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ARTICLE OPEN

Predicting cancer drug TARGETS - TreAtment Response
Generalized Elastic-neT Signatures
Nicholas R. Rydzewski1, Erik Peterson2, Joshua M. Lang3,4, Menggang Yu3,5, S. Laura Chang6, Martin Sjöström 6, Hamza Bakhtiar1,
Gefei Song1, Kyle T. Helzer 1, Matthew L. Bootsma1, William S. Chen6, Raunak M. Shrestha6, Meng Zhang6, David A. Quigley7,8,
Rahul Aggarwal7,9, Eric J. Small7,9, Daniel R. Wahl2, Felix Y. Feng6,7,9,10,12 and Shuang G. Zhao 1,3,11,12✉

We are now in an era of molecular medicine, where specific DNA alterations can be used to identify patients who will respond to
specific drugs. However, there are only a handful of clinically used predictive biomarkers in oncology. Herein, we describe an
approach utilizing in vitro DNA and RNA sequencing and drug response data to create TreAtment Response Generalized Elastic-neT
Signatures (TARGETS). We trained TARGETS drug response models using Elastic-Net regression in the publicly available Genomics of
Drug Sensitivity in Cancer (GDSC) database. Models were then validated on additional in-vitro data from the Cancer Cell Line
Encyclopedia (CCLE), and on clinical samples from The Cancer Genome Atlas (TCGA) and Stand Up to Cancer/Prostate Cancer
Foundation West Coast Prostate Cancer Dream Team (WCDT). First, we demonstrated that all TARGETS models successfully
predicted treatment response in the separate in-vitro CCLE treatment response dataset. Next, we evaluated all FDA-approved
biomarker-based cancer drug indications in TCGA and demonstrated that TARGETS predictions were concordant with established
clinical indications. Finally, we performed independent clinical validation in the WCDT and found that the TARGETS AR signaling
inhibitors (ARSI) signature successfully predicted clinical treatment response in metastatic castration-resistant prostate cancer with
a statistically significant interaction between the TARGETS score and PSA response (p= 0.0252). TARGETS represents a pan-cancer,
platform-independent approach to predict response to oncologic therapies and could be used as a tool to better select patients for
existing therapies as well as identify new indications for testing in prospective clinical trials.

npj Genomic Medicine            (2021) 6:76 ; https://doi.org/10.1038/s41525-021-00239-z

INTRODUCTION
Treatment decisions for cancer patients have historically
depended on the tumor location and histologic appearance.
However, response is often heterogeneous within the same tumor
type1. Molecular diversity is fundamental to a cancer’s ability to
evade endogenous and exogenous tumor control strategies, and
there is a great need to incorporate an understanding of this
diversity into the management of all cancer patients. Advances in
next-generation sequencing have ushered in a personalized
treatment approach that can improve tumor control and decrease
side effects compared to the traditional one-size-fits-all approach.
Multiple anti-neoplastic therapies have now been paired with

predictive biomarkers for making treatment decisions. This
approach has been particularly successful with targeted drug
therapies. The first successful examples include Imatinib for
chronic myelogenous leukemia patients with the BCR-ABL fusion2

and Trastuzumab for HER2-positive breast cancer patients3. Since
the approval of these agents 20 years ago, the FDA has approved
dozens of different targeted therapies, with the number increasing
rapidly every year. However, even among these targeted therapies
and among patients who have a mutation known to confer
increased sensitivity to the therapy, treatment outcomes can still
be heterogeneous. For example, even among non-small cell lung
cancer (NSCLC) patients with classic EGFR mutations, where exon
19 deletions and L858R exon 21 point mutations account for 90%

of EGFR mutations, response rates have ranged from 58 to 85% in
phase IIb/III clinical trials evaluating anti-EGFR tyrosine kinase
inhibitors (e.g., Erlotinib, Gefitinib, Afatinib, Osimertinib)4–11.
A contributing factor to variability in treatment response is the

