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Lateralization is a part of virtually every function we think makes us human, yet

there is no integrated neurophysiological explanation of the development of lateralization

and interhemispheric integration. In this thesis I propose how development, lateralization

in visual processing, and interhemispheric connectivity are all intertwined.

I begin with evidence from neurocomputational modeling that lateralization in

visual processing can be accounted for by a difference in the length of long-range lateral

connections brought on by typical human developmental processes. The model can

explain processing asymmetries for low vs. high spatial frequencies, local vs. global
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stimuli, as well as the right hemisphere lateralization of faces.

Next, I show modeling evidence against the prevailing hypothesis that lateral-

ization and interhemispheric communication are both functions of brain size. Previous

papers have argued that lateralization is related to hemispheric independence which

increases with brain size, due to both longer latency and proportionally fewer interhemi-

spheric connections in larger brains. I examine interhemispheric connectivity across

species using a new allometric analysis of existing data and examine latency effects

through a re-analysis of neural network modeling data. Both results suggest that inter-

hemispheric communication is robust across brain sizes.

Along the way, I examine the neurophysiological development of long-range

connections. I use neural network modeling to show that developmental changes in the

physiology of axons may bias learning towards more local intrahemispheric circuits early

in development, with long distance interhemispheric circuits becoming more prominent

as connections mature. These modeling results are broadly consistent with the develop-

mental trajectory of both interhemispheric communication and lateralization. I conclude

by attempting to integrate these results into existing theories of developmental and adult

visual lateralization.

In many domains, communication is the key to the development of specialization.

I hope this work can refocus our efforts to understand how interhemispheric commu-

nication affects the development of each lateralized function in the brain and treat any

relationships between hemispheric independence and lateralization as an unexpected

special case worth investigating further.
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Chapter 1

Introduction

Lateralization is a part of virtually every function that we think makes us human,

but its evolutionary origins, neurophysiological underpinnings, and relationship to inter-

hemispheric transfer all remain a mystery. Vision is such an important sense for primates

that it takes over 50% of cortex in macaque monkeys (Sereno & Allmann, 1991), is one of

the major research foci across neuroscience and psychology, and is lateralized in humans,

yet no integrated neurophysiological explanation of lateralization in vision, from birth to

adulthood, exists. We have cognitive (Ivry & Robertson, 1998) and neurophysiological

(Hellige, 1993; Howard & Reggia, 2007) theories about where lateralization comes from,

and we have computational ideas on how interhemispheric communication relates to

lateralization generally (Ringo et al., 1994; Reggia & Schulz, 2002) and more specifically

in the visual domain (Monaghan & Shillcock, 2004; Plaut & Behrmann, 2011). We lack

a single theory to integrate across development, explain weak population-level findings,

and explain how lateralization generalizes beyond lab experiments and fits into everyday

vision.

This thesis is an attempt at building such an integrated theory. To do so, I drill

down into neurocomputational mechanisms of visual asymmetries and interhemispheric

1
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integration. Because insufficient neural data exist to directly tie neurophysiology to

these phenomena, I closely examine the experimental paradigms that evoke behavioral

asymmetries, I look at how neuroanatomy interacts with those experimental paradigms,

and I consider how these potential mechanisms fit with developmental findings in the

literature. I use computational modeling to investigate potential links between behavior

and neuroanatomy.

Ultimately, the modeling data provide testable hypotheses on links between

brain and behavior. Though speculative, such links may be used to drive experimental

research as well as mechanisms for implementing high-level theories and findings in

neural software and hardware. Though the value of this work will only be determined as

such experiments and implementations occur, I hope this work might encourage others

to approach the vast amounts of data we already have with big ideas that connect to

numerous results and computational tools to test such ideas rigorously.

Approach

This thesis is driven by the view that the level of specification in current theories is

too high to give an integrated account of visual asymmetry and interhemispheric integra-

tion. Because these theories fail to connect behavioral findings and computational models

to specific neural mechanisms, they cannot use the richness in the neurophysiological

literature to predict how mechanisms interact or change over development. The power

of these physiological constraints and data is to help produce specific predictions about

where, when, and how each of the relevant phenomena arise.

For this reason, the broad approach within this thesis is to create and analyze

computational models that examine specific neuroanatomical and developmental mecha-

nisms, to characterize their computational properties and their potential relationships to
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behavioral data, then to use the results to create hypotheses about lateralization in visual

processing and interhemispheric transfer. Though not all aspects of these hypotheses are

examined and tested in this thesis, the computational models are based on measurable

neuroanatomical properties and therefore capable to be used to generate quantitative

predictions. Because care is taken to differentiate developmental neurophysiology from

adult neurophysiology and to connect the two together, hypotheses can be generated for

specific stages along the human lifespan.

Why visual asymmetries?

One of the fundamental jobs of our visual system is to parse a visual scene into

an overall “global” configuration and smaller, “local” parts. This separation of large-

scale, low-frequency configural information from small-scale, high-frequency detail is

necessary for everyday tasks such as face recognition (Goffaux, Hault, Michel, Vuong,

& Rossion, 2005), scene recognition (Bar, 2004), and reading. Since Sergent (1982)’s

seminal work in the early 1980s, many behavioral studies have examined how the two

hemispheres differ in perceptual processing of the visual scene. Generally, theses studies

have found right hemisphere (RH) dominance of global-level / low spatial frequency

/ contour processing and left hemisphere (LH) dominance of local-level / high spatial

frequency / detail processing (see Sergent (1983); Christman (1989); Van Kleeck (1989)

for reviews). Since then, brain damage patient studies (e.g. Robertson, Lamb, and

Knight (1988); Lamb, Robertson, and Knight (1990)), neuroimaging studies (e.g. Fink

et al. (1997); Martinez et al. (1997); Martinez, Di Russo, Anllo-Vento, and Hillyard

(2001); Hopf et al. (2006)), and computational modeling (Ivry & Robertson, 1998; Hsiao,

Shahbazi, & Cottrell, 2008) have all supported the behavioral findings and helped search

for underlying mechanisms.
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Visual processing is more weakly lateralized, both within an individual and across

the population, than other lateralized functions such as language production or skilled

manual tool use. Nonetheless, lateralization of visual processing is well-suited for in-

vestigating a relationship between lateralization of function, neural asymmetries, and

how neural asymmetries interact across the corpus callosum. Vision has dominated

neuroanatomical studies and are prevalent in behavioral psychology, making it more plau-

sible to discover a causal link between brain and behavior. There are ample data available

to develop and test computational models, due to the wide range of behavioral studies

relevant to visual processing, including studies that likely include variations in inter-

hemispheric involvement. A number of reviews (Sergent, 1983, 1985; Christman, 1989;

Van Kleeck, 1989; Ivry & Robertson, 1998) have focused the field to key issues (such

as variability over stimulus parameters, task-demands, relative frequency information),

helping to focus the field and set a baseline for comparing hypotheses about underlying

neural mechanisms. A number of psychological, anatomical, and computational models

have been proposed (Sergent, 1982; Ivry & Robertson, 1998; Hellige, 1993; Hutsler &

Galuske, 2003; Howard & Reggia, 2007; Hsiao, Shahbazi, & Cottrell, 2008), providing

ample ground for comparison and discussion.

Unfortunately, lateralized processing of vision is not nearly as appealing to

neurophysiologists as language lateralization or handedness, and so until recently no

neuroanatomical nor neurophysiological study has tried to investigate its neural origins

in humans (but see Chance et al. (2013)). In addition, attempts to map experimental

procedures in humans to those of animals studies have left us with more unexplained

variability and very few clear results. Perhaps for these reasons, some aspects of the

literature seem to have stagnated over the past 25 years.

Without data to tie behavioral findings to neurophysiological mechanisms, I be-

came interested in the work of of Hsiao, Shahbazi, and Cottrell (2008). This preliminary
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report showed an association between connection spread in visual processing and behav-

ioral asymmetries. Though not shown in that paper, the association reported suggested

that shorter connections may be biased for low spatial frequency processing–the opposite

association found for center-surround receptive fields. The paper was loosely inspired by

an anatomical study showing an asymmetry in long-range lateral connections in auditory

cortex (R. A. Galuske, Schlote, Bratzke, & Singer, 2000), but very few links direct links

between neuroanatomy and computation were reviewed in the paper, no clear data about

the computational role of long-range lateral connections were cited, and so the story did

not strike me as particularly compelling.

In my interest to understand neurocomputational mechanisms broadly, this repre-

sented a chance for me to learn about a type of connectivity I, and all of my colleagues,

were unfamiliar with. As I delved into the details of the literature, the story became

more compelling. Long-range lateral connections (LRLCs) tend to be active when stim-

ulus strength is weak–just the situation when these visual asymmetries were strongest.

LRLCs are involved in integrating contours for object detection–consistent with the

asymmetric processing of “global-level” figures. LRLCs appear across cortex, and so

could be involved in processing figures of different sizes by being active in different

cortical areas–consistent with neuroimaging showing that lateralized processing interacts

with the absolute size of stimuli in such a manner (Hopf et al., 2006). LRLCs even show

variations in their connection length across visual areas, making it very plausible to find

an asymmetry between the hemispheres in their length–as found in the asymmetry of

these connections in auditory cortex (R. A. Galuske et al., 2000) and postulated in Hsiao,

Shahbazi, and Cottrell (2008). By the time I realized that the developmental trajectory

of LRLCs fit with the asymmetry that had been postulated and that the computational

mechanism these networks were exploiting has not previously been described, I found

myself excitedly jogging through around the yearly SfN conference, seeking out experts
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like Charles Gilbert to pick their brains about how all these things work and poking

computational colleagues to consider integrating them into their models.

It is important to note that the differential encoding work is collaborative work

with Janet Hsiao and my advisor Garrison Cottrell. Janet conceived of the model

architecture and the initial mapping to long-range lateral connections. I discovered

some issues with the initial modeling work, solved those issues by making the model

more neurologically plausible, discovered the spatial frequency encoding properties,

generalized the findings to multiple behavioral experiments, and created a developmental

version of the model. I have focused a lot of energy on fleshing out how long-range lateral

connections “make sense” to describe the broader lateralization data reviewed by Ivry

and Robertson (1998) and more recently Plaut and Behrmann (2011) and understanding

how those literatures connect back the computational properties of long-range lateral

connections in contour processing.

Why interhemispheric integration?

The prevailing view in the literature is that lateralization is driven by less com-

munication between the hemispheres–despite the fact that lateralized functions are often

complementary (Gazzaniga, 2000; Hellige, 2006) and that interhemispheric functional

networks are some of the strongest found (Stark et al., 2008). Recent experimental and

modeling work on complementary lateralization of face and word processing (Plaut &

Behrmann, 2011; Dundas, Plaut, & Behrmann, 2012) has suggested critical interactions

of the hemispheres in the development of lateralization. That work inspired me to take a

more general look at findings that the hemispheres are more independent in humans than

other animals, due to long conduction delays (Ringo et al., 1994) and relatively fewer

connections (Rilling & Insel, 1999a).
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I was surprised to find that not only is the corpus callosum diverse in its mi-

crostructure, but that the microstructure is informative to functional differences within

the corpus callosum. Because the corpus callosum contains connectivity across the

entire brain and is topographically organized, the microstructural map of the connections

varies with the computational needs of each part of the brain (Aboitiz & Montiel, 2003;

Doron & Gazzaniga, 2008). Early sensory/motor areas (vision, somatosensation) tend

to interconnect along the midline with thick, myelinated fibers–good for fast transmis-

sion. When examined across species, these fast fibers increase their size with brain

size, indicating that speed is important (Olivares, Montiel, & Aboitiz, 2001). On the

other hand, association cortices and prefrontal cortices interconnect diffusely across the

corpus callosum, using thin fibers that are more frequently unmyelinated. These thin

fibers do not change across species with different brain sizes (Aboitiz & Montiel, 2003;

S. S. H. Wang et al., 2008).

After delving deeply into the neuroanatomical data on the corpus callosum, I’ve

been surprised by the paucity of human data that exist. High-quality electron microscopic

data exist for cats and monkeys in developmental and adulthood (Berbel & Innocenti,

1988; LaMantia & Rakic, 1990a; LaMantia & Rakic, 1990b) and show exciting patterns

of great proliferation and massive pruning of thin, unmyelinated fibers in the corpus

callosum, along with age-related changes to fiber density, fiber count, and myelination.

Nonetheless, only a single sample of the human corpus callosum has ever been imaged

with an electron microscope and published–of a 45 year-old sample (Aboitiz et al., 1992).

Only one developmental paper has been published (Luttenberg, 1965) and is marred by its

use of a low-acuity light microscope, reporting fewer fibers in the human corpus callosum

at birth (143 million) than reported in adulthood (200 million; Aboitiz et al. (1992)) and

far below my best estimate of the fiber count at birth (800 million; see Section 5.7).

Given the diversity of connectivity across the corpus callosum, it’s easy to see
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that interactions over the corpus callosum can be highly task-dependent. For example,

stimuli presented centrally may make use of fast, midline callosal connections, whereas

stimuli presented laterally likely cannot. Therefore, in order to understand the role of

interhemispheric integration in a task, one must delve into the details of the task and of

the physiology. With so little human data on the microstructure of the corpus callosum

available, computational tools can help map animal data to humans (see Appendix C)

and test existing hypotheses of relatively weak interhemispheric interactions in humans

(Ringo et al., 1994; Rilling & Insel, 1999a).

Why combine lateralization and interhemispheric integra-

tion?

For three years I was absolutely convinced that lateralization comes from less

communication between the hemispheres (Ringo et al., 1994). It seemed simple–when

you know how to do your own job yourself, you don’t need to talk to anybody else. As

one hemisphere’s job becomes less functionally related to the other hemisphere’s job, the

need for cross-talk seems reduced.

While the story seemed simple, as white matter connectivity–and particularly the

corpus callosum–became more and more prominent with the advent of DTI, resting-state

MRI, and more sophisticated EEG analyses such as phase locking and causal analysis,

the results simply didn’t back up that story. There is evidence of robust coupling between

the hemispheres in humans (Stark et al., 2008), with lateralization and interhemispheric

communication both increasing over development (e.g. Benninger, Matthis, and Scheffner

(1984); Petitto et al. (2012); Musacchia et al. (2013)). If anything, these results seemed

to show that interhemispheric networks were stronger than any others.

Upon re-examining the two major papers supporting the independence hypoth-
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esis, I noted that neither paper actually tests whether independent networks lead to

lateralization. When I began to think about other fields, the hypothesis of specialization

being brought about by independence started to seem absurd–specialization increases

competency in one function at the cost of others; communication is what mediates

sharing of resources between complementary specializations. When I started to think

about and look into other fields, this is just what I found: in other fields such as cellular

biology (Gurkan, Koulov, & Balch, 2007; Graham, Cook, & Busse, 2000; Marzec &

Kurczynska, 2014; Palmer, 2002), agriculture (Qin & Zhang, 2012; Gollin & Rogerson,

2014), economics (Bolton & Dewatripont, 1994; R. Katz & Tushman, 1979; Tushman,

1978), even in design of cities in online games (Specializations - SimCity Wiki Guide,

n.d.), and presumably government, social networks, and all other fields: specialization is

dependent on robust communication.

When I found that both major proposed causes of independence–longer con-

duction delays (Ringo et al., 1994) and fewer interhemispheric connections (Rilling &

Insel, 1999a) in larger-brained species–had good reasons to doubt them (Chapters 5 and

6, respectively), I finally let go of the hypotheses myself, and instead of trying to use

those ideas to build on the neural network modeling of visual asymmetries, I focused on

understanding the existing data on interhemispheric transfer and its role in lateralization.

As outlined in the future work in Chapter 8, I hope that some ideas from this research

(Chapter 7 may be used to move that project forward.

Thesis Outline

This thesis is written in the “independent chapters” format, as most chapters have

been published in conference proceedings or are in preparation for journal publication.

As such, relevant background appears in each chapter. I’ve also added a chapter to
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integrate the primary research chapters with each other and with data from the literature;

the aim of that chapter (7) is to propose a unified explanation of visual asymmetries and

interhemispheric communication. Therefore, no single literature review or background is

covered in this thesis; relevant background is distributed across the chapters.

The thesis encompasses three projects: neurodevelopmental modeling of visual

processing asymmetries, neurodevelopmental modeling of interhemispheric communi-

cation, and allometric modeling of interhemispheric connectivity. Chapters 2 - 4 cover

the Differential Encoding model1, a neurodevelopmental model of visual processing

asymmetry. Chapter 5 covers interhemispheric communication in adults and modeling

work supporting a neurodevelopmental theory on the development of white matter con-

nectivity and its relationship to lateralization. Chapter 6 covers comparative aspects of

interhemispheric connectivity across mammalian species. Chapter 7 attempts to connect

chapters 2 - 6 with each other and with related data and theories in the literature, to give

an integrated neurodevelopmental theory of visual processing asymmetry and interhemi-

spheric communication. Chapter 8 includes two submitted research proposals and two

rough outlines for future work based on these results and techniques.

1Janet Hsiao is the first author of Chapter 2, published as (Hsiao et al., 2013). Please review Chapter
2’s acknowledgements section (2.6) for details on my contributions to the chapter.



Chapter 2

A differential encoding account of

hemispheric asymmetry in perception1

2.1 Abstract

Hemispheric asymmetry in the processing of local and global features has been

argued to originate from differences in frequency filtering in the two hemispheres, with

little neurophysiological support. Here we test the hypothesis that this asymmetry takes

place at an encoding stage beyond the sensory level, due to asymmetries in anatomical

connections within each hemisphere. We use two simple encoding networks with differen-

tial connection structures as models of differential encoding in the two hemispheres based

on a hypothesized generalization of neuroanatomical evidence from the auditory modality

to the visual modality: The connection structure between columns is more distal in the

language areas of the left hemisphere and more local in the homotopic regions in the right

hemisphere. We show that both processing differences and differential frequency filtering

can arise naturally in this neurocomputational model with neuroanatomically inspired

1This chapter was published in the Journal of Cognitive Neuroscience (Hsiao et al., 2013)

11
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differences in connection structures within the two model hemispheres, suggesting that

hemispheric asymmetry in the processing of local and global features may be due to

hemispheric asymmetry in connection structure rather than in frequency tuning

2.2 Introduction

The way we analyze and process the global and local forms of visual stimuli has

been extensively examined. Navon (1977) proposed the “global precedence hypothesis”,

suggesting that the global form of a visual stimulus is unavoidably recognized before

the local forms. This effect was later shown to depend on both the characteristics of the

local and global forms and the hemispheric asymmetry in the perception of local and

global features (Hoffman, 1980). Follow-up studies further confirm that there is a right

visual field (RVF)/left hemisphere (LH) advantage for responses to local features and a

left visual field (LVF)/right hemisphere (RH) advantage for responses to global features

(Sergent, 1982; Ivry & Robertson, 1998; Van Kleeck, 1989; Kitterle, Christman, &

Hellige, 1990; Proverbio, Minniti, & Zani, 1998; Han et al., 2002; Weissman & Woldorff,

2005). Nevertheless, studies examining grating detection did not support the existence of

hemispheric specialization for particular frequency ranges (Kitterle et al., 1990; Rijsdijk,

Kroon, & van der Wildt, 1980; Di Lollo, 1981; Peterzell, Harvey, & Hardyck, 1989;

Fendrich & Gazzaniga, 1990). It thus remains unclear why this perceptual asymmetry

exists (M. Martin, 1979; Peterzell, 1991).

Sergent (1982) used hierarchical letter patterns (Navon, 1977) to examine this

hemispheric asymmetry (Figure 2.1a). Stimuli were presented to either the RVF/LH

or the LVF/RH for 150 ms, and the participants’ task was to judge whether they saw a

target letter or not, regardless of its being in the global or local pattern. The stimuli of

greatest interest in Sergent (1982)’s experiment were the conflict conditions when the
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target appeared in either the local or global pattern (the L+Sand L-S+ cases in Figure

2.1a), since they were the conditions in which interference may arise. The results showed

that there was a significant interaction between presented visual field and target level in

response time: participants were faster at detecting a target at the global level when it was

presented in the LVF/RH, and faster at detecting a target at the local level when it was

presented in the RVF/LH (Figure 2.1b). She thus concluded that global precedence in

form analysis1 is a property of the RH but not the LH. She also argued that “hemispheric

differences as a function of spatial frequencies must result from processing taking place

beyond the sensory level”, since studies examining grating detection did not report a

hemispheric difference in contrast sensitivity or visible persistence (Kitterle et al., 1990;

Rijsdijk et al., 1980; Di Lollo, 1981; Peterzell et al., 1989; Fendrich & Gazzaniga, 1990).

A similar hemispheric asymmetry has also been consistently reported in auditory

perception. For example, in dichotic listening studies of speech recognition, it has

been shown that there is an advantage for responses to prosody, which rely more on

low frequency information, when the stimulus is presented to the left ear/RH, and an

advantage for responses to content, which reply more on high frequency information,

when the stimulus is presented to the right ear/LH (Ivry & Robertson, 1998; Ley &

Bryden, 1982).

Ivry and Robertson (1998) proposed a Double Filtering by Frequency (DFF)

theory to account for this hemispheric asymmetry in perception. The theory argues that

information entering the brain goes through two frequency filtering stages. The first

stage involves attentional selection of task-relevant frequency range, and at the second

stage, the LH amplifies high frequency information (i.e., a high-pass filter), whereas

the RH amplifies low frequency information (i.e., a low-pass filter). They developed a

computational model based on the DFF theory to account for this perceptual asymmetry

(Figure 2.2a), and used one-dimensional hierarchical patterns as the stimuli in their
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Figure 2.1: (a) Stimuli in Sergent (1982)’s experiment. A hierarchical letter pattern
contains two patterns: a global pattern and a local pattern. The global pattern (the
large letter) is composed of a number of local patterns (the small letters). Sergent
(1982) referred to the two levels of the stimulus as having differential spatial frequency
contents: low frequency for the global pattern and high frequency for the local pattern.
In her experiment, she used four letters to compose the hierarchical letter patterns: “H”
and “L” were designated as targets, and “T” and “F” as distracters. Given that each
letter may appear as the local or the global pattern, there are in total 16 patterns, which
can be put into six conditions according whether there is a target in the local or global
patterns. “L+” means the large letter is a target, and “S+” means the small letters are
targets. “id.” means the local and the global patterns are identical. (b) The RT data for
the L+S- and L-S+ stimuli in the LVF and RVF presentation conditions (Sergent, 1982).

simulation (Figure 2.2b). Their results showed that, consistent with human data, the

model exhibited the hemisphere-by-level interaction after a few training epochs and an

overall advantage for stimuli with a global target (Figure 2.2c) (Sergent, 1982). However,

note that the overall effect pattern is different from Sergent’s. Furthermore, the result

is fragile; with further training, the interaction disappears–the LH network is generally

better at both kinds of patterns.

A second fundamental problem with the DFF model is that there is little evidence

suggesting differential frequency tuning in the neurons in the two hemispheres. Nor is

there anatomical evidence supporting the existence of different frequency modules in

the brain as those proposed in the model. In addition, given that it is unclear how the
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Figure 2.2: (a) Ivry and Robertson (1998)’s computational model based on the DFF
theory. The model contains six different frequency modules; each module extracts
information of a specific spatial frequency from the input and learns to map the extracted
information to the output (Module 6 has the lowest frequency). The four decision nodes
correspond to four target patterns: whether target 1 or target 2 is present, and whether
it is at the global or local level. The outputs from the modules then go through an
attention weight layer as a filter. The filter first selects a task-relevant frequency range
(how the range is decided is unspecified). At the second stage, in the RH network, the
filter amplifies the output information from the low spatial frequency modules within
the frequency range, whereas in the LH network it amplifies the output information
from the high spatial frequency modules, through giving different weights to different
modules. The figure shows an example LH network. (b) One-dimensional hierarchical
patterns. There are two target patterns (10101 and 01110) and two distracter patterns
(11010 and 10110). These are composed in the input to the model. Shown at the top
is an actual input pattern formed by taking the first distracter pattern and replacing
each black portion with a target pattern. Thus this represents the first target pattern at
the local level and the second distracter pattern at the global level. A 0 unit appears
between each local pattern as a separator4. (c) Results of Ivry and Robertson (1998)’s
computational model of the DFF theory with large stimuli (i.e. stimuli are enlarged by
five) after 100 epochs. Note that it was not reported whether the RH advantage in L+S-
was significant. In addition, inconsistent with human data, the LH network became
better at identifying both local and global targets with further training.
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task-relevant frequency range is decided, the model does not fully explain why there

is little evidence suggesting the existence of hemispheric specialization for particular

frequency ranges (Kitterle et al., 1990; Rijsdijk et al., 1980; Di Lollo, 1981; Peterzell

et al., 1989; Fendrich & Gazzaniga, 1990), although Ivry and Robertson (1998) argued

that it is because absolute instead of relative frequencies were used in these studies. As

pointed out by Sergent (1982), given the lack of evidence of hemispheric specialization

for particular frequency ranges, this hemispheric asymmetry must result from processing

taking place beyond the sensory level. Contrary to the DFF theory, the two hemispheres

may not differ in the way they extract visual information.

What is the process taking place beyond the sensory level that results in this

perceptual asymmetry? In recent years, it has been shown that, in the posterior superior

temporal lobe in the LH, a region that is associated with language processing, the width of

individual cortical microcolumns and the intercolumnar distance is greater than those in

the analogous regions in the RH; pyramidal cells in this region also have longer dendrite

lengths and contact fewer adjacent columnar units than do those in the RH (Seldon, 1981a,

1981b, 1982; Anderson, Southern, & Powers, 1999; Buxhoeveden, Switala, Litaker, Roy,

& Casanova, 2001; Hutsler & Galuske, 2003). A similar hemispheric asymmetry also

exists in the macrocolumnar structures (Hutsler & Galuske, 2003). In particular, through

neuronal track tracing, R. A. Galuske et al. (2000) found that in the posterior part of

Brodmann area 22, an area that involves language-relevant processing of auditory signals,

there were modular networks of long-range intrinsic connections linking regularly spaced

clusters of neurons; while the cluster size was similar in the two hemispheres, the spacing

between clusters in the modular networks in the LH was about 20% larger than those

in the RH. This anatomical asymmetry was not observed in the primary auditory area

(Brodmann area 41). These hemispheric differences in cortical columnar and connectional

structure give rise to reasonable speculation about hemispheric asymmetry in functional
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processing architecture. Indeed, assuming similar relations between anatomical and

functional organization of cortical modules as in visual cortex, R. A. Galuske et al. (2000)

concluded from their data that there may be more functionally distinct columnar systems

included per surface unit in area 22 in the LH compared with the RH; more specifically,

the representation in the RH may be more functionally overlapped compared with that in

the LH (Hutsler & Galuske, 2003; R. A. Galuske et al., 2000).

According to this observation, here we test the hypothesis that the hemispheric

asymmetry in perception results from differential connectivity configurations at an en-

coding stage beyond the sensory level. Although these anatomical data are from auditory

cortex because of the researchers’ interests in language processing areas, the behavioral

hemispheric asymmetry has been observed in both visual and auditory processing (Ivry

& Robertson, 1998; Hutsler & Galuske, 2003). Thus, we assume that the anatomical

findings in the auditory processing area also apply to visual processing, build a model

based on this assumption, and see where that leads.

Figure 2.3: LH and RH autoencoder networks; both have the same number of connec-
tions. Each hidden node has a fixed number of symmetric connections to the input and
output layers, respectively.

We use autoencoder networks to implement differential connectivity configu-

rations at an encoding stage. An autoencoder network is a two-layer neural network

that is trained to reproduce each input pattern in the output; after training, the hidden
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layer activation when an input pattern is presented is used as a compressed encoding

of the input pattern24. In order to simulate differential connectivity configurations, the

networks have incomplete connectivity (Figure 2.3); each hidden node has a fixed number

of symmetric connections to the input and output layers respectively. The distribution of

the connections is determined by a Gaussian probability density function (PDF). Note

that these hidden nodes are different from the radial basis function units used in some

previous models (Ivry & Robertson, 1998; Monaghan & Shillcock, 2004). In those

models the weights of the connections from each unit are fixed according to a Gaussian

distribution (Monaghan & Shillcock, 2004) or a combination of Gaussian distributions4.

In contrast, in our model the connectivity configuration from each hidden node follows a

Gaussian probability distribution and the weights are adjustable through training. Also

in contrast to these earlier models, in the LH network, we use a wide Gaussian PDF to

simulate a sparse connectivity with adjacent neurons; in contrast, a narrow Gaussian PDF

is used to simulate a dense connectivity in the RH network (Figure 2.3). The variances

of the Gaussian PDFs are chosen as two extreme cases of denseness/sparseness of the

connections in order to examine the qualitative differences between them. We equalize

the computational power of the LH and RH networks by using the same number of

hidden nodes and connections, so that the resulting differences between the two networks

will reflect the functional difference between the two encoding schemes. We then use a

perceptron (a one-layer neural network) to classify the encodings developed in the LH

and RH networks according to whether there is a target or not in the stimulus; the error in

the output layer of the perceptron reflects how good the encoding is given the detection

task, analogous to human reaction time in the same task when the corresponding input

stimulus is presented–greater uncertainty leads to longer reaction time.

We conducted two simulations: in the first simulation, we used the same one-

dimensional hierarchical pattern stimuli as the DFF simulation (Ivry & Robertson, 1998);
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Figure 2.4: Hierarchical letter patterns used in our second simulation. Each pattern is
31 X 13 (403) pixels. They are composed of the same letters used in Sergent (1982)’s
experiment.

in the second simulation, we used hierarchical letter patterns similar to those used in

Sergent’s experiment (Sergent, 1982) (Figure 2.4). In both simulations, training stopped

after a fixed number of training epochs; the numbers of the epochs were chosen so that

the error would have converged before the training stopped; in other words, there was no

early stopping as in the DFF simulations.

2.3 Methods

Here we ran two types of simulations, both using two target patterns and two

distracter patterns that could be combined into local targets and global distracters and

vice versa. In the first experiment, we used the simplified one-dimensional hierarchical

stimuli used in Ivry and Robertson (1998) simulation. Each stimulus was 29 units long,

constructed by combining two patterns so that one pattern forms the local features and

the other forms the global pattern of the stimulus, with a blank (0) unit between each

local pattern (Figure 2.2B). In the second simulation, we replicated Sergent’s experiment

using two-dimensional hierarchical letter patterns. Each pattern could appear at the local

or global level, for a total of 16 input patterns (Sergent, 1982). In this simulation, each
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pattern was 31 X 13 (403) pixels, with the same letters and same assignments of letters

to targets and distracter sets as used in Sergent’s experiment (Figure 2.4).

In the simulations, we used two autoencoder networks (Cottrell, Munro, & Zipser,

2012; Rumelhart, Hinton, & Williams, 1986) with different connectivity configurations

as a way to learn an efficient encoding from the input data. While holding the number

of connections for each hidden unit fixed, the LH network had a comparatively wider

pattern of connectivity that the RH network (Figure 3), in accordance with the asymmetry

reported between long-range connections in LH and RH BA 22 (R. A. Galuske et

al., 2000). More specifically, each hidden unit had a fixed number of connections

to the input layer, and these connections were randomly drawn from a Gaussian pdf.

Each hidden unit within a model hemisphere used a Gaussian pdf with an identical σ

(variance), with the LH σ (σ1D = 12,σ2D = 18 pixels; the subscripts 1D and 2D refer

to the stimulations with one- and two-dimensional stimuli, respectively) greater than

the RH σ (σ1D = 1.8,σ2D = 4 pixels; see Figure 2.3). The variances were chosen as

two extreme cases of denseness/sparseness of the connections to examine the qualitative

differences between the LH and RH networks; a wide range of values for the variances

were tested, and similar results were found. The connection pattern from the hidden layer

to the output layer was completely symmetric to those from the input layer to the hidden

layer. Each hidden unit was associated with a position in the input space such that the

set of hidden units were evenly distributed across the input space. When selecting the

connections for a particular hidden unit, the Gaussian pdf was centered at that hidden

unit’s location in the input space.

After selecting all connections and constructing a network, the network was

trained on all 16 input patterns until the network reached a fixed error (summed across

all output units and patterns; see below for more details). Similar to Monaghan and

Shillcock (2004), we trained to a performance criterion, rather than for a fixed number of
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iterations, because the networks with different connectivity patterns learned the patterns

at different rates. Once a network was trained, hidden unit encodings for each input

pattern were computed by presenting the input pattern and then recording the hidden unit

activities. These hidden unit encodings were compressed encodings that reflect the result

of having differential connectivity to the hidden units.

After obtaining the compressed encodings of the input stimuli, we used a percep-

tron (i.e., a one-layer neural network) with a sigmoidal output function to classify the

encodings according to whether there was a target or not (at either level) in the input

stimuli, the same task participants were required to do in Sergent (1982)’s experiment.

The output layer of the perceptron had a single node; the node had value 1 when a target

was present at either level (75% of the stimuli) and 0 otherwise (25% of the stimuli).

The error was measured as the difference between the output of the perceptron and the

desired output (0 or 1). As has been done in previous studies, this error was considered

to be a measure of uncertainty, and compared directly with human RT (Dailey, Cottrell,

Padgett, & Adolphs, 2002; Seidenberg & McClelland, 1989)).

In the simulation with one-dimensional stimuli, we explored the parameter space

by testing the model with different combinations of the parameters, ranging from 11 to

15 hidden nodes and 5 to 10 connections from each hidden node. In the simulation with

hierarchical letter patterns, the combinations ranged from 11 to 15 hidden nodes and from

170 to 220 connections from each hidden node. For both the autoencoder networks and

the perceptron, the training algorithm was gradient descent (Rumelhart et al., 1986) using

sum-square error (SSE) for the objective function. The learning rate started at a constant

(η1D = η2D = 0.1 for the autoencoder networks; η1D = η2D = 0.05 for the perceptron)

and was adapted during training: If the error decreased in the current epoch, the learning

rate for the next epoch increased by a factor of 1.05; if the error increased, the new

learning rate was decreased by a factor of 1.25. Training of the autoencoders proceeded
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until the average SSE across all output nodes reached a predetermined threshold (0.025)

within a predetermined maximum number of iterations (max1D = 1000,max2D = 250).

Rare cases where the autoencoder could not reach the SSE performance criterion within

the maximum number of training iterations were marked as rejections. Little effect was

seen in varying this threshold in the ranges of 0.05 (requiring very few training iterations)

to 0.01 (requiring many training iterations and leading to a high incidence of rejections).

Training for the perceptron classifiers stopped after 250 iterations; values between 100

and 1000 iterations showed similar performance. After training the perceptron had 100%

classification accuracy.

To match the statistical power found in Sergent’s experiment, we ran the model

68 times in each simulation, giving us approximately the same number of total trials (68

models 16 trials per model hemisphere) as Sergent’s human data (12 subjects 90 trials

per visual field).

To examine encoding differences between LH and RH networks in terms of

spatial frequency, output images were computed for each network. This was done by

presenting each input image to a trained network and then recording the output unit

activities. These output images were then analyzed for spatial frequency content. To

compare and visualize, we took the log power at each frequency and then computed

the difference in log power between RH and LH networks. We used hierarchical letter

patterns (Sergent, 1982) for this analysis.

