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ABSTRACT: Message passing neural networks (MPNNs) on
molecular graphs generate continuous and differentiable encodings
of small molecules with state-of-the-art performance on protein−
ligand complex scoring tasks. Here, we describe the proximity
graph network (PGN) package, an open-source toolkit that
constructs ligand−receptor graphs based on atom proximity and
allows users to rapidly apply and evaluate MPNN architectures for
a broad range of tasks. We demonstrate the utility of PGN by
introducing benchmarks for affinity and docking score prediction
tasks. Graph networks generalize better than fingerprint-based
models and perform strongly for the docking score prediction task.
Overall, MPNNs with proximity graph data structures augment the prediction of ligand−receptor complex properties when ligand−
receptor data are available.

■ INTRODUCTION
Computational and machine learning (ML)-based approaches
to predicting binding affinity are critical research directions in
drug discovery.1−4 A strong predictor of a ligand affinity is
desirable both for hit identification in virtual screening and for
computationally evaluating structure−activity relationships for
hit expansion and hit-to-lead optimization. These approaches
include ligand-based methods that exclusively use two-
dimensional (2D) molecular representations of known ligands
to infer binding based on molecular similarity and structure-
based approaches that encode three-dimensional (3D)
protein−ligand interactions. Despite recent advances in these
approaches, predicting ligand affinity remains a critical
challenge in computational drug design, particularly for
generalizing to novel chemotypes.5 Developing strong
computational predictors would enable the computationally
assisted medicinal chemist to evaluate many more compounds
in less time and cost than a purely experimental approach.

Recent reports show the power of learnable molecular
representations by using message passing neural networks
(MPNNs) to accept the raw molecular graph as input.6−16

Importantly, these learnable representations are tuned to each
prediction task, allowing for a richer and more task-specific
encoding of the molecular graph, and have been shown to
outperform hash-based encodings in head-to-head compar-
isons in some cases.10,17 Beyond molecule-autonomous
applications, early reports suggest that MPNNs can predict
important properties of ligand−receptor complexes.7,18 Unlike
methods based on ligand structure only, these networks either
explicitly or implicitly encode 3D structural information about
the ligand−receptor complex.

This study introduces proximity graph networks (PGNs), an
open-source toolkit (https://github.com/keiserlab/torch_
pgn) that allows for the simple extension of multiple MPNN
architectures to ligand−receptor graphs. This software package
enables information to pass between ligand and protein atoms
during learning, which we show can greatly affect model
performance. Tunable ligand−receptor encodings offer per-
formance advantages in predicting ligand−receptor affinities.
We also highlight MPNN’s modularity, allowing us to
implement new encoder architectures with minimal changes.
We find that different MPNN architectures are suited to
different tasks, highlighting the importance of a modular
framework for easy evaluation of MPNN architectures. PGNs
showed strong performance compared to other published
approaches on PDBbind data sets.19−21 Additionally, the
PGNs improved generalization performance on ligands bound
to receptors not seen in the training set. We also evaluated our
models for a fine-grained, single protein, D4 Dopamine
receptor docking-score prediction task.22 Strong performance
on the docking-score prediction task can aid in hit picking and
improving the application of deep learning to streamline
docking workflows.23,24 These results indicate that PGNs could
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be a powerful tool to learn the properties of ligand−receptor
complexes.

■ BACKGROUND
Developing accurate computational scoring functions (SFs) for
assessing protein−ligand binding affinity is an ongoing
challenge, with approaches ranging from molecular fingerprints
to docking. These approaches include fingerprint and atom-
pair expert encodings (PLEC,25 LUNA,26 and ECIF27) and
docking-based SFs (Glide,28 RF-score,29 NN-score30). In
contrast, new deep-learning methods are based on graph
encoders.31,32 The application of graph encoders to chem-
informatics tasks shows promise at improving existing scoring
functions.6−16 Early research using deep learning models as
SFs includes TopologyNet33 and several traditional convolu-
tional models that use voxel-based representations of ligand−
receptor complexes as inputs.34−37 The following paragraphs
discuss several early applications using MPNNs to learn
SFs.7,18

