made landfall while Aug. 27th

was the day of considerable flooding. Fig. 8.2 shows the percentage of Irma-related tweets

for continuous 3-hour periods

between the night of Sept. 9 and the evening of Sept. 11. We observe that Irma-

related tweets tracked the progress of the hurricane. It is interesting to note the correlation

224

Table 8.2: Categories for Irma Tweets during Sept. 9th - Sept. 12th

Period start 9/09 9:27pm 9/10 9:00am 9/10 9:00pm 9/11 9:00am 9/12 6:25pm 9/12 9:00am

Period end 9/10 8:59pm 9/10 8:59pm 9/11 8:59am 9/11 7:59pm 9/12 8:59am 9/12 7:59pm

Category # per Hour # per Hour # per Hour # per Hour # per Hour # per Hour

Total 1939504 167922.42 3640540 303378.33 2350414 195867.83 3107882 282534.73 381807 147987.21 2960088 269098.91

Irma-related 214245 18549.35 464809 38734.08 252559 21046.58 217026 19729.64 15616 6052.71 88055 8005

Outage 6721 581.90 15031 1252.58 13937 1161.42 21097 1917.91 2439 945.35 13933 1266.64

Deaths 6407 554.72 10858 904.83 11817 984.75 19357 1759.73 1879 728.29 15641 1421.91

Shelter 11931 1032.99 26958 2246.5 7384 615.33 7673 697.55 359 139.15 2314 210.36

Damage 2188 189.44 8610 717.5 8017 668.08 15356 1396 1268 491.47 8287 753.36

Looting 200 17.32 10383 865.25 13782 1148.5 12172 1106.55 434 168.22 2142 194.73

Fire 3068 265.63 6377 531.42 4700 391.67 5251 477.36 678 262.79 6605 600.45

Forward This Message 186 16.10 489 40.75 307 25.58 403 36.64 320 124.03 15919 1447.18

Missing Persons 2022 175.06 2986 248.83 1851 154.25 3155 286.82 290 112.40 3086 280.55

Shortage 1363 118.01 2375 197.92 1116 93 2171 197.36 238 92.25 2169 197.18

Human Remains 2031 175.84 1997 166.42 1446 120.5 1838 167.09 190 73.64 1349 122.64

Collapsed Infrastructure 211 18.27 3784 315.33 705 58.75 752 68.36 28 10.85 547 49.73

Earthquake & Aftershocks 803 69.52 1745 145.42 481 40.08 430 39.09 63 24.42 384 34.91

Distribution 750 64.94 854 71.17 283 23.58 456 41.45 65 25.19 609 55.36

Trapped 230 19.91 473 39.42 391 32.58 319 29 40 15.50 273 24.82

Need Medical Equip.&Supplies 193 16.71 383 31.92 150 12.5 310 28.18 53 20.54 434 39.45

Search & Rescue 77 6.67 89 7.42 253 21.08 627 57 43 16.67 146 13.27

Road Blocked 16 1.39 127 10.58 141 11.75 345 31.36 93 36.05 177 16.09

Contaminated Water 122 10.56 157 13.08 151 12.58 215 19.55 6 2.33 136 12.36

Unstable 42 3.64 78 6.5 48 4 88 8 17 6.59 88 8

Rubble 26 2.25 62 5.17 38 3.17 66 6 6 2.33 39 3.55

Medical Emergency 22 1.90 36 3 18 1.5 99 9 4 1.55 51 4.64

Water Sanitation&Hygiene 7 0.61 50 4.17 18 1.5 92 8.36 2 0.78 36 3.27

Security Concern 5 0.43 20 1.67 23 1.92 25 2.27 5 1.94 12 1.09

225

4.04

10.5

5.33

8.93

6.16
7.11

5.08

0

2

4

6

8

10

12

8/24 8/25 8/26 8/27 8/28 8/29 8/30

P
er

ce
n

ta
ge

Date

Flooding

Landfall

Figure 8.1: Percentage of Harvey-related Tweets over total collected tweets

10.34 9.67
11.51

15.33
13.74

11.56
13.07

12.04
10.4010.23

11.36
9.67

7.84
6.97

6.19

0

5

10

15

20

10pm 1am 4am 7am 10am 1pm 4pm 7pm 10pm 1am 4am 7am 10am 1pm 4pm

P
er

ce
nt

ag
e

Period start time
9/9 9/10 9/11

Figure 8.2: Percentage of Irma-related tweets during Sept. 9-11 over 3-hour periods

226

between these results and real events: According to [23], “. . . Irma was upgraded to a

Category 4 . . . ” on Sept. 10 and “. . . downgraded to a Category 1 . . . ” on Sept. 11. As for

Florida (where most crawled tweets are from), “Hurricane Irma pummeled the Florida Keys

late Saturday (Sept. 9) into Sunday (Sept. 10) as a Category 4 and hit the Florida mainland

as a Category 3 storm around 1pm eastern time Sunday . . . ” [195]. While the frequency

of tweets on a topic may rely on many different factors, we observed that Harvey-related

tweets are more frequent during the peak of the hurricane.

8.2.2 Categorizing Tweets for Disaster Management

Once disaster-related tweets are identified, we classify the tweets according to what

the tweeter is requesting/offering regarding the disaster, e.g., requesting or offering aid,

volunteering, reporting, or complaining. We identified a set of disaster-related categories

and show their frequency in Tables 8.1 and 8.2 for Harvey and Irma, respectively. We

picked the query phrase associated with each category after some trial and error to get a

reasonable accuracy rate.

For Harvey, the tweet count for each category is shown in Table 8.1. We found

the most frequent topics in Harvey tweets to be on “deaths”, “shelter”, and “damage”. For

Irma, we did a more comprehensive classification. Table 8.2 shows the tweet count for each

disaster-related category for three days (Sept. 10, 11 and 12) in 12-hour intervals (starting

from 9pm). We used the same category list and search keywords as we did for Harvey.

As time values for different periods differ, we also show the tweets per hour which is the

tweet count divided by the number of hours. This is very helpful for fair comparisons.

Most of the trends observed in the table correlate with real progression of events. For

227

example, It is interesting to note that the most frequent Irma tweet category was “outage”

which was not a frequent category in Harvey. For “outage”, we observe that the related

tweets increase from Sept. 10 (1,252.58) to Sept. 11 (1,917.91) and decrease on Sept. 12

(1,266.64) during the daylight hours 9am–9pm (a similar pattern, with lower numbers, is

seen during the night time, 9pm–9am). According to [65], power outage increased till Sept.

11, peaked, and then decreased after that. That seems to be similar to the numbers in

our results. The aforementioned article also states “.. power outages peaked at 3pm on

Sept. 11, affecting 64% of customers ..” which also correlates with the results; as we see an

increase-then-decrease pattern, peaking on Sept. 11. Looking at other categories, “Looting”

reports go up first (immediately after event) and goes down afterwards – probably because

of law enforcement. Likewise, “Shelter” requests go down over time. Similar trends can

be observed for “Deaths” and “Damage” categories. There may be anomalies too; e.g.

“Forwarding of message” goes strangely up on Sept. 12. This may be due to excessive

retweets of one tweet.

8.3 System Model for DiRECT

The system we consider is one where people involved in a disaster (first responders,

victims and volunteers willing to help) can communicate easily using a name-based com-

munication framework. Each participant may have an associated role, and the namespace

captures the relationships among these roles. We expect that the incident commander cre-

ates, updates and manages the namespace, which may follow a structure that is similar to

the specifications in the National Incident Management System (NIMS) [71], reflecting the

228

Wired/wireless
communication

network supporting
pub/sub

Name:
/Incident/[Roles]/
[Location]/[Time]

SMP contentSocial Media

Engine (SME)

Voting
Authority (VA)

1) Victim posts
social media
post (SMP)

3) SME sends
NSMP to VA for
credibility check

4, 5) VA sends voting
jobs and receives
votes (crowdsourcing)

6) VA evaluates
votes

2) SME maps
SMP to Name,
forms NSMP

Victim

Named SMP
(NSMP)

8) Forwarders and infrastructure
disseminate/propagate NSMP in
the network

9) Relevant first responders and
volunteers receive NSMP, and
take care of its reported issue

Verifiers

Name-based forwarding

First
responders

7) (if credible)
VA sends out
NSMP

7’a) (if credible)
VA sends NSMP
to IC

7’b) IC
sends out
NSMP

Incident
Commander (IC)

Volunteers

Figure 8.3: System model

organizational roles of participants. Volunteers, first responders and incident commanders

publish into the namespace, with messages that are relevant to the disaster and intended

to reach the relevant people. They also subscribe to names or name prefixes based on their

role and the information they expect to receive. Information can be accessed by the name,

using an Interest/Data framework as in NDN [203] as well as using a publish/subscribe

framework such as the recipient-based pub/sub in [48]. An important consideration is that

the namespace is likely to dynamically change as new incidents [48] occur or when new

roles are added or assigned to specific first responders and volunteers. Generally, exchanged

messages refer to events. An event is defined as a 3-tuple of 〈Type, Time, Location〉; an

example for an event is 〈Fire, 11am April 1, Yamadaoka Suita-city〉. The event type is a

task or issue associated with a role.

