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Abstract

Although Artificial Intelligence (AI) is expected to outperform
humans in many domains of decision-making, the process by
which AI arrives at its superior decisions is often hidden and
too complex for humans to fully grasp. As a result, humans
may find it difficult to learn from AI, and accordingly, our
knowledge about whether and how humans learn from AI is
also limited. In this paper, we aim to expand our understand-
ing by examining human decision-making in the board game
Go. Our analysis of 1.3 million move decisions made by pro-
fessional Go players suggests that people learned to make de-
cisions like AI after they observe reasoning processes of AI,
rather than mere actions of AI. Follow-up analyses compared
the decision quality of two groups of players: those who had
access to AI programs and those who did not. In line with the
initial results, decision quality significantly improved for the
players with AI access after they gained access to reasoning
processes of AI, but not for the players without AI access. Our
results demonstrate that humans can learn from AI even in a
complex domain where the computation process of AI is also
complicated.

Keywords: Human Learning; Artificial Intelligence; Measure
of Learning; Decision Quality

Introduction
This paper presents empirical evidence that human experts
learn to make decisions like superhuman Artificial Intelli-
gence (AI) in the context of the board game Go1. As AlphaGo
demonstrated its superhuman performance by defeating a Go
world champion in March 2016, AI is expected to outper-
form humans in many domains of complex decision-making.
However, it is not clear whether humans learn from the out-
put of AI programs and benefit from it. Although information
provided by AI algorithms could be useful to humans, the
black-box nature of AI can lead humans to misinterpret the
output and make decisions no better than before. Examining
the impact of AlphaGo on human decision-making, we study
whether human experts improve their decisions and what fea-
tures of AI are essential for them to learn from AI. Hereafter,
we refer to improvements in human experts’ decision quality
after the introduction of AI programs as the human learning
from AI.

We investigate decision-making problems in the game of
Go for two reasons. First, it is one of the first domains in

1Go is a board game between two players who take turns placing
“stones” of their color (black or white) on a 19×19 grid of lines.
The game’s objective is to surround a larger territory on the board
than the opponent by completely enclosing it with one’s stones.

which AI achieved superhuman performance in a complex
decision-making problem2. This superhuman performance
is a useful feature of AI when studying the human learning
from AI, primarily because it encourages humans to study
decisions of AI and secondarily because superhuman AI can
evaluate and track the degree to which human decisions are
inferior to its own decisions.

Another reason we examine the game of Go is that a game
is an effective setting to test how humans interact with AI
and adapt their decision-making. The goal of a game is usu-
ally well-defined and human players choose various actions
to achieve the goal. Those actions, or any decisions3, and the
resulting changes in the environment often get recorded in a
database. Using these unique features of a game, researchers
have studied various aspects of human decision-making, from
error correction to skill acquisition (Biswas, 2015; Regan,
Biswas, & Zhou, 2014; Stafford & Dewar, 2014; Strittmatter,
Sunde, & Zegners, 2020; Tsividis, Pouncy, Xu, Tenenbaum,
& Gershman, 2017).

Our empirical strategy to study the human learning from
AI is as follows. First, we devise a simple and intuitive mea-
sure to quantify the human learning from AI (i.e., how much
the quality of human decisions changed after introduction of
the AI programs). Next, we use this measure to estimate hu-
man learning on a rich data set that includes outcomes of of-
ficial matches between professional Go players (N>30K) as
well as every move decision made by the players in each of
the matches (N>1.3 MM). The data spans a period both be-
fore and after the AI programs (such as AlphaGo) were intro-
duced. Finally, we use mandatory military service in South
Korea as a natural experiment. Because all Korean males are
required to serve in the military for 18-24 months, some male
players were isolated from the society and did not have access
to the AI programs. We compare those who had access to AI
programs with those who did not and estimate how much the
AI programs contributed to the human learning from AI.

We find that merely observing AI’s actions (i.e., decisions)
may not bring a meaningful improvement in human decision-

2In contrast to other relatively simple games such as checkers,
Go presents arguably the most complex task, which explains why
AlphaGo defeating a top human expert was seen as a major break-
through for artificial intelligence.

