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Abstract 

Dust aerosols have several impacts on the Earth system, including their influence on weather and climate 

through their interactions with clouds and radiation. Yet, dust modeling has long been a challenge in the 

research and operational communities. In particular, many weather and climate models underestimate dust 

long-range transport and dust-radiative effect. In this study, we aim to improve modeled dust representation 

over the Sahara Desert and the eastern Atlantic Ocean by integrating non-spherical (tri-axial ellipsoidal) 

dust particle shape and globally- and locally-representative observationally-constrained dust emitted size 

distributions into our dust model—the Weather Research and Forecasting model coupled with an online 

dust module (WRF-Dust). Based on these model modifications, we conducted two sets of numerical 

experiments over North Africa in 2016. Our numerical experiments on dust particle shape reveal that 

accounting for dust non-sphericity augments overall modeled aerosol optical depth (AOD) and promotes 

the westward extension of low Angstrom exponent (AE) values, thanks to the reduced dust sedimentation 

and enhanced dust optical properties under non-spherical conditions. As AE is inversely related to the 

average particle size, the non-spherical dust simulated results suggest that a greater fraction of large 

particles is transported from the Saharan source regions into the Atlantic Ocean, but the amount still falls 

short. Model evaluation against the AErosol RObotic NETwork (AERONET) observations shows that in 

the non-spherical shape simulation, there are 7.80% and 1.30% improvements in the root mean square error 

(RMSE) for AE and AOD, respectively, and 15.30% and 10.21% improvements in the mean bias for AE 

and AOD, respectively. By constraining dust emitted size distribution, we have further improved the 

magnitude and spatial distribution of AOD and AE, as indicated by the reduced error against a series of 

satellite and ground-based observations. Moreover, in a case study of Hurricane Earl (2010), by applying 

the best model configuration (i.e., the setting with the best overall model performance), we have slightly 

improved the storm intensity in minimum sea level pressure and maximum 10-m winds, although the 

improvements are not significant, requiring further adjustments in modeled dust. This study demonstrates 

the importance of emitted dust size distribution and particle shape in accurate dust simulation, which has 
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far-reaching implications in numerous weather systems, such as Atlantic hurricanes, convective storms, 

African easterly waves (AEWs) and the African easterly jet (AEJ). 
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1. Introduction 

Dust is one of the most abundant aerosols in the world (Prospero et al., 2002). Originating from arid 

desert regions including North Africa, the Middle East, Southwest Asia, and Northeast Asia, dust spreads 

over vast areas on its way propagating downwind, reaching the adjacent oceans and even continents across 

the seas under favorable conditions. With its widespread presence, dust has many impacts on the Earth 

system, including 1) its influence on weather and climate and Earth’s energy budget through its interactions 

with radiation and clouds (DeMott et al., 2003; Fan et al., 2016; Pérez et al., 2006; Shi et al., 2014; Slingo 

et al., 2006; Tegen, 2003), 2) its effects on ecosystems through dust-related physical and biogeochemical 

processes (Jickells et al., 2005; R. Wang et al., 2015; Yu et al., 2015), and 3) the growing public concern 

about human health affected by degraded air quality and decreased agricultural productivity caused by dust 

storm events (Arnalds et al., 2001; Burnett et al., 2014; García-Pando et al., 2014; Morman & Plumlee, 

2013; Pandolfi et al., 2014). Evaluating these dust impacts and addressing dust-induced issues call for 

accurate dust modeling. 

Of the various dust impacts mentioned, dust impact on weather systems, in particular, via dust-radiation 

interaction, is of our primary interest in this study. Over North Africa, dust lifted in the air largely travels 

with the Saharan air layer (SAL) under the westward-propagating African easterly waves (AEWs) and the 

African easterly jet (AEJ) (Bercos-Hickey et al., 2020; Knippertz & Todd, 2010; Nathan et al., 2019). 

During the transport, dust interacts with both shortwave and longwave radiation, affecting the radiative 

balance over the SAL region and impacting weather systems and large-scale circulation locally and beyond 

the region. Specifically, incoming shortwave radiation is effectively absorbed by dust, which enhances 

heating around the upper dust layer. By contrast, dust extinction of shortwave radiation generates a cooling 

effect in the lower dust layer. Additionally, dust absorbs and scatters longwave radiation as well as emits 

energy in all directions, resulting in cooling in the upper dust layer and warming in the lower dust layer 

(Carlson & Benjamin, 1980; S.-H. Chen et al., 2010; Wong et al., 2009; Zhu et al., 2007). Studies have 

shown that there is a net heating effect when considering dust interaction with both shortwave and longwave 

radiation (Carlson & Benjamin, 1980; Wong et al., 2009; Zhu et al., 2007). It is clear that dust-radiation 
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interaction alters the vertical temperature profile and modifies atmospheric stability (S.-H. Chen et al., 

2010), which would have an influence on weather systems in the region. Moreover, the modulated 

meridional temperature gradient, as a result of dust-radiative forcing, may alter the vertical wind shear and 

subsequently affect the intensity and direction of the AEJ (S.-H. Chen et al., 2010; Konare et al., 2008), as 

well as AEWs (Ma et al., 2012; Nathan et al., 2017; Nathan et al., 2019). Through its interactions with 

radiation and clouds, dust has a considerable influence on other weather systems, such as mesoscale 

convective systems (MCSs). Min et al. (2009) shows that dust acting as cloud condensation nuclei (CCN) 

and ice nuclei (IN) would increase cloud droplet number concentration, which would suppress precipitation. 

In a study of an MCS event over West Africa in August 2006, Shi et al. (2014) discovered that the dust 

aerosol direct effect dominated, which delayed the onset of the MCS. Despite the delayed development, the 

system could become more intense with more extensive anvil clouds due to the dust-radiative effect, as 

shown in a case study of an MCS that occurred on 4-6 July 2010 over North Africa (C.-C. Huang et al., 

2019). The dust impacts discussed here again signify the importance of accurate dust representation in 

weather and climate models. Thus, reasonably representing dust effects in numerical models is important 

to weather and dust simulations. 

Accurate dust modeling, however, has remained a challenge in the research and operational 

communities. Through extensive comparisons with in situ and remote sensing observations as well as field 

campaign data, dust models have exhibited some major deficiencies, such as the underestimation of aerosol 

optical depth (AOD). Model deficiency in AOD simulation is complicated by the fact that models often 

produce AOD simulations that are different not only from observations, but also among models (e.g., Li et 

al., 2016; Penner et al., 2001), in particular over dust aerosol dominant regions. The failure of models to 

capture these important dust features ultimately results in a less realistic representation of dust and thus the 

dust optical effects. 

Other major model deficiencies include the underestimation of coarse dust amount and insufficient 

long-range dust transport. Coarse dust particles, however, are widely present in the atmosphere and play a 

key role in the dust-radiative effect. Using the Fennec field campaign data (over the Sahara) and the AER-
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D field campaign data (over the tropical eastern Atlantic), Ryder et al. (2019) found that coarse (diameter > 

2.5 μm) and giant (diameter > 20 μm) dust particles comprise a considerable fraction of dust mass—over 

the Sahara, 93% of dust mass is constituted by particles over 5 μm and 40% by particles over 20 μm; over 

the SAL, 61% to 89% by particles over 5 μm and 2% to 12 % by particles over 20 μm. Failing to include 

giant dust particles in models may lead to underestimation of shortwave and longwave extinction by 18% 

and 26%, respectively. Yet, many model simulations [e.g. Weather Research and Forecasting model 

coupled with Chemistry (WRF-Chem), Community Earth System Model (CESM), Goddard Earth 

Observing System coupled with Chemistry (GEOS-Chem)] show substantial negative biases (0.5-1.5 orders 

of magnitude underestimation, increasing with dust diameter) in coarse dust load when compared to global 

measurements (Adebiyi & Kok, 2020). Ansmann et al. (2017) conducted an in-depth comparison study on 

regional and global dust models versus shipborne (polarization/Raman) lidar observations taken over the 

tropical Atlantic during April-May 2013. The comparisons in simulated and observed dust profiles 

indicated that modeled dust was removed too efficiently by dry and wet deposition during long-range 

transport (~1500-5000+ km from Saharan source regions). In addition, the modeled fine-to-coarse ratio was 

too high, suggesting that the models overestimated fine dust particles. They further found that the deviation 

of the modeled ratio was increasingly high with long-range transport. 

To cope with the model deficiencies in AOD and coarse dust representation, Kok et al. (2017) utilized 

an array of observational, modeling, and experimental constraints on dust properties, including the global 

dust AOD, averaged dust extinction efficiency, averaged emitted dust size distribution, and averaged size-

resolved dust lifetime. Similarly, Adebiyi & Kok (2020) employed globally representative constraints on 

dust properties. Instead of combining constraints on the emitted dust size distribution and dust lifetime, 

they directly used published in situ measurements of dust size distributions, resulting in a greater 

contribution by coarse dust compared to Kok et al. (2017) [see Fig. 1 in Adebiyi & Kok (2020)]. 

Nevertheless, the constrained distributions in both studies have substantially increased coarse dust 

concentration. 
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Dust shape is another key, yet often overlooked, factor that is significant to the model characterization 

of dust. Real-life dust particles are irregular in shape, anisotropic, and inhomogeneous (Nousiainen, 2009). 

Yet, a common practice in early and some current models is to treat dust particles to be spherical, thus 

allowing the use of Mie theory in computing the single-scattering properties of dust particles (Nousiainen, 

2009). Although dust sphericity is a reasonable assumption to some extent (Koepke et al., 2015), studies 

have shown that the simplified assumption of spherical dust particles may introduce considerable errors in 

dust modeling (e.g., Dubovik et al., 2002; Ginoux, 2003; Kok et al., 2017; Nousiainen, 2009). Compared 

to non-spherical particles, spherical particles at the same volume and mass are subject to faster gravitational 

settling because they experience less aerodynamic drag (Yang et al., 2013). Early sedimentation of dust 

particles in model simulations (e.g., Ansmann et al., 2017; O’Sullivan et al., 2020), in combination of the 

absence of coarse dust particles in models, further contributes to the underestimation of dust. Another 

drawback arising from the spherical assumption is the decreased dust optical properties, manifested as the 

underestimation of AOD when compared to observation data (Hoshyaripour et al., 2019). Without 

considering dust non-sphericity, models could underestimate AOD as much as 30% (Potenza et al., 2016), 

possibly owing to the greater surface-to-volume ratio of non-spherical dust particles than that of volume-

equivalent particles (Kalashnikova & Sokolik, 2004).  

Numerous studies (e.g., Bi et al., 2009; Dubovik et al., 2006; Meng et al., 2010; Mishchenko et al., 

1997; Nousiainen, 2009) have been dedicated to developing a non-spherical (e.g., spheroidal, ellipsoidal, 

etc.) particle shape model that best captures properties of real dust. Bi et al. (2010) discovered that the tri-

axial ellipsoidal shape model showed better agreement with experimental measurements than the spheroidal 

model, especially in terms of the polarization characteristics. By adopting the tri-axial ellipsoidal model, Y. 

Huang et al. (2020) found that sedimentation of dust particles slows down by ~15% due to greater drag 

force.  

This study builds on the invaluable findings and understanding from previous studies. We will 

incorporate appropriate adjustments to our dust model in the aspects of emitted dust size distribution and 

dust particle shape in order to improve dust representation (discussed in detail in Section 2), which will 
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facilitate our investigation of dust impacts on weather systems. Our regions of interest are the Sahara Desert 

in North Africa, which is the largest source of dust aerosols in the world (Prospero et al., 2002), and the 

eastern Atlantic Ocean. The Sahara Desert has annual dust emissions of 200-3,000 Tg (Huneeus et al., 

2011), which constitute about 25% of the global AOD (Kinne et al., 2006). To improve dust modeling, this 

study incorporates observationally-constrained dust size distribution based on Adebiyi & Kok (2020) and 

adopts a more realistic dust shape in the model.  