229

The overall procedure is shown in Fig. 8.3. A victim (or any data initiator) posts

a disaster-related message (report, update, etc.) on social media, e.g., tweeting, in free-

form text. A social media engine (SME) collects, analyzes and maps social media posts

(SMPs) to a name, of form “/Incident/[Role]/[Location]/[Time]” according to the incident

namespace (described in §8.4.1), using NLP/ML procedures (described in §8.4.2).

After the name-mapping procedure, and for the purpose of fact-checking social

media posts, the SME sends the “named SMP” (NSMP) to the verification service which

is a crowdsourcing service involving a set of volunteers that vote on the veracity of posts,

referred to as verifiers, who help in establishing the trustworthiness (credibility) of the

NSMP. The voting authority is a trusted third party which manages the verification service.

The voting authority eventually sends the verified NSMP to the incident commander or to

those first responders that are appropriate (with the choice depending on the real-time-

criticality of the matter) who are part of the namespace. The trust management evaluates

the trustworthiness of verifiers in performing the verification task, which helps with ensuring

the spread of only credible information in the network. A first responder receives a command

from the incident commander as well as a verified NSMP from the voting authority.

In addition, we also consider volunteers who seek to actively participate in the dis-

aster response. A volunteer registers herself/himself with a volunteer service by providing

credentials, including potentially biometric information, under an assumption that volun-

teers who provide their biometrics would never behave maliciously. Since these volunteers

are trusted, they are allowed to publish messages and subscribe to names in the incident

namespace.

230

Our design assumes the initial interaction between users and social media servers

(e.g., Twitter) over the Internet. However, the communications in the pub/sub framework,

e.g., between first responders and volunteers, can be a combination of infrastructure-based

(e.g., through fixed routers) or infrastructure-less (e.g., device-to-device, through data mules

and/or drones) communication links. The use of information-centric dissemination allows

for information delivery over such diverse links [166], especially to deal with situations such

as mobility and network link failures. We assume that the incident commander and first

responders are honest, while volunteers may not all be honest. First responders and vol-

unteers are assumed to have identifiers and credentials. The incident commander and first

responders have certificates issued by an incident authority, that is a trusted third party

and works as the root certification authority. Volunteers are assumed to not have certifi-

cates issued by the trusted third party and their credentials are self-certified. Moreover,

volunteers may have multiple pairs of identifiers and credentials.

8.4 Architectural Components

To facilitate the desired bridging between social media platforms and publish/sub-

scribe frameworks, DiRECT uses a namespace that unifies and organizes the information

exchanges, a social media engine that maps free-form social media posts to the right names

through NLP/ML techniques, and a verification service that assesses the credibility of social

media posts through crowdsourcing verifiers and reputation systems. This section explains

these key components.

231

Incident

RecoveryResponse Mitigation

Emergency Services Law Enforcement

Firefighting Medical Rescue

Region1 Region2

AM PM

Region3

…

…

…

…

…

…

…

Location

Time

R
o
le

s

O
rg

a
n

i-

za
ti

o
n

a
l

T
a
sk

/I
ss

u
e-

d
ri

v
en

Figure 8.4: Incident management namespace

8.4.1 Naming Schema

Naming is a key component of DiRECT, as it unifies the interactions between all

different actors (civilians, first responders, etc.) and guides the subscription and publication

paths. DiRECT’s namespace follows an NDN-style, hierarchical structure [203] (it can

be extended to a graph-based namespace as well, as proposed in [93]). The namespace

represents entities related to and critical in incident management, and captures complex

relations among them. An example namespace is (partially) depicted in Fig. 8.4. The

namespace in DiRECT has the structure of “/Incident/[Role]/[Location] /[Time]”, where

elements within brackets “[...]” can be any number of name components. Each dimension

may correspond to some aspect of an incident and can contain any number of name levels in

the namespace hierarchy. For example, the ‘Role’ dimension can consist of organizational

roles (e.g., NIMS [71]) towards the root, and task- or issue-driven (i.e., incident-specific)

roles towards the leaves of the tree, to cover the critical components for managing the

232

incident. This design is suitable to model the what, where, and when aspects of content,

which are critical aspects of incident information.

The namespace follows a recipient hierarchy for dissemination, as proposed in

CNS [48] for a recipient-based pub/sub. The paths followed for publication/subscription

for recipient-based pub/sub is the reverse of topic-based pub/sub [49]. In DiRECT, sub-

scribing to a prefix, implicitly means also subscribing to all ancestors of that prefix. For

example, a subscriber of “/Incident/Response/EmergencyServices/Firefighting”, would re-

ceive all publications corresponding to that name, as well as publications to names above

it, i.e., “/Incident/ Response/EmergencyServices”, etc. Conversely, a content published

to a prefix, implicitly means it will also be disseminated towards all subscribers of the

descendants of the prefix. For example, a content published to “/Incident/ Response/E-

mergencyServices/Firefighting/Region1” will also be received by subscribers of “/Incident/

Response/EmergencyServices/Firefighting/Region1/AM”, etc.

First responders and volunteers subscribe to prefixes; e.g., a fireman dispatched to

fight a fire in Region1 during AM hours, subscribes to “/Incident /Response/Emergency-

Services/Firefighting/Region1/AM”. The use of recipient-based pub/sub is very beneficial

in our architecture since it allows the most relevant first responders, at the finest granularity

possible, to receive incident-related publications, without causing distraction and informa-

tion overload for ‘non-relevant’ first responders that may be busy dealing with other tasks.

Also, leveraging the hierarchical structure of the namespace, and allowing subscription/pub-

lication to any desired granularity (and not necessarily each individual below/above a prefix)

233

greatly decreases the number of pub/sub messages and state that has to be maintained in

the network, as shown in [48,49].

An incident commander manages, creates and updates the namespace. At the

beginning of an incident, the initial namespace is derived from an a priori template. This

template is pre-defined and follows the incident command chains designed specifically for

that particular type of incident, e.g. [71]. A benefit of having this template is that it

is also accompanied by a trained data set to enable supervised classification performed

by the Social Media Engine (SME) during the incident, as we explain in §8.4.2. As the

incident progresses and new issues and tasks arise, either from monitoring the incident

or suggestions/offers from volunteers, the incident commander dynamically modifies the

(more fine-grained parts of the) namespace and notifies the nodes that have it or use it

(such as rendezvous points [93]) for synchronization. For example, upon receiving an aid

offer from a volunteer team suggesting that they want to help with firefighting in Region4

during PM hours, the incident commander adds the sub-tree “Region4→ PM” as a child of

“Firefighting” in the namespace. For encryption and authentication, we envisage the use of

Attribute-Based Encryption (ABE) [33] with rules and attributes following our namespace.

However, we are unable to focus on those issues due to limited space.

8.4.2 Social Media Engine

DiRECT’s recipient-based pub/sub allows social media posts (SMP), e.g., Tweets,

to be sent as publications and disseminated in the network. However, the correct delivery

of each publication depends on the name it has been published to. A civilian (e.g., a victim

reporting an emergency and seeking help) may not have knowledge of or access to the names-

234

pace to pick the right prefix. Having users download the whole namespace (or have it pushed

to them proactively) is costly both in terms of network usage and storage on a user device.

Users would also have to manually go through a potentially large namespace to pick the right

name for their publication which can be time-consuming and error-prone. DiRECT solves

these problems by employing a social media engine (SME) that intelligently maps a SMP to

the right part(s) of the namespace using natural language processing and machine learning.

Fig. 8.5 shows the overall architecture of SME: The incoming SMP, possibly in-

cluding latitude/longitude, and timestamp, in addition to the text, goes through a sequence

of stages to get mapped to a (set of) name(s) of the namespace structure shown in Fig. 8.4.

