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Abstract

Optimized glaucoma therapy requires frequent monitoring and timely lowering of elevated 

intraocular pressure (IOP). A recently developed microscale IOP-monitoring implant, when 

illuminated with broadband light, reflects a pressure-dependent optical spectrum that is captured 

and converted to measure IOP. However, its accuracy is limited by background noise and the 

difficulty of modeling non-linear shifts of the spectra with respect to pressure changes. Using an 

end-to-end calibration system to train an artificial neural network (ANN) for signal demodulation 

we improved the speed and accuracy of pressure measurements obtained with an optically probed 

IOP-monitoring implant and make it suitable for real-time in vivo IOP monitoring. The ANN 

converts captured optical spectra into corresponding IOP levels. We achieved an IOP-measurement 

accuracy of ±0.1 mmHg at a measurement rate of 100 Hz, which represents a ten-fold 

improvement from previously reported values. This technique allowed real-time tracking of 

artificially induced sub-1 s transient IOP elevations and minor fluctuations induced by the 

respiratory motion of the rabbits during in vivo monitoring. All in vivo sensor readings paralleled 

those obtained concurrently using a commercial tonometer and showed consistency within ±2 

mmHg. Real-time processing is highly useful for IOP monitoring in clinical settings and home 

environments and improves the overall practicality of the optical IOP-monitoring approach.
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I. Introduction

Glaucoma refers to a class of eye conditions that cause gradual and irreversible optic nerve 

damage, which eventually leads to vision loss. By 2020, 76 million people worldwide will 

be affected by the disease; 4.5 million will suffer irreversible bilateral vision loss [1], [2]. 

Though the pathophysiology of glaucoma is poorly understood, elevated intraocular pressure 

(IOP) stands to be the singular modifiable risk factor for open-angle glaucoma. Currently, 

the only available therapeutic modalities are moderating elevated IOP levels by 

administering medication and performing surgical procedures [3]. Because IOP is known to 

fluctuate over the course of the day [4], [5], it is difficult for clinicians to optimize glaucoma 

therapy based on sparse IOP measurements taken at the clinic several times a year [6], [7]. 

Thus, there is a need for home-based IOP-monitoring systems [8].

Generally, home-based IOP monitoring technologies need to satisfy the following 

requirements: (1) IOP-measurement accuracy better than ±2 mmHg, a clinically accepted 

accuracy range [9]; and (2) a high sampling rate and real-time processing to shorten 

measurement time and improve the practicality of the sensing approach [10], [11]. Fast, 

accurate, and convenient IOP measurements would also allow surgeons to monitor and 

countermeasure acute IOP spikes more effectively during the immediate postoperative 

period and to prevent optic nerve damage [12], [13]. Furthermore, high-speed and high-

frequency IOP monitoring could elucidate the pathophysiology of glaucoma and reveal new 

diagnostic and therapeutic possibilities. Several studies have reported using a temporal 

frequency analysis of IOP pulses as a promipsing method of diagnosing glaucoma [14], [15]. 

Low-amplitude (< 4 mmHg) oscillatory IOP pulses (> 4 Hz) synchronized with the cardiac 

system have also been correlated with normal-tension glaucoma [16], [17], which is very 

common in Japan. However, most widely used clinic-based tonometers are incapable of 

providing high-speed, accurate IOP measurements. They must also be operated by trained 

personnel, so frequent measurements at home are not possible.

A contact-based dynamic contour tonometer (DCT) with ±1 mmHg readout accuracy at a 

100-Hz sampling rate was used in a clinical setting to obtain continuous IOP measurements 

[18]. Recently explored sensor-based IOP-monitoring technologies [19–26] include wireless 

LC implants [27] with accuracy of 2.5 mmHg, implantable micro-fluidic channel sensors 

[28] with 0.5-mmHg sensitivity, and soft-contact lens strain gauges [29] that provide relative 

IOP profiling in voltage readouts at 10 Hz. A summary of the state-of-the-art IOP sensing 

technologies is provided in Table I. These technologies have shown promise for further 

miniaturization and improvement.

We previously reported the development of a biocompatible IOP-sensing implant that 

measured less than 0.9 mm in diameter and provided remote optical readout (Fig. 1(a)) [30], 

[31]. Our IOP sensor is a hermetically sealed optical resonant cavity made of a flexible 
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silicon nitride (SiN) membrane on the top and a rigid silicon surface on the bottom with the 

internal pressure at 1 atm (Fig. 1(b)) [31].

When the sensor is interrogated by near-infrared (NIR) region (790–1150 nm) of a 

broadband light source such as a tungsten light bulb, the sensor reflects an optical resonance 

spectrum (Fig. 1(d)) which is captured using an optical scope connected to a spectrometer. 