The paper is organized as follows: Section 2 discusses the details of the model and model modifications; 

Section 3 describes the ground-based and satellite observation data used for model evaluation; Section 4 

delineates the experimental design based on each model modification, followed by the model results and 

evaluation against the observations; in Section 5, we apply the best model configuration from Section 4 to 

investigate the effect of improved dust simulation on model meteorological fields through a case study on 

Hurricane Earl (2010); finally, Section 6 summarizes our findings and explores future work that will further 

improve the robustness of the dust model. 

 

2. Numerical model and model improvements 

2.1.  Model description 

In this study, we use the Weather Research and Forecasting (WRF) model V3.7.1 (Skamarock et al., 

2008) coupled with an online dust module (WRF-Dust) developed by S.-H. Chen et al. (2010, 2015) to 

conduct our numerical simulations. We will briefly describe the dust model here. Further details can be 

found in the original published papers. The WRF-Dust model incorporates a dust continuity equation that 

accounts for dust transport, mixing due to subgrid boundary layer turbulence, dust sedimentation, and 

source and sink processes. The source and sink term represents multiple dust processes, including surface 

dust emissions, dry and wet deposition, and other dust-microphysical processes (e.g., dust activated as CCN 

and/or IN, dust scavenged by clouds). Surface dust emissions, in particular, occur only when the following 

conditions are met: the vegetation type is barren; the volumetric soil moisture is less than 0.2; and the 10-

m wind speed (u10) exceeds a threshold wind speed (u10c) of 6 m s-1. The surface vertical dust flux (Fd) is 
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calculated as: Fd = C(u10 – u10c)u2
10, where C is the dimensional constant set to 0.4 μg m2 s-5, following Tegen 

& Fung (1994). 

The model uses five size bins, with median dust radii of 0.25, 0.5, 1, 2, and 4 μm, and the two largest 

bins (2 and 4 μm) are considered as coarse or large particles following Ryder et al. (2019). The dust bin 

size distribution and dust emission flux weighting for each size bin are constructed upon the scale-invariant 

theoretical analysis in Kok (2011), which describes that the emitted dust size distribution is independent of 

meteorological conditions (e.g., wind speed) and soil characteristics (e.g., soil moisture and soil type). The 

model uses the Optical Properties of Aerosols and Cloud (OPAC) software package (Hess et al., 1998) to 

compute the dust optical properties, including the single-scattering albedo, asymmetry factor, and extinction 

coefficient, at different wavelengths, including both shortwave and longwave. 

The WRF-Dust model configurations thus far align with those in S.-H. Chen et al. (2015). During model 

testing, however, we discovered an issue that the background CCN and IN aerosol concentrations in the 

two-moment microphysics scheme (Cheng et. al., 2010) used in the WRF-Dust model would diminish over 

time because there is no recharge of background aerosols from lateral and lower boundaries of the domain 

after the consumption by CCN activation and IN nucleation. As a result, in this version of WRF-Dust, we 

have constrained lateral boundary values of CCN and IN aerosol concentrations to their initial values (i.e., 

zero tendency) at the inflow regions (i.e., an open boundary condition) and replenished the background 

concentrations back to their initial values inside the domain (G. Chen et al., 2015). The replenishment is 

performed using the Newtonian relaxation method (Stauffer & Seaman, 1990) with 2-day relaxation time. 

 

2.2.  WRF-Dust model improvements 

In this section, we will introduce two major modifications on dust shape and emitted dust size 

distribution to improve the WRF-Dust model simulations. The first modification adopts a tri-axial 

ellipsoidal dust model to more accurately represent real dust. Accounting for dust non-sphericity may lead 

to decreased dust sedimentation (increased dust lifetime) and enhanced dust optical properties. The second 

modification integrates observationally constrained size distributions into the model dust emissions scheme, 
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which helps to improve emitted dust particle size representation in the model. The details of each major 

modification and the implementation strategies are discussed in the following subsections. 

 

2.2.1. Non-spherical dust shape 

To consider the dust shape effect, we assume a tri-axial ellipsoidal dust particle shape. Although this 

assumption is quite idealized, it allows a better representation of real-life dust (Y. Huang et al., 2020). The 

tri-axial ellipsoid model involves two distinctive shape descriptors: the aspect ratio (AR) and the height-to-

width ratio (HWR). The AR is defined as the ratio of the longest dimension of an ellipsoidal dust particle’s 

horizontal cross-section (i.e., the major axis of the projected ellipse, L) to its perpendicular dimension (i.e., 

the minor axis, W). The HWR, as its name suggests, is a ratio accounting for the particle’s height (H) and 

W, where H is the dimension perpendicular to the collection plane surface (Fig. 1). The AR and HWR are 

included in the calculation of the dust particle shape factor (χ = νsph/νasp; where νsph and νasp are the terminal 

velocities of a spherical particle and a non-spherical particle, respectively), which can be used to 

characterize particle sphericity. χ is unity for spherical particles and greater than 1 for non-spherical 

particles. To estimate χ, we apply Equation (25) from Bagheri & Bonadonna (2016) that accounts for the 

three dimensions of a tri-axial ellipsoid: 

𝜈!"#
𝜈$!"

≡ 𝑘! =
1
2
'𝐹!

% &⁄ +
1

𝐹!
% &⁄ *				(1) 

where ks is equivalent to our shape factor (χ) and Fs is the Stokes form factor that can be obtained from 

HWR⋅(1/AR)1.3. The factor χ can then be used to modulate the dust terminal velocity caused by the non-

spherical shape, and the terminal velocity equation is now written as: 

𝜈 =
1
18
𝐷(𝜌"𝑔
𝜒𝜇

				(2) 

where D is the diameter of a spherical particle or the volume-equivalent diameter of a non-spherical particle, 

ρp = 2.5 × 103 kg m-3 is the typical dust density (Kok et al., 2017), g is the gravitational acceleration at the 

Earth’s surface, and μ = 1.8 × 10-5 kg m-1 s-1 is the air viscosity in a standard atmosphere (temperature at 
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298 K and pressure at 1 atm). The terminal velocity of non-spherical particles decreases compared to the 

volume-equivalent spherical particles, as χ > 1 for non-spherical particles. This will allow non-spherical 

dust particles to be suspended in the air longer. Y. Huang et al. (2020) shows that considering a tri-axial 

ellipsoidal dust shape reduces the gravitational settling speed by ~15% and enhances the dust gravitational 

settling lifetime by ~20% on a global average. 

 
Fig. 1. A schematic diagram of an irregularly shaped dust particle represented by a tri-axial ellipsoid. The 
length L (blue line), or the major axis, is the longest dimension of the top-down projection of the ellipsoid. 
The width W (green line), or the minor axis, measures the maximum distance across the particle that is 
perpendicular to L. The height H (red line) records the maximum particle distance perpendicular to the 
collection plane surface, which is also perpendicular to L and W. 
 

For this study, we use measurements of AR and HWR of African dust from multiple studies and field 

campaigns (C. Chou et al., 2008; Kandler et al., 2007; Klaver et al., 2011; Lieke et al., 2011; Reid et al., 

2003). With these measurements, we can obtain the averaged shape factor for each size bin diameter (1.291, 

1.291, 1.286, 1.284, and 1.295 for bins 1-5, respectively). The shape factors are then incorporated into the 

model calculation of terminal velocity, allowing the model to considerably reduce the speed of dust 

sedimentation, in agreement with the conclusion in Y. Huang et al. (2020). 

In addition to slowing down dust sedimentation, dust non-sphericity has a positive impact on the dust 

optical properties and AOD due to the change of the particle cross section. A non-spherical particle, on 

average, has a greater surface-to-volume ratio compared to a volume-equivalent spherical particle 
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(Hoshyaripour et al., 2019). A closely related concept is the cross section, or projected area. For a randomly 

oriented dust particle, its projected area is approximately ¼ of the surface area (M. Wang et al., 2019). Due 

to the enlarged particle cross section, non-spherical dust particles undergo enhanced dust-radiation 

interactions (i.e., extinction), which, in turn, may increase dust AOD. We can see this enhancement due to 

the enlarged area from the following modified optical depth equation: 

𝜏)(𝜆) = ℎ8 8 𝑄*+,-:𝜆, 𝐷*+,-<
.

-
𝛾𝐴)+,-𝑁+,-

/

+
				(3) 

The equation represents the optical thickness (τc) of N (# m-3) particles in relation to the extinction efficiency 

(Qe), which is a function of wavelength and the dust effective diameter (De), and cross section area (Ac). γ 

is the non-spherical area factor that accounts for the increased cross section area of non-spherical particles; 

thus, γ > 1 for non-spherical particles. The subscripts i and j denote the aerosol type and the size bin, 

respectively; n is the number of total aerosol types, which is 1 since only dust aerosol is considered in the 

WRF-Dust model; and m is the number of total size bins, which is 5 in this study. Equation (3) shows that 

a particle’s optical thickness is proportional to its cross section area, from which we can infer that non-

spherical dust particles enhance the overall model AOD. The computation results of the non-spherical area 

from the shape factors obtained earlier indicate an average of 4.4% increase in cross section area of a non-

spherical dust particle relative a spherical one. Subsequently, we implement the non-spherical modifications 

of dust optical properties into the Goddard Space Flight Center (GSFC) radiation scheme (M.-D. Chou & 

Suarez, 1994, 1999; M.-D. Chou et al., 2001). Note that in the GSFC scheme, the five model size bins are 

lumped into three modes (nucleation, accumulation, and coagulation modes) in the computation of optical 

properties. 

Besides integrating the dust non-sphericity impact into the optical thickness equation, we have devised 

an approach that allows us to directly modify the dust optical properties so that dust non-sphericity is 

considered. The calculations of non-spherical dust optical properties are based on the OPAC refractive 

index data and the database software package developed by Meng et. al (2010), which computes the single-

scattering properties of dust-like aerosols using a combination of the Lorenz-Mie theory, the T-matrix 
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method, the discrete dipole approximation, and an improved geometric optics method. The computed values 

for a total of 18 bands [6 shortwave and 12 longwave bands, based on the Fu-Liou-Gu (FLG) radiation 

scheme (Fu & Liou, 1992; Gu et al., 2011)] at different bin diameters are stored in lookup tables to replace 

the spherical optical properties. This method to obtain non-spherical optical properties is necessary for 

simulations using the FLG radiation scheme because using the original optical coefficients in the WRF-

Dust model with the FLG scheme would generate consistently negative Angstrom exponents (AE; 

discussed in further details in Section 3.1), which is problematic as it neither represents the real dust 

behavior nor reflects true model performance. The issue is related to AOD at the shortwave bands and 

pending further investigation. Unfortunately, the updated lookup tables, which are bandwidth-dependent, 

are only available for the FLG scheme at present. Lookup tables for other radiation schemes, such as the 

GSFC radiation scheme, will be implemented in the future. 

