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Abstract

Great strides have been made in the field of reconstructing past temperatures based on models 

relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such 

reconstructions is to assess if current climate is anomalous in a millennial context. These 

regression based approaches model the conditional mean of the temperature distribution as a 

function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has 

considered methods which help reduce the uncertainty inherent in such statistical paleoclimate 

reconstructions, with the ultimate goal of improving the confidence that can be attached to such 

endeavors. A second important scientific focus in the subject area is the area of forward models 

for proxies, the goal of which is to understand the way paleoclimate proxies are driven by 

temperature and other environmental variables. One of the primary contributions of this paper is 

novel statistical methodology for (1) quantile regression with autoregressive residual structure, (2) 

estimation of corresponding model parameters, (3) development of a rigorous framework for 

specifying uncertainty estimates of quantities of interest, yielding (4) statistical byproducts that 

address the two scientific foci discussed above. We show that by using the above statistical 

methodology we can demonstrably produce a more robust reconstruction than is possible by using 

conditional-mean-fitting methods. Our reconstruction shares some of the common features of past 

reconstructions, but we also gain useful insights. More importantly, we are able to demonstrate a 

significantly smaller uncertainty than that from previous regression methods. In addition, the 

quantile regression component allows us to model, in a more complete and flexible way than least 

squares, the conditional distribution of temperature given proxies. This relationship can be used to 

inform forward models relating how proxies are driven by temperature.

Keywords
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1 Introduction

The study of climate over the Earth’s history is a topic of interest whose relevance has 

increased rapidly with the growing concern over anthropogenic global warming (AGW), or 

more formally known in the scientific literature, as climate change due to anthropogenic 

causes (CC). Within the wide realm of climate, the study of Earth’s temperature is of central 

importance, as even small changes in temperature over an extended period of time can have 

drastic effects on ecosystems (loss of suitable habitat) (Mann et al. 1998), agriculture (crop 

yields) (Porter and Semenov 2005; Sheehy et al. 2006; Schlenker and Roberts 2009; 

Solomon et al. 2007), and even geography (melting ice caps, rising water levels) (Mann et 

al. 1998).

An important component in the study of Earth’s temperature is the reconstruction of past 

temperatures using paleoclimate proxies. Paleoclimate proxies are essentially natural record-

keepers that are understood to be related to temperature, can be resolved at some known 

temporal resolution, and can reach back centuries. For example, tree-ring widths are known 

to be related to temperature, and are distinguishable at an annual resolution. Hence by taking 

a core from the trunk of a very old tree, insight into historical temperatures can be gained. 

Other proxies include marine sediments, ice cores, and coral. By calibrating a statistical 

model between the proxies and known temperatures over the period where there exists a 

reliable temperature record, reconstructions of past climate can be made reaching back as far 

as the proxies do, with some going back more than a millennium.

For better or for worse, the results of past temperature reconstructions have been used to 

inform policy. Although General Circulation Models / Global Climate Models (GCMs) 

consider the case for AGW in the future, reconstructions of past temperatures, such as that in 

(Mann et al. 1998), can provide jarring and easily interpretable suggestion from a different 

perspective. In the interest of properly informing policy-makers and the public that elects 

them, it is crucial that such reconstructions be done with the utmost statistical rigor. In 

addition, reconstructions of past climate can help validate the GCMs that predict future 

temperatures. As it were, the statistical multiproxy paleoclimate reconstruction problem is a 

very challenging one, as there is relatively little data, high noise, and significant spatial and 

temporal dependence to be accounted for.

Many authors have made huge strides in the task of modeling mean annual temperature over 

approximately the past millennium and beyond. We avoid an extensive literature review 

here, and refer the reader to the very useful work of Tingley et al. (2012) for a 

comprehensive overview. The exact nature of the hindcasts of temperature time series varies 

from author to author, with some focusing on just global or hemispherical means, see 

references 3–14 of Mann et al. (2008), while others approach the problem of predicting 

regional mean annual temperatures across the globe (Mann et al. 1998, 2008; Rutherford et 

al. 2005). A few authors have even attempted the difficult task of reconstructing climates of 

the past over the entire globe using paleoclimate proxies (Tingley and Huybers 2010a,b). 

Although these various approaches differ in their modelling assumptions and specific 

statistical methodologies, to our knowledge they all attempt to fit the conditional mean of 

the temperature using some variant of least squares regression (LS). A related question in 
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this regard also pertains to investigating methods that reduce the uncertainty inherent in such 

reconstructions.

One of the key features of this paper is the development of a novel statistical methodology 

which combines quantile regression with autoregressive (AR) structure in the residuals. In 

addition, an algorithm for estimation of model parameters is proposed and analyzed. In order 

to undertake uncertainty quantification, a comprehensive framework for statistical inference 

of these parameters is developed and analyzed. Although the key contribution of the paper is 

the proposed statistical methodology, the motivation behind the development of the method 

is the important application for which it is well-suited.

This paper seeks to approach reconstructing Northern Hemisphere (NH) temperatures over 

the past millenium through temperature-related proxies by a more robust approach than has 

been taken in previous work. This is achieved through our time-series version of quantile 

regression (QR), with two useful end products. We show that in our millenial reconstruction, 

there is a significant statistical payoff from the robustness of quantile regression as 

compared to least squares techniques. In addition, by using the fact that quantile regression 

can be applied to any quantile from 0 to 1, we can model the entire conditional distribution 

of temperature given the proxies, instead of being restricted to a parameterized distribution.

The stochastic modeling of how temperature sensitive climate proxies are causally affected 

by climate processes is also an important area of research within the broader statistical 

paleoclimate community, see Tingley et al. (2012) for an instructive overview. From an 

earth sciences perspective the need to model and understand how a given proxy varies as a 

function of temperature and climate is compelling, and is a complex, intricate and only 

partially understood process. Such models are often referred to as forward models in the 

literature and are used to specify the mechanisms which generate data in the paleoclimate 

context. Constructing forward models requires significant scientific knowledge, as each 

proxy type responds differently to environmental factors. Hence proxy-specific forward 

models are required in order to gain meaningful insight into them. Clearly, constructing 

forward models endeavors have tremendous values for both understanding how each proxy 

type record temperature and also their ability to do so. Several authors have looked into the 

specification of functional forms for forward models. Both linear and non-linear models 

have been considered in the literature, see Evans et al. (2006); Tolwinski-Ward et al. (2011) 

to name just a few. These functional forms aim to describe the conditional distribution of the 

proxies given the temperature, i.e., f(P|T). Modeling this conditional distribution in a flexible 

way that incorporates differences at the extreme quantiles has the ability to explain how 

different proxies respond to extreme temperatures. We shall demonstrate that the 

methodology developed in this paper is useful for obtaining conditional quantile estimates.