2.4 Results

Results of the Simulation with One-dimensional Stimuli

We first report the results of the simulation in which we used the same one-

dimensional stimuli as those used in Ivry and Robertson (1998)’s model (Figure 2B). To
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Figure 2.5: (A) Results of the simulation with one-dimensional stimuli used in the DFF
model (Ivry & Robertson, 1998). (B) Results of the simulation when splitting the data
according to either number of hidden nodes or number of connections.

verify that the results were robust to the parameters defining the model architecture, we

ran the model with different parameter combinations, ranging from 11 to 15 hidden nodes

and from 5 to 9 connections from each hidden node (in total 25 different combinations).

We used repeated-measures ANOVA to analyze the data; the within-subject variable was

target level (global vs. local), whereas the between-subject variables were hemisphere

(LH vs. RH networks), number of hidden nodes (11, 12, 13, 14, and 15), and number of

connections from each hidden node (5, 6, 7, 8, and 9). The dependent variable was the

error in the output layer of the perceptron.

Consistent with human data, the results showed that the model had better perfor-

mance when the target was at the global level (F(1,3350) = 1092.823, p < .001), and

there was a significant interaction between hemisphere and target level (F(1,3350) =
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756.923, p < .001; Figure 2.5A); although both of these two effects interacted with either

the number of hidden nodes (Target Level Number of Hidden Nodes, F(4,3350) =

38.347, p < .001; Target Level Hemisphere Number of Hidden Nodes, F(4,3350) =

20.456, p < .001) or number of Connections (Target Level Number of Connections,

F(4,3350) = 11.927, p < .001; Target Level Hemisphere Number of Connections,

F(4,3350) = 4.805, p = .001), when we split the data according to either number

of hidden nodes or number of connections, both effects were significant in all cases

(p < .001 for all cases; Figure 2.5B). Nevertheless, in Sergent (1982)’s human data,

there was no main effect of hemisphere; the two hemispheres had a similar performance

level on average. In contrast, our model showed a main effect of hemisphere: the LH

network performed better than the RH network, F(1,3350) = 154.231, p < .001; this

effect interacted with number of hidden nodes, F(1,3350) = 12.808, p < .001: Per-

formance difference between the two hemisphere networks was significant when the

network had 11 [F(1,670) = 69.770, p < .001], 12 [F(1,670) = 63.882, p < .001], 13

[F(1,670) = 16.954, p < .001], or 14 hidden nodes [F(1,670) = 19.119, p < .001], but

not when it had 15 hidden nodes [F(1,670) = 2.383, p = .123; Figure 2.5B]. This sug-

gests that performance difference between the two hemisphere networks can be influenced

by parameter settings.

Results of the Simulation with Hierarchical Letter Pattern Stimuli

In the second simulation, we used the hierarchical letter patterns used in Sergent

(1982)’s study. We explored how the performance changed with different parameter

combinations, ranging from 22 to 30 hidden nodes and 40 to 120 connections from each

hidden node (in total 25 different combinations). As in the first simulation, we used

repeated-measures ANOVA to analyze the data; the within-subject variable was target

level (global vs. local), whereas the between-subject variables were hemisphere (LH
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Figure 2.6: (A) Results of the simulation with hierarchical letter pattern stimuli. (B)
Results of the simulation when splitting the data according to number of connections
from each hidden node.

vs. RH networks), number of hidden nodes (22, 24, 26, 28, and 30), and number of

connections from each hidden node (40, 60, 80, 100, and 120). The dependent variable

was the error in the output layer of the perceptron.

The results showed an advantage of detecting a global level target, F(1,3350) =

1070.838, p< .001, and an interaction between hemisphere and target level, F(1,3350)=

858.284, p < .001 (Figure 2.6A); both effects interacted with number of connections,

F(4,3350)= 36.261, p< .001, but not number of hidden nodes, F(4,3350)= 1.933, p=

.102. When we split the data by number of connections, we found that both effects

were significant across all cases (Figure 2.6B). The model also showed a main effect

of hemisphere, F(1,3350) = 91.054, p < .001, and this effect interacted with number

of connections, F(4,3350) = 17.519, p < .001: When the model had 40 [F(1,670) =

58.135, p < .001], 60 [F(1,670) = 112.781, p < .001], or 80 connections from each

hidden node [F(1,670) = 14.713, p < .001], the LH network performed significantly

better than the RH network; this difference was not significant when the model had 100

[F(1,670) = 1.343, p = .247] or 120 connections [F(1,670) = 0.251, p = .617].
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Thus, the results from the two simulations suggested that although the global

level advantage effect and the interaction between hemisphere and target level could be

modulated by different parameter settings, the modulation generally only affected the

size of the effects, not the direction; in other words, these effects were robust against

parameter changes. In contrast, the performance difference between the LH and RH

networks was sensitive to parameter settings.

We also investigated spatial frequency content preserved in the LH and RH en-

codings. We reproduced input images from their encodings in the output; for hierarchical

letter patterns, low frequencies were better reproduced in the RH network, whereas high

frequencies were better reproduced in the LH network (Figure 2.7A and 2.7B), consistent

with Sergent (1982)’s hypothesis and the DFF theory (Ivry & Robertson, 1998). However,

this did not result directly from frequency tuning of the neurons. Rather, differential

frequency filtering behavior emerged naturally as the result of the encoding scheme,

suggesting that the asymmetry in perception may be due to differences in anatomy rather

than frequency tuning per se.

2.5 Discussion

In the current study, we test the hypothesis that hemispheric asymmetry in the

perception of global and local features originates from differential encoding beyond

the sensory level due to anatomical differences between the two hemispheres, instead

of differential frequency filtering as proposed by the DFF theory (Ivry & Robertson,

1998). We first argue that the lack of evidence supporting hemispheric specialization

for particular frequency ranges (Kitterle et al., 1990; Rijsdijk et al., 1980; Di Lollo,

1981; Peterzell et al., 1989; Fendrich & Gazzaniga, 1990) suggests that this hemispheric

asymmetry takes place beyond the sensory level (Heinze, Hinrichs, Scholz, Burchert,
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& Mangun, 1998; Sergent, 1982) and the two hemispheres do not differ in information

extraction. We then argue that the difference takes place at an encoding stage due to

differences in connection structures. We incorporate evidence about the anatomical

differences in columnar and connectional structure in the auditory cortex between the

two hemispheres (Seldon, 1981a, 1981b, 1982; Anderson et al., 1999; Buxhoeveden et

al., 2001; Hutsler & Galuske, 2003) into a computational model that uses autoencoder

networks to develop efficient encodings of the stimuli (Cottrell et al., 2012; Rumelhart

et al., 1986): The columnar structure in the posterior superior temporal lobe in the RH

has more connections among neighboring columns compared with the LH and thus

may develop representations that are more functionally overlapped than those in the LH

(Hutsler & Galuske, 2003). Although relevant anatomical data for the visual cortex are

not currently available, similar perceptual asymmetry has been observed in both visual

and auditory modalities (Poeppel, 2003). Thus, based on a hypothesized generalization

across the two modalities, we use two autoencoder networks with differential connectivity

configurations to simulate this differential encoding: The RH autoencoder network has a

narrower connection distribution to allow more connections among neighboring nodes

compared with the LH autoencoder network. We then use a perceptron to examine how

efficacious the two encoding systems are in terms of detecting local and global level

targets. The results match human data (Sergent, 1982) well; they show a significant

hemisphere-by-level interaction: an RH advantage for responses to a global level target

and an LH advantage for responses to a local level target (Sergent, 1982). They also show

an overall advantage in responses to a global level target, consistent with human data

(Navon, 1977). This effect is because the narrower connection distribution in the RH

autoencoder network allows each hidden node to develop a compressed representation for

a local region within the stimulus; because in natural images neighboring pixels are more

correlated than distant ones, there may be more variance in low spatial frequencies across
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the input patterns received by a hidden node, resulting in the dominance of low spatial

frequency information. In contrast, with a wider and sparser connection distribution,

each hidden node in the LH autoencoder network samples across a wider range of the

input image and the sampled pixels are more random and less likely to be correlated;

consequently, there may be comparable variance in high and low spatial frequencies

across the input patterns received by a hidden node, resulting in the LH network’s better

ability in preserving high spatial frequencies as compared with the RH network.

In comparison with Ivry and Robertson (1998) DFF model, we show that our

model provides a better account of human data (Sergent, 1982). Their model enforces a

discrete separation of frequency information into modules, and hemispheric differences

take place through manipulating the combination of the outputs from different frequency

modules. It is unclear how these frequency ranges are combined in a certain way and how

the model is able to account for the lack of evidence supporting hemispheric specialization

for particular frequency ranges (Kitterle et al., 1990; Rijsdijk et al., 1980; Di Lollo, 1981;

Peterzell et al., 1989; Fendrich & Gazzaniga, 1990). In addition, there is little anatomical

evidence suggesting differential frequency tuning in the neurons in the two hemispheres

or differential modulation by frequency channels in the two hemispheres similar to

that proposed in the DFF model. In contrast, through hypothesizing that hemispheric

differences take place at an encoding stage beyond the sensory level and using Gaussian

probability distributions to simulate differential connection configurations at the encoding

stage, our model naturally develops the hemispheric difference in the frequency content

in the encoding.

In our simulation with one-dimensional stimuli as those used in the DFF model,

we explored the parameter space and found that the main effect of global level advantage

and the interaction between network and target level were robust against parameter

changes, although in some cases there was a significant main effect of LH network
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advantage. In contrast, in the DFF model, with one given parameter setting, the interaction

between network and target level was fragile–the LH network became better at identifying

both local and global targets with further training. Also, the simulation of the DFF model

used one-dimensional hierarchical stimuli that differed greatly from Sergent’s original

hierarchical letter patterns. In contrast, here we used two-dimensional hierarchical letter

patterns similar to those used in human studies (Sergent, 1982) and replicated the results,

a test that has not been conducted with the DFF model. In addition, through analyzing

the spatial frequency content preserved in the encodings from the LH and RH networks,

we show that differential frequency filtering behavior emerged naturally as the result of

the encoding scheme, suggesting that hemispheric asymmetry in perception may be due

to hemispheric differences in connection structures rather than frequency tuning per se.

The modeling results provide support for the idea that a hemispheric difference

in cortical columnar and connection structure similar to that in the auditory cortex may

also exist in high-level visual areas. We speculate that it may be in the lateral occipital

region. It has been reported that there is significantly greater ipsilateral activity (i.e.,

activation from the other hemisphere after the initial contralateral projection from the

visual hemifields to the hemispheres) observed in the area anterior to the retinotopic

areas (Tootell, Mendola, Hadjikhani, Liu, & Dale, 1998), suggesting that the lateral

occipital region may be a convergence point after the visual field split (Hsiao, Shieh, &

Cottrell, 2008). Consistent with this speculation, recent fMRI studies have suggested

that the locus of this hemispheric asymmetry in local and global processing is in the

occipital/occipitotemporal region (Han et al., 2002; Martinez et al., 1997). Another

possibility is the inferior parietal lobe/superior temporal gyrus region, suggested by recent

fMRI studies showing that the activation in this region corresponds to the asymmetry

observed in human data (Weissman & Woldorff, 2005; Robertson et al., 1988). Further

examinations are required to confirm these speculations.
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We are currently pursuing the incorporation of more anatomical data into the

model, such as using 2D Gabor filters to simulate responses of complex cells in the early

visual system (Daugman, 1985), and also using the proposed autoencoder networks as the

way to develop efficient encoding in the two hemispheres in modeling more complicated

real world visual stimuli (such as faces; cf., the Principal Component Analysis step

in many visual perception models (Hsiao, Shieh, & Cottrell, 2008; Dailey & Cottrell,

1999; Dailey et al., 2002) to further examine the cognitive plausibility of this differential

encoding mechanism in accounting for other hemispheric asymmetry phenomena in

perception, such as the left side bias in face perception (C. Gilbert & Bakan, 1973) and

the RVF advantage in visual word recognition (Bryden & Rainey, 1963).
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Figure 2.7: (A) Image reproduction example (global: H; local: F) showing the fre-
quency information in which the two networks significantly differ in power. (B) Spatial
frequency analysis of the output from the autoencoders with 26 hidden nodes and 100
connections to/from each hidden node in the simulation with hierarchical letter pattern
stimuli. The plots show the difference in log radially averaged power spectrum (i.e.,
the directional independent mean spectrum) between the two networks (RH−LH); the
blue line shows the mean, whereas the red dash line indicates one standard deviation
across the 68 simulation runs. Regions marked in yellow indicate significant difference
from zero.



Chapter 3

Patchy Connectivity and Visual

Processing Asymmetries: A

Neuro-developmental Hypothesis1

3.1 Introduction

A large literature of behavioral experiments and neuroimaging studies has estab-

lished the existence of left-right asymmetries in classification tasks across a variety of

visual stimuli. Typically, these studies have used visual half-field presentation: a stimulus

is briefly presented to the left or right of a fixation point; after seeing the stimulus,

subjects press a button to indicate their response to some type of classification task, such

as whether a target stimulus was present or not. Because information from the left visual

field (LVF) is initially directed exclusively to the right cerebral hemisphere (RH), and

information from the right visual field (RVF) to the left cerebral hemisphere (LH), if

the same stimulus is presented in the RVF and LVF but differences in reaction time

1This chapter was published in the NCPW 2013 conference proceedings (Cipollini & Cottrell, 2013a)

32
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or accuracy are found, then a hemispheric difference in the processing of the stimulus

is inferred. Across these studies, the two inferences that are generally made are that

the LH shows a specialization for processing information at higher spatial frequencies

(HSF), while the RH shows a specialization for processing information at lower spatial

frequencies (LSF) (Sergent, 1982; Hellige, 1993; Ivry & Robertson, 1998).

Ivry and Robertson (1998) developed the Double Filtering by Frequency (DFF)

theory to account for asymmetries in frequency processing of visual and auditory stimuli.

They proposed that, after early sensory encoding decomposes a stimulus into its compo-

nent frequencies, processing involves two filtering stages. First, each hemisphere focuses

on only the frequencies relevant to the task. Then, each hemisphere is biased towards

encoding information, or spectral power, in that band of task-relevant frequencies: the

LH encodes more information in the higher frequencies of those selected in the first stage,

while the RH encodes more spectral power in the lower frequencies of those selected.

To provide some validation their theory, Ivry and Robertson also implemented

a neural network model based on the DFF theory. This model was able to account for

three particular experiments from the literature, each of which Ivry and Robertson argued

expresses a core feature of visual processing asymmetries. Later, Hsiao, Shahbazi, and

Cottrell (2008) implemented a different neural network model of the DFF theory, and

showed that it could account for a fourth study (see Table 3.1 for a summary of these

studies).

While the DFF theory and associated models account for all these data, Hsiao,

Shieh, and Cottrell (2008) questioned some of the assumptions and implementation

details of these models, including:

• There is a lack of physiological evidence suggesting differential frequency tuning

in the neurons of the two hemispheres
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• The stimuli were drastically reduced in complexity: they used 1D arrays (instead

of 2D images) with only 2 stimulus classes (instead of the 6 presented to human

subjects)

• The classification task used to train their model differed from that given to human

subjects.

• With further training, their hemisphere × level interaction disappeared or reversed.

To address this, Hsiao, Shieh, and Cottrell (2008) developed a neural network

model with a simple architectural difference between the hemispheres. Specifically,

they incorporated an anatomical asymmetry in long-range lateral connections between

“patches” found in Wernicke’s area (a language-related auditory area) and its RH homo-

logue (R. A. Galuske et al., 2000) into a simple autoencoder neural network. When this

“Differential Encoding” (DE) model was used to encode 2D images of Navon figures, and

these encodings then classified with a second neural network, the same hemisphere ×

level interaction emerged.

While suggestive, this model was used to account for only one of the four

experiments that the DFF has accounted for. In addition, the DE model did not use

biologically plausible parameters, nor to justify the specific role of the connections in

question in the experiment modeled. Finally, this model was never examined for spatial

frequency encoding differences, and so its relationship to previous hypotheses about such

differences remains unclear.

We aim to address all of these issues here. We begin by arguing that long-range

lateral connections horizontal are specifically involved in the paradigms eliciting visual

processing asymmetries and modeled by Ivry and Robertson and Hsiao et al, due to

their differential activation under conditions of low stimulus strength. We argue that

the DE model, with a specific configuration, is a reasonable implementation of the
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anatomical system. We then describe modeling work where we implemented this model

setup, and showed that such a model exhibits both spatial frequency differences, as

well as differences on classification tasks of encoded stimuli, for three of the behavioral

studies that the DFF has accounted for. We discuss why we think a failure to account

for the fourth study is informative and potentially interesting. Finally, to support the

plausibility of our work, we show, using a developmental version of our model, that

normal neural development of visual cortex, in conjunction with changes in visual acuity

and a hypothesized timing difference in the maturation of the hemispheres (Hellige,

1993), can lead to the hypothesized anatomical asymmetry.

Figure 3.1: Drawing of “patches” in V4 (Amir et al., 1993). Dark arrow indicates site
of dye injection.
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3.2 Patchy connectivity may be involved in processing

asymmetries

“Patches” are groups of locally interconnected mini-columns, spanning about

500mm in diameter in cortex. They are called “patches” because an injection of dye into

the cortical surface will label cortex at the injection site, as well as a number of discrete

patches of surrounding cortex. They are thought to be functional units, and somewhat

akin to hypercolumns. These patches themselves interconnect with nearby patches within

a cortical area through long-range horizontal connections that travel through the grey

matter. These patchy connection networks are quite specific and sparse; a patch will

connect with a subset of its local neighbors (see Levitt and Lund (2002) for a review).

Previously, R. A. Galuske et al. (2000) found that the distance between inter-

connected patches in Wernicke’s area (a language-related auditory area) and its RH

homologue differed, while no such differences were found in primary auditory cortex.

Specifically, patches in the LH tended to connect to patches farther away than patches

in the RH. Hsiao, Shieh, and Cottrell (2008) incorporated this connectivity difference

into an autoencoder neural network, then encoded 2D images of Navon figures using

the LH and RH networks. They showed that when these these encodings were classified

with a second neural network, the same hemisphere × level interaction emerged as when

human subjects were required to make a similar classification of the same stimuli, when

presented laterally (Sergent, 1982).

Why might long-range horizontal connections be specifically involved in Ser-

gent’s experiment, or other experiments showing visual processing asymmetries and

accounted for by Ivry and Robertson’s DFF model? Looking into the literature, we found

a number of reviews stating that asymmetries were quite dependent on task setup and

stimulus parameters, specifically stimulus contrast and stimulus presentation duration:
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stimuli must be presented with low contrast, or briefly, to elicit asymmetries (Christman,

1989; Sergent, 1983, 1985; Ivry & Robertson, 1998). When the stimulus strength is high,

asymmetries disappear.

We interpret these findings to suggest that asymmetry is not in the feed-forward

pathway, whose function we assume is positively correlated to stimulus strength, but

instead can be found in secondary types of connections - feed-back and long-range lateral

connections. We focus on long-range lateral connections between patches because they

have specifically been found to be more active during low stimulus strength (H. A. Swad-

low & Alonso, 2009), are modulated by top-down task demands (C. D. Gilbert & Li,

2013), are well characterized anatomically and physiologically (Levitt & Lund, 2002),

are thought to help encode higher-level visual information such as contours (C. D. Gilbert,

1992; Grossberg & Williamson, 2001), and we know at least one existing asymmetry in

this type of connectivity (R. A. Galuske et al., 2000).

We find that a specific implementation of the neural network employed by Hsiao

et al. to be a plausible model of how long-range lateral connections affect a map-based

encoding, such as a retinotopic encoding of an image. Specifically, connections from

the input to hidden layer can be interpreted as a recurrent network unfolded in time,

if each hidden unit connects to the input image at that hidden unit’s location. In this

particular model architecture, forward propagation of activity along the input-to-hidden

unit connections would represent the propagation of activity laterally, over one time-step.

The number of hidden units used would represent the number of local patchy connection

networks used to reconstruct the image; when the number of hidden units matches the

number of pixels, then all patchy connection networks are used in the reconstruction.
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Figure 3.2: Representation of two hidden units for LH (left) and RH (right) autoencoder
networks, along with their connections. The connections are randomly sampled from a
Gaussian distribution centered on each hidden unit’s position in the input array. The
Gaussian distribution used for the LH is wider than that used for the RH. Not pictured
are the classification networks, which operate on the hidden unit encodings extracted
from the autoencoder networks after training.

3.2.1 Methods

The “Differential Encoding” (DE) model consists of two autoencoder neural

networks, each representing one cerebral hemisphere, which differ only in the spatial

spread of connections from the input to hidden, and hidden to output layers. Unlike most

autoencoders, the hidden units of these models connect to a small subset of the input and

output banks (see Figure 3.2). Each hidden unit has a position in the input (and output)

arrays, and a fixed number of connections to the input (and output) arrays are sampled

from a Gaussian distribution centered at that hidden unit’s position in the input (and

output). The LH and RH autoencoders have the same number of hidden units and sample

the same number of connections to the input (and output) for each hidden unit. The only

difference between the networks, then, is the width (σ) of the Gaussian distribution.

In accordance with the findings of R. A. Galuske et al. (2000), the LH network

has a wider distribution than the RH network (see Figure 3.2). Note that this differs from

previous models of hemispheric differences, where the gaussian describes the receptive
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fields of Radial Basis Function units (Monaghan & Shillcock, 2004). In that work, wider

receptive fields characterize the RH. Here, *whether or not there is a connection* is

sampled from a Gaussian distribution. Here, our connections are sparse and there is no

center-surround receptive field structure. Based on previous results in Hsiao et al., we

expected to find the opposite associations in this network architecture: a wider connection

distribution would favor processing of HSFs, and a more narrow connection distribution

would favor processing of LSFs.

The number of hidden units was set to the number of pixels (34× 25 pixels

= 850), to allow equal spacing across the input image with enough total parameters

to learn the images. The number of connections per hidden unit (15) were fixed to

be close to values reported in the literature for the number of interconnecting patches

labeled by a single injection in V4 (Amir et al. (1993); see Figure 3.1).2 Each LH and

RH network was constructed by randomly sampling connections for each hidden node.

Gaussian distributions were used such that inter-patch distance values were similar to

those reported in R. A. Galuske et al. (2000), computed as the relative width of a “patch”

(here, considered to be 1 pixel) vs. the relative distance between the center of patches

(1.75 for the RH, 2.05 for the LH).

We aimed to model the four datasets described in Table 3.1. Each of these four

datasets were collected using brief, lateralized presentation of an image, then requiring

some classification of that stimulus (e.g. whether the stimulus contained a target feature

or not). We assume that asymmetries elicited in this paradigm are due to hemispheric

differences in encoding these stimuli, and asymmetries in the classification of these

stimuli are due to the asymmetries of the encodings. Our basic model setup, then, is

to construct greyscale images for each task; to encode these images in our LH and

2A wide range of values (smaller and larger) was tested for each of these parameters; results did not
differ qualitatively when the number of connections per hidden unit varied to allow for the same number of
overall weights to be used to learn the images. If too few weights were used, the networks could not learn
the training set well enough for a meaningful analysis.
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Table 3.1: Citations and descriptions for the four behavioral studies addressed in our
modeling work.

Reference Description & reason for inclusion in Ivry and Robertson (1998)

Sergent (1982)

Using Navon figures, which are large “global”-level letters composed
of smaller “local”-level letters, this study showed a hemisphere × level
interaction, where target letters present at the larger, “global” level gener-
ally elicited a faster reaction times when presented to the LVF/RH, while
target letters present at the smaller, “local” level generally elicited faster
reaction times when presented to the RVF/LH.

Kitterle, Hellige, and
Christman (1992)

This study showed that the same stimuli used in different tasks could
elicit different hemispheric advantages. This suggests that it is not the
frequencies present in the stimuli that elicits the asymmetry in process-
ing, but rather which frequencies are relevant to the task that drive the
asymmetry. They found that a task requiring HSF information elicited
faster reaction times when stimuli were presented to the RVF/LH, while a
task requiring LSF information elicited faster reaction times when stimuli
were presented to the LVF/RH.

Christman, Kitterle,
and Hellige (1991)

This study showed that when two stimuli differed by a single spatial fre-
quency, which hemisphere showed a processing advantage didn’t depend
on the actual frequency of that component, but rather whether that fre-
quency was relatively higher or lower compared to the other frequencies
composing the stimuli. When the discriminative frequency was higher
than the frequency content of the rest of the stimulus, responses were
faster for presentation to the RVF/LH; when the discriminative frequency
was lower than the frequency content of the rest of the stimulus, responses
were faster for presentation to the LVF/RH.

Young and Bion
(1981)

This study showed that accuracy on a face identification task was better
when the probe faces were presented to the LVF/RH.

RH autoencoder models with asymmetric connectivity patterns, and then to classify

these asymmetric encodings in separate, but identical, LH and RH feed-forward neural

networks trained on the classification task corresponding to the encoded images for that

dataset.

For each dataset, greyscale images were constructed for each task stimulus.

The autoencoders were trained via backpropagation of error (Rumelhart et al., 1986),

using batch processing and sum-squared error (SSE), to reproduce these greyscale

images from the input to the output. Once the autoencoders reached a pre-determined

performance level (SSE = 0.02, per output unit), training stopped. We used two types
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of regularization (weight decay (λ = 0.975) and adding noise (0.01%) to our training

images) to encourage good generalization. Each stimulus image was presented to the

trained autoencoder network, and the activation of the hidden units was recorded. These

encodings, which differed only due to the differences in connectivity structure between

LH and RH networks, were then used as inputs to a separate 3-layer feed-forward neural

network, which was trained to classify these encoded stimuli according to the behavioral

task given to human subjects in the original experiment. The number of hidden units was

different for each classification network (but identical between hemispheres), and was

chosen such that the classification task could be learned well.

For a single experiment, multiple “instances” of each LH and RH network were

constructed and trained; each “instance” differs only in the random sampling of its

connections.3 Performance was evaluated on each model individually, then performance

for all instances of each hemisphere were averaged. Average model error for each

model hemisphere was compared to average reaction time in the corresponding human

experiment, with both conceived as measures of difficulty or uncertainty in processing.

In order to examine how the different connectivity distributions affect spatial

frequency encoding, each stimulus image was presented to a trained autoencoder. Each

output image produced was examined for spatial frequency content, and a 2D spectrogram

across all images in the stimulus set was constructed. Each 2D spectrogram was translated

to a 1D spectrogram.4 Each spectrogram was compared to the spectrogram of the original

image. The difference in spectrograms was then compared across hemispheres, showing

for each frequency which hemisphere has encoded information closer to the original

3The number of model instances was chosen such that the total number of trials across all stimuli and
model instances matched that reported in the corresponding behavioral experiment, to match statistical
power of results. This makes sure that any asymmetry measured here is of an appropriate size that it could
account for the human data.

4Each 2D frequency ( fx, fy) was converted to a 1D frequency ( fr =
√

f 2
x + f 2

y ); for each unique value
of fr, all power/amplitude values were then averaged to create the 1D spectrogram.
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image than the other.

Table 3.2: Simulation results. Column 2: comparison of human and model behavioral
performance. Column 3: Spatial frequency processing difference between right (values
above zero) and left (values below zero) hemisphere networks.
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3.2.2 Results

Results are summarized in Table 3.2, showing that for 3 of the 4 tasks, the model

performance (column 2) showed the interaction or performance differences found in the

human behavioral measures (column 1). In addition, in all 4 tasks, the model shows

an interaction between frequency band and hemisphere (column 3): greater accuracy

in reproducing images for the RH networks (above zero-line) is focused in the lower

spatial frequencies (towards origin), while greater accuracy for the LH networks (below

zero-line) is focused in the higher spatial frequencies (away from origin).

This indicates that, somewhat counterintuitively, narrowly distributed connections

are biased relatively more towards LSF processing, and widely distributed connections

are biased relatively more towards HSF processing. We are investigating the cause of

this relationship in current work. Preliminary results indicate that average spacing be-

tween nearest-neighbors of input/output units connecting to a single hidden unit governs

this behavior. Specifically, when connection spread is small, constructive/destructive

interference patterns between LSF vs HSF gratings of different phases and orientations

occur: LSF gratings shows large variations in hidden unit activation based on particular

orientations and phases, while HSF gratings do not. This seems to allow for more specific

encoding of shapes and contours in LSF gratings, and thus a bias towards representing

LSF information.

Examining these results more closely, we found two places where our models did

not accurately reflect the human behavior. In our replication of (Kitterle et al., 1992),

while we did show the measured hemisphere × task interaction, the relative difficulty of

the two tasks did not match that in the human measures. This difficulty may depend on

different sensory transformations, or other issues. In fact, in subsequent work, we have

found this to be true in the modeling; changing the training dataset, or regularization

parameters, does not affect the hemisphere × task interaction, but does affect the relative
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difficulty of the two tasks. Therefore, we don’t think that this mismatch is an important

one to consider here.

We believe the second issue we found is more important, and more interesting.

Our models did not show a hemisphere × stimulus class interaction for the Christman et

al. (1991) study. We tested a few possible explanations for this. We varied the three base

frequencies that composed the stimuli; this affected which model hemisphere showed

better performance, but no reliable hemisphere × stimulus class interaction was found.

We tried larger images, to expand the range of spatial frequencies that could be encoded

and obtained similar results. Lastly, we trained the autoencoder on separate dataset, then

extracting hidden unit encodings on the task-relevant stimuli. Again, this did not show

any consistent interaction.

Using data from our developmental model, we discuss an alternative interpretation

of Christman et al. (1991)’s study in the Discussion section below.

3.3 Patchy connection networks may develop asymmet-

rically in humans, under normal visual development

The results above clearly suggest an association between narrowly distributed

connections and LSF processing, and widely distributed connections and HSF processing.

Here, we investigated whether a developmentally-inspired model can learn these connec-

tion patterns through experience. The model incorporates three observations/constraints:

1) The right hemisphere begins maturing earlier than the left; 2) early in development,

the input to the system is concentrated in the low spatial frequencies, due to low acuity in

infancy; and 3) synaptic connections are subject to a pruning process to remove weak or

ineffective connections.

This setup has strong parallels human visual development. Hellige (1993) has
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provided evidence that the RH begins maturing earlier than the LH. We know that

visual acuity changes rapidly in infants, such that visual acuity and sensitivity to high

frequencies increases over time. This means that the RH will mature while visual input

is more biased towards low frequencies, and the LH will mature while the visual input

is less biased. L. C. Katz and Callaway (1992) have shown that connections between

“patches” mature by strengthening connections consistent with visual input, and pruning

(removing) connections that are not. Thus, our goal is not only to try and corroborate our

previous findings, but to provide a plausible neurodevelopmental account of where both

anatomical and behavioral asymmetries come from.

3.3.1 Methods

We created two sets of autoencoder neural networks, each completely identical.

They each had the same connectivity pattern, consisting of 20 connections selected from

a circular 2D Gaussian distribution from the hidden units to the input and output units,

with a fixed number of connections from each hidden unit to the input and output layers.

The only difference between these sets of neural networks was that one was trained on

blurred, low-frequency-passed images (our RH networks) and the other was trained on

full-fidelity images (our LH networks), to simulate extreme differences in development.

As a first pass, we used a Gaussian kernel (σ=8px) to blur our images for the RH network.

Networks were trained using back propagation of error (batch mode, using the

SSE error criterion), to simulate the strengthening of connections through learning. To

simulate the pruning aspect of development, after every 10 epochs, we removed a constant

percentage of the weakest connections (13.4%), such that after 50 epochs exactly 50% of

the connections remained. At the end of training, each network had 50% reduction in its

original connections, such that on average, each hidden unit had 10 connections.
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3.3.2 Results

0 5 10 15
0

0.03

0.06

0.09

0.12

Orig: mean=3.94px

p
ro

p
o
rt

io
n
 o

f 
c
o
n
n
e
c
ti
o
n
s

0 5 10 15
0

0.03

0.06

0.09

0.12

[RH]: mean=3.76px

0 5 10 15
−0.013

−0.004

0.006

0.015

0.024

Pruning Accentuates:

0 5 10 15
0

0.03

0.06

0.09

0.12

Orig: mean=3.94px

p
ro

p
o
rt

io
n
 o

f 
c
o
n
n
e
c
ti
o
n
s

distance from center
0 5 10 15

0

0.03

0.06

0.09

0.12

[LH]: mean=4.07px

distance from center
0 5 10 15

−0.013

−0.004

0.006

0.015

0.024

Pruning Accentuates:

distance from center

Figure 3.3: Distribution of connections for networks trained on blurry/low-pass (RH;
top row) and full-fidelity (LH; bottom row) images, as well as the difference between
each of those distributions from the original distribution.

After training, the network trained on low-pass/blurry images (RH) biased the

original distribution towards shorter connections, while the network trained on full-

fidelity images (LH) biased the original distribution towards more distant connections

(see Figure 3.3). This corroborated the associations we saw in our first study, where a

smaller spread of connections favored storing information in LSFs, and where a wider

spread of connections favored storing information in HSFs. Analysis of the spectral

power differences between the networks also showed a similar bias as described in Table

3.2.

As described above in Section 3.2.2, we are examining the computational reasons

for this association in current work.
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3.4 Reprising the “Relative Frequency” Effect

Christman et al. (1991) showed that when a frequency grating alone distinguished

two stimulus classes, the effect of that grating depended on the frequency of that grating

relative to the other frequencies that made up those stimuli. When the distinguishing

grating was higher than the rest of the frequencies used in the stimuli, the stimulus

containing the distinguishing grating showed a LH advantage; when the distinguishing

grating was lower, there was a RH advantage. Ivry and Robertson’s propose that this

“relative frequency” effect is itself a computational mechanism: filters at different spatial

scales / frequency bands are weighted and summed based on the task; a top-down bias

to those weights (that differs between the hemispheres) is relative to the the frequencies

selected by those weights.

An alternate hypothesis is that the same filters that select the task-based frequency

range are themselves different between the hemispheres. Then, when those filters are

weighted and summed based on task demands, a bias that is dependent on that weighting

occurs. This alternate hypothesis is not possible in the DFF, where the filters represent

bottom-up processing in all conditions (low and high stimulus strength), and therefore

would predict hemispheric differences in every experiment. This alternate hypothesis

is possible with our model, however. We argued that long-range lateral connections are

only active during low stimulus strength, as found in the experiments detailed above.

In our case, different “filters” would be different cortical areas, each of which process

information at different spatial scales.

Some data exist that are consistent with our proposal. Tasks at different spatial

scales do engage different cortical areas (Hopf et al., 2006), consistent with our suggestion

that cortical areas can act as task-based “filters” of spatial scale / frequency. In addition,

there is reason to believe that homologous cortical areas between LH and RH would
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have different frequency biases relative to the spatial scale of that area. Data reviewed

from our developmental models suggest that small reductions (due to synaptic pruning)

in the average spread of long-range lateral connections biases processing towards LSFs.

Further experiments with our developmental model showed that, the greater the original

spread of connections, the lower the frequency at which the RH stopped showing an

advantage (the “cross-over point”, where RH and LH performance is similar). Thus, in

our proposal, homologous areas with larger spatial scales would have to have a larger

average spread of connections in order show a frequency bias relative to that spatial scale.

In fact, that’s exactly what’s found in the macaque monkey: areas higher in the visual

processing hierarchy show longer average connections, both in cortical distance, and

in the percentage of the visual field they span over (Amir et al., 1993). Our modeling

data also suggest that, given the small average spread found in early visual areas, little

or no frequency biases could develop there. This is consistent with the idea that visual

processing asymmetries are found beyond early sensory processing.