 

2.2.2. Emitted dust size distribution 

We improve the model emitted dust size distribution through constraints with global observations 

developed by Adebiyi & Kok (2020) and Adebiyi et al. (2020). As discussed in the introduction, the 

constraints are based on published in situ measurements of atmospheric dust size distributions globally, 

observational and experimental constraints on dust shape and optical depth, and an ensemble of global 

model simulations [i.e., DustCOMM, or Dust Constraints from joint Observational-Modelling-

experiMental analysis, developed by Adebiyi et al. (2020)]. These constraints are parameterized and used 

in the generalized atmospheric dust size distribution equation (Adebiyi et al., 2020): 

𝑑𝑉$0.(𝐷)
𝑑𝐷

=
1
𝐶1∗
⋅ D1 + 𝑒𝑟𝑓H

ln K𝐷𝐷!
L

√2 ln(𝜎!)
O ⋅ 𝑒

345678
!
9 ⋅ 𝐷:P				(4) 

where D is the dust geometric diameter, dVatm(D)/dD is the volume size distribution of atmospheric dust, 

𝐶1∗ is the normalization constant, erf is the error function, Ds (geometric median diameter) and σs (geometric 

standard deviation) are least-squares fitting parameters, and α, b, and Λ are adjustable parameters pertaining 
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to coarse dust particles. The parameters for the globally-averaged observationally-constrained (hereafter 

GLO) dust size distribution used in the model can be found in Table 1. Compared to the emitted dust size 

distributions in other global simulations (e.g., WRF-Chem, CESM, etc.), the GLO distribution is shown to 

substantially increase the model coarse dust loading, bringing the dust size distribution much closer to the 

observed distribution [see Fig. 1 in Adebiyi & Kok (2020)]. 

In addition to the GLO size distribution, similarly, we develop an observational constraint focusing on 

North Africa, our region of interest. The locally representative observationally-constrained (hereafter LOC) 

dust size distribution is an averaged size distribution based on measurements at five AErosol RObotic 

NETwork (AERONET) sites over 13-17°N—Cape Verde (CV; 16.733°N, 22.935°W), Dakar (DA; 

14.394°N, 16.959°W), IER_Cinzana (IC; 13.278°N, 5.934°W), Banizoumbou (BA; 13.547°N, 2.665°E), 

and Zinder Airport (ZA; 13.777°N, 8.990°E)—along which major dust plumes propagate (see Fig. 2 for 

AERONET site locations). The choice of AERONET sites will be discussed in detail in Section 3.1. Size 

distribution parameters specific to the above-mentioned locations are presented in Table 1. Compared to 

the GLO distribution, LOC shows even more dust loading toward the coarse end of the distribution (10-20 

μm diameters) but less amount otherwise (Fig. 3). 

 
Table 1. Values of the observationally-constrained emitted size distribution parameters for the globally-
averaged dust size distribution and five local dust size distributions at CV, DA, IC, BA, and ZA. 

Distribution Type Location Ds (μm) σs α b Λ 
GLO Globe 2.50 2.07 0.02 -1.08 23.54 

 
 

LOC 

Cape Verde 1.37 1.83 2.42 -0.20 15.40 
Dakar 1.64 1.86 0.21 -0.41 346.35 

IER_Cinzana 1.17 1.77 0.03 -0.12 281.03 
Banizoumbou 0.97 1.74 0.58 0.19 32.96 
Zinder Airport 0.80 1.68 0.07 0.34 8.73 

 

To integrate the observationally constrained emitted dust size distributions into the model, we partition 

each distribution into five segments according to the five size bins of the model, with each bin diameter 

being the median diameter of each distribution segment. The weighting of each segment is then computed 

based on Equation (4) and incorporated into the model as the dust emission flux weighting or ratio for the 
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corresponding size bin. Note that the model size bins are capped at 8 μm in diameter. Thus, we have 

incorporated the constrained distributions only up to 10 μm in dust geometric diameter (with 8 μm being 

the median diameter in the last distribution segment). The computed size bin weightings are recorded in 

Table 2. Compared to ORG, GLO puts greater emphasis on bins 1-4, whereas LOC favors bins 1, 3, and 4 

more strongly. Due to the model limitation in dust particle size, the contribution of the largest particles in 

the distribution (diameters of 10-20 μm) is neglected, which may affect the coarse dust representation in 

model simulation. In the future, we will extend the model size bins to 20 μm so that we can fully apply the 

distributions into our WRF-Dust model.  

 
Fig. 2. AERONET sites examined in this study (denoted by red dots). From west to east, the sites are Cape 
Verde (CV), Dakar (DA), IER_Cinzana (IC), Banizoumbou (BA), and Zinder Airport (ZA). Note that the 
figure also displays the domain configuration of our dust numerical experiments. 
 

Table 2. Dust emission flux weighting of each model size bin (median radius in parentheses) calculated 
based on different emitted dust distributions. The sum of the five bins’ weightings is equal to 1. 

Distribution Type Weighting by Bin 
Bin 1 

(0.25 μm) 
Bin 2 

(0.5 μm) 
Bin 3 

(1 μm) 
Bin 4 

(2 μm) 
Bin 5 

(4 μm) 
ORG 0.007 0.053 0.09 0.25 0.60 
GLO 0.013 0.072 0.218 0.375 0.322 
LOC 0.016 0.047 0.093 0.372 0.472 
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Fig. 3. Three normalized emitted dust size distributions used in the study: LOC (red), GLO (blue), and 
ORG (black). LOC and GLO represent the locally-averaged (over the five AERONET sites in Table 1) and 
globally-averaged observationally-constrained distributions, respectively, whereas ORG represents the 
distribution originally used in the WRF-Dust (S.-H. Chen et al., 2015), which is based on Kok (2011). 
 

3. Observations 

Observations will be used to verify model results in the aspects of AOD magnitude and pattern, AOD-

derived parameter (i.e., AE), and vertical aerosol backscatter profiles. The observation data used are from 

various ground-based and satellite remote sensing data, including AOD and AE from AERONET, AOD 

and AE from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-

Orbiting Partnership (Suomi NPP) spacecraft, aerosol backscatter profiles from the Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO) satellite, and AOD from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) onboard the Terra and Aqua satellites. Each set of observation data and its role in model 

validation will be briefly introduced in the following subsections. 
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3.1. AERONET AOD and AE 

AERONET is a network of ground-based remote sensing aerosol observation sites developed by NASA 

and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire) and 

continuously expanded by national agencies, institutes, universities, and researchers around the world. 

AERONET provides aerosol observations including AOD, AOD-dependent products, such as the AE, 

inversion products, and precipitable water in different regimes. For model verification in this study, we use 

Level 2 (calibrated, cloud-screened, and quality-ensured) AOD and the derived AE data in Version 3, which 

utilizes the latest processing algorithms (Giles et al., 2019). AE is a parameter that describes the wavelength 

dependence of AOD and is often used as an indicator of the average particle size. The Angstrom’s empirical 

expression (Ångström, 1929) is: τ(λ) = βλ-α, where λ is the wavelength, τ(λ) is the wavelength-dependent 

AOD, β is the Angstrom’s turbidity coefficient, and α is the AE. Given two different wavelengths, we may 

obtain the AE as: 

𝛼 = −
𝑑 ln 𝜏
𝑑 ln 𝜆

= −
ln K𝜏%𝜏(

L

ln K𝜆%𝜆(
L
				(5) 

where the subscripts 1 and 2 represent two distinct wavelengths. AE is inversely related to the mean particle 

size. Generally, α ≤ 1 indicates coarse-mode dominant aerosols, while α ≥ 1 indicates fine-mode dominant 

particles (Soni et al., 2011). 

We have chosen, as mentioned in Section 2.2.2, five AERONET sites in the region of interest for model 

verification (Fig. 2), including CV, DA, IC, BA, and ZA. These five sites are spread and largely aligned in 

the east-west direction, along which major dust plumes propagate from the inland Bodélé Depression to 

coastal West Africa following the prevailing AEJ. This enables us to analyze the model performance in 

transporting dust (via AOD comparison) and sustaining coarse dust in the air during transport (via AE 

comparison). 

 

3.2. VIIRS AOD and AE 
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VIIRS is one of the key instruments onboard the Suomi NPP satellite, observing the entire Earth twice 

a day at an elevation of 824 km above sea level. VIIRS has 22 imaging and radiometric bands, allowing it 

to generate high-resolution visible and infrared imagery and gather global observations that facilitate 

environmental monitoring and numerical forecasting. AOD and AOD-derived AE use visible and near-

infrared channels in solar radiation, thus they are only available once a day. For our model verification, we 

compare experiment results with the VIIRS Level 2 Deep Blue aerosol product (6 km × 6 km resolution), 

which retrieves AOD at a reference wavelength of 550 nm using two retrieval algorithms: Deep Blue 

algorithm over land and the Satellite Ocean Aerosol Retrieval (SOAR) algorithm over ocean (Sayer et al., 

2018); and calculates AE at the visible band over land (412-488 nm over arid land, 488-670 nm over 

vegetated and mixed surfaces) and at both the visible and near-infrared bands over ocean (e.g., 550-865 

nm). Due to limited bands associated with the model’s radiation schemes in the visible spectrum—

specifically, 412 and 488 nm wavelengths fall into the same band in both the GSFC and FLG radiation 

schemes—we will compare modeled and VIIRS-observed AE over ocean only. The satellite AOD and AE 

observations provide a broad picture of dust optical thickness and particle size distribution over the domain 

that is otherwise not fully visible through ground-based observations, such as AERONET. In addition, 

VIIRS Deep Blue data does not exhibit severe AOD discontinuity from ocean to land for our study period 

of July 2016, an issue sometimes encountered by MODIS onboard the Aqua and Terra satellites (Levy et 

al., 2005). Therefore, VIIRS is a suitable choice of observation for comparing with the spatial distribution 

and magnitude of modeled AOD (both land and ocean) and AE (ocean only), from which we can determine 

if the dust is reasonably distributed and if the larger particles are sustained in the air and transported 

sufficiently far. 

 

3.3. CALIOP aerosol backscatter profiles 

CALIOP, an important instrument onboard the CALIPSO satellite, is a two-wavelength polarization-

sensitive lidar, which generates high-resolution aerosol and cloud vertical profiles (Winker et al., 2003). 

CALIOP measures backscatter intensity at 1064 nm and orthogonally polarized components of the 
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backscatter at 532 nm, and the latter is used for model evaluation. The vertical and horizontal resolutions 

of CALIOP are 30-60 m and 333 m, respectively. For model validation, we statistically compare the 

modeled and CALIOP aerosol backscatter profiles. The details of the statistical evaluation are outlined in 

Section 4.3.2. 

 

3.4. MODIS AOD 

MODIS onboard the Aqua and Terra satellites scans the entire Earth every 1 to 2 days. It operates in 

36 spectral bands from 0.405 to 14.385 µm. MODIS provides important measurements and imaging that 

are essential to the understanding of large-scale global dynamics. For model validation, we utilize the 

MODIS Level 2 aerosol data product (6 km × 6 km resolution) to evaluate AOD at 550 nm for the Hurricane 

Earl case study. Due to the fact that the cyclone occurred in 2010, prior to the launch of Suomi NPP, VIIRS 

is not available for model evaluation. The MODIS dataset contains a merged AOD product, which combines 

both the Dark Target and Deep Blue algorithms. The merged product provides an effective representation 

of AOD over both dark and bright surfaces, which is advantageous since our study region contains both 

desert and nearby vegetated surfaces as well as the ocean. 

 

4. Examination of dust shape effect and emitted dust size distribution effect on dust simulation 

In this study, we carry out two sets of sensitivity numerical experiments. These numerical experiments 

explore the contributions of dust non-sphericity (Section 4.2) and various emitted dust size distributions 

(Section 4.3) towards the improvement of dust propagation and dust optical properties. The experimental 

configuration with the best simulation performance is then applied to conduct a case study on Hurricane 

Earl (2010) to examine impacts of improved dust simulation on meteorological fields in Section 5. 