The remainder of the paper is organized as follows. Section 2 introduces the quantile 

regression approach with autoregressive structure in the residuals. Estimating model 

parameters and undertaking uncertainty quantification of parameter estimates are also 

investigated in detail. Section 3 introduces the climate data that is used in our application, as 

well as some data-specific considerations for applying the above methodology. Section 4 

presents a millenial reconstruction, and demonstrates the improvement over analogous least 
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squares techniques. Section 5 shows the result of modelling a range of quantiles of the 

conditional distribution of temperature given the proxies. Section 6 discusses conclusions 

and possible future directions.

2 Methodology

2.1 Theory of Quantile Regression

Readers already familiar with quantile regression can skip this subsection. While least 

squares regression (LS) fits a model for the conditional mean of a response variable given 

some predictor variables, quantile regression (QR) fits a model for some conditional quantile 

τ ∈ (0, 1) of a response variable given some predictor variables. The two are similar in that 

both solve a minimization problem where the objective function is the sum of some norm of 

the residuals of the model. The method of least squares minimizes the sum of squared 

residuals, while QR, in the τ = 0.5 case, minimizes the sum of the absolute values of 

residuals and corresponds to the method of least absolute deviations. In the general τ case, 

the absolute value function |x| is replaced by the so-called ‘check’ function (Koenker 2005), 

see Figure 1:

(2.1)

Thus the QR estimate β̂
τ of the conditional τth quantile of a response y given predictors x is

(2.2)

where n is the number of observations (yi, xi) and p is the number of predictors. Note we 

have absorbed the intercept into β as its first component, and thus treat the xi as (p + 1)-

vectors with first component equal to one.

From (2.2) it is evident that separate models can be fitted for each conditional quantile. 

Contributions of each predictor can be analyzed at different quantiles in order to explore 

relationships beyond that with the conditional mean, the only relationship revealed by 

standard least squares regression. Also note that the estimator in (2.2) is equivalent to the 

maximum likelihood estimator (MLE) for a linear model with i.i.d residuals with probability 

density function:

(2.3)

for some b > 0. The residual distribution in (2.3) reduces to the Laplace distribution when τ 

= 0.5. The above also reveals the robust nature of quantile regression, as this residual 

distribution has heavier tails than the Gaussian distribution.

One of the setbacks of QR as compared to LS is the computations required to obtain the 

quantile regression estimator, β̂
QR. In particular, from basic linear algebra, LS has a closed 

form solution for the least squares estimator, β̂
LS, but QR is traditionally solved by 
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computational optimization methods such as linear programming. The reader is referred to 

(Koenker and D’Orey 1987) for insightful ways to exploit the structure of the QR problem 

to improve the efficiency of the straightforward linear programming approach.

2.2 Modelling Autoregressive Structure in Residuals

Li et al. (2007) note that the residuals of models fit to paleoclimate proxies are not 

independent, and in fact tend to exhibit autoregressive (AR) behavior. Other authors have 

also found low order autoregressive structure in the residuals (McShane and Wyner 2011; 

Tingley and Huybers 2010a,b; Tingley et al. 2012). To this end, we propose the linear QR 

model with AR(q) residuals for the τth conditional quantile of the response as follows:

(2.4)

with  an AR(q) process under the model

(2.5)

where the  are i.i.d. with some distribution  whose τth quantile is zero, see Figure 2. 

Thus the conditional τth quantile of the response, Q(τ)(yi)|xi is given by

Note that through the AR structure in the residuals, we have also implicitly conditioned 

Q(τ)(yi)|xi on some previous data, namely, yi−q, …, yi−1, xi−q, …, xi−1. It is important to 

recognize explicitly that the conditional τth quantile is a parameter of the conditional 

distribution (as compared to a predicted value).

In recent work, Koenker and Xiao (2006) provide a useful method for fitting the quantiles of 

a univariate autoregressive time series. In this paper however, we seek to address the 

different problem of relating predictors to a response variable. In particular, we provide a 

statistical methodology and an associated algorithm for multivariate QR with AR residual 

structure. Reformulating the QR optimization problem to accommodate the AR residual 

structure as given in (2.5) unfortunately results in a nonconvex objective function. This is 

formally stated in the following Lemma.

Lemma 1. Consider the quantile regression model above in (2.4) and (2.5) with 

autoregressive residual structure of order q ≥ 1. Let {(y1, x1), …, (yn, xn)}, xi ∈ ℝp, n > p + 

q be i.i.d. observations and let coefficient estimates ϕ̂
τ, β̂

τ be given by the following 

optimization:

(2.6)

Janson and Rajaratnam Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where ρτ is the check function defined in Section 2.1, B the backshift operator, and ϕ(․) the 

AR polynomial defined by ϕ(z) = 1 − ϕ1z − ⋯ − ϕqzq with ϕ = (ϕ1, …, ϕq). Assume that the 

predictors satisfy the mild regularity condition that there exists some j ∈ {1, …, p} such that

(2.7)

where xi,j refers to the jth component of the ith observation. Then the objective function in 

(2.6) above is not convex.

Proof. See Appendix A.

Remark: Note that for a given xi, condition (2.7) only excludes 2n−q one-dimensional sets 

from ℝn−q. So if xi is drawn from a continuous distribution on ℝn−q, this constraint will be 

satisfied with probability 1.

Remark: It is worth mentioning here that (2.6) yields the maximum likelihood estimator 

(MLE) when the innovations δi from the model (2.4) – (2.5) are distributed as in (2.3). 

Particularly in the case when τ = 0.5, (2.3) becomes the Laplace distribution. This analogy 

provides statistical safeguards to the solution in (2.6). In particular, although the density is 

not differentiable with respect to the parameter for all x, Daniels (1961) proves a general 

theorem not requiring differentiability that establishes large sample properties (especially 

asymptotic normality) of the maximum likelihood estimator. Note also that Cramér 

(1946a,b) establishes consistency of such estimators under very general conditions (see also 

Lehmann and Casella (1998) for more details).