This pipeline processes SMPs in an online fashion, i.e., as SMPs arrive and are captured

from each social media platform. Using trained models for text (data from previous and/or

similar incidents), the classification procedure maps the textual part of the SMP to the right

roles, depending on what tasks and/or issues the SMP is referring to. The classes (labels)

of this classification are the leaves of the ‘Roles’ part of the namespace only; i.e., tasks and

issues only. Using maps and other geo-related databases, the localization step maps lat/long

(and possibly location names mentioned within the text) to the right location names under

the previously derived role names. Finally, the temporalizing step maps the timestamp in

the SMP to the right time-related name, i.e., which time interval this particular timestamp

belongs to. Having formed a complete name, the SME appends the name to the SMP and

sends it forward, to the voting authority to be further processed and disseminated.

It is worth noting that SME does not determine the importance of an SMP. It

merely takes care of the mapping to a name for directing the delivery. Despite this map-

235

Localize Temporalize

Trained model for

text classification

[doci, classi]

Maps and geographical data

[regioni, lat-long_boxi,

locationsi]

Time intervals

[intervali, time_rangei]

[text]

[lat-long]

[timestamp]

[Role] [Location] [Time]/ // Incident /Name:

Incoming social

media post (SMP)

Classify

Figure 8.5: Social media engine

ping, there is chance for inaccuracy, i.e., an SMP is mapped to the wrong name, and thus

delivered to the wrong first responder(s). If that happens, e.g., if a medical doctor receives

a report regarding an urgent need for firefighting, he/she can either: 1) re-publish the SMP

to the network picking the right names (as he/she has access to the namespace as a first

responder); or 2) send it as a unicast message to his/her incident commander, who then can

forward it as appropriate. This step recovers DiRECT from inaccurate deliveries. However,

using a good classification/learning approach will greatly reduce these inaccuracies, so that

only a very small percentage require subsequent correct forwarding.

8.5 Preliminary Evaluation

In this section, we provide preliminary results of our evaluation of our trust man-

agement and social media engine.

236

(a) Camp (Northern California) (b) Woolsey (Southern Califor-

nia)

Camp (a)

Woolsey (b)

(c) Bounding boxes for Camp and

Woolsey

Figure 8.6: Spatial distribution of fire-related tweets for Camp Fire (a) and Woolsey Fire
(b) – (size of circles correlates with the number of tweets)

8.5.1 Social Media Engine

The SME processes social media posts using NLP & ML methods to map incoming

posts to the right names. To evaluate the performance of SME in our context, we use Tweets

collected from two disasters in California in 2018, namely the Camp [190] and Woolsey [193]

wildfires. Crawling Twitter, we captured many Tweets (with no restrictions on keywords)

sent from Nov. 7th to Nov. 26th, 2018 (several million) for each fire into the “Camp” and

“Woolsey” tweet pools (un-processed collections). The geo-location bounding boxes for the

two pools are shown in Fig. 8.6(c). The geo-location restrictions were chosen according to

the facts of the two wildfires [190,193].

The Camp and Woolsey pools have 959,740 and 1,961,131 tweets respectively. We

show the spatial and temporal distributions of fire-related tweets, doing a keyword-based

text mining for tweets that include combinations of the words “fire” or “Camp/Woolsey”,

using the Apache Lucene API [5]. The analysis results are shown in Fig. 8.6 and Fig. 8.7,

indicating strong correlation of tweet patterns with the actual progression of the events

237

0

1000

2000

3000
#

 o
f

tw
e
e
ts

Date

Camp Data Set

Woolsey Data Set

Figure 8.7: Temporal distribution of fire-related tweets

during the two wildfires: peaking around Nov. 9-10 and getting contained around Nov.

21-25 [190,193]. Fig. 8.6 shows that the density of fire-related tweets is higher at areas most

affected by the wildfires, i.e., Paradise, CA (Camp fire), and Thousand Oaks and Malibu,

CA (Woolsey fire) [190,193].

SME’s NLP and ML procedures use the NLTK [35] and Scikit-learn [154] toolk-

its. Our implementation is in Python, and we evaluate the performance using a machine

with Ubuntu 14.04.6 LTS using Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz dual-socket

with 14 cores each with hyper-threading enabled with 252GB RAM. To evaluate the per-

formance, we use a subset of our Camp and Woolsey pools; to produce our Camp and

Woolsey data sets. We identify a total of ∼35K tweets across the two pools related to

the wildfire incidents. We identified 13 classes (tasks/issues in namespace) and annotated

them based on keywords related to each class. The classes picked are based on what we

felt were the most important issues and roles during wildfires, in accordance with FEMA

reports [70]. Fig. 8.8 shows these classes and the number of instances for each class in

the two data sets, combined. ‘Firefighting’ has the most tweets associated with it (around

75%), which is reasonable since the incident is fire-related. Inference, i.e., assignment of a

238

1

10

100

1000

10000

100000

#
 o

f
tw

e
e
ts

 (
C

la
ss

In
st

a
n

c
e
s)

Tasks/Issues (Classes)

Figure 8.8: Per-class distribution of disaster-related tweets

tweet to a class, is followed by mapping it to a name. Each class corresponds to a name

in the namespace; e.g., a tweet classified as a ‘Firefighting’ instance, would be mapped

to “/Incident/Response/EmergencyServices/Firefighting/...” (according to the namespace,

e.g., Fig. 8.4). The time and location of the name can be derived from geo-location and

timestamp of the tweets. Then the SMPs are sent to verifiers for accuracy and credibility.

Additionally, methods similar to content-based fake news detection [81] can be leveraged

for faster, more thorough, and automated fact checking of SMPs by the SME.

Our learning procedure consists of tokenization, filtering out unwanted tokens

(stopwords, etc.), stemming, and vectorization. For vectorization, we use tf-idf [154], al-

lowing n-grams of size 1 and 2. For inference, we use Random Forest classification. An

important feature of DiRECT is its processing of tweets in an online way; thus, we use

training data from a previous and/or similar incident, to enable an accurate and fast classi-

fication of new tweets. In our experiment, we use the Woolsey data set (with ∼23K tweets)

for training, and the Camp data set (with ∼12K tweets) for testing. Tweets from the Camp

data set (i.e., test set) are processed one by one, classified into one of the classes using

239

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

M
o

d
el

 t
ra

in
in

g
 t

im
e

(s
)

K

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

T
o

ta
l

in
fe

re
n

ce
 t

im
e

(m
s)

K

80

82

84

86

88

90

92

94

96

98

100

10 100 1000 10000

A
cc

u
ra

cy
 (

%
)

K

(a) Accuracy

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

M
o

d
el

 t
ra

in
in

g
 t

im
e

(s
)

K

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

T
o

ta
l

in
fe

re
n

ce
 t

im
e

(m
s)

K

80

82

84

86

88

90

92

94

96

98

100

10 100 1000 10000

A
cc

u
ra

cy
 (

%
)

K

(b) Model training

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

M
o

d
el

 t
ra

in
in

g
 t

im
e

(s
)

K

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

T
o

ta
l

in
fe

re
n

ce
 t

im
e

(m
s)

K

80

82

84

86

88

90

92

94

96

98

100

10 100 1000 10000

A
cc

u
ra

cy
 (

%
)

K

(c) Total inference

Figure 8.9: Performance of the SME procedures

Table 8.3: Inference metrics for K=1000

Metric Precision Recall F1-score

Micro average 0.96 0.96 0.96

Macro average 0.88 0.81 0.84

the trained model based on the other similar data set, namely the Woolsey data set, to be

mapped to an appropriate name.

Feature selection is an important step in learning, as a good feature selection

prevents overfitting and reduces processing time. We use K-Best feature selection using the

chi2 method [154], which intelligently picks the top K most relevant features, and perform

training and classification based on them. There are ∼20K features in our classification We

use values of 10, 100, 1000, and 10000 for the value of K in the ‘K-best’ feature selection

process and compare the results, as displayed in Fig. 8.9. The tf-idf vectorization takes

240

2.68 seconds. Fig. 8.9(a) shows the accuracy (calculated according to [154]) for different

values of K: it shows that for values of K at or above 100, we reach accuracies of above

93%, which we believe is very good. For K from 100 to 10000, the accuracy does not change

much, while the model training time (shown in Fig. 8.9(b), excluding tf-idf vectorization

step) keeps increasing for increasing K. Fig. 8.9(c) shows the total inference (classification)

time for all (12,697) test tweets; per-tweet average inference time would be the values shown

divided by 12,697. The results show the increasing growth rate and also reasonably low

execution times. These latency values (both training and inference times) are important

in online settings for the server-based SME. The small inference times demonstrate that

using DiRECT, we can quickly (in the order of microseconds) classify a tweet and map it

to the right names (and therefore to the right first responders who can help), with high

accuracy. Generally, the training data can be either from another incident having high

similarity with the current incident (as we do here), or new tweets arriving from the current

incident. In the former case, training needs to be done only once. In the latter case, which

uses a more relevant training set (as every incident may have its unique characteristics),

the training needs to be periodically done with the new data added, i.e., re-training. For

faster model re-training, using incremental learning methods such as [163] can be leveraged,

albeit sacrificing some accuracy.