The captured spectrum is relayed to a computer for analysis. A decrease or increase in 

ambient pressure deforms the flexible membrane, which changes the gap size between the 

top and bottom surfaces and consequently the optical resonance of the cavity (Fig. 1(c)). As 

a result, every optical resonance uniquely maps to a particular ambient pressure (Fig. 1(d)) 

[31]. The donut-shaped peripheral area of the top surface outside the SiN membrane is 

covered with black silicon which effectively suppresses undesired background reflection, 

increases the sensor readout distance to 12 cm, and improves biocompatibility (the right 

inset of Fig. 1(a)). [30]

A change in ambient pressure shifts the sensor’s resonant spectrum as shown in Fig. 1(c–d) 

or more specifically the locations of the valleys that belong to the spectrum as illustrated in 

Fig. 1(d). To utilize this sensor for accurate, real-time IOP readouts, we must first learn a 

mapping between the optical spectra (Fig. 1(d)) and the corresponding pressure. Fig. 1(e) 

plots the valley locations vs. IOP, and each line presents the location of an individual valley 

as a function of ambient pressure. Then, during the actual measurement, a captured spectrum 

can be processed by a signal-demodulation algorithm (SDA) and converted to the 

corresponding IOP value. How accurately and quickly the SDA accomplishes the spectrum 

to IOP mapping plays an important role in determining the sensor’s final sensitivity and 

sampling rate.

Mapping between an optical signal and the corresponding IOP is a complex, nonlinear 

procedure because of background noise and disappearance of key spectral features, mainly 

valleys, from the spectrometer’s measurement range as the pressure increases or decreases. 

Valleys disappearing out of the measurement window are shown along the left edge of the 

plot in Fig. 1(d). For example, the first valley λ1 in Fig. 1(d) is visible only from 1 to 2 

mmHg and disappears from the measurement range of the spectrometer as the pressure 

continues to increase. Hence to make a continuous linear approximation to map IOP over the 

full 0–30 mmHg range used to require manually combining all the lines shown in Fig. 1(e). 

However, such manual stitching created discontinuities or jumps at the vanishing valley 

points in the line of sensor IOP measurement vs. digital pressure gauge readout (Fig. 1(f)), 

resulting in a large readout inaccuracy. Previously, using manual post-processing, we 

obtained a readout accuracy of ±1 mmHg [30], [31]. We were not able to produce real-time 

measurements.

Here we report an application of an artificial neural network (ANN) to IOP signal 

demodulation and demonstrate improved IOP readouts with ±0.1 mmHg accuracy at a 100-

Hz measurement rate in the clinically relevant pressure range of 0–30 mmHg (Fig. 1(g)). 

ANNs are universal function-approximators that have been used successfully to solve non-

linear mapping problems in the field of biomedical signal processing [32–37].
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Application of an ANN-based SDA to IOP-sensor signal processing with implementation of 

an end-to-end ANN training system allowed us to develop a highly accurate and fast IOP 

measurement system that could track transient IOP elevations. We also evaluated the 

performance of the IOP sensor by carrying out accuracy and temporal frequency analysis on 

measurements obtained experimentally in in vitro and in vivo experiments. The results we 

report in this paper exceed the performance metrics of the aforementioned sensing 

technologies and satisfy the requirements for home-based IOP monitoring technologies. The 

outcomes suggest that the remote optical IOP-sensing approach has potential for further 

development into a reliable home IOP-monitoring system for glaucoma patients and drug-

discovery research.

II. Methodology

An increase in ambient pressure corresponds to the blue-shifted spectrum, while a decrease 

in pressure corresponds to a red shift. Because the sensor’s optical reflection is uniquely 

determined by the ambient pressure, IOP can be obtained by demodulating the reflection 

spectrum. The locations of the resonant spectrum minima provide crucial information for 

signal demodulation, as they are uniquely determined by the extent of membrane deflection. 

By tracing the valleys while altering the ambient pressure, we can simplify the complicated 

behavior of the spectrum shift with a lower dimensional representation, which is plotted in 

Fig. 1(e). The insets of Fig. 1(d) demonstrate the gradual process of how the leftmost valley 

vanishes. Because of this vanishing valley effect, it is difficult to make a linear fit to the 

spectrum shift without introducing significant mapping errors. Hence, in the clinically 

relevant 0–30 mmHg range, the mapping between valley locations and corresponding IOP 

becomes non-linear, thus posing a major challenge in demodulation.

In the past, ANNs have been applied to non-linear signal demodulation in a variety of fields 

including medical engineering [32–37] and speech recognition [38]. In particular, they have 

been shown to outperform other non-linear function approximators (i.e. support vector 

machines and tree based estimators) for regression problems (with that said, other function 

approximators may also perform moderately well for this problem). Inspired by previous 

successful implementations, we applied ANN regression to our problem of demodulating an 

optical signal reflected from the IOP-sensing implant to discover the non-linear mapping 

between the optical spectra and the corresponding IOP. The valley locations and spacing 

between adjacent valleys are fed into a trained ANN which outputs IOP as shown in Fig. 