complex and often compound nature of cancer gene alterations.
Multiple mutations and gene expression differences likely
modulate response, but many of the relevant changes are
challenging to identify. We hypothesized that next-generation
DNA and RNA sequencing techniques paired with modern
computational modeling could identify gene signatures that
would better capture this heterogeneity. Rather than relying on
the presence or absence of a single genetic variant, we instead
model treatment predictions based on a broad spectrum of
genomic variant and expression data. To do this, we have
leveraged an existing large-scale in-vitro database to train
TreAtment Response Generalized Elastic-neT Signatures (TAR-
GETS). We then validated these results on three independent
cohorts. First, we showed concordant drug-response predictions
in an external in-vitro database. Second, we demonstrated that
our predictions were concordant with known FDA biomarkers-
drug indications in a large cohort of sequenced tumors. Third, we
validated TARGETS as a predictive biomarker of androgen receptor
signaling inhibitor (ARSI) response in a unique dataset of
metastatic prostate cancer patients. Finally, we evaluated the
utility of TARGETS as a tool for targeted hypothesis generation in
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identifying new drug indications. This pan-cancer, platform-
independent approach can be used to better identify responders
vs. non-responders and could potentially identify new patient
populations which would benefit from specific treatments.

RESULTS
Training models on the GDSC database
Our training cohort was the publicly available Genomics of Drug
Sensitivity in Cancer (GDSC) database12–14 (Fig. 1). To reduce the
noise in the data, we included only genes identified by the
COSMIC Cancer Gene Census15. This critical step allowed us to
leverage the extensive knowledge on cancer genomics to improve
the signal-to-noise ratio and prediction accuracy. Elastic-Net
regression models were then trained using the RNA expression
and DNA mutation data on only the COSMIC genes for all
treatments in the GDSC. The TARGETS models were locked and
used for all subsequent predictions without modification.

Concordance with CCLE drug sensitivity
We next examined if the TARGETS predictions could successfully
predict cell line drug response in an independent dataset from the
Cancer Cell Line Encyclopedia (CCLE)16. Eighteen drugs were
present in both CCLE and GDSC, allowing us to independently
validate the performance of those 18 TARGETS models in CCLE.
We compared the TARGETS predictions with the drug sensitivities
in CCLE and found that 18 out of 18 were significantly correlated
after adjusting for multiple testing (FDRs <0.05, Table 1). Validation
of all models in an independent cell line drug response cohort
provides additional experimental evidence supporting the TAR-
GETS approach.

Concordance with Known biomarker-drug combinations in
the TCGA
Data on 9430 patients from 32 cancer types from The Cancer
Genome Atlas (TCGA)17 was used to compare TARGETS with
known biomarker-drug combinations. The distribution of pre-
dicted sensitivities varies widely across tumors and drugs. When
we plotted the TARGETS predictions for all drugs across all tumor
types, we observed that samples with the same tumor types
tended to cluster together, as well as certain DNA alterations
which tend to be highly enriched in certain tumor types (Fig. 2).
This is consistent with the evidence that many anti-cancer drugs
tend to work better in specific tumor types, an assumption
underlying current clinical practice. However, there is also a
minority of samples that appear to be dissimilar to their tissue-of-
origin and cluster better with other tumor types, highlighting the
limitation of tumor-type-driven treatment decisions and the
potential benefit of a molecularly driven approach. Predictions
of drug sensitivity using TARGETS were made for all drugs and
samples. We next tested our TARGETS predictions against all FDA-
approved somatic biomarker indications (Supplementary Data 1).