As a result of Lemma 1, standard tools from convex optimization are not applicable for 

solving the above problem. We therefore propose an iterative method to optimize the 

objective function. The procedure we propose for obtaining parameter estimates for the 

model (2.4) – (2.5) alternates between fitting QR (assuming i.i.d. residuals) and fitting an 

AR model to the residuals. We shall refer to this as the “QUAntile Regression with Time 

Series errors” algorithm (QUARTS). The method does assume however that the order of the 

residual AR process is given a priori. This problem will be tackled after presenting the 

algorithm. We now proceed to describe the QUARTS approach in detail.

Let QRfit(y,X, τ) denote the function that takes as arguments a vector y of n responses, an n 

× (p + 1) design matrix X, and a quantile τ ∈ (0, 1), and returns a column vector consisting 

of a fitted intercept followed by p fitted regression coefficients obtained by applying some 

QR fitting technique to regress the conditional τth quantile of y on X. Furthermore, for an 

AR(q) model of a time series {εi}

(2.8)

where α is an intercept term and the δi are i.i.d. innovations, define the AR polynomial as 

the qth-order polynomial ϕ(z) = 1 − ϕ1z − ⋯ − ϕqzq, and define the row vector ϕ = (ϕ1, …, 

ϕq). Then the fitted model above for the residuals can be written as follows:
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where B denotes the backshift operator Bεi = εi−1. Now let Xi denote the ith row of the 

matrix X, and for a row vector x𝖳, define the row vector ϕ(B)x𝖳 coordinatewise, which is to 

say, (ϕ(B)x𝖳)j = ϕ(B)xj. Let X̃ be the matrix composed of the lower n − q rows of X (to be 

explained later). With the above notation established, the QUARTS algorithm for fitting the 

conditional τth quantile for a given data set y, X with AR(q) residuals is given in Algorithm 

1.

Algorithm 1

Quantile Regression with Time Series Errors (QUARTS)

Inputs: y, X, q, τ

1 Set ϕ(0) = 0𝖳, ε(0) = 0.

2 Given ϕ(j−1), ε(j−1), let

y̌i−q = yi − ϕ1
( j−1)εi−1

( j−1) − ⋯ − ϕq
( j−1)εi−q

( j−1), ∀ i ∈ {q + 1, … , n}βτ
( j) = QRfit(y�, X�, τ)ε ( j) = y − X βτ

( j)

3
Using QR, fit the regression model εi

( j) = ϕ1εi−1
( j) + ⋯ + ϕqεi−q

( j) + δi, for i ∈ {q + 1, …, n}.

Let ϕ(j) be the estimated AR row vector.

4
Repeat steps 2 and 3 until ϕ(j) and βτ

( j)
 converge to steady-state solutions ϕ and βτ, respectively. Return βτ as the final 

coefficient vector and ϕ as the final AR model coefficient vector.

The QUARTS algorithm can be framed as a cyclical block coordinate descent method where 

the two blocks correspond to regression parameters and autoregressive coefficients 

respectively. Such optimization methods applied to non-differentiable, non-convex functions 

have in general been shown to have good convergence properties. In particular, (Tseng 

2001) proves that the cluster point of the sequence of iterates given by the block coordinate 

descent method is a stationary point of the objective function (see also Sargan (1964) for 

more details). The idea of the QUARTS algorithm is to iterate back and forth between fitting 

the QR regression coefficients and fitting the AR coefficients. Once QR regression 

coefficients are obtained in step 2, AR coefficients are fit to the residuals in step 3. When we 

iterate back to step 2, the deterministic AR component of the residuals, i.e., 

 for the ith residual, is then removed from the response vector y to 

generate a new vector y̆. New QR coefficients are then obtained using y̆ as the response, and 

we return again to step 3. Note that we choose to fit only the latter n − q data points so as to 

avoid edge effects from the first q points, for which the full AR model (2.8) is not defined 

because it requires the previous q residuals.

2.3 Choosing a Residual Autoregressive Order

As described in the previous subsection, given some QR fitting procedure QRfit, the order of 

the AR residual process q is required a priori before using the QUARTS algorithm. The 
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value of q can be determined through a combination of calculating residuals and statistical 

hypothesis testing to assess serial correlation. This process of determining the lag of the AR 

process is described in Algorithm 2.

Algorithm 2

Residual Autoregressive Lag Determination Algorithm (RARLD)

1 Set q = 0

2 Given q, fit the data with QUARTS and let the innovations be δ1, …, δn.

3 If the time series δ1, …, δn exhibits AR behavior, set q = q + 1 and return to step 2.

Otherwise, return q.

Note that in the first pass of this algorithm, QUARTS need not be applied since q = 0 

corresponds to assuming i.i.d. residuals. In other words, standard QR fitting is sufficient. 

The RARLD algorithm above starts with a lag of q = 0 and successively increases q until the 

innovations no longer exhibit AR behavior. In particular, the statistical hypothesis testing 

component comes in at step 3, in deciding whether or not the innovations exhibit AR 

behavior. For these purposes, one can employ the autocorrelation function (ACF), partial 

autocorrelation function (PACF), and Ljung-Box tests up to some given lag. Using test 

levels of 5% to evaluate the significance of these tests, statistically informed assessments of 

the AR structure (or lack thereof) could be made for a given set of innovations.

2.4 Statistical Inference for Autoregressive Quantile Regression Outputs

The previous subsections (2.2 and 2.3) define an objective function and propose an iterative 

method to determine parameter estimates. For this purpose, the distribution of the 

innovations does not need to be specified. We now proceed to develop a statistical 

framework for uncertainty quantification of parameter estimates, which on the other hand 

does require the specification of a statistical model for the innovations. This is akin to least 

squares minimization in OLS vs. specifying the distribution of the  for the 

purposes of statistical inference. In particular, there are three main model outputs for which 

we are interested in quantifying uncertainty: the regression coefficients β̂τ and ϕ̂
τ, the 

conditional quantiles Q̂(τ)(yi), and the reconstructed temperatures (or hindcasts) ŷi (which 

we shall see will have the same estimates as the Q̂(τ)(yi), but with different uncertainty). For 

all three we assume that a good approximation to the distribution of the residual innovations 

can be made, so that a form of parametric bootstrap can be employed (although our 

methodology is flexible enough to allow for the non-parametric bootstrap).

A. Estimating the innovation distribution—Suppose we are given a data set 

consisting of a response vector y = (y1, …, yn)𝖳 and predictor variables x1, …, xn ∈ ℝp. 