1(g). The expressivity of ANNs allow us to accurately map the valley locations, which are 

fairly robust against background noise, to IOP instead of having to process the entire signal. 

In this methods section, we describe in detail (1) the automated ANN training process, (2) in 
vitro performance test procedures, and (3) in vivo experimental procedures for rabbit eye 

measurements.

A. ANN Training on an Optical Bench

The overall ANN training and implementation flow is presented in Fig. 2. A pressure-

controlling data-acquisition system was designed to automatically generate training sets for 

the ANN. This set-up is shown in Fig. 3(a). Our system integrates an optical detector 
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(consisting of a microscope, spectrometer, charge-coupled device [CCD] camera, and light 

source), a pressurized fluid chamber with a mechanical system to induce step changes in 

pressure, and an electronic pressure sensor with a data acquisition (DAQ) board. The 

spectrometer and DAQ board were connected to a main computer (Macbook Air, 1.6 GHz 

Intel Core i5, 8GB RAM, 1600 MHz DDR3 memory, Apple, CA, USA), which processed 

the data to generate training sets for the ANN.

For optical measurements, we placed the IOP sensor inside a pressurized chamber and 

collected light reflected from the sensor using an optical scope. We used a custom-built 

microscope integrated with an objective lens (20×, Plan, Apo, Infinity Corrected, Long 

Working Distance, Mitutotyo, Kawasaki, Japan), a USB camera (STC-MB133USB, Sentech 

Co., Atsugi, Japan), a broadband light source (Ocean Optics HL-2000, Dunedin, FL, USA), 

and a commercially available VIS-NIR spectrometer (MAYA 2000 Pro, Ocean Optics, 

Dunedin, FL, USA) with wavelength range of 780–1200 nm, spectral resolution of 0.22 nm, 

and minimum integration time of 9 ms.

While the optical reflection was measured, the pressure inside the chamber was monitored 

using a commercial digital pressure gauge (1210, TE Connectivity, USA) with accuracy of 

±0.1 mmHg. The mV output of the digital pressure gauge was amplified by two stage 

operational amplifiers and relayed to a microcontroller (Arduino Uno, Arduino, Somerville, 

MA, USA) that allows ms-resolution monitoring of reference pressure inside the chamber. 

To systematically vary the chamber pressure in the full range of 0–30 mmHg, a 

programmable syringe pump was used (NE 1000, ABC Scientific, CA, USA).

While varying the pressure, the spectrometer and reference digital pressure gauge were 

simultaneously triggered for a readout from the main computer every 10 ms. The main 

computer then recorded the outputs. After generating a unit training set composed of 40,000 

recordings, the raw spectrum data were passed through a moving average low-pass filter to 

smooth the signal with a span of 20 data points and then onto the valley-detection function, 

which extracted the dip locations. As the inputs to the training set, we chose (1) the two 

leftmost extracted valley locations ((λn and λn+1 in Fig. 1(g))) at the time of measurement; 

and (2) the distances between the left-most and the second left-most valleys (Δλn,n+1 in Fig. 

1(e), (g)) and also between the second left-most and the third left-most valleys (Δλn,n+1 in 

Fig. 1(g)). The reference-pressure values from the digital gauge were also passed through a 

low-pass filter to attenuate the high-frequency noise and then recorded as the target 
predictions (or labels) of the training set. The reason for including inter-valley spacing as a 

feature is described in section III-A. Our automated training system generates a unit training 

set in less than 7 min by recording and processing 40,000 spectra. A full training set for the 

ANN consists of two such unit sets (80,000 spectra).

Due to the inherent variations in microfabrication processes, each microfabricated sensor has 

slightly different dimensions that lead to different mechanical properties (or pressure vs. 

membrane deflection in our case) and consequently different resonance profiles. Hence, we 

must generate a new training set for every new sensor and retrain the ANN. The weights of 

the trained ANN are stored in a sensor characteristics database and retrieved later for signal 

demodulation of the particular sensor.
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The calibration of a sensor could also be dependent on the optical emission profile of the 

light source. Hence, if necessary, we can pre-characterize the emission profile of a light 

source and remove it from the measured data. However, we used the same light source 

throughout our experiments, and captured spectra with strong resonant signals and low 

background noises. Hence, recalibration was not necessary, and the influence of the 

emission profile of the light source on IOP measurements was minimal.