For all biomarker-drug combinations tested, differences in drug
sensitivity as predicted by TARGETS were in line with what was
expected based on the indication (Fig. 3). EGFR mutated lung
adenocarcinomas were predicted to be more sensitive to Erlotinib,
Gefitinib, Afatinib and Osimertinib (all with p < 0.0001). BRAF
V600E/K mutated lung adenocarcinoma and cutaneous melanoma
both were predicted to be more sensitive to Trametinib and
Dabrafenib (all with p < 0.001). BRAF V600E/K mutant thyroid
cancer was also predicted to be more sensitive to Dabrafenib (p <
0.0001). EML4/ALK fusion-positive lung adenocarcinoma was
predicted to be borderline more sensitive to Alectinib (p=
0.0632) and EML4/ALK or ROS1 fusion-positive lung adenocarci-
noma was predicted to be more sensitive to Crizotinib (p= 0.044).
KRAS wild-type colon cancer with EGFR expression greater than
the median was predicted to be more resistant to Cetuximab (p <
0.0001). PIK3CA mutated breast tumors were predicted to be more
sensitive to Alpelisib. ER/PR positive breast cancer by histologic
assessment was predicted to be more sensitive to Fulvestrant (an
ER degrader, p < 0.0001) and HER2 positive breast cancer by
histologic assessment was predicted to be more sensitive to
Lapatinib (p < 0.0001). Midostaurin was not predicted to be
significantly more sensitive in FLT3 mutant AML. However, the
complete response rate even in FLT3 wild-type AML treated with

COSMIC

Elastic Net Model 

Genomics of Drug 
Sensitivity in Cancer

In-vitro Validation

- West Coast Dream Team

- The Cancer Genome Atlas

- Cancer Cell Line Encyclopedia

In-vivo Validation

Training Data Model Training

Fig. 1 TARGETS Workflow. Flowchart depicting TARGETS model training on DNA and RNA sequencing data from the Genomics of Drug
Sensitivity in Cancer (GDSC) database to predict drug response. Model training was performed utilizing Elastic Net regression. The drug
models were locked and subsequently validated on three independent cohorts: the Cancer Cell Line Encyclopedia (CCLE), The Cancer
Genome Atlas (TCGA) pan-cancer database, and the West Coast Dream Team (WCDT) metastatic prostate cancer database.

Table 1. TARGETS predictions correlate with CCLE drug sensitivity.

Drug Corr. coef. P-value FDR

Nilotinib 0.6 [0.66, 0.53] 5.95E−38 2.14E−37

Tanespimycin 0.25 [0.33, 0.16] 8.95E−08 1.07E−07

PHA-665752 0.24 [0.33, 0.15] 1.45E−07 1.63E−07

Lapatinib 0.49 [0.56, 0.42] 4.06E−29 9.13E−29

Nutlin-3a (-) 0.26 [0.35, 0.18] 1.11E−08 1.43E−08

Saracatinib 0.22 [0.31, 0.13] 1.38E−06 1.46E−06

Crizotinib 0.45 [0.52, 0.37] 6.06E−24 1.09E−23

Panobinostat 0.61 [0.67, 0.55] 1.83E−48 3.29E−47

Sorafenib 0.42 [0.49, 0.34] 1.45E−20 2.18E−20

Irinotecan 0.65 [0.71, 0.57] 1.11E−35 3.33E−35

Topotecan 0.58 [0.64, 0.52] 3.97E−43 3.57E−42

PD0325901 0.57 [0.63, 0.51] 1.27E−41 7.63E−41

Palbociclib 0.23 [0.32, 0.14] 3.45E−06 3.45E−06

Paclitaxel 0.51 [0.57, 0.44] 2.97E−31 7.64E−31

Selumetinib 0.48 [0.55, 0.4] 1.51E−27 3.03E−27

PLX-4720 0.57 [0.63, 0.51] 7.66E−41 3.45E−40

NVP-TAE684 0.34 [0.42, 0.26] 6.76E−14 9.36E−14

Erlotinib 0.45 [0.52, 0.37] 1.13E−23 1.84E−23

Pearson’s correlation between TARGETS predictions in CCLE and drug
sensitivity as measured by the negative AUC.
FDR Benjamini Hochberg corrected false discovery rate.
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Midostaurin can be up to 74%18,19. In addition to these FDA-
approved indications, we tested other clinically used biomarker-
drug combinations. In GBM, the benefit of Temozolomide is more
pronounced in MGMT promoter methylated tumors20–23, and
we found MGMT-methylated glioblastoma was predicted to be
more sensitive to Temozolomide (p < 0.0001). PARP inhibitors,
such as Olaparib, are now indicated for both HRD and non-HRD
ovarian cancers, and we also did not find a significant difference in
sensitivity to Olaparib between HRD and non-HRD ovarian
cancers24. However, in prostate cancer, HRD tumors were
predicted to be more sensitive to Olaparib (p= 0.0025), consistent
with recent data from the phase III PROfound trial25. These data
therefore provide independent evidence that TARGETS predic-
tions are concordant with FDA-approved biomarker indications.