Thus, the failure of our model, representing a single cortical area, to account

for Christman et al. (1991)’s data may indicate that these data represent processing in

two different cortical areas, each selective for information at a particular spatial scale,

each with frequency processing biases relative to that spatial scale. Our autoencoder

model above represents a single cortical area; to model this, we would need multiple

autoencoder models, each with information at different spatial scales (possibly different

image resolutions) and with corresponding changes to the average connections spread

(greater for images of lower resolutions).
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3.5 General Discussion

Here we showed that an asymmetry in a specific type of intra-cortical connectivity

can account for local/global behavioral data, face processing data, and matches spatial

frequency asymmetries reported in the literature. This model provides a biologically

grounded implementation for these phenomena, and the analyses here showing consistent

frequency filtering differences in the model hemispheres are consistent with the current

algorithmic explanation for visual processing asymmetries via frequency filtering. These

frequency filtering differences are found at a post-sensory encoding stage, consistent

with the suggestions in the literature.

We have also implemented a plausible developmental scenario for the emergence

of this connectivity asymmetry, which uses only well-established principles (changes

in visual acuity over development and both strengthening and pruning of long-range

horizontal connections during development) and supported hypotheses (different time-

courses for RH and LH maturation).

Finally, we have suggested that our failure to model the results of Christman et al.

(1991) with a model of a single cortical area is not a failure of our model, but instead

suggests that the “relative frequency” effect in visual processing asymmetries is itself not

a mechanism in visual processing. We propose that this effect is the result of latent biases

within “higher” areas in the visual hierarchy that are established developmentally and

are relative to that area’s spatial scale of processing. The bias of an area affects visual

processing when the spatial scale of processing for a task matches that of the area, and

when stimulus strength is sufficiently weak to activate these intrinsic long-range lateral

connections.
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Chapter 4

A Developmental Model of

Hemispheric Asymmetries of Spatial

Frequencies1

4.1 Abstract

Lateralization touches virtually every function we think makes us human and inter-

acts fundamentally with development. Here we connect lateralized function to anatomical

asymmetries, and connect those anatomical asymmetries to temporal asymmetries in

development.

Our differential encoding (DE) model (Hsiao et al., 2013; Cipollini et al., 2012;

Cipollini & Cottrell, 2013a) shows that lateralization in visual processing of spatial

frequencies can be explained by a postulated asymmetry in the spatial spread of con-

nections within retinotopic visual cortex. Here, we present three new modeling results

supporting our previous conclusions. First, we show that our model results persist when

1This chapter will be published in the COGSCI 2014 conference proceedings (Cipollini & Cottrell,
2014)

51
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trained on natural images, warped to match physical distortions of V1, showing that

greater biological realism does not diminish our results. Second, we show that the

hypothesized anatomical asymmetry can emerge from normal development, due to 1) the

known temporal asymmetry in developmental pruning, coupled with 2) known acuity

changes. This results in the two hemispheres being trained with images of different

spatial frequency content. Third, results from this developmental model suggest that

the LH is not specialized for HSF processing; rather, the RH is specialized for LSF

processing to the detriment of HSF processing.

Keywords: Lateralization, local/global, high frequency, high spatial frequency,

low frequency, low spatial frequency, development, double filtering by frequency, differ-

ential encoding, visual processing, asymmetry

4.2 Introduction

Lateralization is an essential part of virtually every function that we believe

makes us human. Speaking, fine motor skills, spatial reasoning, emotion, reading, and

face perception are all functions with an uneven representation across most individual’s

cortical hemispheres, but with a consistent hemispheric distribution across the human

population.

Lateralization of visual processing, in particular, has long been established (see

Ivry and Robertson (1998) for a review). Subjects tend to respond more quickly or

accurately to to task-relevant low spatial frequency (LSF) information when presented

to left of fixation (which the right hemisphere (RH) has preferred access to) vs. to the

right of fixation (which the left hemisphere (LH) has preferred access to). The opposite

holds for task-relevant high spatial frequency (HSF) information. These results fit nicely

with LH lateralization for word reading (which contain a lot of HSF information) and
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RH lateralization for face perception (which contain important configural information

in LSFs). The more general inference is generally that the RH is specialized for LSF

processing, while the LH is specialized for HSF processing. We believe that understand-

ing mechanisms behind lateralization of spatial frequency (SF) processing may give

insight into word reading, face perception, and general mechanisms that may lead to

other lateralized functions.

Like lateralization, development is also key to understanding human cogni-

tion. Human development differs from that of any other primate (R. D. Martin, 1983;

D. Geschwind & Rakic, 2013), including extinct homo species such as Neanderthal

(Gunz, Neubauer, Maureille, & Hublin, 2010). Developmental disorders come with

a wide variety of cognitive impairments, including many involving atypical pattern of

lateralization and inter-hemispheric transfer.

How do development and learning interact with hemispheric lateralization of

visual processing? Several hypotheses exist. A few are based on data showing that

the right hemisphere develops earlier than the left (N. Geschwind & Galaburda, 1985;

Hellige, 1993). As Hellige (1993) noted, during that time, the retina is also developing,

during which acuity changes from predominantly LSF ranges to adult-like levels. Howard

and Reggia (2007) theorized that during this period, magnocellular afferents to visual

cortex enervate V2 in the RH, while later-developing parvocellular afferents innervate

V2 in the LH to a greater extent, leading to lateralization of spatial frequency processing.

Other approaches exist; Plaut and Behrmann (2011) showed that anatomical constraints

on wiring length, the differential projection onto the retina of words (central) and faces

(peripheral), and the left lateralization of language could lead to lateralization of faces to

the RH (Fusiform Face Area) and words to the LH (Visual Word Form Area).

In this paper, we show that the hypothesized asymmetry that leads to lateralization

emerges from a plausible interaction between asymmetry in the timing of connection
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pruning and visual acuity changes. We show this in a biologically plausible model under

“natural image” experience and with cortical distortions thought to exist in retinotopic

visual areas. Then, in order to compare the results of our developmental model to our

previous work, we also implemented a more biologically plausible version of our model,

also using “natural image” experience and the same cortical distortions.

4.3 The Differential Encoding (DE) Model

Our approach and model of lateralization of visual processing was initially a

response to the Double Filtering by Frequency (DFF) model by Ivry and Robertson (1998).

Following the lead of Sergent (1982), they argued that the hemispheres are generically

lateralized for SF processing across modalities, and proposed that lateralization of spatial

frequency processing plays a causal role in the local/global effects in hierarchical letter

stimuli and in other tasks with information at multiple spatial scales. However, their

connectionist implementation of their model simply assumed a spatial frequency bias

existed between the hemispheres, without any indication how such frequency biasing

could be neurally implemented and exist in each relevant modality.

Inspired by the finding that long-range lateral connections differed in their

spatial spread between left and right BA22 (Wernicke’s area and its RH homologue)

(R. A. Galuske et al., 2000), we hypothesized that the same asymmetry exists in visual

cortex. We then showed in a simple connectionist model how frequency filtering could

arise from such a connectivity asymmetry (Hsiao et al., 2013; Cipollini et al., 2012), and

could lead to lateralization in classical behavioral tasks (Hsiao et al., 2013; Cipollini &

Cottrell, 2013a). We also argued that, due to the dependence of lateralization on both

task and stimulus features, that long-range lateral connections are most likely involved,

as they are involved through stimulus enhancement via top-down attention (Li, Piech,
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& Gilbert, 2008; Piech, Li, Reeke, & Gilbert, 2013) as well as bottom-up processing

(H. A. Swadlow & Alonso, 2009).

Figure 4.1: Two (of 850) hidden units for each hemispheric model, each with 8 connec-
tions. In our simulations below, each hidden unit has 15 connections.

The differential encoding model is a three layer feed-forward autoencoder model

with sparse connectivity between the hidden layer and the input and output layers (Figure

4.1), where inputs and outputs are images. Each hidden unit has a 2D position in the

input/output space and a small, fixed number of connections. Connections for each

unit are sampled from a Gaussian distribution centered at the hidden unit’s input/output

location. The only difference between the LH and RH models is the standard deviation

(σ) parameter of the Gaussian distribution: σLH > σRH , such that the spatial spread of

connections is greater in the LH vs. the RH model. Note that this Gaussian PDF is used

to create connections between layers and thus is different from the Gaussian receptive

field functions used in some models of lateralization (e.g., Ivry and Robertson (1998);

Monaghan and Shillcock (2004)). In fact, the difference in connection spread in our

model hemispheres (more spread LH connections) are the opposite of theirs (e.g. more

spread RH connections).
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The model is trained using backpropagation of error (see Cipollini et al. (2012)

for detailed methods and training parameters). The training task is to reproduce the output

image from the input image through the sparse connectivity matrix described above. This

forces the images to be recoded in a manner dependent on the sparse connectivity matrix.

The hidden unit encoding represents the lateral interaction between nearby retinotopic

locations in cortex.

For LH and RH analysis, many networks instances are generated and trained, with

their results compiled and analyzed by hemisphere. After training, differences in spectral

content of the input and output images indicate lateralized differences in SF encoding

abilities (Hsiao et al., 2013; Cipollini et al., 2012) for detailed methods). Hidden unit

encodings are computed for images related to a human behavioral task, and are then

used as inputs to independent RH and LH classification networks. These classification

networks are trained (using the backpropagation of error algorithm; see Cipollini et al.

(2012) for detailed methods) on the same classification task as in the human behavioral

task. After training, network performance is summarized over all LH and RH network

instances and is then compared to the summary statistics for the human data.

4.4 The Developmental DE Model

A primary finding of our previous work is an association between connection

spread and spatial frequency processing, where a more spatially constrained connection

spread is biased for lower spatial frequency processing. We discovered this by querying

what image information is best learned when the connection distribution is varied. Here,

we explore the complementary approach: we query what connection distributions are

preferred when the spatial frequency content of training images is varied.

Human visual development is an example of this complementary approach. This
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is due to an interaction among the following three factors:

• Visual acuity / contrast sensitivity is initially poor and improves as the retina

develops (see P. Wang and Cottrell (2012) for a summary).

• Long-range lateral connections are profuse at birth, with die-off of presumably

unused connections and strengthening of the remaining connections, occurring

during early visual experience (L. C. Katz & Callaway, 1992).

• The RH begins maturing earlier than the LH (for reviews, see N. Geschwind and

Galaburda (1985); Hellige (1993, 2006)).

Figure 4.2: Maturation of long-range lateral connections between “patches” in the
developing cat visual cortex. Through visual experience, connections are pruned and
elaborated, while synapses are strengthened. Adapted from L. C. Katz and Callaway
(1992).

Because the RH begins maturing earlier, RH connections are pruned more during

blurrier, lower-frequency visual experience, while the LH connections are pruned more

when visual acuity is better. This is just the complementary mechanism we described

above.
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4.5 Methods

Here, we construct LH and RH autoencoder models similarly to our previous

work. Input images are 34x25 pixel images. Each model has 850 hidden units distributed

across the input/output space, with connections sampled from a Gaussian distribution

(σ = 10 pixels; see top row of Figure 4.3). Unlike in previous work, connections for LH

and RH hidden units are selected from the same Gaussian distribution, simulating initial

symmetry between the hemispheres.

Figure 4.3: Pruning results differ in the LH and RH models, despite the original
connection patterns being identical. This is due to differences in connection removal,
induced by different spatial frequency content in the training images.

There are four major differences in the training methods from our previous work2:

• Rather than training only on task-specific images (such as hierarchical letter stim-

2 In addition, weight decay was set to λ = 0.05, to accentuate differences between used and unused
weights.
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uli), we train on 250 natural image patches sampled randomly from the van Hateren

database (van Hateren & van der Schaaf, 1998)3. This simulates more accurately

the visual experienced gained during development.

• Each hidden unit has 30 connections to start–twice as many as previous models had–

and will eliminate synapses until each hidden unit has, on average, 15 input/output

connections (see Figure 4.3). This simulates initial connection proliferation before

maturation, followed by elimination during visual experience.

• LH and RH networks differ only in the spectral content of the images they’re

trained on. Both networks are trained on low-pass images where the image quality

improves over time (i.e. the cutoff frequency increases over time), but on average

the image quality is higher for the LH network than the RH network (i.e. on

average, the cutoff frequency is at a higher frequency for the LH network). The

different schedules of training inputs are detailed in Figure 4.4. This simulates the

interaction between changes in visual acuity and hemispheric development.

• In order to simulate the cortical expansion of the fovea, we trained on log-polar

version of our original images. The log-polar transform is thought to closely

represent retinotopic visual cortex that we aim to simulate (Schwartz, 1985).

After both networks are trained, we compile the empirical connectivity distribu-

tion of the unpruned connections across all hidden units within LH and RH models. We

compare each distribution with the original connection distribution (before pruning) to

see how training on different SF content affected pruning.

In order to compare our developmental model to our previous work, we trained

our previous model with the same 250 natural image patches and with 15 connections

3Greater numbers of image patches were tried and made no qualitative difference in the results, but did
increase training time.
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Figure 4.4: Low-pass filtering schedule of image training. During each iteration, the
model was trained on all 250 natural images for 7 epochs. Before moving on to the next
iteration, connections containing the smallest (0.5)

1
6 % weight values were pruned, such

that after the 6 iterations, 50% total connections were pruned. After these 6 training
/ pruning iterations, both models were trained on full-fidelity natural images until
reaching an equal error criterion (summed over all input images and pixels), simulating
equal visual experience. Note that hierarchical letter stimuli are pictured here as they
show variations in spatial frequency content better than the natural images that were
actually used throughout the simulations here.

per hidden unit, just like the developmental model after pruning occurs.4. We verified

that this models shows qualitatively similar results in both frequency processing and

behavioral modeling as previously reported (Hsiao et al., 2013), and thus was appropriate

for direct comparison to this developmental model.

4.6 Results

For our network following our previous work, but trained on natural images, we

found the same spatial frequency differences as previously reported. We also tested the

same network (without retraining) on target detection of letters within hierarchical letter

stimuli (Sergent, 1982). These networks showed the same hemisphere × target level

4σRH = 4 pixels, σLH = 10 pixels, weight decay λ = 0.025
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interaction as previously found (see Figure 4.5)5.

Figure 4.5: Behavioral results for our previous model, but with autoencoders trained on
natural images rather than hierarchical letter stimuli. These results are more consistent
with the overall pattern of behavioral results found in Sergent (1982). They are also
more consistent across the 6 groupings of [H,L,T,F ] into groupings of 2 targets and 2
distractors. Note that we did not test our developmental model on this behavioral task.

For our developmental networks, while we used a complementary approach to

the problem, we found the same association between spatial spread of connections and

spatial frequency processing: networks trained and pruned under low-frequency images

kept connections with a relatively smaller spatial spread than networks trained and pruned

on full-fidelity images.

4.6.1 Connection Distributions

In these developmental networks, connection distributions can only differ from

variations in visual experience that lead to variations in what connections are pruned.

These networks show a difference pattern very similar to our previous model, which

had LH and RH connections sampled from Gaussians with different standard deviations.

5In fact, results on this network were more robust to which letters were chosen as targets than in
previous work, likely due to a reduction in overfitting of the network due to having a larger training set and
more robust regularization procedures
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Figure 4.6: RH and LH connection distributions from the developmental model, and
their difference. Here, warm colors are positive, cold colors are negative, and green is
zero. To compile the RH and LH distributions, all hidden units were placed at the center
of the figure, and a histogram of connections was created. Note in the difference plot
the central positive values indicating more short connections in the RH model, and the
surrounding blue ring indicating more spread connections in the LH model.

This shows that spatial frequency input differences can drive connectivity differences

qualitatively similar to those we had previously postulated, and suggests that these

connectivity differences can arise through typical human visual development.

Despite the similar appearance of these connection distributions, the size of the

connectivity spread was overall smaller in our developmental model (see Figure 4.7).

In our previous work, LH connections were 30% farther from their nearest connecting

neighbor than RH connections on average; here, this number dropped to 5%. We note

that re-running the developmental model with a greater difference in the spatial frequency

content of the input images can drive connection distance differences equal or greater to

the 30% postulated in our previous study.

4.6.2 Spatial Frequency Content

The developmental model also showed spatial frequency differences similar in

shape, but attenuated, as compared to those found in our previous work (see Figure 4.8).

We found that this was related to the smaller average connection spread reported above;



63

Figure 4.7: RH−LH connection distribution differences between our previous model
trained on natural images (left) and our developmental model (right). Warm colors show
connections with greater representations in the RH, cool in the LH.

when the developmental model was re-run on a greater difference in frequency content,

the spatial frequency differences met or exceeded those reported in our previous work.

Figure 4.8: 1D spatial frequencies for our previous model trained on natural images
(left) and our developmental model (right). Note the similar character of both, but atten-
uated in this developmental scenario. Note also that all spatial frequency differences,
besides those very close to the x-axis crossing point, are statistically significant.

4.6.3 Connection Changes

In the literature we’ve reviewed, it has been consistently suggested that the RH

is specialized for low spatial frequency (LSF) processing, and the LH for high spatial

frequency (HSF) processing. However, the performance of each hemisphere is measured
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relative to the other. We don’t have a baseline to compare each hemisphere’s abilities to,

which would be necessary to determine whether both hemispheres are biased, or whether

one hemisphere is biased and the other is not.

We can examine this directly issue directly in our developmental model. In Figure

4.9, the RH (top row) and LH (bottom row) changes over training are shown. We can see

that the RH and LH changed similarly, but that the LH network is simply less changed

from the original distribution than the right.

This suggests the novel hypothesis that, in fact, the RH is biased towards LSF

information at the cost of HSF information, while the LH is essentially similarly, but

less biased. Under this hypothesis, the LH only looks specialized for HSF information

because it is being compared to the RH, which has sacrificed HSF processing more than

the LH has (for the benefit of better LSF processing). We are currently developing a

model to examine this hypothesis in greater detail.

Figure 4.9: These are histograms of the distance from each connection to the hidden unit
location. RH and LH networks begin with the same distribution. Each model hemisphere
changes its connection distribution via connection pruning during its (differing) visual
experience. The difference between beginning and ending distributions is pictured on
the right. Note the similar character of the differences, with the LH network essentially
being an attenuated version of the RH network.
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4.7 General Discussion

Here, we described a developmental model of lateralization in visual processing,

where improvements in visual acuity interacts the differential timing of connection

pruning in left and right hemispheres. In this developmental model, we fixed spatial

frequency content and allowing connections to vary via connection pruning during

learning. This led to an association between a smaller connection spread, enhanced low

spatial frequency processing, and attenuated high spatial frequency processing.

This association is consistent with those found from our adult model, where

connection spread was fixed and spatial frequency processing measured. These results

suggests that the assumptions of our adult model could plausibly arise during normal

human visual development.

In addition to the above findings, we also saw the first indication that the RH may

be specialized for LSF processing at the detriment of HSF processing, while the LH is

similarly, but less strongly, biased in how it processes and represents spatial frequency

content.

In the future, we plan to follow up on two issues here, and extend this work to

central vision:

• We did not test the encodings from our developmental model in any behavioral

paradigm. Our first order of business is to verify that the developmental model

also shows the behavioral lateralization seen in humans and replicated by other

versions of our model.

• We plan to implement a new model to systematically explore how spatial frequency

processing relates to spatial spread of connections. This would be a simple 2-layer

receptive field model–one output neuron with a sparse set of input connections.

We will use this model to map out how spatial spread affects frequency tuning
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preferences of the output neuron.

• We also hope to explore how interhemispheric connectivity affects the develop-

ment of lateralization and the interaction between task, stimuli, and measures of

functional lateralization. Specifically, we’re interested to embed these connectivity

differences in a model with inter-hemispheric interactions, so that we could try and

model data for central fixation in the same behavioral paradigm modeled above

(Sergent, 1982).
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Chapter 5

Uniquely human developmental timing

may drive interhemispheric coupling

and cerebral lateralization1

5.1 Abstract

Cerebral lateralization is intertwined with virtually every cognitive function

that we think makes us human, yet a clear dichotomy in a leading theory about its

origins remains unexplained. Lateralized processing has been suggested to be due

to independent development of local neural circuits (Ringo et al., 1994; Rilling &

Insel, 1999a), but the complementary nature of these circuits, evidence of extremely

strong interhemispheric functional coupling, and the similar developmental trajectories

between lateralization and interhemispheric communication seem to suggest that robust

interhemispheric interactions are key to the lateralized human brain.

Here, I review literature and present modeling evidence suggesting that: (1)

1An early version of this chapter was published in the COGSCI 2013 conference proceedings (Cipollini
& Cottrell, 2013b)

67
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Current evidence that conduction delay magnitude leads to hemispheric independence is

overstated, misinterpreted, and inconsistent with experimental data on the development

of lateralization and the corpus callosum. (2) Variability in conduction delays, present

in early development due to a preponderance of thin, unmyelinated white matter fibers,

bias developing brains towards the use of shorter, local connections; this effect can drive

hemispheric independence. (3) Lateralization does not seem to spontaneously emerge

from this model, nor is it induced by providing lateralized inputs or outputs. I show that

results (1) and (2) are consistent with general findings from the literature encompassing

both development and adulthood.

I conclude by arguing that effects of conduction delay variability early in develop-

ment is greatest in humans, due to a trade-off between maximizing adult brain size while

minimizing brain size at birth. This suggests that, counter to previous proposals, the

physiology of interhemispheric communication in humans may be more than function of

brain size shared across mammals, but instead related to the uniquely human problem of

birthing a large-brained fetus through a narrow bipedal pelvis.

5.2 Introduction

A single concept, supported prominently by a single paper, has dominated thought

as to the origins of cerebral lateralization and effect of conduction delays in the cognitive

science literature. The modeling work of Ringo et al. (1994) has been extensively (and in

many cases exclusively) cited to support the notion that long conduction delays, due to the

large human brain size, enable cerebral lateralization. This “delay magnitude hypothesis”

has intuitive appeal, as it supports another long-held notion: that some combination of

large brains and functional lateralization has made us human.

There is no denying the importance of functional lateralization in human cognitive
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abilities; we are functionally lateralized in virtually all cognitive functions that we think

are special to our species, including language, high-precision manual use of tools, spatial

processing abilities, even emotional processing (Gazzaniga, 2000; Craig, 2005). There is

also no denying, however, that the lateralized hemispheres are also tightly coupled–both

in their complementary abilities (Gazzaniga, 2000; Hellige, 2006) as well as their online

functional coupling (Stark et al., 2008).

The relationship between the suggested greater hemispheric independence in

humans and the hemispheres’ complementary, interacting abilities is simply not captured

by the delay magnitude hypothesis. Nor does the hypothesis account for the anatomical

and functional asymmetries that appear throughout the animal kingdom in species of all

brain sizes (Rogers & Andrew, 2002; Rogers, 2009). It cannot speak to data showing

that interhemispheric coupling and functional lateralization increase during development

(e.g. Benninger et al. (1984); Petitto et al. (2012); Musacchia et al. (2013)), let alone the

fact that that happens while fiber length increases (Lewis & Elman, 2008). Whether or

not the delay magnitude hypothesis is correct, it certainly is not complete.

Imagine throwing a ball or shooting an arrow. With greater distance, hitting the

target gets harder–not because it is harder to compute the angle needed to hit the target;

the equation remains the same–but rather that any variability, any small error in aim or

effect of wind is amplified by the distance to the target. This distance-dependent variance

is what drives the greater challenge of coordinating at a distance.

Traditionally, the propagation of action potentials along axons has been thought

to be extremely reliable. Though this is true in some axons (H. Swadlow, 2000), it is

not true for thin, unmyelinated axons, where many varieties of molecular stochasticity

and noise cause trial-to-trial distance-dependent variability (Faisal, Selen, & Wolpert,

2008; S. S. H. Wang, 2008). As learning in spiking neurons is highly dependent on

precise timing of pre- and post-synaptic spikes, it seems likely that distance-dependence
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variability will slow learning and favor learning in more reliable fibers.

Here, I show evidence that functional lateralization is not caused by the magnitude

of conduction delays, nor by hemispheric independence. Instead, I show that variability

in the magnitude of conduction delay can cause hemispheric independence, and that

this independence tends to delay the development of perceptual lateralization, while

having a more complex pattern on lateralized motor outputs. I argue that this effect,

driven by small diameter, unmyelinated axons that are prevalent through early post-natal

development, is likely strongest in humans.

This paper proceeds in four parts. First I will review literature, including the

original modeling of Ringo et al. (1994), that strongly question the delay magnitude hy-

pothesis. Then I’ll show results from four computational experiments, using a derivative

of that model developed by Lewis and Elman (2008). In Experiments 1 and 2, I show

that variability in delay magnitude can cause independence between the hemispheres.

In Experiment 3, I show that reduction of noise over development enables a shift from

intrahemispheric to interhemispheric circuits. In Experiment 4, I show how the model

can be used to examine how independence might affect lateralization, with preliminary

results showing no relationship. I will summarizing what these results say about human

development of white matter connectivity and lateralization. I will then conclude by

arguing that a unique set of circumstances cause conduction delay variability to be most

severe for humans, suggesting a mechanism for what makes human lateralization unique

in its strength and importance to our cognitive abilities.

5.2.1 The failure of conduction delay magnitude

Axons of the corpus callosum are especially long in large-brained mammals

such as humans, due to their need to traverse through a large, highly gyrified brain to

interconnect the two cerebral hemisphere. Because the average conduction velocity of
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axons does not sufficiently compensate for the additional axon lengths when compared

to smaller-brained animals, the resulting interhemispheric transmission delay over the

majority of callosal axons is longer in large-brained species (Ringo et al., 1994; Olivares

et al., 2001; Aboitiz & Montiel, 2003). The delay magnitude hypothesis postulates that

this increased delay causes less interhemispheric collaboration and therefore enables

cerebral asymmetry.

While the anatomy and physiology of callosal axons is well established, their

seemingly intuitive effects on interhemispheric collaboration is supported by a single

model in a single paper Ringo et al. (1994). Here, I argue against the delay magnitude

hypothesis in two parts. First, I present 4 results from the literature that are inconsistent

with the delay magnitude hypothesis. Then I show that the data reported from the model

itself do not support the hypothesis either.

Increased interhemispheric collaboration is associated with an increase in slow

fibers

Larger corpus callosum size is associated with less lateralization. This is true for

regions of the corpus callosum, as well as the corpus callosum as a whole. The midbody

of the callosum, which carries fibers to and from motor cortex, is larger for individuals

with less lateralization in handedness (Witelson, 1989; Luders et al., 2010). Callosal

cross-sectional area is proportionally larger for left-handers (Witelson, 1985), who show

less functional lateralization than right-handers. Within humans, larger corpus callosum

size is also associated with a larger number of thin fibers, not with the thickness of fibers

(Aboitiz et al., 1992).

These two observations associate less lateralization with a greater number of thin,

slow fibers–just the opposite of what the delay magnitude hypothesis would predict.
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Homotopic areas show functional coupling

The corpus callosum largely connects corresponding (homotopic) areas between

left and right cerebral hemispheres. Thus, according to the delay magnitude hypothesis,

homotopic areas connected with slow, thin fibers (Aboitiz & Montiel, 2003) should show

weak functional connectivity.

In fact, this is not the case at all. For example, when examining interhemispheric

correlations through resting-state fMRI, Stark et al. (2008) found very strong interhemi-

spheric correlations between association areas. Reduced interhemispheric coherence

(measured with EEG) at locations away from primary sensory/motor cortices has been

measured in mental disabilities or diseases, such as dyslexia (Dhar, Been, Minderaa, &

Althaus, 2010) and schizophrenia (Hoptman et al., 2012).

Hellige (2006) points out that functional specializations tend to be complemen-

tary. For example, visual processing of the left hemisphere seems biased towards high

frequency processing, while the right hemisphere seems biased towards low-frequency

processing (Sergent, 1982; Ivry & Robertson, 1998). If there is less interhemispheric

integration due to more independent processing, then why would the two hemispheres

show any type of relationship at all? The delay magnitude hypothesis offers no answer.

Longer delays may support coordination

The corpus callosum in larger brains doesn’t simply have longer conduction

delays; it also has a broader range of conduction delays (Caminiti, Ghaziri, Galuske,

Hof, & Innocenti, 2009). Innocenti (2011) reviews modeling data that a broader range of

conduction delays supports a broader range of oscillations across the corpus callosum

(Caminiti et al., 2009), and that a broader range of oscillations in turn may increase the

stability of those oscillations (Roberts & Robinson, 2008). The current belief is that these

oscillations are necessary for binding of information between two distant cortical areas
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(Fries, 2005); stabilization of interhemispheric oscillations would presumably enhance

interhemispheric communication. Thus, longer delays may be associated with improved

ability to coordinate interhemispheric integration, rather than any reduction as predicted

by the delay magnitude hypothesis.

The delay magnitude hypothesis fails to explain development.

The delay magnitude hypothesis only addresses mature, adult brains. There

are a number of developmental phenomena that clearly are inconsistent with the delay

magnitude hypothesis.

First and foremost, both lateralization and interhemispheric communication in-

crease during development (e.g. Benninger et al. (1984); Petitto et al. (2012); Musacchia

et al. (2013)). This is in direct conflict with the delay magnitude hypothesis, which states

that decreased interhemispheric communication should lead to greater lateralization.

Additionally, delay magnitude changes over time. Lewis and Elman (2008) used

a version of Ringo et al. (1994)’s model to show that, the steeper the developmental brain

growth curve, the more detrimental interhemispheric connections are to learning.2 As

their model “matured”, even though the magnitude of delays were longer, because they

were more stable, they promoted interhemispheric collaboration.

Thus, interhemispheric collaboration develops at the same time as lateralization

and delay stability improves interhemispheric collaboration. The former is inconsistent

with the delay magnitude hypothesis; the latter is unaccounted for.

Delays likely matter less than has been previously stated

There are a number of reasons to question the Ringo et al. (1994) results–and

their interpretation within the literature–which I detail here.
2This is due to the fact that, as brain size changes more quickly, the conduction delays change more as

well, and those larger changes are more detrimental to learning.
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Figure 5.1: (a) The model architecture of Ringo et al. (1994). Information flows from
bottom to top; left model hemisphere is to the left, and right model hemisphere is to
the right. Arrows represent full connections between pre- and post-synaptic units. All
delays are 1 time-step, except the interhemispheric (“callosal”) connections, whose
delay were varied across conditions. Note the shared output nodes, which allow an
(unintended) path for fast interhemispheric coordination independent of the “callosal”
connections.

(b) The model architecture of Lewis and Elman (2008) simplifies the structure
and splits the inputs and outputs, allowing input and output pattern associations to
differentiate between optional and obligatory interhemispheric integration.

The model failed to fully control interhemispheric transfer Although the authors

aimed to separate interhemispheric communication through long conduction delays,

their model setup failed to do so. In addition to their “callosal” connections that were

varied with short and long delays, their model also had converging connections from the

hemispheres to a shared bank of output nodes, whose delays were always short (one time-

step; see Figure 5.1a). Due to the use of the backpropagation in time learning algorithm,

error is calculated at the shared output nodes and propagated back through to the input

through the intrahemispheric connections. Thus, even if the model was re-trained

without any “callosal” connections, the hemispheres would still show interhemispheric
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dependence; one hemisphere would not be able to complete the task without the other3.

A second way in which Ringo et al. (1994) failed to control interhemispheric

transfer is in their input-output associations. Because all input and output patterns were

the same to each hemisphere, interhemispheric communication was never necessary.

Each hemisphere received exactly the same input, and so could independently produce

the shared output. In order to characterize how interhemispheric transfer happens when

necessary, the need for interhemispheric transfer must be controlled.

Both of these issues were addressed by Lewis and Elman (2008). Interhemispheric

transfer was controlled by simply splitting the output nodes into two separate banks,

as depicted in Figure 5.1b. Interhemispheric dependence was controlled by splitting

the input nodes, then controlling the training task to introduce patterns that contain

output values that cannot correctly be determined without information from the other

hemisphere (“inter-” patterns; Figure 5.4b), as opposed to that could be processed without

any information from the opposite hemisphere (“intra” patterns; Figure 5.4a).

To control for both of these issues, all modeling work in this paper uses a similar

split-output architecture to Lewis and Elman (2008)’s model, with input and output

pattern association that differentiates between optional and obligatory interhemispheric

transfer. See Section 5.3.1 for more details on modeling methods used in this paper.

The results of the paper are misunderstood and misinterpreted. Citations to this

paper are often made to support the notion that functional lateralization is inevitable,

given the human brain size. This is a misrepresentation of the Ringo et al. results. In the

paper, the authors only claim that lateralization at short settling times is caused by long

delays. Tasks that allow “multiple passes” across the callosum were interpreted to show

indistinguishable results across delays.

3I verified this through simulations using a reimplementation of their model.
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Figure 5.2: (a) Original data from Ringo et al. (1994), showing performance of
networks after lesioning interhemispheric fibers, for two networks with different
interhemispheric delays (1 time-step vs. 10 time-steps). Different networks were
required to process across a range of times (x-axis; 15-75 time-steps), while they
were trained to output binary strings that were associated with particular input binary
strings. After training, “callosal” connections were lesioned, and network performance
was measured. The network with the shorter interhemispheric delays (D = 1; empty
triangles) shows poorer performance on networks running for fewer time-steps
(x-axis=15-30 time-steps); this was interpreted as indicating greater interhemispheric
interaction.

(b) We should expect a network with delay=1 and delay=10 to have a differ-
ence of 9 time-steps to the onset of hemispheric interaction. I shifted the D = 1 curve by
9 time-steps later (right on the x-axis) to allow us to visualize any qualitative difference
in the interhemispheric interaction outside of this difference in onset. The overlap of
the curves suggest that there is no other variation in interhemispheric communication
besides this simple static delay.

Besides these citations showing misunderstandings of the results, the author

interpretations of the data were not fully correct either. The authors seem to believe that

interhemispheric interactions are suppressed until around 35 time-steps in the model–the

point at which performance reaches chance for both networks (Figure 5.2a). In fact, the

original results do not show any suppression of interhemispheric transfer; the hemisphere

either operate independently or not at all. To show this, I align the results from the two

models to account for the difference in timing (9 time-steps; see Figure 5.2b). When I do
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so, the results from the two models are indistinguishable, showing that the only change

in interhemispheric interactions is a brief, static delay in onset of interhemispheric

communication, rather than any long delay or change (qualitative or quantitative) in

interhemispheric interactions. Besides the static delay in the onset of communication,

the models show precisely the same level of interhemispheric coordination.

In addition, the idea of “multiple passes” misunderstands the inner workings of

the model. They say “The network not allowed sufficient time for multiple transfers

of activations (the network with slow interhemispheric transmission trained with faster

output times) ends up with two hemispheres operating fairly independently.“ (Ringo et al.,

1994; p 340). The hemispheres will operate fully independently for the delay amount, then

fully dependently after that. There are no “passes” in the model, as information is sent

continuously and predictively. For example, within the network with interhemispheric

delay of 10 time-steps, at t = 1 the interhemispheric nodes send activation across the

corpus callosum that is useful for the other hemisphere to try and solve the task at t = 11

when that information arrives. If information were traded as “passes”, then there would

be lulls in interhemispheric communication during each pass. This again points out that

the models are fully independent for the transfer time of a single pass (1 or 10 time-steps),

then collaborate to precisely the same level after that.

A third way that the authors overstep the model results is in their suggestion

that processing that must be faster than the interhemispheric transfer time, such as

phoneme processing, must be done independently in the two hemispheres. Much like the

“passes” idea, their idea does not take into account the predictive abilities of neural coding.