 

4.1. Sensitivity numerical experiment configuration 

The WRF-Dust model is used for numerical simulations. The model configuration summarized in Table 

3, including physics parameterization schemes, is used in all numerical experiments in Sections 4.2 and 4.3. 
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The experiments use a 12-km resolution domain ranging over 85°W-40°E and 10°S-40°N, covering Central 

and North Africa as well as a large portion of the Atlantic Ocean, spanning much of the tropical and North 

Atlantic (see Fig. 2). This domain configuration allows the model to simulate dust emissions originated 

from major Saharan source regions including the Bodélé Depression in Chad and parts of Mauritania, Mali, 

and Algeria (Engelstaedter & Washington 2007), and to capture the dust transported downwind by the AEJ 

and AEWs across the African continent and the Atlantic Ocean. 

 
Table 3. WRF-Dust model configurations used throughout the numerical experiments. 

Horizontal Resolution 12 km × 12 km 
Vertical Layers 45 

Initial and Boundary Conditions ERA5 (Hersbach et al., 2020) 
Microphysics Two Moment Scheme (Cheng et al., 2010; C.-C. Huang 

et al., 2019) 
Surface Layer Physics Revised MM5 Scheme (Jiménez et al., 2012) 
Land Surface Physics Unified Noah Land Surface Model (Tewari et al., 2004) 

PBL Physics MRF Scheme (Hong & Pan, 1996) 
Cumulus Parameterization New Tiedtke Scheme (Zhang & Wang, 2017) 

 

We have chosen July 2016 for the study, as the peak of dust emissions occurs during the summer 

(Engelstaedter & Washington, 2007; Kim et al., 2014; Laken et al., 2013); in winter and spring months, 

dust emissions decline and other aerosol emission sources, such as biomass burning, become important and 

cannot be simply ignored. To initialize the model, we use the ECMWF (European Centre for Medium-

Range Weather Forecasts) Reanalysis v5 (ERA5) data (Hersbach et al., 2020) for the model’s 

meteorological initial and boundary conditions. Each experiment runs for 1.5 months from 15 June to 31 

July 2016; the first half month serves as model spin-up to produce background dust due to the absence of 

dust in the initial conditions, and the results of which are discarded. As the experiments focus on dust size 

distribution, transport, and optical properties, in order to constrain the modeled meteorological conditions 

to the observed, we employ the four-dimension data assimilation (FDDA) technique throughout all 

sensitivity experiments. Since we use hourly ERA5 reanalysis data for nudging, the model can capture 

diurnal cycles within the boundary layer, and thus, the FDDA is applied to the entire domain including the 

boundary layer. 



 

 18 

4.2. Dust particle shape effect 

4.2.1. Experimental design 

We conduct two numerical experiments to investigate the impacts of dust shape on dust transport and 

optical properties in the model. Both experiments are carried out under the same model settings (see Table 

3), with the exception that one assumes a spherical dust particle shape, serving as the control run, while the 

other considers a non-spherical shape. As the emitted dust size distribution and the radiation scheme are 

not of particular concern in this set of experiments, we use the distribution originally implemented in the 

WRF-Dust model by S.-H. Chen et al. (2015), which was established upon the scale-invariant dust 

distribution derived in Kok (2011) (this distribution setting will be referred to as ORG hereafter for 

simplicity), and the GSFC radiation scheme. The two experiments are ORG_SPH and ORG_NSPH (Table 

4), which denote the spherical dust and non-spherical dust experiments, respectively. The experiment 

results will be evaluated against observation data to quantify improvement as a result of the tri-axial dust 

shape consideration. 

 
Table 4. The design of the two dust particle shape numerical experiments. 

Size Distribution/Radiation Scheme Dust Shape Experiment 
ORG/GSFC Spherical ORG_SPH 
ORG/GSFC Non-spherical (tri-axial ellipsoidal) ORG_NSPH 

 

4.2.2. Results and discussion 

Over land, the AOD and AE analysis results from the two dust shape experiments are statistically 

evaluated against the observations of the five interested AERONET sites. Since the AERONET 

observations are recorded at a higher and irregular temporal frequency during the daytime, we define a 2-

hour window centered at each WRF analysis time (i.e., the time period ranging ±1 hour from the analysis 

time); within this window, we average the available AERONET data, and the averaged value is used for 

statistical comparison with model outputs, whose frequency is every 2 hours. In the span of the analysis 

month, a total of 402 valid pairs of model and observation data are included in the statistical computation, 

and the results are recorded in Table 5. In both the AE and AOD comparisons, ORG_NSPH produces 
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smaller root mean square errors (RMSEs; 7.80% and 1.30% improvements for AE and AOD, respectively) 

and mean biases (MBs; 15.30% and 10.21% improvements for AE and AOD, respectively) than does 

ORG_SPH. The enhanced AOD over the source regions and reduced sedimentation in ORG_NSPH lead to 

the overall improvement in dust simulation. 

 
Table 5. Statistical evaluation of model AE and AOD for the ORG_SPH and ORG_NSPH experiments 
against AERONET data. Statistics below are based on 402 valid comparisons of hourly model and 
AERONET data. 

Experiment AOD AE 
RMSE MB RMSE MB 

ORG_SPH 0.309 -0.235 0.231 0.170 
ORG_NSPH 0.305 -0.211 0.213 0.144 

 

Figure 4 shows the monthly mean 550 nm AOD from VIIRS observations and model simulations. We 

focus on the results north of the equator, over which dust aerosols dominate. Of the two dust shape 

experiments, ORG_NSPH generates higher AOD overall than does ORG_SPH mainly due to the enhanced 

optical effects induced by non-spherical particles, coupled with the particles’ delayed sedimentation, 

allowing more dust particles sustaining in the air to interact with incoming solar radiation. The augmented 

model AOD brings the modeled dust closer to the VIIRS observations—in particular, ORG_NSPH 

performs better in simulating dust in the Algeria and Chad source regions as well as off the coast of Africa.  

More dust is suspended in the air and transported farther to the Atlantic Ocean in ORG_NSPH, with AOD 

of 0.15-0.2 reaching over 50°W, as opposed to around 45°W in ORG_SPH. However, the increased AOD 

pattern in ORG_NSPH also causes a ~26% overestimation near coastal Mauritania at ~15°W, compared to 

~13% in ORG_SPH. Overall, the AOD analysis shows a similar AOD spatial pattern across the model and 

observations, yet the model displays some discrepancies in AOD magnitude especially over major dust 

source regions (e.g., near 25°N, 0° in the Algeria-Mali region and near 20°N, 15°E in the Chad region). 

The dust hotspots in Mali and Algeria are often associated with the Saharan heat low (SHL) during the 

summer, which is a thermal low stationed over North Africa in response to heating at low levels (Lavaysse 

et al. 2009). The uncertainty of the SHL intensity and location in reanalysis and thus in WRF-Dust 

simulations (due to FDDA), due to the lack of observational data over the desert, may introduce difficulties 
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in dust simulation. On the other hand, the Chad source region is situated in a convective region that is prone 

to haboobs, or convective dust storms, during summer. The model’s failure to simulate high AOD at source 

regions is caused in part by model resolution or potential model deficiencies, in addition to FDDA which 

may suppress convection. It is also worth noting that there exist uncertainty and biases for VIIRS Deep 

Blue AOD and AE retrievals. Sayer et al. (2018) finds that a typical uncertainty on 550 nm AOD is 

±(0.03+10%). Additionally, a noticeable discontinuity in AOD at ~45°W can be seen in the VIIRS Deep 

Blue observations. A more rigorous comparison, which incorporates other algorithms and/or satellite 

products, is necessary in future model assessment. 

 
Fig. 4. Monthly mean AOD (550 nm) over the region of interest for July 2016. (a) VIIRS Deep Blue observed 
AOD. (b-c) Modeled AOD for the two dust shape numerical experiments: ORG_SPH and ORG_NSPH, 
respectively. 
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In addition to AOD evaluation, analysis on the AE pattern and magnitude may lend us some insight 

into the model performance in transporting dust downwind from its sources, in particular for large particles. 

Figure 5 depicts the monthly mean over-ocean 550-865 nm AE for VIIRS observations and the two dust 

shape experiments. Along the major dust plume region (~15°N), observed AE increases westward from the 

West African coast over the eastern side of the Atlantic, implying a greater fraction of large aerosol particles 

on the eastern side than on the western side of this region. However, observed AE starts decreasing past 

~40°W, which suggests that there is an increasing fraction of large aerosol particles over the western 

Atlantic. For the model simulations, despite the two numerical experiments producing different AE 

magnitudes, both experiments produce AE that monotonically increases westward from the West African 

coast. Smaller modeled AE values toward the West African coast are expected since the area is dominated 

by large dust particles, while the increasing AE away from the coast represents the increasing dominance 

of smaller particles away from their source regions. The reduction of observed AE over the western Atlantic 

is because marine aerosols, another type of large aerosols, have a greater contribution to AE there than dust 

aerosols, which are predominantly composed of relatively small particles after long-range transport. The 

model is unable to reproduce this feature over the western Atlantic since marine aerosols are not included 

in our WRF-Dust model. As a result, we superimpose a contour line of 0.25 modeled AOD on the modeled 

AE plots (see Fig. 5b and c), beyond which AOD is generally lower than 0.25, indicating the waning 

contribution of dust and the growing dominance of marine aerosols. Thus, our model AE evaluation over 

the ocean mainly focuses on the area enclosed by the contour and the African coast.  

Compared to ORG_SPH, not only is ORG_NSPH more effective in transporting dust westward to the 

ocean (i.e., higher AOD in Fig. 4c than in Fig. 4b) but also improves AE simulation (i.e., smaller AE in Fig. 

5c than in Fig. 5b over the main dust plume). Since AE is inversely related to the mean particle size, the 

generally lower AE in ORG_NSPH implies the expanded presence of large dust particles in the air, 

demonstrating the effect of reduced particle sedimentation resulting from the non-spherical dust shape. We 

further perform statistical evaluation on model AE against VIIRS observations. Again, due to the absence 

of the marine aerosol effect in the WRF-Dust model, our statistical comparison focuses on the enclosed 
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region (i.e., dusty region) in Fig. 5b and c, where dust is dominantly present. In the bias evaluation (Fig. 6a 

and b), we compute the monthly mean AE bias of each simulation against the monthly mean observed AE. 

ORG_NSPH generates smaller biases than ORG_SPH in general. In the RMSE evaluation, we compute the 

RMSE of all the AE values at each grid point against the observed values at the same point over the 

simulation period; the results are shown in Fig. 6c and d. In general, ORG_NSPH has lower RMSEs over 

the dusty region than does ORG_SPH. The AE evaluation suggests the importance of dust shape in dust 

transport and particle size representation. 

 
Fig. 5. Monthly mean AE (550-865 nm) over ocean for July 2016. (a) VIIRS observed AE. (b-c) Modeled 
AE for the two dust shape numerical experiments: ORG_SPH and ORG_NSPH, respectively, superimposed 
by 0.25 modeled AOD contour lines, enclosing the region of high dust dominance. 
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Fig. 6. Statistical evaluation of experimental results against VIIRS AE observations. Panels (a) and (b) 
show monthly mean AE biases for the ORG_SPH and ORG_NSPH experiments. Panels (c) and (d) show 
the AE RMSEs. All the panels are superimposed by 0.25 modeled AOD contour lines. 
 

4.3. Emitted dust particle size distribution effect 

4.3.1. Experimental design 

The main focus of this set of experiments is the emitted dust particle size distribution, with the 

consideration of two different radiation schemes. We conduct four numerical experiments using different 

combinations of dust size distributions (ORG, GLO, and LOC) and radiation schemes (GSFC and FLG). 