B. Performance Characterizations in a Pressure-Controlled Chamber

We characterized on an optical bench the accuracy and measurement rate of our sensor 

integrated with the ANN-based SDA. To test the pressure resolution and repeatability in the 

full 0–30 mmHg pressure span, we utilized the same pressure-controlled chamber used for 

training the ANN. The SDA-processed sensor outputs and the reference pressure gauge 

values were recorded simultaneously while linearly varying the pressure at a rate of 0.03 

mmHg/s, up to 30 mmHg. We then evaluated the temporal resolution of our SDA by 

performing high-frequency pressure-fluctuation tests. A high-precision mechanical oscillator 

(U56001, 3B Scientific, USA) programmed with a function generator was used to feed 

sinusoidal pressure fluctuations into the test chamber while the SDA-processed sensor 

output and the reference digital pressure gauge values were recorded. Fast Fourier Transform 

(FFT) analysis was performed on the time-series pressure data to evaluate the accuracy of 

frequency detection, which would indicate the suitability of using our system for temporal 

frequency analysis of an IOP pulse or detection of fast transient IOP changes.

C. Performance Tests In Vivo

In order to obtain real-time measurements of IOP in vivo, we performed IOP measurements 

on anesthetized New Zealand white rabbits obtained from Western Oregon Rabbit Company 

(Philomath, OR USA). The corneas in these rabbits are widely known to closely resemble 

those of a human [39], [40]. The rabbit subjects were housed in a facility at University of 

California San Francisco (UCSF) approved by the United States Department of Agriculture. 

All uses of animals in this work adhered to the Association for Research in Vision & 

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research. The 

experimental protocols were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the UCSF.

Fig. 3(b) and 3(c) show the in vivo experimental set-up, with an anesthetized rabbit 

undergoing spectrum measurements. We collected data from a sensor that had been 

implanted in the rabbit eye for 9 months without any sign of deterioration in functionality. 

The IOP sensor was characterized before implantation. In order to achieve fast, accurate in 
vivo IOP monitoring of live rabbit eyes, we performed rapid intravitreal injections. Next, 5% 

hypertonic saline was injected into the rabbit eye to trigger an acute IOP elevation, which 

caused the rabbit’s IOP to spike from 16 mmHg to approximately 25 mmHg. IOP was 

measured from the implant at a rate of 100 Hz. Recordings were obtained during multiple, 

sequential 1-minute sessions during the intravitreal injection. Intermittent baseline IOP 

measurements were obtained using a commercial tonometer for animals with accuracy of ±2 

mmHg (TonoVet, Icare, Vanda, Finland). Temporal frequency analysis was performed for 
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short-term measurements. The in vivo optical readout setup was identical to the set-up used 

for in vitro characterization of the sensor.

To obtain proper resonance spectra from the reflection, the current version of the IOP sensor 

requires perpendicular optical alignment between the implanted device and the optical 

readout system. Processing corrupted signals arising from misalignments of the set-up can 

yield erroneous IOP values. In vivo measurements are more prone to misalignment because 

of movements of the rabbit eye and respiratory motions. Correct optical alignment must be 

achieved in three orientations (transverse, longitudinal, and angular) in order to obtain 

proper resonance spectra. First, the light probe should be fixated at a transverse coordinate 

within a valid focal range to prevent saturated or insufficient reflection. Second, probing 

light should be focused on or near the center of the sensors’ diaphragm to minimize 

peripheral reflections from the cavity contour. Finally, the incident angle of probing light 

hitting the sensor surface should be within 10 degrees. Angular misalignment of 10 degrees 

can increase the measurement error up to ±2 mmHg which is within the clinically accepted 

error range [9]. Beyond 10 degrees, the signal-to-noise ratio of the resonance spectra 

becomes too low and undetectable. Such spectra are filtered out by a misalignment-

recognition module integrated in the valley-detection module for in vivo signal processing. 

(see bottom of Fig. 2)

The impact of misalignment induced errors and signal filtering are mitigated by the fast 

measurement rate of 100 Hz which allows us to average out around 100 IOP values per 

second. Hence, even if 90 % of the measured data is invalid, we can still obtain an accurate 

IOP value using the other 10 valid spectra. The validity of this approach has been confirmed 

by an established IOP-sensing device TonoVet during in vivo studies [30], [31]. For future 

improvement, we are currently developing an omnidirectional sensor whose resonance is 

incident-angle-invariant. Moreover, an automated alignment device and a handheld detector 

are under development to allow easy convenient tracking of the sensor to improve the 

practicality of the IOP sensing approach.

III. Results & Discussion

A. Model Parameters and Input Feature Selection

The ANN comprised two hidden layers each with 11 neurons activated by a rectified linear 

unit (ReLU) non-linearity. The network weights were regularized using the L2-norm of the 

weights (L2-regularized, C = 0.0001) to improve generalization. Mean squared error was 

used as the loss for training. A computationally inexpensive architecture, which can be 

trained in seconds without GPUs, was sufficient to achieve excellent out-of-sample 

performance, as shown in section III-B. This shows that the chosen input-feature vector is 

robust and informative. The optimal number of neurons was found using 10-fold cross-

validation, with which we evaluated the dependence of estimated test accuracy on the 

number of hidden units. The results plotted in Fig. 4 demonstrate that the mean cross-

validation error reaches and stays close to the minimum value after 11 neurons.