Our approach to generating ligand−receptor graphs
resembles the implicit graph constructed in the protein−
ligand extended connectivity (PLEC) implementation of
fingerprint (FP) generation.25 Beyond this, works like ours
focus on directly applying message-passing neural networks to
the ligand−receptor graphs. Notably, Feinberg et al. present
PotentialNet for various molecular applications, including
PDBbind.18 Unfortunately, the limited information about
implementation and the unavailability of their codebase
makes direct comparison with PotentialNet challenging.
Additionally, a recent report by Cho et al.7 has further
explored this approach, emphasizing a single architecture, only
the PDBbind Refined data set, and a slightly different graph
generation procedure than the one used by PotentialNet or
herein. Finally, two recent approaches have applied novel
attention-based architectures with good effect on this task.38,39

In contrast to these previous studies, this study introduces
PGN for optimized graph neural networks. It provides an
open-source implementation of MPNN architectures based on

Figure 1. Process used to create Proximity Graphs and learn using the PGN architecture. The top portion of each panel (a−c) shows the
processing of a simple example ligand−receptor complex (5OU2). The bottom panel shows a simplified example on a single atom. (a) 4.5 Å radius
sphere (translucent green) around the ligand (dark green) was used to filter the protein for proximal atoms. (b) Proximal protein atoms (dark blue)
and the connecting bonds were added to the graph and proximity edges were added to the graph (gray). (c) Proteins atoms within 5 bonds of
proximal protein atoms were added to the graph. An additional example of a more complex protein ligand complex (6MNF) is shown below. (d)
Once the proximity graph is constructed a simple featurization is applied to the atoms and edges. This completed proximity graph data structure is
fed into one of the included MPNN architectures to encode the graphs before being passed to the fully connected (FC) network to produce the
desired regression or classification output. (e) PDBbind (left) and D4 dock-score (right) regression tasks are summarized. PDBbind contains the
experimental pKis paired with X-ray diffraction structures for many proteins. In contrast, the dock-score prediction task pairs the protein structure
from 5WIU with a number of predicted protein−ligand complexes with molecules in the ZINC database.
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gated-graph neural networks (GGNET),31 directed MPNNs
(DMPNN),10 and the equivariant graph network DimeNET+
+40 to predict ligand−receptor properties (Figure 1). Our
experimentation with message-passing parameters using our
open-source codebase may be a guide and tool for scientists
interested in applying MPNNs to their tasks. The modular
nature of our package will also allow for simple testing of
different graph generation schemes and new MPNN
architectures.

■ METHODS
We summarize generalized message passing neural networks as
defined by Gilmer et al.8 and extend this framework to the
proximity fingerprint (PFP) architecture implemented in our
PGN software package. Please see the Supplementary Methods
section for descriptions of previously reported architectures
GGNET31 and DMPNN10). For a description of DimeNET+
+, please refer to the study of Gasteiger et al.40

Message Passing Neural Networks. We describe the
MPNN formalism for an undirected graph (G) with node
features (xv) and edge features (evw). MPNN comprises two
distinct steps: the message-passing phase which spreads node
information to neighbors and the readout phase, which
transforms node representations into graph-level representa-
tions.

The message-passing phase of T time steps (also commonly
called D depth) has two operators: the message function Mt
and a vertex update function Ut. Message passing transforms
the node features into a new hidden representation hvt at each
time step. The initial node representation hv0 can either be the
raw node features (hvt = xv) or a transformed version of the
initial features (hvt = NN(xv)), where NN is a simple neural
network. Subsequent time steps update the hidden values of
the nodes according to

m M h h e

h U h m

( , , )

( , )

v
t

w N v
t v

t
w
t

vw

v
t

t v
t

v
t

1

( )

1 1

=

=

+

+ +

where N(v) is the set of neighboring nodes adjacent to v in
graph G and mv

t+1 is the sum of all messages from nodes in the
set N(v). After all T steps of message passing, hvT contains the
final node representations. We aggregate the node representa-
tions to yield a graph-level representation for further learning
using the readout function:

y R h v G( )v
T= | { }

The readout function must have several properties to
guarantee invariance to graph isomorphism (e.g., the ordering
of the nodes cannot affect the network output).8 The graph
level representation ŷ is generally further transformed by a fully
connected neural network to perform a regression of
classification task. The functions above must be differentiable
to learn graph representations from data.
Proximity Fingerprint Network. The PFP network

model simplifies the GGNET architecture.31 We tuned PFP
to perform better in low-data situations, drawing inspiration
from Duvenaud et al.’s early fingerprint-like MPNNs.9

Message Passing. PFP’s message is defined identically to
GGNET:

M h h e A h( , , )t v w vw e wvw
=

Above, Ae dvw
corresponds to a learnable weight matrix. To

simplify the model, PFP replaces the GRU-based update
function by simply aggregating messages through a rectified
linear unit:

U U mReLU( )t v
t 1= = +

Importantly, the updated hidden states of the nodes (hvt+1)
do not depend upon the previous hidden state directly. We
account for this lack of state memory through the readout
function described below.

