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ABSTRACT: We report the first systematic study experimentally investigating the
effect of changes to the divalent metal node on the thermodynamic stability of
three-dimensional (3D) and two-dimensional (2D) zeolitic imidazolate frame-
works (ZIFs) based on 2-methylimidazolate linkers. In particular, the comparison
of enthalpies of formation for materials based on cobalt, copper, and zinc suggests
that the use of nodes with larger ionic radius metals leads to the stabilization of the
porous sodalite topology with respect to the corresponding higher-density
diamondoid (dia)-topology polymorphs. The stabilizing effect of metals is
dependent on the framework topology and dimensionality. With previous works
pointing to solvent-mediated transformation of 2D ZIF-L structures to their 3D
analogues in the sodalite topology, thermodynamic measurements show that contrary to popular belief, the 2D frameworks are
energetically stable, thus shedding light on the energetic landscape of these materials. Additionally, the calorimetric data confirm that
a change in the dimensionality (3D → 2D) and the presence of structural water within the framework can stabilize structures by as
much as 40 kJ·mol−1, making the formation of zinc-based ZIF-L material under such conditions thermodynamically preferred to the
formation of both ZIF-8 and its dense, dia-topology polymorph.

■ INTRODUCTION
Metal−organic frameworks (MOFs) have emerged over the
last two decades as a promising class of advanced materials
based on metal-containing nodes bridged through organic
linkers, capable of forming two- (2D) and three-dimensional
(3D) frameworks.1 The linker-node assembly offers a high-
degree of tunability,2−5 providing access to potentially porous
materials with a wide range of applications, from catalysis and
gas sorption to rocket propellants.6−10 A subclass of these
materials are zeolitic imidazolate frameworks (ZIFs),6,7,11−15

based on tetrahedrally coordinated metal nodes bridged
through azolate linkers,11,16,17 resulting in materials with
analogous topologies as those found in natural zeolites.15

By employing different metal−ligand combinations,17,18 a
wide range of frameworks have been prepared with tunable
material properties,19−21 from sorption selectivity to material
porosity.8,10,22 Moreover, ZIFs and related composites also
offer exceptional thermal and hydrothermal stability, including
under acidic or basic conditions,23,24 which is considered a
prerequisite for any widespread application.25,26 Furthermore,
various ZIF polymorphs are accessible through variations of
the synthesis conditions.18,27,28 For example, real-time studies
of the mechanochemical ball-milling preparation of ZIF-8, a
popular ZIF material based on divalent zinc nodes and 2-
methylimidazolate linkers (MeIm−), have revealed the
sequential formation of the highly porous SOD-topology

material ZIF-8, followed by the appearance of katsenite (kat)
and finally diamondoid (dia)-topology polymorphs.17,28,29

A considerable amount of effort has gone into investigating
the synthesis of MOFs,18,29,30 as well as the thermal stability31

and resistance to structural degradation in water5 of such
materials, often with an emphasis on their kinetic stability.32

Despite the focus on the kinetics of reactivity,32 thermody-
namic investigations are required to assess whether reactions
can take place at all. To the best of our knowledge, the current
explorations of the driving forces underlying MOF formation
remain limited to a small number of systematic studies on the
thermodynamic stability of MOFs, despite such understanding
being critical to distinguishing between metastability and real
stability, an important parameter for the adoption and
development of MOFs in long-term applications. Recently,
the thermodynamic stability of the MOF-74 family has been
demonstrated to be directly related to their resistance to
hydrolysis.33 Our team has previously investigated the
relationship between the linker substituent and the thermody-
namic stability of isostructural ZIFs, suggesting that
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thermodynamic stability correlates with the electrostatic
surface potential and Hammett σ-constants of the substitu-
ent.17 The same study shows that variations in linker
substituents of isostructural MOFs can cause the enthalpy of
formation to change by as much as 30 kJ·mol−1.17

In this work, we present a complementary approach to assess
ZIF stability, by investigating the stabilizing effect of metal
substitution across a series of topologically similar frameworks.
Rather than investigating the effect of linker substituents in
isostructural ZIFs,17 we investigate the enthalpic contribution
of metal substitution on topologically similar ZIFs, namely,
SOD-Co(MeIm)2,

34 SOD-Zn(MeIm)2,
15 dia-Co(MeIm)2,

35

dia-Cu(MeIm)2,
36 and dia-Zn(MeIm)2

35 (Figure 1). This
allows the direct assessment of the thermodynamic stability of
these ZIFs. This systematic study enables better understanding
of the stabilizing effects arising from the choice of metal nodes
and what role framework topology has on metal effects.
Furthermore, we expand on our work investigating 3D
materials to include 2D layered systems Zn-ZIF-L37 and Co-
ZIF-L,38 allowing us to capture the effect of framework
dimension on thermodynamic stability.