As mentioned earlier, the input-feature vector comprised (1) the locations of the two 

leftmost valleys and (2) the inter-valley spacing associated with them. Because valleys 
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occasionally disappear before reaching the left edge of the spectrometer’s measurement 

range, we set a hard threshold (840nm) for the minimum detection wavelength. To verify the 

benefit of including the inter-valley spacing in the input to the ANN, we conducted network 

training with and without the inter-valley spacing parameter and saw great improvement in 

calibration accuracy when spacing was included, reducing the average validation error from 

1.27×10−2 mmHg to 6.24×10−5 mmHg which is about 3 orders of magnitude lower. Hence, 

we have concluded that spacing is a critical parameter that aids the learning algorithm in 

converging to a local minimum closer to the global minimum in the feature space. Choosing 

the valley location and inter-valley spacing as input features made the ANN more robust 

against background noise and variations in optical conditions during in vivo measurements. 

This approach allowed us to focus on the specific attributes of the resonance spectrum 

instead of processing it in its entirety and to reduce the number of regression predictors and 

thus the associated computation time.

The bottom 3D plot in Fig. 5 shows IOP plotted against the location of the leftmost valley 

and its distance to the right adjacent valley. The top left and right plots show 2D projections 

of the 3D plot, IOP vs left-most valley location and IOP vs valley spacing, respectively. 

From this, we can infer that a legitimate feature vector has been constructed, because one-to-

one mapping is observed between the combined input space (of the valley location and inter-

valley spacing) and the corresponding IOP values. We train the network with a mini-batch 

size of 100 using the Adam optimizer [41] with α = 0.001, β1 = 0.9 and β2 = 0.999. On 

average, training took 52.5 seconds and 550 epochs to converge. A trained ANN took an 

average of 50.58 μs to process a new spectrum and convert it to a measurement of IOP.

A forward pass through ANN (which is essentially a series of matrix multiplications) with a 

computationally inexpensive architecture can easily be implemented in miniaturized 

computational devices, such as smartphones and Raspberry Pi, which have less processing 

power. A computation-efficient algorithm compatible with a miniaturized computational 

platform is critical for implementing a more compact and practical readout system. Further 

miniaturization of the overall readout system in a compact head mount is a current work in 

progress.

B. Pressure Detection Range and Sensitivity

The ANN was trained to perform within a clinically relevant physiologically observed IOP 

range of 0–30 mmHg. To test the sensor’s sensitivity in the full detection range, we 

compared the pressure response of the IOP sensor with the readings from the reference 

digital pressure gauge while linearly varying the pressure from 1 mmHg to 30 mmHg (see 

Fig. 6(a)). A subsection of the plot from 8 to 9 mmHg was magnified in Fig. 6(b) and shows 

a very close agreement between the sensor readout and the reference pressure line. The 

mean squared error between the output of the ANN function and that of the reference 

pressure gauge was 6.24×10−5 mmHg. Moreover, by performing a correlation analysis on 

the outputs from the ANN and the reference pressure sensor, we found the correlation 

coefficient R to be close to 1 (1 − R = 2.15×10−6) and the p-value to be close to 0. The 

repeatability of the IOP sensor was measured to be 0.043% FS (0.013 mmHg), with no sign 

of hysteresis. Considering these miniscule statistical error values, we concluded that the 
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ANN is capable of a pressure-readout accuracy equivalent to that of the reference digital 

pressure gauge (i.e. ±0.1 mmHg).

During the ANN calibration, the reference pressure sensor sensitivity limited the overall 

accuracy of the ANN to ±0.1 mmHg, which still exceeds the accuracy reported for preceding 

sensor-based IOP monitoring technologies (±0.5 mmHg was the highest achieved by [28]) 

and clinic-based measurement techniques (±1 mmHg achieved by DCT [18]). Furthermore, 

this result shows a ten-fold improvement in accuracy from our previous opto-mechanics-

based SDA [30] which achieved ±1 mmHg accuracy. We expect the sensor accuracy to 

further improve if we use a more precise reference pressure gauge. High accuracy is critical 

for characterizing low-amplitude components of an IOP pulse such as the ocular pulse 

amplitude, which have been correlated with glaucoma [17]. The development of convenient 

and reliable IOP measurement tools with high accuracy will widen the field of glaucoma 

research, as will be further described in section III-D.

C. Transient Pressure Fluctuation Detection

High temporal resolution IOP readout could be a critical attribute of an IOP-monitoring 

system. It is necessary to perform temporal frequency analysis of a patient’s IOP pulse and 

to track transient IOP spikes that could damage the optic nerve. Most clinically relevant 

information of a patient’s IOP profile can be extracted by capturing daily periodic IOP 

fluctuations as well as the influence of the respiratory and cardiac pulses which oscillate 

below 10 Hz. Hence, we first show that the ocular implant is capable of precisely capturing 

pressure fluctuations at the upper bound of 10 Hz, with a capability to resolve small 

incremental changes in the frequency of applied pressure.