Predicting ARSI response in metastatic prostate cancer
Metastatic castration-resistant prostate cancer (mCRPC) is a
common lethal cancer type not represented in the TCGA, and is
commonly treated with ARSIs such as Enzalutamide or Abirater-
one. This cancer type represents an opportunity to clinically
validate our approach in an independent patient cohort. We
utilized metastatic biopsy RNA and DNA sequencing data as well
as ARSI response data on 100 patients from the Stand Up to
Cancer/Prostate Cancer Foundation West Coast Prostate Cancer
Dream Team (WCDT) cohort26 to evaluate whether TARGETS could
predict which patients may benefit from ARSI therapy. 50% PSA
response is a common cutoff used in randomized trials in
metastatic prostate cancer27–31, and we used this as our primary
clinical endpoint. We found that among patients receiving ARSIs
as the next-line therapy after their biopsy, responders (defined as
those who had 51–100% PSA response) were predicted to be
more sensitive to ARSIs compared to the non-responders (0–50%
PSA response) (Fig. 4a; p= 0.0381). There was no difference in the
predicted sensitivity to ARSIs of responders and non-responders

who received other drugs (p= 0.2143), providing a control that
shows the model is specific in identifying patients who will
respond to ARSIs rather than just identifying those who will have a
good response to treatment in general. In a logistic regression
model predicting PSA response, the interaction between ARSI
treatment and TARGETS score was statistically significant (p=
0.0252; Fig. 4b) indicating that TARGETS is a bona fide predictive
biomarker for response to ARSIs32–36.

Exploratory identification of potential therapeutic strategies
with TARGETS
While mutations may occur randomly, those that provide a growth
advantage are selected for in cancer. Frequent mutation of a gene
may signal a tumor’s dependence on that gene or pathway and
therefore represents a potential therapeutic target. We hypothe-
sized that examining specific mutations associated with TARGETS
in clinical samples could identify known and novel therapeutic
strategies. To this end, we identified the mutations most strongly
correlated with TARGETS predictions in TCGA. The top 1% of
putative mutation–drug sensitivity combinations are shown in
Fig. 5a. Out of these 19 pairs, 17 were associations that would be
reasonably expected given their mechanism of action (e.g.,
PIK3CA/PTEN mutations and PI3K/MTOR inhibitors, BRAF/KRAS
mutations, and ERK/MAPK inhibitors). Overall, tumors with PIK3CA
and PTEN mutations were predicted to be more sensitive to drugs
that target the PI3K/MTOR pathway which is downstream of those
genes. Tumors with KRAS and BRAF mutations were predicted to
be more sensitive to drugs that target the ERK/MAPK pathway
which is downstream of RAS/RAF signaling. In addition, Linsitinib,
an IGF1R inhibitor, was predicted to be more effective in KRAS
mutant tumors (Fig. 5b), consistent with experimental data in
NSCLC37. The final drug on the list, Elesclomol, was predicted to be
more effective in IDH1 mutant tumors, especially gliomas (Fig. 5c),
an association not previously reported in the literature. There were

Fig. 2 TARGETS Scores in TCGA patients. TARGETS predictions for all drugs (rows) across all samples in the TCGA (columns) are shown in
heatmap form. Hierarchical clustering was performed on both rows and columns. A lower TARGETS score indicates predicted sensitivity.
Cancer site and type is identified using the TCGA standardized study abbreviations.