The four experiments are ORG_GSFC, GLO_GSFC, LOC_GSFC, and LOC_FLG (Table 6). ORG_GSFC 

is our baseline case for comparison. The GLO_FLG experiment is excluded here, as this combination 

generated unreasonably low AE values (with occasional negative values) during model testing, which 

highly deviated from the observations and thus is excluded for comparison with other simulations. Further 

investigation and model adjustments will be conducted on the AE issue in the future. 

 
Table 6. The design of the four emitted dust particle size distribution numerical experiments. 

Size Distribution Radiation Scheme Experiment 
ORG GSFC ORG_GSFC 



 

 24 

GLO GSFC GLO_GSFC 
LOC GSFC LOC_GSFC 
LOC FLG LOC_FLG 

 

As this set of experiments is built on the understanding of the impacts of dust shape in Section 4.2, the 

tri-axial dust shape assumption will be applied to all of the distribution experiments. Therefore, 

ORG_GSFC is, in fact, identical to ORG_NSPH in Section 4.2. The rest of the model setting follows the 

numerical configurations in Section 4.1, except that the LOC_FLG experiment utilizes 0.2 μg m2 s-5 for the 

dimensional constant C, as opposed to 0.4 μg m2 s-5 in the other experiments. The decision of halving the 

dimensional constant for LOC_FLG is necessary to account for the overshooting of optical depth values 

caused by the modified non-spherical optical properties for the FLG scheme (see Section 2.2.1). While a 

non-spherical area factor (γ) was used to account for the non-spherical effect on optical properties in the 

GSFC radiation scheme, the optical coefficients with the non-spherical effect in the FLG scheme were 

recalculated by Dr. Adebiyi’s group using the OPAC software. With the modified optical coefficients, the 

AOD almost doubled in magnitude. Therefore, to adjust AOD close to observations, the emission was cut 

to half. Despite the modification in emissions, we found that AE and its errors remain largely unchanged 

(see Table 7 and Fig. 7). Thus, the LOC_FLG experiment may be fairly compared with the other 

experiments. Ultimately, we will verify the modified emissions against observations of dust mass or number 

concentration, as the model emissions are important in dust-cloud interaction. 

Results from the numerical experiments will be compared with the observations to determine the model 

setting with the most accurate dust transport and size representation. This particular setting will be 

implemented in the Hurricane Earl’s case study in Section 5. Since the modeled AOD can be modulated by 

adjusting the emissions via the dimensional constant C, it is more important that the model can accurately 

simulate AE, which is minimally affected by modeled emission fluxes. We will place greater emphasis on 

the AE evaluation of different emitted dust size distributions. 

 
Table 7. The same statistics as in Table 5, but for the LOC_FLG experiments with dimensional constants 
C = 0.4 μg m2 s-5 and C = 0.2 μg m2 s-5. The comparison shows minimal differences in model AE errors. 
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Experiment AOD AE 
RMSE MB RMSE MB 

LOC_FLG, C = 0.4 0.501 0.098 0.161 0.007 
LOC_FLG, C = 0.2 0.292 -0.175 0.160 0.008 

 

Fig. 7. Monthly mean (July 2016) AE (550-865 nm) over ocean for (a) the LOC_FLG simulation with 
dimensional constant C = 0.2 μg m2 s-5, and (b) the same simulation setting but with C = 0.4 μg m2 s-5. The 
great similarity between the two settings shows the feasibility of modulating the modeled AOD by adjusting 
C, while maintaining nearly identical AE. 
 

4.3.2. Results and discussion 

The model and AERONET AOD at 440 nm and AE at 440-870 nm for each AERONET site are 

examined in the form of time series (Fig. 8). The model data are presented at hourly intervals, whereas 

AERONET observations are reported at sporadic intervals during the daytime. Despite the differences in 

data frequency, the available observations and the general AOD and AE trends still provide a valid 

evaluation on model performance. Note again that since FDDA is used during these experiments, the 

meteorological features are optimized, and dust (i.e., AOD and AE) simulations among different 

experiments can be better evaluated with little influence from modeled meteorology. 
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The average particle size of a freshly emitted dust plume is generally greater than that of a plume that 

has travelled some distance because large particles settle faster and a higher fraction of coarse dust particles 

are still suspended in the air in a fresh dust plume. As a result, low AEs (~0.1-0.2) with high AODs are 

commonly recorded at near-source sites (ZA, BA, and DA). As dust plumes from Chad propagate 

downstream under the AEJ and AEWs, they may reach IC, DA, and CV. We can observe this phenomenon 

through the east-to-west propagation of local AOD maxima and AE minima over time in the time series—

for example, AOD maxima and AE minima are recorded on 8 July at ZA, 9 July at BA, 11 July at IC, and 

12 July at DA. In addition, the maximum AOD value decreases over time and distance from 1.2 at BA to 

0.8 at DA; whereas the minimum AE value increases from nearly zero at ZA to 0.2 at DA. Contrary to the 

other sites, CV records relatively low AODs (~0.1-0.2) yet also low AEs throughout the month. The 

distinctive behavior of AOD and AE at CV can be ascribed to its oceanic location, being the only off-coast 

island site among our interested AERONET sites; as such, it is subject to marine aerosols from the 

surrounding ocean, which are large in particle size (low AE) but have a low average AOD of ~0.1 (Cuevas 

et al., 2015; Smirnov et al., 2009; Smirnov et al., 2011). Further experiments that account for soil erodibility 

and marine aerosols will be conducted to properly weight the contribution from both dust and marine 

aerosols. 

As seen in the time series, our WRF-Dust model can generally reproduce the observed AOD and AE 

trends for all the experiments. For instance, for the previously discussed dust plume that propagates from 

its source in Chad to DA during 6-12 July, all the experiments can largely capture the trends as well as the 

timing of the maximum AOD and minimum AE. However, model performance in reproducing the observed 

AOD and AE features varies by experiment. Via integrating the LOC and GLO dust distributions, the model 

has shown considerable improvement in AOD and AE across all five AERONET sites. Specifically, the 

LOC and GLO experiments enhance the model AOD, which enables the model to more accurately capture 

high observed AOD values (e.g., 6-11 July at BA, ZA, and IC). Among the experiments, GLO_GSFC 

shows the greatest AOD enhancement. Yet, the augmentation of AOD may result in even more severe 

overestimation in the model. This is most pronounced at coastal sites (i.e., DA and CV).  
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Fig. 8. Time series of AERONET observed (dots) and modeled (lines) AE (440-870 nm) and AOD (440 nm) 
for July 2016 recorded at the following AERONET sites (from top to bottom): Cape Verde, Dakar, 
IER_Cinzana, Banizoumbou, and Zinder Airport. 
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Additionally, the LOC_FLG and GLO_GSFC experiments display greater alignment in AE with the 

observations. The simulations largely reproduce low observed AEs compared to ORG_GSFC (e.g., 22-25 

July at CV; 6-11 July at DA, IC, BA, and ZA), while still effectively capturing high observed AEs (e.g., 

17-22 July at ZA). The alignment in AE is an indication of the model’s improved ability to represent large 

dust particles. Based on our AE analysis, LOC_FLG best agrees with the AERONET measurements, 

followed by GLO_GSFC. LOC_GSFC, on the other hand, is comparable to ORG_GSFC in AE 

performance. 

To quantitatively evaluate each experiment’s results against all the valid AERONET data, we calculate 

the RMSE and bias. The statistical results are presented in Table 8. In the AOD RMSE evaluation, 

LOC_GSFC and LOC_FLG improve upon ORG_GSFC, while GLO_GSFC misses the observed AOD the 

most with the highest RMSE. The poor performance of GLO_GSFC is attributed to its severe 

overestimation of AOD, which will be further analyzed in the later evaluation against VIIRS observations. 

As mentioned earlier, the issue in AOD could be resolved by adjusting the dimensional constant in the 

model. In the AE evaluation, LOC_FLG generates the best model performance, with the smallest RMSE 

and MB among the experiments, followed by GLO_GSFC. This finding may be explained by the different 

optical properties in the radiation schemes (i.e., GSFC versus FLG). Also, LOC distribution accounts for 

dust emitted solely from our interested AERONET sites, while the GLO distribution could trivialize the 

contribution of Saharan dust in the process of global averaging. This is manifested in the weightings of 

model size bins—in the GLO distribution, less weighting in dust emissions is put on the largest size bin 

(see Table 2). LOC_GSFC, however, fails to improve AE simulation upon ORG_GSFC. Plausible reasons 

for the underperformance of AE in LOC_GSFC are that the contribution of the smallest bin is emphasized 

in the LOC emitted dust size distribution, but less so for the larger bins; and that our model size bins are 

capped at 10-μm diameter (see details in Section 2.2.2). These factors prevent the model from incorporating 

some of the most coarse dust particles (10-20 μm diameter) in LOC, leading to a higher emitted dust ratio 

for smaller particles than that if dust particles of 10-20 μm diameter were included. As a result, LOC_GSFC 

produces higher AE compared to other experiments. This finding also implies that the optical properties of 
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a radiation scheme can influence the modeled AE, since AE is an expression of the relation between AODs 

at two wavelengths. For instance, although sharing the same emitted dust size distribution as LOC_GSFC, 

LOC_FLG does not exhibit the overestimated AE issue. In fact, by implementing the FLG scheme, 

LOC_FLG simulates the lowest AE on average among the experiments. Thus, in addition to the emitted 

dust size distribution, the optical properties computed in a radiation scheme can be an important determinant 

of dust AE representation. Differences in optical properties may potentially arise from the following factors: 

1) differences of spectral bands in the GSFC and FLG schemes, 2) the GSFC scheme’s lumping of five bins 

into three modes in optical coefficient computation, and 3) different parameters used in the calculation of 

optical properties by the two radiation schemes. 

 
Table 8. The same statistics as in Table 5, but for the emitted dust particle size distribution experiments, 
including ORG_GSFC, GLO_GSFC, LOC_GSFC, and LOC_FLG. Note that ORG_GSFC is identical to 
ORG_NSPH. 

Experiment AOD AE 
RMSE MB RMSE MB 

ORG_GSFC 0.305 -0.211 0.213 0.144 
GLO_GSFC 0.351 -0.070 0.177 0.085 
LOC_GSFC 0.304 -0.171 0.230 0.168 
LOC_FLG 0.292 -0.175 0.160 0.008 

 

Figure 9 depicts the monthly mean 550 nm AOD for the four emitted dust particle size distribution 

experiments. All the model simulations show an AOD pattern similar to the VIIRS observed pattern (see 

Fig. 4a). With the non-spherical dust particle effect considered, AOD with values of 0.2-0.3 in all the 

experiments extends to as far as 40°-50°W. In spite of the universal improvement in long-range dust 

transport and spatial dust distribution over the Atlantic, our WRF-Dust model consistently underestimates 

the AOD magnitude by 0.1-0.2 over ocean, which is close to the contribution by marine aerosols (inferred 

from the observed AOD outside the dust plume region). Nonetheless, the LOC and GLO experiments show 

varying degrees of improvement in AOD upon ORG_GSFC. On average, LOC_GSFC has a 24% increase 

in AOD over ocean compared to ORG_GSFC, LOC_FLG has a 24% increase, and GLO_GSFC has a 67% 

increase. Over land, our WRF-Dust model overestimates AOD in coastal dust hotspots near Mauritania at 
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15°W for all the experiments. With its drastic increase in overall AOD, GLO_GSFC exhibits the greatest 

overestimation across North Africa. The overestimation could be explained by the GLO distribution’s high 

weighting on bins 2-4 compared to ORG and LOC. Dust particles in these bins have greater sustainability 

than those in the largest size bin, which settle faster; as such, the suspended dust particles can undergo dust-

radiation interaction and enhance the modeled AOD. LOC_GSFC and LOC_FLG also show sizable 

overestimation at the African coast. Yet, the enhancement in modeled AOD allows LOC_GSFC and 

LOC_FLG to better reproduce the observed AOD over the Algeria region, which is underestimated in 

ORG_GSFC. For the Chad source region, our model is inadequate in reproducing the observed AOD, such 

that the modeled AOD is 0.2-0.35 lower than the observed. As discussed in Section 4.2.2, the dust source 

regions experience greater variability such that dust emissions are influenced by various meteorological 

factors, such as haboobs from local convective systems, which are not properly reproduced due to 

insufficient model resolution and model errors. The complexity poses a challenge in simulating AOD in 

those regions. Again, we may modulate the modeled AOD by properly adjusting the dimensional constant, 

model resolution, or incorporate soil erodibility to ameliorate coastal dust emissions. 