The processing must be fast and unpredictable in order for slower interhemispheric

communication to be rendered irrelevant. If the processing is fast but predictable, the

other hemisphere can send predictions about future time-steps that will arrive to the

other hemisphere at the time needed to co-process a bilateral stimulus. This is how the
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model shows precisely the same level of interhemispheric communication, even with

long delays.

The experimental setup of the model confounds the effect of delays and pre-

dictability. The network starts at t = 1 with no meaningful activation, and so the stimulus

is fully unpredicted and no predictive signal is available to overcome the delay. It is at

t = 10 that the predictive signal (sent at t = 1 arrives, and interhemispheric effects can be

seen.

It is worth noting that this effect of unpredictability is widespread in visual per-

ception experiments, where stimuli are presented without context in order to make them

unpredictable. This will favor functional connections that don’t depend on prediction as

compared to if the stimulus was predictable from spatial context (like a scene), tempo-

ral priming, or other regularities. This may contribute to the overwhelming sense that

visual processing is a hierarchical feed-forward system–our experiments put the neural

network in situations where predictive coding cannot shape the neural response, and so

an impoverished neural interaction is seen.

The relevance of the paper is often misunderstood and misinterpreted The key

quantities that affect the onset of interhemispheric collaboration are the difference in

onset of these interactions and predictability. Because of this, it is important to note

that the model clearly exaggerates this difference (10x longer for interhemispheric vs.

intrahemispheric communication). To determine the relevance of the model, a more

precise assessment of intra- and interhemispheric delays must be made. Though the exact

time it takes for information to be moved between the hemispheres is unknown, we do

have reasons to think that even for fast, unpredictable processing, conduction delays may

not be a barrier to interhemispheric collaboration.

Callosal connections between areas are not of a single delay, but instead form a



79

distribution of delays (see Figure 5.3). Onset of activity may be mediated by the fastest

callosal fibers–which we know vary with brain size (Olivares et al., 2001; S. S. H. Wang,

2008) and keep the minimum delay close to 2 - 4 milliseconds (Innocenti, 2011). In

other words, the onset of interhemispheric communication could be as short as 2 - 4

milliseconds–on the time-scale of other time delays within the brain (such as the amount

of time for an excitatory post-synaptic potential to be integrated, and the time for renor-

malization of the membrane potential to occur, the time for long-range lateral connections

to propagate action potentials). These delays may interact with conduction delays, and

may smooth out many of these effects on the millisecond-level. Finally, intrahemispheric

connections have their own distributions (Innocenti, Vercelli, & Caminiti, 2013) and

distances (Lewis, Theilmann, Sereno, & Townsend, 2009; Markov et al., 2013), so intra-

hemispheric connections cannot be considered as a homogenous group whose average

delay may be faster (or not) than intrahemispheric fibers, but whose fastest delay may be

on the same time-scale. Taken together, it’s clear that we don’t know enough about the

delay distributions (and their functional roles) across the entire brain to make the claim

that fast, unpredictable processing is affected by the average callosal delay time.

5.2.2 My hypothesis: conduction delay variability affects long-distance

communication

The delay magnitude hypothesis fails to address how developmental changes in

white matter connectivity lead to the adult state. It also fails to explain how homotopic

areas could be both more independent and complementary in function. The model

implemented to support the delay magnitude hypothesis fails to support the hypothesis,

as the model hemispheres communicate just as robustly with delays in the model–just

with a delay to the onset of that communication that is small in real systems and, in real

systems and real scenarios, may be overcome through a number of mechanisms. Lastly,
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the delay magnitude hypothesis never actually tests for a causal relationship between

delay magnitude and lateralization; it only assumes one.

From a computational perspective, one mechanism likely to cause reduced com-

munication is not delay magnitude, which can be overcome through prediction, but

instead delay variability. If the reliability of connections were compromised, then Heb-

bian learning rules that use spike timing to strengthen and weaken synapses would likely

favor more reliable information sources, due to the dependence of potentiation strength

on precise timing. This is similar to Bayesian models of integrating information from

multiple information sources, where the relative weights from the two sources are in-

versely related to their variance–less reliable sources are given lower weights (Battaglia,

Jacobs, & Aslin, 2003).

Surprisingly, there are very good reasons to believe that delay reliability is an

issue in the brain. (Faisal et al., 2008) review a number of mechanisms that cause

unreliability in conduction delays. Increased variability of conduction delay is associated

with a number of biophysical properties, such as smaller soma size (Faisal, White, &

Laughlin, 2005), lower spiking rates (Schneidman, Freedman, & Segev, 1998; van

Rossum, O’Brien, & Smith, 2003), spontaneous spike generation in unmyelinated axons

with diameter < 0.3µm (Faisal et al., 2005), channel noise along unmyelinated axons

with diameter < 0.5µm (Faisal & Laughlin, 2007), and history-dependent spiking in

unmyelinated axons.

Interestingly, in all cases increased variability is related to soma and axon size–

neurons with smaller bodies tend to have smaller axon diameters (Faisal & Laughlin,

2007), tend to have lower, modulatory drive (Sherman & Guillery, 1998), and are much

more likely to be unmyelinated. Therefore all factors above converge to relate variability

to a small absolute projection neuron size. In adults, these phenomena have been observed

in the cerebellum (as reviewed by S. S. H. Wang (2008)), where tiny granule cells project
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thin, unmyelinated fibers to Purkinje cells. These small granule cells have such a weak

drive that on average one Purkinje cell connects with 200,000 granule cells. This system

shows up to 20% variability in spike timing along the granule cell axons. There are no

reports in the literature of variability in axons within the cerebral cortex–is there any

reason to think there might be?

Here, I hypothesize that small axon size may be particularly important in the

cerebral cortex during early development. In the corpus callosum, high-resolution

electron microscope data of cat (Berbel & Innocenti, 1988) and macaque (LaMantia &

Rakic, 1990b) show that the preponderance of fibers pre- and post-natally are thin and

unmyelinated. Axon diameters increase over development as the overall brain volume

and callosal volume increase, and fibers myelinate over time (see Figure 5.3). Therefore,

pre-natally and during development one might expect a bias for more local connectivity

than long distance connectivity, with long-distance connectivity coming online as white

matter fibers mature. In humans, recent functional connectivity evidence suggests that

this is the case, with an early bias for shorter-range (Kelly et al., 2009; Uddin, Supekar,

& Menon, 2010) and thicker, earlier myelinated early sensory-motor fibers (Fransson,

den, Blennow, & Lagercrantz, 2011).

There are also good reasons to think that small axon size may be particularly

important to lateralization. Lateralized functions are often located in association areas,

where callosal fibers are thinnest, least likely to be myelinated, and mature the latest

(Aboitiz & Montiel, 2003). Lateralization also tends to develop over time, suggesting an

interaction between delay variability and lateralization. Finally, there is evidence that

the development of lateralization interacts with the development of the corpus callosum.

Callosal fibers are some of the longest connections in the brain (Lewis et al., 2009), and

therefore would be some of the most unreliable fibers during development.

Therefore, I suggest that early in development the hemispheres should be rela-
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Figure 5.3: Pre-natal (E58: post-conception day 58) and post-natal (P26 and P150:
post-birth days 25 and 150, respectively) axon diameter distributions in the developing
cat corpus callosum (Berbel & Innocenti, 1988). Unmyelinated fibers are indicated
by white bars, myelinated fibers indicated by black bars. Note the increasing mean
axon diameter and percentage of fibers myelinated with age. Arrow indicates 0.3µm,
approximately corresponding to 0.5µm before tissue processing for imaging, the width
at which axon.

tively independent, due to greater delay variability on long interhemispheric fibers as

compared to more local intrahemispheric circuits. As delay variability decreases with

maturation, interhemispheric collaboration should increase. Finally, these changes should

interact with the development of lateralization. I test these hypotheses over a set of four

experiments. In Experiments 1 and 2, I test whether delay variability can cause a bias

for more local circuits and greater hemispheric independence. In Experiment 3, I test

whether decreases in delay variability increases the contribution made by long-distance

connections. Finally, in Experiment 4, I explore how delay variability interacts with

lateralization.
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5.3 Experiment 1: Timing variability biases learning to-

wards local circuits

This experiment aims to test the hypothesis that timing variability is detrimental

to interhemispheric communication, and that such variability biases learning towards use

of more local circuits.

5.3.1 Methods

Note that code for all experiments, with instructions for reproducing the published

results and figures, is freely available online4.

Model Setup

I implement a version of Lewis and Elman (2008)’s recurrent neural network

model (Figure 5.1b), itself a modified version of Ringo et al. (1994)’s neural network

model (Figure 5.1a). The network runs for a fixed number of time-steps (30 in this

experiment5), with an input presented for the first 6 time-steps and an output measured

at the last time-step. All connections carry a delay; in all simulations cited and imple-

mented, intrahemispheric delays are set to 1 time-step (interhemispheric delays vary by

simulation). Each hemisphere consists of 5 input units, fully connected to 15 hidden

units. Similar to Ringo et al. (1994) and Lewis and Elman (2008), all units are rate-coded

leaky-integrator units6. The hidden units have full recurrent self-connections, as well as

4https://github.com/bcipolli/NoisyCC
5As shown in Figure 5.2, results do not vary with total network run-time as long as the network has

sufficient total time for interhemispheric communication to occur. Further data containing variation in total
network run-time are are collected in Experiment 2.

6This is a plausible framework for studying interhemispheric interactions: asymmetries are linked to
higher-order cortical areas (Sergent, 1982; Gazzaniga, 2000; Schenker, Sherwood, Hof, & Semendeferi,
2007) which tend to interconnect over the corpus callosum using slow fibers (Aboitiz & Montiel, 2003)
that are suggested to use rate-coding, rather than spike-time coding employed by thicker, faster fibers
(S. S. H. Wang, 2008).

https://github.com/bcipolli/NoisyCC
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full feed-forward connections to 5 output units. 3 hidden units from each hemisphere

connect fully and reciprocally to each other as a model “corpus callosum”; these were

the only shared connections between the hemispheres7. For all simulations, only these

interhemispheric connections are manipulated.

I operationalize variability in conduction delays as Gaussian noise of the activity

(instantaneous firing rate) transmitted over fixed (reliable) delays. Noise is computed on a

per-synapse, per time-step basis. The amount of noise is determined by the total delay on

that connection (as variability in spike time is a function of connection length (Faisal et

al., 2008; S. S. H. Wang, 2008)) and the current activation value (as more spikes will lead

to more variability in a rate code): noise = η∗ [delay magnitude]∗ [current activation]

where η is a constant that allows the average noise level to be manipulated. I chose this

operationalization because in a rate-coding system, variation in the arrival of individual

spikes (or a missing spike) leads to noise in the instantaneous firing rate.

Model Training

As in previous studies, the task for the network is to learn associations between

input binary strings and output binary strings. As in Lewis and Elman (2008), the

training dataset contains both intrahemispheric patterns (where one hemisphere could

determine its output without receiving any information from the other; 50% of the input

patterns) and interhemispheric patterns (where one hemisphere must receive information

from the other hemisphere to choose between 4 possible binary output strings; 50% of

the input patterns). This allows a more careful analysis about how interhemispheric

communication is affected by variability. It is worth noting that there are 5 output values

per interhemispheric pattern, and while some output values of each pattern are ambiguous

as specified, some of the output values of interhemispheric patterns are still predictable.

7Lewis and Elman (2008) used 10 hidden units and 2 inter-hemispheric units; increasing these numbers
facilitates task learning. Select simulations run with the original parameters showed similar effects.
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Figure 5.4: “Intra” patterns can be processed intrahemispherically, without any infor-
mation from the other model hemisphere. “Inter” patterns contain output values that
require information from the other hemisphere to be correctly output.

The model uses a version of backpropagation through time appropriate for learn-

ing with conduction delays (Pearlmutter, 1989) for calculating the error gradients and

uses resilient backpropagation for computing gradient updates (Riedmiller & Braun,

1993). Error is reported using the sum-squared error function, but the error gradients

are computed using an error function that led to more robust training 8. The networks

are trained until they have zero classification error or until 1000 training epochs have

elapsed.

Learning in the networks with published learning rates is slow and the degree

of interhemispheric communication is dependent on parameters that were not varied

in either study (such as the exponential decay parameter of the leaky integrator units).

Parameters are chosen here to optimize learning speed while balancing between intra-

8As in (Chapter 3), I use a gradient ((y− t)3) that more severely penalizes local minima where a few
patterns are learned very poorly so that the majority of the patterns are learned more quickly. Though this
does not change the qualitative results of any of the experiments, this made the learning trajectories more
robust and helped networks achieve 100% performance more reliably.
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and interhemispheric dependencies9; for example, these parameters control how quickly

the leaky integrator units respond to activation (rise time); a slower rise time can lead to

less of an effect of conduction delay differences. The purpose of this study is to examine

whether changes in intra- and interhemispheric processing occur across experimental

conditions, rather than trying to precisely quantify such changes, so this method to choose

parameters seemed a reasonable one for this study.

Measuring performance

Two performance measurements are computed. Classification error is the per-

centage of output nodes that are not within 0.5 of their expected output value (+1 or

−1) and was the performance criterion used by Ringo et al. (1994). Training error is the

average (sum-squared) error at each output node and provides a more nuanced measure

of network performance.

In order to test the degree of interhemispheric interactions in a network, interhemi-

spheric connections are temporarily lesioned and network performance is measured. The

difference between intact and lesioned network performance is called the “lesion-induced

error” (Lewis & Elman, 2008) and represents the degree of interaction between the net-

works. Higher lesion-induced errors indicate more dependence on the interhemispheric

connections and therefore greater interhemispheric interactions.

Experimental Setup

25 “no-noise” networks (without any noise introduced on interhemispheric con-

nections) are trained and performance assessed every 100 epochs, to establish baseline

measures. The same procedure is used for 25 “noise” networks, which are identical to the

25 “no-noise” networks in their architecture, training procedure, and even their random

9Parameters: leakyintegratortimeconstantT = 2,momentumα = 10−3,resiliencetermκ = 10−2
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initial weights, except for having random Gaussian noise (1% of average unit activity)

injected on the interhemispheric connections.

Introducing Gaussian noise makes interhemispheric information, with longer

conduction delays and therefore more noise, to be less reliable than intrahemispheric

information. I expected this to cause learning of intrahemispheric patterns to use less

interhemispheric information, and learning of interhemispheric patterns to be delayed.

Therefore, I predicted (1) that the learning trajectory of the noise network would be more

gradual (i.e. have a smaller slope) and (2) that lesion-induced error would be lower in the

no-noise vs. noise networks.

5.3.2 Results

Figure 5.5: Changes in (a) classification error and (b) sum-squared error (SSE), mea-
sured every 100 epochs during training, for no-noise (blue) and noise (red) networks.
“Intact” lines (solid) show average network performance with interhemispheric con-
nections intact; “Lesioned” lines (dashed) show average network performance with
interhemispheric connections temporarily removed. Error bars show the standard error
of the mean.

Figure 5.5a shows performance for no-noise and noise networks on both intact

and lesion conditions. Overall, the noise and no-noise networks were able to learn the
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task and show a large loss in performance when interhemispheric connections removed.

These networks show much less variability across different random initializations than the

networks shown by Ringo et al. (1994) (see Figure 5.2a), despite fewer network instances

being evaluated here (25 vs. 50 in Ringo et al. (1994)). The no-noise networks classified

> 99% of outputs correctly while the noise network classified 83% of the output patterns

correctly. Though this seems a large discrepancy, examining the sum-squared error (SSE)

it becomes clear that the noise network performance is much closer to the no-noise

network performance. Because SSE is a more nuanced measure of error, it is used for the

rest of the analyses.

Figure 5.6 shows performance for no-noise and noise networks separated by

pattern classification type (intra- and interhemispheric patterns). A main effect of noise

is found: noise affects the learning of all patterns, even patterns that do not require the

use of interhemispheric information. However, there was an interaction of noise and

pattern type. Intrahemispheric patterns show almost ceiling performance on learning

and very little lesion-induced errors, indicating that the network has learned to suppress

interhemispheric activity and solve the mapping intrahemispherically. Examining the

lesion-induced error (Figure 5.6, second row), the no-noise and noise networks were

significantly different starting at epoch 600 (t-test, p < 0.05 for epochs 600 - 1000).

The interhemispheric patterns, on the other hand, show a much stronger effect. The

patterns are learned to a sub-ceiling asymptote. That asymptote is reflected equally

in the lesioned network, where reduced error after lesioning indicates that the noise is

suppressing interhemispheric coordination. These effects started earlier during learning

and were much stronger than for the intrahemispheric patterns (t-test; p < 0.01 at epoch

300, p < 0.001 for epochs 400 - 1000).



89

Figure 5.6: Changes in sum-squared error, measured every 100 epochs. Raw error
(row 1) and lesion-induced error (row 2) for no-noise (blue) and noise (red) networks.
Column 1 is for all patterns, column 2 for “intra” patterns (those that can be solved
without interhemispheric information), and column 3 for “inter” patterns (those that
require interhemispheric information to be solved correctly). Stars in lesion-induced
error indicate significant differences between no-noise and noise networks, (* means
p < 0.05, ** means p < 10−2, *** means p < 10−3). Note that lesion-induced error is
the difference between curves of the same color from row 1.

5.3.3 Discussion

Noise, with strength proportional to the delay of the connection, biased the model

to favor intrahemispheric connections at a shorter delay and led the model hemispheres to

work more independently. Patterns that did not require interhemispheric communication

were learned almost as well in no-noise vsṅoise conditions, with networks containing

noise showing less lesion-induced error. A similar, but much stronger pattern was

shown for patterns that did require interhemispheric communication, with noise networks

showing a much smaller lesion-induced error than no-noise networks.

These findings are consistent with the hypothesis that timing variability is detri-

mental to learning and therefore biases networks to use connections with less variability.

In the biological system, since timing variability is hypothesized to be present early in
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development and timing variability is a function of axon length, this would bias circuits

early in development to using more local, short-range connections.

5.4 Experiment 2: Delay variability and magnitude have

differential effects on interhemispheric collaboration

This experiment aims to test the hypothesis that timing variability and delay mag-

nitude, while both functions of axon length, have separable effects on interhemispheric

coordination. Specifically, I expect delay magnitude to affect the onset of interhemi-

spheric collaboration (as discussed in Section 5.2.1) and timing variability to affect the

degree of interhemispheric collaboration. In addition, this experiment aims to compare

these networks directly to the networks of Ringo et al. (1994) by varying the total net-

work run-time, the delay magnitude of interhemispheric connections, compiling results

similarly to Figure 5.2a, and performing the same analysis done in Section 5.2.1.

Before running this experiment, I generally predict that networks without noise

would replicate the finding that delay magnitude causes only a delay to the onset of

interhemispheric collaboration. This would be tested by showing that shifting the two

curves to the difference in onset of interhemispheric collaboration shows no significant

difference between the curves. I predicted that for the no-noise network, an onset delay

should be present for intrahemispheric patterns (consistent with the results from Ringo et

al. (1994)) and interhemispheric patterns (which require interhemispheric communication

and therefore are necessarily delayed). An addition effect of noise should be seen for

interhemispheric patterns, showing as a significant difference in the curves even after

the shift to compensate for onset differences. This noise effect should be smaller or not

present for the intrahemispheric patterns in the no-noise network.
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5.4.1 Methods

In Experiment 1, the interhemispheric delay is fixed to the “long” delay from

Ringo et al. (1994) (10 time-steps) and total run-time is not varied (30 time-steps). In

Ringo et al. (1994), interhemispheric delays of 1 vs. 10 time-steps were compared, and

total run-time was varied from 15 to 75 time-steps. These results are then compiled into

the same form as Figure 5.2, for comparison purposes.

In this experiment, interhemispheric delays of 2 vs. 10 time-steps are compared,

and total run-time is varied from 15 to 75 time-steps. Because noise is a function of delay,

this allows testing effects due to differences in delay (for comparison to (Ringo et al.,

1994)) and noise together.

5.4.2 Results

Figure 5.7 shows results for no-noise and noise networks, delay=2 vs. delay=10,

with curves separated into intra- and interhemispheric patterns.

As expected, for no-noise networks (Figure 5.7, rows 2 and 3), the shifted curves

show complete overlap, indicating that differences in delay magnitude only introduce an

onset delay. Also as expected, the noise networks show different patterns for intra- and

interhemispheric patterns. The shifted curve for the intrahemispheric patterns show the

same overlap as above, with no significant effect of noise found. The interhemispheric

patterns show a significant difference between the shifted curves until the point where

both curves reach floor performance.

5.4.3 Discussion

Results indicate that the hemispheric independence caused by noise cannot be

accounted for through a simple onset-delay mechanism. Delay magnitude leads to
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Figure 5.7: Reporting results for comparison to Ringo et al. (1994), separately for
no-noise and noise networks and “intra” vs. “inter” patterns. “Intra” patterns do not
require interhemispheric collaboration for a hemisphere to select the correct output for
a given input; “inter” patterns are four-way ambiguous without receiving information
from the other hemisphere. Error bars indicate standard deviation, not standard error of
the mean as in Figure 5.6.
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delayed collaboration (as in Ringo et al. (1994)), and in addition noise causes reduced

collaboration (as seen in 5.6).

More generally, these results suggest that when timing variability is a concern,

learning will be biased towards using shorter connections as they have shorter delays and

therefore less delay-dependent variability. This should apply to both intra- and interhemi-

spheric connections. However, since interhemispheric connections are on average longer,

this should also show as an overall bias towards intrahemispheric connectivity.

5.5 Experiment 3: Reduction of timing variability in

maturing brains leads to greater long-distance coor-

dination

Experiments 1 and 2 show that conduction delay variability, implemented as

instantaneous noise in the firing rate proportional to the delay of the connection, leads to

a bias for connections with a shorter delay (and therefore less noise). In the developing

brain, this would manifest as a bias towards shorter connections as delay is proportional

to connection length.

As discussed in Section 5.2.2, I hypothesize that delay reliability should be high

at birth but continually improve over development. The goal of this Experiment is to

examine whether reduction of variability over time will lead to networks reducing their

bias towards connections with shorter delays and incorporating more interhemispheric

information. In human development, circuits gradually shift away from their initial local

bias. I therefore hypothesize that in the neural network model, improving delay reliability

during training will lead to greater interhemispheric interactions as measured by greater

lesion-induced error.
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5.5.1 Methods

Figure 5.8: Graphical representation of changes to the relative noise level (compared to
overall activation) over training, to simulate reduced conduction delay variability over
developmental thickening and myelination of white matter fibers.

No-noise and noise networks are trained and tested according to the methods

of Experiment 1. The networks are trained for 2000 epochs instead of 1000 to allow

sufficient training time to examine the effect of dynamically manipulating noise in the

networks. In Experiments 1 and 2, the noise networks are given constant noise over all

training epochs. In this experiment, the noise changes over time (see Figure 5.8). Noise

is held constant at 1% for the first 250 epochs (early development), then linearly reduced

for 750 epochs until it hits 0% (later development). Finally, the network is trained with

no noise for 1000 epochs (maturation).

As usual, lesion-induced error is measured for intra- and interhemispheric patterns

separately.

5.5.2 Results

The no-noise network showed the same pattern as in Experiment 1: lesion-

induced error increases during training until the network learned the task, indicating
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Figure 5.9: (a) Training error and (b) lesion-induced error for no-noise and noise
networks. The noise network showed increases in lesion-induced error in all stages,
but different rates across the three stages in learning, corresponding to the three stages
in Figure 5.8: a period of quickly increasing lesion-induced error (epochs 1-250), a
period of moderately increasing lesion-induced error (epochs 251-1000), and a period
of reducing lesion-induced error (epochs 1001-2000).

robust interhemispheric transfer. While noise is on, the noise network has a smaller slope

to approach convergence (Figure 5.9a, solid red line) than the no-noise network had at its

earliest learning stages. Once the noise is turned off, the noise network slowly converges

to performance (Figure 5.9a, solid red line) and interhemispheric collaboration (Figure

5.9b, solid red line) as the no-noise network.

Dividing the results up into intra- and interhemispheric patterns show the same

pattern as in Experiment 1: both intra- and interhemispheric patterns are affected by

noise, but the intrahemispheric patterns are less severely affected and converge to the

no-noise network performance faster.

5.5.3 Discussion

These results indicate that variability during learning does not permanently bias

networks to use less variable, local connections. Instead, as variability decreases the

network uses more of the increasingly reliable interhemispheric information. When vari-
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ability reduces to zero, the network continues to increase its use of the interhemispheric

information until it matches the network trained without any noise.

More generally, these results suggest that learning is biased towards using local

circuits early in development, but that as variability decreases due to increasing axon

diameter size and myelination, adult-like circuits that incorporate long-distance intra-

and interhemispheric integration may emerge.

5.6 Experiment 4: Lateralization and interhemispheric

coordination are intertwined

In their paper, Ringo et al. (1994) did not test for a relationship between inter-

hemispheric communication and lateralization, but instead assumed one. A general

examination of lateralization and interhemispheric interactions was done by Reggia and

Schulz (2002). Lateralization was assessed by examining performance of one hemisphere

with the other disabled, much the same as the Ringo model with the interhemispheric

connections lesioned. Lateralization was induced by varying network parameters between

the left and right networks (overall activation level, number of units, etc.), then differ-

ences in performance level between the networks was measured. Under these conditions,

lateralization occurred most strongly when interhemispheric connections were inhibitory.

The aim of Experiment 4 is to propose measures of lateralization in these net-

works, then to examine whether lateralization emerges spontaneously or when I attempt

to induce it.



97

5.6.1 Methods

In order to measure lateralization in representations between the networks, I

use an algorithm from Laakso and Cottrell (2000) that is similar to representational

similarity analysis (RSA) (Kriegeskorte, Mur, & Bandettini, 2008). In this algorithm,

how similar a model represents two stimuli is computed for all stimulus pairs presented

to the model. Then this set of similarities are then used to compare across models; two

models that regularly judge the same two stimuli as similar will be judged as models with

similar representations. The mathematics behind the algorithm are simple: the similarity

between the internal representations a single model has for two stimuli is computed as

the euclidean distance between the hidden unit activations, while the similarity between

two models is computed as the correlation between each model’s vector of pairwise

similarities across all stimuli.

In addition to applying this measure to the models from Experiment 1, I also

want to examine how the no-noise and noise networks would perform when the two

hemispheres are asymmetric. Rather than changing the computational properties of the

model to test this (as done in Reggia and Schulz (2002)), I preferred to use the same

model as before, but simply induce asymmetry by presenting symmetric or asymmetric

inputs, and training on symmetric or asymmetric outputs. I view this as no different than

receiving asymmetric visual inputs, producing asymmetric hand movements for outputs,

or even receiving inputs from a brain region that is itself lateralized. Changes in behavior

of the model between the different stimulus and output conditions can be attributed to

the interaction between variations in the interhemispheric variability and the stimulus

conditions.

In order to accomplish this, binary string stimuli are randomly generated. When

an input or output needs to be symmetric, one of the random binary strings is discarded

and the other is copied. Note that in conditions with symmetric outputs, one hemisphere
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could always predict the output of the other (because the outputs are the same), so no

interhemispheric patterns were available for analysis in those conditions. In conditions

with asymmetric outputs, patterns could still be separated into intra- and interhemispheric

patterns, as the predictability of the output could still be modulated.

5.6.2 Results

Representational similarity between hemispheres

I computed the similarity between left and right hemisphere models in a 2 x 2

design: for no-noise and noise models, and with interhemispheric connections intact

and lesioned. As shown in Table 5.1, there is an expected main effect of intact vs.

lesioned networks. When networks are intact, there is some level of similarity between

their representations; when the interhemispheric connections are lesioned, all similarity

between the networks is lost. Otherwise, there was no effect of no-noise vs. noise and no

interaction between noise level and interhemispheric connection status.

Table 5.1: Representational similarity for left and right hemisphere networks.

No-noise Noise
Intact 0.38±0.12 0.36±0.13
Lesion −0.03±0.01 −0.03±0.01

Comparison of input and output asymmetries

For input and output asymmetries, patterns between no-noise and noise networks

followed those reported in Experiment 1. There were, however, some interesting results

that came out of comparisons of error patterns between different symmetry / asymmetry

combinations. None of these results were predicted in this exploratory data analysis.

Few results popped out as particularly salient. Most plots showed a simple



99

difference average correct for both intact and lesioned networks, and so showed no

differences in lesion-induced error. I describe one difference as an example of what types

of data were found.

Figure 5.10: Asymmetric (blue) vs. symmetric (red) inputs, with asymmetric outputs.

Asymmetric inputs led to less interhemispheric collaboration Figure 5.10 varies

inputs between symmetry and asymmetry and examines the effect of lesion and noise. For

no-noise networks (top row), symmetric inputs (red) had greater hemispheric interactions

for intra- vs. inter- patterns, but asymmetric inputs (blue) remained at the lower level of

hemispheric interactions for both inter- and intra- patterns. With noise (bottom row), the

difference in symmetric inputs between intra- and interhemispheric patterns vanished.
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5.6.3 Discussion

This exploration is aimed at taking first steps to examine relationships between

modulations of interhemispheric communication and the development of lateralization. I

found that no spontaneous lateralization was present when computing similarity between

model hemispheres, both for no-noise and noise networks. Similarity did not differ

between the hemispheres in no-noise vs. noise conditions. Finally, networks with

asymmetric inputs and/or outputs did not show any clear pattern of lateralization and also

did not show changes in similarity as interhemispheric communication was modulated.

5.7 General Discussion

In this chapter I reviewed literature showing that interhemispheric integration

is robust in humans, that there’s no indication of a causal link between long conduc-

tion delays and hemispheric independence, and no evidence of a causal link between

hemispheric independence and lateralization. Instead, I argued that independence could

be caused by variability in conduction delays. I failed to characterize any relationship

between independence and lateralization in either condition of variability or not. I also

pointed out that the variability in conduction delay is likely to exist in neonates, when

large numbers of thin, unmyelinated white matter fibers are prevalent and of a diameter

that would exhibit variability in conduction delay.

Why is conduction delay an intuitively appealing answer? It is worth noting that

conduction delay and variability are both functions of axon length and diameter, and

are correlated for thin unmyelinated axons. Thin, unmyelinated axons have a special

physiology as well as a special functional role in the brain, leading to correlations

across a number of quantities: delay magnitude, delay reliability, energy consumption
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(S. S. H. Wang, 2008), connectivity pattern (Markov et al., 2013) and volume (Zhang &

Sejnowski, 2000). While each of these may play a role in overall brain architecture and

physiology, it is unlikely that all play a causative role in all aspects of brain architecture

and physiology. I have argued in this chapter that it is time to let go of the correlation

between delay magnitude and degree of connectivity and interaction.

Is human lateralization special? There are indications that human development is

unique (R. D. Martin, 1983), and the degree to which humans are functionally lateralized

at the population-level for functions that are critical to our daily lives is also unique. While

previous work tried to associate lateralization with brain size through this hypothesis of

hemispheric independence, I’ve shown here that this is unlikely to be the case.

I speculate that while conduction delay variability may be an issue for all mam-

mals, it is particularly important for humans. If true, I speculate this is due to a dual

constraint in humans: the necessity to minimize head volume at birth while maximizing

neural resources in adulthood, under conditions of efficient well-connectedness and no

post-natal neurogenesis nor white matter fiber production. White matter volume tends

to dominate in larger brained species, due to the fact that white matter volume grows

exponentially faster than brain volume itself (Zhang & Sejnowski, 2000). White matter

volume is also extremely plastic post-natally, as both axon diameters and the degree of

myelination change drastically over development (Berbel & Innocenti, 1988; LaMantia

& Rakic, 1990b) and through adulthood and aging (Aboitiz, 1991; Jernigan, Baar, Stiles,

& Madsen, 2011; Riise & Pakkenberg, 2011; Hou & Pakkenberg, 2012). Therefore, we

believe that white matter volume is highly compressed at birth particularly in humans

and rapidly expands during the period of post-natal pruning.

Unfortunately, the only human fetal and neonate callosal samples are from a

light microscope (Luttenberg, 1965), where it is clear that most fibers have been missed
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due to low image resolution. Luttenberg (1965) reports 125 million callosal fibers at

birth, almost half of what our best estimates of human adult fiber count is, and at odds

with animal data showing that neonates have around 3x more callosal fibers than mature

adults. It is in principle possible to estimate the human neonate axon diameters from

human data; my attempt to do so required one final parameter from Luttenberg (1965)

that unfortunately was not reported: the degree of tissue shrinkage during tissue fixation

for slicing and mounting.

Future Directions In this paper I was unable to establish a developmental link between

interhemispheric communication and lateralization. I note a few recent papers on the ben-

efits of noise in learning (Ermentrout, Galan, & Urban, 2008; Faisal et al., 2008; Vincent,

Larochelle, Lajoie, Bengio, & Manzagol, 2010). I intend to investigate whether initially

noisy interhemispheric interactions facilitate both generalization and specialization of

the hemispheres. It seems computationally advantageous to share processing of highly

salient features, as it may allow each hemisphere to select secondary features that it can

be more specialized to process.
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Chapter 6

Interhemispheric connectivity endures

across species: an allometric exposé on

the corpus callosum.

6.1 Abstract

Are human brains lateralized because they are large? Rilling and Insel (1999a)

argued that in primates, interhemispheric connectivity is selectively reduced as a function

of brain size, leading to reduced functional connectivity in larger brains. They compared

callosal mid-sagittal area and grey matter surface area to estimate connectivity, which

ignores cross-species scaling effects for callosal fiber density and grey matter neuron

density.

To address the issue, I first computed an allometric regression of callosal fiber

density. Using small-brained animal data from S. S. H. Wang et al. (2008), I find callosal

fiber density scales as the −0.28 power of brain size. To validate the regression values

for human data, I examine the best available human data (Aboitiz et al., 1992) and note a

103
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confound of sample age. Though an age effect on callosal fiber density is not directly

reported in the neuroanatomy literature, I find it in the data (Berbel & Innocenti, 1988;

LaMantia & Rakic, 1990a). I use monkey data to estimate a value for the human data

LaMantia and Rakic (1990a) at sexual maturity and find that the corrected human data is

within 11% of the allometric prediction for humans. I then review literature consistent

with the interpretation that humans have thinner fibers than expected for our brain size.

I also estimate, based on the age-correction, that the human corpus callosum has 240

million fibers, 20% more fibers than previously estimated based on the age-confounded

sample (Aboitiz et al., 1992).

I then used the regression of callosal fiber density, along with others computed

from data in the literature, to estimate inter- and intrahemispheric connectivity directly. I

find that (1) the proportion of total connectivity that is interhemispheric is much more

drastically reduced as a function of brain size than previously reported (allometric ex-

ponent 0.64 vs. previously reported 0.88, but that (2) this reduction is not selective

for interhemispheric connections: axon counts per fiber tract interconnecting two cor-

tical areas scale similarly for inter- and intrahemispheric connections. This is due to

the increasing number of area-area intrahemispheric fiber tracts as brain size increases

(Changizi & Shimojo, 2005) compared to the largely homotopic interhemispheric con-

nections. Thus, any claim of a reduced role for interhemispheric connections would also

have to claim that, e.g., V1→V2 is less functionally relevant. On the contrary, I estimate

the average interhemispheric area-area connection contains about 4x more fibers than the

average intrahemispheric one, despite on average being longer–suggesting a special role

for interhemispheric connections that persists over all brain sizes.