N.R. Rydzewski et al.
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Fig. 3 TARGETS concordance with FDA-approved and clinically used biomarker indications. Boxplots comparing predicted TARGETS drug
sensitivity among patients with or without a specific biomarker. Distributions were compared using an unpaired two-sample t-test, with p-value
reported. A lower TARGETS score indicates increased predicted sensitivity. Cancer site and type for each plot is identified using the TCGA
standardized study abbreviations. Boxplot center line=median; box limits= upper and lower quartiles; whiskers= 1.5× interquartile range.

N.R. Rydzewski et al.
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no IDH1 mutant LGG or GBM cell lines included in the GDSC, but
TARGETS was nonetheless able to identify improved predicted
Temozolomide response in MGMT methylated GBM patients
(Fig. 3). These predictions represent hypothesis-generating extra-
polations that go beyond the original training data, which can be
used to identify potential novel therapeutic strategies.

DISCUSSION
Personalized genomic medicine has changed the paradigm of
cancer treatment. Next-generation genomic sequencing has
shifted treatment decisions from using radiologic and histologic
data alone, to an approach that incorporates individualized
molecular features. In this study, we set out to develop TARGETS,
a pan-cancer, platform-independent model for predicting

sensitivity to therapy based on RNA expression and DNA mutation
profiles. TARGETS was then validated across three datasets: the in-
vitro CCLE and in vivo TCGA and WCDT datasets. Our predicted
results were concordant for all 18 drugs that were common
between the CCLE and GDSC, and TARGETS had consistent
predictions with known biomarker-drug indications across the
TCGA. Furthermore, we independently validated TARGETS as a
predictive biomarker for ARSI response in mCRPC in the WCDT
cohort. Finally, we evaluated TARGETS use as a tool for hypothesis
generation in identifying new drug indications.
Many attempts have been made to develop in vitro pharma-

cogenomic response signatures based on the publicly available
GDSC, CCLE, and TCGA datasets14,16,38–47. TARGETS demon-
strates a stronger level of concordance across all known
biomarker-drug indications in clinical samples than has been

Fig. 4 Predicting response to ARSIs in mCRPC. a Patients receiving ARSIs who had a 51–100% response in PSA were predicted to be more
sensitive by TARGETS than those with a 0–50% response. There was no difference in predicted sensitivity in those not treated. b Interaction
plot showing the probability of PSA 51–100% response as a function of TARGETS score in the patients treated with an ARSI vs. other
treatments. A lower TARGETS score indicates predicted sensitivity. Boxplot center line=median; box limits= upper and lower quartiles;
whiskers= 1.5× interquartile range.

a

c

Mutation Drug Target
PIK3CA Pictilisib PI3K/MTOR
PIK3CA Capivasertib PI3K/MTOR
PIK3CA Uprosertib PI3K/MTOR
PIK3CA Alpelisib PI3K/MTOR
PIK3CA Taselisib PI3K/MTOR
PIK3CA Afuresertib PI3K/MTOR
PIK3CA Ipatasertib PI3K/MTOR
PTEN Capivasertib PI3K/MTOR
PTEN Uprosertib PI3K/MTOR
PTEN Afuresertib PI3K/MTOR
PTEN Ipatasertib PI3K/MTOR
BRAF Selumetinib ERK/MAPK
BRAF Dabrafenib ERK/MAPK
BRAF Ulixertinib ERK/MAPK
KRAS Refametinib ERK/MAPK
KRAS Selumetinib ERK/MAPK
KRAS Trametinib ERK/MAPK
KRAS Linsitinib IGF1R
IDH1 Elesclomol Protein stability

