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Abstract11

Superpixels are a promising group of techniques allowing for generalization of spatial information.12

Among this group, the Simple Linear Iterative Clustering (SLIC) superpixels algorithm proved to13

be first-rate, both in terms of the quality of the output and the performance. SLIC, however, is14

limited to detecting homogeneous areas and uses the Euclidean distance only. Here, we propose an15

extension of SLIC allowing to use any specified distance measure for single or multi-layered spatial16

raster data. To present our idea, we use the extension to create an over-segmentation of areas with17

similar proportions of different land cover categories in Ohio. Given a proper distance measure,18

the proposed extension can also be used for other scenarios, including creating regions of similar19

temporal patterns or similarly ranked areas. Depending on the use case, the resulting superpixels20

could be either the result of the analysis or the input for further classification or clustering.21

1 Introduction27

Generalization of spatial information is one of the pillars of GIScience. It is especially vital28

for spatial raster data, for which considering single cells’ values without its spatial context29

often are not enough to understand underlying objects or processes. For remote sensing data,30

generalization is often associated with (geographic) object-based image analysis (OBIA) [2],31

with the main goal to partition space to identify homogeneous objects.32

OBIA applies many generalization techniques, including the multiresolution segmentation33

(MRS) that uses cells as the underlying representation [8]. Recently, an approach of superpixel34

become considered as a promising alternative [6]. Its main idea is to create groupings of cells35

with similar values, which result in an over-segmentation [15, 1]. Each superpixel represents36

a desired level of homogeneity while at the same time maintains boundaries and structures37

[12]. Superpixels also carry more information than each cell alone, and thus they can speed38

up the subsequent processing efforts [15, 1].39

A large number of methods for creating superpixels were developed in the last decades40

[17], mostly for image processing. They are based on different ideas, from graph-based to41
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cluster-based. Among them, Simple Linear Iterative Clustering (SLIC) [1] proved to be not42

only one of the best performing for image processing [1, 17], but also for remote sensing data43

analysis [6]. It has also been implemented in a number of GIS software, including GRASS44

GIS [10], SAGA-GIS [5], and Google Earth Engine [9].45

Simple Linear Iterative Clustering (SLIC) [1] is a spatially constrained version of the46

k-means algorithm. Instead of searching for similar values in the whole area, it starts with47

regularly located centers, and each center has only a limited search window. The distance48

between the center value and each applicable cell is an intermixing of spatial distance with49

the values’ distance. The original formulation of SLIC [1] focussed on creating superpixels50

based on images, including converting the sRGB input images into the CIELAB space. In it,51

each cell in the image was described by five values divided into two groups - a pixel color52

in the CIELAB space ([lab]) and a pixel location ([xy]). Comparing a given pixel with the53

cluster centroid requires, however, calculating distances for these two parts independently54

before joining them together into one distance value.55

The SLIC algorithm can also be used for different color spaces, for any number of color56

dimensions, but also for different variables than colors. In principle, it enables creation57

of superpixels based on less and more than three variables. However both color (spectral)58

and spatial distances are based on the Euclidean distance. Using the Euclidean distance to59

calculate color distances is adequate in many cases, however, it limits the possible usability60

of the SLIC algorithm for spatial raster data.61

Here, we present an extension of SLIC, allowing it to work with any number of layers62

and various distance measures between values. In this extension, the distance between63

values can be replaced with any applicable dissimilarity measure [4]. To demonstrate the64

aftermentioned idea, we apply the extended SLIC algorithm on multi-layered raster data65

representing proportions of land cover categories.66

2 Simple Linear Iterative Clustering (SLIC) Superpixels67

SLIC starts with regularly located cluster centers spaced by the interval of S. Next, each68

cell is assigned to the nearest cluster center, and the distance D is calculated between the69

cluster centers and cells in the 2S × 2S region.70

D =

√(
dc

m

)2
+

(
ds

S

)2
71

where dc is the color (spectral) distance, m is the compactness parameter, ds is the spatial72

(Euclidean) distance, and S is the interval between the initial cluster centers.73

The color (spectral) distance is calculated between values I(xi, yi, sp) and I(xj , yj , sp) for74

a spectral band sp in the set of spectral bands B:75

dc =
√∑

p∈B

(I(xi, yi, sp) − I(xj , yj , sp))276

The spatial (Euclidean) distance between cells represents spatial proximity:77

ds =
√

(xj − xi)2 + (yj − yi)278
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The color distance controls the homogeneity of superpixels, while the spatial distance is79

related to spatial contiguity.80

Superpixels are created by assigning each cell to the cluster center with the smallest81

distance. Afterward, new cluster centers (centroids) are updated for the new superpixels,82

and their color values are the average of all the cells belonging to the given superpixel. The83

SLIC algorithm works iteratively, repeating the above process until it reaches the expected84

number of iterations. Experiments of [1] showed that between 4 and 10 iterations suffices85

in the case of RGB images. The last, optional, step enforces the 4-connectivity of the cell86

belonging to the same superpixels by reassigning disjoint cells.87

SLIC has two main parameters - S and m. The first one controls the size of each88

superpixel, which is directly related to the number of output superpixels. The m parameter,89

compactness, controls the influence of the spectral distance on the results. Its large values90

result in more regularly shaped superpixels, while lower values create more spatially adapted,91

irregularly shaped, superpixels. In other words, the m parameter oversees the balance92

between the color and spatial distance.93

3 Extending SLIC94

We propose an extension of SLIC that allows using any distance measure to calculate the95

color distance. In this extension dc can be replaced with any distance/dissimilarity measure96