The results are inconsistent with the prevailing hypothesis that lateralization is

driven by greater hemispheric independence in larger brains (Ringo et al., 1994; Rilling

& Insel, 1999a). Instead, these data are consistent with neuroimaging studies and our
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computational work (Chapter 5) which suggest that interhemispheric interactions play

a role in the development and function of the lateralized human brain. In addition,

these results suggest a special role for interhemispheric connectivity that is shared by all

primates–regardless of brain size.

6.2 Introduction

Lateralization touches on virtually every function that we think makes us human,

including: language, fine motor skills, spatial cognition, and social perception. The

prevailing view from the literature is that lateralization in humans is a consequence of

greater independence between our cerebral hemispheres, driven by architectural (Rilling

& Insel, 1999a) and physiological (Ringo et al., 1994) differences between small brains

and large brains.

There are a number of reasons to doubt this hypothesis. When examining the

neuroimaging literature, there is evidence of robust coupling between the hemispheres

in humans (Stark et al., 2008), with both lateralization and interhemispheric communi-

cation increasing over development (e.g. Benninger et al. (1984); Petitto et al. (2012);

Musacchia et al. (2013)). We’ve shown that one major proposed cause of independence

and lateralization–longer conduction delays in larger-brained species–likely does not

cause either hemispheric independence nor lateralization (Chapter 5). Finally, in other

fields such as cellular biology (Gurkan et al., 2007; Graham et al., 2000; Marzec &

Kurczynska, 2014; Palmer, 2002), agriculture (Qin & Zhang, 2012; Gollin & Rogerson,

2014), economics (Bolton & Dewatripont, 1994; R. Katz & Tushman, 1979; Tushman,

1978), even in design of cities in online games (Specializations - SimCity Wiki Guide,

n.d.), and presumably government and other fields: specialization is dependent on robust

communication. The reason is shared and simple: specialization increases competency in



106

one function at the cost of others; communication is what mediates sharing of resources

between complementary specializations.

In our reading of the literature, one final data point seems to support the hypothesis

that humans have greater hemispheric independence and that independence leads to

lateralization in brain function. Rilling and Insel (1999a) suggest that interhemispheric

connectivity is selectively reduced (when compared to total white matter connectivity) in

species with larger brains. They base this on their MRI data analysis, where they find

that the proportion of mid-sagittal callosal surface area (as a proxy for interhemispheric

connectivity) to the amount of grey matter surface area (as a proxy for neuron count, and

therefore total white matter connectivity), decreases as a function of species brain size.

Rather than comparing surface areas, here I turn to the literature for data to

estimate numbers of total and interhemispheric white matter fibers from Rilling and

Insel (1999a)’s surface area data. I find that the proportion of total fibers that is inter-

hemispheric is drastically reduced with increasing brain size–much more strongly than

reported by Rilling and Insel (1999a). However, I find that this apparent proportional

decrease is completely explained by the increase in cortical areas with brain size and the

homotopic nature of the corpus callosum. More cortical areas means each cortical area

will interconnect with a greater number of other areas within a hemisphere, while that

same cortical area will largely remain restricted to connecting to the homotopic areas

across the corpus callosum. That is, the number of callosal connections between areas

remains fixed at one, while the number within a hemisphere is increasing with brain size.

This simple fact of homotopic callosal connectivity versus expanding intrahemi-

spheric connectivity does not represent a proportional decrease in the number of fibers

within interhemispheric inter-area connections vs. their intrahemispheric counterparts.

This same apparent reduction is not specific to interhemispheric area connections (e.g.

left V1→ right V1), but holds for intrahemispheric area connections (e.g. left V1→
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left V2) as well. This changes the interpretation to one consistent with “efficient well-

connectedness” (Changizi, 2009) and views that functional connectivity is dynamic and

based on task-demands (e.g. Innocenti (2008); Doron, Bassett, and Gazzaniga (2012)).

This undermines the interpretation of selective suppression of interhemispheric con-

nectivity in larger brains, and suggests that the functional significance of an inter-area

connection cannot be determined from these data.

One critical data point in our computation is a novel allometric regression of

callosal axon density, computed from 6 relatively small-brained mammals (S. S. H. Wang

et al., 2008), which shows clear decreasing density with increasing brain size. To

corroborate our use of these small-brained animal data to extrapolate to human brains, I

find limited data (a single human sample) with a mismatched age to the animal sample

(Aboitiz et al., 1992). I attempt to correct for this age difference using allometry-

based cross-species corrections (Clancy, Finlay, Darlington, & Anand, 2007) and find

an excellent match between our human estimate using the cross-species data and the

corrected human data. These two independent estimates both suggest that human young

adults have approximately 240 million fibers in the corpus callosum, 20% more than

reported in previous estimates (Aboitiz et al., 1992), and commonly accepted in the

literature.

Previous Results & Inferences

Mammalian brains span over five orders of magnitude in size, but the structure

of the smallest brains differs from the structure of the largest. The relative differences

in structure are highly predicability as a function of brain size (Jerison, 1982; Clancy

et al., 2007; Herculano-Houzel, Collins, Wong, Kaas, & Lent, 2008; Changizi, 2009),

often as a power law (y = A ∗ xB, where A and B are constants). These “allometric”

functions (functions that relate quantities to brain and body size) often follow power
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laws, indicating they are “scale-free”–that a power-law relationship between quantities

holds, independent of absolute size. Most microscopic (e.g. the # of synapses per neuron)

and macroscopic (e.g. the total white matter volume) measures follow a power-law

relationship with brain size (see Figure 6.1). These various allometric scaling functions

seem to have interdependencies, suggesting that they derive from more basic principles

such as trade-offs between efficient wiring and interconnectedness (Changizi, 2009).

Figure 6.1: Summary of allometric scaling curves across microscopic and macroscopic
brain measures in mammals (Changizi, 2009). Note that the exponent in square bracket
represents the allometric exponent, which is also the slope of the line.

Rilling and Insel (1999a) imaged 18 species of primates to examine scaling

laws within the taxonomic order most relevant to humans, and focused on comparing

allometric scaling of interhemispheric and total connectivity. However, they did not

measure connectivity directly, and could not estimate it directly from their measurements.

Instead, they argued that comparing the ratio between grey matter surface area (GMSA)
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and surface area of the corpus callosum at mid-sagittal section (CCA) across species

could be used as an estimate of total vs. callosal connectivity. They pointed out that the

two quantities match dimensions (area), and each could be roughly used as a proxy for

connectivity (GMSA related to the # of neurons and therefore total connectivity, CCA

related to the # of callosal axons and so callosal connectivity).

When GMSA and CCA were compared across species, Rilling and Insel (1999a)

found that GMSA increases slightly faster than CCA (allometric exponent=0.88). Given

the interpretation in terms of connectivity, they concluded that total intrahemispheric

connectivity increases faster than total interhemispheric connectivity, suggesting a selec-

tive decrease of interhemispheric connectivity with larger brain sizes and therefore likely

more independent hemispheres in primates with larger brains–specifically, humans.

My interpretation

I argue that this interpretation is flawed, due to a fundamental difference between

callosal and intrahemispheric connectivity in terms of interconnecting cortical areas.

Cortex can be parceled into cortical areas by cytoarchitecture (Brodmann, 1909; Bailey

& Bonin, 1951; Barbas & Rempel-Clower, 1997), counts and densities of cell types and

sizes (Schleicher, Morosan, Amunts, & Zilles, 2009; Uylings et al., 2010), overall cortical

thickness (Rimol et al., 2010; Uylings et al., 2010), myeloarchitecture examining intrinsic

(local) connectivity patterns (Vogt & Vogt, 1919; Glasser, Goyal, Preuss, Raichle, &

Van Essen, 2014), density of receptor types (Zilles & Amunts, 2009) expression, and other

computational methods (Schleicher, Amunts, Geyer, Morosan, & Zilles, 1999). Though

area size and location does vary based on definition, the cortical area is thought to be a

fundamental computational unit in systems neuroscience and is critical for understanding

white matter connectivity. White matter connectivity tends to be well-defined between

areas (Catani & Thiebaut de Schotten, 2008; Oishi et al., 2008; Hagler et al., 2009;



110

Markov et al., 2010, 2013) across individuals, traveling in fiber bundles called fascicles.

Evidence suggest that each cortical area in larger brains connects to a greater

number of cortical areas (Changizi & Shimojo, 2005), likely due to an increase in

the number of cortical areas (Brodmann, 1909; Changizi, 2001; Changizi & Shimojo,

2005; van Essen, Glasser, Dierker, Harwell, & Coalson, 2011) and the need to maintain

“efficient well-connectedness” (Changizi, 2009). Callosal connectivity, on the other hand,

tends to be homotopic (Aboitiz & Montiel, 2003), which means that for a given cortical

area (e.g. V1), interhemispheric connections represent one fiber bundle, irrespective of

brain size. Thus, for that given cortical area, there is one interhemispheric inter-area

connection (homotopic), while the number of intrahemispheric inter-area connections

are increasing with brain size (see Figure 6.2 for a schematic example).

Figure 6.2: Schematic showing fewer cortical areas (8 areas per hemisphere) and inter-
area connections (4 per area) in smaller brains and more cortical areas (16 areas per
hemisphere) and inter-area connections (8 per area) in the larger brain. Though the
number of intrahemispheric inter-area connections changing, a single interhemispheric
inter-area connection (to the homotopic area in the other hemisphere) remains across all
brain sizes.



111

This means that for any specific inter-area connection, regardless of whether

interhemispheric (left V1 → right V1) or intrahemispheric (left V1 → left V2), will

appear proportionally smaller as brain size increases because the number of inter-area

connections a given area (e.g. V1) participates in is increasing. Because of the homotopic

nature of the corpus callosum, then, even if the number of fibers within an area’s

interhemispheric inter-area connection is increasing with brain size at the same rate

as fibers in its intrahemispheric inter-area connections, it would appear to be reduced

when compared to the total of all intrahemispheric connections. Based on data from

Changizi and Shimojo (2005), and consistent with a similar estimate in Changizi (2001),

I estimate this apparent reduction rate (as a function of brain volume (BV )) to be BV 0.66–

much smaller than Rilling and Insel (1999a)’s estimate of BV 0.88.

On this analysis, the exponent of 0.88 actually suggests that the number of fibers

in any interhemispheric inter-area connection is actually proportionally increasing by

BV 0.22 (BV 0.88/BV 0.66) compared to the average interhemispheric connection. This is

the opposite of the conclusion drawn by the paper; instead of a selective decrease in

interhemispheric connectivity with larger brain size, the 0.88 exponent really predicts

that callosal connections are becoming relatively stronger than any intrahemispheric

inter-area connection in the brain. This would stand as a very surprising result if true.

My Approach

In order to compare fiber counts from the Rilling and Insel (1999a) surface area

data, I propose to use the following quantities and simple equations1 . As detailed in

Table 6.1, estimates of many of these quantities exist in the literature. The one quantity

without an estimate is Axon Densitycallosum. Once these equations are compiled, then an

1Note that Volumegrey can be measured directly or computed from surface area and thickness. See
discussion of this in Section 6.5.1
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allometric equation for # Connectionscallosal vs. # Connectionstotal can be computed.

# Connectionscallosal = [Areacallosum]∗ [Axon Densitycallosum] (6.1)

# Connectionswhite matter = [# Neuronstotal]∗ [% Neuronspro ject to white matter] (6.2)

# Neuronstotal = [Volumegrey]∗ [Neuron Densitygrey] (6.3)

In this paper, I describe four new analysis that contribute to the literature on

inter-species scaling of the corpus callosum and how humans fit into that picture. In

Analysis 1, I compute an allometric regression for Axon Densitycallosum from a high-

quality dataset of small-brained animals (S. S. H. Wang et al., 2008). In order to examine

the use of this dataset for larger-brained species such as humans, in Analysis 2 I analyze

the human literature on corpus callosum density and compare it to the regression results.

After a few new findings regarding the human data, the comparison confirms that the

allometric regression is a good fit for the human data. In Analysis 3 I select datasets from

the literature to plug into Equations 6.1 - 6.3, examining each in detail. I then plug in

values from the literature to directly estimate scaling of interhemispheric and total white

matter connectivity, and I find that the scaling exponent is lower than that reported by

Rilling and Insel (1999a). In Analysis 4, I examine whether this scaling difference can be

accounted for by different scaling patterns of the number of callosal and interhemispheric

inter-area connections. I find that they generally can be, and find no relative differences

in the scaling fiber counts within inter-area connections. Instead, I find evidence of

robust interhemispheric connectivity over brain sizes that on average contain 4x more

fibers than the average intrahemispheric connection. Finally, I place these findings into a

broader literature on interhemispheric collaboration in humans. I conclude that it is no

longer tenable to support the hypothesis of greater hemispheric independence in humans,
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and was never tenable to support the hypothesis that hemispheric independence drives

lateralization in humans or any other specialized system.

6.3 Analysis 1: Allometric regression of animal callosal

axon density

Most research on the corpus callosum has focused on mid-sagittal area of the

corpus callosum, looking for correlations between area and brain size, intelligence, asym-

metry, handedness, gender, and diseases (see (Gazzaniga, 2000) for a review). Though

the corpus callosum is somewhat unique in its highly homogeneous fiber orientation and

accessibility, far fewer resources have been put into examining the microstructure of the

corpus callosum. These studies have pointed out a true need for electron microscopy, as

the corpus callosum contains a large number of thin, unmyelinated fibers (Aboitiz et al.,

1992) that are missed without use of electron microscopy. Yet only a handful of such

studies exist (Berbel & Innocenti, 1988; LaMantia & Rakic, 1990a; LaMantia & Rakic,

1990b; Kim & Juraska, 1997; S. S. H. Wang et al., 2008); for humans, only one study

with one sample exists (Aboitiz et al., 1992).

Fortunately, a dataset using electron microscopy (S. S. H. Wang et al., 2008)

examined six species, carefully reported tissue processing and imaging procedures, and

reported brain sizes, making it potentially usable for allometric regression. Allometric

regression can be extremely challenging when combining datasets across labs, particularly

for data mounted on slides, as different tissue processing techniques, imaging resolutions,

protocols for measuring and counting data, and even measurements of brain size can

differ and introduce great variability. Though it only contains six species, in terms of

tissue quality and reporting tissue processing and imaging procedures, S. S. H. Wang et

al. (2008)’s dataset is the best-case scenario.
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Unfortunately, the raw data from this paper is unavailable; this was a common

problem across all analyses in this paper. Instead, the data are estimated from digital pro-

cessing of scatter plots and histograms from the publication. Next I describe the methods

I used to “pluck” data comparing callosal density and brain mass from S. S. H. Wang et

al. (2008) for all six species.

6.3.1 Methods

Density data are plotted as a function of brain diameter on S. S. H. Wang et al.

(2008) Figure 1e, with individual samples and species averages visible for all six species.

Average brain weights for the 6 species were published in S. S. H. Wang et al. (2008)

Table S1.

In order to “pluck” data from these scatter plots, I follow the following procedure:

I download the source paper in PDF form. On a 27” screen (iMac), I zoom into the figure

to maximize the limiting dimension (usually vertical), then capture a screen shot (png

format) of the image. I use the mouse to manually mark (using different colors) each

X-axis (magenta) and Y-axis (yellow) tick-mark, the X-axis (blue) and Y-axis (green)

locations, and the centroid of each datapoint. Each datapoint’s centroid is determined by

counting the number of pixels within the line and finding the arithmetic center; where

a unique center pixel does not exist (i.e. when an even number of pixels in the line), I

choose the left-most (X-axis) or bottom-most (Y-axis) of the middle two pixels.

In order to read the image and parse out values, I use the MATLAB program

(version 7.10.0.499 (R2010a)). All data are available online 2. I load each png and

select the image coordinates of the different classes of marked pixels by color. I average

the spacing between measured axis ticks to estimate the number of pixels per tick. I

2https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/
data/code/wang etal 2008/w data.m

https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/data/code/wang_etal_2008/w_data.m
https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/data/code/wang_etal_2008/w_data.m
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normalize the tick values by the axis zero-point, then I use the tick label values to compute

a mapping between pixels and values. I then use the equations for converting pixels to X

and Y values to convert data points into estimated X and Y values.

Figure 6.3: (a) Original and (b) manually marked, digitally cropped, parsed, and
annotated copy of S. S. H. Wang et al. (2008) Figure 1e, used for extracting callosal
density across 6 species.

In other places where I have used this method, I use the “plucked” data to estimate

summary statistics or regression coefficients reported in the paper, then compare to the

published values (see Section 6.5.1). This allows me to estimate error in the “plucking”

procedure, which is generally less than 2%. S. S. H. Wang et al. (2008) did not report

any summary statistics for callosal axon density, and so no quantitative estimate could

be made. However, a qualitative “goodness-of-fit” estimate could be made by plotting

“plucked” pixel values back onto the original image to show whether they match the

image; see Figure 6.3 for visual inspection of S. S. H. Wang et al. (2008) Figure 1e

parsing.

Once the values were available, I regressed the log10 estimates of brain weight and

corpus callosum density using reduced major axis regression in MATLAB (Trujillo-Ortiz,
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n.d.).

6.3.2 Results

Figure 6.4: Allometric regression of callosal fiber density using data from S. S. H. Wang
et al. (2008), on log-log axes. Callosal axon density decreases with brain size, consistent
with data showing more myelination and thicker axons in species with larger brains (see
text for details). Note the difference in offset parameter here (3.386) from that in Table
6.1 (0.386). Since these are actually exponents, this is a factor of 103 that was needed
to convert to units of f ibers/mm2.

Using data from S. S. H. Wang et al. (2008) to perform an allometric regression, I

find that callosal fiber density decreases with an exponent of −0.28 with respect to brain

mass (r2 = 0.909; see Figure 6.4).
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6.3.3 Discussion

The negative allometry of corpus callosum density is consistent with the overall

literature showing greater myelination and thicker axons in species with larger brains

(S. S. H. Wang et al., 2008; Caminiti et al., 2009). One potential objection to the methods

above is its use of small-brained animals to estimate callosal fiber density. The largest

brain used by S. S. H. Wang et al. (2008) is the rhesus macaque monkey brain (89g), 15x

smaller than the average human brain (1350g). Though the regression data span almost

three orders of magnitude, it is worthwhile to compare the extrapolation of the regression

to human data from the literature.

6.4 Analysis 2: Placing human callosal data in the con-

text of animal data

In order to compare the allometric regression to human data, I searched for human

electron microscopic data in the literature. Though a few studies have been published

using a light microscope (Tomasch, 1954; Luttenberg, 1965; Aboitiz et al., 1992; Riise

& Pakkenberg, 2011; Hou & Pakkenberg, 2012), I only found information about one

small human sample that has been imaged using an electron microscope (Aboitiz et al.,

1992). In this sample a raw density estimate was not reported; instead, density from a

light microscope (371.7 f ibers/µm2) was reported with an estimate of 20% additional

fibers found using electron microscopy. In addition to, there are confounds with the data

from S. S. H. Wang et al. (2008) of tissue fixation and sample age. Aboitiz et al. (1992)

reported 35% tissue shrinkage (vs. 0% for S. S. H. Wang et al. (2008)) and a sample age

of 45 years old (vs. “young adult” samples for S. S. H. Wang et al. (2008)).

Factors to correct for imaging and shrinkage were presented, and so only the
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age difference needs to be addressed. Indications from the literature are that an age

correction towards a younger age should increase density. Callosal density decreases in

early post-natal development (cats: Berbel and Innocenti (1988); macaques: LaMantia

and Rakic (1990a)) as fibers are pruned, axon diameters increase, and myelination occurs.

Though unreported in the original publications, an analysis of adult data in macaques

(LaMantia & Rakic, 1990a) suggests that the decrease in axon density continues beyond

sexual maturity (see Figure 6.5a). Thus, a correction for age seems necessary.

Figure 6.5: Changes in axon density for macaques (a) across their lifespan (red
line=birth; no data on the left-most area indicates callosum has not begun develop-
ing yet). (b) Same data as in (a), but zoomed into the adult samples, plotted on cartesian
axes, and plotted with the computed allometric regression (blue line). The average
adult macaque age (left arrow) and the human sample age (45 years old) mapped onto
macaque lifespan (right arrow; see text for details) are then added. (c) This log-log plot
with the same adult sample and allometric regression shows both the relatively good
fit (r2 = 0.614) and how the slope of the line is driven largely by the single datapoint
in the lower right corner. See the text for detailed methods. Data from LaMantia and
Rakic (1990a); LaMantia and Rakic (1990b).

Allometry has been used much less extensively in development and aging, but

validation of the procedure exists. R. D. Martin (1983) investigated how inter-species

allometric scaling compared with with intra-species scaling over the lifespan. He con-

cluded that development can be broken into 3 stages that each obey their own allometric

scaling laws: pre-natal development, post-natal development, and adulthood. R. D. Mar-
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tin (1983) and Clancy et al. (2007) both suggest that these developmental scaling laws

are due to maturational changes tightly correlated with species-specific aging; Clancy et

al. (2007) show that these developmental ages can be mapped across species3.

Before performing the comparison between the human data, I cautiously expected

the human data to match or exceed the allometric regression. The caution came from

the fact that the human data is only a single sample and differs from the animal data

in sample age and tissue processing, which might introduce variability into the result.

The expectation of an equal or higher density for the human data than predicted from

the regression is based on a number of findings indicating that humans have more

small-diameter fibers than would be expected for other species. First, corpus callosum

size in humans correlates with small diameter fiber count (Aboitiz et al., 1992), but

not in the smaller-brained macaque monkey (Olivares et al., 2001)–indicating a larger

proportion of small diameter axons. Second, small diameter fibers are associated with

association cortices such as temporal and prefrontal cortices (Aboitiz & Montiel, 2003),

and comparative studies suggest that the major areas for human cortical expansion is

in association cortices (Rilling, 2014). Finally, Caminiti et al. (2009) compared axon

diameter distributions (ADD) between macaque, chimpanzee, and human brains and

found that while the chimpanzee ADD compensates for the larger brain size, the human

one does not.

6.4.1 Methods

I apply three corrections to the light microscope human data. Aboitiz et al. (1992)

reported 20% additional fibers found using electron microscopy over light microscopy.

Second, Aboitiz et al. (1992) reported 35% tissue shrinkage. These first two multiplicative

3An online tool implements their mappings for many species:
http://bioinformatics.ualr.edu/ttime/translatetime primates php.php

http://bioinformatics.ualr.edu/ttime/translatetime_primates_php.php
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corrections were reported and used in the original paper. The third correction is a novel

correction for differences across samples due to age.

I use allometric scaling to correct for differences in sample age. Electron mi-

croscopic data of the macaque corpus callosum over pre- and post-natal development

(LaMantia & Rakic, 1990b) and into adulthood (LaMantia & Rakic, 1990a) seem to be

consistent with the division into three developmental stages, with the onset of the third

around 1 year of age (see Figure 6.5a). Thus, I attempt to quantitatively account for age

differences between the samples by deriving an allometric curve from macaque electron

microscopy data, then map humans onto the macaque allometric curve to find a common

point of comparison between the two samples, and use the differences in position on the

allometric curve to adjust the reported density data for the human sample.

I estimate callosal density changes as a function of age in macaque monkeys by

performing an allometric regression between age and callosal density on adult macaque

data from LaMantia and Rakic (1990a) (see Figure 6.5c). Macaque “young adult” average

age of 5.2 years was obtained from the adult samples from LaMantia and Rakic (1990a).

I then followed the methods of Finlay, Darlington, and Nicastro (2001) for cross-species

remapping to map the human sample age onto the macaque lifespan, as follows.

First, I obtained values for sexual maturity and average age of death for the two

species (macaque: sexual maturity at 4 years old (yo), lifespan 25 yo, human: sexual

maturity at 15 yo, lifespan 73 yo (Chudler, n.d.)). Then I found the percentage the human

lifespan between sexual maturity and death that 45 years old corresponded to by using

the following equation: pct = (agehuman−15)/(73−15). I then mapped that percentage

onto the monkey span using the following equation: age = 4+ pct ∗ (25−4). Together,

these two equations give:
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macaque age estimatehuman sample = 4+[(25−4)∗ agehuman−15
73−15

(6.4)

After having the human age mapped onto the macaque lifespan (see Figure 6.5b)

I measured the densities for the average macaque age (representing a “young adult”)

and human age, then divided the two to get a multiplicative factor to correct the human

density for the age difference.

In order to compare the (corrected) human sample to the value predicted by

the allometric regression based on S. S. H. Wang et al. (2008), I plug in the human

brain weight into the callosum fiber density allometric equation estimated in Analysis 1

(density = 2.43∗103 ∗BWT 0.280). An average human brain weight of 1350g is used for

this comparison (Chudler, n.d.).

6.4.2 Results

Plugging a value of 1350g into the allometric equation, I obtain an estimate of

309.1 f ibers/µm2 for the fiber density of the human corpus callosum. Aboitiz et al. (1992)

reported an (uncorrected) fiber density in the human corpus callosum of 371.7 f ibers/µm2

(their Table 1); applying their published corrections for imaging technique increases their

estimate by a factor of 1.2; correcting for shrinkage reduces their estimate by 1/0.65.

Applying these two corrections gives a value of 288.6 f ibers/µm2, 7% lower than the

allometry-based estimate. This is the pre-age-correction baseline difference.

As shown in Figure 6.5c, the regression on age gives an equation y = 6.1∗x−0.386.

The fit is reasonable (r2 = 0.6140), and the trend is extremely clear (decreasing axon

density with age). The curvature for later ages is driven by the single older sample (Figure

6.5b and c), and so quantitative results using this regression should be interpreted with
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care. Using the methods above to map human and “young adult” ages onto this curve, I

estimate that human age 45 years old corresponds to macaque age of 14.8 years old (see

Figure 6.5b). The ratio of callosal density for the “young adult” macaque sample and

older human sample gives a value of 1.2, indicating that a younger human sample likely

would increase the measured density by about 20%.

When I multiply the shrinkage- and imaging-corrected density (288.6 f ibers/µm2)

by the 1.2 age-correction factor, the corrected human data reported by Aboitiz et al. (1992)

(346.3 f ibers/µm2) is approximately 11.5% greater than the estimate from the regression

(309.1 f ibers/µm2).

Figure 6.6: Corrected human density estimate plotted on the regression line derived
from animal data. Data from Aboitiz et al. (1992); S. S. H. Wang et al. (2008).

To compare how the human variability compares with the other data, an allometric
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regression was recomputed with the corrected human data. With this data point, the

regression equation changes to 2.43∗BWT−0.274 with r2 = 0.928. This is a small (2.5%)

change in exponent, virtually no change in multiplicative constant (< 1%), and an

improvement in the r2 value. These indicate that the human data are within the variation

expected from the other animal data.

6.4.3 Discussion

Age correction suggest that the regression equation for callosal axon density may

be conservative, but is overall very good (within 11.5% of the estimate). Though it is clear

that some age correction is needed, the estimate of 20% age difference in fiber density

needs further validation, given the lack of human data to estimate a human-specific curve

and the sparsity of the animal data available to reliably estimate the curve.

It is worth noting that the widely cited estimate of 200 million fibers in the human

corpus callosum is taken from this aged human sample. Due to the age of the sample,

this estimate clearly underestimates the human callosal fiber count for young adults.

Applying the same age correction to this total count I estimate 1.2∗200 = 240 million

fibers in the human corpus callosum, 20% more than previously reported.

6.5 Analysis 3: Estimating relative fiber counts from

Rilling and Insel (1999a).

Rilling and Insel (1999a) estimated grey matter surface area and corpus callo-

sum surface area and made an inference about interhemispheric and intrahemispheric

connectivity from the data. At least two things prevented them from estimating actual

connectivity from their surface area data using these equations. First, at the time of their
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publication, data had been published and allometric regressions performed for all quanti-

ties above except one–connection density within the corpus callosum. Second, though

the regressions had been performed on all other variables, some papers only reported

the allometric exponent (B in y = A∗ xB, or log y = A+B∗ log x when transformed into

log-log space for the linear regression)–sufficient to examine scaling relationships, but

insufficient for quantitative estimates of other values.

Both of these issues have been addressed. As shown above, since the time of

Rilling and Insel (1999a)’s publication, electron microscopy data of callosal fiber density

has been reported for 6 species (S. S. H. Wang et al., 2008). Solving the second issue

was trickier. If all of the data from these publications were publicly available, it would be

possible to compute parameters for each allometric regression and plug all quantities into

the equations. Unfortunately, no original data was available from any authors contacted;

instead, I use the same basic imaging techniques outlined in Section 6.3.1 to estimate

the data and estimate estimation error. I also use data from tables where I can, and I

cross-reference and combine results across the same lab where applicable.

A third reason why one might not perform the analysis that follows is that it

is extremely precarious to combine these data mathematically across studies. Choices

such as species sampled, tissue preservation and processing, and imaging techniques

can all have large effects on individual allometric estimates; because of this, these

scaling laws are usually understood more qualitatively than quantitatively. Though I have

seen some papers combine data across studies (Zhang & Sejnowski, 2000; Changizi,

2001; Karbowski, 2003; Changizi, 2009), most combine exponents through very rough

qualitative means rather than through the quantitative plug-and-play procedures here. I

have not seen any quantitative examinations of either approach, though I approach both

with caution.

I choose to follow the precarious mathematics because I believe Rilling and Insel
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(1999a)’s interpretation of their data doesn’t account for important scaling differences

between the corpus callosum and intrahemispheric inter-area connections, and that when

this is accounted for, their data lead to the unlikely (and opposing) hypothesis that

fiber connections in callosal inter-area connections are proportionally increasing vs.

intrahemispheric inter-area connections. In addition, the authors implicitly used similar

computational procedures to come to their conclusions.

In order for the scaling exponent of surface areas to represent the scaling ex-

ponents of actual connectivity, as Rilling and Insel (1999a) did, one must assume that

the rest of the quantities in Equations 6.1 and 6.2 scale with unity. This is the same as

assuming that Equation 6.5 (below) is true, where each quantity is a power law of brain

volume, and therefore the exponents add and are equal on each side of the equation. In

order to test such an assumption, one would have to plug values into the equations, just

as I propose doing in this analysis4.

[T hicknessgrey]∗ [Neuron Densitygrey]∗ [% Neuronspro ject to white matter]

= constant ∗ [Axon Densitycallosum] (6.5)

In order to give the reader a deeper insight into this data analysis, after discussing

the methods I walk through each dataset I collected and decisions I made in which

quantities were used from what publications.

4Some of the downsides can be mitigated by having a single lab collect these data, but even then
their collection procedures will differ from the collection procedures of Rilling and Insel (1999a), and so
introduce cross-technique variance.
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6.5.1 Methods

Data Acquisition

Many of the data used here are between 20 and 60 years old; raw data are no

longer available. Even for newer data, requests for raw data have either elicited no

response, or the data remain inaccessible for other reasons. In order to use these valuable,

published data, I developed a suite of simple computer vision techniques and manual

data mark-up to extract data from published histograms and scatter plots. Using these

techniques, I have been able to reproduce statistical results usually within 1% error (and

always within 2%) of the published analyses and allometric regressions. All code, parsed

data, and validation procedures are available freely online5.

The data used in this analysis were exclusively from scatter plots (no histograms),

and so I used the same general methods outlined in Section 6.3.1. Table 6.1 summarizes

the datasets selected and estimates of “plucking error” for each.

Data Analysis

Data were analyzed through reduced major axis regression on log-log plots (i.e.

allometric regression), which operates under the assumption that relationships between

parts of the brain are scale-free (i.e. that the relative relationship between the quantities

remains the same across all sizes). Scale-free relationships obey power laws, and so are

linear in log-log space. All allometric regressions I computed had excellent fits (except

where indicated otherwise in the text, 0.87≤ r2 ≤ 0.99 for all regressions).

5https://github.com/bcipolli/CallosalScaling
6See Section 6.5.1 for details.
7See Section 6.5.1 for details.
8Error could not be estimated, as no data analysis values were reported for this.

https://github.com/bcipolli/CallosalScaling
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Table 6.1: Regression equations computed from “plucked” data or taken directly
from the literature (when reported). “Plucking error” was computed by comparing
computations published in the paper to the same computations with the “plucked” data.
“Exact” indicates an equation pulled directly from the publication. BV (brain volume,
cm3) and BWT (brain weight, g) are the common comparison variables to examine
scaling laws.

Quantity Regression equation Reference “Plucking”
Error

Grey matter volume GMV = 0.538∗BV 0.969 Rilling and Insel
(1999a, 1999b)

N/A

Grey matter density GMD = 9.59∗104 ∗BWT−0.32 Tower (1954) < 1%
Callosal surface area CCA = 4.62∗BV 0.702 Rilling and Insel

(1999a)
N/A

% projecting PCT = 0.64∗BV 0 None N/A6

Brain weight (g) BWT = 0962∗BV 1.024 (Rilling & Insel,
1999b; Chudler,
n.d.)7

N/A

Callosal axon density CAD = 2.43∗BWT−0.28 S. S. H. Wang et
al. (2008)

N/A8

Data Selection

Each dataset selected, including data from Rilling and Insel (1999b, 1999a), were

selected to cross-validate both within a paper and across papers. A number of internal

consistency checks were computed to validate that data were “plucked” in a meaningful

way and that errors or inconsistencies in publications (such as unit conversions or

typographic errors) were located and either fixed or omitted.

Grey matter volume Grey matter volume can be computed directly, or computed as

the product of surface area and thickness. Rilling and Insel (1999a) estimated grey matter

surface area from MRI scans and reported it in a scatter plot. Rilling and Insel (1999b)

report grey matter volume directly in a table for a similar set of species and individuals.

In fact, for 7 of 9 species, the two publications perfectly match the number of samples

for each gender and average brain volume, indicating that for these species, data can be

combined across the two publications.
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I chose to use grey matter volume directly from Rilling and Insel (1999b) for a

number of reasons:

• The data were available in a table vs. parsed from a plot (though I was able to

replication regressions from the plot with error < 1%)

• The estimation procedure for volume (counting thresholded pixels in individual

scans, interpolating between scans) vs. surface area (manual tracing and addition

within scans, then interpolating between scans) seemed more robust, as the interpo-

lation for area made assumptions about shape whereas interpolation for volume

made no such assumptions.

• When I computed the regressions for grey matter surface area vs. grey matter

volume, the grey matter volume estimate (exponent = 0.969) agreed with previously

reported values and estimations on theoretical grounds (exponent ≈ 1). The

allometric regression for grey matter surface area did not (exponent = 0.754) match

either empirical nor theoretical predictions (exponent ≈ 0.889) (Changizi, 2001,

2009)9.

The choice to use grey matter volume means that species-average data were

computed across this entire analysis. Species-average data are often used to help avoid

large statistical problems, as variation within an individual species is dwarfed by variation

across species. Thus, multiple data points per species in a regression act as anchors for

the regression, giving more statistical confidence than warranted and, if the number of

samples per species are not perfectly balanced, potentially weighting specific species

data more than others in the regression. I had a priori decided to use species-average

data to avoid these issues, and so I did not consider this a problem.