Readout. We use residual connections at each message
passing time step t to ensure that all levels contribute to the
output representation ŷ. Therefore, we define Rt as the readout
at time step t and R as the overall readout function. During
each time step, a neural network transforms the node’s hidden
state to the desired output dimension, followed by a simple
add pool to guarantee node order invariance. Finally, we use a
LogSof tmax layer to yield the final output:
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The final output (ŷ) is then a simple linear combination of
the readouts Rt:

y R
t

t=

Graph Construction. We used covalent bond edges and
proximity-based virtual edges to build the ligand−receptor
proximity graphs. This approach mirrors virtual graph
construction in PLEC fingerprints.25 We started building the
graph representation from the ligand atoms. We added the
protein atoms within a sphere of 4.5 Å radius from each heavy
atom to match the optimal parameters for PDBBind
determined with PLEC (Figure 1a). Next, we added virtual
“proximity” edges connecting the ligand and proximal protein
atoms (Figure 1b) to allow information to flow between the
ligand and the protein during message passing. Finally, to
ensure all nodes were reachable, we added all atoms within
four bonds of the proximal protein atoms and edges for all
interconnecting bonds. Figure 1c shows the final set of nodes
(atoms) and edges (covalent and proximity) as well as the
completed proximity graph for another protein−ligand pair
with more extensive contacts. We applied a simple
featurization of atoms (Table 1) and bonds (Table 2).
Hyperparameter Optimization. We performed Bayesian

optimization to optimize model hyperparameters. We used
Hyperopt41 in Python to tune model depth (i.e., number of
message passing steps), dropout rate, number of fully
connected layers in the regressor, and hidden dimension
(size of the fully connected layer in the regressor or size of the

Table 1. Atom Features

feature description size

atomic # atom type, indexed by atomic number 100
isotope id type of isotope 1
degree number of non-hydrogen neighbors 1
formal charge the formal charge of the atom 1
Is ring 0/1 atom is in ring 1
Is aromatic 0/1 atom in aromatic ring 1
group 0 from receptor/1 ligand 1
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ŷ vector, depending on the model) for PFP, GGNET,
DMPNN, and PLEC models. Due to its slower training
speed, DimeNET++ models were optimized using Optuna42

with trials running in parallel on multiple GPUs.
Implementation. We implemented all models in Py-

Torch43 and PyTorch Geometric.44 Molecular data processing
used Open Babel,45 RDKit, and ODDT.46 For basic graph data
structures, we used NetworkX.47 We adapted the DMPNN
code from the chemprop repository10 and DimeNET++ code
from the PyTorch Geometric implementation to work with
proximity graph data structures. We visualized structures with
Chimera.48

■ EXPERIMENTS
Data.We tested our models on the PDBbind 2019 Refined,

PDBbind 2019 General, and D4 Diverse Docking data sets:
PDBbind Refined Data Set. The refined set is a subset of

the general set that we filtered to include only the highest-
quality ligand−receptor complexes. The filtering pipeline is
described in Wang et al.21 The final data set consists of 4852
ligand−receptor complexes.

PDBbind General Data Set. The general set includes all
21,382 structures in the PDBbind database.20,49 However, we
only included protein−ligand complexes for this study, thus
narrowing the set to 17,679 structures. We employed no extra
filtering or other manipulation.

D4 Diverse Docking Data Set. We introduce a docking
score prediction task for the Dopamine D4 receptor. For this
task, our data set includes 86,452 ligands from the ZINC
database50 docked in the Dopamine D4 Receptor from an
ultra-large library22,51 (ULL) docking campaign. The com-
pounds all represent different structural scaffolds as determined
by Bemis-Murcko scaffold splitting.52 The structures were
annotated with the docking score.