Fig. 7(a) displays the pressure readout from the IOP sensor compared with the reference 

pressure from the digital gauge in response to a sinusoidal pressure fluctuation, applied at a 

frequency of 10 Hz. The data present a close match between the SDA-processed sensor 

output and the reference-gauge values, both of which resemble sinusoidal waveforms. The 

FFT of the time-series IOP data (see Fig. 7(b)) reveals a sharp peak at 10 Hz, indicating that 

the SDA-processed pressure readout reproduced the waveform which is almost perfectly 

sinusoidal with negligible amount of noise. From this result, we can infer that our IOP-

sensing system properly captured both the frequency and waveform of the applied 

fluctuation.

Next, the sensitivity of the IOP sensor’s response to incremental changes in the frequency of 

pressure fluctuation was assessed by FFT analysis. The peak frequency in the FFT spectrum 

of the time-series IOP data was compared to the applied frequency. The applied frequency 

was fine-tuned in 0.05-Hz increments from 10 Hz to 10.95 Hz. The plot that compares the 

measured frequency and the applied frequency is shown in Fig. 7(c). The mean squared error 

between the measured and applied frequencies was 5.25×10−6 Hz, and a linear correlation 

test yielded R = 0.997 and p = 8.61 × 10−155. These results show that our sensor combined 

with the ANN-based SDA can accurately detect temporal frequency components in 

fluctuating IOP, suggesting our system can be used to extract periodic IOP pulses with 

clinical value.
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To test the temporal frequency-detection limit of our system for measuring fast pressure 

fluctuations, we measured the response of the system in 5-Hz increments up to 50 Hz. We 

observed sharp, distinct FFT peaks at each of the pressure fluctuation frequencies applied to 

the system, up to 50 Hz. At driving frequencies beyond 50 Hz, one Fourier resonance peak 

at the applied frequency as well as another peak mirrored at about 50 Hz was identified. This 

cutoff phenomenon can be quantitatively explained with the Nyquist frequency, which is the 

half of the sampling frequency. Because the sampling rate was 100 Hz, the Nyquist 

frequency of our detection system was 50 Hz, which matched the experimental observations.

The spectrometer integration time of 9 ms was the limiting factor placing an upper bound on 

the pressure measurement rate because the execution time of the ANN-based SDA was only 

about 50 μs. Using a higher-quality spectrometer with a more light-sensitive detector and 

shorter integration time, our system could detect IOPs at a much faster rate, possibly up to 

5000 Hz.

The frequency-detection experiments described above were conducted with medium-

amplitude (approximately 4 mmHg) fluctuations in pressure. Next, to verify the capability of 

our system in detecting acute high-amplitude fluctuations in IOP, we emulated a single high-

amplitude (approximately 20 mmHg) IOP spike, which is believed to damage the optic 

nerve [42]. We induced a 20-mmHg pressure spike using a syringe pump and compared the 

sensor measurements with the pressure values obtained using the reference digital gauge. 

Fig. 7(d) shows close agreement between the reference pressure-gauge readout and the 

SDA-processed sensor output (MSE: 8.3×10−5mmHg), which validates the ability of our 

detection system (hardware and software) to properly track IOP fluctuations ranging from 

small periodic pulses to sporadically occurring fast, high-amplitude spikes.

D. IOP Monitoring In Vivo

Here, we present in vivo IOP monitoring results obtained by demodulating the reflection 

spectra from our IOP-sensing implant, which had been surgically placed inside the anterior 

chamber of the rabbit. Fast IOP-tracking capability was verified through a saline-injection 

test (see Fig. 8(a)). IOP values obtained prior to the injection were measured as 

approximately 17 mmHg and 16 mmHg with the IOP-sensing implant and the Tonovet, 

respectively. Four minutes after the intravitreal injection, the rabbit’s IOP surged by 4 

mmHg and peaked during the following 30-s period. Because of the high-readout speed 

enabled by the ANN-based SDA, we were able to track this transient change in IOP during 

the 30-s period while the conventional Tonovet was not able to detect it. The maximum IOP 

reached approximately 24.5 mmHg. The peak lasted for approximately 1 minute, and after 

that, IOP began to decline. After 15 minutes, both the IOP sensor and the Tonovet readings 

were close to approximately 17 mmHg, which indicated that IOP had decreased to the 

baseline level. Both the implanted sensor readings and Tonovet measurements showed good 

consistency and traced the elevation and reduction in IOP.