9The poor allometric regression for the grey matter surface area was driven largely by an unexpectedly
small surface area for the human data point, compared to the volume reported. The dependence of the
anomalous regression on a single data value was another red flag.
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Grey matter density I used data from Tower (1954) and obtained regression coeffi-

cients within 1% of those reported in the publication (exponent=0.32). This value is

most problematic, however. Herculano-Houzel (2011) reports that neuron density is not

preserved across mammals; cross-family differences (for example, between rodents and

primates) can be large. Herculano-Houzel (2011) estimate neuron density in primates

to scale with cortex weight, but do not report a comparison with brain weight (which

itself correlates with cortex weight). This seems inconsistent with their previous report of

no correlation of brain size and neuron density in primates (Herculano-Houzel, Collins,

Wong, & Kaas, 2007).

Tower (1954)’s data is consistent with a second publication (see Changizi (2001)

for a review), included a wide range of species, and has been used in many papers

previous to Herculano-Houzel (2011)’s publication, so I felt tentatively comfortable to

use this value.

Callosal surface area This quantity was reported in Rilling and Insel (1999a) in both

Table 1 (species-wise) and Figure 1b (individual-wise). Though I was able to obtain data

from Figure 1b with little error (< 1.5%), because I chose to use species averages, I used

the data from their Table 1.

% projecting This value is problematic as well. Zhang and Sejnowski (2000) and

Changizi (2009) assume this value is constant. Herculano-Houzel, Mota, Wong, and

Kaas (2010) make a complex computational argument and estimate this to scale with an

exponent of −0.159. Though I find problems with their method and with the plausibility

of the reported value (discussed below), it is worth noting that regardless of these issues,

an actual value (if constant) or equation (if a function of brain size) is unavailable in the

literature.

The analysis of Herculano-Houzel et al. (2010) assumes that axon diameter
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distributions (ADDs) are constant across brain size; in my review of the literature this

contradicts the callosal data reviewed in Section 6.4. Note here, as discussed above, that

only electron microscopy data are appropriate for this measurement. Thin, unmyelinated

fibers are missed by using a light microscope, and their high packing density can have

a significant effect on average axon diameter. No electron microscopic data have been

published for intrahemispheric white matter ADDs, but there are no reasons to expect

such fibers would be missing from intrahemispheric fiber tracts, particularly given how

similar ADDs measured with a light microscope for intrahemispheric (Innocenti et al.,

2013) and interhemispheric (Aboitiz et al., 1992; Caminiti et al., 2009) are. Finally, the

authors cite Olivares et al. (2001) as showing increasing axon diameter with brain size.

In fact, Olivares et al. (2001) show a negative exponent (≈ 0.2); Herculano-Houzel et al.

(2010) suggest that it is small enough that it could be ignored. This logic seems flawed;

using the same logic, then their exponent of 0.159+/−0.113 could also be ignored.

Even accepting the assumptions behind the exponent, according to the basic

estimation that follows, the reported exponent does not have a plausible value. Herculano-

Houzel et al. (2010) report using brains ranging in weight from about 1 gram (tree shrew)

to 1350 grams (human) in their analysis. Assuming a maximum of 80% of cortical

neurons projecting into the white matter (all cortical pyramidal cells) in the tree shrew,

we have enough data to use the allometric equation ypercent = A ∗ xB
brain weight to get a

sense of what ypercent value this exponent would predict for humans. Solving the simple

system of simultaneous equations 6.6 and 6.7 (below) returns an estimate of about 25%

neurons projecting into the white matter for humans. This seems implausibly low, and

does not represent a “slight” reduction in the percentage of neurons projecting across

species as reported by Herculano-Houzel et al. (2010).
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80 = A∗1−0.159 (6.6)

PCThuman = A∗1350−0.159 (6.7)

In order to keep the model simple, and given the scaling value was driven by an

assumption about average axon diameter which I don’t agree with, I made the simplifying

assumption that this value is constant10. Once the value is a constant, then the actual

value does not matter in the relationship between total fiber count and callosal fiber

count, as in a log-log plot a constant factor becomes a change to the y-intercept and does

not affect the exponent. The only computation examined that is dependent on the true

value of this variable is the relative fiber count in interhemispheric vs. intrahemispheric

inter-area connections (see Section 6.6.1 and Equation 6.12).

A value of 0.64 is used as about 80% of neurons are pyramidal cells, and “most”

pyramidal cells project into the white matter (Zhang & Sejnowski, 2000). An informal

poll11 found 80% to best evoke the word “most”, and so I set percent projecting to

0.8∗0.8 = 0.64.

Brain weight I used species brain volumes reported in Table 1 of Rilling and Insel

(1999b). Some regressions used brain weights. To map brain volumes to brain weights,

I looked up corresponding average weights for the species on a website that collected

weights from a number of textbooks (Chudler, n.d.) and computed an allometric regres-

sion. Note that most people assume these values are interchangeable, and the computed

10I have re-run the analyses in this paper with different constant values for [% pro jecting] (0.80, 0.64,
0.30). I also re-ran using the allometric equation derived from equations 6.6 - 6.7. Changing the constant
value only changes the relative number of fibers in a callosal vs. intrahemispheric inter-area connection
(lowers to 2x or raises to 8x). Using the allometric equation added curvature Figure 6.8, and so could
change the main results of this paper.

11N = 1 (me)
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regression bears this out (r2 = 0.972). I re-ran all analyses with the assumption that brain

weight (g) and volume (mm3) are the same, and the results were quantitatively extremely

similar and qualitatively indistinguishable.

6.5.2 Results

Plugging in values from Table 6.1 into Equations 6.1 and 6.2, I compute the total

number of callosal fibers to scale as the 0.643 power of the total number of white matter

fibers (see Figure 6.7).

Figure 6.7: Log-log and euclidean plots of allometric regression for total white matter
fibers vs. total callosal fibers. Estimates of connectivity computed from Rilling and Insel
(1999a) data are in red, computed allometric regression is in blue. Grey corresponds
to the regression equation estimated by Rilling and Insel (1999a). The regressions are
plotted together to visually show the differences in scaling (curvature); note that the
actual values output by their equation are not meaningful in its usage here.
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6.5.3 Discussion

This result (exponent = 0.643) is drastically different than that estimated by

Rilling and Insel (1999a) (exponent = 0.88) but is much closer to what was estimated in

Section 6.2 (exponent = 0.66) and elsewhere (Changizi, 2001). The estimate in Section

6.2 is based on the difference between the homotopic connectivity of the callosum and

the positive scaling of intrahemispheric inter-area connections.

In order to examine whether the scaling difference in inter-area connections can

fully explain the scaling exponent of the fiber counts is explored in the final analysis.

6.6 Analysis 4: Explaining results through the homo-

topic connectivity of the corpus callosum

White matter fiber tracts connect as bundles of fibers between two cortical areas.

When considering a single cortical area, callosal connectivity is largely to one other

cortical area (the homotopic area in the other hemisphere (Aboitiz & Montiel, 2003)),

whereas intrahemispheric connectivity connects many other cortical areas. Critically,

while interhemispheric connections remain homotopic with brain size, the number of

cortical areas that a single cortical area connects to increases with brain size, partly driven

by an increase in the number of cortical areas in larger brains (Changizi & Shimojo,

2005) and potentially related to “efficient interconnectedness” (Changizi, 2009).

This suggests that any individual inter-area connection–whether interhemispheric

or intrahemispheric–is a proportionally smaller amount of the total connectivity with

increasing brain size, despite the fact that the size of each area, and number of fibers

within that inter-area connection is likely increasing with brain size (Changizi, 2001,

2009).
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6.6.1 Methods

In order to examine whether this effect can explain the above apparent reduction

in interhemispheric connectivity, I directly compared the scaling of fiber connections

to the scaling of inter-area connections. For the fiber ratio, I was able to avoid using

the estimated scaling equation for the number of cortical areas (Changizi & Shimojo,

2005) by computing ratios of per-area quantities. The scaling equation for the number of

cortical areas was not well-fit by a power-law equation and the value of its parameters

has not been verified in other studies. I also chose to compare callosal connectivity

to intrahemispheric connectivity (rather than comparing callosal connectivity to total

connectivity, which callosal connectivity is a part of). Subtracting out a quantity from the

total has shown to be a more effective method for doing allometric regression, and was

used in some (but not all) of the original Rilling and Insel (1999b) analyses.

Connection ratio(per area) =
Callosal inter-area connections

Intrahemispheric inter-area connections

=
1

inter-area connections(per area)−1
(6.8)

Fiber ratio(per area) =
# callosal f ibers (per area)

# intrahemispheric f ibers (per area)

=
# callosal f ibers

# total f ibers−# callosal f ibers
(6.9)

In order to compare these scaling laws, I regressed them against each other

(as done in Rilling and Insel (1999a) and in Analysis 1 above). In all regressions

performed, allometric regression exponents were close to one, and so linear regressions
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were computed as well to test whether allometric or linear regression was a better fit.

However, since computing linear regressions opens up the possibility of non-zero y-

offsets (i.e. that the curves do not intersect with the origin), I also estimated best fits

for exponential relationships with a y-offset (y = A ∗ xB +C) using the Nelder-Mead

optimization procedure in MATLAB12.

Table 6.2 contains the quantities used in equations 6.8-6.9.

Table 6.2: Values used in equations 6.8-6.9.

Quantity Regression equation Reference
Callosal inter-area conns (per
area)

CAC = 1 assumption

Inter-area conns (per area) (In-
trahemispheric)

TAC = 4.11∗BV 0.31 Changizi and Shimojo (2005)

Callosal fibers CF = 1.126∗107 ∗BV 0.414 estimated from Equation 6.1
Total white matter fibers TWMF = 3.33∗107 ∗BV 0.649 estimated from Equation 6.2

If the relationship between relative fiber count scaling and relative inter-area

scaling is linear, this would suggest that the scaling of the number of fibers per intra-

hemispheric and interhemispheric inter-area connection is the the same. Because an

allometric function for fiber counts was estimated above, and an allometric function for

per-area inter-area connections is available (Changizi & Shimojo, 2005), it is possible

to compute an estimate of the relative fiber counts for callosal vs. intrahemispheric

inter-area connections.

Using Equations 6.8-6.9 and basic algebra, the following equations are obtained

(where IAC stands for inter-area connection):
12see

https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/ lib/
guru/allometry/allometric regression offset.m

https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/_lib/guru/allometry/allometric_regression_offset.m
https://github.com/bcipolli/CallosalScaling/blob/c3e72194cae535acd3b6cbd7ea01f67ad9a10759/_lib/guru/allometry/allometric_regression_offset.m
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total fibers per IAC (callosal) =
total callosal f ibers

1∗# areas
(6.10)

total fibers per IAC (intra-) =
total intra- f ibers

[# inter-area cnxs (per area)]∗ [# areas]
(6.11)

callosal relative fiber count =
# f ibers per callosal area cxn
# f ibers per intra- area cxn

=
total callosal f ibers

[# intra- f ibers]/([inter-area cxns (per area)]−1)

(6.12)

Just as before, by computing the ratio of callosal and intrahemispheric quantities,

the allometric equation for the number of cortical areas cancels out. Note that, for this

regression only, the percentage of neurons that project into the white matter is critical

(see this variable’s value and notes about the value’s selection in Table 6.1). Variations in

that value are noted in the discussion below.

6.6.2 Results

For the regression of relative fiber scaling and relative inter-area scaling, an equal

fit (log-log: r2 = 0.927; linear: r2 = 0.928) is obtained with linear regression (assumed

exponent = 1) and allometric regression (exponent = 1.207). Though the allometric

is not so far from unity, the discrepancy between the allometric and linear exponents

leave open the question of whether this relationship is linear or not. The unconstrained

optimization (Nelder-Mead method) returns an exponent of 1.039 (r2 = 0.929) when run

on the untransformed data, lending support that the data have a linear relationship.

Regressing the expressions in Equations 6.10 vs. 6.11 also returns good fits

for both allometric (exponent = 1.222, r2 = 0.977) and linear regressions (r2 = 0.980).
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Figure 6.8: Regression for fiber ratio vs. inter-area connection ratio using species data.
Both have similar fits.

Figure 6.9: Regressions for callosal fiber count (per inter-area connection) vs. intrahemi-
spheric fiber count (per inter-area connection). The allometric and linear regressions
have very similar fits. The multiplicative constant in the linear regressions indicates the
relative number of fibers in average callosal vs. intrahemispheric inter-area connections.

The unconstrained optimization returns an exponent of 1.0343, again consistent with

the results from the first regression. The multiplicative value of the linear regression

(4.3; see the legend in Figure 6.9b) gives the relative strength of callosal connections vs.

intrahemispheric connections.
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Given that the equations used in first and second regressions are simple alge-

braic manipulations of each other, I expected the regressions to show similar results.

This is what was found for the allometric regression (exponents 1.222 and 1.207) and

unconstrained optimization (exponents 1.034 and 1.039).

6.6.3 Discussion

What drives the relative reduction of callosal fiber count? We saw in Analysis 3

that callosal fiber count scales more slowly than total white matter scaling. The linearity

of the first regression here is consistent with the hypothesis that this effect can be

explained completely by the differential scaling of callosal vs. intrahemispheric inter-

area connections, and that there is no differential scaling of fiber counts within each

inter-area connection.

Fiber ratio and inter-area connection ratio showed a linear relationship; there is

no exponential component of their relationship. Instead, their relationship is a constant

multiplicative factor over brain sizes. This means that the fiber scaling differences found

in Analysis 1 are completely explained by changes in the relative numbers of inter-area

connections. In other words, we expect the proportion of interhemispheric inter-area

connections will decrease with brain size–there is always only one per cortical area

(the connection to the homotopic area in the other hemisphere) while we know that

the number of areas, and intrahemispheric inter-area connections are both increasing

(Changizi & Shimojo, 2005). The exponential rate at which that relationship changes

is the same exponential rate at which we computed the number of interhemispheric vs.

intrahemispheric fibers to be changing. There is no evidence of selective reduction in

the number of fibers per inter-area connection as suggested by Rilling and Insel (1999a);

increases or decreases in fiber counts exactly correspond to increases or decreases in

inter-area connections.
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Relative fiber count of inter- vs intrahemispheric inter-area connections Compari-

son of fiber counts, on a per-inter-area connection basis, also showed a linear relationship.

This again supports the idea that the same scaling laws apply to both fiber types. Callosal

fibers showed 4.3x more fibers per inter-area connection than intrahemispheric connec-

tions, suggesting a special role for interhemispheric fibers. This result is even stronger in

the light of recent findings from Henry Kennedy’s lab. They have published compelling

data that suggest fiber count decreases as an exponential function of distance (Markov et

al., 2013). Because callosal connections are on average longer than intrahemispheric con-

nections (Lewis et al., 2009), our a priori expectation should be that callosal fiber counts

would not be equal, but would be relatively lower when compared to intrahemispheric

fiber counts (per inter-area connection).

If we accept this consistent relationship, then the slope of the regression represents

the relative number of fibers in a callosal inter-area connection vs. an intrahemispheric

inter-area connection. The slope value is 4.3x both in the linear and unconstrained

3-parameter optimization, suggesting that callosal inter-area connections have about 4.3x

more connections than the average intrahemispheric inter-area connection (Figure 6.9).

This 4.3x factor is preserved across all brain sizes.

Note that the percent of fibers projecting into the white matter was guessed at,

using 80% of cortical neurons as pyramidal cells and 80% of those projecting into the

white matter. This seems a relatively conservative estimate. Any percentage lower than

that would simply weight callosal connections more than 4.3x.

Potential explanations for a non-linear relationship The possibility remains that the

relationship between fiber and inter-area connection scaling is not a linear relationship.

A potential interpretation of the 1.2 exponent value is that it reflects the scaling of

non-homotopic connectivity in the corpus callosum. I assumed that all connections are
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homotopic, but we know that is not strictly true. In addition, it seems likely that there

will be a positive scaling of non-homotopic connections with brain size, as the number of

non-homotopic areas increases with brain size (Changizi & Shimojo, 2005).

It is also worth noting that the possibility of the percentage of projecting neurons

decreasing with brain size, as suggested by Herculano-Houzel et al. (2010), would not

explain away a positive exponent, but rather would exacerbate it.

Summary These analyses suggest that callosal connections are both very typical and

very special. There is no evidence for a selective decrease in callosal connections;

rather callosal connections scale just like intrahemispheric connections. Across species,

callosal connections severely break the exponential distance relationship; despite being

on average longer connections, the number of fibers is 4.3x greater in a callosal inter-area

connection than in an intrahemispheric inter-area connection.

6.7 General discussion and conclusions

In this paper, I used data extracted from the literature to investigate allometric

scaling of total and interhemispheric white matter fibers and inter-area connections across

primate species. Along the way, I found:

• Callosal fiber density scales proportional to brain mass with an exponent of −0.28.

• There is good evidence for age-related decreases of fiber density in macaque

monkeys.

• I estimated a 20% age-related correction for human callosal density data reported

in the literature, due to older samples in for humans vs. animals.
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• From this correction, I estimate that young adult humans have ∼ 240 million

callosal fibers. This 20% increase is consistent with what is predicted from the

callosal fiber density regression.

These findings allowed us to examine cross-species scaling of the proportion of

total and interhemispheric white matter fibers. I found:

• Interhemispheric fibers scale as the 0.64 power to total fibers, much smaller than

the 0.88 power previously estimated (Rilling & Insel, 1999a).

• The scaling of interhemispheric vs. intrahemispheric fiber counts seems to match

the scaling of interhemispheric vs. intrahemispheric fiber tract bundles between

areas, suggesting that the above is due purely to the homotopic nature of interhemi-

spheric connectivity.

• When estimating bundle sizes, despite on average being longer connections, cal-

losal fiber bundles contain 4.3x more axons than the average intrahemispheric

connection.

6.7.1 Potential challenges and caveats

As outlined throughout the paper, there are a number of challenges in this type of

estimation:

• Without direct access to source data, it is hard to know what data is best to use.

• Allometric regressions are highly-dependent on variables that I don’t have control

over when collecting data across the literature.

• There is a lack of convergence in the literature about the allometric relationship

for both neural density and the percentage of neurons sending projections into the

white matter fiber, both of which affect the analyses here.
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• Allometric and linear regressions equally explained the data with different ex-

ponents; which choice reflects the true relationship in the data? The use of the

non-parameterized optimization procedure gave weak evidence in favor of the

linear regression, and there is theoretical reasoning behind the linear regression, but

there is no stronger evidence in support of using either regression at the moment.

6.7.2 Applicability to other large-brained species

Not only does this work clarify the role of the corpus callosum in humans, but

it also re-calibrates expectations for other large-brained animals. With a dissociation

between brain size, lateralization, and independence, there is no reason to expect reduced

interhemispheric communication, nor lateralization, in large-brained species such as

elephants and cetaceans. In animals such as cetaceans where a reduced corpus callosum

is clear (Tarpley & Ridgway, 1994), this should be viewed as unexpected and a special-

ization. In dolphins, relatively independent hemispheres may allow them maintain a

constant state of alertness and ability to surface to breathe, even during their unique sleep

pattern where only one hemisphere enters sleep at a time (Ridgway, 2002).

6.7.3 Conclusions

I have argued elsewhere that the special conditions of human development lead

to a unique developmental trajectory of white matter, particularly the corpus callosum,

which affects the development of lateralization (Chapter 5). I believe the results in

this paper, in tandem with our previous results, put a focus back on the human corpus

callosum and its role in human lateralization and cognition.

This paper makes a number of testable predictions about the corpus callosum

across many species. I welcome collaborators with access to freshly deceased human,
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cetacean, or other brains to collaborate with us in testing the hypotheses outlined in this

paper.
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Chapter 7

Inter-chapter connectivity

In the preceding chapters I describe computational models that support neurode-

velopmental explanations for lateralization of visual processing and robust cross-species

interhemispheric communication. Interactions between lateralization and interhemi-

spheric communication are briefly and abstractly touched on (Chapter 5), but an inte-

grated account of visual asymmetries and interhemispheric interactions is not addressed

directly nor speculated on. This chapter is an attempt to place the research in this thesis

into a broader context of existing models and, by doing so, speculate on a direct relation-

ship between lateralization of visual processing and interhemispheric communication.

I will do so by reviewing two related models from the literature, examining how the

models covered in Chapters 2 - Chapters 6 compare and contrast, and then offer a specu-

lative integrated neurodevelopmental theory of visual asymmetries and interhemispheric

communication. I conclude by relating the results and speculations of this thesis to

lateralization more broadly. By doing so, I hope to set the stage for future research based

on the findings within this thesis and my broader understanding of the literature.

144



145

7.1 Relation to the Double Filtering by Frequency (DFF)

model

The double-filtering by frequency (DFF) model is a neural network model that

implements Ivry and Robertson (1998)’s proposal that visual asymmetries in processing

Navon stimuli or spatial frequency gratings arise from symmetric early visual processes

being differentially biased by top-down task demands. The top-down mechanism operates

by selecting task-related frequencies (the first “filtering” stage), then each hemisphere

applies a differential bias on that task-related frequency band. In contrast, the differential

encoding (DE) model described in Chapters 2 - Chapters 6 is an implementation-level

model; it does not postulate a direct relationship between spatial frequency filtering and

lateralization, but instead suggests that an asymmetry in the connection spread of long-

range lateral connections drives encoding differences between the hemispheres that affect

representation of configural information, contour information, and spatial frequency

information in ways that can account for asymmetries in behavioral task performance.

Both models show a relationship between spatial frequency filtering and reaction

time data in local/global processing. Both are consistent with data showing modulation

of lateralization in attention. Is the differential encoding model an implementation of the

double-filtering by frequency model? I believe there are a number of factors that not only

differentiate the two models, but make them irreconcilable.

First, the two models have very different relationships with spatial frequency

filtering. In the DFF, spatial frequency filtering is the fundamental asymmetric operation

that differs between the hemispheres, while in the DE the fundamental asymmetric

operation is in integration across receptive fields of contour and configural information

via long-range lateral connections. In the DE, spatial frequency processing differences

only arise as a byproduct of a bias in contour processing. The DE’s focus on contour
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processing, rather than more abstract spatial frequency processing, could be consistent

with findings that studies manipulating spatial frequencies directly have extremely vari-

able effects, as their effect on contour processing is itself variable and highly dependent

on the manipulation found in each study. Stimulus variations that eliminate spatial

frequency power differences in local and global levels, but maintain contour contrast,

could therefore differentiate between the two models (see Section 8.1 for a proposal of

such an experiment).

Second, the DE postulates multiple loci for visual processing asymmetries (see

Section 3.4), whereas the DFF makes absolutely no claims. This is best illustrated by the

differing approaches to explaining the putative “relative frequency” data of Christman

et al. (1991). In the DE, top-down information feeds into multiple visual areas, each

of which can have their own spatial frequency biases. The area most strongly selected

for a classification task depends on the spatial scale of the task-related discrimination,

as presumably an area that has receptive field sizes large enough to process features at

that scale would be selected. In the DFF, top-down control acts as a central filter on the

spectrally-processed visual information. Whether that spectrally-processed information

exists in a single cortical area or not, and whether this filtering happens in a single cortical

area or not, are both unanswered questions. However, given the great pains to share

mechanisms over modalities, it would be surprising for the DFF to claim that either level

(bottom-up processing of spatial frequency information or top-down modulation of that

frequency information) involves multiple cortical areas.

The DE hypothesis of multiple cortical areas being involved in the “relative

frequency” effect is supported by findings in the literature and further simulations we’ve

run. Hopf et al. (2006) found that the spatial scale of a discrimination indeed activated

different visual areas, with larger spatial scales activating areas later in the ventral

visual processing stream, consistent with the increasing receptive field size in later areas.
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Relevant to the DE, Amir et al. (1993) showed that both the absolute length of long-range

lateral connections, and what percentage of the visual field that they span, increase the

further one traverses down the visual hierarchy. In additional simulations, we have

shown that these length differences are consistent with no lateralization in early visual

areas (supported by data reviewed in Sergent (1982)’s original formulation of the spatial

frequency hypothesis) and lateralization at different spatial scales in different cortical

areas in the visual hierarchy. None of these findings are addressed by Ivry and Robertson

(1998)’s model, nor are they compatible with the DFF neural network model outlined in

the publication.

A third difference between the DFF and DE is how each model approaches

lateralization across modalities. As referenced above, the DFF model aims to account for

auditory lateralization of frequency processing through the same mechanism as visual

lateralization. The DE model is based on the idea that a modality-specific mechanism is

critical to characterizing and understanding lateralization. The role of long-range lateral

connections in audition has not been well-characterized to my knowledge, and it remains

unclear whether a modality-specific mechanism that could account for auditory frequency

lateralization and allow top-down modulation exists (though see Section 7.5). The DE

postulates that differential timing of hemispheric maturation interacts with visual acuity

changes to cause the postulated connectivity difference in visual cortex. It is likely that

this same differential maturation would affect other modalities, but how it affects them

would be very modality-specific. For example, infants receive low-pass filtered auditory

input in the womb (Smith, Gerhardt, Griffiths, Huang, & Abrams, 2003); given a faster

maturing right hemisphere in the womb (N. Geschwind & Galaburda, 1985), one might

find asymmetries in learned structure within the right hemisphere.

A final difference between the two models is how they address interhemispheric

interactions. The DFF is not only silent about interhemispheric interactions, but because
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the model lacks physiological mechanisms for spatial frequency filtering, it is not possi-

ble to generate any prediction about how interhemispheric communication mechanisms

could interact with spatial frequency filtering. While the DE has not incorporated any

interhemispheric integrations to date, its explicit physiological methods make incorpo-

rating interhemispheric connections more straightforward. In addition, because the DE

contains an explicit developmental trajectory, interactions with development of the corpus

callosum can be described (and is, in Section 7.2). Finally, recent evidence suggests that

callosal connections share function and physiology with long-range lateral connections

(Schmidt, 2013), making the feasibility of combining them into a single computational

model more plausible.

Relation to Contour Processing

The core difference between frequency filtering and the differential encoding

(DE) model is captured in the relationship of the DE to contour processing. I have

argued that global-level processing, configural face processing, and contour processing

all use neighbor information via long-range lateral connections. I’ve shown modeling

data suggesting that asymmetric processing of these stimuli may come from a right

hemisphere (RH) bias for shorter long-range lateral connections, which bias the RH for

capturing these neighbor relationships inherent in contour and configural processing.

A number of neurophysiological and behavioral findings support a relationship

are consistent across global figures, face processing, and contour processing, consistent

with the hypothesis of a shared mechanism between them. While a RH advantage for

global figures has been well established, As reviewed by Gazzaniga (2000), seemingly

related abilities, such as in illusory contour processing or amodal completion - contour

completion in the face of occluders - show a right hemisphere advantage (De Renzi &

Spinnler, 1966; Wasserstein, Zappulla, Rosen, Gerstman, & Rock, 1987; J. Hirsch et
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al., 1995). Volberg (2014) was the first to test lateralization of contour processing and

found a RH advantage. Both show similar protracted developmental timelines (Altschuler

et al., 2013), and both are reduced in autism Behrmann et al. (2006), a developmental

disorder thought to affect connectivity mechanisms. Roux and Ceccaldi (2001) find

age-related decline in local/global interference, consistent with Roudaia, Bennett, and

Sekuler (2008) ’s finding of age-related decline in contour processing, which requires

ignoring conflicting local elements and parsing out a consistent global contour.

A few studies suggest a shared mechanism more directly. Volberg, Wutz, and

Greenlee (2013); Pitts and Martinezzr (2014) both report that contour processing is

modulated by task demands, consistent with studies on global form processing reviewed

in Ivry and Robertson (1998) and with the DFF theory. At a deeper, more specific level,

Li et al. (2008) showed that contour processing in macaque monkeys involves a feedback

circuit between V1 and V4. When Volberg and Greenlee (2014) adapted Li et al. (2008)’s

study to an EEG paradigm in humans, they associated the lateral occipital complex

(LOC) with grouping mechanisms. These same LOC areas have been associated with

face (Behrmann & Plaut, 2013) and global form (Hopf et al., 2006) processing.

The picture is not crystal clear, however. Gazzaniga (2000) reviews other studies

that suggest separable mechanisms. (Wasserstein et al., 1987) reports right hemisphere

dominance for illusory contour processing, but no relation to a facial discrimination task.

Corballis, Funnell, and Gazzaniga (1999) found dissociations between illusory contour

processing and amodal completion in two split brain subjects, also suggesting that there

may be multiple mechanisms in play.

None of these studies definitively link contour processing, face processing, and

global form processing, but their convergence lends support to the idea and suggests that

further study is warranted.
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7.2 Integration with Plaut and Behrmann (2011)

The most complete current theory on the development of lateralization of face

and word recognition comes from (Plaut & Behrmann, 2011; Behrmann & Plaut, 2013).

This theory builds off of literature suggesting a competitive relationship between face

and word recognition, rather than an innate source of lateralization. Data used to argue

the point include typical developmental trajectory of lateralization in relation to reading,

cross-cultural studies of lateralization with relation to reading, and neuroimaging studies

of reading recognition in prosopagnosia. Plaut and Behrmann (2011) also present a

neural network model to support their idea that visual recognition of words is lateralized

to the left fusiform gyrus, and therefore face recognition to the right fusiform gyrus.

Core ideas to the model include that while faces and words require high-acuity visual

discriminations, they have very different representations. This causes competition for

resources that the brain resolves via lateralization, with visual word forms lateralized to

the left hemisphere to efficiently express their dependency on left lateralized phonetic

representations.

Potential issues with the model

I find the data this theory is based on to be very compelling, and overall I think

the competitive view of lateralization fits with the data. However, a number of questions

remain unanswered with their theory. What are the neuroanatomical substrates of the

left and right hemisphere specializations? Are these neuroanatomical asymmetries only

found in the late-stage fusiform areas, or could lateralization in earlier stages of visual

processing account for the lateralization in the fusiform areas? Are these asymmetries

modulated by stimulus strength and attention? If so, how?

Another challenge for the theory comes from questions about the relationship
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between visual processing asymmetries of faces and words with that of other stimuli,

such as Navon figures and spatial frequency gratings. Does lateralization in local/global

processing or spatial frequency gratings relate to those of words and faces? If so, why are

findings in visual lateralization so weak (67% of published studies; Van Kleeck (1989))

and variable across participants when population-level language lateralization is so strong

( 90% of the population) and unequivocal across studies? If not, what separates the

mechanisms within the ventral visual stream?

A final set question surround the idea that visual word forms are lateralized to

the left hemisphere due to left lateralization of productive language capabilities and

specifically phonetic information. As discussed in Chapter 5, timing considerations are

unlikely to lead to lateralization, particularly in the later stages of development when

large-scale connection pruning is likely complete. Language lateralization is thought to

depend crucially on the need for fast processing, but what processing requires such fast

time scales that would lead to semantic and visual recognition of words also being left

lateralized? A specific need based on timing is never presented, nor are neural data that

show such a need cannot be fulfilled with long-distance connectivity. Finally, there is

some evidence of RH lateralization of face processing in the rhesus macaque monkey

(Hamilton & Vermeire, 1988; Vermeire, Hamilton, & Erdmann, 1998). Consistent

with the human data, such lateralization is experience-dependent; unlike the human

data, in rhesus macaque monkeys the RH lateralization cannot be driven by language

lateralization. How might the model account for these data?

Clear overlap between the theories

Plaut and Behrmann (2011) postulate that interhemispheric competition is critical

to lateralization of faces and visual word forms. This is consistent with my findings

that the human corpus callosum is not selectively decreased in humans, but instead
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may over-represent thin, slow fibers (Chapter 5)–just the types of fibers found between

association areas such as the fusiform face area (FFA) and the visual word-form area

(VWFA) (Aboitiz et al., 1992; Aboitiz & Montiel, 2003). It is also consistent with the

analysis in Chapter 5 that the relative slowness of these fibers does not pose a challenge

to interhemispheric collaboration.

The developmental trajectory of the corpus callosum is grossly consistent with

the development of face recognition and word reading abilities. Lateralization is initially

not present, consistent with immature interhemispheric connections leading to reduced

interhemispheric competition (Chapter 5). Over time, maturation of these fibers would

lead to increased interhemispheric communication and facilitate competition. Though

maturation of some callosal fibers happen early during development, thinner association

fibers tend to begin maturing later and mature for a longer period, consistent with a

protracted trajectory for lateralization of face and visual word-form recognition.

Potential issues in integrating with this thesis

The differential encoding (DE) model is able to account for local/global (Chapter

2), spatial frequency and face recognition asymmetries (Chapter 3), with the hope to

extend to word recognition. It postulates an asymmetry in connectivity of long-range

lateral connections within retinotopic within extrastriate visual areas, causing stronger

asymmetries with activation of this system due to weak stimulus strength (low contrast

or brief duration) (H. A. Swadlow & Alonso, 2009) or from top-down task demands,

particularly as they relate to contour or configural processing (C. D. Gilbert & Li, 2013).

These results seem overall consistent with the data from Plaut and Behrmann

(2011). One potential point of difficulty in integrating the data across models is how

the differential encoding model, focused on retinotopic visual cortex, might relate to

asymmetries in the fusiform gyrus, located later in the ventral visual stream and thought
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to contain representations that are less variant to stimulus position than retinotopic cortex.

Development poses an additional challenge in integrating the two theories. Plaut

and Behrmann (2011) provide good data suggesting that development of lateralization

for faces and visual word forms is inter-dependent, and therefore such lateralization

is not obligatory, but instead based on experience with visual word forms and reading.

The differential encoding (DE) model, on the other hand, postulates that lateralization

of visual processing occurs early in typical human development due to an interaction

between changing visual acuity and a difference in the timing of visual maturation

through connection pruning (Chapter 4).

Potential ways to overcome issues

Proposing a shared developmental schedule

Developmental data show that long-range lateral connections tend to stabilize

after initial pruning. For example, cats reared in an environment with vertical stripes do

not attain full visual perceptual abilities after being shifted to a fully enriched environment

if the shift is made after the critical period (H. V. Hirsch & Spinelli, 1970; L. E. White &

Fitzpatrick, 2007). I performed simulations with our developmental model to test how

further visual experience would affect the model when connectivity is held static but

further perceptual learning occurs (through changes in synaptic strengths). I found that

virtually all spatial frequency differences between the hemispheres (reported in Chapter

4) were lost (Cipollini, unpublished observations).

I propose the following developmental progression: long-range lateral connec-

tions in post-sensory visual areas are differentially pruned early in development, starting

between 3 and 6 months of age (Gerhardstein, Kovacs, Ditre, & Feher, 2004; Baker, Tse,

Gerhardstein, & Adler, 2008) and completing around 13 months of age (Burkhalter, 1993;
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Norcia et al., 2005), due to an interaction between visual acuity changes (Norcia, Tyler,

& Hamer, 1990) and an earlier maturation of the right vs. left hemisphere (N. Geschwind

& Galaburda, 1985; Hellige, 1993; Chiron et al., 1997). Testing this asymmetry early in

development would be challenging, as the asymmetries are not found in basic sensory

detection tasks or others that more directly access early visual areas, as these areas have

connection lengths too short to show a functional asymmetry.

After this period of axon elimination, experience-dependent plasticity continues

to reshape these connections (Luhmann, Martinez Millan, & Singer, 1986; L. C. Katz

& Callaway, 1992; R. A. W. Galuske & Singer, 1996) reduces asymmetry between

the hemispheres. The connection asymmetry would remain latent, but any processing

asymmetry would likely be too weak to reliably detect in most individuals or across the

population. This is consistent with studies showing that shifting from a deprived to fully

enriched visual environment does not change visual perceptual abilities if the shift is made

after the critical period (H. V. Hirsch & Spinelli, 1970). The visual perceptual abilities

are thought to be driven by long-range lateral connections, which show differential

connectivity patterns based on the deprived environment (H. V. Hirsch & Spinelli, 1970);

the critical period for these abilities is likely driven by connection pruning.