■ EXPERIMENTAL METHOD
Details of the synthetic procedure and characterization of the
specimens are provided in the Supporting Information.
Thermodynamic Measurements. A CSC 4400 isothermal

microcalorimeter used for solution calorimetry was calibrated through
the dissolution of KCl at 298.15 K. For calorimetric measurements
and calculations, thermodynamic cycles (see the Supporting
Information) were prepared for each of the ZIFs. For dissolution of
the samples, 25 g of 5 N aqueous HCl solution was placed in a 50 mL
Teflon cell under mechanical stirring at 0.5 Hz. The Teflon cell was
inserted and contained inside the calorimeter maintained at 298.15 K.
More details on the experimental procedure are provided in previous
work.13 The results we report show calculated statistical uncertainties
within a 95% confidence interval.

■ RESULTS AND DISCUSSION
The prepared ZIFs were analyzed by powder X-ray diffraction
(PXRD), and the results confirm the formation of the desired
frameworks (see the Supporting Information). Measured
Fourier-transform infrared attenuated total reflectance

(FTIR-ATR) spectra (see the Supporting Information)
indicate the presence of expected framework bonds.
Thermogravimetric analysis (TGA) performed in air (see the
Supporting Information) enabled the experimental evaluation
of the metal content in the materials, with the final metal oxide
residue formed during oxidative decomposition of the MOFs
consistent with the expected chemical compositions.
Thermodynamic Analysis. Acid solution calorimetry

permits quantitation of enthalpies of dissolution of each of
the frameworks as well as the corresponding metal oxides and
ligands. The use of enthalpies of dissolution and appropriate
thermodynamic cycles (see the Supporting Information)
enables determination of the enthalpic drive for the formation
of each framework. To ensure that the heats of dissolution
used for calculating heats of formation of the MOFs did not
include enthalpic contributions resulting from the formation of
cation coordination complexes from the interaction between
the dissolved linker and the cation, separate experiments were
conducted. The enthalpies associated with the individual
dissolution of ∼5 mg of CuO and 2-methylimidazole
(HMeIm) in fresh HCl solution are −53.34 ± 0.95 and
−43.56 ± 0.26 kJ·mol−1, respectively, based on four individual
calorimetric runs for each material. The average enthalpy of
dissolution for 5 mg of CuO in HCl solution containing ∼5 mg
of already dissolved HMeIm is −53.03 ± 0.81 kJ·mol−1. The
average enthalpy of dissolution for 5 mg of HMeIm in HCl
solution containing ∼5 mg of already dissolved CuO is −43.75
± 0.59 kJ·mol−1. It is concluded that no significant interaction
occurs between the cations and linkers in the dissolved MOFs.
The enthalpies of dissolution of the frameworks, linker, and
corresponding metal oxide are summarized in Table 1.

The heats of dissolution of all the metal oxides and linkers
are exothermic (Table 1). Relative to end members (metal
oxide and linker), the heats of formation of the 3D ZIFs are
summarized in Table 1. Examining the heat of formation in
different dense-phase dia-topology ZIFs shows that the Co(II)-
material is much more exothermic compared to both Zn- and
Cu(II)-based analogues. Interestingly, the same trend is not
observed for the corresponding porous SOD-topology
polymorphs, wherein the heat of formation is more exothermic
for the Zn-based ZIF-8 than for the Co(II)-based ZIF-67.40 In

Figure 1. Structure of ZIFs in (a) 3D SOD topology, (b) 3D Zn and Co dia-topology, (c) 3D Cu dia-topology with distorted polyhedra, and (d,e)
2D ZIF-L configuration. All ZIFs contain (f) bidentate bridging linkers; however, ZIF-L has additional (g) terminal HMeIm and (h) free linkers
between adjacent layers. Red tetrahedra represent metal (M(II)) centers. C−H bonds, water, and free linkers (in ZIF-L) are omitted for simplicity.
Carbon and nitrogen are depicted in black and blue, respectively.
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these systems, a more exothermic enthalpy of formation
translates into overall greater thermodynamic stability with
respect to hydrolysis, with the understanding that entropic
effects are small. Consequently, the enthalpies of formation can
be assumed to reflect the overall energetic landscape of these
polymorphic systems. These results indicate that the stabilizing
effect of different metals is highly dependent on the framework
density, which is dictated by its topology (see Table 1).