Recall from Section 2.2:
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After using a fitting method such as QUARTS to generate parameter estimates β̂(τ) and 

, the conditional τth quantile of the n observations can be estimated by setting 

 and letting

(2.9)

where  for i ∈ {1, …, n}. Note that the first q estimates will be directly 

tainted by edge effects from setting , and can be discarded, or if retained, 

should be used with little confidence. Discarding the first q observations, we now have a 

sample of size n − q of estimated innovations, calculated as

from which to try and estimate  for the purposes of uncertainty quantification. This can 

be achieved in a parametric way by assuming a distribution for  and using the parametric 

bootstrap. Alternatively, the empirical distribution of the  can also be used to estimate 

, which is equivalent to using the nonparametric bootstrap.

B. Uncertainty quantification of regression and AR coefficients—For regression 

coefficient uncertainty, we follow the standard parametric bootstrap procedure, except we 

hold the AR order of the residuals, q, as a constant across bootstrap replications. Using 

to generate new i.i.d. innovations δ̃(τ), we can create a new stationary time series for each 

bootstrap replication:

(2.10)

so that a new bootstrap response vector can be calculated as

(2.11)

Then the bootstrapped coefficient estimates, denoted by the β̃(τ)’s and ϕ̃(τ)’s, are each 

calculated by using the same method (QUARTS) as was used to calculate β(̂τ) and ϕ̂(τ). The 

distribution of these bootstrap coefficients can now be used to quantify the uncertainty of the 

QUARTS estimates for the parameters β and ϕ.
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C. Out of sample conditional quantile estimation—On the other hand, for 

uncertainty of out-of-sample predictions, more care is needed. First we need to discuss how 

to generate out-of-sample point estimates. In particular, suppose that we wish to estimate the 

conditional τth quantile of the next m realizations of the response variable, yn+1, …, ym+n, 

based on the next m realizations of the predictor variables, xn+1, …, xn+m. Due to the model 

specifications in (2.4) and (2.5), for any given τ, the estimated quantiles Q̃(τ)(yn+1)|xn+1, …, 

Q̂(τ)(yn+m)|xn+m can also serve as point predictions of yn+1, …, ym+n. However, to minimize 

uncertainty and bias, this is best done with τ = 0.5: the conditional median. This is 

analogous to using the estimated conditional mean, , for out-of-sample 

prediction in the least squares setting (for the sake of brevity new notation is not introduced 

here).

For out-of-sample prediction, namely i > n, we no longer have yi with which to calculate 

. Using the (assumed known) distribution  of the , the  can be recursively built 

up as

(2.12)

for (i > n), where  is some summary parameter of the distribution  that represents the 

best estimate of the out-of-sample  (for example,  might be the mean of  if  is 

Gaussian). Then the point predictions 

 can be calculated from (2.9).

D. Uncertainty quantification of out-of-sample point predictions and 
conditional quantile estimates—Now that we have point predictions, we can estimate 

their parametric bootstrap sampling distributions for the purposes of uncertainty 

quantification. As mentioned earlier, we assume that  can be estimated from the 

sequence . To estimate the pathwise distribution of the reconstruction ŷn+1, …, 

ŷm+n, we will generate many such sample paths ỹn+1, …, ỹm+n using the parametric 

bootstrap and look at the resulting empirical distribution of such paths. Each path is 

generated as follows:

Use , β̂(τ), and ϕ̂(τ) to generate a bootstrap response vector ỹ1, …, ỹn as in (2.10) and 

(2.11). From ỹ1, …, ỹn and x1, …, xn, generate bootstrap coefficient estimates β̃(τ) and ϕ(̃τ), 

and calculate the bootstrap path recursively as in (2.12):

with the  drawn i.i.d. from . Similarly, for measuring uncertainty in the conditional 

quantile estimates, we can calculate bootstrap paths of the conditional quantiles as
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Note that the difference between out-of-sample point prediction, uncertainty quantification 

of this predicted value, and uncertainty quantification of the conditional quantile estimate 

lies in either the use of , the use of , or the exclusion of the , respectively. This 

distinction is analogous to the difference between predictions, prediction intervals, and 

confidence intervals in the traditional Gaussian least squares setting. By using the above 

process to quantify uncertainty, we simultaneously take into account both coefficient 

uncertainty (including coefficient interdependencies) and the uncertainty from the random 

δ(τ)’s. We note that the above approach extends the uncertainty quantification technique 

used in Li et al. (2007).

E. Overfitting of innovation distribution—A quick note on estimating fδ is in order. 

Any parameters associated with the standard deviation of fδ should be approached with 

caution. For example, choosing fδ ~ N(μ̂, σ̂2), where μ ̂ is the sample mean and σ̂ the sample 

standard deviation of , would constitute overfitting. This reasoning follows 

from the fact that the model is fit by solving an optimization problem that minimizes an 

analogue of the variability parameter that is similar to σ̂ (namely the average check function 

of the innovations). An improvement would be to use a method similar to cross validation 

that is used in Li et al. (2007): which is to split up the data into sections, and for each section 

fit the model to all the other sections and calculate the sample standard deviation of the 

prediction innovations from that model within that section. Thereafter the average of these 

sample standard deviations across sections is used as a value for σ̂. It is clear that this 

holdout procedure aims to reduce overfitting.

3 Background on Paleoclimate Data and Implementation

3.1 Overview of Paleoclimate Proxy Data

A widely used paleoclimate proxy data set is that found in Mann et al. (2008) (heretofore 

M081), and will also be used for illustrating the methodology in this paper. The proxy record 

in M08 contains 1,209 time series, 1,037 of which are in the northern hemisphere (NH), and 

is comprised of tree-ring, marine sediment, speleothem, lacustrine, ice core, coral, and 

historical documentary series (Mann et al. 2008). The NH proxy series span 248 5°×5° grid-

points on the globe. They are given at annual resolution, with the vast majority beginning 

between the years 1000 and 1800, and all of them ending between 1998 and 2003. Figures 3 

and 4 show the number of available proxies over time and space, respectively.

M08 also contains a number of instrumental records, originating from the University of East 

Anglia (Norwich, UK) Climatic Research Unit2. The instrumental record we use from M08 

is a spatial average of annual NH land and ocean temperatures, for which missing spatial 

1Available at: http://www.meteo.psu.edu/~mann/supplements/MultiproxyMeans07/data/
2Raw data used is ‘HadCRUT3v’ from: http://www.cru.uea.ac.uk/cru/data/temperature/
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points are imputed using the RegEM method (Schneider 2001). This series runs from 1850 

to 2006 and has had the mean of the temperature during the base period 1961–1990 

subtracted off. Both the instrumental and proxy records have had substantial imputation and 

smoothing. Like many others before, for the purposes of this paper we take this data as 

given and assume that the aforementioned imputations/smoothing were performed properly.