D4 Experimental Data Set. This data set contains the
subset of 510 ligands with both docked structures to the
Dopamine D4 Receptor and experimental binding data. The
structures all result from the same ULL docking campaign as
the D4 Diverse Docking Set. We used this data set for
classification; docked structures were either binders or
nonbinders. Additionally, we used the D4 Experimental data
set for our metric learning task discussed below.
Experimental Procedure. Cross-Validation and Hyper-

parameter Optimization. Each architecture type was opti-
mized individually for each data set and training/test split
strategy type (discussed in the following subsection). We ran
five iterations of hyperparameter optimization for each
parameter. Model performance was the average validation
loss over five-fold cross-validation with a given set of
hyperparameters. Due to significantly longer training times
than other architectures, we ran hyperparameter optimization
for the PDBbind General and D4 Diverse data sets with three-
fold cross-validation for DMPNN and all data sets for
DimeNET++. Before cross-validation, we held out a test set
of approximately 10% of examples. The final evaluation of all

models was done with optimal hyperparameters on five
randomly seeded initializations using the test set selected
before model selection. The same test set was used for each set
of hyperparameter values to minimize data contamination.

Random Split. The random split randomly sorted examples
into test and training sets. The training set was then further
split into cross-validation folds, without replacement, when
hyperparameter optimization was performed.

Protein Split (PDBbind). The complexes were grouped by
the annotated UniProt ID in the PDBbind database. Groups
were then shuffled and added to the test set until the size of the
test set exceeded the desired test percent. Groups that would
make up more than 10% of the test set were automatically
assigned to the training set. For cross-validation, the training
set was split such that no more than one group of structures
was in both the training and validation set. We expected this
split to be a more rigorous test of model generalization than
random splitting.

Similarity Split (D4 Diverse). For the D4 data set, a
standard scaffold split yields no clusters due to how the data
set was constructed. Therefore, to maximize the difference
between the ligands in the training and test sets, Butina
clustering53 of Morgan fingerprints (size 1024) with a
similarity threshold of 0.7 was performed. Groups were
segregated (as discussed above) for the protein split method-
ology. Due to the long hyperparameter optimization times, the
model parameters from random splitting experiments were
used to evaluate model performance.

Metrics. For the PDBbind Refined, PDBbind General, and
D4 Diverse data sets both the root-mean-square error (RMSE)
and the Pearson correlation coefficient (PCC) were used for
evaluation, in line with CASF19,54,55 recommendations for
standard PDBbind evaluation.

Baseline. PLEC uses the graph generation procedure
outlined above; however, instead of creating an explicit
proximity graph data structure as outlined in this work,
PLEC passes the results through a hash function to create a
static fingerprint data structure. Given the similarity of PLEC’s
implicit graph to the proximity graph data structure, we used
PLEC as the primary baseline model to determine how a
differentiable and explicit molecular interface graph represen-
tation contributes to model performance. We used the same
feed-forward network and hyperparameter optimization
scheme (as discussed above) to evaluate PLEC performance
for comparability. We also evaluated the models on the CASF
2016 splits to provide a more extensive comparison to
published models.19

Controls for Shortcut Learning. We used three separate
adversarial controls to stress-test each model: frozen MPNN,
proximity-edge ablation, and ligand only. We froze encoder
weights in the “frozen MPNN” control before training the
model to yield a nonlearnable, arbitrary graph representation.
The proximity-edge ablation control removed the proximity
edges from the graph to test how important message passing
between the ligand and protein nodes was to model
performance. Finally, the ligand-only control removed all
nonligand atoms and edges.

■ RESULTS AND DISCUSSION
In this section, we evaluate the methods contained in the PGN
package (PFP, GGNET, DMPNN, and DimeNET++) by
performing experiments to evaluate (1) whether MPNNs
would offer advantages over fingerprint and other baseline

Table 2. Bond Features

feature description size

bond length distance between connecting nodes 1
bond type one-hot encoding of bond order 3
is aromatic 0/1 aromatic bond 1
is proximity 0/1 proximity edge 1
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methods, (2) assess the importance of proximity features for
protein−ligand models, and (3) whether these models could
be effective predictors of experimental binding affinity. To
answer these questions, we systematically benchmarked
multiple approaches across PDBBind and D4 Docking data
sets and evaluated performance based on RMSE and PCC.
PCC is more relevant for rank-ordering compounds for testing.
In contrast, RMSE is more relevant for predicting raw binding
energies in isolation; therefore, including both gives a better
picture of usefulness than either alone. Additionally, these
metrics are the standard for the PDBBind data set,47 allowing
for easy comparison with past and future work. Error bars
shown in the text represent the 95% confidence interval for the
given experiment.