Additionally, we use the enthalpies of reactions (1−4)
(Table 2) to assess the thermodynamic stability of the 2D ZIF-
L structures. The enthalpy of formation for the Co-ZIF-L and
Zn-ZIF-L frameworks with respect to end members (metal
oxide, linker, and water) is strongly exothermic by 37 and 62
kJ·mol−1, respectively. Similarly, both reactions (2) and (4)
show that by starting from a 3D material with the open SOD
topology as a reactant, the enthalpies for formation of Zn-ZIF-
L and Co-ZIF-L are exothermic by 40 and 22 kJ·mol−1,
respectively. These results suggest that if one considers the
formation of the ZIF-L materials starting from the correspond-
ing less dense SOD-topology frameworks in combination with
an additional linker and water, the stabilizing effect arising
from a change in the dimensionality from the 3D SOD-
topology structure to the 2D ZIF-L material is comparable to
and can be greater than that resulting from the formation of
dense and more stable dia-polymorphs from the more porous,
metastable SOD-topology ZIFs (see Figure 2).

Subsequently, we investigate different references for the
assessment of stability in ZIF-L structures (see Table 2). The
results in Table 2 highlight three main aspects of the
thermodynamic stability of ZIF-L frameworks. First, the
endothermic heat for reaction (4) [ΔHf° (from dia)] shows
that the replacement of SOD-Co(MeIm)2 by dia-Co(MeIm)2

as the reactant significantly disfavors the formation of Co-ZIF-
L, thus indicating metastability of the 2D framework with
increasing density of the 3D analogue in the Co(II) system.
Surprisingly, a much smaller destabilization of Zn-ZIF-L
frameworks is observed upon replacement of SOD-Zn(MeIm)2
by the denser and more stable polymorph (dia-Zn(MeIm)2) as
the reactant, hence the formation reaction (2) remains
thermodynamically favorable (exothermic). This not only
points to the discussed superior stability of Zn- and Co-ZIF-L
structures compared to the respective SOD-topology ZIFs
specimens but also indicates that in the presence of an
additional linker and water, formation of the Zn-ZIF-L
structure should even be preferred to the formation of the
dense 3D dia-topology one. Although stabilization of a 2D
structure over a denser 3D one can be seen as counterintuitive,
we note that a recent report has established that the 2D layered
polymorph of mercury(II) imidazolate should be more
exothermic than its 3D quartz (qtz) topology analogue.41

Second, for reactions (2) and (4), the difference between
ΔHf° from dia and from SOD is directly related to the
difference in the thermodynamic stability (enthalpy of
formation) of the 3D polymorphs. Third, the high exothermic
formation of Co-ZIF-L and Zn-ZIF-L from anhydrous 3D ZIFs
and water suggests that the water in the structure is present as
an actively participating stabilizing agent and not simply as a
space-filling component. The addition of water and hydrogen
bonding in the interlayer space may serve as a major source for
the thermodynamic stability of 2D ZIF-L frameworks.

Previous reports have demonstrated that Zn-ZIF-L and Co-
ZIF-L can undergo a solvent-mediated transformation into
corresponding SOD-topology materials ZIF-8 and ZIF-67,
respectively.37,38,42 This may result from stabilization of
sodalite structures by inclusion of other solvents. Typically,

Table 1. Enthalpies of Dissolution in 5 N HCl at 298.15 K
and Formation from End Members (Metal Oxide, Linker,
and Balance Water)

sample ΔHdis (kJ·mol−1) ΔHf° (kJ·mol−1)