Taking into account accuracy, training and classification times (Fig. 8.9), we pick

K=1000 as a reasonable value for the feature set. It achieves 96% classification (and thus

mapping to the correct name) accuracy which is very good: it means that out of 12,697

tweets, 12,189 of them get to the correct first responders with the publisher. Note that we

241

are assuming that the civilian user does not know anything about the namespace, and we are

performing the mapping automatically. Only 508 tweets would be inaccurately delivered,

which can be appropriately forwarded manually afterwards; this shows the significant benefit

of using DiRECT. Table. 8.3 shows other metrics of our algorithm which are important as

they answer different questions about the inference performance and its practical usefulness

in name mapping. These metrics are Precision (e.g., of all messages sent to firefighters, how

many were actually about fire?), Recall (e.g., of all the messages actually about fire, how

many did we send to firefighters?) and F1-score (weighted average of Precision and Recall),

both as micro and macro averages (calculated according to [154]). Macro average metric

values are a sum of metrics for all classes, divided by the number of classes. Micro average

metrics, on the other hand, take into account the number of per-class instances, thus giving

a more fine-grained averaging. As seen in the table, macro average values are less than

micro average values. Note that micro average values (all 96%) are a better metric for our

data set since our data set is not a balanced one (75% of instances belong to a single class,

namely ‘firefighting’). These results show the good performance of our learning/inference

at the social media engine, indicating the effectiveness of DiRECT in mapping social media

posts to the right names leading to the relevant first responders and volunteers.

242

C2

C2

C2

C2

C1

C1

C1

C1

C3

C3

C3

Cr

Cr

Cr

LA

Fire

LA

Health

San Francisco

Fire

Incident

Coordinator

C2C1 C3

Cr

Dispatcher

First responder

C1-3 classifiers

Shared models

Crawler

Name-based pub/sub

Social Media Post (SMP)

SME1
SME3

SME2

Figure 8.10: Social media engine capable of federated and active learning

8.6 Extending Social Media Engines with Federated and Ac-

tive Learning

The design we presented in DiRECT can be extended for more effective and ef-

ficient learning and classification, integrated with name-based delivery. We have designed

additional systems in [135,136], that introduces federated and active learning for the SME.

A high-level view of the architecture of this framework is presented in Fig. 8.10.

This is a framework that uses ‘Social Media Engines’ (SMEs) to map social media posts

(SMPs), such as tweets, to the right names. SMEs perform natural language processing

(NLP)-based classification and exploit a number of machine learning capabilities, in an

online real-time manner. Unlike the previous version, here we have multiple SMEs, each

associated with a particular emergency response department/organization. In order to

reduce the manual labeling effort required for learning during the disaster, we leverage active

learning complemented by dispatchers. Each dispatcher is associated with a particular

243

SME/department, and has specific domain-knowledge regarding that department. This

system also leverages federated learning across the departments/SMEs with specialized

knowledge to handle notifications related to their roles in a cooperative manner. Similar

to DiRECT, the system is integrated with a disaster management namespace design that

guide the name-based delivery (to first responders and appropriate components). The

classification performed in the data path for SMPs is broken into three different classifiers,

namely C1 (incident relevance predictor), C2 (organization predictor), and C3 (fine-grained

role predictor), and each SME is associated with a specific subset of the namespace graph.

More details of this work are presented in [135,136].

244

Chapter 9

Conclusion and Future Work

The major demands in today’s Internet are content-oriented services, which led

to the proposals and developments for the new paradigm of Information-Centric Networks

(ICN), such as Named Data Networks (NDN) and MobilityFirst (MF). ICN treats con-

tent as first-class citizens and supports names in networking, different from today’s heavily

location/address-based IP networks. In this dissertation, we explore the various aspects

of naming, and propose solutions for correctness of name-based networks, improving the

efficiency and scalability of name-based delivery and dissemination, and enhancing its ap-

plicability with real-world applications with the integration of machine learning.

First, we developed solutions for checking the correctness of ICNs. Chapter 4 pro-

poses Name Space Analysis (NSA), a data plane verification framework for NDN, which

includes essential NDN-specific verification applications of content reachability test (to de-

tect name space conflicts, content censorship-freedom, etc.), name-based loop detection,

and name leakage detection. We also design a name registry method to detect and resolve

245

name space conflicts in the data plane. Applied to the NDN testbed, we found a number

of data plane errors through NSA’s automatized verification. Our evaluation results on

various test cases show the effectiveness, efficiency, and scalability of NSA.

Chapter 5 paper proposes COIN, a content-oriented interoperability solution as a

pragmatic approach to manage evolution towards future Internet architectures. COIN does

not change existing architectures (of IP and different ICNs), preservers and uses their key

features, enables their co-existence, and is flexible for extensibility and evolvability. Through

various scenarios and experiments, COIN was shown to make essential content-oriented ser-

vices (static and dynamic content retrieval) available to consumers across multiple domains,

with reasonable efficiency. Additionally, the chapter presented an Alloy-based formal anal-

ysis model for the interoperability framework. We showed how model finding can be used

to analyze basic (reachability and returnability) properties across domains. Additionally,

our proposed model counting approach analyzes failure and mobility scenarios, which we

used to prove the negative impact of certain routing policies (particularly, reverse path for-

warding), and the helpfulness of certain mobility-handling mechanisms (particularly, late

binding), providing necessary confidence and guidelines for Future Internet interoperability.

In chapter 6, we proposed POISE, an architecture for recipient-based pub/sub for

disaster management, supporting free-form graph-based namespaces and automatic load

splitting to eliminate traffic concentration based on a novel hybrid graph partitioning algo-

rithm. Our results show that POISE is efficient and scalable, compared to alternatives: its

graph-based namespace outperforms the state-of-the-art hierarchical namespace of NDN;

its overall network architecture extends the recipient-based pub/sub framework of CNS; its

246

partitioning outperforms the popular graph partitioner METIS/ParMETIS. We also showed

that POISE’s RP-based name expansion and core migration are effective and beneficial.

Chapter 7 proposed CoNICE, a framework to ensure consistent dissemination of

updates among users in intermittently-connected, infrastructure-less environments. It ex-

ploits naming and multi-level consistency for more selective and efficient preservation of

causal ordering and consensus. We proved CoNICE guarantees consensus with causal and

total ordering properties. Additionally, we showed that CoNICE can also solve consensus

even in case of long-term fragmentation. Our simulation experiments on an application

of map-based geo-tagging in emergency response show that CoNICE achieves a higher de-

gree of replication coverage and causal completeness than state-of-the-art vector clocks with

epidemic routing, even while using less network resources. More significantly for consen-

sus, CoNICE achieves a considerably higher degree of agreement completeness than the

state-of-the-art asynchronous consensus algorithm, OTR, as it exploits naming, showing

the applicability of CoNICE in practical, intermittently-connected scenarios.

Finally, in chapter 8, we proposed DiReCT, a framework to coordinate disaster

response with first responders that receive timely relevant information and trusted volun-

teers. DiReCT bridges civilian-oriented social media platforms with a pub/sub information

dissemination architecture for first responders and volunteers. It uses a hierarchical naming

schema, and NLP/ML-based social media analysis in social media engines which assign

the right name to incoming textual content. Results from our evaluation with real-world

incident-related datasets show that DiReCT is effective and efficient in providing accurate

mapping between free-form text and pub/sub-based names.

247

9.1 Future Work

Some potential future research directions are as follows:

• Graph-based Consistent Pub/Sub Platform for Datacenters.

Datacenters networks are the backbone of enterprises. Many pieces of content need to

be sent to a set of relevant servers in a datacenter in a one-to-many pattern; that piece

of content can be a file (replica) that needs to be stored on some nodes, a database

update that needs to be applied to some nodes, a piece of data that needs to be used in

computations at some nodes, etc. We can use the graph-based pub/sub of POISE and

name-based consensus of CoNICE, which fits the aforementioned use cases of datacenters.

Having said that, datacenter networks have unique characteristics and challenges to be

considered. One challenge is that a datacenter network is often a tightly coupled topology,

prone to high node/link bottlenecks. To address this, we can take topology into account

when making graph partitioning decision for the namespace, so packets do not travel too

long. Another aspect is leveraging network management specifics (e.g., SDN controllers)

for faster consensus solutions, to have stricter real-time guarantees, which is important

in datacenter networks.