 
Fig. 9. The same as Fig. 4, but for the emitted dust particle size distribution experiments, including (a) 
ORG_GSFC, (b) GLO_GSFC, (c) LOC_GSFC, (d) LOC_FLG. Note that ORG_GSFC is identical to 
ORG_NSPH. 
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Figure 10 illustrates the monthly mean over-ocean 550-865 nm AE for the distribution experiments. A 

similar east-to-west monotonically increasing AE trend again appears in all the experiments. Compared to 

ORG_GSFC, GLO_GSFC and LOC_FLG show enhanced capabilities of transporting large particles from 

Saharan source regions out into the Atlantic. Particularly, in LOC_FLG, particles with AE of 0.1-0.2 can 

be seen near the West African coast, which is very similar to the VIIRS observed value of 0.1-0.25, implying 

that there is still a considerable fraction of large particles over this area. GLO_GSFC closely follows, with 

coastal AE of 0.25-0.3. On the other hand, ORG_GSFC and LOC_GSFC have the worst performance near 

the coast, with AE of 0.3-0.35. Further into the ocean up to the 0.25 AOD contour, LOC_FLG continues to 

transport and sustain particles with the lowest AEs (0.225-0.25) among the simulations. The VIIRS 

observed AEs (~0.1-0.25) remain very low throughout the dust-dominant region. Overall, LOC_FLG 

generates the best simulation performance in AE, with an average decrease of 46% in AE compared to 

ORG_GSFC. 

 
Fig. 10. The same as Fig. 5, but for the emitted dust particle size distribution experiments. All the panels 
are superimposed by 0.25 modeled AOD contour lines. 

 

We apply the same statistics in Section 4.2.2 to evaluate modeled AE performance over ocean for all 

the distribution experiments. The statistical results are portrayed in monthly mean AE bias (Fig. 11a-d) and 
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monthly mean AE RMSE (Fig. 11e-h). The same conclusion as discussed earlier in the AERONET 

evaluation can be drawn using the statistics against the VIIRS observations—with the smallest RMSEs and 

MBs (close to 0), LOC_FLG is the best at reproducing the observed AE, whereas LOC_GSFC exhibits the 

least accurate AE simulation. Similar to the reason proposed for AE evaluation against AERONET 

observations over land, the overestimated AE in LOC_GSFC may be ascribed to the overemphasis of the 

smaller size bins in the LOC distribution, coupled with the optical properties in the GSFC scheme. Our AE 

analysis suggests that the combination of proper dust optical coefficients and accurate emission distribution 

is the key to keeping large dust particles aloft. Indeed, the non-spherical dust effect is equally important in 

slowing down the sedimentation of large particles and enhancing dust optical depth. 



 

 33 

Fig. 11. The same as Fig. 6, but for the emitted dust particle size distribution experiments. Panels (a-d): 
monthly mean AE bias. Panels (e-h): AE RMSE. All the panels are superimposed by 0.25 modeled AOD 
contour lines. 

 

The vertical distribution of dust is important to its interaction with both longwave and shortwave 

radiation, resulting in different static stability and horizontal temperature gradient (thus vertical shear). In 

addition, the dust-cloud interaction heavily relies on the height of a dust layer. Since AOD is a vertically 

integrated quantity, we will use vertical aerosol backscatter profiles from CALIOP to evaluate model 

vertical dust distribution. The details of the evaluation procedures are delineated in the following steps, 

similar to those in Choi et al. (2020): 

 
1. Flag cloud‐contaminated and unreliable CALIOP L2 total backscatter data by 

(a) selecting data points that are classified as “aerosol” or “clear air” by the CALIOP L2 vertical feature 

mask (VFM) product. 

(b) using only data points with extinction quality control (QC) flag values of 0, 1, 2, 16, 18, or 32,768 

(Toth et al., 2018). 

 
Note that the vertical resolution of both CALIOP L2 VFM and extinction QC data is finer (30 m) than that 

of CALIOP L2 total backscatter data (60 m), meaning that two VFM and extinction QC values exist for 

each backscatter value. Thus, a backscatter value is considered acceptable if both of its corresponding VFM 

values indicate “aerosol” or “clear air” and both of its associated extinction QC flag values are one or more 

of those listed in (b) above. Data that do not meet the criteria are flagged and assigned NaN values. 

 
2. Compute model backscatter values for atmospheric gas molecules (derived from air pressure) and 

assign them to all valid CALIOP data points that are not flagged in the first step and do not have valid 

aerosol backscatter values. This step is different from that in Choi et al. (2020).   

3. Average CALIOP backscatter data to model levels (i.e., superobs; Berger et al., 2004). 
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4. Interpolate modeled data to observational locations and utilize the forward operator of total backscatter 

from the Goddard Satellite Data Simulator (G-SDSU; Matsui et al., 2013; Matsui et al., 2014) to 

transform modeled dust and gases into backscatter data.   

5. Interpolate backscatter data to the same heights for all columns and perform statistical comparison 

between CALIOP and modeled vertical profiles. 

 
Figures 12b and c portray an example of CALIOP-observed and modeled vertical backscatter profiles 

(from the LOC_FLG simulation) along two specific CALIOP tracks indicated in Fig. 12a. In this example, 

we select CALIOP swaths at 0300 UTC 17 July within a 3-hour time window (±1.5 hours). We follow the 

procedures above to obtain the observed vertical cross sections of aerosol backscatter as well as the modeled 

cross sections along the same tracks via the G-SDSU. Note that the selected case is one of the best cases 

that exhibits great similarity between the modeled and observed backscatter cross sections. The procedures 

are repeated for the entire simulation period and applied to all numerical experiments. We compute the 

RMSE and model bias of the monthly averaged simulated backscatter profiles against the CALIOP 

backscatter profiles. 

The statistical analysis results are displayed in Fig. 13. The model shows the greatest deviation at 0-1 

km for all the experiments, reflected by the large RMSE and negative bias values over the same altitudes. 

From 1-6 km, different simulations reproduce the observed backscatter with various degrees of accuracy. 

LOC_FLG consistently underestimates the observation up to 6 km in part due to the reduction of the 

dimensional constant C, while the other simulations mostly overestimate the observed backscatter. 

LOC_FLG shows the greatest resemblance to the observation at 2-4 km, followed by ORG_GSFC and 

LOC_GSFC. GLO_GSFC, on the other hand, has the largest absolute bias due to its overestimation. In 

contrast to the varying biases, the RMSEs are nearly identical across all the simulations, except that 

GLO_GSFC has slightly larger RMSE at 1.5-5 km, since it has more errors in larger magnitudes. The error 

can be potentially reduced by assimilating AOD and backscatter data. In the mean absolute error (MAE) 

profiles, LOC_FLG generally generates the least error among all the experiments, followed by ORG_GSFC, 
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LOC_GSFC, and GLO_GSFC. Overall, the model simulations possess the greater RMSEs and biases near 

the surface, dwindling with increasing height. 

 
Fig. 12. (a) The CALIOP satellite tracks at 0300 UTC 17 July (±1.5 hours), overlaid with the modeled 
(LOC_FLG) AOD at the same time. Note that the red dot denotes the starting point of the track. (b) The 
modeled vertical cross sections of aerosol backscatter (km-1 sr-1) along the satellite tracks in (a). (c) The 
same as (b), but for the CALIOP observation. 
 

In conclusion, LOC_FLG can best replicate AERONET observations over land, generating the smallest 

RMSE and MB in AE and the smallest RMSE in AOD. The same conclusion applies in the evaluation over 

ocean, where LOC_FLG is able to reproduce low coastal AE values (0.1-0.2) and the westward extension 

of low AEs into the Atlantic Ocean, which best agrees with the VIIRS observations among all the 

simulations. GLO_GSFC follows LOC_FLG in AE performance, yet it strongly overestimates AOD. In the 
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backscatter evaluation against CALIOP observations, LOC_FLG generates the smallest MAE and highly 

resembles the observed profile over 2-4 km. However, it also has the greatest errors (e.g., RMSE) from the 

observations near the surface (0-1.5 km), which necessitates further analysis. Based on the findings above, 

we conclude that LOC_FLG produces the best model performance in dust representation. 

 
Fig. 13. Monthly mean (July 2016) vertical profiles of, from left to right, average, RMSE, bias, and MAE 
of backscatter (km-1 sr-1) for the CALIOP observations and the dust distribution experiments. Statistics are 
calculated against CALIOP backscatter observations passing over the same locations as in the model. 
 

5. Effect of improved dust simulation on model meteorology 

5.1. Case study of Hurricane Earl (2010) 

Dust has an important impact on weather systems through dust-radiation and dust-cloud interactions as 

discussed in the introduction. With our modifications of the dust particle shape and emitted dust particle 

size distribution, we have improved dust simulation in the aspects of optical properties and particle size 

representation. In order to investigate whether the improved dust simulation would lead to improvement of 

model meteorology, we conduct a case study on Hurricane Earl (2010). Hurricane Earl was a major 

hurricane that originated from a strong tropical wave near Cape Verde on 23 August, underwent rapid 

intensification on 29 August, reached its peak intensity as a Category 4 hurricane on 2 September, and 

eventually dissipated and became extratropical on 4 September. Due to the hurricane’s origin in Africa, 
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dust can play a key role in the hurricane’s development. The ability of the WRF-Dust model to reproduce 

the hurricane’s environment, track, and intensity is one of the main criteria to evaluate model improvement 

with the modifications. 

 

5.1.1. Experimental design 

We apply the best configuration from Section 4 (i.e., LOC_FLG) to conduct the study on Hurricane 

Earl. The best configuration is, again, compared to the baseline experiment (i.e., ORG_GSFC). Thus, we 

conduct two numerical experiments for this case study. The Hurricane Earl case study consists of an 11-

day simulation period (20-31 August 2010), encompassing the hurricane’s genesis and development into a 

major hurricane. The domain configuration consists of three domains, with horizontal resolutions of 12 

(d01), 4 (d02), and 4 (d03) km, respectively (see Fig. 14). Domain 1 (d01; 105°W-40°E, 10°S-55°N) is the 

parent domain covering the general area of interest (Africa and the Atlantic Ocean). Domain 2 (d02; 40°W-

0°, 5°N-27°N) and domain 3 (d03; 75°W-37.5W°, 5°N-27°N) are two child domains placed on the 

hurricane track to simulate the development and intensification of Earl with their high resolution. The 

simulation time and nudging strategy differ for different domains depending on their respective purposes. 