HMeIm −43.75 ± 0.59
H2O

28 −0.5
CuO −53.03 ± 0.81
CoO39 −105.82 ± 0.36
ZnO39 −72.29 ± 0.17
dia-Co(MeIm)2 −146.81 ± 0.30 −46.01 ± 0.75
dia-Cu(MeIm)2 −126 ± 0.99 −14.03 ± 1.40
dia-Zn(MeIm)2 −127.86 ± 1.26 −31.43 ± 1.26
SOD-Co(MeIm)2 −177.5 ± 0.51 −15.32 ± 0.86
SOD-Zn(MeIm)2 −137.50 ± 0.94 −21.79 ± 0.94
Co-ZIF-L −178.52 ± 0.32 −36.92 ± 0.76
Zn-ZIF-L −120.29 ± 0.52 −61.62 ± 0.94

Table 2. Summary of Reactions Utilized for the Assessment of Enthalpic Changes Associated with the Formation of ZIF-La

reaction
ΔHf° (from end

members)
ΔHf° (from

dia)
ΔHf° (from

SOD)

1. ZnO (s, 298.15 K) + 5/2 HMeIm (s, 298.15 K) + 1/2 H2O
(l, 298.15 K) → Zn(MeIm)2(HMeIm)1/2(H2O)3/2 (S, 298.15 K)

−61.62 ± 0.94

2. Zn(MeIm)2 (s, 298.15 K) + 1/2 HMeIm (s, 298.15 K) + 3/2 H2O
(l, 298.15 K) → Zn(MeIm)2(HMeIm)1/2(H2O)3/2 (s, 298.15 K)

−30.19 ± 1.33 −39.83 ± 1.14

3. CoO (s, 298.15 K) + 5/2 HMeIm (s, 298.15 K) + 1/2 H2O
(l, 298.15 K) → Co(MIm)2(HMeIm)1/2(H2O)3/2 (s, 298.15 K)

−36.92 ± 0.76

4. Co(MeIm)2 (s, 298.15 K) + 1/2 HMeIm (s, 298.15 K) + 3/2 H2O
(l, 298.15 K) → Co(MeIm)2(HMeIm)1/2(H2O)3/2 (s, 298.15 K)

+9.08 ± 0.73 −21.60 ± 0.84

aAll enthalpies are reported as kJ·mol−1.

Figure 2. Enthalpy diagrams for structures employing Zn(II) metal
atoms as nodes, showing (a) higher metastability in SOD structures
compared to dia-polymorphs and (b) higher enthalpy of SOD
topology, water, and linker compared to Zn-ZIF-L analogues.
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the stability of a material is referred to as kinetic persistence to
phase degradation, under a given set of conditions, even if
allowed by thermodynamics, often without knowledge of the
energetic drive for the reaction (i.e., true stability). Hence, the
results of this work confirm the high thermodynamic stability
of the 2D frameworks.43,44 This expands the current
knowledge of the energetic landscape in MOFs.

This study further permits the identification of various
stabilization trends. For example, for materials with a SOD
topology, Zn(II) containing materials are more stable than
Co(II), and a similar observation is made for the 2D materials.
However, for the close-packed dia-topology materials, the
opposite trend is observed, with stability decreasing from
Co(II) to Zn(II) and to Cu(II). In the SOD topology
materials, there is an increase in thermodynamic stability of the
framework with increasing ionic radius of the metal, with
Zn(II) having the greatest stabilizing effect. However, in the
dia-topology materials, smaller ionic radius nodes such as
Co(II) seem to promote greater thermodynamic stability.
These results suggest that the strength of organic and inorganic
interactions is significantly dependent on the framework
topology and dimensionality. The calculated enthalpies of
formation further reveal that nodes consisting of larger ionic
radius metals stabilize the porous SOD topology relative to the
denser polymorphs in the dia-configuration.

It should be noted that the relative thermodynamic stability
of materials with different substituents is determined by the
respective bond strengths. In turn, these bond strengths are
influenced by both the electronegativity and the ionic radius.
Differences in electronegativity of the metal atom can lead to
dissimilarities in metal−ligand bond length and/or
strength,45,46 resulting in different thermodynamic stabilization
effects. For the metal substituents in this study, the
electronegativity decreases from Cu to Co and to Zn, with
specific values being 1.90, 1.88, and 1.65 on the Pauling
scale.47−49 Although the metal−ligand bond lengths in ZIF-8
and ZIF-67 are similar (∼2 Å),50,51 it is possible that Co(II)
forms stronger bonds, which would be consistent with
destabilization from lattice strain. Additionally, it is likely
that an optimum bond distance exists that permits the
favorable formation of shorter and/or stronger bonds while
minimizing the lattice strain, in turn establishing a constraint
on the electronegativity of metal atoms likely to stabilize
frameworks dependent on topology.