• ICN Control Plane Verification and Real-Time update Collection. The control plane of

ICN is becoming increasingly complex, with multiple routing and forwarding strategies

at each router. Our work in NSA made the first attempt in ICN verification space,

but another layer of verification to explore is ICN control plane verification. We can

extend NSA’s formalism to describe ICN router configurations, and check for name-

248

based properties (e.g., host-to-content reachability and loop-freedom) across all possible

data planes resulted from the configuration, and also take into account changes in the

state of the network. Another important aspect is collection changes in network topology,

configuration and/or forwarding state. We can leverage network management tools, and

potentially leverage centralize controllers to collect new states and forward to the machine

performing the verification task.

• Social Media-Driven Namespace Design. The work in DiRECT focuses on mapping tweets

to the right name in a manually created namespace (e.g., by incident commanders). It can

be interesting to also explore the reverse path, i.e., to use social media content to inform

and prepare the namespace. This can be helpful as it allows the structure of information

flows and the mobilization of first responders to follow the (latent) patterns of reports and

help requests in tweets. It is a challenging task as tweets are often noisy and the majority

of them are irrelevant. We can leverage Natural Language Processing/Understanding with

a combination of supervised and un-supervised learning methods for an intelligent and

automatic preparation of incident namespace driven by civilian’s social media content.

249

Bibliography

[1] https://www.cs.ucr.edu/~mjaha001/ICI.zip.

[2] 24. Hash Library – Data Plane Development Kit 20.08.0-rc2 documentation. https:
//doc.dpdk.org/guides/prog_guide/hash_lib.html.

[3] 6. RCU Library – Data Plane Development Kit 20.08.0-rc2 documentation. https:

//doc.dpdk.org/guides/prog_guide/rcu_lib.html.

[4] Alloy: A Language and Tool for Relational Models. http://alloy.mit.edu/alloy/.

[5] Apache Lucene. https://lucene.apache.org/.

[6] COIN. https://github.com/SAIDProtocol/ICNInteroperability.

[7] Data Plane Development Kit. https://www.dpdk.org/.

[8] MF Software Release. http://mobilityfirst.orbit-lab.org/wiki/Proto.

[9] NSF Future Internet Architecture Project. http://www.nets-fia.net/.

[10] ORBIT. http://www.orbit-lab.org/.

[11] Poise simulator. https://github.com/SAIDProtocol/NetworkSimulator.

[12] Kubernetes. https://kubernetes.io/, 2019.

[13] Wikipedia: Outline of knowledge. https://en.wikipedia.org/wiki/Portal:

Contents/Outlines, 2019.

[14] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakrishnan. ORICE:
An Architecture for Object Resolution Services in Information-Centric Environment.
In LANMAN, 2015.

[15] Sripriya S Adhatarao, Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K. K.
Ramakrishnan. Comparison of naming schema in icn. In LANMAN, 2016.

[16] Alex Afanasyev and Sanjeev Kaushik Ramani. Ndnconf: Network management frame-
work for named data networking. In ICC Workshops, 2020.

250

[17] Alexander Afanasyev et al. Packet fragmentation in ndn: Why ndn uses hop-by-hop
fragmentation. NDN Memo, Technical Report NDN-0032, 2015.

[18] Alexander Afanasyev, Xiaoke Jiang, Yingdi Yu, Jiewen Tan, Yumin Xia, Allison
Mankin, and Lixia Zhang. Ndns: A dns-like name service for ndn. In ICCCN, 2017.

[19] Alexander Afanasyev, Junxiao Shi, et al. Nfd developer’s guide. Technical report,
NDN-0021, NDN, 2016.

[20] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
Snamp: Secure namespace mapping to scale ndn forwarding. In INFOCOM Work-
shops, 2015.

[21] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje
Ohlman. A survey of information-centric networking. IEEE Communications Maga-
zine, 50(7):26–36, 2012.

[22] Kawakib K Ahmed, Mohd Hasbullah Omar, and Suhaidi Hassan. Survey and compar-
ison of operating concept for routing protocols in dtn. Journal of Computer Science,
12(3):141–152, 2016.

[23] Kimberly Amadeo. Hurricane Irma: Facts, Damage, and Costs . https://www.

thebalance.com/hurricane-irma-facts-timeline-damage-costs-4150395.

[24] Mostafa Ammar. Ex uno pluria: The service-infrastructure cycle, ossification, and
the fragmentation of the internet. SIGCOMM CCR, 2018.

[25] Renzo Angles and Claudio Gutierrez. Querying rdf data from a graph database
perspective. In European semantic web conference, pages 346–360, 2005.

[26] Hitoshi Asaeda, Xun Shao, and Thierry Turletti. Contrace: Tracer-
oute facility for content-centric network. https://tools.ietf.org/html/

draft-asaeda-icnrg-contrace-042, 2018.

[27] Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. A native content
discovery mechanism for the information-centric networks. In Proceedings of the 4th
ACM Conference on Information-Centric Networking, 2017.

[28] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. The
potential dangers of causal consistency and an explicit solution. In SOCC, 2012.

[29] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni, and Sara
Tucci-Piergiovanni. TERA: topic-based event routing for peer-to-peer architectures.
In DEBS, 2007.

[30] Sebastien Barré, John Ronan, and Olivier Bonaventure. Implementation and eval-
uation of the shim6 protocol in the linux kernel. Computer Communications,
34(14):1685–1695, 2011.

251

[31] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general approach
to network configuration verification. In SIGCOMM, 2017.

[32] Abdulkader Benchi, Pascale Launay, and Frédéric Guidec. Solving consensus in op-
portunistic networks. In ICDCN, 2015.

[33] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In SP, 2007.

[34] Abhinav Bhatele, Sébastien Fourestier, Harshitha Menon, Laxmikant V Kale, and
François Pellegrini. Applying graph partitioning methods in measurement-based dy-
namic load balancing. Technical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2012.

[35] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly Media, Inc., 1st edition, 2009.

[36] Rob H Bisseling and Wouter Meesen. Communication balancing in parallel sparse
matrix-vector multiplication. Electronic Transactions on Numerical Analysis, 21:47–
65, 2005.

[37] Fatemeh Borran, Ravi Prakash, and André Schiper. Extending paxos/lastvoting with
an adequate communication layer for wireless ad hoc networks. In SRDS, 2008.

[38] Francisco Brasileiro, Fab́ıola Greve, Achour Mostéfaoui, and Michel Raynal. Consen-
sus in one communication step. In PaCT, 2001.

[39] F. Bronzino, C. Han, Y. Chen, et al. In-Network Compute Extensions for Rate-
Adaptive Content Delivery in Mobile Networks. In ICNP, 2014.

[40] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable and
Secure Distributed Programming. Springer Publishing Company, Incorporated, 2nd
edition, 2011.

[41] Giovanna Carofiglio, Luca Muscariello, Jordan Augé, Michele Papalini, Mauro Sar-
dara, and Alberto Compagno. Enabling icn in the internet protocol: Analysis and
evaluation of the hybrid-icn architecture. In ICN, 2019.

[42] David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants
or fundamental self-organization. In AdHoc-Now, 2004.

[43] Supratik Chakraborty et al. A scalable approximate model counter. In CP, 2013.

[44] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, 22(1), 2009.

[45] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model
counting. AI, 172(6-7), 2008.

252

[46] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K. K. Ramakrishnan. Co-
exist: Integrating Content Oriented Publish/Subscribe Systems with IP. In ANCS,
2012.

[47] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K. K. Ramakrishnan. G-
copss: A content centric communication infrastructure for gaming applications. In
2012 IEEE 32nd International Conference on Distributed Computing Systems, pages
355–365, 2012.

[48] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K. K. Ramakrishnan. Cns:
content-oriented notification service for managing disasters. In Proceedings of the 3rd
ACM Conference on Information-Centric Networking, 2016.

[49] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xiaoming Fu, and K. K. Ramakr-
ishnan. Copss: An efficient content oriented publish/subscribe system. In 2011
ACM/IEEE Seventh Symposium on Architectures for Networking and Communica-
tions Systems, pages 99–110, 2011.

[50] Jiachen Chen, Mohammad Jahanian, and K. K. Ramakrishnan. Black ice! using
information centric networks for timely vehicular safety information dissemination.
In 2017 IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), pages 1–6. IEEE, 2017.