Unless otherwise stated, all results below use the optimal
hyperparameters (see Tables S1−S18) from the hyper-
parameter search. All results reported for graph models use
the complete Proximity Graph data structure, unless explicitly
stated otherwise.
Performance on PDBbind Data Sets. First, we evaluated

each model on the PDBbind Refined and General data sets.
We tested all models with both random splitting and protein
splitting.

PDBbind Refined Data Set. Figure 2 shows the results of
model evaluation on the refined data set. The PFP encoder-
based models performed similarly to or significantly better than
PLEC in all cases. All other MPNN approaches under-
performed on this task. This suggests that although a
differentiable representation can be useful, the specific encoder

architecture is an important consideration, highlighting the
usefulness of easy access to multiple encoder choices in the
PGN package.

Interestingly, the PFP model trained with random splitting
consistently outperformed the baseline by PCC metric but had
a similar RMSE to PLEC. This discrepancy suggests that the
baseline better fits the data distribution, while PFP produced a
stronger linear correlation. When considering the protein
splitting performance, PFP significantly outperformed the
baseline, suggesting that the graph model has better general-
ization performance. In addition, when we applied our best-
performing model to the CASF-2016 benchmark, the PFP
encoder outperformed all methods aside from deltaVinaRF20
(Table S19).

PDBbind General Data Set. In this case, the baseline
significantly outperformed all MPNNs on the random splits,
while the PFP Network significantly outperformed the baseline
on the more challenging protein split task (Figure 3).
Interestingly, the DMPNN architecture performed better on
this task, displaying comparable performance to PFP with
random splitting. Once again, PFP had a significant perform-
ance advantage when using protein splitting, while DimeNET+
+ showed a high level of instability in predictions, suggesting
that overfitting occurs early in training.
Performance on the D4 Diverse Data Set. Next, we

evaluated the performance of the different models on the D4
Diverse data set, which is a diverse set of molecules docked
into the D4 Dopamine receptor (Figure 4a,b). We tested all
models using random and similarity splitting, as described

Figure 2. Performance of the different models on the PDBBind Refined data set. (a) RMSE of each model with random splitting (blue) and protein
splitting (orange), where lower is better. (b) PCC of each model with random splitting (blue) and protein splitting (orange), where higher is better.
(c) Table or errors and correlation values for each model and split with RMSE and PCC. Best scoring model is bolded.
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above. This data set offers a different task type than the
PDBbind data set, which attempts to capture the general
features of protein−ligand structures labeled with coarse-
grained experimental affinities. The D4 diverse task focuses on
learning a specialized representation where the model must
differentiate a diverse set of molecules at a homogeneous
interface. This specific binding model, therefore, requires the
ability to differentiate similar binding modes to produce a
sensitive readout of protein−ligand complementarity. This task
is analogous to “deep docking” where a neural network
predicts dock score (usually based on fingerprint representa-
tions), which is typically far less computationally expensive
than traditional docking algorithms.23,24 Using this approx-
imate dock score, the larger library is then accessed using the
neural network to allow for downstream applications.

When assessed against the D4 Diverse data set, all graph
models outperformed the baseline by a large margin (Figure
4c−e). In contrast to the PDBbind data sets, the DimeNET++
model performed best followed closely by DMPNN. GGNET
and PFP lagged behind the other graph models significantly in
this task. The similarity-split data resulted in models that
performed no worse than the random split, likely due to the
large ligand diversity already seen within the data set.

Next, we artificially limited the training set size and
evaluated model performance using the full test set to
understand if data set size would strongly affect relative
model performance (Figure 4f). All MPNN architectures
outperformed the baseline, regardless of the data set size. This

result suggests that a learnable representation was particularly
advantageous for this task.