Immature interhemispheric fibers during this time would prevent the hemispheres

from interacting in ways that might abolish their differential sensory development. After

the critical period, the maturing interhemispheric fibers would enable more robust inter-

hemispheric interactions and allow competition for representation (Plaut & Behrmann,

2011; Scherf, Behrmann, Humphreys, & Luna, 2007). Rather than visual word forms

being lateralized to the left hemisphere to be localized with language (Plaut & Behrmann,

2011), I postulate that this is due to the postulated latent connectivity pattern differ-

ences that bias the right hemisphere for learning low spatial frequency information such

as global-level contours and configural information at the cost of more detailed high-
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frequency feature information, thus biasing word-form learning to the left hemisphere.

Over time, visual learning in contour processing continues, with evidence of

plasticity in neuroscience through at least 4 years of age(Kaldy & Kovacs, 2003), and

continued psychophysical development in ages 5 - 14 (Kovacs, Kozma, Fehr, & Benedek,

1999).

Proposing a relationship between IT and retinotopic connectivity asymmetries

There are a number of ways that an asymmetry in retinotopic visual cortices

could lead to asymmetries in activation of the fusiform gyrus during face or visual word

form recognition. One possibility is that the long-range lateral network is more active

during development than adulthood. This could be due to a number of factors. Learning

is effortful, particularly word learning, and that attentional engagement activates the

long-range lateral connection network. These networks may also simply be more active

during development, as feed-forward visual processing may proceed more slowly and

may engage lateral networks more robustly during perceptual learning. On this idea, a

heavier involvement of long-range lateral connections during the development of the

fusiform areas could lead to their lateralization. After perceptual learning and individuals

become face and word form experts, long-range lateral connections would only be

selectively engaged due to stimulus strength and task demands. However, higher-level

representations of faces and words would already be lateralized within the fusiform gyrus,

and would no longer need active engagement of long-range lateral connections to be

expressed.

Another possibility is that connection differences in the fusiform gyrus could lead

to these types of differences. Representations in the inferior temporal lobe are less variant

to stimulus position, but they are not invariant. It is possible that there is a component

of the functional maps of the FFA and VWFA that represent retinotopy. In this case,
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differences in long-range lateral connection may be latent in these areas and may be

capable to bias perceptual learning directly.

A final possibility is that the face processing pathway is relatively independent

of the pathway that produces local/global lateralization. In support of this idea, Kimchi

(1992) of reviewed local/global and (w)holistic processing results and concluded that

they likely describe different processes. There is a lot of evidence linking face processing

and holistic processing, so this conclusion suggests that local/global and face processing

are likely different processes. More directly, Dale and Arnell (2013) found that while

local/global and face preferences showed stable individual differences, the two tasks did

not share variance.

Nonetheless, some mechanism must link the two. A developmental model such as

the one suggested in this section could account for these results. The interaction between

the two systems could be unique to development. In such a model, after interacting during

development, the two systems would share a common lateralization. However, after being

decoupled late in development, the two systems could take different domain-specific

trajectories. For example if face lateralization is present in the FFA and local/global

lateralization is present in V4, then we might see a more direct interaction between V4

and the FFA during development. After development, that interaction would be lost, and

the interactions of the FFA with the visual word-form area (VWFA) could then drive the

FFA to keep some general aspects of lateralization, but also change the FFA’s processing

such that the neural coding becomes more and more decoupled from V4 representations.

7.3 Summarizing the theory

The DE is an implementational theory that posits a difference in the long-range

lateral connections in extrastriate retinotopic visual areas drive lateralization in contour
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and configural processing. The model shows spatial frequency differences only because

contour and configuration information are usually stored in the low spatial frequencies.

These long-range lateral connections are most active with low stimulus strength (brief

presentation, low contrast), matching findings from the literature. Stimulus size and

retinal position matter because the areas are retinotopic, also consistent with the literature.

The asymmetry in long-range lateral connectivity develops during early visual

maturation, where earlier right hemisphere maturation leads to connection pruning under

poor visual acuity, causing short-range connections to be over-represented after pruning.

This is due to the surprising relationship between shorter long-range lateral connections

and better contour processing. The left hemisphere also shows a bias for shorter-range

lateral connections, but a lesser bias than the right hemisphere due to its greater experience

with high-acuity visual input.

After initial developmental bias of these connections, symmetric visual input

overpowers any small bias in information encoding between the hemispheres. The

connectivity different remains latent, however. When the individual encounters stimuli

that compete with existing representations in the brain (such as when learning to read,

words may compete with faces because they have diagnostic information coded in very

different ways), the neural encoding will self-organize into more separable maps. When

the corpus callosum matures more completely, one good way to segregate these resources

is across the hemispheres, and lateralization will emerge. Representations for objects

such as faces will be learned more quickly by the right hemisphere due to the shorter

connections favoring contour and configural processing.
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7.4 Potential shortcomings of the theory

This theory depends crucially on left and right hemispheres developing at different

rates. The empirical support for this is relatively weak (N. Geschwind & Galaburda, 1985;

Hellige, 1993; Chiron et al., 1997). Though no justification has been given in this thesis

why the hemispheres may develop asymmetrically, I believe there are good reasons for it.

The right hemisphere exhibits lateralized connectivity to the autonomic nervous system

((Bud) Craig, 2009), negative affect (Craig, 2005) and generally shows preferences for

faster processing (Bar, 2004; Howard & Reggia, 2007). Some authors have suggested a

link between RH abilities and the “fight-or-flight” response of the sympathetic nervous

system, and an explicit link between faster, low-frequency processing and the “fight-or-

flight” response has been found in some baby chickens (Rogers & Andrew, 2002).

There is a potential link between earlier development of the sympathetic system

responses across all animals and right hemisphere functions. If this were the case, then

one would expect asymmetric timing in the development of the hemispheres across

mammals, not just in humans. If true, this would also be consistent with findings of

lateralization in visual processing of rhesus macaques (Hamilton & Vermeire, 1988;

Vermeire et al., 1998).

Another potential shortcoming of the theory is in the specific timing of the devel-

opmental trajectory of callosal and interhemispheric fibers, specifically in the myelination

of such fibers. Recent advances in neuroimaging allow the developmental trajectory

of myelination to be discovered at a more detailed level. Though the research here

represents a proof-of-concept on developmental dependencies between lateralization and

interhemispheric communication, as more research is done, these qualitative investiga-

tions can become more quantitative. It is worth noting, however, that care must be taken

in these quantifications. Both callosal and intrahemispheric connectivity are not unitary
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things, and separating maturation of thick, fast fibers from thin, slow fibers is essential

for any investigation of the effects described in this paper.

7.5 Extending beyond vision

I believe that many of the principles contained within this theory will extend

to other aspects of lateralization, including language and handedness. It is clear that

while some aspects language lateralization and handedness may be found even without

callosal development (Paul et al., 2007), other aspects (such as prosodic integration)

are not. In addition, in typically developing humans, lateralization of language and

handedness increase over time (Petitto et al., 2012), again consistent with a role for the

corpus callosum in establishing adult-like lateralization. Much more work must be done

to carefully understand these underlying suggestions.

The differential encoding model may be extended beyond vision in two ways.

First, the differential encoding model simply describes how neighbor information is

combined across cortical maps. In this work I focused on retinotopic maps; however,

somatotopic, tonotopic, and higher-level object or other maps may be applied through

the same principles. The limiting factor in many cases, such as higher-level auditory

areas such as Wernicke’s area, is that we may not know the functional map to which this

encoding difference may apply.

The second way that the differential encoding model can be extended is to focus

on how connection spread affects time instead of space. In space, I’ve argued that the

greater spatial correlations of nearby neighbors (such as contours) is captured better by

shorter connections, while longer connections allow focusing more on local features. In

time, a similar argument can be made: shorter-range connections may sample correlations

relationships in time, while longer-range connections focus on features that are local in
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time. Thus, longer connections would sample shorter time-scales (more local in time)

while shorter connections would successfully integrate over a time envelope.

In fact, there is some consistency in this functional assessment and the biology of

auditory and visual systems. An association between mini column spacing and inter-patch

spacing has been found in auditory cortex (Seldon, 1981a; R. A. Galuske et al., 2000),

with wider spacing of both in the left hemisphere auditory cortex as compared to right. In

auditory cortex, this has been associated with lateralization in temporal processing, with

wider left hemisphere connectivity associated with temporal discrimination at a faster

time-scale. Notably, neither of these differences were found in primary auditory cortex.

Recently, wider left hemisphere mini column spacing has been found in the fusiform

gyrus (Chance et al., 2013). We predict greater spacing of long-range lateral connections,

and show that these are associated with higher-frequency processing.

These are just two of many ways that these findings could be extended to other

systems.



Chapter 8

Preliminary Extensions and Future

Work

Though the work here has focused rather narrowly on lateralization of visual

processing and the corpus callosum, the research touches on more general principles

on the computational role of long-range lateral connections, the developmental trajec-

tory of white matter connectivity, the role of conduction delays in neuroscience, and

approximating human data using allometric regressions.

A number of projects have been conceived, proposed, or even begun during

the course of this dissertation. For most projects, I outline the motivation and general

direction. For those with work completed, I give a bit of detail on the data (to date) and

potential directions. For those with proposals, I’ve included the relevant part of each

proposal here.

161
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8.1 Follow-ups to the Differential Encoding model

Neuroanatomical collaboration in extra-striate visual cortex

The first type of follow-up study could involve finding a collaborator to search

the human brain for asymmetry in long-range lateral connections. The prediction of the

model currently is that differences in long-range lateral connections should appear in any

retinotopic visual area with an average connection length such that variations could lead

to visual processing asymmetries.

Absolute and relative length of long-range lateral connections increase as one

goes higher in the visual hierarchy (Amir et al., 1993). When I used data from Amir

et al. (1993), I found that areas early visual area V1 has long-range lateral connections

that span too little of the visual field to show any asymmetries with the 20% difference

in spatial spread reported by R. A. Galuske et al. (2000). I found that retinotopic area

V4 does have long enough connections where asymmetries could occur. Interestingly,

C. D. Gilbert and Li (2013) postulate that an interaction between V4 and V1 can explain

many aspects of contour processing. Therefore, V4 may be the most reasonable area to

target for histology.

Similar processing methods to R. A. Galuske et al. (2000), who found the original

connection distance difference between the hemispheres in Brodmann area 22, could be

used in such a study.

Accounting for current results with a unified model

Currently, there are three different training paradigms used in generating the

differential encoding results in this paper:

• The original technique selects autoencoder connections from a Gaussian distri-
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bution, then trains the autoencoder model only on the task-relevant images (see

Chapters 2 and 3). Though this model accounts for the most behavioral results, it

approaches human vision least.

• The natural images technique also selects autoencoder connections from a Gaussian

distribution, but uses a dataset of natural images to train the autoencoder (van

Hateren & van der Schaaf, 1998) and extracts hidden unit encodings using task-

relevant images (Chapter 4). This model uses a log-polar transform of the data in

order to model the overrepresentation of central vision in retinotopic visual cortices.

This model is much more like human vision, in that it uses task-independent visual

features to compute encodings and uses neuroanatomical facts to more closely

model those features, but has only been used to model one behavioral paradigm

(Sergent, 1982). The results were promising; this model shows smoother and more

consistent spatial frequency filtering properties than the original technique and can

be trained once, then its encodings on any novel set of stimuli can be extracted and

tested on any behavioral task.

• The developmental technique uses developmental pruning during asymmetric

visual experience and learns asymmetric connection patterns. It then follows the

natural images technique. Those this model is the most constrained, makes the

fewest assumptions, and shows the expected spatial frequency encoding differences,

but hasn’t been used to model any task-related differences.

A clear step forward would be to use the developmental technique to account for

all of the behavioral results. The developmental technique should include many of the

benefits of the natural images technique, as it also uses natural images during its training,

shows more robust frequency encoding properties, and only needs to be trained once.

However, as seen in Chapter 4 and discussed in Section 7.2, spatial frequency encoding
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differences in the developmental model are likely too small to show the behavioral

asymmetries shown. A couple of options are available:

• While exploring developmental model parameters, I noted that although the post-

training lateralization was weak in the network, training parameters could be

changed to increases that asymmetry. Two parameters were particularly effective.

First, the difference in spatial frequency content of training images could be

increased between the hemispheres. Second, increasing both the initial spatial

spread of connections and initial number of connections per hidden unit increased

the asymmetries in the networks after training. Though these parameter changes are

unlikely to reflect visual experience or neurally plausible parameters, the network

would be more likely to show behavioral asymmetries.

• Plaut and Behrmann (2011) suggest that interhemispheric competition between

representations leads to complementary lateralization of words and faces, and

Reggia and Schulz (2002) suggest that inhibitory interhemispheric connections

can accomplish this best. One way to enhance developmental asymmetries in these

networks would be to interconnect the two model hemispheres with inhibitory con-

nections after training completed, then to continue training with those connections.

This is similar to the developmental trajectory postulated in Chapter 7, where early

on the hemispheres are more independent due to immature, noisy axons, and then

lateralization in face and word processing comes online as the corpus callosum

matures and children learn to read.

Contrast Balancing

One of the most exciting suggestions in this thesis is that the fundamental visual

lateralization ability may not be about spatial frequency processing abstractly, but instead
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about contour processing via long-range lateral connections. Instead, spatial frequency

processing differences only arise as a byproduct of a bias in contour processing. This

could explain why studies manipulating spatial frequencies directly have extremely vari-

able effects, as their effect on contour processing is itself variable and highly dependent

on the manipulation found in each study.

Figure 8.1: (a) A hierarchical letter stimulus. (b) The same stimulus with contrast
balancing applied (Lamb & Yund, 1993). This eliminates the low spatial frequencies
from the image while maintaining the global-level contour.

This dichotomy between spatial frequencies and contour processing has been

studied in the behavioral literature under the label of “contrast balancing”. In most studies

using Navon figures, the external contour of the global-level figure has a higher contrast

than that of the embedded local-level figures (Figure 8.1a). In contrast balancing studies

(Lamb & Yund, 1993; Brand & Johnson, 2013), contrast differences at the global and

local levels of a Navon stimulus are normalized by surrounding white local-level figures

with black borders (Figure 8.1b). This eliminates the low spatial frequency information

while keeping global-level contour information, dissociating the two types of information

and allowing direct exploration of whether contour or spatial frequency information has

primacy for various tasks.

Lamb and Yund (1993) found that while contrast balancing eliminated the global

precedence effect (faster reaction times to global-level forms), suggesting that this effect
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is mediated by low spatial frequency information. However, they found that other aspects

of local / global processing were not affected, such as effects of attentional biasing

towards local or global forms, and interference between a distractor at the non-queued

level. Brand and Johnson (2013) found that contrast balancing also has specific effects on

different types of scene perception. The overall conclusion was that while some aspects

of local / global processing may be driven by spatial frequency processing, many others

may not be.

This type of result offers a point of separation between the double filtering

by frequency (DFF) model and the differential encoding model. The DFF model in

principle cannot account for local/global processing results that are not related to spatial

frequency differences. The differential encoding model does not implement spatial

frequency processing; rather, it implements a neural mechanism that, in some cases

shows spatial frequency filtering properties. However, looking at 2D spectrograms of

frequency filtering, it’s also clear that the differential encoding model is not a pure

frequency filter; at a single spatial frequency (a circle on the 2D plot), some phases show

spatial frequency filtering, others do not. Because the DE has a neural mechanism behind

it’s behavior, and not an abstract frequency filtering procedure, it could account for these

results.

The proposal here is to implement one of the contrast-balancing studies from

Lamb and Yund (1993) in the differential encoding model, to see whether the model can

account for any of their results. The procedure is simple. First, I would train a differential

encoding model on natural images. Then I would extract hidden unit encodings from

the contrast-balanced stimuli used by Lamb and Yund (1993). Finally, I would train a

classification network on the behavioral task that experimental subjects were tested on. I

would compare behavioral differences between the left hemisphere and right hemisphere

models to response-time differences on lateralized presentation to the right visual field
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and left visual field, respectively. I would also look at whether the output images from

each model hemisphere show differences in spatial frequency encoding.

I have no prediction how this model would perform. Though the model dissociates

spatial frequency and performance on classification tasks requiring contour processing

(I have seen models with little spatial frequency encoding differences show behavioral

asymmetries and vice verse), the nature of that dissociation has not been characterized.

An exploration and analytic explanation of connection spread

What drives the unexpected association between short connection spread and

low spatial frequency processing? How general is it, and is there an analytical way to

describe it?

Figure 8.2: Spatial frequency vs. variance in output activation. As σ decreases, bias
for low spatial frequency encoding increases, with a penalty for high spatial frequency
information.
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I’ve done some preliminary work exploring the connection association (see

Appendix A for an abstract summarizing that work). I implemented a simple 2D neural

network with a single output node, where input-to-output connectivity mirrored that of

the differential encoding model (selected from a Gaussian PDF centered at the output

unit location). This simplified network was developed under the view that the input to

hidden unit connections represent the lateral propagation of activation to neighboring

units.

The connections were given random weights with a non-zero mean. The output

unit activation was computed for 64 different 2D sin wave gratings–8 different frequencies

at 8 different phases. The output variance was plotted as a function of spatial frequency,

with lines representing different spatial frequencies overlaid (Figure 8.2). Greater output

variance was interpreted as showing greater encoding of each individual stimulus, and

therefore better at global-level / contour-level discrimination. This work showed a very

promising spatial spread-by-frequency interaction, where networks with smaller spatial

spread showed greater variance over the lower frequency gratings, and lower variance

over the higher frequency gratings–consistent with results found for the differential

encoding networks.

Unfortunately, variance is a poor measure of encoding ability, and a more analyt-

ical analysis is be needed to approach a more general theory behind this phenomenon.

The proposed work here is to implement these changes in the work. In addition, I would

continue to explore the model from a sparsity or more general sampling perspective.

Preliminary experiments suggested that the spatial frequency effects seen were not due

to the spatial spread of connectivity per se, but rather due to changes in the connection

density within a receptive field. This sampling perspective could be a way to investigate

an analytical relationship between sampling density and spatial frequency processing that

would be informative to a few fields of discipline, including computational neuroscience.
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Reimplement the connection asymmetry in physiologically plausible

models

The differential encoding model is an extremely simplified model of long-range

lateral connections. This simplicity of the model allows mapping results from the

neurocomputational domain into the cognitive domain, but it leaves open a question as to

whether this connection asymmetry would drive contour processing differences in more

physiologically realistic models. A number of alternative models of long-range lateral

connections exist and all are more neurophysiologically plausible. A good test of the

differential encoding model would be to reimplement the connection distance asymmetry

in one of these models and analyze the contour processing and spatial frequency encoding

differences in these models.

Dr. Steven Grossberg’s lab has developed a neurophysiologically plausible model

of long-range lateral connections that have shown numerous interesting visual processing

behaviors, such as contour processing, illusory contours, and other grouping phenomena

(Grossberg & Williamson, 2001; Grossberg, 2010). These models are very careful about

the laminar structure of cortex, obey weight regularities, are attention-aware (Grossberg,

2010), and are sensitive to the same contrast changes that have shown to affect the level of

asymmetry observed (Grossberg & Raizada, 2000). Unfortunately, Grossberg’s models

are generally thought to be challenging to understand and implement; I have had little

luck understanding nor implementing them myself, nor in finding people who have been

able to do so themselves. In addition, despite requests to the lab, no code has been made

available to me for my research use.

Dr. Charles Gilbert and Dr. Wu Li have a long history of neurophysiological

recordings of long-range lateral connections. Their recent publication detailed a theory

about an interaction between V1 and V4 for top-down effects on contour processingPiech
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et al. (2013)–with V4 having an average long-range lateral connection length that is

long enough to show asymmetries. The model is very new and has not been tested

on many images, and so a positive result in the model would be less meaningful than

in Grossberg’s model. However, the mathematical details of the model and analysis

procedures are nicely detailed in their paper, making it more feasible to implement and

modify this model.

Other models exist, including models that focus less on neurophysiology and

more on low-level visual processing (e.g. Mely and Serre (2013)), that could explored

more simply and extend the model to encompass more low-level vision.

8.2 Follow-ups for interhemispheric neural network mod-

els

Reimplementation of the developmental model in a spiking neural

network framework

In Section 5, I explore effects of timing variability on learning. That model

implements timing variability as noise on an instantaneous firing rate within a framework

using rate-coded units. While I argue there for a mapping between spike-time variability

and noise in the instantaneous firing rate, reimplementing this model in a spiking neural

network (SNN) would allow direct investigation on how timing variability on conduction

delays affects neural coding. The results of such an investigation could uncover unex-

pected side-effects and potential neural coding mechanisms that a rate-coded network

might not be capable of. For example, SNNs have multiplexing capabilities that rate-

coding networks must carefully implement, allowing a greater number of sub-networks

that avoid overlapping in space and time (Izhikevich, 2006). The developmental trajectory
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of such networks with noise variability could be of interest.

The major issue with implementing this project in a SNN that there is no well-

accepted training algorithm for SNN. Most SNNs use spike-time dependent plasticity

(STDP) to learn synaptic weights, or manually set synaptic weights and allow STDP

dynamics to modify them. Without a training algorithm, training the network on a task

such that performance could be assessed with and without interhemispheric connections

is impossible.

The Neural Engineering Framework (NEF) (Eliasmith & Anderson, 2004) is a

hybrid rate-coded / SNN framework. This framework contains a mathematical framework

for deriving weights to do arbitrary function approximation using leaky integrate-and-fire

neurons. This framework has been used to implement SPAUN, neural network model

capable of accomplishing a number of cognitively interesting tasks through perception,

task-selection, and motor selection and output mechanisms (Eliasmith et al., 2012).

The framework has been extended to allow use of STDP, to try and capture spike time-

related events after weight derivations. Unfortunately, the NEF has no developmental

component–weights are computed directly, rather than stochastically learned, making the

NEF inappropriate for developmental studies.

Progress is being made on training SNN using stochastic methods; when such an

algorithm is available, then this work could be revisited.

Examine the effects of mixed interhemispheric transfer

As discussed in Chapter 1, interhemispheric transfer is quite heterogeneous. Early

sensory/motor areas (vision, somato-sensation) tend to interconnect along the midline

with thick, myelinated fibers–good for fast transmission (Aboitiz & Montiel, 2003; Doron

& Gazzaniga, 2008). When examined across species, these fast fibers increase their size

with brain size, indicating that speed is important (Olivares et al., 2001). On the other
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hand, association cortices and prefrontal cortices interconnect diffusely across the corpus

callosum, using thin fibers that are more frequently unmyelinated. These thin fibers do

not change across species with different brain sizes, and so lead to longer conduction

delays in larger brains.

Given the diversity of connectivity across the corpus callosum, it’s easy to see

that interactions over the corpus callosum can be highly task-dependent. For example, a

stimulus presented centrally may make use of fast, midline callosal connections, whereas

a stimulus presented laterally likely cannot.

I have attached a past proposal In Appendix B for a model capable to explore

these effects. The model is a variation on Ringo et al. (1994)’s model and allows

implementation of different types of interhemispheric transfer, including early sparse,

fast transfer and later slow, diffuse transfer. Exploring such a model could give insight

into how experimental paradigms such as lateralized presentation (where a stimulus

is presented laterally to the left and right, and differences in behavior are attributed to

differences in processing of the contralateral hemisphere) and the Poffenberger paradigm

(where reaction time differences between presentation of stimuli to the ipsilateral and

contralateral side as the response button are interpreted as interhemispheric transfer time)

work.

With such work completed, then embedding asymmetries (such as differences

in the spread of long-range lateral connections) into this framework could give more

nuanced insight into

Examine the effects of axon diameter distribution

A more speculative, but important project could involve examining effects of

having a distribution of conduction delays interconnecting cortical areas. In Chapter 5, I

postulated that this distribution of conduction delays could lead to low-latency processing
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and facilitate throughput when slower, broadband information arrives.

A previous association made is between shorter delays with a spike-time code

and longer delays with a rate code (S. S. H. Wang, 2008). Other papers have associated

shorter delays with “driver” synapses and longer delays with “modulatory” synapses

(Sherman & Guillery, 1998; Sherman, 2007). Design of a hybrid system where a fast

spike-time code facilitates processing of a slower rate code could be a neural computation

framework fits with the distribution of delays as well as the suggestions by S. S. H. Wang

(2008) and Sherman and Guillery (1998).

It is also known that, just as interhemispheric fibers covary in their transmission

speed and function, so do intrahemispheric fibers (Innocenti et al., 2013). Thick axons

are extremely expensive volumetrically (Harrison, Hof, & Wang, 2002; S. S. H. Wang,

2008), with white matter connectivity the major constraint on brain architecture in large-

brained animals like humans (Zhang & Sejnowski, 2000; Changizi, 2009). There is an

important role of thick, fast fibers in the brain, and computational modeling is a good

place to explore what functional or energetic properties make the volumetric trade-offs

worthwhile.

8.3 Extensions of the allometric analysis of the human

corpus callosum

As mentioned in Chapter 1, surprisingly little data exist for the human corpus

callosum. High-quality electron microscopic data exist for cats and monkeys in develop-

mental and adulthood (Berbel & Innocenti, 1988; LaMantia & Rakic, 1990a; LaMantia

& Rakic, 1990b) and show exciting patterns of great proliferation and massive pruning of

thin, unmyelinated fibers in the corpus callosum, along with age-related changes to fiber

density, fiber count, and myelination. Nonetheless, only a single sample of the human
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corpus callosum has ever been imaged with an electron microscope and published–of

a 45 year-old sample (Aboitiz et al., 1992). Only one developmental paper has been

published (Luttenberg, 1965) and is marred by its use of a low-acuity light microscope,

reporting fewer fibers in the human corpus callosum at birth (143 million) than reported

in adulthood (200 million; Aboitiz et al. (1992)) and far below my best estimate of the

fiber count at birth (800 million; see Section 5.7). It is clearly challenging to get access to

freshly deceased in-tact human brains, then to have facilities to process and image them

with an electron microscope–particularly of younger ages necessary to view comparable

ages to animal data.

Having these data could be extremely valuable. Clearly they could clarify the

development of human interhemispheric transfer, which I’ve speculated about in this

thesis (see Section 5.7). The impact goes beyond that, however. The corpus callosum has

become a testbed for diffused-based imaging. Because of its very clear fiber directionality

without worries of crossing fibers, and the fact that histology of the corpus callosum

is easier than all other white matter fibers, it’s been used over and over to test new

technologies.

For example, one of the latest uses of callosal imaging is in trying to derive axon

diameter distributions from neural data directly, using histological samples from the rat

corpus callosum as a point of comparison Assaf, Blumenfeld-Katzir, Yovel, and Basser

(2008); McNab et al. (2012). However, current results still do not seem to match the

histological samples well. Were we able to associate cellular-level neuroanatomy with

MRI-based diffusion signals, it would be possible to estimate microstructural properties

about white matter tracts from a combination of structural MRI and diffusion imaging.

Currently, associations between diffusion imaging and microstructural properties are

speculative and qualitative.

One potential use of allometry, however, is to predict axon diameter distributions



175

across the human lifespan from animal data. This project would combine cross-species

developmental allometry (Clancy et al., 2007) with developmental and adult animal

data (Berbel & Innocenti, 1988; LaMantia & Rakic, 1990a; LaMantia & Rakic, 1990b;

S. S. H. Wang et al., 2008) to predict axon diameter distributions. These predictions

would be informed by the existing human data (Luttenberg, 1965; Tomasch, 1954;

Aboitiz, 1991; Aboitiz et al., 1992; Riise & Pakkenberg, 2011; Hou & Pakkenberg, 2012),

and a combination of them could help fill in the missing smallest fibers that are missed

by using a light microscope.

After such predictions are made, then a forward model for diffusion imaging

could be created, to take a micro-structurally accurate model of the corpus callosum and

to predict diffusion-based signal for that model. Forward models uniquely specify their

deterministic measurements, and good forward models have been highly used in EEG

analyses for constraining source localization–the inverse problem that is fundamentally

ill-posed.

This project was submitted to the UCSD INC as a post-doc fellowship application.

A detailed version of this proposal can be found in Appendix C.



Appendix A

Preliminary research: Analysis of an

anatomically-based model of

hemispheric asymmetry shows spatial

frequency tuning1

We have developed a simple model of hemispheric asymmetry (Cipollini et al.,

2012; Hsiao et al., 2013) based on data showing that there are anatomical differences

in patch connectivity between the hemispheres. Specifically, the left hemisphere shows

longer-range connections between cortical patches than the left. We model this using

the simplest possible networks, autoencoders with differential connectivity distributions

(Figure A.1). We think of the hidden units of this network as representing the interactions

between nearby cortical patches. Surprisingly, this simple model is able to account for

local/global effects in hierarchical letter perception, using Navon stimuli (large letters

made of small ones). The LH model is faster at detecting local targets and the RH model

1This chapter was submitted as an abstract to the COSYNE 2013 conference.
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is faster at global ones.

Figure A.1: (a) Two-layer neuron with a sparse receptive field. (b) The differential
encoding model, an autoencoder with hidden units using this sparse receptive field. This
model has been used to account for lateralization in visual processing by varying the
spatial spread of the sparse connections.

Here we analyze the spatial frequency (SF) encoding properties of these networks.

We implement three computational experiments, each showing that connections with

a narrow spread show a strong LSF advantage, while connections with a wider spread

show a weak HSF advantage. We show that this association is due to the lack of a

center-surround structure and is modulated by overall connection density.

A.1 Methods and Results

In Experiment 1, we create a two-layer feed-forward neural network model, with

a single output connecting to N input positions in a 2D image plane (20x20) (i.e., just

the input and one hidden unit in Figure A.1). Connections are sampled from a Gaussian

distribution centered over the output unit’s position on the input. Each output in our

model represents a single location in the input space; its connections to the input represent

connections to nearby neighbors in the input space. In this experiment, the connection

weights are random positive numbers, normalized such that the average output unit

activity across all stimuli for a single network is approximately equal for all N and σ.

Other weight configurations were tested, with no notable differences.
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We test the SF tuning properties of these networks by varying the spread (σ) and

number (N) of connections from the input to a single hidden unit, and then measuring the

activity of this unit across 64 sine wave grating inputs (8 phases and 8 orientations), for

each of 10 different SFs. We interpret greater variance as encoding more information,

and therefore showing a greater encoding preference for that SF.

Figure A.2a shows SF preferences for 6 different values of σ with N=10 connec-

tions. We see greater encoding (higher variance) of LSFs as σ DECREASES, and small,

consistent decrease in encoding HSFs. Figure A.2b shows SF preferences for 5 different

values of N with σ=10px. The raw variance decreases with increasing N; further analysis

shows that SF tuning sharpness increases. Together, this suggests that different densities

of connections lead to different input encodings; for lateral connections, this means

different contour processing where relative spread of connection varies: by position in

the visual field and visual processing hierarchy.

Figure A.2: Spatial frequency vs. variance in output activation a) [N=10] As σ de-
creases, bias for low spatial frequencies increases, with a penalty for high spatial
frequency information. b) [σ=10px] As N increases, tuning becomes narrower and
weaker.

In two further experiments, we create two autoencoders using these connectivity

patterns (Figure A.1) and train them on 100 34x25 patches of natural images (van

Hateren) using backpropagation of error. In Experiment 2, the two autoencoders select
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connections to the input and output with different σ (4px vs 10px), and we measure how

this affects the relative SF encoding of the networks. In Experiment 3, both autoencoders

start with the same connection patterns, and we see how changing the SF content of

training images affects what connections the network uses.

All networks have the same number of connections (N). Multiple instances of

each network were randomly generated, and results averaged across networks.

Figure A.3: (a) Spatial frequency encoding advantage for smaller spread (σ=4px)
networks, compared to larger spread networks (σ=10px). Low spatial frequencies (left)
show a positive advantage; High spatial frequencies (right) show a disadvantage. Mean
in blue, stderr in dashed red, yellow indicates statistical significance. Inset: 2D power
spectrum difference, used to compute the 1D spectrum difference. (b) Difference in
connection distributions from hidden units to inputs [low-pass (LP)] - [high-pass (HP)].
The red center indicates more short-range connections for the LP-trained networks; the
blue ring indicates more long-range connections for the HP-trained network.

In Experiment 2, after the two autoencoders sample connections (N=12) with

different σ and trained to some error criterion, output images are extracted and their

spectral power is computed and compared (Figure A.3a, inset). Figure A.3a shows that

networks with smaller connection spread (σ=4px) show better LSF encoding, while

networks with larger connection spread (σ=10px) show better HSF encoding.

In Experiment 3, the two autoencoders start with exactly the same connectivity

pattern (σ = 10px, Ninit = 25). One network is trained on low-pass filtered images; the
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other on high-pass filtered images. While training the weights, we also prune the weakest

connections (N f inal = 12). After training, we pool the distribution of connections for

hidden unit, and compare. The networks trained on low-pass images keep more of the

short-range connections, while networks trained on high-pass images keep more of the

long-range connections (Figure A.3b).

A.2 Discussion

Here we provide evidence that networks with no center-surround structure show

an opposite association between spatial spread and SF tuning. We showed that the SF

tuning was parameterized by both spread of connections (σ) and number of connections

(N)–in other words, the connection density. Our tests with classic receptive fields (not

detailed here) show that connection density only affects the broadness of SF tuning, but

not the peak location as it does here.

We have shown elsewhere that, indeed, these networks can give rise to differences

in contour processing. These SF biases introduced by these “patchy” connection networks

can account for local/global, face, and grating visual processing asymmetries, and that

these asymmetries plausibly arise from a developmental asymmetry in the timing of

connection pruning (Experiment 3).



Appendix B

Proposed work: The role of multiple

projection systems within the corpus

callosum1

The only model architecture of interhemispheric integration that incorporates

conduction delays and integration over time, published by Ringo et al. (1994), has a

very odd set of results. After post-training lesioning of interhemispheric connections,

the model shows good performance at early time-steps, then performance decays as

over processing steps (see Figure 5.2). This decay occurs despite the fact that all

intrahemispheric connections remain intact, each hemisphere has all the information

necessary to solve the task itself, and each hemisphere is able to solve the task at early

time-steps on its own.

These results don’t make intuitive sense; interhemispheric integration shouldn’t

be necessary to maintain activity over time. Rather, interhemispheric integration should

augment and modulate intrahemispheric activity (Innocenti, 2008). In addition, the results

1This proposal was originally written for my dissertation proposal and is repeated here for reference in
future directions.
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Figure B.1: Proposed architecture for investigating the interactions between the two
callosal interhemispheric transfer systems.

are inconsistent with general observations from two methods of hemispheric-independent

processing: the Wada test and split brain patients. In both cases, data suggest little change

in behavior when one hemisphere operates independently of the other (ignoring, for

the moment, asymmetries between the hemispheres), regardless if the independence is

dynamic (i.e. Wada test; Paolicchi (2008)) or static (i.e. split brain; Gazzaniga (2000)).

The model work proposed here aims to mirror the structure and logic of Ringo et

al. (1994) while addressing a number of features of their model and training paradigm

that may underlie these unexpected results. In order to do so, the desired model behavior

is first clearly defined. Then, in order to model callosal connectivity patterns more

closely and address training issues, changes to the Ringo et al. (1994) modeling study

are proposed. Finally, a set of experiments and expected results are given for the updated
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model architecture, and interpreted according to the types of connectivity being modeled.