3We use the terms “actions” and “decisions” interchangeably in
this paper.
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making. Observing AI’s reasoning processes, however, does
seem to improve human decision-making. Our finding is con-
sistent with previous research based on constructivism learn-
ing theory (Resnick, 2018).

Background
The emergence of AI transformed the way human learning
occurred in Go. Before there were AI programs, human play-
ers learned Go strategies by reviewing other players’ move
decisions in tournaments and discussing the strategies with
other human players, as illustrated in Figure 1(a)4. This way
of learning, however, changed after AlphaGo defeated a hu-
man Go champion by employing novel and unorthodox tac-
tics. AlphaGo’s demonstration of unfamiliar but effective
strategies motivated human players to discuss and learn the
strategies of AI in addition to those of top human players.
Moreover, human players began spending more time playing
against AI programs to improve their game, as illustrated in
1(b)5.

(a) Human Learning Before AI (b) Human Learning After AI

Figure 1: Illustration of change of the way human Go players
learn winning strategies after the emergence of AI programs

Two kinds of AI programs were released sequentially,
about 1.5 years apart, and we leverage the timing of these
events to gain insight about the human learning from AI. In
this paper, we focus on AlphaGo’s victory over a human Go
champion on March 15, 2016 which marks the release of AI
programs that reveal AI actions. Likewise, we focus on the
release of open-source Leela Zero on October 25, 2017 which
marks the release of open-source AI programs that reveal AI
reasoning processes.

These two AI programs feature different types of learning
resources. The first AI program, AlphaGo and its subsequent
versions, revealed only actions of AI (i.e., sequences of po-
sitions where AI placed stones). After observing novel Al-
phaGo actions, human players discussed among themselves
to figure out AlphaGo’s intent or subsequent actions that Al-
phaGo would have taken. However, human players could
only make guesses about these. The second AI program,
namely open-source AI programs like Leela Zero, revealed
not only the actions of AI, but also its reasoning processes.
For example, Leela Zero and its ilk showed a set of possi-
ble moves that AI considered before making its final move

4“The power of Korean Go? Joint research!” Mar/09/2011
(donga.com/news/Culture/article/all/20110309/35417308/1)

5“Hone your Go skills with AI instructors” Feb/26/2019
(munhwa.com/news/view.html?no=2019022601032103009001)

decision. For each of these possible moves, the open-source
AI programs calculated the win probability6 associated with
the move and showed how the game will be played follow-
ing the move (i.e., a series of optimal decisions7 expected by
AI). The online supplementary materials for this paper dis-
cuss the information that Leela Zero provided to human play-
ers (https://osf.io/skuy5).

Period Learning resources
Before AI Human actions
After AlphaGo Human actions + AI actions
After Opensource AI Human actions + AI strategy

Figure 2: Simplified Human Learning Process in Go

Before we discuss our method and results, it would be
helpful to illustrate how learning typically occurs in Go, and
which parts of the learning process were likely affected by the
aforementioned AI programs. As shown in Figure 2, learning
begins with a human player possessing (1) an evaluation pa-
rameter (θ) that assesses a state on the board (i.e., how the
pattern of black and white stones placed on the board is ad-
vantageous to the player or the opponent) and (2) a strategy
parameter (σ) that encompasses a set of decision rules. In a
match against another player, the player uses their evaluation
parameter to evaluate states (S) and then uses their strategy
parameter to take actions (a), i.e., make decisions. After the

6Although we use the term win probability, its exact interpreta-
tion is more subtle. Still it is used in the Go community so we use
this term for convenience.

7In this paper, an “optimal decision” refers to the best decision
that the agent (human or AI) can make in the given state, rather
than the true best decision for the given state. We are interested
in learning about how humans make decisions like AI that is far
superior to humans, rather than in learning about how humans learn
to make best decisions in the strict sense of the words.
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match ends, the player reviews their own move decisions and
those of their opponent, and updates their evaluation parame-
ter (θ; e.g., “The opponent seemed to be in a strong position
in State S but they actually had several vulnerable spots”) and
strategy parameter (σ; e.g., “After some contemplation, I re-
alize that I should have attacked the opponent’s territory from
the other side”).