We were next interested in seeing if this performance carried
over to the more complex task of experimental binding
prediction using a data set of 589 docked structures with
empirical binding data (see Supporting Methods). Although
docking is effective at prioritizing binders in the better-scored
poses, the extreme size of modern docking libraries makes
filtering an important problem, and therefore a computational
solution would be valuable.22 The first approach was to
evaluate the experimental ligands with the trained PDBbind
refined model; however, we saw no ability for the model to
predict experimental binding affinity (Figures S1 and S2).
Interestingly, we saw that fine-tuning from the D4 data set to
the PDBbind data set also was not helpful, suggesting that the
molecular representations learned for each task are likely quite
distinct (Figure S3). Additionally, when we evaluated the
experimental set using our optimized model from the D4
docking score prediction task, we saw no discrimination
between binders and nonbinders; this is not surprising, given
the binders and nonbinders had generally similar docking score
distributions. Given the difficulty of predicting experimental
affinity, we explored simplifying the task to discriminate
between binders and nonbinders using metric learning.
Although we saw improvements compared to PLEC (Figures
S4 and S5), proximity edges did not appear to improve
performance compared to the ligand autonomous graph
networks.

Figure 3. Performance of the different models on the PDBBind General data set. (a) RMSE of each model with random splitting (blue) and
protein splitting (orange), where lower is better. (b) PCC of each model with random splitting (blue) and protein splitting (orange), where higher
is better. (c) Table or errors and correlation values for each model and split with RMSE and PCC. Best scoring model is bolded.
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Figure 4. Overview of the construction of the D4 Diverse Data set and performance of the different models on the D4 Diverse data set. (a)
Overview of the original protein−ligand complex used to construct the docking model. The inset shows the proximity graph of the experimental
ligand bound into the pocket used for docking. (b) Heatmap showing the similarity of 1000 random ligands selected from the whole dock run and
the D4 Diverse data set used in this manuscript. (c) Table or errors and correlation values for each model and split with RMSE and PCC. Best
scoring model is bolded. (d) RMSE of each model with random splitting (blue) and protein splitting (orange); lower is better. (e) PCC of each
model with random splitting (blue) and protein splitting (orange; higher is better. (f) RMSE of models for various data set sizes; lower is better.
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Controls for Shortcut Learning. Three different experi-
ments explored the importance of (i) using a learnable
representation, (ii) message passing between the protein and
ligand, and (iii) adding receptor information to the graph. To
address (i), we used a frozen MPNN control with encoder
weights randomly set before training. To investigate (ii), we
stripped a proximity graph of all proximity edges (i.e., only the
ligand and protein covalent bonds associated edges remained
in the graph). Finally, to investigate (iii), we stripped the
proximity graph of protein and proximity data. All adversarial
controls for shortcut learning,56 aside from the GGNET
ligand-only and proximity-edge ablation studies for PDBbind
data sets, significantly negatively affected performance for the
2D-MPNN architectures (PFP, DMPNN, GGNET) (Figure 5
and Table S20). Additionally, we saw no clear systematic bias
relating error to the number or type of interactions or the
proximity-graph complexity (SI Figure 6). On the other hand,
the DimeNET++ ligand-only and proximity edge ablation
studies performed as well as the full model on all data sets,
suggesting that proximal residues do not contribute to its
predictions. This is potentially due to the weighting of the
DimeNET++ architecture based on distance, meaning ligand−
ligand interactions could potentially dominate performance.
This suggests that modifications to this architecture may be
required to fully take advantage of receptor information.

Importantly, the frozen encoder controls in all cases severely
impaired performance, suggesting that a learnable graph
representation is crucial for model performance. Also, the
ligand-only and proximity-edge stripped controls performed
similarly to each other in all cases, suggesting that message-
passing between the receptor and ligand is required for
proximal protein atoms to contribute to the model.
Analysis of Proximity Graph Construction. We next

sought to understand how proximity graph parameter choice
affected the best-performing MPNN architectures that
benefited from proximity graphs (PFP for PDBBind Refined
and DMPNN for D4 Medium Diverse). We found that
receptor depth minimally affected the PDBBind Refined
architecture, which had a modest but significant increase in
performance with increasing proximity radius that plateaued
above 4.5 Å (Figure 6a, b). On the other hand, both
parameters strongly affected D4 Medium Diverse data set
performance, achieving a maximum when receptor depth was
greater than three and radius was equal to 4.5 Å (Figure 6a, b).
The large jump in performance at receptor depth 3 is
interesting, suggesting that this depth potentially changes the
graph’s character by reconstituting fuller side chains or
allowing more extensive message passing. These parameters
are fully adjustable in the PGN package using the
proximity_radius and receptor_depth arguments.