b

Fig. 5 Novel mutations predicted to confer drug sensitivity. a List of top 1% mutations predicted to confer sensitivity to a specific agent
across tumor types. Linear model p-values all <0.0001. The rank is based on the normalized weighting of the model with each model.
b Differences in TARGETS scores across 32 cancer types for Linsitinib. c Differences in TARGETS scores across 32 cancer types for Elesclomol.
A lower TARGETS score indicates predicted sensitivity. Boxplot center line=median; box limits= upper and lower quartiles; whiskers= 1.5×
interquartile range.
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described in previously published studies48. A few studies have
also trained RNA-based signatures that were prognostic in
clinical cohorts treated with specific agents49–51. However, these
studies have not necessarily identified predictive biomarkers,
which are biomarkers that predict response only to a particular
treatment, thus requiring validation data that includes un-
treated patients32–36. This distinction is particularly important
with regards to non-targeted therapies, such as traditional
cytotoxic chemotherapies, which have been the focus of most of
these prior studies. When no un-treated patient data exists, a
signature for “response” may simply be measuring the overall
aggressiveness of a tumor (e.g., prognosis), instead of providing
truly predictive information specific to that agent. Statistical
interaction testing, as we demonstrate, is required to identify
truly predictive biomarkers32–36.
The primary challenge in assessing the performance of TARGETS

is locating suitable clinical validation datasets with both multi-
omics and treatment response data. There are in vitro pharma-
cogenomic databases such as the CCLE in which we were able to
perform validation. The CCLE is similar to the GDSC, including
many shared cell lines as both were designed to be comprehen-
sive catalogues of cancer cell lines. However, the two cohorts were
distinct efforts in time and space, and there were significant
differences in culture conditions, gene expression profiling, drug
screen procedures, and many other major and minor factors, to
the extent that significant discordance between the two datasets
has been reported52,53. The validation of 100% of TARGETS
predictions in CCLE despite these differences provides strong
supporting evidence for the approach. Ideally, clinical validation
would be performed for every drug in every disease site. However,
there is a lack of clinical cohorts with both DNA and RNA
sequencing and detailed response data from both treated and
untreated patients. Datasets such as the TCGA have the former
but not the latter. Furthermore, systemic therapies are primarily
used in the later stages of the disease, but obtaining invasive
metastatic biopsies for molecular profiling is not routine. The
WCDT is a unique cohort with both comprehensive molecular
profiling and ARSI drug response data making it the ideal clinical
dataset in which to validate TARGETS. The rarity of such clinical
datasets highlights the need for DNA and RNA profiling in larger
prospective studies with detailed treatment and outcomes data.
We believe the model development strategy presented herein

has yielded improved generalizability and interpretability. First,
our approach is unique in that we use only genes known to be
strongly associated with cancer from the literature15. While it
initially seems counter-intuitive that removing information from
the vast majority of genes would be beneficial, a genome-wide
approach suffers from a great deal of noise. Not only are many
genes not important to treatment response or resistance, but cell
lines in particular acquire many passenger mutations over time.
Therefore, by focusing on a small set of cancer-associated genes,
changes in gene expression or the presence of mutations are
more likely to be driving a biological function. Second, integration
of both DNA and RNA information into our models can provide
information on tumors driven by specific gene expression patterns
(e.g., receptors in breast cancer) as well as specific DNA alterations
(e.g., EGFR mutations in lung cancer)46,54. Finally, we chose to
utilize Elastic-Net regression55, because this regularized approach
is less prone to over-fitting56 and thus would better handle the
biological and technical differences between the in-vitro training
data and the clinical datasets.
TARGETS may also be able to identify new therapeutic

strategies. Interestingly, our results show that IDH1 mutations
are the second most highly weighted feature in the model for
Elesclomol, and that they are highly associated with predicted
Elesclomol sensitivity. Elesclomol is a copper chelator that has
been found to interact with the electron transport chain in
mitochondria to generate high levels of reactive oxygen species