The model runs on d01 for the entire simulation. Since an 11-day forecast is considered too long for a free 

regional model run, FDDA is applied to d01 for the initial four days to ensure that dust propagates to the 

eastern Atlantic Ocean along with the storm under reasonable meteorological conditions (e.g., AEJ and 

AEWs). The remaining seven days are simulated under free run (i.e., no nudging applied), so that the model 

may simulate the intensification of Earl and the differences between the two experiments can appear if they 

exist. Domain 2 spans over 20-28 August to cover the beginning portion of Earl’s track. As d02 starts at 

the same initial time as d01, the four-day spectral nudging is required for d02. Wavelengths longer than 

500 km are nudged to the reanalysis data. Domain 3 is not activated until Earl enters d02’s eastern boundary. 

Thus, d03 runs during 27-31 August, and no nudging is implemented. The resulting simulated hurricane 

and related meteorological fields of the two experiments will be analyzed and compared to quantify any 

improvement due to the improved dust model configuration. 
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Fig. 14. Domain configuration for the study of Hurricane Earl (2010). Domain 1 (d01) is the parent domain, 
with horizontal resolution of 12 km. Domains 2 and 3 (d02 and d03) are the two child domains, with 
resolution of 4 km, placed over the cyclone’s track. 
 

5.1.2. Results and discussion 

Before analyzing the simulated meteorological fields and hurricane tracks, it is important to first 

examine the modeled AOD to see if there is improvement in dust associated with the LOC_FLG 

configuration. Figure 15 shows the MODIS observed AOD and the modeled AOD for both ORG_GSFC 

and LOC_FLG experiments at 1500 UTC 28 August 2010 (after 207-h simulation, including 4-day nudging) 

as an example. In comparison to ORG_GSFC (Fig. 15d), higher AOD values are seen off the African coast 

(20°N, 15°W), over the source region of Chad (10-30°N, 0-25°E), and around the cyclone (20-25°N, 40-

50°W). The slightly enhanced AOD at the western coast (15-20°N) and around the storm in LOC_FLG is 

better aligned with the observed AOD, indicating the simulation’s improved ability to transport dust into 

the Atlantic Ocean. At the northwestern African coast (30°N, 10°W), ORG_GSFC simulates higher AOD 

than LOC_FLG. Yet, the observed AOD is low at this location, indicating that ORG_GSFC has stronger 

overestimation there compared to LOC_FLG. Outside the northwestern coast (20-30°N, 20°W), 
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ORG_GSFC also simulates higher AOD, which is closer to the observed values. Overall, LOC_FLG 

slightly better agrees with the MODIS observations, in particular at the western coast and north of the storm 

where the major dust plume extends farther west (Fig. 15d), although neither simulation reproduces 

adequate AOD off the coast and around the hurricane. 

 
Fig. 15. AOD (550 nm) over the region of interest from (a) MODIS observation on 28 August 2010, (b) 
ORG_GSFC simulation, and (c) LOC_FLG simulation at 1500 UTC 28 August 2010 (204-h simulation, 4-
day nudging included). The model time chosen is close to the time at which the MODIS satellite swath 
passes over Hurricane Earl. Panel (d) depicts the AOD differences of LOC_FLG – ORG_GSFC. The cross 
on each panel denotes the observed location of Hurricane Earl. 
 

The impacts of the improved AOD field on temperature and wind profiles are analyzed. Figure 16 

depicts the 750-, 850-, and 950-hPa temperature fields for the ERA5 reanalysis and model biases at 1200 

UTC 28 August 2010 (108-h simulation into the free run). In general, compared to LOC_FLG, ORG_GSFC 

shows colder biases against ERA5 reanalysis over North Africa throughout all three pressure levels as well 
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as slightly colder biases near Hurricane Earl at 750 and 850 hPa. One of the reasons for the model cold 

biases is insufficient heating by dust. Over land, the severe cold bias in ORG_GSFC is further complicated 

by the GSFC scheme’s optical properties leading to model cold bias. In the LOC_FLG simulation, on the 

other hand, somewhat warmer biases can be seen at 15°N over land and near the coast across the three 

levels. Moreover, both experiments present warm biases at 950 hPa over the central to western Atlantic, 

which implies that the vertical distribution of dust could be problematic after long-range transport. 

Fig. 16. (a) Temperature at the 750-hPa pressure level at 1200 UTC 28 August 2010 for the ERA5 
reanalysis data. (b-c) Model temperature bias from the ERA5 reanalysis 750-hPa temperature for the 
ORG_GSFC and LOC_FLG simulations, respectively. (d-f) The same as (a-c), but at 850 hPa. (g-i) The 
same as (a-c), but at 950 hPa. The cross on each panel denotes the observed location of Hurricane Earl. 
 

To investigate whether the GSFC radiation scheme’s optical properties contribute to the cold bias over 

North Africa, we conducted a quick test which used the FLG radiation scheme while maintaining the ORG 
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size distribution (i.e., ORG_FLG) and compared the simulated AOD, temperature, and wind shear with 

those of LOC_FLG. Figure 17a shows that LOC_FLG simulates higher AOD than ORG_FLG in Chad, 

coastal Africa, and the northern band of Earl, similar to the comparison between LOC_FLG and 

ORG_GSFC, suggesting that the LOC distribution helps transport more dust into the storm region, 

regardless of the radiation scheme chosen. Figure 17b shows minimal positive temperature differences 

(LOC_FLG – ORG_FLG) over land at 850 hPa, which are consistent with the small positive AOD 

differences, in contrast to the much colder bias over land in ORG_GSFC. This finding suggests that in 

addition to the dust amount, the radiation scheme chosen, in particular its associated optical properties (e.g., 

the dust absorption-to-scattering ratio), could have an impact on modeled temperature, especially over land 

where dust concentration is high. The difference of the heating effect associated with dust is examined in 

an east-west vertical cross section over the maximum AOD difference region (19°N, 15°W – 19°N, 10°E; 

see Fig. 17c). There is clear dust-induced heating below 600 hPa, as evidenced by the general alignment 

between positive total dust differences and positive temperature differences. The total dust differences at 

19°N are again examined together with the wind shear differences at 17°N (Fig. 17d), since the maximum 

AOD difference at 19°N induces the greatest difference in heating there by dust, creating the maximum 

temperature difference gradient slightly south of the main dust plume at ~17°N. Over 500-700 hPa, the 

positive total dust differences are somewhat correlated to the negative wind shear differences, indicating 

that dust-induced heating indeed influences the winds to a certain degree via thermal wind relation. 

Nonetheless, this alignment between dust and wind shear differences is relatively weak and not as evident 

as the relation between dust and temperature differences because winds are simultaneously controlled by 

different mechanisms, such as momentum advection, in addition to the dust-radiative effect. 

Figure 18 illustrates wind speeds at 650- and 950-hPa levels as well as their resulting wind shear for 

the ERA5 reanalysis and model simulations at 204 h. Vertical wind shear is one of the key components that 

influences hurricane development, as it directly affects the core and structure of a hurricane. Both the 

ORG_GSFC and LOC_FLG simulations largely capture the ERA5 reanalysis wind patterns at both levels. 

However, at 650 hPa, the level at which the maximum magnitude of the AEJ is typically observed, our 
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model underestimates winds at the storm region and off the African coast at 15°N and overestimates in the 

south near the equator. The wind underestimation might be again related to the underestimated AOD, which 

results in less dust heating and reduced horizontal temperature gradient. Also, the southward shift of the 

AEJ has long been a problem in numerical modeling. The higher AOD off the African coast has a positive 

impact on winds in LOC_FLG, augmenting the wind speed slightly closer to the ERA5 wind speed near 5-

20°N, 15°W at 650 hPa and near 15-22°N, 15°W at 950 hPa. Similarly, in the wind shear analysis, 

LOC_FLG exhibits stronger wind shear than does ORG_GSFC at 0-30°N. Unlike temperature, there is 

little to no wind or wind shear improvement associated with the improved AOD over the hurricane region. 

The impact of AOD improvement on wind is nearly nonexistent since dust does not directly alter 

atmospheric winds but through the thermal wind relation, as discussed earlier in the wind shear difference 

cross section. Thus, the model uncertainty might dominate the difference of dust-radiative contribution to 

the wind improvement. 
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Fig. 17. Various differences (LOC_FLG – ORG_FLG) at 1200 UTC 28 August 2010 (204-h simulation). 
(a) AOD differences. (b) Temperature differences (°C) at 850-hPa pressure level, superimposed by the wind 
vector differences. The cross denotes the observed location of Hurricane Earl. (c) Cross section of 
temperature (°C; shading) and total dust (μg/kg; solid contour lines denote positive differences and dotted 
contour lines denote negative differences) differences over the green dotted segments in (a) and (b) (19°N, 
15°W – 19°N, 10°E). (d) Cross section of wind shear differences (m/s; shading) over the black dotted 
segments in (a) and (b) (17°N, 15°W – 17°N, 10°E) and, again, total dust differences over the green dotted 
segments. 
 

 
Fig. 18. (a-b) Wind speed at 1200 UTC 28 August 2010 for the ERA5 reanalysis data at the 650-hPa and 
950-hPa pressure levels, respectively. (c) The corresponding wind shear (i.e., the difference of 650-hPa 
and 950-hPa winds). (d-f) The same as (a-c), but for the ORG_GSFC simulation. (g-i) The same as (a-c), 
but for the LOC_FLG simulation. The cross on each panel denotes the observed location of Hurricane Earl. 

 

Figure 19a portrays the observed [best track data from the National Hurricane Center (Cangialosi 2011)] 

and model simulated storm tracks of Hurricane Earl. The tracks are represented by the locations of the 
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storm’s minimum sea level pressure (MSLP) at six-hourly intervals from 1200 UTC 24 August to 0000 

UTC 31 August. The two model simulated tracks share great similarity in position. Both tracks start 

deviating from the observed track from 1200 UTC 27 August (60 hours after the end of reanalysis nudging), 

after which the simulated tracks propagate northwestward, while the observed track continues to the west. 

Based on the sea level pressure analysis (not shown here), there is a stronger subtropical high in our model 

simulations, about 4 mb higher than the ERA5 reanalysis, despite the location being roughly the same. The 

stronger subtropical high can more effectively steer the hurricane northward along its edge. In addition, the 

mid-level winds (e.g., 500-hPa winds) can steer the hurricane’s movement and thus modulate its track. Our 

model simulated mid-level winds having a greater south-north component than the ERA5 reanalysis, in part 

because of insufficient long-range dust transport at middle levels, can also contribute to track error. These 

factors together cause our simulated tracks to take a northward turn.  

Figures 19b and c show the MSLP and maximum 10-m wind speed of the hurricane, respectively. The 

ORG_GSFC and LOC_FLG simulations overall show similar MSLP and wind speed. Starting from 0000 

UTC 27 August, LOC_FLG consistently simulates greater intensity in MSLP (~4 hPa lower on average) 

and wind speed (~3 m/s higher on average) compared to ORG_GSFC. The model simulated storm’s MSLP 

and wind speed magnitude are comparable with the best track observations until 1200 UTC 29 August. 