[51] Alberto Compagno, Mauro Conti, Paolo Gasti, and Gene Tsudik. Poseidon: Mitigat-
ing interest flooding ddos attacks in named data networking. In LCS, 2013.

[52] Alberto Compagno, Xuan Zeng, Luca Muscariello, Giovanna Carofiglio, and Jordan
Augé. Secure producer mobility in information-centric network. In ICN, 2017.

[53] Mauro Conti, Ankit Gangwal, Muhammad Hassan, Chhagan Lal, and Eleonora Lo-
siouk. The road ahead for networking: A survey on icn-ip coexistence solutions. arXiv
preprint arXiv:1903.07446, 2019.

[54] Ellen Cranley. ’Our government failed us’: Bahamians were left to coordinate rescue
efforts on social media after Hurricane Dorian. https://tinyurl.com/y3kvvmce,
September 2019.

[55] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew
Warfield. Plutarch: an argument for network pluralism. ACM SIGCOMM CCR,
33(4), 2003.

[56] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a decentralized
network coordinate system. In SIGCOMM, 2004.

[57] Christian Dannewitz, Dirk Kutscher, BöRje Ohlman, Stephen Farrell, Bengt Ahlgren,
and Holger Karl. Network of information (netinf)–an information-centric networking
architecture. Computer Communications, 36(7), 2013.

253

[58] Raimundo José de Araújo Macêdo. Causal order protocols for group communication.
In SBRC, 1995.

[59] Daniele Di Sarli and Filippo Geraci. Gfs: A graph-based file system enhanced with
semantic features. In Proceedings of the 2017 International Conference on Information
System and Data Mining, pages 51–55, 2017.

[60] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towards an internet-scale XML
dissemination service. In VLDB, 2004.

[61] Klaus Doppler, Mika Rinne, Carl Wijting, Cássio B Ribeiro, and Klaus Hugl. Device-
to-device communication as an underlay to lte-advanced networks. IEEE Communi-
cations Magazine, 47(12), 2009.

[62] Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and defense mechanisms:
a classification. In ISSPIT, 2003.

[63] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. Dataplane equivalence and its applications. In NSDI, 2019.

[64] Zayan EL Khaled and Hamid Mcheick. Case studies of communications systems
during harsh environments: A review of approaches, weaknesses, and limitations to
improve quality of service. IJDSN, 2019.

[65] Energy Information Administration. Hurricane Irma cut power to nearly two-thirds
of Florida’s electricity customers. https://www.eia.gov/todayinenergy/detail.

php?id=32992.

[66] Kevin Fall. A delay-tolerant network architecture for challenged internets. In Proceed-
ings of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications, 2003.

[67] Dino Farinacci, Vince Fuller, David Meyer, Darrel Lewis, et al. Locator/id separation
protocol (lisp). RFC 6830, January 2013.

[68] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi, Teemu Kopo-
nen, Bruce Maggs, KC Ng, Vyas Sekar, and Scott Shenker. Less pain, most of the
gain: Incrementally deployable icn. ACM SIGCOMM CCR, 43(4), 2013.

[69] Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees and appli-
cations. Algorithmica, 71(2):354–376, 2015.

[70] FEMA. State and federal partners respond to the california
wildfires. https://www.fema.gov/news-release/2018/11/17/4407/

state-and-federal-partners-respond-california-wildfires, November
2018.

[71] FEMA. National incident management system. https://www.fema.gov/national-
incident-management-system, 2019.

254

[72] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast
- Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 4601, August 2006.

[73] J Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In Proc. 11th Australian Comput. Science Conf., 1988.

[74] Sergio Flesca and Sergio Greco. Querying graph databases. In International Confer-
ence on Extending Database Technology, pages 510–524, 2000.

[75] Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C Polyzos. Developing
Information Networking Further: from PSIRP to PURSUIT. In BROADNETS. 2012.

[76] Eli Gafni. Round-by-round fault detectors (extended abstract) unifying synchrony
and asynchrony. In PODC, 1998.

[77] Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia Zhang. DoS and DDoS in named
data networking. In ICCCN, 2013.

[78] GDdata. Graph Drawing. http://www.graphdrawing.org/data.html.

[79] Chavoosh Ghasemi, Hamed Yousefi, and Beichuan Zhang. Far cry: Will cdns hear
ndn’s call? In Proceedings of the 7th ACM Conference on Information-Centric Net-
working, pages 89–98, 2020.

[80] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy
for obtaining good bounds. In AAAI, 2006.

[81] Gisel Bastidas Guacho, Sara Abdali, Neil Shah, and Evangelos E Papalexakis. Semi-
supervised content-based detection of misinformation via tensor embeddings. In
ASONAM, 2018.

[82] Cenk Gündoğan, Peter Kietzmann, Thomas C Schmidt, and Matthias Wählisch.
Information-centric networking for the industrial internet of things. In Wireless Net-
works and Industrial IoT, pages 171–189. 2021.

[83] Zygmunt J Haas, Joseph Y Halpern, and Li Li. Gossip-based ad hoc routing.
IEEE/ACM Transactions on networking, 14(3), 2006.

[84] Toru Hasegawa. A survey of the research on future internet and network architectures.
IEICE transactions on communications, 96(6):1385–1401, 2013.

[85] Laura Heath, Henry Owen, Raheem Beyah, and Radu State. Clip: Content labeling
in ipv6, a layer 3 protocol for information centric networking. In ICC, 2013.

[86] AKM Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia Zhang, and
Lan Wang. Nlsr: named-data link state routing protocol. In Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking, 2013.

[87] Farzin Houshmand and Mohsen Lesani. Hamsaz: replication coordination analysis
and synthesis. POPL, 2019.

255

[88] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based forwarding in
delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 2010.

[89] IETF. Network configuration. https://datatracker.ietf.org/doc/charter-ietf-netconf/,
2020.

[90] Hasan MA Islam, Dmitrij Lagutin, Andrey Lukyanenko, Andrei Gurtov, and Antti
Ylä-Jääski. Cidor: content distribution and retrieval in disaster networks for pub-
lic protection. In 2017 IEEE 13th international conference on wireless and mobile
computing, networking and communications (WiMob), pages 324–333, 2017.

[91] Daniel Jackson. Alloy: a lightweight object modelling notation. TOSEM, 11(2), 2002.

[92] V. Jacobson, D. K. Smetters, J. D. Thornton, et al. Networking Named Content. In
CoNEXT, 2009.

[93] Mohammad Jahanian, Jiachen Chen, and K. K. Ramakrishnan. Graph-based names-
paces and load sharing for efficient information dissemination in disasters. In 2019
IEEE 27th International Conference on Network Protocols (ICNP), pages 1–12. IEEE,
2019.

[94] Mohammad Jahanian, Jiachen Chen, and K. K. Ramakrishnan. Formal verification
of interoperability between future network architectures using alloy. In International
Conference on Rigorous State-Based Methods, pages 44–60. Springer, 2020.

[95] Mohammad Jahanian, Jiachen Chen, and K. K. Ramakrishnan. Managing the evo-
lution to future internet architectures and seamless interoperation. In 2020 29th In-
ternational Conference on Computer Communications and Networks (ICCCN), pages
1–11. IEEE, 2020.

[96] Mohammad Jahanian, Toru Hasegawa, Yoshinobu Kawabe, Yuki Koizumi, Amr
Magdy, Masakatsu Nishigaki, Tetsushi Ohki, and KK Ramakrishnan. Direct: Disaster
response coordination with trusted volunteers. In 2019 International Conference on
Information and Communication Technologies for Disaster Management (ICT-DM),
pages 1–8. IEEE, 2019.

[97] Mohammad Jahanian and K. K. Ramakrishnan. Name space analysis: verification
of named data network data planes. In Proceedings of the 6th ACM Conference on
Information-Centric Networking, pages 44–54, 2019.

[98] Mohammad Jahanian and K. K. Ramakrishnan. Conice: Consensus in intermittently-
connected environments by exploiting naming with application to emergency response.
In 2020 IEEE 28th International Conference on Network Protocols (ICNP), pages 1–
12. IEEE, 2020.

[99] Mohammad Jahanian and K. K. Ramakrishnan. Name Space Analysis. https://

github.com/mjaha/NameSpaceAnalysis, 2020.

256

[100] Mohammad Jahanian and K. K. Ramakrishnan. Name space analysis: Verifica-
tion of named data network data planes. IEEE/ACM Transactions on Networking,
29(2):848–861, 2021.

[101] Mohammad Jahanian, Yuxuan Xing, Jiachen Chen, K. K. Ramakrishnan, Hulya Se-
feroglu, and Murat Yuksel. The evolving nature of disaster management in the in-
ternet and social media era. In 2018 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), pages 79–84. IEEE, 2018.