3.2 Implementation of QUARTS Methodology in the Proxy Data Context

Section 2 was intentionally made as general as possible in order to develop the statistical 

methodology in this paper. In the current subsection, we will go into more specifics of the 

paleoclimate reconstruction application, recalling that the methodology was motivated by 

this particular application. In particular, by using a robust modelling procedure, we aim to 

assess if we can reduce the reconstruction uncertainty reported in previous work (Li et al. 

2007; Mann et al. 2008; McShane and Wyner 2011). Having said this, we observe that the 

statistical methodology that is developed in Section 2 can also be useful in other application 

areas.

It is important to also point out the assumptions that are implicit in our model. Regarding the 

data itself, as mentioned above, the available instrumental and proxy record is taken for 

granted, although it is far from being a collection of direct observations of response and 

predictor variables. For the model, we assume that the relationship between the proxies and 

the conditional temperature quantiles is linear (or at least can be well approximated by a 

linear relationship over the range of values that appear in the time-span of our 

reconstruction). Note that this assumption is a relaxation of the explicit assumption of 

normal errors that is made in any standard LS paleoclimate reconstruction. A further 

assumption that is implicitly imposed is the principle of uniformitarianism, which is that the 

relationship between the proxies and temperature is constant over time.

There are a few other implementation details that are specific to the paleoclimate proxy 

application under consideration. For the sake of completeness, we will elaborate on the 

challenges that arise in this regard in the remainder of this section, and present the results of 

our two analyses in the following two sections. A reader interested in the final results can 

skip this subsection and proceed straight to Section 4.

High dimensional nature of paleoclimate data sets—We first note that the number 

of instrumental data points is small compared to the number of paleoclimate proxy series, 

and thus, the paleoclimate problem is very much in the domain of the large p, small n 

regime. Paleoclimate reconstruction problems often require some form of regularization, and 

we will use principal components quantile regression (PCQR) for this purpose. PCQR 

mimics its LS counterpart by first rotating a problem’s design matrix from its original 

predictor-space to its eigenspace. Thereafter, only the first k components are retained, 

ordered by decreasing eigenvalue, before the fitting technique is applied. In particular, 

principal components is used to reduce the number of proxies, and the principal components 

themselves now serve as the predictor variables. Ten-fold cross validation (Hastie et al. 

2009) is used to choose the number of principal components, k, that are retained. The choice 

of using principal components, as opposed to other regularization methods that penalize the 
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magnitude of the regression coefficients (in particular L1-penalization/Lasso and L2-

penalization/Ridge), was preferred for our approach because penalties result in biased 

estimates. The standard bootstrap has more difficulty accounting for the extra error that 

comes from biased estimation. For the remainder of the paper, QUARTS will refer to the 

same algorithm when dimension reduction via principle components is incorporated.

Non-i.i.d. residuals—Autocorrelation in the residuals prevents random allocation of data 

points to folds for the purposes of cross validation. In particular, standard cross validation is 

often implemented by splitting a data set randomly into folds and for each fold, fitting the 

model to the rest of the data and measuring the predictive power of that model on the 

holdout fold. However, random allocation to folds from our dataset would destroy the time 

series structure of the data, and thus the data is instead split evenly into ten contiguous 

blocks. For the first and last holdout blocks, the model is fit to the remaining nine blocks as 

usual, but for the middle eight blocks, the edge effects mentioned in Section 2.4 need to be 

accounted for twice in order to account for the break between the two blocks of data (to be 

discussed later in this subsection).

Another challenge arises because the goal of QUARTS is to minimize the value of

(3.1)

overall observations . However, although the  are always available, yi is naturally 

not available out-of-sample (i.e., in a given holdout block), and thus any out-of-sample εî 

cannot be computed exactly as , but need to be estimated from their time series 

structure using (2.12). However, estimated in this manner, the out-of-sample ε̂
i will quickly 

converge to a mean value, losing all time series structure. Thus performing a truly out-of-

sample prediction on the holdout block does not adequately incorporate the AR component 

of the fitted model. To solve this problem, the model is instead propagated backwards 

through the validation period using the true residuals as calculated using the known 

temperatures. Thus we are explicitly using the check function of the innovations as 

suggested by (3.1) to measure error.

Strong autoregressive structure in temperature record—We note that the 

temperature record itself has an AR structure. This property encourages a stronger AR 

component in the model, though the goal is for the proxy variables to explain the response 

variable as much as possible. A time series model with no predictors fits the temperature 

record fairly well, but has very little predictive power in a hindcast. This becomes a problem 

when assessing the fit of models with a very low number of principal components (k), 

because cross validation will tend to favor them as having small out-of-sample error. In 

order to mitigate this effect, the models tested by cross validation were restricted to have at 

least k = 3 components.

Edge effects—The cross validation holdout block at the beginning of the sample will have 

its first few points tainted by the edge effects from the AR structure of the residuals. In using 

(3.1) to measure error in the holdout blocks for validation, it is required that the preceding q 
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residuals are defined for each point. This is not the case for the first holdout block (to be 

more precise, the holdout block at the end of the sample in our case, since we fit backwards 

in time), and this edge effect taints the first few error measurements. To correct for this, 

instead of splitting the entire instrumental period of 1850–1998 into ten blocks, only 1850–

1994 was split. For the holdout block ending in 1994, the period 1995–1998 is excluded 

from the calibration and validations periods, but instead is used to absorb the 

aforementioned edge effect. For the other cross validation holdout blocks, the years 1995–

1998 is included in the calibration period as usual. The choice of four points to absorb the 

edge effect represents a compromise between removing too many points and keeping the 

validation measurements in the last block uncorrupted, and is also justified because q is very 

small.

Innovation distribution overfitting—A problem that is often encountered is that using 

the in-sample variance of the estimated innovations leads to overfitting. We will see in the 

following two sections that Gaussian approximations N(μ, σ2) for f̂δ will be adequate for 

uncertainty quantification. For μ̂ we can use the sample mean, but to avoid overfitting, we 

adapted a technique from Li et al. (2007) for estimating the variance. We split the 

instrumental period minus four years into ten contiguous parts, and for each part, fit the 

model to the rest of the data. The true residuals were then used to propagate that model 

through the holdout block (so far the same process as the one used by cross validation to 

choose the number of principal components), then calculated the sample standard deviation 

(dividing by n − 1 instead of n to remove bias) of the innovations. These ten values of 

standard deviation were then averaged to obtain our estimate σ̂ of the standard deviation of 

the true innovation distribution.