Before AI programs were available, human players’ learn-
ing resources consisted only of their own or other human
players’ move decisions. However, with the advent of the
two AI programs, the learning resources available to them
changed substantially: AlphaGo introduced actions of super-
human AI to the mix and Leela Zero introduced a chance to
study the two decision parameters of AI, σAI and θAI . This
latter addition to the learning resources by Leela Zero was
especially important, because human players could now di-
rectly observe how AI evaluates states (e.g., win probability
for any states) and how AI sets up a strategy (e.g., sequences
of AI decisions in response to the opponent’s moves).

Measure
We develop a measure called the Human-AI Gap to compare
the quality of decisions by humans to the quality of decisions
generated by an AI program. Defining the quality of decisions
can be a challenge, however, because consequences of deci-
sions are hard to pin down in a high-dimensional state space.
Fortunately, modern AI programs based on deep reinforce-
ment learning can not only generate decisions of superhuman
quality but also evaluate the quality of any decision. Specif-
ically, AI’s value network evaluates states, or situations, in
a game, allowing us to evaluate how favorable a given state
is to the player of interest. Similarly, action-value network
evaluates any decision in the given state (producing an output
known as the Q value), allowing us to evaluate the quality of
any decision in any state. We thus evaluate the quality of any
human decision in any state, as well as the quality of a deci-
sion generated by AI, and calculate the gap (i.e., difference)
between the two values of decision quality.

Definition of the Human-AI Gap We use notations from
the previous literature (Igami, 2020; Silver et al., 2017) to ex-
plain our measure more formally. It is defined mostly for the
environment of the board game Go, but it can be easily mod-
ified in other well-defined dynamic decision-making prob-
lems. State space, |S|, represents a set of possible states of
a game. In a match between human players, a human player
faces many states in |S|. Given S∈|S|, the human player de-
cides on the next move. Thus, a human player making the
kth decision observes Sk (state) and decides ak (action), i.e., a
position to place the stone. We simplify the decision rule of
human players as follows:

aHuman
k = σ

Human(Sk;V (Sk;θ
Human))

Human players use their own evaluation parameter
(θHuman) to diagnose how advantageous the current state is,

V (Sk;θHuman). Based on the evaluation, they apply their own
strategy or decision rule (σHuman), ending up with an action,
aHuman

k . In this decision rule, we abstract away from com-
plex interactions between human players. Instead, we treat a
move decision as a single-agent problem in which each hu-
man player has to find an optimal decision in the given state
to maximize the total reward. Any strategic responses from
the opponent human player are subsumed under the transition
of the state in our decision rule.

AI programs also map a given state to an action based on
their policy network8. Although the actual process of AI
decision-making is as complex as human decision-making,
it can be simplified as follows:

aAI
k = σ

AI(Sk;V (Sk;θ
AI)).

We need to note that a human and AI facing the same state,
Sk, may arrive at different actions (i.e., aHuman

k 6= aAI
k ). This

is because the way a human evaluates the state, θHuman, is
different from the way AI does, θAI . That is, a human may be
too optimistic or too pessimistic from the perspective of AI.
In addition, AI may use a strategy, σAI , that is distinct from
any traditional human strategy, σHuman. AI trained by playing
against itself is free from any conventional human strategies,
so it will produce actions that will be novel to human players.

Finally, we define the Human-AI Gap as follows:

∆k≡

Quality of a counterfactual AI decision︷ ︸︸ ︷
V (Sk+1(aAI

k ) ;θ
AI) − V (Sk+1(aHuman

k ) ;θ
AI)︸ ︷︷ ︸

Quality of an actual human decision

First, a human player takes an action (i.e., makes a deci-
sion), aHuman

k , after observing a state, Sk. We have AI simulate
a counterfactual action (i.e., decision), aAI

k , given the same
state Sk; this is the action that the AI itself would have taken
if it were in the human player’s position. Second, we have
the AI quantify the quality of the two actions (i.e., decisions),
one from the human player (aHuman

k ) and the other from the
AI (aAI

k ), by evaluating the subsequent state. The quality of
the counterfactual AI action, V(Sk+1(aAI

k );θAI), represents the
“maximum” decision quality that the human player can attain
(by choosing the same action as the superhuman AI). Finally,
we subtract the human player’s decision quality from this
“maximum” decision quality to obtain the Human-AI Gap
for the move. Put differently, the Human-AI Gap quantifies
the difference between the advantage to the human player in-
duced by a counterfactual AI decision and the advantage in-
duced by the player’s own decision9. If the AI generates a

8In most cases, Deep Q network is designed to choose an ac-
tion with the highest expected action-value. In the game of Go, that
process is complemented with Monte Carlo Tree Search and AI pro-
grams choose a move with the highest playout number. In addition,
the dimension of the state space in the board game Go is very large
so AI programs take a few key features of each state as input.