(ROS)57. IDH1 is well known for its role in the NADPH-dependent
catalyzation of isocitrate to a-ketoglutarate (aKG), with IDH1
mutations leading to NADPH-dependent reduction of aKG to D-2-
hydroxyglutarate (D2HG)58. While D2HG has many downstream
effects that contribute to tumorigenesis in IDH mutant tumors59,
this increased utilization of NADPH impacts the cell’s ability to
form a sufficient response to increased production of ROS. This
mechanism could in part explain why IDH1-mutant glioma
patients have better prognosis60 and would mechanistically
support our prediction of increased sensitivity to Elesclomol in
IDH1-mutant tumors. To our knowledge, this association has not
been previously documented in the literature and thus warrants
further investigation to evaluate its use in IDH1-mutant tumors,
particularly gliomas, which were predicted to have the greatest
sensitivity to this agent with or without IDH1 mutation.
In conclusion, our study describes a pan-cancer, multi-omics

approach for the identification of predictive biomarkers across
tumor types. Many drugs demonstrate some efficacy in a minority
of patients but lack sufficient clinical benefit in unselected
populations to warrant FDA approval or clinical use. To date, we
lack a unified global approach for identifying the patients most
likely to benefit from specific therapies. TARGETS is platform-
independent, and thus can be applied to a wide range of current
and future datasets. RNA-seq should be normalized as described,
and any DNA variant-calling pipeline can be used. There will of
course be technical variation across different datasets. However,
elastic-net regression is particularly well suited to handle some
degree of noise, and our validation is on a variety of different
platforms. TARGETS could be used in future clinical trials to select
only patients most likely to benefit from the trial agent for
inclusion, thus maximizing the chances of success.

METHODS
Literature review of FDA approved somatic biomarker
indications in cancer
To establish a comprehensive list of all clinically approved biomarker-
drug combinations to analyze in this study, we obtained a list of United
States Food and Drug Administration (FDA) pharmacogenomic indications
(www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-
biomarkers-drug-labeling, version dated 5 February 2020; Supplementary
Data 1). In addition to the biomarker-drug combinations in the FDA
list, we also examined clinically utilized MGMT promoter methylation with
Temozolomide in glioblastoma20–23 and homologous recombination
deficiency with Olaparib in prostate cancer25. While PARP inhibitors such
as Olaparib are indicated for both HRD and non-HRD ovarian cancers24 and
are also indicated for germline BRCA1/2 mutant breast cancer, germline
variants are restricted data in the TCGA, and our focus was on somatic
variants, so these germline indications were not assessed. EML4-ALK and
ROS1 fusions were called using the Jackson Laboratory Tumor Fusion Gene
Data Portal (www.tumorfusions.org)61. As fusion partners for ROS1 are less
well defined, only ROS1 fusions confirmed by WGS were included. ER, PR,
HER2 positivity, MGMT promoter methylation, and FLT3 mutation were
defined by the TCGA phenotypic data. All other mutations were defined by
the sequencing data. EGFR staining was not available, and so EGFR
positivity was defined as greater than median EGFR expression, based on
literature supporting a range of EGFR positivity of 25–82% in colorectal
cancer62.

Training in GDSC
Processed mutation calls and RNA-seq FPKM gene expression data on
cancer cell lines publicly available through the GDSC were downloaded
from the GDSC website (www.cancerrxgene.org)12. Mutations were coded
as “present” only if they affected the protein-coding region of a gene (i.e.,
excluding silent, intronic, and inter-genic mutations), otherwise, they were
coded as “not present”. Gene expression was Log2 transformed, scaled to
the median of the cohort, and treated as a continuous variable. We filtered
variant and expression data to focus on the 702 COSMIC cancer genes
present on all platforms in the training and validation cohorts15. The GDSC
database contains IC50 information for 449 drugs across 982 cell lines and
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DNA and RNA sequencing data for these cell lines. To develop a model for
each drug in the database, we used Elastic-Net regression, a regularized
regression method that is a linear combination of the LASSO and Ridge
methods. The Elastic-Net regression model is a penalized approach that
produces biased coefficient estimates with a resulting decrease in variance,
which can lead to an improvement in predictions compared to what can
be achieved with a non-penalized regression model. This method also
allows for feature selection, with coefficients of non-predictive features
falling to zero or near-zero. To determine the optimized trade-off in bias
and variance, cross validation is utilized to tune the two hyper-parameters
of this model: the strength of the penalization (λ) and the proportion of
LASSO versus Ridge penalty (α). An Elastic-Net model55 was trained for all
drugs in GDSC using the R caret wrapper for the GLMNET package, using
the default parameters. Values for α and λ were selected using 10-fold
cross validation. The reported Z-score of the half-maximal inhibitory
concentration (IC50)12 of each drug experiment was used as the measure of
response in our model. The final output model from the Elastic-Net training
procedure is in the form of a standard linear model, and the intercept and
coefficients of all models described below can be found in Supplementary
Data 2. The predictions from these models represent the TARGETS scores.
Of note, immunotherapies were not tested in the GDSC and are not
represented in TARGETS because these depend on the interaction
between the tumor and host immune system, which was not modeled
in the GDSC cell line experiments.