For the sake of completeness, one thing should be noted about this last technique. Although 

the goal is to avoid overfitting, the method proposed above does not quite reach that goal. 

By taking the number of principal components and the AR order of the residuals as given, 

model features are included that have already been fit to the whole data set, and thus the ten 

models fit are not truly out-of-sample. However, the alternative is to use cross validation to 

choose the number of principal components for each of the ten holdout blocks (which 

introduces unacceptably high variance into the model) and to go through the RARLD 

algorithm for each cross validation sample, which in turn is prohibitively slow. Furthermore, 

there is reason to believe the overfitting should be fairly slight: only the number of principal 

components, and not the principal components themselves, have been fit to the data. In 

addition, components are included in the model in order of their eigenvalues, an ordering 

which is completely independent of the response vector. For the same reasons above, the 

same assumption (holding the number of principal components and the residual AR order 

constant) is made in all bootstrapping calculations as well. Moreover, since each bootstrap 

data set is generated using the same AR order as the original model, it is likely that this same 

order would be chosen anyway. Hence allowing for uncertainty in the lag will tend to have 

less merit when carrying out bootstrap calculations.
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4 Robust Millennial Reconstruction with Reduced Uncertainty

We now proceed to apply the methodology developed in previous sections to an important 

problem in the field of climate change, namely the task of reconstructing past climates. As 

compared to least squares methods, least absolute deviation methods are quite robust, 

suggesting the use of QUARTS at the 0.5th quantile to reconstruct a conditional median. 

This is comparable to, but promises to be more robust than, previous reconstructions of the 

conditional mean. Many of the proxies, as pointed out in McShane and Wyner (2011), are 

highly irregular time series. Hence, the relationship between the proxies and temperature 

may be quite different from the restrictive setting in which least squares regression is 

asymptotically efficient.

For the millennial reconstruction, we choose 998 AD as the start year, which is one 

millennium before the earliest of the proxy end years, 1998. Since not all the proxies go 

back to 998, the reconstruction uses only the 79 proxies that do. Although this represents a 

fairly restricted subset of the entire proxy record, the authors are not aware of any systematic 

effect such a selection might have on the reconstruction or its uncertainty. We note that our 

approach in this paper can be easily extended to take advantage of all the available paleo-

climate proxy records. In particular, the missing values in the proxy record can be imputed 

using the expectation-maximization (EM) algorithm (Schneider 2001). This approach allows 

QUARTS to be implemented on all 1,037 NH proxies. The final conditional median model 

that was fitted uses 9 principal components with AR(1) residuals. Appendix B gives the 

details of determining the lag of the AR residual process through the RARLD algorithm, 

fitting f̂δ, and correcting for overfitting. R code to implement the QUARTS methodology is 

available at…

Figure 5 shows the 1000-year reconstruction, along with a 95% parametric bootstrap 

pathwise confidence interval. The reconstruction and its prediction interval endpoints are 

smoothed using a cubic spline with 115 degrees of freedom. Note that the uncertainty is 

calculated as in part D of subsection 2.4, i.e., it is prediction uncertainty, where the 

conditional median provides the point estimates. This is entirely analogous and comparable 

to prediction uncertainty using the conditional mean for point prediction in the standard least 

squares setting. The QUARTS reconstruction has several attractive features. First, the 

reconstruction is qualitatively similar to previous reconstructions in the sense that the 

general “hockey stick” shape is still apparent. We also note that for the beginning of the 

reconstructed millenium, the QUARTS reconstruction is more similar to earlier 

reconstructions (Mann et al. 1998, 2008) than that in McShane and Wyner (2011) in that it 

does not run up as high in the beginning of the reconstructed period.

To see improvements in uncertainty, it can be compared directly to an analogous analysis 

(choosing the AR residual order, number of principal components, and correcting for over-

fitting in the same way) using generalized least squares (GLS). Although the authors do not 

explicitly present a reconstruction, this is exactly the method used in Li et al. (2007) applied 

to the chosen number of principal components (M08 was not available in 2007, and thus 

only 14 proxies were used in their reconstruction, obviating the need for regularization). For 

GLS, AR(0) and AR(1) residual structures are rejected while an AR(2) residual structure, 
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with 3 principal components, does not reject the i.i.d. innovations hypothesis, so this is the 

model chosen for the GLS fit. Already, an advantage of the QUARTS approach are 

revealed: GLS fits best with fewer principal components and a higher order residual AR 

structure, representing a shift in the model away from the proxies and towards the residuals 

as compared to QUARTS. Such a shift means that the GLS model will lose relatively more 

explanatory power going back in time, as the AR residual structure falls off quickly in 

magnitude as one leaves the instrumental period and reconstructs years prior to 1850. This 

follows from the fact that the residuals cannot be directly computed out-of-sample where the 

response variable is unavailable and thus must be estimated from the model (2.5), and 

without the randomness of the , (2.5) quickly converges to a constant.

Figure 6 compares the two reconstructions (both using the same smoothing technique as in 

Figure 5). The improvement in prediction interval width is quite stark. The average outof- 

sample prediction interval widths are 0.61 °C for QUARTS vs. 0.91 °C for GLS. There is 

thus a 50% increase in uncertainty in the GLS approach. The QR reconstruction also appears 

to capture the comparatively cool period just before the industrial revolution, known as the 

“Little Ice Age” (Matthes 1939; Lamb 1990; McShane and Wyner 2011) better than GLS. 

For both models, the in-sample uncertainty is shown for reference. Since the temperature 

during the instrumental period is given and therefore fixed, there is no uncertainty in this 

period. In this case, the in-sample uncertainty is just the fitted values with the innovation 

variance corrected for overfitting. As expected, the actual coverage in-sample is slightly 

higher than 95% (to account for overfitting) for both models. It should also be noted that 

although applying the RARLD algorithm to GLS results in an AR(2) residual structure, as a 

heuristic lower bound on the GLS uncertainty, we also considered a GLS model with the 

more favorable values of q = 1 and k = 9. Note these values for q and k come from the 

QUARTS fit and are entirely artificial and optimistic for GLS, which chooses q = 2 and k = 

9. Fixing these parameters for the GLS fit results in i.i.d. innovations and produces a point 

reconstruction similar to the two shown in Figure 6 with an average out-of-sample 

prediction interval width of 0.70 °C – still non-negligibly larger than that of QUARTS.