9In the game of Go, V (Sk+1(aHuman
k ) ;θAI) is similar to Q value

(action value network) because the reward is only realized at the end
of the game.
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higher-quality decision than the human player’s, the Human-
AI Gap would be positive. If the human player makes the
same decision as the AI, then the Human-AI Gap would be
zero. Because we use a much superior AI to generate coun-
terfactual decisions, the Human-AI Gap is usually positive.
Given this definition of the Human-AI Gap, a systematic de-
crease in the Human-AI Gap (as we shall see later) indicates
that human players make decisions that are closer in quality
to decisions of AI.

Data
Our data set spans from January 2014 to March 2020 and
consists of two different data sets. The first is data on 30,995
matches between 357 Korean professional players, where
we observe match date, the identity of players, and match
outcomes. The second is data on 1.3 million move decisions
from matches between Korean professional Go players.
We scraped publicly available data from the Korean Go
Association and other websites10. For every move decision
by a human player, we simulate the optimal move decision
of AI11 under the same state of the game and compute the
Human-AI Gap as explained in the previous section. Thus,
we have 1.3 million move decisions by human players, 1.3
million move decisions by AI, and AI’s evaluation of each of
these decisions.

Table 1 shows the summary statistics of our data. Players
in the data were heterogeneous in terms of performance,
with the win rates averaging 43%. For each match, two
professional players together made an average of 216 move
decisions (or 108 move decisions per player). The mean
Human-AI Gap of 3.52 percentage points indicates that
human players on average made move decisions that were
associated with 3.52 percentage points lower win rates as
compared with the counterfactual move decisions by the AI
program.

Table 1: Summary Statistics

Data 1: Player-level match performance (N = 357)

25% quartile Median Mean 75% quartile
Winning rate (%) 31 46 43 81
Data 2: Move decisions (N = 1,357,523)

25% quartile Median Mean 75% quartile
Move counts within a match (' 2k) 176 211 216 254
The Human-AI Gap (percentage points) 0.39 1.68 3.52 4.51

Results
Model-free descriptive pattern We calculate the Human-
AI Gap (∆) for every decision made by every human player in

10Not every match has been saved with a detailed record of move
decisions, but we collected the historical data from multiple sources
to get more complete history. The data containing match results
spans from 2012 to 2020. The data containing move decisions spans
from 2014 to 2020.

11We use an AI program called Leela Zero to analyze our data. We
use GPU provided by Google Colab Pro (P100) in our simulation.

our data set. A value of zero means that a human player repli-
cated the AI’s decision (∆k = 0 ⇐⇒ aHuman

k = aAI
k ) and made

the optimal move, while a positive value indicates the ex-
tent to which AI’s decision was superior to that of the human
player (i.e., the extent to which the human player’s decision
quality trailed that of the AI). We present the pattern of ∆k in
Figure 3. The mean Human-AI Gap of each set of 10 moves
(e.g., st− 10th,11th− 20th, ...) is plotted across the course of
a match. The solid red curve traces the mean Human-AI Gap
during the period before AlphaGo’s victory over a human Go
champion, Lee Sedol (from January 2014 to March 2016);
the dotted green curve traces the mean Human-AI Gap dur-
ing the period between AlphaGo’s victory and the release of
open-source AI programs, such as Leela Zero (from March
2016 to October 2017); lastly, the dashed blue curve traces
the mean Human-AI Gap during the period after the release
of the open-source AI programs (from October 2017 to March
2020).