Our rapid SDA also allowed us to visualize subtle fluctuation patterns in IOP that could not 

be observed in Tonovet measurements. As shown in Fig. 8(b), the respiration of the rabbit 

caused 1.5-mmHg pseudo-periodic dips in IOP measurements. Fig. 8(c) shows the FFT of 

the time-series IOP data shown in Fig. 8(b). The temporal frequency peak of the measured 
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IOP data at 0.42 Hz matched the lower end of the normal respiratory rate (0.5–1 Hz) in 

rabbits. This result is in agreement with the fact that anesthetized rabbits typically have 

lower breathing rates. The respiratory rate that was independently measured using a 

breathing-rate monitor (Hallowell EMC Model 2000, Hallowell EMC, MA, USA) was 0.43 

Hz, which differed by only 0.01 Hz from the primary temporal frequency peak shown in Fig. 

8(c). Inhalation caused a transient decrease in IOP, which quickly rebounded to its original 

levels upon exhalation [43]. This phenomenon occurs because inhalation causes transient 

surges in venous return, which temporarily facilitates aqueous humor drainage, causing 

transient dips in the IOP pulse. As most IOP tracking systems generate discrete 

measurements at a lower pressure resolution, such respiratory pulses have not been 

observed, and thus measurements obtained using such systems may underestimate the true 

IOP. A rapid IOP monitoring system allows measurements averaged over a shorter, selected 

time interval to filter out the transient IOP changes induced by respiration.

Being able to monitor the respiratory rate by tracking IOP not only expands the number of 

clinically relevant quantities that are being measured but also significantly lowers the error 

rate of IOP measurements. Studies have shown that a frequent source of IOP-measurement 

error is breath holding [44]. Breath holding frequently occurs during clinic measurements 

when the patient gets anxious. Such changes are difficult to detect without monitoring the 

respiratory rate, which is difficult to achieve using conventional IOP-sensing technologies. 

An IOP monitoring system capable of continuous real-time readout can concurrently track 

the respiratory rate of patients and detect breath holding to produce more accurate IOP 

values.

Aside from IOP fluctuations that synchronize with the respiratory system, certain temporal 

features of the cardiac IOP pulses have high clinical utility, such as the Ocular Pulse 

Amplitude (OPA), which is considered valuable information [45] for glaucoma management 

and diagnosis [16], [17]. However, the cardiac IOP pulses exhibit low amplitudes (< 4 

mmHg) and high frequencies (> 4 Hz), suggesting only monitoring systems that are 

sufficiently accurate and fast can provide these parameters with high clinical value. For 

example, numerical values of higher harmonics observed in the FFT analysis of an IOP 

pulse can be used to discriminate between patients with glaucoma and healthy subjects [14], 

[15], but such measurements cannot be performed using current tonometric methods. The in 
vivo transient IOP-tracking ability demonstrated in Fig. 8 along with the in vitro experiment 

results of Figs. 6 and 7 suggest that our system could be the first sensor-based IOP-

monitoring technology that could allow researchers to explore in detail the clinical value of 

the temporal frequency features of an IOP pulse. Using our system’s SDA-enabled fast 

measurement capability, we are in the process of further investigating such temporal 

frequency features of IOP pulses for clinical utilities.

IV. Conclusion

In this work, we have investigated a light-probed IOP sensor’s potential for fast and reliable 

IOP readouts, which would ultimately contribute to glaucoma research and management. 

When using an ANN-based SDA, the IOP sensors’ accuracy and measurement rate were 

±0.1 mmHg and 100 Hz, respectively, in in vitro testing. Combined use of our sensor with 
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the ANN-based SDA allowed us to obtain highly accurate and detailed IOP profile from live 

rabbits. This result demonstrates the feasibility of using our sensing approach to perform 

temporal frequency analysis of an IOP pulse and to retrieve highly valued clinical 

information. The reliable performance of our sensing approach has great potential for further 

development into a convenient home-based IOP-measurement system: patients can take 

periodic measurements throughout the day, and any abnormality can be automatically 

reported to a clinician in a timely manner. Such systems may even allow monitoring of IOP 

during, for example, a physically intensive routine, such as a gym work-out, to elucidate the 

correlation between physical activity and surges in IOP levels. We are continuing our effort 

to develop a user-friendly IOP-monitoring system; this algorithm takes us many steps closer 

to the implementation of a highly practical and portable IOP-monitoring system.
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Nomenclature

Adam Adaptive moment estimation

α Learning rate for the Adam optimizer

ANN Artificial neural network

β1 1st moment decay rate for the Adam optimizer

β2 2nd moment decay rate for the Adam optimizer

C L2 regularization constant

DCT Dynamic contour tonometer

FFT Fast Fourier transform

FS Full span

IOP Intraocular pressure

λn Location of the nth valley in the measurement range
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Δλn,n−1 Spectral spacing between the nth and (n−1)th valley

MSE Mean squared error

NIR Near-infrared

OPA Ocular pulse amplitude

p p-value (calculated probability)

SDA Signal demodulation algorithm

SiN Silicon nitride

R Pearson product-moment correlation coefficient
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Fig. 1. 
Light-probed IOP sensor and working principle of the ANN-basd SDA. (a). A simplified 

cross-sectional diagram and real image of the IOP sensor implanted in the anterior chamber. 