[102] David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon. Op-
timization by simulated annealing: An experimental evaluation; part i, graph parti-
tioning. Operations research, 37(6):865–892, 1989.

[103] George Karypis. METIS - Serial Graph Partitioning and Fill-reducing Matrix Order-
ing, Version 5.1.0, 2013.

[104] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[105] George Karypis and Kirk Schloegel. ParMETIS - Parallel Graph Partitioning and
Fill-reducing Matrix Ordering, Version 4.0. http://glaros.dtc.umn.edu/gkhome/

metis/parmetis/overview, 2013.

[106] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown,
and Scott Whyte. Real time network policy checking using header space analysis. In
NSDI, 2013.

[107] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
Static checking for networks. In NSDI, 2012.

[108] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The one simulator for dtn protocol
evaluation. In SIMUTools, 2009.

[109] Siham Khoussi, Davide Pesavento, Lotfi Benmohamed, and Abdella Battou. Ndn-
trace: a path tracing utility for named data networking. In ICN, 2017.

[110] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten God-
frey. Veriflow: Verifying network-wide invariants in real time. In NSDI, 2013.

[111] R Koch, R Moser, and P Melliar-Smith. Global causal ordering with minimal latency.
In ICPADS, 1998.

[112] Miika Komu, Mohit Sethi, and Nicklas Beijar. A survey of identifier–locator split
addressing architectures. Computer Science Review, 17:25–42, 2015.

[113] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica. A data-oriented (and beyond) network architecture. In SIGCOMM, 2007.

257

[114] Jun Kurihara, Kenji Yokota, and Atsushi Tagami. A consumer-driven access control
approach to censorship circumvention in content-centric networking. In ICN, 2016.

[115] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7), July 1978.

[116] Leslie Lamport. Password authentication with insecure communication. Communi-
cations of the ACM, 24(11):770–772, 1981.

[117] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2), 1998.

[118] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2, system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7, 2010.

[119] Craig A Lee, Zhiyi Zhang, Yukai Tu, Alex Afanasyev, and Lixia Zhang. Supporting
virtual organizations using attribute-based encryption in named data networking. In
CIC, 2018.

[120] Halikul Lenando and Mohamad Alrfaay. Epsoc: social-based epidemic-based routing
protocol in opportunistic mobile social network. Mobile Information Systems, 2018.

[121] Sugang Li, Jiachen Chen, Haoyang Yu, Yanyong Zhang, Dipankar Raychaudhuri,
Ravishankar Ravindran, Hongju Gao, Lijun Dong, Guoqiang Wang, and Hang Liu.
Mf-iot: A mobilityfirst-based internet of things architecture with global reach-ability
and communication diversity. In IoTDI, 2016.

[122] Suoheng Li, Jie Xu, Mihaela Van Der Schaar, and Weiping Li. Popularity-driven
content caching. In INFOCOM, 2016.

[123] Tianxiang Li, Zhaoning Kong, Spyridon Mastorakis, and Lixia Zhang. Distributed
dataset synchronization in disruptive networks. In MASS, 2019.

[124] Yahui Li et al. A survey on network verification and testing with formal methods:
Approaches and challenges. IEEE Communications Surveys & Tutorials, 21(1), 2018.

[125] Ying-Dar Lin, Nai-Bin Hsu, and Chen-Ju Pan. Extension of rp relocation to pim-sm
multicast routing. In ICC 2001. IEEE International Conference on Communications.
Conference Record (Cat. No. 01CH37240), volume 1, pages 234–238, 2001.

[126] Sheng Luo, Shangru Zhong, and Kai Lei. Ip/ndn: A multi-level translation and
migration mechanism. In NOMS, 2018.

[127] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring Link Weights using
End-to-End Measurements. In IMW, 2002.

[128] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Brighten God-
frey, and Samuel Talmadge King. Debugging the data plane with anteater. ACM
SIGCOMM Computer Communication Review, 41(4), 2011.

258

[129] Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms, and David Oran. Icn
ping protocol draft-mastorakis-icnrg-icnping-00. https://tools.ietf.org/html/

draft-mastorakis-icnrg-icnping-02, 2017.

[130] Spyridon Mastorakis, Jim Gibson, Ilya Moiseenko, Ralph Droms,
and David Oran. Icn traceroute. https://tools.ietf.org/id/

draft-mastorakis-icnrg-icntraceroute-01.html, 2017.

[131] F Mattern. Virtual time and global states of distributed systems. Parallel and Dis-
tributed Algorithms, 1989.

[132] Douglas Mauro and Kevin Schmidt. Essential SNMP: Help for System and Network
Administrators. O’Reilly Media, Inc., 2005.

[133] James McCauley et al. Enabling a permanent revolution in internet architecture. In
ACM SIGCOMM, 2019.

[134] Victor S Miller. Use of elliptic curves in cryptography. In CRYPTO, 1985.

[135] Viyom Mittal, Mohammad Jahanian, and K. K. Ramakrishnan. Flare: Federated
active learning assisted by naming for responding to emergencies. In Proceedings of
the 8th ACM Conference on Information-Centric Networking, 2021.

[136] Viyom Mittal, Mohammad Jahanian, and K. K. Ramakrishnan. Online delivery of
social media posts to appropriate first responders for disaster response. In Adjunct
Proceedings of the 2021 International Conference on Distributed Computing and Net-
working, pages 13–18, 2021.

[137] Ilya Moiseenko and Dave Oran. Tcp/icn: carrying tcp over content centric and named
data networks. In Proceedings of the 3rd ACM Conference on Information-Centric
Networking, pages 112–121. ACM, 2016.

[138] Ilya Moiseenko, Mark Stapp, and David Oran. Communication patterns for web
interaction in named data networking. In Proceedings of the 1st ACM Conference on
Information-Centric Networking, pages 87–96. ACM, 2014.

[139] Edo Monticelli, Benno M Schubert, Mayutan Arumaithurai, Xiaoming Fu, and K. K.
Ramakrishnan. An information centric approach for communications in disaster sit-
uations. In 2014 IEEE 20th International Workshop on Local & Metropolitan Area
Networks (LANMAN), pages 1–6, 2014.

[140] Waldir Moreira, Paulo Mendes, and Susana Sargento. Opportunistic routing based
on daily routines. In WoWMoM, 2012.

[141] Waldir Moreira, Paulo Mendes, and Susana Sargento. Social-aware opportunistic
routing protocol based on user’s interactions and interests. In ADHOCNETS, 2013.

[142] Robert Moskowitz, Pekka Nikander, P Jokela, et al. Host identity protocol (hip)
architecture. RFC 4423, May 2006.

259

[143] Irene Moulitsas and George Karypis. Partitioning algorithms for simultaneously bal-
ancing iterative and direct methods. Technical report, Minnesota Univ Minneapolis
Dept of Computer Science, 2004.

[144] S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri. Achieving
Scalable Push Multicast Services Using Global Name Resolution. In GLOBECOM,
2016.

[145] David Naylor, Matthew K Mukerjee, Patrick Agyapong, et al. XIA: Architecting A
More Trustworthy and Evolvable Internet. SIGCOMM CCR, 2014.

[146] NDN. NDN Packet Format Specification 0.3 documentation. http://named-data.

net/doc/NDN-packet-spec/current/, 2019.

[147] NDN. NDN Regular Expression. http://named-data.net/doc/ndn-cxx/current/

tutorials/utils-ndn-regex.html, 2019.

[148] NDN. NDN Testbed. http://ndndemo.arl.wustl.edu/ndn.html, 2019.

[149] NDN. ndnSIM. http://ndnsim.net, 2019.

[150] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 multihoming shim protocol for
ipv6. RFC 5533, June 2009.

[151] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In USENIX ATC, 2014.

[152] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker. Ver-
ifying reachability in networks with mutable datapaths. In NSDI, 2017.

[153] José Rolando Guay Paz. Introduction to azure cosmos db. In Microsoft Azure Cosmos
DB Revealed. 2018.

[154] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 2011.

[155] Charles Perkins et al. Ip mobility support for ipv4, revised. RFC 5944, November
2010.

[156] Charles Perkins et al. Mobility support in ipv6. RFC 6275, July 2011.

[157] Ali Pınar and Bruce Hendrickson. Partitioning for complex objectives. In Proceedings
of the 15th International Parallel and Distributed Processing Symposium (CDROM),
IEEE Computer Society, Washington, DC, USA, 2001.

[158] Lucian Popa, Ali Ghodsi, and Ion Stoica. Http as the narrow waist of the future
internet. In Hotnets, 2010.