Starting from this time, Hurricane Earl underwent rapid intensification; the observed MSLP dropped 

sharply from 985 mb at 1200 UTC 29 August to 938 mb at 0000 UTC 31 August and the maximum 10-m 

wind speed increased drastically from 33 m/s to 59 m/s over the same period. Our model fails to reproduce 

this rapid intensification. The simulated tracks deviating into the colder water in the north further dampens 

the modeled storm intensity. In addition, the model cannot well simulate convective cloud processes with 

4-km resolution. Higher resolution (e.g., 1 km) might be required. On the other hand, the problems in the 

storm track may partially stem from the inaccurate representation of the subtropical high and insufficient 

dust over the storm region in the model, suggesting that the modified configuration is still inadequate in 

enhancing the dust-radiation interaction and transporting dust sufficiently far into the ocean. Adjusting the 

dimensional constant and incorporating larger size bins (i.e., accounting for 10-20 μm dust particles) are 



 

 45 

Fig. 19. (a) Hurricane Earl’s storm tracks from the National Hurricane Center best track data, 
ORG_GSFC, and LOC_FLG model simulations. The tracks cover the period of 1200 UTC 24 August – 
0000 UTC 31 August 2010. Note that the dots represent the hurricane’s locations at six-hourly intervals. 
(b) Minimum sea level pressure of Hurricane Earl from the best track data, ORG_GSFC, and LOC_FLG 
over the same period as the storm tracks. (c) The same as (b), but for the maximum 10-m wind speed. 
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some potential approaches to ameliorate dust simulation. Yet, dust is not the sole determinant in the 

hurricane’s development and its surrounding environment. The closely preceding Hurricane Danielle (2010) 

has a substantial influence on Hurricane Earl’s environment, which adds further complication to our model 

simulations. Eventually, we may need to implement data assimilation to improve the storm representation. 

Overall, the LOC_FLG simulation shows slight improvement in AOD, leading to mildly improved 

temperature off the African coast and over the storm region. Although the LOC_FLG simulation slightly 

increases the storm intensity in terms of MSLP and 10-m wind speed, their differences might not be 

meaningful. Further investigation on the storm track and rapid intensification is required to draw a sound 

conclusion. 

 

6. Summary 

In this study, the overarching objective is to improve dust modeling through integrating non-spherical 

(tri-axial ellipsoidal) dust particle shape and observationally-constrained dust emitted size distributions, in 

an effort to tackle common dust modeling issues including early dust sedimentation, underestimated dust-

radiative effect, and insufficient dust long-range transport. Modeled dust non-sphericity is characterized by 

shape factors averaged from field campaign data. Incorporating the non-spherical shape factors helped to 

effectively reduce dust particles’ settling velocity and enhance dust optical properties. Regarding the 

emitted dust size distribution, we constrained the model distribution with global (GLO) and local (LOC; 

specific to our study region) in situ measurements and ensemble model simulations. We conducted two sets 

of sensitivity numerical experiments over North Africa in July 2016 to assess the impacts of non-spherical 

dust shape and constrained dust size distributions on dust simulation. Since dust has an important influence 

on weather and climate through dust-cloud and dust-radiation interactions, we applied the best numerical 

setting to conduct a study on Hurricane Earl (2010) to evaluate the improvement of modeled meteorological 

fields as a result of improved dust simulation. 

In the dust particle shape experiments, the ORG_NSPH simulation (i.e., the original distribution with 

non-spherical dust shape considered) shows better performance than ORG_SPH, its spherical shape 
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counterpart. When evaluated against the AERONET AOD and AE observations at five sites over land, 

ORG_NSPH generates smaller RMSEs and mean biases, with greater improvement in AE (7.80% 

improvement in RMSE and 15.30% in MB) upon ORG_SPH. For the AOD spatial pattern, despite the great 

similarity shared by the two simulations, ORG_NSPH generally has higher AOD that extends farther west 

compared to ORG_SPH, leading to better agreement with the VIIRS observation. Enhanced dust optical 

properties and delayed sedimentation of non-spherical dust particles are responsible for the augmentation 

and westward extension of AOD in ORG_NSPH. 

In addition to AOD analysis, we find that AE largely increases westward from the African coast in 

observation (up to ~40°W) and model, indicating a higher fraction of large particles near the coast and the 

gradually increasing dominance of small particles into the Atlantic Ocean. ORG_NSPH is more effective 

in long-range dust transport compared to ORG_SPH, as seen by lower AE values spreading farther west. 

The reduction of AE past 40°W in observation may be ascribed to marine aerosols, which are not included 

in our WRF-Dust model. Over the dusty (AOD > 0.25) regions in the model simulations, ORG_NSPH 

exhibits both smaller biases and RMSEs. Thus, non-spherical particle shape is crucial in dust simulation in 

which it enhances dust optical properties and improves dust long-range transport through non-spherical 

particles’ enlarged cross section area and reduced particle sedimentation. 

Building on the understanding of the dust particle shape effect, we incorporate GLO and LOC size 

distributions to examine any further improvement in AOD and AE. GLO_GSFC shows the greatest increase 

in AOD in comparison with ORG_GSFC (the same as ORG_NSPH in model configuration), followed by 

LOC_GSFC and LOC_FLG. The drastic amplification of modeled AOD in GLO_GSFC leads to 

overestimation, reflected by its high RMSE in AOD when evaluated against AERONET. The evaluation 

against AERONET AE reveals that LOC_FLG can produce the lowest AE values among all the experiments, 

best aligning with observations. The improvement in modeled AE demonstrates the importance of 

accounting proper emitted dust size distribution and radiation scheme in modeled particle size 

representation. 
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Despite sharing a similar AOD spatial pattern, the highest AOD magnitude throughout the domain can 

be seen in GLO_GSFC, while LOC_GSFC and LOC_FLG show similar degree of enhancement in AOD 

compared to ORG_GSFC. The enhancement in modeled AOD allows LOC_GSFC and LOC_FLG to 

capture the VIIRS observed AOD over the Algeria source region. However, all the simulations encounter 

the issues of AOD overestimation at the coast and underestimation at the inland source regions (e.g., Chad). 

While coastal Africa is subject to various factors such as marine aerosols and land and sea breezes, the 

inland dust hotspots are under the influence of local convective systems (i.e., haboobs) that pose further 

difficulty in dust simulation. Some potential solutions would be to incorporate soil erodibility in the WRF-

Dust model for more accurate model dust emissions and to increase model resolution in an attempt to 

resolve local convection. As for modeled AE over ocean, LOC_FLG best replicates the VIIRS observed 

AE and has the greatest extent of low AEs into the central and western Atlantic. On average, LOC_FLG 

shows a 46% decrease in simulated AE compared to ORG_GSFC. 

In the AE analysis over both land and ocean, contrary to LOC_FLG and GLO_GSFC, which improve 

considerably over ORG_GSFC, LOC_GSFC is comparable to or even slightly worse than ORG_GSFC. 

Several major factors in the LOC_GSFC setting are responsible for its less accurate AE representation: 1) 

the current WRF-Dust model size bins cover only up to 10 μm, meaning that the model is missing a 

substantial fraction of 10-20 μm coarse dust in the LOC distribution; 2) in the limited model size bin range, 

LOC favors bin 1 (i.e., the smallest bin) most strongly compared to ORG and GLO; smaller dust particles 

in the air contribute to higher AE values; and 3) the AOD values in different spectral bands captured by the 

GSFC radiation scheme can cause undesirably high AE values; since AE is in fact a relation of AODs at 

two separate wavelengths, the differences in radiation schemes’ spectral bands and optical properties can 

cause discrepancies in the AE values computed. The simulation results of LOC_FLG testify that the 

different optical properties in the FLG scheme can indeed cause distinct simulated AEs (much lower than 

AEs in LOC_GSFC). On the other hand, GLO_GSFC, due to its high weightings on bins 2-4, can also 

generate relatively low AEs. Due to the nature of the GLO distribution, the combination of GLO_FLG 

would produce AEs that are unrealistically low AEs. Thus, GLO_FLG is excluded in our analysis. 
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The evaluation of modeled aerosol backscatter profiles against the CALIOP observations provides an 

important insight into the model’s ability to simulate the vertical distribution of dust, which can influence 

dust-radiation and dust-cloud interactions. Near the surface (0-1 km), all the simulations show substantial 

deviation from the observation. From 2 to 4 km, LOC_FLG has the greatest alignment with the observed 

profile. However, LOC_FLG consistently underestimates the observed backscatter partially due to the 

reduction of the dimensional constant C (halved) when lowering the overshooting modeled AOD associated 

with the modified optical coefficients in the FLG scheme. On the contrary, GLO_GSFC displays uniform 

overestimation from 1.5 to 5 km. Across all the simulations, model errors decrease with height. Assimilating 

observed aerosol backscatter data may be the key to cope with the low-level underestimation of backscatter. 

The best model configuration, LOC_FLG, is applied in the study on Hurricane Earl. In the AOD 

evaluation against MODIS observations, LOC_FLG replicates AOD magnitude slightly better than 

ORG_GSFC in particular at the western coast and north of the storm, although neither simulation can 

adequately transport dust to the storm region. With the improvement in AOD at the African coast and over 

the storm region, the modeled temperatures at 750- and 850-hPa pressure levels over those regions are 

enhanced in LOC_FLG compared to ORG_GSFC. We also found severe cold bias over land in ORG_GSFC, 

which was attributed to the optical properties in the GSFC scheme. Unlike temperature, there is minimal 

dust-induced wind improvement, as dust does not directly influence winds but via thermal wind relation. 

The simulated storm tracks for ORG_GSFC and LOC_FLG are nearly indistinguishable, and both deviate 

from the observed track from 1200 UTC 27 August 2010. However, LOC_FLG slightly increased the storm 

intensity, as seen from the lower minimum sea level pressure (~4 hPa lower) and higher maximum 10-m 

wind speed (~3 m/s higher) compared to ORG_GSFC after 0000 UTC 27 August, although the differences 

might not be significant. Our WRF-Dust model is still inadequate in reproducing the observed track and 

the storm’s rapid intensification. Further dust improvement, resolution increase, and, potentially, data 

assimilation are necessary to reproduce the hurricane’s development and environment. 

The results of this study demonstrate that dust shape and emitted dust size distribution play a crucial 

role in dust modeling by reducing dust sedimentation, augmenting dust optical properties, and enhancing 
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dust long-range transport. For our region of interest, the emitted dust size distribution based on averaged 

local site measurements combined with the FLG radiation scheme and non-spherical adjustment (i.e., 

LOC_FLG) produced the most realistic dust simulation. Yet, there exist several limitations in our model. 

Our current WRF-Dust model is insufficient at wholly incorporating the observationally-constrained dust 

distribution from Adebiyi & Kok (2020). The largest size bin contains a median diameter of 8 μm, whereas 

the LOC and GLO distributions are computed up to 20 μm. This limitation poses a major drawback in 

model simulations, as a substantial fraction of coarse particles is concentrated beyond 10 μm in both 

distributions. Neglecting this portion could result in less accurate dust simulation, in particular in modeled 

dust-radiative effect and AE. Resolving this issue requires the model to encompass a greater size range of 

dust particles. Under these circumstances, we will extend our WRF-Dust model size coverage to 20 μm. 

Moreover, in the model evaluation against VIIRS observations, we realized that much of the discrepancy 

in AOD and AE between the model and observations lies in the contribution of marine aerosols, which are 

intrinsically absent in our WRF-Dust model. Missing marine aerosols in the model may result in 

underestimation of AOD and overestimation of AE over the ocean, especially farther away from source 

regions. Also, marine aerosols are highly involved in weather systems over the ocean, such as tropical 

cyclones. Thus, including marine aerosols will be a key task in our upcoming studies. Last but not least, a 

critical limitation is the difference in computation of optical properties in the two radiation schemes. For 

the FLG scheme, we employ a lookup table of tri-axial dust optical properties computed based on Meng et 

al. (2010), whereas the optical properties associated with the GSFC scheme are computed using Equation 

(3). This may introduce unnecessary discrepancies and lead to unfair comparison between experiments run 

with different schemes. Thus, formulating a lookup table for the GSFC scheme based on the same 

methodology and incorporating the modified optical coefficients into the GSFC experiments will be 

important future work. 
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