Thermodynamic analysis of the dia-topology ZIFs reveals an
increase in the stability of the structure with increasing
electronegativity of the metal node upon substitution of Zn by
Co(II). A further increase in electronegativity of the metal
atom upon substitution of Co(II) by Cu(II), however, results
in decreased stabilization relative to end members. The
electronegativity of the atoms suggests that in the close-
packed topology, there is only a minor decrease in the bond
strength resulting from the substitution of Co(II) by Cu(II).
These results could indicate an energetic penalty for lattice
strain. Ultimately, in the dia-topology, metal atoms with
electronegativity higher than ∼1.88 show less enthalpic
stabilization relative to end members. Furthermore, Cu(II)
atoms preferentially adopt a square-planar coordination,
reflecting the Jahn−Teller effect.52−54 The highly distorted
tetrahedral coordination of Cu(II) in the herein explored dia-
Cu(MeIm)2 may contribute to the lower stabilizing effect of
Cu(II) metal atoms, as seen in spinels.52−54 In contrast, Zn(II)
promotes the greatest stabilization in the SOD-topology as well

as in the ZIF-L systems. This is apparent, as the substitution of
Zn(II) by Co(II) atoms decreases the thermodynamic drive
for forming more porous frameworks. In this work, the
stabilizing effect of metal nodes in SOD and ZIF-L frameworks
decreases for metal atoms with electronegativity higher than
∼1.65. This may suggest that compared to their denser
analogues in the dia-topology, SOD and ZIF-L structures are
more prone to destabilization resulting from lattice strain.

These observations point to a tradeoff between bond
strength and lattice dynamics in framework materials such as
ZIFs. Thermodynamically favorable configurations are ex-
pected to include strong bonds and reduced lattice strain. Such
optimization of bonding can enable MOFs to be structurally
flexible, allowing dynamic processes such as gate-opening.55−57

It should be stressed that the electronegativity−stability
relations we report, specifically the electronegativity values
corresponding to thermodynamic penalty in the SOD- and dia-
topology structures may be specific to the ZIFs and metals
investigated herein. It is likely that electronegativity alone may
not completely describe the energetic interplay in these
materials, as the same topology-dependent electronegativity
cut-off values may not apply to other MOF systems.
Nevertheless, the trends seen here can serve as a starting
point for identification and comparison of metal descriptors for
increased stabilization across different reticular structures.

■ CONCLUSIONS
This study provides a thermodynamic assessment of how
different choices of the divalent metal node, from Co to Cu
and Zn affect the thermodynamic stability of ZIF materials
across both the more open SOD- and denser dia-topologies.
Moreover, we also provide an experimental evaluation of the
thermodynamic stability of 2D ZIF-L structures based on
Co(II) and Zn nodes, compared to corresponding 3D dia- and
SOD-topology framework materials. The results point to a
possible optimum combination of bond strength and lattice
strain to maximize the stability of the frameworks relative to
end members. In the dia-topology, incorporation of metals
with electronegativity higher than ∼1.88 decreases the
thermodynamic drive for forming the framework. In the
SOD-topology, the thermodynamic drive for forming the ZIF
decreases upon the inclusion of metals with electronegativity
higher than ∼1.65. The presented thermodynamic analysis also
reveals that the 2D ZIF-L structures possess high thermody-
namic stability, which is likely to be enhanced by the presence
of included water. As a result, the formation of Zn-ZIF-L and
Co-ZIF-L structures is found to be thermodynamically driven
with respect to popular 3D frameworks ZIF-8 and ZIF-67,
respectively. Moreover, thermodynamic data also shows that
the formation of Zn-ZIF-L should also be thermodynamically
preferred, if an additional linker and water are accessible, to the
formation of the dense dia-topology polymorph of ZIF-8.
These results point to the importance of the effect of the metal,
topology, and dimensionality (2D or 3D) on the design of
thermodynamically more stable MOFs. The systematics
observed in the energetics of formation in these materials
provide an initial framework for the prediction and develop-
ment of MOFs with greater thermodynamic stability and
desired functionality.
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