260

[159] Ioannis Psaras, Lorenzo Saino, Mayutan Arumaithurai, KK Ramakrishnan, and
George Pavlou. Name-based replication priorities in disaster cases. In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages
434–439. IEEE, 2014.

[160] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobilityfirst: A
robust and trustworthy mobility-centric architecture for the future internet. SIGMO-
BILE, 2012.

[161] Paul Resnick and Rahul Sami. Sybilproof transitive trust protocols. In EC, 2009.

[162] Erik Rolland, Hasan Pirkul, and Fred Glover. Tabu search for graph partitioning.
Annals of operations research, 63(2):209–232, 1996.

[163] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof.
On-line random forests. In ICCV Workshops, 2009.

[164] Mark Saunders. Social media: California wildfires force
thousands to evacuate. https://www.10news.com/news/

social-media-california-wildfires-force-thousands-to-evacuate, Novem-
ber 2018.

[165] P Savola and T Chown. A survey of ipv6 site multihoming proposals. In Proceedings
of the 8th International Conference on Telecommunications, 2005. ConTEL 2005.,
volume 1, pages 41–48. IEEE, 2005.

[166] Jan Seedorf, Atsushi Tagami, Mayutan Arumaithurai, Yuki Koizumi, Nicola Ble-
fari Melazzi, Dirk Kutscher, Kohei Sugiyama, Toru Hasegawa, Tohru Asami, K. K.
Ramakrishnan, et al. The benefit of information centric networking for enabling com-
munications in disaster scenarios. In 2015 IEEE Globecom Workshops (GC Wkshps),
pages 1–7, 2015.

[167] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing
with Elvin. In AUUG2K, 2000.

[168] Wentao Shang, Jeff Thompson, Meki Cherkaoui, Jeff Burkey, and Lixia Zhang.
NDN.JS: A JavaScript Client Library for Named Data Networking. In NOMEN,
2013.

[169] Susmit Shannigrahi, Chengyu Fan, and Craig Partridge. What’s in a name? naming
big science data in named data networking. In Proceedings of the 7th ACM Conference
on Information-Centric Networking, pages 12–23, 2020.

[170] Susmit Shannigrahi, Chengyu Fan, and Greg White. Bridging the icn deployment
gap with ipoc: An ip-over-icn protocol for 5g networks. In NEAT, 2018.

[171] Susmit Shannigrahi, Dan Massey, and Christos Papadopoulos. Traceroute for
named data networking. https://named-data.net/publications/techreports/

ndn-0055-2-trace, 2017.

261

[172] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage sys-
tems and technologies (MSST), pages 1–10, 2010.

[173] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector clocks.
Information Processing Letters, 43(1), 1992.

[174] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra. Spray
and wait: an efficient routing scheme for intermittently connected mobile networks.
In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking,
2005.

[175] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. In Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1222–1230, 2012.

[176] Kai Su, Francesco Bronzino, KK Ramakrishnan, and Dipankar Raychaudhuri. Mftp:
A clean-slate transport protocol for the information centric mobilityfirst network. In
ICN, 2015.

[177] Atsushi Tagami, Tomohiko Yagyu, Kohei Sugiyama, et al. Name-based push/pull
message dissemination for disaster message board. In LANMAN, 2016.

[178] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. Secure scut-
tlebutt: An identity-centric protocol for subjective and decentralized applications. In
ACM ICN, 2019.

[179] Pouyan Fotouhi Tehrani, Eric Osterweil, Jochen H. Schiller, Thomas C. Schmidt, and
Matthias Wählisch. The missing piece: On namespace management in ndn and how
dnssec might help. In ICN, 2019.

[180] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In TACAS,
2007.

[181] Reza Tourani, Satyajayant Misra, Joerg Kliewer, Scott Ortegel, and Travis Mick.
Catch me if you can: A practical framework to evade censorship in information-centric
networks. In ICN, 2015.

[182] Reza Tourani, Satyajayant Misra, Travis Mick, and Gaurav Panwar. Security, privacy,
and access control in information-centric networking: A survey. IEEE communications
surveys & tutorials, 20(1):566–600, 2017.

[183] Dirk Trossen, Martin J Reed, Janne Riihijärvi, Michael Georgiades, Nikos Fotiou,
and George Xylomenos. Ip over icn-the better ip? In 2015 European Conference on
Networks and Communications (EuCNC), pages 413–417. IEEE, 2015.

[184] Bora Uçar and Cevdet Aykanat. Encapsulating multiple communication-cost metrics
in partitioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM
Journal on Scientific Computing, 25(6):1837–1859, 2004.

262

[185] Amin Vahdat, David Becker, et al. Epidemic routing for partially connected ad hoc
networks, 2000.

[186] Roland van Rijswijk-Deij, Mattijs Jonker, and Anna Sperotto. On the adoption of
the elliptic curve digital signature algorithm (ecdsa) in dnssec. In CNSM, 2016.

[187] Liang Wang, Suzan Bayhan, Jörg Ott, Jussi Kangasharju, Arjuna Sathiaseelan, and
Jon Crowcroft. Pro-diluvian: Understanding scoped-flooding for content discovery
in information-centric networking. In Proceedings of the 2nd ACM Conference on
Information-Centric Networking, pages 9–18. ACM, 2015.

[188] Lijing Wang, Yongqiang Lyu, Jian Liu, Wentao Shang, Wenbo He, Dongsheng Wang,
and Geyong Min. Naxos: A named data networking consensus protocol. In HPCC/S-
martCity/DSS, 2018.

[189] Sen Wang, Jun Bi, Jianping Wu, Xu Yang, and Lingyuan Fan. On adapting http pro-
tocol to content centric networking. In Proceedings of the 7th International Conference
on Future Internet Technologies, pages 1–6. ACM, 2012.

[190] Wikipedia. Camp fire (2018). https://en.wikipedia.org/wiki/Camp_Fire_

(2018).

[191] Wikipedia. Category:Disaster management. https://en.wikipedia.org/wiki/

Category:Disaster_management.

[192] Wikipedia. Subdivisions of helsinki. https://en.wikipedia.org/wiki/

Subdivisions_of_Helsinki.

[193] Wikipedia. Woolsey fire. https://en.wikipedia.org/wiki/Woolsey_Fire.

[194] Wikipedia. Tabu search. https://en.wikipedia.org/wiki/Tabu_search, 2018.

[195] World Vision. Hurricane Irma: Facts, FAQs, and how to help. https://www.

worldvision.org/disaster-relief-news-stories/hurricane-irma-facts.

[196] Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang, and Di Wu. Iot security
techniques based on machine learning: How do iot devices use ai to enhance security?
IEEE Signal Processing Magazine, 35(5), 2018.

[197] L Yan. A survey on communication networks in emergency warning systems. Sci.
Comput, 2011.

[198] Yingdi Yu, Alexander Afanasyev, David Clark, Van Jacobson, Lixia Zhang, et al.
Schematizing trust in named data networking. In Proceedings of the 2nd ACM Con-
ference on Information-Centric Networking, 2015.

[199] P. Zave. A formal model of addressing for interoperating networks. In FM, 2005.

[200] P. Zave. A practical comparison of alloy and spin. Form. Asp. Comput., 27(2), March
2015.

263

[201] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic
test packet generation. In CONEXT, 2012.

[202] Guoqiang Zhang, Yang Li, and Tao Lin. Caching in information centric networking:
A survey. Computer Networks, 57(16), 2013.

[203] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. Named data networking.
ACM SIGCOMM CCR, 44(3), 2014.

[204] Yu Zhang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. A survey of mobility
support in named data networking. In INFOCOM Workshops, 2016.

[205] Yu Zhang, Hongli Zhang, and Lixia Zhang. Kite: a mobility support scheme for ndn.
In Proceedings of the 1st ACM Conference on Information-Centric Networking, 2014.

[206] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao
Li, Alexander Afanasyev, and Lixia Zhang. An overview of security support in named
data networking. IEEE Communications Magazine, 56(11):62–68, 2018.

[207] Liang Zhou, Laxmi N Bhuyan, and K. K. Ramakrishnan. Goldilocks: Adaptive re-
source provisioning in containerized data centers. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pages 666–677, 2019.

[208] Ming Zhu, Dan Li, Fangxin Wang, Anke Li, K. K. Ramakrishnan, Ying Liu, Jianping
Wu, Nan Zhu, and Xue Liu. Ccdn: Content-centric data center networks. IEEE/ACM
Transactions on Networking, 24(6):3537–3550, 2016.

264

