UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Assessing Conceptual Understanding of Arithmmetic Stucture and Language

Permalink
https://escholarship.org/uc/item/6909331\

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Authors
Schwarz, Baruch
Nathan, Mitchell J.

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6q09331v
https://escholarship.org
http://www.cdlib.org/

Assessing Conceptual Understanding
of Arithmetic Structure and Language

Baruch Schwarz,
School of Education,
Hebrew University, Mount Scopus,
Jerusalem, ISRAEL.
msschwar@pluto.cc.huji.ac.il

Mitchell

J.

Nathan,

Learning Research and Development Center,
University of Pittsburgh,
Pgh, PA, USA. 15260
mnathan @unix.cis.pitt.edu

Abstract

We contend that the primary role of an
illustration or physical manipulable for
teaching mathematics is to help the learner
understand the language of the mathematics
by providing the learner with a referential
semantics. Having taught this to subjects, we
address the question of how to assess their
understanding. Problem-solving performance,
we show, is insufficient by itself. An
assessment of students' memory for the
original problem statement, and their ability to
use cues within the referential semantics is
demonstrated as a potential method.

Fourth graders (n=24) solved word algebra
problem after (a) training with a designed
referential semantics from a computer tutor
called the Planner, (b) training with symbolic
manipulatives, or (c) receiving no training
(control). Although pretest-posttest gains
were only moderately better for the Planner
group than the symbol group, the former
showed reliably better ability to reconstruct the
problem statements after a 5-day delay. A
particular advantage for recall of algebraic
relations (as compared to assignments) was
evident. Mental representation of relations has
been singled out as a major obstacle to
successful word problem solving. The support
that a well-designed referential semantics
plays in the formation and retrieval of
appropriate mental structures for probiem
solving are discussed, as are methods for
assessing probiem comprehension and
conceptual change.
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Assessing Conceptual
Understanding of Arithmetic

Structure and Language

Research on the growth of the concepts of
number and their operators has shown that
while important segments of mathematical
knowledge have their origins in everyday
experience, leaming that is wholly dependent
on this approach can be limited (e.g., learning
about negative numbers, or the symbols of
mathematics notation). In the early stage of
protoquantitative reasoning, children learn
about non-quantified relations from talk and
direct engagement with physical materials and
illustrations (Resnick & Greeno, 1990).
However, the meaning conveyed by
manipulables (through their manipulation
properties) and illustrations may not be
sufficient to support the learning of vital pre-
algebraic concepts and procedures (e.g.,
Resnick and Omanson, 1987). Ultimately, one
must reason without immediate reference to
counted or measured materials. Several
researchers (Nesher, 1989; Schwarz, Kohn, &
Resnick, in press; White, in press) propose
the use of intermediate models for acquiring
high level concepts that cannot be discovered
informally (e.g., negative numbers). To be
helpful, intermediate models must behave as
the mathematical objects they exemplify do,
and their functioning must be self-evident.
Their construction is based on an
epistemological analysis of the mathematical
knowledge they exemplify. Competency
stems from engagement in situations
exemplified by the objects of a system and talk
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about those objects. Later, the child develops
a mathematical language (i.e., algebra) to
record and model actions in the system.

As in a natural language, the study of the
semantics of arithmetic and algebraic symbols
leads to a distinction between sense and
reference (cf. Nesher, 1989; Ohlsson, 1987).
The addition operator, for example, has
several senses (Carpenter, Moser, &
Romberg, 1982; Nesher & Katriel, 1977):
Combining or joining two quantities, changing
or increasing the value of a quantity, and
comparing quantities. Different senses of
subtraction and multiplication also exist.
Assessing understanding of arithmetic
structures. In performing our assessment, we
are asking, in the ideal, "What are the mental
structures formed by students learning
arithmetic and pre-algebra?" Although
problem-solving performance is the most
common measure, we believe that as a sole
measure it is incomplete. Students' abilities to
blindly apply mathematical procedures without
reqgard for their applicability, meaning or the
meaning of the solution are well-documented
(e.g., Paige & Simon, 1966; Wertheimer,
1982/1945). Furthermore, because of the
complexity of many problem-solving tasks
(which include understanding the instructions,
the problem statement, etc.) students can
obtain wrong answers even when their
understanding of the mathematics is high.
Consequently, we propose to look at
students' memory for the problems they solve
in addition to their performance. Memory for
problems taps directly into students' mental
representations for the problems and provides
a measure of their problem comprehension in
a manner similar to measures of reading
comprehension (Dellarosa et al., 1985).
Memory for problems also serves as an
effective method for uncovering students'
problem-solving difficuities. In Mayer's (1982)
study, for example, the impoverished memory
that students had for relational statements
found in word algebra problems was related
directly to their problem-solving difficulties.
Research applying reading comprehension to
mathematics problem solving has shown that
word problem comprehension can be
understood within the general theory of
discourse processing (e.g., Cummins et al,,
1988; Kintsch & Greeno, 1985).

To evaluate students' problem
comprehension, their memory fora problem is
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compared with the original problem text. The
comparison is performed at a propositional
level (though the propositions are at a coarse
level, as used by Mayer, 1982), as this level of
analysis has been shown to best capture the
regularities of a reader's text representation
(e.g., van Dijk & Kintsch). Recall is first
prompted by the title of a problem. If the recall
protocol is only a partial representation of the
original problem statement, then a prompt is
given at the level of the underlying problem
model. Recently, problem comprehension has
been described as the extent to which a
solver's representation fora problem situation
(the situation model) is related to the
conceptual relations of the problem solution
(the problem model, Nathan et al., 1992). The
extent to which problem model-based cues
help subjects to reconstruct the original
problem situation will be an added measure of
problem comprehension.