[4]. For example, raster time-series could be compared with dynamic time warping, while97

distances between sets of categorical variables could be calculated using Jenson-Shannon98

distance [11]:99

dc = H(A + B

2 ) − 1
2 [H(A) + H(B)]100

where A and B are normalized sets of values characterizing the compared cells, and H(A)101

and H(B) indicates values of Shannon’s entropy [16] for these sets:102

H(A) = −
∑
p∈A

Aplog2Ap103

Ap is the pth value of the first of the compared cell.104

We implemented the above idea in the R programming language [14] as an open source105

package supercells. The package installation instructions and documentation can be found106

at https://github.com/Nowosad/supercells. Currently, the package accepts any number of107

variables (raster layers) and Euclidean, Manhattan, Jensen-Shannon, and dynamic time108

wrapping distances.109

4 Example110

The capability of extended SLIC is described below using an example of delineating areas111

with similar land cover patterns. Importantly, we are not looking for areas with homogeneous112

land cover, but rather with a similar proportion of different land cover categories. This113

example focuses on the area of Ohio and uses the NCLD 2016 land cover data [7] (Figure114

1:A). The NLCD 2016 for this area has 173,322,810 cells with a spatial resolution of 30 by115

30 meters and is represented by 15 categories. Code and data to recreate this example are116

available at https://github.com/Nowosad/giscience-2021-examples.117
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Figure 1 (A) A land cover classification of Ohio with a rectangle indicating the area around
Mount Vernon, Ohio, (B) A 10 by 10 cells grid overlayed on top of the land cover classification for
the area around Mount Vernon, Ohio

The basic SLIC algorithm should not be used on categorical rasters, as it calculates118

Euclidean distance between values. Therefore, it would treat Open Water (11) to be more119

similar to Developed areas (21, 22, 23, 24) than to Woody Wetlands (90). SLIC also aims at120

finding homogeneous areas (e.g., areas with similar colors) only, while it is not well suited121

for analysis of areas with consistent heterogeneity (e.g., areas with similar proportions of122

different land covers).123

Our SLIC extension can be applied in the cases mentioned above, given appropriate124

preprocessing. First, instead of using values of cells directly, the whole area of Ohio is divided125

into a regular grid, where each grid cell contains a mix of different land cover categories.126

To keep this mix able to encapsulate meaningful local spatial patterns [3], we decided on127

its size of 10 by 10 cells (Figure 1:B). Each 10 by 10 cells’ area contains a mixture of land128

covers that can be described by 15 values related to land cover categories. Therefore, we can129

transform this data from a one-layer raster data of 30 by 30 meters to 15-layers raster data130

with a resolution of 300 by 300 meters. We also normalized all of the values of the layers to131

sum to one, as it enables us to calculate a large number of existing distance or dissimilarity132

measures between pairs of cells [11, 4].133

Normalized 15-layer raster data with the resolution of 300 by 300 meters was used as134

an input to our extended SLIC algorithm, with the Jenson-Shannon distance [11] as the135

dissimilarity measure. For this example, we set S to 13 and the compactness parameter (m)136

to 0.3. Figure 2:A shows an output of the extended SLIC algorithm.137

The result is 741 superpixels that, depending on the location, encapsulated homogeneous138

or heterogeneous areas (Figure 2:B). Importantly, all superpixels are internally consistent139

– we calculated the intra-cluster dissimilarity of each superpixel, δ, based on the average140

dissimilarity between all cells within its scope [13]. The resulting δ values were normally141

distributed with the average value of 0.26 and standard deviation of 0.12. Note, that by142

decreasing the input S value we could lower the average value of δ, while reducing the m143

value would decrease its variation.144
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Figure 2 (A) Superpixels created based on the proportions of land cover categories superimposed
on the land cover classification of Ohio. (B) Superpixels overlayed on top of the land cover
classification for the area around Mount Vernon, Ohio. Land cover legend is available in Figure 1

5 Conclusions145

We propose an extension of the Simple Linear Iterative Clustering (SLIC) algorithm that146

allows the use of any specified distance measure for single or multi-layered spatial raster data.147

This extension, given a proper distance measure, opens many new research possibilities. The148

example above shows how it could be used to delineate areas with a similar proportion of149

different land cover categories based on the Jensen-Shannon distance. However, other distance150

measures can also be used, such as dynamic time warping (DTW) to create superpixels151

of homogeneous temporal patterns or earth mover distance (EMD) to delineate similarly152

ranked areas. The resulting superpixels maintain the average values of their inner cells, and153

thus, depending on the application, they may also be used in further merging or clustering.154

This also allows to perform Object-based Image Analysis (OBIA) by classification of the155

obtained superpixels. On the other hand, even if clustering or classification is not applied,156

superpixels still offer benefits of dimensionality reduction/data compression. Related R157

software, supercells, is available at https://github.com/Nowosad/supercells.158
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