B.1 Desired Model Behavior

As discussed above, the general observation seems to indicate that, if a task can

be completed with an isolated cerebral hemisphere, it will be. While this may be true

when the hemispheres are forced to compute alone, in what cases will it be true when

both hemispheres are computing and remain interconnected?

Transfer across the corpus callosum has recently been functionally divided into

two systems (Aboitiz & Montiel, 2003; Doron & Gazzaniga, 2008). The first, termed

the “primary”-type system in this proposal, features fast, sparse connections that connect

along the midline, and are found in primary motor and sensory cortex. The second,

termed the “association”-type system in this proposal, features slower, more diffuse

connectivity, and represent the vast majority of fibers in the CC.

There are two cases to consider: First, if a task cannot be completed without infor-

mation from both hemispheres, then at latencies too fast for interhemispheric integration

to occur, subjects will perform at a level reflecting intrahemispheric processing only. With

enough time for interhemispheric integration to occur, task performance should achieve

high levels of accuracy. The amount of time necessary to achieve interhemispheric inte-

gration will be dependent on the position of the stimulus presentation (if near the midline,

fast “primary”-type sensory fibers may contribute to fast interhemispheric transfer; if

presented laterally to one side, the “primary”-type sensory fibers, which transfer only

around the midline, will be ineffective and later, slower “association”-type transfer would

be necessary) and the speed at which intrahemispheric bottom-up sensory processing

occurs (which interhemispheric transfer must coordinate arrival of information with to

allow integration to occur).
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Second, in cases where a task can be completed without interhemispheric inte-

gration, the expectation is for interhemispheric transfer to take on a more facilitatory or

modulatory role (Innocenti, 2008). In this case, output at short latencies should show

high accuracy, reflecting intrahemispheric processing that has been able to complete

regardless of the success or failure of interhemispheric integration. At later latencies

at which interhemispheric integration has occurred, a small increase in performance is

expected, but expected to be limited due to ceiling effects.

In the modeling work, the Ringo et al. (1994) procedure of training a model

with interhemispheric connections intact, then lesioning those connections before testing

will be used. The expectation for behavior in this case again follows these two cases.

First, if a task cannot be completed without information from both hemispheres, after

lesioning performance should reflect the ability to respond with only intrahemispheric

of the isolated hemisphere’s sensory input. Second, if a task can be completed without

information from both hemispheres, then the hemisphere should initially show the same

level of performance regardless of the state of the interhemispheric connections. After

latencies where interhemispheric integration would have occurred, performance should

remain at the same level, as no increase can occur since no new information arrives from

the other hemisphere, and no decrease need occur, as the intrahemispheric processing

can continue independent of the other hemisphere..

The model architecture I propose below is intended to provide these behaviors.

B.2 Model Architecture

A model architecture similar to the Ringo et al. (1994) architecture will be used

(See Figure 5.1a), but with the following changes:

• No recurrent connections within a layer: Each unit in Ringo et al. (1994) model
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is a leaky integrator, where activity shows a slow exponential decay with a time-

constant shared by all units. Within-layer maintenance of activity will be imple-

mented by adjusting this time-constant; no within-hemisphere dynamics will be

considered, to simplify analysis and interpretation of the model.

• No intra-hemispheric recurrent connections: Though inter-area connectivity is

highly recurrent/reentrant (e.g. Markov et al. (2010, 2013), without a specified

functional role in solving the simple tasks used here, they simply make the net-

work harder to train and analyze. By removing these connections and controlling

network complexity, understanding of network complexity and behavior can be

built carefully and iteratively.

• Split outputs: The design is to model interhemispheric integration at “cognitive”

levels while manipulating conduction delay. Allowing integration at the output

via backpropagation of error confounds the ability to manipulate interhemispheric

integration. Splitting the output nodes forces interhemispheric integration to occur

only across the specified interhemispheric connections. This design aspect follows

that of Lewis and Elman (2008).

In order to produce a unified output, one of two algorithms will be employed:

either a horse-race algorithm will occur (where the first hemisphere to reach an

activation threshold triggers a response), or an integration algorithm (where the

combination of activation reaches an activation threshold and triggers a response).

It is unclear which decision process reflects human instructions such as “respond

as fast and as accurately as possible”, though two sources point to a horse-race

model:

– One study testing unilateral and bilateral stimuli report that “bilateral pre-

sentations followed a race model with the superior right visual field (RVF)
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dominating responses” (Zaidel & Rayman, 1994)

– On further examination, conditions from Sergent (1982) which have at least

one target and non-identical stimuli show a race effect (see Figure B.2).

• Input duration: In models that run in time, inputs can be kept “on” for any number

of time-steps. It is unclear how long Ringo et al. (1994) kept their inputs on. I

believe that, in order to achieve 100% training criterion on models that propagated

activity over a large number of time-steps, inputs must have been kept “on” for all

time-steps. In work derivative from this one, that input time will be manipulated,

corresponding to stimulus exposure duration; in this study, the input will be kept

“on” at all time-steps.

Figure B.2: Compare response with a (non-identical) target at both levels with perfor-
mance for the preferred level for each VF (LVF/RH for L+S+ vs L+S-, and RVF/LH for
L+S+ vs L-S+.
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B.3 Training Paradigm

Ringo et al. (1994)’s training paradigm consisted in training networks to produce

an output after a maximum number of time steps. Each data point in Figure 5.2 represents

a set of independently trained and tested models, and not different latencies of a single

set of models trained once and tested at different latencies. Human behavior shows a

minimum time to response, and the ability to respond over longer delays. In addition, it is

well-known that training networks over long numbers of time-steps can be problematic.

To address these issues, each instance of the model will be trained at multiple

latencies to produce a correct response. This may help separate between interhemispheric

processing differences and differences in maintaining information over time. Each model

will also be tested (with interhemispheric connections removed) at each latency. During

learning, latencies will be randomly interleaved. Alternately, a procedure of “starting

small”–but in time–may be employed, where models are trained on short latencies first,

and later on longer latencies, a la Elman (1993). This procedure makes sense for learning

purposes, but isn’t how people seem to learn–response times get shorter with age and

experience.

In addition to a different training procedure, training stimuli will also be different,

using the logic and stimuli of Lewis and Elman (2008). As described in Section 5.2.1,

Lewis and Elman (2008) pointed out that, because input and output patterns were fully

input into each model hemisphere, neither model needed to have any interhemispheric

integration at all; either model hemisphere could solve the task independently of the

other. To be able to better tease apart the roles of intrahemispheric processing and

interhemispheric processing, Lewis and Elman (2008) modified the Ringo et al. (1994)

architecture by splitting the input and output layers into two banks of five units each, and

used pairings of 10-digit binary strings. Thus, each hemisphere only received half of the
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10-digit input and only produced half of the 10-digit output pattern.

Figure B.3: “Four-way ambiguous” input-output pairings, representing 50% of the total
training input-output pairings. Each 5-digit input to a hemisphere could produce two
different 5-digit outputs; only interhemispheric integration can disambiguate which of
the two for that hemisphere to produce. Each 5-digit output could have been produced
from two different 5-digit inputs; only interhemispheric integration of the 5-digit input
to the other hemisphere disambiguates which input produced that output. Adapted from
Lewis and Elman (2008)

Lewis and Elman (2008) then manipulated their input-output pairings such that

50% of the pairings required interhemispheric integration for a hemisphere to produce the

correct 5-digit output (“ambiguous” patterns), and 50% of the pairings did not require any

interhemispheric integration for a hemisphere to produce the correct 5-digit output. Figure

B.3 shows examples of the “four-way ambiguous” patterns, where each hemisphere’s

5-digit input specifies two possible 5-digit outputs, and only integration from the other

hemisphere can specify which of the two is the correct one. In this same set of patterns,

each 5-digit output of a hemisphere could be produced by two different 5-digit inputs to

that hemisphere, with interhemispheric integration necessary to determine which of the

two possible inputs had produced that output.

Using this dataset, chance performance for any individual hemisphere is 1/32
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(there are 32 possible outputs for a 5-digit binary string, and each hemisphere has 5

binary output units). However, chance performance on an “ambiguous” input to a single

hemisphere is 50%, as the 5-digit input to a single hemisphere corresponds to only two

possible outputs.

Experiments

The basic experimental paradigm will follow the form of Ringo et al. (1994):

First, construct a network with particular interhemispheric delays between hidden units at

the first and second hidden layers. These interhemispheric delays can take on two values;

a faster value corresponding to the CC’s “primary”-type system, and a slower value

corresponding to the CC’s “association”-type system. After constructing the network,

train the model on the input/output pairings. Finally, after training has reached the

training criterion, lesion the interhemispheric connections and test model performance.

Unlike Ringo et al. (1994), however, the following will be done:

• Ringo et al. (1994) always used the same interhemispheric delay for interhemi-

spheric connections at the first and second hidden levels. Here, that will not be the

case; the connectivity between the two banks of hidden nodes will be manipulated

independently. This will allow for the analysis of all four possible interactions

between “primary”-type and “association”-type systems in this model architecture.

This is of theoretical interest, to characterize this model architecture’s behavior

more completely. This design may also be of practical interest, as each combination

of interhemispheric delays may correspond to isolated interactions between intra-

hemispheric and interhemispheric processing of interest in cognitive neuroscience

(see Figure B.5).

• While Ringo et al. (1994) only manipulated conduction delay to simulate slow
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and fast connectivity, other aspects of the “primary”-type and “association”-type

systems will be implemented. Besides manipulating the conduction delay, the

number of units that have interhemispheric connections and their connectivity

patterns will be manipulated as well. When the “primary”-type system is used

at a hidden level, shorter conduction delays that connect topographically (to a

“homologous” unit on the other side) will be used to implement interhemispheric

connectivity at that hidden level. When the “association”-type system is used at a

hidden level, longer conduction delays over a greater number of interhemispheric

connections that connect diffusely with other interhemispheric units will be used

to implement interhemispheric connectivity at that level.

This more accurately reflects the “primary”-type and “association”-type systems,

where the “association”-type system trades off higher levels of connectivity with

slow speeds.

Expected Results

Figure B.4 is an implementation of the model behaviors described in Section B.1.

For all models, I expect patterns that can be completed intrahemispherically (50% of

the dataset) to be unaffected by the elimination of interhemispheric fibers. This is in

stark contrast to the Ringo et al. (1994) model, where all pattern input/output pairings

could be computed intrahemispherically, and are only done so initially, with performance

dropping off over time.

For patterns that require interhemispheric transfer to be completed, I expect that

the pattern of results will depend on the configuration of interhemispheric integration

systems at the two hidden layers. Intrahemispheric processing can eliminate most output

patterns, and specify one of two possible patterns. The different configurations should
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Figure B.4: Pattern of expected results on input/output pairings that require interhemi-
spheric integration to differentiate between two possible output patterns. See text for
explanations of labels and why curves are given these forms.

influence how quickly this process happens. Note that none of Ringo et al. (1994)’s

models tested this condition, and none of these metrics are reported in Lewis and Elman

(2008).

The following represent the four possible configurations (2 levels x 2 CC systems)

of interhemispheric connections in the model, with the first label representing the CC

system used at the first hidden layer, and the second label representing the CC system

used at the second hidden layer (see Figure B.5 for examples).

• Association-Association model - Because interhemispheric integration happens

slowly at both levels of hidden units, I expect intrahemispheric processing to
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dominate, and therefore fast convergence to one of the two “confusable” output

patterns. Performance cannot improve beyond 50%, as interhemispheric integration

cannot occur, so that level of performance will be found at every time-step.

This corresponds to Ringo et al. (1994)’s 10-time-step model, except that initial

performance should be at 50%. This performance may or may not degrade over

time, depending on how the interhemispheric fibers affect processing.

• Primary-Primary model - Because interhemispheric integration happens quickly,

I expect intrahemispheric processing to be less independent of interhemispheric

integration, and slow or no convergence to one of the two “confusable” output

patterns. Instead, performance should be at absolute chance levels (1/32).

This corresponds to Ringo et al. (1994)’s 1-time-step model, except that initial

performance should be below 50%, instead of below 100%. This performance

should quickly degrade to chance levels.

• Primary-Association model - Because I expect the early fast transfer to cause

difficulty in processing intrahemispherically, and because this problem processing

intrahemispherically will propagate forward to the association area and affect its

ability to process intrahemispherically, I expect this model to perform worse than

the Association-Association and Association-Primary models. I do not have an

expectation about whether this model will outperform the Primary-Primary model.

• Association-Primary model - Because of the early slow transfer should favor

intrahemispheric processing, I expect this model to perform better than the Primary-

Primary and Primary-Association models. Because of the later fast transfer, I

expect representations at the second hidden layer to have more dependency on

interhemispheric integration, and therefore for the model to perform worse than

the Association-Association model.
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B.4 Related Ideas

• To prevent interhemispheric connections from “driving” activity levels, instead of

modulating them, and (correspondingly) In order to see good performance regard-

less of the presence or absence of the interhemispheric connections, the strength of

the interhemispheric connections can be either fixed (e.g. Reggia, Goodall, and

Shkuro (1998) to a small value, or have a maximum value implemented.
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Figure B.5: Example mappings of each of the four model architectures to be tested.

Primary-Association: The most common interaction, going from sensory input
through stages of a sensory processing hierarchy.
Primary-Primary: A fast, sensory-motor interaction, modeling direct connectivity be-
tween highly related input/output areas that both interconnect with fast, “primary”-type
connectivity.
Association-Primary: Interaction of motor areas in selecting and executing a motor
plan.
Association-Association: Any interaction between “cognitive” processing; probably
most critical to model intrahemispheric feedback.

Note: Output banks are used for training purposes. For sensory processing
models (primary-association and association-association), these represent (possibly
different) behavioral outputs that are causing the sensory learning. For models with
motor output, these represent unified behavioral outputs caused by lateralized motor
production.



Appendix C

Preliminary research and proposed

work: Investigating human

interhemispheric connectivity across

the lifespan through cross-species

developmental allometry1

C.1 Introduction

DTI and related measures suffer from an inverse problem: though we can measure

anisotropy in water diffusion, there is generally no unique solution as to the underlying

microstructure causing these restrictions. Anatomical data, such as axon diameter distri-

butions (ADD) can be used to constrain the solution space (Assaf, Freidlin, Rohde, &

Basser, 2004; Assaf & Basser, 2005) or as validation for techniques aiming to measure

1This proposal was originally submitted for a post-doc fellowship application and is repeated here for
reference in future directions.
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them (Barazany, Basser, & Assaf, 2009; N. S. White, Leergaard, D’Arceuil, Bjaalie,

& Dale, 2013). However, data on the basic microscopic constitution of cerebral white

matter (axon diameter, degree of myelination, axon density and axon count) in humans

are either missing or incomplete. If we had access to these data as a function of age, it

may be possible to constrain this inverse problem and infer more specific microstructural

changes from DTI data.

The corpus callosum (CC)–the predominant fiber tract directly interconnecting

the two cerebral hemispheres–is an ideal structure for investigating this. The mid-sagittal

extent of the CC is highly accessible, making it relatively well-studied in electrophysi-

ology and anatomy, and is the most reliably and frequently imaged white matter tract.

While some high-resolution anatomical data exist across species and developmental age

in non-human animals, the data are incomplete for humans. Very few microstructural

studies of the human CC exist, and those that do have used imaging techniques unable

to discern the full distribution of fibers of the CC. Computational studies have shown

that most quantitative aspects of human brains follow the same scaling patterns common

across mammals (Changizi, 2009) and primates (Herculano-Houzel, Collins, Wong, &

Kaas, 2008); perhaps the missing human data could be predicted from the more complete

non-human animal data through allometric regression.

The CC also sits (literally) at a critical juncture in development and learning.

Lateralization of the functions of the cerebral hemispheres is a hallmark of typical devel-

opment in language (Petitto et al., 2012) and perceptual expertise (Dundas et al., 2012),

and plays a role in virtually every function we think makes us human. What is the role

of the CC in the development of functional lateralization, and how does its own devel-

opmental trajectory interact with that of the hemispheres? Developing computational

models of the role of interhemispheric (IH) communication and lateralization in learning

require being able to differentiate between changes in speed, reliability, and quantity of
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IH connections–data which are inaccessible without the microscopic CC data mentioned

above.

We believe that all of these questions are answerable through computational

modeling. We aim to answer these questions using three computational techniques: (1)

creating predictive models of the microstructure of the corpus callosum over data from an

exhaustive literature review, (2) using a biophysically realistic forward model to virtually

image our predictive model across the lifespan, then comparing these results to existing

data measured in humans across the lifespan, and (3) using neural network modeling to

examine the relationship between CC microstructure, interhemispheric transfer, and the

development of lateralization.

C.2 Proposed Work

C.2.1 Predictive Modeling of CC microstructure across the typical

human lifespan

Mammalian brains span over five orders of magnitude in size. Though the

structure of the smallest brains differ from that of the largest, the relative differences in

structure are predictable as a function of brain size (Jerison, 1982; Finlay et al., 2001;

Changizi, 2009). These “allometric” scaling functions follow power laws, indicating they

are “scale-free”–that the same relationship between quantities is independent of absolute

size. Most microscopic (e.g. the # of synapses per neuron) and macroscopic (e.g. the

total white matter volume) measures follow a power-law relationship with brain size2.

These various allometric scaling functions can be related to each other, suggesting that

2Total brain weight and brain volume scale isometrically; thus use of either results in allometric
relationships with extremely similar exponents. The core data we use are from S. S. H. Wang et al. (2008),
who use brain weight; we follow their lead and convert brain volumes to estimated brain weights in
publications where only brain volumes are reported.
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they derive from more basic principles such as trade-offs between efficient wiring and

interconnectedness (Changizi, 2009).

Figure C.1: Summary of allometric scaling curves across microscopic and macroscopic
measures in mammals (Changizi, 2009).

In previous work, we used allometric scaling to examine changes in callosal

connectivity as a function of brain size (Cipollini & Cottrell, in preparation). We

found that callosal connections, on average, contain many more axons than the average

intrahemispheric area-area connection. We also found that callosal connectivity is not

selectively reduced with increasing brain size as is sometimes suggested (Rilling & Insel,

1999a). Rather, because callosal connections are largely homotopic, their proportion

of the total white matter connectivity decreases with brain size at the same rate as each

intrahemispheric area-area connection does, due to an increase of the total number

of cytoarchitectonically-defined areas and area-area connections with increasing brain

size (Changizi & Shimojo, 2005). These insights were accessible through allometric
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regression of the mid-sagittal CC fiber density, enabled by recent high-resolution non-

human animal data (S. S. H. Wang et al., 2008).

Here, we propose to use allometric scaling to examine neuroanatomical relation-

ships not only across species, but also across development. Allometry has been used

much less extensively in development, but validation of the procedure exists. R. D. Martin

(1983) investigated how inter-species allometric scaling compared with with intra-species

scaling over the lifespan. He concluded that development can be broken into 3 stages

that each obey their own allometric scaling laws: pre-natal development, post-natal

development, and adulthood. R. D. Martin (1983) and Clancy et al. (2007) both suggest

that these developmental scaling laws are due to maturational changes tightly correlated

with species-specific aging; Clancy et al. (2007) show that these developmental ages can

be mapped across species3. Our own analyses of the CC in the macaque over pre- and

post-natal development (LaMantia & Rakic, 1990b) and into adulthood (LaMantia &

Rakic, 1990a) are consistent with the division into three developmental stages, with the

onset of the third around 1 year of age (Figure C.4) (R. D. Martin, 1983)4.

In order to accomplish our goal to predict diffusion MRI results in the mid-sagittal

CC across the human lifespan, we must be able to predict the following quantities across

the life-span: the axon diameter distribution (ADD), the proportion of myelinated fibers,

the axon density, and the total axon count (see Equation C.2). Below, we describe the

modeling methods for each, and show that they can give meaningful results across species

at a single time-point, in young adults.

3An online tool implements their mappings for many species: http://bioinformatics.ualr.edu/ttime/
translatetime primates php.php

4Hou and Pakkenberg (2012) found age-related changes in old age (65-90 years old) in humans. We
will look at old age in humans separately using these same techniques.

http://bioinformatics.ualr.edu/ttime/translatetime_primates_php.php
http://bioinformatics.ualr.edu/ttime/translatetime_primates_php.php
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Data Acquisition

Many of the data used here are between 20 and 60 years old; raw data are no longer

available. Even for newer data, requests for raw data have either elicited no response, or

the data remain inaccessible for other reasons. In order to use these valuable, published

data, we have developed a hybrid suite of simple computer vision techniques and manual

data mark-up to extract data from published histograms and scatter plots (described in

detail elsewhere (Cipollini & Cottrell, in preparation)). Using these techniques, we have

been able to reproduce statistical results usually within 1% error (and always within 2%)

of the published analyses and allometric regressions.

Predicting the Axon Diameter Distribution (ADD)

Our plan is to model the axon diameter distribution (ADD) of the mid-sagittal

CC from its initial fetal development through aging into the 90s. Data exist in humans

for the fetus (Luttenberg, 1965), in adulthood (Tomasch, 1954; Aboitiz et al., 1992;

Rabi, Madhavi, Antonisamy, & Koshi, 2007; Caminiti et al., 2009), and through aging

into the 80s and 90s (Hou & Pakkenberg, 2012) but all were all collected with a light

microscope5, which is incapable of reliably imaging the smaller caliber fibers of the CC.

High-resolution animal data exist6, and previous work indicates a power-law relationship

between brain size and axon diameters (Changizi, 2001). Here we outline mathematical

modeling techniques for combining all the data to create a predictive model across the

human lifespan.

First, we create a predictive model of ADDs across species at a similar develop-

5Aboitiz et al. (1992) report electron microscopic data for a single human sample but indicate that
tissue preservation was likely poor. Our own quantitative analyses of the data suggest this sample is indeed
unusual; we use those data with caution.

6Most useful here are a cross-species study in young adults (S. S. H. Wang et al., 2008), developmental
studies in cats (Berbel & Innocenti, 1988) and macaque monkeys (LaMantia & Rakic, 1990b), and a study
of adult macaques (LaMantia & Rakic, 1990a).
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Figure C.2: Allometric regression of gamma-distribution parameters for myelinated
and unmyelinated axon diameter distributions. Green stars in the first row indicate
parameters for fitting human distributions. Cross-species data from S. S. H. Wang et al.
(2008); human data from Aboitiz et al. (1992).

Note that Aboitiz et al. (1992) reported a single distribution mixed between
myelinated and unmyelinated fibers. Since they reported over 90% to be myelinated,
we compared the fitted curve only to the myelinated parameters (first row), and not to
the unmyelinated parameters (second row).

mental age. We extract electron microscopy data on mid-centuryital CC axon distributions

(AD) from S. S. H. Wang et al. (2008) (species: least shrew, mouse, rat, cat, macaque),

separated by fiber type (myelinated and unmyelinated). We fit γ-distributions7 to each

ADD (Pajevic & Basser, 2013). We then create allometric (log-log) regressions for

7According to Pajevic and Basser (2013), there are only very slight differences in curve-fitting to ADDs
between gamma, lognormal, and IUB (which they derived) distributions. We found that parameters for
the IUBD distribution were less consistent across-species, while both gamma and lognormal distribution
parameters gave very similar results.
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each parameter of each fiber type (Figure C.2). We use data from S. S. H. Wang et al.

(2008) and Aboitiz et al. (1992) to model the proportion of unmyelinated fibers (punmye)

(described below).

ADDs for a species are computed as a weighted sum of myelinated and un-

myelinated ADDs. γ-distribution parameters and the proportion of myelinated fibers are

computed from the species-average brain weight; the two distributions are combined as :

ADD = (1− punmye)∗ γmye +(punmye)∗ γunmye (C.1)

Figure C.3: (a) Predicted myelinated and unmyelinated axon diameter distributions
(ADDs). (b) Predicted human CC ADDs (dashed red) vs. Aboitiz et al. (1992) human
CC ADD (blue bars). Dashed green is the best-fit γ-distribution to the blue bars.

Preliminary results for macaques show good correspondence between predicted

and measured myelinated axon distribution across studies (LaMantia & Rakic, 1990a).

Preliminary results for humans predict a greater proportion of small myelinated fibers

than reported (Figure C.3), broadly consistent with the fact that human data were collected

with insufficient resolution to reliably image small-diameter fibers.

In order to model development, we will primarily use data from the cat (Berbel

& Innocenti, 1988), supplemented with data from the macaque monkey (LaMantia &
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Rakic, 1990b) and light microscopic data in humans (Luttenberg, 1965). As motivated

above, developmental stages will be broken into three periods: pre-natal, post-natal, and

adulthood. To extend the above procedures to development, the same fitting and regres-

sion procedures from above will be applied to each developmental stage individually,

but generalizing across time instead of across species. We will then map developmental

trajectories across species by stretching developmental trajectories in time to fit the dates

of matching developmental milestones Clancy et al. (2007).

Figure C.4: (a) Number of axons, (b) percent myelination myelination, and (c) axon
density over the macaque lifespan (data from LaMantia and Rakic (1990a); LaMantia
and Rakic (1990b)). Red vertical line indicates birth (E156); yellow line is an eyeballed
estimation of when developmental trajectory of all 3 quantities seems to change (346
days post-natal), consistent with R. D. Martin (1983)’s report for the macaque monkey
(about 1 year old).

At each stage, we plan to corroborate predictions with all published ADD data,

including light microscopic data across species. Though cross-lab comparisons can be

challenging due to differing techniques, especially in tissue preservation and volumetric

shrinkage of tissue, given the relative paucity of data this strong validation is necessary

for producing reliable results. We expect one output of this work to be a spreadsheet of

ADDs, explicit methods for their collection, and comments on whether a single study

fits well with others of the same species or across species (and our thoughts as to why or

why not).
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Potential Challenges We identify three possible pitfalls in these procedures, and pro-

pose a possible solution for each.

Because the brain size of the non-human species used to fit these allometric

regressions are much smaller than the human brain, large extrapolation errors may occur.

In this case, instead of using human data for comparison to allometric predictions, the

human data could be used to further constrain the cross-species curve-fitting. Though the

proportion of small fibers in light microscopy is not accurate due to the low magnification,

the relative proportions of the larger fibers to each other can presumed to be accurate. As

part of the nonlinear fitting procedure, we can include the fits to these relative proportions

in our cost function.

An additional challenge is that existing human samples are not young adults,

but rather middle-aged to late-aged adults. Berbel and Innocenti (1988) have shown

age-dependence in the mid-sagittal area (CCA), percent myelination (PMY), and fiber

density (CCD) of the corpus callosum; we have found similar results for the CCA and

CCD from data published in LaMantia and Rakic (1990a). It is unclear whether the

fiber distribution is age-dependent in the third stage of the lifespan (adulthood). We will

explore the possibility of obtaining individual subject data from (LaMantia & Rakic,

1990a) as one way to try and address this issue.

A final consideration here is that allometric regression may not be the appropriate

relationship to consider here. If that is the case, less constrained regression procedures,

such as Gaussian Process regression or general linear models, might be used in place of

allometric regressions.

Predicting Proportion of Myelinated Fibers, Axon Density, and Axon Count

We have previously shown (in young adults) that axon density seems to follow an

allometric power-law relationship (Cipollini & Cottrell, in preparation), perhaps due to
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the relationships between brain size, axon diameter, cell size, and energetics (Changizi,

2001; S. S. H. Wang, 2008). This, combined with previous data on mid-sagittal callosal

area (CCA) (Rilling & Insel, 1999a), allowed us to derive the allometric scaling of CC

axon count (NCC) and its relationship to intrahemispheric axon count as well.

Deriving a relationship between brain size and proportion of myelinated fibers

is trickier, however, as simple allometric regressions are not constrained to particular

minimum and maximum values. Instead, we have previously modeled the relationship

between brain size and the proportion of unmyelinated fibers using an exponential decay,

which has provided better fits than logistic regression.

As described above, these procedures for young adults can be applied across the

lifespan of a single species. The data from Berbel and Innocenti (1988) and LaMantia

and Rakic (1990b) will again be used in conjunction of with human data from Luttenberg

(1965), as well as CCA data from Rakic and Yakovlev (1968) to derive these relationships.

Potential Challenges The corpus callosum is not a uniform structure; fiber density,

myelination, and diameter distribution vary across the anterior-posterior extent of the

CC. The modeling above will initially be done across the callosum as a whole, rather

than in individual sectors. Many studies measure a subset of callosal areas or report data

across areas, making it impossible to model individual callosal sectors directly. However,

despite the regional differences in callosal axon distribution, the combined distributions

seem to show very regular properties (Pajevic & Basser, 2013).

LaMantia and Rakic (1990a) indicated that some sectors have very similar distri-

butions and so can be considered together, constraining the problem. Some excellent data

exist on the development and adult fiber composition of each callosal sector (LaMantia &

Rakic, 1990b; LaMantia & Rakic, 1990a), and other data exist for dividing the callosum

into sectors across species. One possible solution to the problem above is to try using
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these specific data data to make individual sector predictions across species and lifespan.

A second possible solution is to try and use these data to derive the ADD of each callosal

sector as a species-independent function of the total CC ADD.

C.2.2 Validation via Diffusion MRI

Large-scale studies have collected data on water diffusion from across the human

lifespan; this includes the PING study8, a database containing, among other things,

diffusion MRI data of people between the ages of 3 and 20. These data are largely

from diffusion tensor imaging (DTI) which trades off assumptions about the distribution

of fiber orientations for speed of acquisition. There is good evidence that diffusion is

affected by axon diameter distribution (ADD), proportion of myelinated fibers (PMY),

and axon density (CCD). However, because these values are currently not quantifiable in

vivo (though see Barazany et al. (2009) and N. S. White et al. (2013)), relating diffusion

MRI measures to underlying microstructure is an area of very active research.

Our predictions above encompass most parameters necessary for estimating the

magnetic signal S due to water diffusion in a diffusion MRI paradigm. Intuitively, water

diffusion is generally restricted by semi-impermeable cell membranes and by the size

and density other molecules that it bumps into while diffusing. These two restrictions,

generally referred to as restricted and hindered diffusion respectively, correspond to

intracellular diffusion along an axon and extracellular diffusion within homogeneous

fiber tracts like the CC.

In the mid-sagittal CC, which contains axons with relatively uniform direction and

a relatively homogeneous extra-axonal space, a simple forward model of the magnetic

signal intensity S can be derived. For generality, we also consider diffusion within the

myelin itself:

8http://www.chd.ucsd.edu/research/ping-study.html

http://www.chd.ucsd.edu/research/ping-study.html
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S = λhe−TE∗R2h ∗ e−b∗ADCh (C.2)

+λre−TR∗R2r ∗ e−b∗ADCr

+λme−TE∗R2m

where h, r, and m refer to structures showing diffusion related to hindered,

restricted, and myelin, λ is the volume fraction (proportion of total volume consisting

of the particular medium), TE and TR are MRI acquisition parameters (the echo time

and relaxation time, respectively), R2 =
1
T2

is the “relaxation rate”, or reciprocal of T2

relaxation, b quantifies how strongly diffusion is being induced, and ADC is the apparent

diffusion coefficient (the average rate at which water is measured to diffuse in a particular

direction given the MRI acquisition parameters). Note that in this equation, we assume

that the ADC due to myelination is zero, i.e. that myelin is water-tight and contains no

diffusing water.

Given our allometric regression models above and data from the literature, it is

possible to fill in reasonable values for each quantity in Equation C.2. Our predictions of

the microscopic structure of the corpus callosum, combined with simulations computing

intra-axonal diffusion rates as a function of axon diameter (N. S. White et al., 2013),

allow us to calculate the ADCr from the ADD. ADCh may also be estimated from data or

taken from the literature. S. S. H. Wang et al. (2008) estimates that the proportion of the

mid-sagittal CC area constituted by extra-axonal media (λh) is constant across species,

≈ 87%. With an estimate of this area, and the usual assumption that the thickness of

myelinated is 0.7 times the diameter of the fiber it ensheathes, we will be able to compute

all three volume fractions (λh, λr, λm).
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Potential Challenges One major sticking point for a realistic forward model is R2,

the rate at which spins lose coherence. R2 is a property of tissue, and it is unknown

whether R2 is a function of age nor how much it varies across participants. For our initial

modeling, we will obtain gross estimates of R2 by analyzing single-subject data across a

number of b-values (strength of inducing diffusion). If this coarse-level validation of the

allometric modeling proves to be informative, we will look at examining the relationship

between R2 and age through experiments varying how strongly diffusion is being induced

(b).

A second area for closer investigation is the rate at which water passes through the

cell membrane of unmyelinated cells (permeability), which has not been looked at closely

in previous forward-modeling of water diffusion. The permeability of unmyelinated is

linearly dependent on axon diameter. Because water diffusion in and out of the axon is

perpendicular to the longitudinal direction of the axon, when unaccounted for it would

appear as an (unexpected) contribution to hindered diffusion (ADCh). This may be

particularly important in species where forward models are tested (e.g. rats), where

unmyelinated fibers account for more than 50% of the total fiber count in the mid-sagittal

CC (Kim, Ellman, & Juraska, 1996; S. S. H. Wang et al., 2008).

C.2.3 Neural network modeling

In previous work, we adopted the framework of Lewis and Elman (2008) (Figure

C.5), itself an adaptation of Ringo et al. (1994). This neural network is composed of

leaky integrator units separated into three layers (input, hidden, output). Each layer

is segregated into left and right “hemispheres” which interconnect only with units in

its own hemispheresave for two nodes from the hidden layer of each “hemisphere”,

which fully interconnect with each other. Every connection has a time-delay, usually

1 time-step. The model is trained to output one binary string when presented another
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Figure C.5: Model architecture used in simulations(Lewis & Elman, 2008). Our
simulations used 15 hidden units per “hemisphere” and 3 “callosal” connections, not 10
and 2 (respectively) as shown.

at input, for 32 random input-output parings. The network is said to have output a bit

correctly if the output activation is within 25% of the expected output value. To examine

the interdependence of the hemispheres, the network’s “interhemispheric” (callosal)

connections are removed; the increase in output error due to this lesion (“lesion-induced

error”) is used as an index of this interdependence.

We have used this modeling framework to show that unreliable IH signals, due

to the preponderance of long, unmyelinated axons <0.5µm in diameter present at birth

(S. S. H. Wang, 2008) may reduce IH integration (Cipollini & Cottrell, 2013b). Sub-

sequent analysis has indicated that the level of IH integration affects the spontaneous

emergence of asymmetries. A developmental model which increases signal reliability (de-
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crease signal noise) across training showed an early period of reduced interhemispheric

interactions and as strong interhemispheric interactions after development as found in

the same model trained without any noise.

Here we would like to use the developmental ideas from above to examine the

relationship between callosal development, interhemispheric transfer, and lateralization.

Lewis and Elman (2008) looked at how changes in head circumference and conduction

velocity interacted. We would like to test a larger number of interacting factors separately

to characterize their individual effects, then use them in a combined model to examine

their interactions. These include changes to head size, conduction velocity due to axon

diameter and myelination, total number of fibers, and transmission noise.

C.3 Summary

Here, we propose to use allometric scaling to fill in missing data of the micro-

scopic structure of the mid-sagittal corpus callosum across the human lifespan. The

model will be tested against existing diffusion MRI data, and its consequences for cere-

bral lateralization will be examined in a neural network framework. If successful, this

model may help constrain the interpretation of microstructure from diffusion MRI data.
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