Insights from the pattern of the Human-AI Gap We can
trace the inverted U pattern of the Human-AI Gap over the
course of a match to gain insights about the human learn-
ing from AI. One possible insight is that room for the human
learning from AI may have been greatest in the early mid-
dle stage of the match (Moves 31-60 for each player), as it
is where the Human-AI Gap is the greatest. Human players
may find that studying AI decisions in this stage improves
their game more than studying AI decisions in the early or
late stage of the match. Another possible insight is that the
human learning from AI in the middle to late stage of the
match (Moves 51-140 for each player) may have been inef-
fective. Although human experts have managed to improve
their decisions in the early to early middle stage of the match
(the “Before AI” curve shifted down to “After Open-Source
AI” curve for Moves 1-50 in Figure 3), perhaps they could
not improve their decisions in later stages of the match de-
spite much effort (the “After Open-Source AI” curve overlaps
the “Before AI” curve for Moves 51-140 in Figure 3). Human
experts may have concluded that improving decisions in later
stages of the match (Moves 51-140 for each player) was more
difficult than improving decisions in the early to early middle
stage (Moves 1-50). Improving decisions in the middle stage
(Moves 51-90 for each player) may have been especially hard,
perhaps due to intractable complexity and lack of similarity
from one match to another, both of which may have prevented
discovery or learning of novel strategies. If so, human ex-
perts may instead have doubled down and focused their effort
even more on improving decisions in the early to early middle
stage (Moves 1-50).

Human learning in the early stage of the game More
important than the inverted U pattern are downward shifts
in the Human-AI Gap (for Moves 1-50). Interestingly,
the Human-AI Gap decreased only a little bit after human
players could observe AlphaGo’s actions, as evidenced by
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Figure 3: Model-free Patterns of the Human-AI Gap over the Course of Match (Mean of Each 10 Moves). the Human-AI
Gap decreases ever so slightly after AlphaGo’s actions are released: the dotted green curve is positioned slightly below the
solid red curve. After open-source AI programs are released and reasoning processes of AI become observable, however, the
Human-AI Gap decreases by a much greater margin, indicating a marked increase in human decision quality. This decrease in
the Human-AI Gap occurs mostly for the early to early middle stage of the match (Moves 1-50). The error bars indicate 95%
confidence intervals around the means for each 10 moves.

a barely noticeable downward shift from the “Before AI”
curve to “After AlphaGo” curve in Figure 3. In contrast,
the Human-AI Gap dropped markedly after open-source AI
programs were released, as evidenced by a larger downward
shift from “After AlphaGo” curve to “After Open-Source AI”
curve in Figure 3.

Constructing a player-month level data set So far, we
have not taken into account differences among players. Now,
we construct a data set at the player-month level (∆it ) as fol-
lows:

∆it =
1
nit

1
K

nit

∑
j=1

K

∑
k=1

∆ jk

where ∆it denotes player i’s mean Human-AI Gap in month t;
nit denotes the number of matches player i plays in month t;
K denotes the total number of move decisions examined for
each player in each match; k denotes player i’s kth move deci-
sion within match j; and ∆ jk denotes the Human-AI Gap for
player i’s kth move decision within match j. Using a panel
structure, we investigate whether human decision quality in-
deed increased more after the release of open-source AI pro-
grams as compared with after AlphaGo’s victory. Because
the decrease in the Human-AI Gap was concentrated in the
early to early middle stage of the game (Moves 1-50), and
because no such decrease was readily observable for Moves
51-140, we focus our attention on the first 50 moves by each
player within each match (i.e., K = 50) to investigate human
decision quality over time in the following section.

Players with versus without access to AI We investigate
how access to reasoning processes of AI (i.e., access to the
open-source AI programs like Leela Zero) affects the human
learning from AI. We do so by leveraging mandatory military
service in South Korea12 as a natural experiment. First, we
obtained an official record of Korean players’ military service
history and used it to split the players into two groups: those
who were serving in the military and therefore did not have
access to AI programs for at least 6 months; and those who
were not serving in the military and had full access to AI
programs. Next, we constructed a player-month level data
set (as explained in the previous section), separately for each
of the two groups of players. Then, we ran the following
regression, separately for each of the two groups of players:

∆it = αi + τt + εit

where ∆it denotes player i’s mean Human-AI gap in month
t; αi denotes a player fixed effect; τt is a fixed effect of in-
dividual months (from January 2014 to March 2020), and εit
is an error term. In Figure 4, we plot the estimated fixed ef-
fects of individual months, τt , for each of the two groups of
players. The two vertical lines mark the introduction of the
two AI programs: the vertical line on the left marks March