We can also compare the two models by looking at coefficient p-values. Using the principal 

component transformation, principal component coefficients can be converted to proxy 

coefficients, and bootstrap p-values for the proxy coefficients are easily calculated following 

part B of subsection 2.4. Table 1 compares the numbers of significant proxy coefficients for 

the 79 proxies available going back to 998 AD for (I) the optimal QUARTS model, (II) the 

optimal GLS model, and (III) the GLS model with residual AR structure and number of 

principal components matched to the optimal QUARTS model.

It seems the QUARTS model substantially outperforms the GLS model in either case in 

terms of the number of significant predictors across significance levels. This is to be 

expected of a more robust approach, but we also would expect the innovation variance to 

increase from GLS to QUARTS, since this quantity is explicitly minimized by the GLS 

solution. The lower overall reconstruction uncertainty for QUARTS reflects the fact that the 

lower parameter uncertainty more than makes up for the higher innovation variability. To 

explore why this may be the case, consider the settings under which GLS has well-defined 
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statistical optimality properties. In particular, GLS is the maximum likelihood estimator 

when the innovations are i.i.d. normal with constant variance. This is an approximation that 

was made for all the models in order to be able to use the parametric bootstrap to quantify 

uncertainty. However, if we perform the Anderson-Darling test for normality on the 

QUARTS innovations, we obtain a p-value of 2.0%. Thus the hypothesis of normality at the 

standard 5% significance level is rejected, hence justifying a more robust approach such as 

QUARTS.

As a check that the normality assumption in the parametric bootstrap did not substantially 

affect the uncertainty quantification, the same uncertainty quantification process (including 

correcting for overfitting) was also implemented using the nonparametric boot-strap. The 

resulting out-of-sample prediction interval widths were the same to significant digits for the 

two GLS models already mentioned, and 0.01 °C smaller for the QUARTS model. Hence 

the substantial reduction in uncertainty is retained, and in the process, the stability of the 

model to the specific uncertainty quantification technique employed is also verified.

A natural question to investigate is to see how our method compares to recently popularized 

Bayesian Hierarchical Models (BHM), such as BARCAST (Tingley and Huybers 2010a). 

We attempted to use BARCAST to fit the entire NH for the same 79 proxies used in our 

analysis, but due to the spatial structure inherent in the BARCAST model, the problem 

became extremely high dimensional. As a result, problems with Markov Chain Monte Carlo 

(MCMC) convergence prevented us from obtaining independent samples from the posterior, 

and thus any uncertainty analysis was not feasible. We note also that the BARCAST model 

assumes all error terms are Gaussian, and also assumes an isotropic parametric spatial 

covariance structure. Thus we would expect BARCAST to be less robust than QUARTS.

5 Nonparametric Modelling of Temperature Conditional Distribution

5.1 Introduction and Motivation

As discussed in detail in the introduction, there is much interest in determining the way in 

which proxies record temperature. To this end forward models aim to understand and 

specify the conditional distribution f(P|T) (where P denotes a given proxy, and T denotes 

temperature). We note that one can also study the condition distribution f(P|T) directly or 

through Bayes theorem. In particular note that

So the target conditional distribution f(P|T) can be inferred if the surrogate quantities f(T|P), 

f(T), and f(P) are available. Hence obtaining f(T|P) is not only useful for directly obtaining 

paleoclimate reconstructions or hindcasts, it is also potentially useful for understanding and 

specifying forward models. In particular, modeling the conditional quantile distribution f(T|

P) yields non-parametric insights into the entire distribution of f(P|T) and is more flexible 

than using the least squares approach. Such an endeavor is useful in understanding how 

proxies respond to climate/temperature extremes.
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5.2 Modelling Temperature Distribution Conditioned on Tree Ring Proxies

We now proceed to apply the methodology from this paper to the task of modelling the 

conditional distribution of temperature given a particular proxy type. We focus on tree ring 

proxies because they are by far the most numerous proxy type. In the M08 dataset, there are 

784 NH paleoclimate tree ring proxy records, the latest of which begins in 1761. To get a 

fairly complete view of the temperature distribution conditioned on the tree ring proxies, the 

0.1th, 0.25th, 0.5th, 0.75th, and 0.9th quantiles were fit, but in general any quantile τ ∈ (0, 1) 

can be fit.

The final models for the five quantiles chose 9, 9, 4, 4, and 5 principal components, 

respectively, with AR(1) residuals. Figure 7 shows the five estimated conditional quantiles 

over the entire period modelled, with the instrumental data superimposed for the years 

available. The fact that the fitted quantiles generally preserve quantile order is suggestive of 

our ability to estimate them well. In other words, they could inform a feasible forward 

model.

Another important component of our analysis is to examine the uncertainty of these 

conditional quantiles. Pathwise 95% confidence interval widths are shown in Figure 8. As 

expected, during the instrumental period, uncertainty increases as the quantiles diverge from 

the median. This is because the model is effectively being fit to fewer points as we move 

away from the median. Before the instrumental period, we see some unexpected behavior, 

with the uncertainty in the lower quantiles (τ < 0:5) being smaller than that in the higher 

quantiles (τ > 0:5) or even the median. In other words, the variance of the estimated 

(conditional quantile) parameter is less in the lower quantiles. Also note the stark difference 

between before and after 1850 for all of the quantiles. This occurs because the only 

uncertainty in the instrumental period comes from the uncertainty in the coefficients, while 

the out-of-sample uncertainty before 1850 accounts for coefficient uncertainty as well as the 

randomness in the preceding yi, which are of course not available out-of-sample and on 

which the conditional distribution depends.

6 Conclusions

This paper introduces a novel regression methodology that aims to combine the 

generalizability to serially correlated residuals of GLS with the robustness and distributional 

exibility of QR. By using the proposed quantile regression with time series errors 

(QUARTS) method, we are able to create a more robust multiproxy paleoclimate 

reconstruction than is possible by using traditional conditional-mean-fitting methods. By 

extending the bootstrap to the QUARTS framework, we are able to properly quantify 

uncertainty and show the benefits of this increased robustness. In addition, by combining the 

QR and uncertainty quantification we are able to perform a more nuanced analysis of proxy-

temperature relationships than has been done previously.