(b). IOP sensor with a flexible SiN membrane on the top and a Si surface on the bottom. (c). 
Resonance profile of the sensor varies with membrane deflection caused by ambient 

pressure change. (d). Experimentally obtained resonance spectra of the IOP sensor as the 

pressure is altered from 1 mmHg to 30 mmHg. (e). A valley trace plot of the three leftmost 

valleys in the full 1–30-mmHg range. λn−1 refers to the visible leftmost valley where n is a 

natural number equal to or larger than 2. Δλn,n−1 indicates the spacing between the nth 

valley and (n−1)th valley. (f). Sensor IOP readout when spectra are manually post-processed 

by stitching the valley traces in (e). Significant measurement errors occur at the valley 

vanishing points. (g). Conceptual diagram of the feedforward ANN, which takes the two 

leftmost valley locations and inter-valley spacing of the optical spectrum, marked in (e), as 

inputs to compute IOP. Hidden layers are fully connected.

Kim et al. Page 18

IEEE Sens J. Author manuscript; available in PMC 2018 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Flow diagram of ANN based signal demodulation. Applying the ANN is a two-stage 

process: (1) generating a training set in the benchtop testing (top); and (2) loading the 

trained ANN for real-time signal demodulation during in vivo experiments (bottom).
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Fig. 3. 
Optical bench-top and in vivo IOP measurement set-up. (a). An illustration of the bench-top 

measurement set-up (left). Optical spectra and its corresponding pressure values are 

extracted for ANN training (right). (b). In vivo measurement scene involving a rabbit under 

anesthesia undergoing spectrum measurements. Trained ANN from (a) is applied for real-

time IOP readout. Measurements were performed using a detection set-up identical to the 

one in the left of Fig. 3(a). (c). IOP sensor exposed to NIR region light.
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Fig. 4. 
Optimization of the number of neurons in the ANN by comparing cross-validation error vs. 

the number of neurons. The error remains at the minimum level for 11 or more neurons, 

hence 11 neurons were chosen to minimize the computational load while achieving the 

minimum error.
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Fig. 5. 
Inputs to the ANN for IOP mapping. Each IOP value generates a unique combination of a 

leftmost-valley location and a valley spacing, which is used to train the ANN and retrieve 

the original IOP value. Discontinuity in the 3D plot originates from the leftmost valley 

moving out of the spectrometer’s measurement window due to pressure increase, which is 

illustrated in Fig. 1(d). The top-left graph is a 2D projection of the 3D plot showing IOP vs 

left-most valley location while the top-right graph is a 2D projection of the 3D plot showing 

IOP vs inter-valley spacing. Both 2D graphs help visualize that the input-feature set provides 

a complete coverage of the IOP range from 0 to 30 mmHg.
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Fig. 6. 
IOP-readout accuracy of the ANN-based SDA for the physiologically observed IOP range 

(0–30 mmHg) characterized in the pressure-controlled chamber. (a). Comparison between 

the measurements (black dots) and the reference pressure line (red line). (b). A zoomed-in 

view of the plot shown in (a) between 8 and 9 mmHg. The results showed excellent 

matching between measurements and the reference pressure line, with deviations less than 

±0.1 mmHg.
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Fig. 7. 
Temporal resolution of the IOP readout measured using the bench top testing setup made of 

a pressure-controlled chamber and a sinusoidally-varying and pulsating pneumatic source. 

(a). Close agreement between the ANN-produced pressure (black dots) levels and the 

reference pressure readings (red squares) from a digital gauge during a 10-Hz sinusoidal 

variation in pressure. (b). FFT of the IOP readout produced by the ANN-integrated sensor 

shown in Fig. 7(a), with a clear peak at 10 Hz as expected. (c). Comparison between the 

IOP-sensor-measured frequency and applied frequency. It shows a very close match over the 

frequency range of 10 and 11 Hz, which is well below the Nyquist frequency of our IOP 

system sampling at 100 Hz. (d). Comparison between the IOP-sensor readout (black dots) 

with the reference pressure values obtained using a digital pressure gauge (red squares) 

during a 20-mmHg pressure spike with the full width at half maximum of 0.4 s.
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Fig. 8. In vivo
IOP measurements in live rabbits.(a). Transient IOP elevation induced by intravitreal 

injection carried out at time = 0. (b). 12 seconds of high-temporal-resolution IOP 

measurements showing periodic dips in IOP. This is obtained during the peak IOP elevation 

around t = 4 min in Fig. 8(a). Time = 0 in this graph corresponds to time = 4 min in the 

previous plot shown in Fig. 8(a). (c). FFT spectrum of peak IOP.
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