In vitro validation
Independent validation of cell line drug response predictions was
performed in the CCLE dataset16. RNA and DNA sequencing data were
downloaded from the CCLE website (portals.broadinstitute.org/ccle).
Gene expression and mutation data were normalized and represented
the same way as the GDSC, detailed above. Predictions were made using
the locked models previously trained in GDSC. Eighteen previously trained
drug-models from the GDSC had matching drug response data available in
the CCLE. In the CCLE dataset, 55% of all the IC50 values were 8 μM (the
maximal tested concentration). Thus, we utilized the AUC instead, which
provides drug response information even if the IC50 was not reached. Since
higher AUC is associated with lower IC50, we then compared the negative
AUC determined from CCLE samples and compared to the GDSC predicted
IC50 to determine the correlation between our two predictions. A Pearson’s
correlation coefficient was determined for all 18 comparisons and the
Benjamini Hochberg False Discovery Rate (FDR) was reported for each
comparison to control for multiple testing.

In vivo validation
TARGETS performance was evaluated in two clinical datasets: TCGA and
the Stand Up to Cancer/Prostate Cancer Foundation WCDT. The TCGA
processed sequencing and clinical data were downloaded using the
UCSC Xena browser (xena.ucsc.edu)63. The WCDT dataset contains 100
patients with mCRPC with both DNA and RNA sequencing26, with Whole
Genome Sequencing and RNA-seq data available at dbGAP (phs001648.
v2.p1). We paired these data with previously unreported treatment
response data to validate the ability of TARGETS to predict treatment
response in this unique clinical cohort. Gene expression and mutation
data were normalized and represented in the same manner as for both
in-vitro datasets. Predictions were made with the GDSC-trained and
locked models without modification. Comparisons of predicted Z-score
IC50 between groups were performed using a T-test. Of note, the ARSI
model as derived in GDSC was based on Bicalutamide, the only ARSI
included in the training dataset. The ARSIs used in the WCDT were
Enzalutamide and Abiraterone.

Identifying novel biomarker-drug pairs
We utilized the TARGETS predictions detailed above to globally identify
mutations associated with predicted drug sensitivity in TCGA. A linear
model was used for this step, and tumor site was also included to identify
pan-cancer biomarker-drug pairs. This approach identified mutations that
were associated with drug sensitivity, independent of the disease site. Only
named drugs further along in the regulatory process64 and mutations
with a >5% frequency across all cancers were included. The t-statistic of
the mutation in the linear model was used to rank the mutation-drug pairs,
and the top 1% were selected for further investigation.

Ethics statement
The GDSC, CCLE, and TCGA data utilized in this study are all available
publicly and thus no institutional review was required for data acquisition.
The WCDT was a multi-institutional prospective Institutional Review Board
(IRB) approved study (NCT02432001), including a tissue acquisition and
molecular profiling protocol, with all study participants providing written
informed consent to participate26.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available through the following
locations. The Genomics of Drug Sensitivity in Cancer (GDSC) data were downloaded
from the GDSC website (www.cancerrxgene.org). The Cancer Cell Line Encyclopedia
(CCLE) dataset were downloaded from the CCLE website (portals.broadinstitute.org/
ccle). The TCGA processed sequencing and clinical data were downloaded using the
UCSC Xena browser (xena.ucsc.edu). The WCDT dataset with Whole Genome
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