Empirical Evaluation.

The experimental group of greatest concern
was taught to use The Planner, a computer-
based tutor which provides intermediate
models that behave as the mathematical
objects they exemplify. It presents graphical
depictions of trains which represent quantities
and loading/unloading machines which
operate on those quantities and capture for
the student the different meanings of the
basic operations; i.e., the referential
semantics. Students learn to assemble chains
of machines which operate on a train and
convey the many different senses of an
operator, changing its length (+Change),
merging trains (Combine), or comparing
lengths of trains (Compare). Problems are
numerically solved when The Planner runs the
train(s) through a series of machines, thus
executing an expression.

Method

Fourth grade students (n=24) from two inner-
city parochial schools, matched on their
mathematical problem-solving abilities,
participated in a pretest-posttest control group
design. In session 1, subjects took a pretest
which contained one addition problem (of the
form ?+a=b), a multiplication problem, and a
complex, multi-step addition problem. The
plenner group (12 subjects) then met in pairs
and learned over the next three experimental



sessions (sessions 2-4) to specify Planner
objects and manipulate them as a means to
model and solve word algebra problems. The
symbol group (6 subjects) received analogous
training, with manipulable pads containing the
set of necessary algebraic symbols replacing
the Planner objects (see Figure 1). The
control group (6 subjects) took the pretest and
posttest but received no training. On the fifth
session, all subjects took a posttest which was
identical to the pretest. On session 6 (5 days
after the pretest), subjects in each of the
groups were asked to recall the test word
problems. Pre-determined cues were
provided as memory aids for subjects to
complete a partial recall. Cue 1 was the story
problem title. Cue 2 presented subjects with
an ordered series of uninstantiated (i.e., value-
less) machines (planner group), or a series of
pads with values missing but operators and
relations present (symbol and control group).
Cue 3 was a full representation of the problem
in the form used in either the planner training
or the symbol training (for both the symbol and
control groups). If recollection was still
incomplete, the story was read to the student
aloud. After recall, students solved the
problem. Further details are presented in
Schwarz et al (in press).

Results

Problem-solving performance. Figure 2 shows
the average number of problems correctly
solved by each group at the pretest, the
posttest, and after problem recall. Subjects in
the two experimental groups performed

consistently higher than control subjects on
the posttest and after recall, with subjects in
the planner group performing slightly better
than those in the symbol group.

Problem statement recall. From the problem
solving results it would appear that no notable
underlying differences exist between planner
and symbol subjects. Analyses of subjects'
recall after a five-day delay, however, show
important differences in conceptual formation
for the solved problems. Figure 3 shows the
proportional recall for all of the 39 propositions
of the original three texts after receiving each
cue (all subjects received cue 1, the story
title). Recall is necessarily monotonically
increasing as cues are given. Cues aided
subjects in all of the groups. Planner users
clearly had superior memory for the problems
at every level of cue.

Of particular interest in these data are the
relationship between control group subjects
and symbol users on the one hand, and
symbol and Planner users on the other.

Figure 2 showed marked differences in the
problem-solving performance of symbol users
and control subjects. After presentation of the
tittes (cue 1), however, there is no distinction
in their relative macro-level based access of
the original story information.

Planner users, however, have access to more
story information, recalling about half of it after
receiving only the title. Planner users
benefit even more when they are given cues
based on the referential semantics taught
during training. After cue 3, when the
complete formal relation of the problem is

)
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Symbols used by the Planner group
Terry Loves Books

Symbols used by the Symbol group

Terry loves books. He wants to renew his library. Some books no longer interest him and there are
others he wants but doesn't have. So he gives his little brother Al 13 books that are no longer good
for his age. Then Terry receives 7 new books from his father. He now has 19 books. How many did

Terry have before he changed his library?

Figure 1. Symbols used in the experimental training for the Planner group and the Symbol group.
Here, both representations convey the instantiated version of Terry Loves Books, the expression
(? - 13) + 7 = 19. For an uninstantiated version, the specific numbers or quantities of boxes shown are

omitted.
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Figure 2. Problem-solving performance on
the pretest, posttest, and after recall (5 days
later).

given, Planners are still dramatically better than
symbol users and control subjects in
reconstructing the original problem from its
solution. In contrast to the performance data of
Figure 2 it is apparent that an important aspect
of problem comprehension is not adequately

measured by performance. A similar pattern of
results are apparent for subjects' recall of
relations as a function of treatment (Figure 3b).
Relational propositions have been singled out
as a major obstacle to word problem
comprehension (e.g., Mayer, 1982), yet
Planner users show high recall of relations
which is nearly perfect after the relation-based
cue (cue 2).

Cue 1 Cue 2 Cue 3

Conclusions

The high performance coupled with near-
perfect reconstruction of the problem situation

suggests that Planner users have a superior
understanding of both the structure and the
language of algebra to their experimental
counterparts. It is not possible from these data
to determine whether the Planner helps
students to better encode the situation and
the conceptual structure of the problem, or if
their memory advantage is due to the effect
the referential semantics has on retrieval (e.g.,
greater salience, better indexing).

The objects of The Planner have been shown
to be an adequate means of supporting
algebra problem solving (consistent with
Schwarz et al,, in press).

Furthermore, the referential semantics it
provides proves to be both an adequate
language for representing problem
information, and a better method than
manipulable algebraic symbol pads for
promoting problem comprehension.
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