Our reconstruction captures many of the salient features of past reconstructions, and falls 

well within the uncertainty of the analogous GLS reconstruction and the useful 

reconstruction of McShane and Wyner (2011). Again the main distinction is that the QR 
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reconstruction has substantially lower uncertainty than any other reconstructions whose 

uncertainties have been properly statistically accounted for.

The application of our QUARTS methodology to examining the conditional distribution of 

temperature given the proxies is chiey a methodological, as opposed to a scientific, 

contribution. We are able to independently generate different quantiles of this distribution 

and evaluate their uncertainties. For the example of tree ring proxies, we also show that 

these conditional quantiles make sense when taken together, and could be used to 

approximate a full conditional distribution. It is our hope that proxy specialists such as 

dendrochronologists, will make use of this to inform and improve our understanding of 

forward models.

The generality of the methodology introduced in this paper allows it to be easily extended to 

many other time series regressions outside the earth sciences. However even within the 

paleoclimate proxy reconstruction context, there is more that can be accomplished. It has 

now been nearly a decade and a half since the end of these proxy records, and filling in the 

intervening years would greatly improve and inform statistical models. As pointed out in 

McShane and Wyner (2011), one of the shortcomings of paleoclimate reconstructions is 

their inability to capture the contemporary runup in temperatures, and more points within 

this runup period would alleviate this problem, at least in part.
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Appendix

A Proof of Lemma 1

Recall that if a square matrix M ∈ ℝm×m is positive semidefinite, then any principal 

submatrix must also be positive semidefinite. We will show that under the assumptions of 
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Lemma 1, there exists a 2 × 2 block diagonal submatrix of the full Hessian of the objective 

function in (2.6) that is not positive semidefinite, hence disproving convexity.

By assumption, let j ∈ {1, …, p} satisfy (2.7). Define the mixed partial derivative with 

respect to ϕ1 and βj of the objective function in (2.6) as follows:

where xi,j refers to the jth component of the ith observation. Let 

 be the dense set on 

which S(ϕ, β) is defined. Recall from (2.1) that , the derivative of the check function, is 

defined on ℝ\{0} as follows:

It is a simple matter of algebra to show that the matrix of second derivatives with respect to 

ϕ1 and βj of the objective function in (2.6) is equal to

on . The above principal submatrix of the Hessian has eigenvalues S(ϕ, β) and − S(ϕ, β). 

By the regularity assumption it is clear that S(ϕ, β) cannot equal zero, and hence one of the 

eigenvalues of the Hessian above must be negative for all points in . Therefore, the 

Hessian of the objective function in (2.6) is not positive semidefinite on the dense set . 

We can thus conclude that the objective function is not convex.

B Implementation Details for Robust Paleoclimate Reconstruction

The RARLD algorithm is used to first find a residual AR order. In particular, an AR(0) 

model is considered for the residuals: cross-validation chooses 13 principal components. 

Diagnostic plots for the innovations from fitting this PCQR model are shown in Figure 9. 

We see that AR(0) residuals are rejected on all counts, and hence by the RARLD algorithm 

an AR(1) model is fitted. The AR(1) residual model chooses 9 principal components3, see 

Figure 10, and does not reject the i.i.d. innovation hypothesis in any of the three plots shown 

in Figure 11. The final model can now be fitted, but in order to construct pathwise 

confidence intervals, a parametric distribution for the innovations needs to be specified. A 

normal distribution appears to be adequate, as shown in the normal quantile-quantile plot in 

Figure 12. A correction however needs to be made for overfitting the variance. Table 2 gives 

the μ̂ and σ̂ used for the bootstrapping, and the original σ̂
naive of the empirical innovations 

3Recall from Section 3.2 that the model is confined to have at least three principal components.
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before correcting for overfitting. As expected, the overfitting-corrected standard deviation is 

larger (by about 17%) than its naïve counterpart.
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Figure 1. 
An example of the check function for τ = 0.75.
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Figure 2. 

Schematic for the distribution of the .
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Figure 3. 
Number of M08 Northern Hemisphere proxy records available by year from 1998 AD to 0.
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Figure 4. 
Number of M08 Northern Hemisphere proxy records available by location on a 5°×5° grid. 

Only grid-points with at least one proxy are colored.
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Figure 5. 
Smoothed QUARTS temperature reconstruction (with 95% pathwise prediction intervals) 

for the period 998 – 1997. Instrumental temperatures are plotted as black circles for the 

period 1850 – 1997. Units are in Kelvin (K).
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Figure 6. 
Smoothed QUARTS (black) and GLS (red) temperature reconstructions (with 95% pathwise 

prediction intervals) for the period 998 – 1996. Instrumental temperatures are plotted as 

black circles for the period 1850 – 1996.
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Figure 7. 
Smoothed conditional quantiles of temperature conditioned on tree ring proxies for the 

period 1761 – 1997. Instrumental temperatures are plotted as grey points for the period 1850 

– 1997.
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Figure 8. 
Smoothed pathwise 95% confidence interval widths of conditional quantiles of temperature 

conditioned on tree ring proxies for the period 1761 – 1997.
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Figure 9. 
Diagnostic plots for assessing AR structure of innovations from a linear model for the 

conditional median with i.i.d. residuals using the 79 oldest proxies. Left: ACF; Center: 

PACF; Right: Ljung-Box tests.
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Figure 10. 
Cross validation plot for choosing the number of principal components for fitting the 

conditional median with AR(1) residuals using the 79 oldest proxies.
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Figure 11. 
Diagnostic plots for assessing AR structure of innovations from a linear model for the 

conditional median with AR(1) residuals using the 79 oldest proxies. Left: ACF; Center: 

PACF; Right: Ljung-Box tests.
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Figure 12. 
Normal quantile-quantile plot for the innovations of the median fit, under the AR(1) 

assumption.
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Table 1

Number of the 79 proxies which fall at various significance levels for the three different models.

Coefficients with Significance α

Model α = 10% α = 5% α = 1% α = 0.1%

QUARTS 48 43 31 16

AR2 PC3 GLS 29 17 12 2

AR1 PC9 GLS 39 32 17 7
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Table 2

Parameters used in the Gaussian approximation of the bootstrap innovation distribution for the median model 

using the 79 oldest proxies. The % Increase measures the inflation between the overfitted σ̂
naive and the 

corrected σ̂.

Innovations Parameters

µ (°C) σ̂naive (°C) σ (°C) % Increase

0.012 0.111 0.130 17.1%
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