12South Korean male citizens are required to serve in the military
for 18-24 months before age 29, which forces the military-serving
players not to be able to participate in Go matches more than once a
month and to be away from recent trends in AI programs related to
Go. Specifically, most of them are expected to be confined in their
military base but they get short-term leave every other month. We
confirm from the data that players serving in the military can partici-
pate in a tournament once a month at most. They do not have enough
time nor a high-performance computer to self-teach unfamiliar tac-
tics, strategies, or insights discovered by AI programs.
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Figure 4: Statistical Test on the Human-AI Gap This plot shows estimated monthly fixed effects on the Human-AI Gap
(∆it ) for players with access to the AI programs (denoted by red circles) and for players without the access (denoted by blue
triangles). The following regression equation was used to estimate the time trends: ∆it = αi + τt + εit , where αi is a player
fixed effect, τt is a time (i.e., month) fixed effect, and εit is an error term. This plot demonstrates that AlphaGo, despite its
superior performance against human, does not help human players to make better decisions. Human players start to make better
decisions after the release of the open-source AI. This finding highlights the importance of access to reasoning process of AI.

15, 2016, the date on which AlphaGo defeated the human Go
champion, Lee Sedol; and the vertical line on the right marks
October 25, 2017, the date on which the open-source AI pro-
gram Leela Zero was publicly released (which in turn was
followed by releases of similar AI programs and education
tools). For each group of players, solid shapes denote signif-
icant monthly fixed effects, while hollow shapes denote non-
significant monthly fixed effects. Players who had access to
the open-source AI programs (e.g., Leela Zero) significantly
reduced the Human-AI Gap in the months following the intro-
duction of Leela Zero: the monthly fixed effects were mostly
nonsignificant (hollow red circles) before the release of Leela
Zero, but they become mostly significant afterwards (solid
red circles). In contrast, players in the military who had diffi-
culty in getting access to the AI programs did not show such
reduction in the Human-AI Gap: the monthly fixed effects
for this group are nonsignificant throughout the whole pe-
riod (hollow blue triangles), except for one month, April 2018
(one solid blue triangle). In summary, for players with access
to the AI programs, the Human-AI Gap starts to decrease sig-
nificantly after the release of open-source AI programs (the
red smooth line tracing monthly fixed effects slopes down-
ward noticeably after the second vertical line). In contrast,
for players without access to the AI programs, the Human-
AI Gap remains relatively flat (the blue smooth line does not
noticeably slopes downward). This pattern of monthly ef-
fects suggests that AlphaGo, despite its superior performance
against humans, did not help human players make better deci-
sions. Human players learned from AI after the open-source
AI programs revealed the reasoning processes of AI, rather

than after AlphaGo revealed actions of AI13. This finding
highlights the importance of gaining access to reasoning pro-
cess of AI to promote the human learning from AI.

Conclusion
As AI technology advances, we are likely to witness AI out-
performing humans in many decision-making domains other
than Go. Go is an interesting decision-making domain to
study the human learning from AI because it has a unique
combination of two notable features: (1) AI produces deci-
sions through a complex process that humans cannot fully
comprehend; and (2) the link between each AI move decision
and the ultimate outcome of the match (win vs. loss) may
be quite unclear to humans, though AI can make better sense
of the unclear link. Despite such complexity and ambiguity
inherent in decision-making by AI in Go, our results suggest
that humans can learn from AI and make better decisions like
AI, provided that they have access to the reasoning processes
of AI. Professional Go players did not make better decisions
after observing mere actions of the AI that defeated a hu-
man Go champion. Rather, the human experts started making
better decisions only after they gained insight into reasoning
processes of the open-source AI programs. We found fur-
ther evidence of this when we compared human players who
had versus did not have access to the AI programs. Even as
AI surpasses humans in decision-making, humans may find
it difficult to learn from AI and make better decisions them-
selves, unless they can have an inside look at how AI makes
its decisions.

13We verify the finding by doing a Difference-in-Difference esti-
mation in our online appendix (https://osf.io/skuy5)
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