Figure 5. Performance of the different models and the various controls on the PDBbind Refined, PDBbind General, and D4 Diverse data sets. All
control RMSEs were normalized to the performance of the best model using the full Proximity Graph as input. For RMSE, a lower value is better.
Each panel is the full set of controls for each MPNN architecture: (a) PFP, (b) GGNET, (c) DMPNN, and (d) DimeNET++.
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Figure 6. Analysis of proximity graph parameters and properties. Performance of the best 2D MPNN networks on the D4 Medium Diverse and
PDBBind Refined 2019 data sets when the (a) proximity radius or (b) receptor depth vary. (c) Histogram showing the frequency of protein atoms
included in the proximity graph during D4 Medium Diverse graph construction. (d) Histogram showing the Tanimoto Similarity of included
protein atoms across a sample of 10,000 D4 Medium Diverse graphs. (e) Schematic showing the atoms included in the proximity graph overlaid
onto the crystal structure. The size of the sphere centered on each atom is proportional to the percentage of graphs in which a given atom is
included.
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Given this strong performance, we sought to better
understand the nature of the D4 Medium Diverse proximity
graphs. We found that about 37% of protein atoms occur in
less than 5% of the proximity graphs. On the other hand, a
subset of about 5% of atoms appear in almost all proximity
graphs (Figure 6c). To further explore how unique the protein
atom signature was for the graphs, we calculated the Tanimoto
similarity between protein atoms for a random sample of
10,000 proximity graphs (Figure 6d). We found that the mean
Tanimoto similarity was about 0.45, suggesting a meaningful
protein-environment fingerprint overlap. To better understand
how the seemingly paradoxical high degree of atomic
uniqueness and overall similarity could coexist, we overlaid
atom frequency with the D4 PDB used for docking (Figure
6e). It appears that there is a high degree of overlap in atoms
within the proximity radius (as represented by the larger
spheres near the binding pocket); however, there are many
less-frequent atoms at the periphery, likely resulting in the
addition of atoms using the receptor depth attribute. Given the
sensitivity of performance to this attribute, it is likely that these
atoms contribute significantly to the discriminative power of
the models.

■ CONCLUSIONS AND FUTURE WORK
MPNN-based molecular encodings promise a tunable
representation that can suit any task through gradient descent.
This allure has spurred much interest in applying graph models
to various computational chemistry tasks. In this work, we
show certain data sets are much more suited to MPNN-based
models than others and that encoder architectures can have
variable performance based on the character of the data set
used for training. In particular, we introduce the D4 dopamine
dock score prediction task, consisting of diverse ligands bound
to one receptor. This task benefits from the MPNNs’ tunable
representation more than the common PDBbind task used in
most previous work developing MPNN scoring functions
(SFs). We believe this is due to the accuracy of the labels, the
abundance of diverse data, and the need to identify and
discriminate fined-grained differences between many seemingly
similar binding surfaces.

In addition, we show that incorporating proximity
information to conventional MPNN architectures offers
significant performance advantages. In all but one case,
PDBbind General with Random Splitting, one of the MPNN
models performed as good or better than the conventional
fingerprint baseline. The performance improvement was
particularly significant for the D4 Diverse Docking data set.
Despite strong performance as an ensemble, the graph
networks were not suited to all tasks equally, showing the
importance of diverse message-passing architectures for
optimal performance on multiple applications.

Despite our extensive evaluation of this approach, there are
several opportunities for future work. The most obvious area
for improvement of the PGN package would be including
more diverse graph convolutional methods. Additionally,
exploring different data augmentation techniques to improve
model performance in low-data situations would be advanta-
geous. Another area of future improvement will likely come
from richer more engineered featurization of bonds and atoms
and more physics-aware graph construction methods. Beyond
simple improvements to the PGN package, we also envision
that PGN could facilitate analyses of molecular dynamics
simulations and assist virtual screen approaches.23,24 The

strong generalization of our PGN models makes model fine-
tuning for low-data situations another potential application
that could aid drug discovery.9,57
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